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ABSTRACT Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of

origin. Their1 regulation not only illuminates how chromatin regulates gene expression but also how chro-

matin can2 be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis

of imprinted3 loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess

these elements4 allele specifically. However, publicly available SNP databases lack robust verification, mak-

ing analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been devel-

oped employ5 different mouse strains, making it difficult to systemically analyze these loci. Here, we have

generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single

hybrid strain of Mus musculus. This resource includes verification of SNPs present within 10 of the most

widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a

C57BL/6J and CAST/EiJ hybrid strain background.6
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Genomically imprinted loci, which are expressed mono-all7 elically de-

pendent upon their parent of origin, highlight how DNA methylation

and chromatin structure can regulate gene expression (Bartolomei and

Ferguson-Smith 2011). For example, many of the chromatin mecha-

nisms that regulate imprinted loci are involved in other contexts, in-

cluding cancer biology and stem cell reprogramming. In addition,

alterations at multiple imprinted loci can be used as a readout of global

epigenetic misregulation. As a result, there is an increasing need to

assay multiple imprinted loci in different mouse models. In this re-

source article, we provide a streamlined resource for assaying themeth-

ylation status of a number of the most studied imprinted genes in a

single hybrid strain background.

To date, �150 imprinted genes have been identified in mice and

�100 in humans (Gregg et al. 2010; DeVeale et al. 2012; Kelsey and

Bartolomei 2012). These genes tend to be organized on chromosomes

in clusters (Wan and Bartolomei 2008; Bartolomei 2009). This cluster-

ing allows multiple imprinted loci to be regulated together, under the

control of cis-regulatory domains termed imprinting control regions

(ICRs) (Wan and Bartolomei 2008; Bartolomei 2009). ICRs are typi-

cally between 100 and 3700 bp long and are rich in CpG dinucleotides

(Bartolomei and Tilghman 1997; Barlow 2011; Ferguson-Smith 2011).

In mammals, DNA methylation occurs mainly in the context of CpG

dinucleotides, and within ICRs these CpG dinucleotides are differen-

tially methylated, dependent upon the parent of origin (Reik and Dean

2001; Reik and Walter 2001). This differential methylation determines

the expression status of the multiple imprinted genes located within the

imprinting cluster (Reik and Walter 2001). Therefore, to globally in-

terrogate the epigenetic control of genomically imprinted loci in a

particular mouse model, it is necessary to be able to assay the DNA

methylation status of multiple ICRs allele specifically.

Assessing ICRs allele specifically requires taking advantage of single

nucleotide polymorphisms (SNPs). C57BL/6J (hereafter referred to as

B6) mice are the most commonly used strain ofMus musculus domes-

ticus and were the first mouse strain to be fully sequenced (Beck et al.

2000). To generate hybrids with SNPs on each allele, B6 mice can be

crossed toM.musculus castaneus (hereafter referred to as CAST) mice,

which originate from a well-defined subgroup of wild mice (Beck et al.
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2000). Genome-wide DNA sequence analysis between different strains

ofM. musculus revealed a 50% allelic difference between B6 and CAST

at potential SNPs (Frazer et al. 2007). This makes these hybrid progeny

especially useful for analyzing imprinted loci.

SNPs between B6 and CAST are cataloged in the database of SNPs

(dbSNP) (https://www.ncbi.nlm.nih.gov/projects/SNP/) (Smigielski

et al. 2000; Sherry et al. 2001). This database reports SNPs that have

been observed in various assays performed by individual researchers,

consortiums, and genome sequencing centers, for the purpose of facil-

itating genome-wide association studies (Smigielski et al. 2000; Sherry

et al. 2001). Unfortunately, this database is phasing out all nonhuman

organism data by September 2017. However, very similar information

will still be housed in the European variation archive (http://www.ebi.

ac.uk/eva/?Home). This database overlaps with the dbSNP database

and also the Sanger SNP viewer database (https://www.sanger.ac.uk/

sanger/Mouse_SnpViewer/rel-1505) (Keane et al. 2011; Yalcin et al.

2011), which provides SNP information in multiple different strain

backgrounds.

Using SNPs from all of these databases, we sought to develop allele-

specific DNAmethylation assays at multiple ICRs in a B6/CAST hybrid

background. However, we encountered two significant hurdles. First,

since the dbSNPdatabase and the European variation archive are public

repositories, many reported SNPs have not been additionally verified

(Mitchell et al. 2004; Nekrutenko and Taylor 2012). Moreover, they

currently have no minimum requirements for allelic frequencies

(Mitchell et al. 2004; Nekrutenko and Taylor 2012). This further con-

tributes to the lack of verification for many SNPs. As a result, false

positives have been reported at a rate of between 15 and 17% (Mitchell

et al. 2004; Nekrutenko and Taylor 2012). In addition, these two data-

bases pool sequence differences from different strains into one com-

bined output. Thus, we discovered that relying solely on the dbSNP

database or European variation archive leads to an even higher rate of

false positives within ICRs. These hurdles can partially be overcome by

Figure 1 Workflow for SNP verification
within ICRs. Known ICRs were first pulled
from literature followed by identification of
putative SNPs present within each region.
These SNPs then underwent a verification
process through bisulfite analysis of both
parental and hybrid progeny strains. SNPs
that fail to verify were fed back to the
verification process.
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also incorporating the Sanger database, which contains information

from individual strain backgrounds. However, a drawback of the

Sanger database is that it contains much less information on intergenic

regions, where many ICRs are found. For example, it contains no in-

formation on three of the ICRs that we sought to interrogate. In the end,

we assessed 93 B6/CAST SNPs from the three databases at 10 of the

most commonly studied mouse ICRs, and were able to validate only

18 of them (19%).

The second hurdle that we encountered is the generation of bisulfite

PCR assays within ICRs. The gold standard in probing the DNA

methylation status of any locus is bisulfite analysis (Hayatsu et al.

2008; Laird 2010). As bisulfite analysis relies on detecting base pair

changes at CpGdinucleotides, primer sets used for bisulfite PCR cannot

contain any CpG dinucleotides because of the uncertainty of whether a

cytosine base in the primer-annealing sequence may be methylated. As

a result, generating bisulfite-specific primer sets in these highly CpG-

rich ICR regions can be difficult. In addition, because the CpG-rich

ICRs tend to be repetitive, finding primer sets that amplify a unique

product can also be challenging.

Basedon the significanthurdleswe encountered,we identifiedaneed

for optimized protocols for allele-specific DNAmethylation analysis of

ICRs in aB6/CASThybridmouse background.Asa result, wedeveloped

n Table 1 Primer sequences

Gene DNA Sequence 59/39 Bisulfite Converted Sequence 59/39

Grb10 F-GAGAAAAAAGGTTCAGTTACCCCAG(A/G) F-GAGAAAAAAGGTTTAGTTATTTTAG(A/G)
R-CCTCCCGAAATCTGCAATGGTC R-CCTCCCAAAATCTACAATAATC

H19 F-ATTCACAAATGGCAATGCTGTGG F-ATTTATAAATGGTAATGTTGTGG
R-CCTCATGAAGCCCATGACTAT R-CCTCATAAAACCCATAACTAT

Igf2r F-CAGAGGATTTTAGCACAACTCCAA F-TAGAGGATTTTAGTATAATTTTAA
R-CACTTTTGAGCTTGCCTCTCTTGC R-CACTTTTGAGCTTGCCTCTCTTGC

Impact F-CTGCATAGTTTTGCTCTCATAAGTG F-TTGTATAGTTTTGTTTTTATAAGTG
R-GGCCTGCTCATGTGACAATGCGGC R-AACCTACTCATATAACAATACAAC

Lit1 F-CAAGGTGAGTGGCCTAGGAC F-TAAGGTGAGTGGTTTAGGAT
R-AATCCCCCACACCTGAATTC R-AATCCCCCACACCTAAATTC

Mest F-GGGTGTTTTATGTCTTCCAGGG(T/G) F-GGGTGTTTTATGTTTTTTAGGG(T/G)
R-CCCAGATTCTAGTGAAGAAAGCCTTCCCAT R-CCCAAATTCTAATAAAAAAAACCTTCCCAT

Peg3 F-GGTGCATCTTTACTGCCAACTAGCAAAG F-GGTGTATTTTTATTGTTAATTAGTAAAG
R-CAGGTTTGCTGCACAGGCTTATCC R-CAAATTTACTACACAAACTTATCC

Peg10 F-GCAAAGTGACTGGCTCTGCACTCTTAAGTG F-GTAAAGTGATTGGTTTTGTATTTTTAAGTG
R-TTGGTTACTCTCCTGCAGCTTTCCAAATT R-TTAATTACTCTCCTACAACTTTCCAAATT

Snrpn F-GCAATTATATCCATTATTCCAGATTGACAGTGA(T/G) F-GTAATTATATTTATTATTTTAGATTGATAGTGA(T/G)
R-ATAGGATGCACTTTCACTACTAGAATCC R-ATAAAATACACTTTCACTACTAAAATCC

Zac1 F-GGGTAGGTAAGTAGTGACAA F-GGGTAGGTAAGTAGTGATAA
R-CCTAAAACACCAAAGTAGCA R-CCTAAAACACCAAAATAACA

Figure 2 SNP verification within Grb10
ICR. (A) Schematic of Grb10 ICR. Probed
region is highlighted by double-dashed
line with number of base pairs covered
reported. CpG island indicated by dotted
box. Green indicates primer sequences;
orange indicates CpG dinucleotides; red
star and bases indicate verified SNP. (B)
Verified SNP presented as sequences from
B6 female and CAST male. A-to-G SNP is
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNP high-
lighted by red dotted rectangle. DNA
methylation presented as lollipop dia-
gram; White circles indicate unmethylated
cytosines; black circles indicate methyl-
ated cytosines. (D) Other SNPs reported
in all three databases within the probed
region with the SNP highlighted by red
dotted rectangle. dbSNP identification
number indicated under each SNP. Red
star indicates validated SNP and blue
closed circle indicates C-to-T polymor-
phism that cannot be assayed in bisulfite
analysis. (E) Optimal PCR conditions for
probed region with the given primers. (F)
The electropherogram indicating A-to-G

9polymorphism for the SNP region. ♀, ma-
ternal; ♂, paternal.
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a resource that includes verification of SNPs present in ICRs, primer

information, and optimal PCR conditions. This resource will enable the

systematic interrogationofmany significant imprintedgenes indifferent

mouse models.

MATERIALS AND METHODS

Bisulfite analysis and bisulfite PCR optimization

Mouse tail DNA from single C57BL/6J and CAST/EiJ animals was used

for the original identification of SNPs. Subsequently, DNA from sagittal

sections of perinatal pups was used for allele-specific DNAmethylation

analysis. Bisulfite conversion was done according to the Zymo EZDNA

Methylation Kit (Zymo D5001) protocol from 400 ng of DNA. PCR

products were amplified in a 15-ml reaction and 3 ml was saved for

subsequent TA cloning using the standard TOPO TA cloning protocol

(K4500J10; ThermoFisher). The remaining volume was run on a 1%

agarose gel to confirm that there is a single PCR product. Bisulfite

primers were optimized on bisulfite-converted DNA using 12 different

conditions, including four different concentrations of MgCl2 (1.5, 2.5,

3.5, and 4.5 mM) paired with three different concentrations of DMSO

(0, 1.5, and 5%). In addition, primers were optimized across a temper-

ature gradient. Primer sets, polymorphisms, and optimal PCR condi-

tions for each gene are listed in the individual figures. Of note, because

of the difficulty in finding primer sequences in highly CpG-rich regions

that do not contain a CpG dinucleotide, many of the primers contained

suboptimal base composition and/or did not match the annealing tem-

perature of the other primer used in the reaction. As a result, several of

the optimized PCR protocols contain relatively large numbers of cycles

to enable the amplification of a product. The BiQ Analyzer program

was used for the analysis of bisulfite-converted sequences. During the

bisulfite analysis, depending on the choice of primers, two different

DNA strands will lead to two different sequencing results. Some of

the genes we report here were surveyed on the opposite strand of the

gene assembly and therefore have a reversed order of their SNPs com-

pared to the databases. These genes are shown with their chromosome

location number in reverse order, from high to low, and this is noted in

the corresponding figure legend.

Data availability

The authors affirm that all data necessary for confirming the results in

the article are present in the article. Reagents are available upon request.

RESULTS
Tobegin the process of interrogating specific imprinted loci, we generated

a workflow to streamline the process (Figure 1). Our first criterion was to

identify well-defined ICRs that have been extensively studied.We focused

on the following ICRs due to their prevalence in the literature: Grb10,

H19, Igf2r, Impact, Lit1/Kcnq1ot1, Mest/Peg1, Peg3, Peg10, Snrpn, and

Zac1/Plagl1. These ICRs also had well-defined locations in the genome

and are associated with differentially methylated regions that allowed us

to probe their methylation status via bisulfite analysis.

We then used the UCSC Genome Browser in conjunction with

dbSNPtodetermine reportedSNPswithina 10-kbwindowsurrounding

and including the ICRs, and these SNPswere then cross-checked against

the European database as well as the Sanger database to determine their

presence in specific strain backgrounds. Following this in silico analysis,

we designed bisulfite-specific primers to the regions of interest

(Table 1). These regions were,1 kb andwere within our 10-kb defined

window, including a significant portion of the ICR and at least one SNP.

Figure 3 SNP verification within H19 ICR.
(A) Schematic of H19 ICR. Probed region is
highlighted by double-dashed line with
number of base pairs covered reported.
CpG island indicated by dotted box.
Green indicates primer sequences; orange
indicates CpG dinucleotides; red star and
bases indicate verified SNPs. The chromo-
some location is from high to low, see Ma-
terials and Methods for more details. (B)
Verified SNPs presented as sequences
from B6 female and CAST male. G-to-
del, G-to-A, and A-to-G SNPs are high-
lighted by red dotted rectangle. (C) Verifi-
cation of proper imprinted status in hybrid
B6/CAST progeny. SNPs highlighted by
red dotted rectangle. DNA methylation
presented as lollipop diagram; white circ-
less indicate unmethylated cytosines;
black circles indicate methylated cyto-
sines. (D) Other SNPs reported in all three
databases within the probed region with
the SNP highlighted by red dotted rectan-
gle. dbSNP identification number indi-
cated under each SNP. Red star indicates
validated SNP and blue closed circle indi-
cates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal
PCR conditions for probed region with
the given primers. (F) The electrophero-
grams indicating G-to-del, G-to-A, and
A-to-G polymorphisms for the SNPs. ♀,
maternal; ♂, paternal.
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The bisulfite primers could not contain any CpG dinucleotides, reduc-

ing the availability of genomic regions to amplify. Bisulfite primers were

optimized on bisulfite-converted DNA (detailed in Materials and

Methods). After optimization, bisulfite PCR was performed on a B6

female and a CASTmale, along with the hybrid progeny resulting from

the mating. Reported SNPs were compared in B6 and CAST sequences.

If validated in this initial comparison, further validation was performed

via analysis of the methylation status in hybrid B6/CAST progeny.

Using this workflow, we validated SNPs in all 10 ICRs and identified

PCRconditions for the analysis of each. The relevant details are reported

Figure 4 SNP verification within Igf2r ICR. (A)
Schematic of Igf2r ICR. Probed region is
highlighted by double-dashed line with num-
ber of base pairs covered reported. CpG
island indicated by dotted box. Green indi-
cates primer sequences; orange indicates
CpG dinucleotides; red star and bases in-
dicate verified SNPs. (B) Verified SNPs pre-
sented as sequences from B6 female and
CAST male. G-to-A and A-to-G SNPs are
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNPs highlighted
by red dotted rectangle. DNA methylation
presented as lollipop diagram; white circles
indicate unmethylated cytosines; black circles
indicate methylated cytosines. (D) Other SNPs
reported in all three databases within the
probed region with the SNP highlighted by
red dotted rectangle. dbSNP identification
number indicated under each SNP. Red star
indicates validated SNP and blue closed circle
indicates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal PCR
conditions for probed region with the given
primers. (F) The electropherograms indicating
G-to-A and A-to-G polymorphisms for the
SNP regions. ♀, maternal; ♂, paternal.

Figure 5 SNP verification within Impact ICR.
(A) Schematic of Impact ICR. Probed region
is highlighted by double-dashed line with
number of base pairs covered reported.
CpG island indicated by dotted box. Green
indicates primer sequences; orange indi-
cates CpG dinucleotides; red star and bases
indicate verified SNPs. (B) Verified SNPs
presented as sequences from B6 female
and CAST male. T-to-A, A-to-G, and T-to-A
SNPs are highlighted by red dotted rectan-
gle. (C) Verification of proper imprinted
status in hybrid B6/CAST progeny. SNPs
highlighted by red dotted rectangle. DNA
methylation presented as lollipop diagram;
white circles indicate unmethylated cyto-
sines; black circles indicate methylated cyto-
sines. (D) Other SNPs reported in all three
databases within the probed region with the
SNP highlighted by red dotted rectangle.
dbSNP identification number indicated un-
der each SNP. Red star indicates validated
SNP and blue closed circle indicates C-to-T
polymorphism that cannot be assayed in
bisulfite analysis. (E) Optimal PCR conditions
for probed region with the given primers. (F)
The electropherograms indicating 10T-to-A,
A-to-G, and T-to-A polymorphisms for the
SNP regions. ♀, maternal; ♂, paternal.
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for each gene below. In addition, we have shown each single band

amplicon run in an agarose gel (Supplemental Material, Figure S1).

Grb10

Grb10 is regulated by an ICR that is �1.4 kb and located on chromo-

some 11 in mouse (Figure 2A).Within our probed region, we validated

one SNP out of three reported SNPs from the dbSNP database (Figure

2D). The validated SNP is within a 390-bp region containing 31 CpG

residues (Figure 2A), with the polymorphic base being an A in the B6

background and a G in the CAST background (Figure 2B).8 Grb10 is

methylated on the maternal allele and unmethylated on the paternal

allele. This methylation pattern was correctly observed in the hybrid

progeny using our optimized assay (Figure 2, C and E).

H19

H19 is regulated by an ICR on chromosome 7 (Figure 3A). Within our

probed region, we validated three SNPs out of four reported SNPs from

the dbSNPdatabase (Figure 3D). These validated SNPs arewithin a 291-bp

region containingnineCpGresidues (Figure 3A). The three validated SNPs

include (1) a G in the B6 background and a deletion in the CAST back-

ground, (2) a G in the B6 background and an A in the CAST background,

and (3) an A in the B6 background and a G in the CAST background

(Figure 3B).H19 is methylated on the paternal allele and unmethylated on

the maternal allele. This methylation pattern was correctly observed in the

hybrid progeny using our optimized assay (Figure 3, C and E).

Igf2r

Igf2r is regulated by an ICR on chromosome 17 (Figure 4A).Within our

probed region, we validated two SNPs out of 13 reported SNPs from the

dbSNP database (Figure 4D). These validated SNPs are within a 549-bp

region containing 33 CpG residues (Figure 4A). These polymorphic

bases include (1) a G in the B6 background and an A in the CAST

background, and (2) an A in the B6 background and a G in the CAST

background (Figure 4B). Igf2r is methylated on the maternal allele and

unmethylated on the paternal allele. This methylation pattern was

correctly observed in the hybrid progeny using our optimized assay

(Figure 4 C and E).

Impact

Impact is regulated by an ICR on chromosome 18 (Figure 5A). Within

our probed region, we validated three SNPs out of 10 reported SNPs

from the dbSNP and European databases (Figure 5D). One of the SNPs

that was not validated was an unnamed SNP from the European data-

base. The validated SNPs are within a 433-bp region that contains

17 CpG residues (Figure 5A). These polymorphic bases include (1) a

T in the B6 background and an A in the CAST background, (2) an A in

the B6 background and a G in the CAST background, and (3) a T in the

B6 background and an A in the CAST background (Figure 5B). Impact

is methylated on the maternal allele and unmethylated on the paternal

allele. This methylation pattern was correctly observed in the hybrid

progeny using our optimized assay (Figure 5, C and E).

Lit1/Kcnq1ot1

Lit1/Kcnq1ot1 is regulated by an ICR on chromosome 7 (Figure 6A).

Within our probed region, we validated one SNP out of 12 reported

SNPs from the dbSNP and European databases (Figure 6D). One of the

SNPs that was not validated was an unnamed SNP from the European

database. The validated SNP is within a 420-bp region that contains

Figure 6 SNP verification within Lit1/
Kcnq1ot1 ICR. (A) Schematic of Lit1/
Kcnq1ot1 ICR. Probed region is high-
lighted by double-dashed line with num-
ber of base pairs covered reported. CpG
island indicated by dotted box. Green
indicates primer sequences; orange indi-
cates CpG dinucleotides; red star and
bases indicate verified SNP. The chromo-
some location is from high to low, see Ma-
terials and Methods for more details. (B)
Verified SNP presented as sequences from
B6 female and CAST male. G-to-A SNP is
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNP high-
lighted by red dotted rectangle. DNA
methylation presented as lollipop dia-
gram; white circles indicate unmethylated
cytosines; black circles indicate methyl-
ated cytosines. (D) Other SNPs reported
in all three databases within the probed
region with the SNP highlighted by red
dotted rectangle. dbSNP identification
number indicated under each SNP. Red
star indicates validated SNP and blue
closed circle indicates C-to-T polymor-
phism that cannot be assayed in bisulfite
analysis. (E) Optimal PCR conditions for
probed region with the given primers. (F)
The electropherogram indicating G-to-A
polymorphism for the SNP region. ♀, ma-
ternal; ♂, paternal.
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17 CpG residues (Figure 6A). The polymorphic base is a G in the B6

background and an A in the CAST background (Figure 6B). Lit1 is

methylated on the maternal allele and unmethylated on the paternal

allele. This methylation pattern was correctly observed in the hybrid

progeny using our optimized assay (Figure 6, C and E).

Mest/Peg1

Mest/Peg1 is regulated by an ICR on chromosome 6 (Figure 7A).

Within our probed region, we validated one SNP out of two reported

SNPs from the dbSNP database (Figure 7D). This validated SNP is

within a 136-bp region that contains four CpG residues (Figure 7A).

Figure 7 SNP verification within Mest/Peg1
ICR. (A) Schematic of Mest/Peg1 ICR.
Probed region is highlighted by double-
dashed line with number of base pairs
covered reported. CpG island indicated by
dotted box. Green indicates primer se-
quences; orange indicates CpG dinucleo-
tides; red star and bases indicate verified
SNP. (B) Verified SNP presented as se-
quences from B6 female and CAST male.
T-to-G SNP is highlighted by red dotted
rectangle. (C) Verification of proper
imprinted status in hybrid B6/CAST progeny.
SNP highlighted by red dotted rectangle.
DNA methylation presented as lollipop dia-
gram; white circles indicate unmethylated
cytosines; black circles indicate methylated
cytosines. (D) Other SNPs reported in all
three databases within the probed region
with the SNP highlighted by red dotted
rectangle. dbSNP identification number in-
dicated under each SNP. Red star indicates
validated SNP and blue closed circle indi-
cates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal PCR
conditions for probed region with the given
primers. (F) The electropherogram indicating
T-to-G polymorphism for the SNP region. ♀,
maternal; ♂, paternal.

Figure 8 SNP verification within Peg3 ICR.
(A) Schematic of Peg3 ICR. Probed region is
highlighted by double-dashed line with
number of base pairs covered reported.
CpG island indicated by dotted box. Green
indicates primer sequences; orange indi-
cates CpG dinucleotides; red star and
bases indicate verified SNP. (B) Verified
SNP presented as sequences from B6
female and CAST male. T-to-G SNP is
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNP highlighted
by red dotted rectangle. DNA methylation
presented as lollipop diagram; white circles
indicate unmethylated cytosines; black cir-
cles indicate methylated cytosines. (D)
Other SNPs reported in all three databases
within the probed region with the SNP
highlighted by red dotted rectangle.
dbSNP identification number indicated un-
der each SNP. Red star indicates validated
SNP and blue closed circle indicates C-to-T
polymorphism that cannot be assayed in
bisulfite analysis. (E) Optimal PCR condi-
tions for probed region with the given
primers. (F) The electropherogram indicat-
ing the T-to-G polymorphism for the SNP
region. ♀, maternal; ♂, paternal.
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This polymorphic base is a T in the B6 background and a G in the

CAST background (Figure 7B). Mest is methylated on the maternal

allele and unmethylated on the paternal allele. This methylation pattern

was correctly observed in the hybrid progeny using our optimized assay

(Figure 7, C and E).

Peg3

Peg3 is regulated by an ICR on chromosome 7 (Figure 8A). Within our

probed region, we validated one SNP out of four reported SNPs from

the dbSNP database (Figure 8D). This validated SNP is within a 228-bp

region that contains 11 CpG residues (Figure 8A). This polymorphic

base is a T in the B6 background and a G in the CAST background

(Figure 8B). Peg3 is methylated on the maternal allele and unmethy-

lated on the paternal allele. This methylation pattern was correctly

observed in the hybrid progeny using our optimized assay (Figure 8,

C and E).

Peg10

Peg10 is regulated by an ICR on chromosome 6 (Figure 9A).Within our

probed region, we validated one SNP out of 23 reported SNPs from the

dbSNP and European databases (Figure 9D). One of the SNPs that was

not validated was an unnamed SNP from the European database. The

validated SNP is within a 663-bp region that contains 54 CpG residues

(Figure 9A). This polymorphic base is a C in the B6 background and an

A in the CAST background (Figure 9B). Peg10 is methylated on the

maternal allele and unmethylated on the paternal allele. This methyl-

ation pattern was correctly observed in the hybrid progeny using our

optimized assay (Figure 9, C and E).

Snrpn

Snrpn is regulated by an ICR on chromosome 7 (Figure 10A).Within our

probed region, we validated four SNPs out of 11 reported SNPs from the

dbSNP database (Figure 10D). We also identified a novel SNP that is not

present in any of the three databases. All five of the validated SNPs are

within a 356-bp region that contains 16 CpG residues (Figure 10A).

These polymorphic bases include (1) a T in the B6 background and a

G in the CAST background, this is the novel SNP that we identified; (2)

a TTT in the B6 background and a deletion in the CAST background; (3)

a T in the B6 background and an A in the CAST background; (4) a G in

the B6 background and anA in the CAST background; and (5) a G in the

B6 background and a T in the CAST background (Figure 10B). Snrpn is

methylated on the maternal allele and unmethylated on the paternal

allele. This methylation pattern was correctly observed in the hybrid

progeny using our optimized assay (Figure 10, C and E).

Zac1/Plagl1

Zac1/Plagl1 is regulated by an ICR on chromosome 10 (Figure 11A).

Within our probed region, we validated one SNP out of 11 reported

SNPs from the dbSNP and European databases (Figure 11D). The un-

named SNPs are not found in the dbSNP. The validated SNP is within a

578-bp region that contains 33 CpG residues (Figure 11A). This poly-

morphic base is an A in the B6 background and a G in the CAST

background (Figure 11B). Zac1 is methylated on the maternal allele

and unmethylated on the paternal allele. This methylation pattern was

correctly observed in the hybrid progeny using our optimized assay

(Figure 11, C and E).

Figure 9 SNP verification within Peg10
ICR. (A) Schematic of Peg10 ICR. Probed
region is highlighted by double-dashed
line with number of base pairs covered
reported. CpG island indicated by dotted
box. Green indicates primer sequences;
orange indicates CpG dinucleotides; red
star and bases indicate verified SNP. (B)
Verified SNP presented as sequences from
B6 female and CAST male. C-to-A SNP is
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNP highlighted
by red dotted rectangle. DNA methylation
presented as lollipop diagram; white cir-
cles indicate unmethylated cytosines;
black circles indicate methylated cytosines.
(D) Other SNPs reported in all three
databases within the probed region with
the SNP highlighted by red dotted rectan-
gle. dbSNP identification number indi-
cated under each SNP. Red star indicates
validated SNP and blue closed circle indi-
cates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal
PCR conditions for probed region with the
given primers. (F) The electropherogram
indicating C-to-A polymorphism for the
SNP region. ♀, maternal; ♂, paternal.
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DISCUSSION
Of the SNPs thatwe analyzed,wewere able to validate 18,whilewe failed

to validate 75 SNPs within those same regions (Table 2, red and black).

In addition, of those 75 SNPs, 28 of themwere C/T polymorphisms that

bisulfite analysis was unable to differentiate (Table 2, blue). We also

identified a SNP in the Snrpn ICR, which was not present in any of the

three databases (Table 2, orange). Furthermore, during our optimiza-

tion we failed to validate multiple SNPs that lie outside of our bisulfite

primers. These SNPs are reported in Figure S2. Among the many SNPs

reported in the dbSNP database that we failed to verify, most were

identified as SNPs between strains other than CAST in the Sanger

database. In the end, we could only find one SNP that was supposed

to show a polymorphism based on the reported data but did not in our

experiments (Table 2, purple). Thus, in general, we recommend using

the Sanger database. However, it is important to note that since the

Sanger database primarily contains SNPs located close to or within

genes, certain ICR SNPs had to be identified in the dbSNP database.

In this resource,wehave validated anumber of SNPswithin the ICRs

of the most commonly imprinted loci. In addition, we have demon-

strated a high frequency of invalid SNPs within ICRs when the pooled

SNPs from the dbSNP (European variation archive) are used alone,

highlighting the drawbacks of the mixed strain databases compared to

the Sanger strain-specific polymorphism database. Using the validated

SNPs, we have optimized allele-specific DNA methylation assays that

will allow for the rapid analysis of multiple imprinted loci in a variety of

contexts, including at several ICRs that are not contained within the

Sanger database. This resource will enable the systematic analysis of

multiple imprinted genes in a number of potential applications.

Potential Applications

As this resource offers extensive and straightforward assays to interro-

gate the most commonly studied imprinted loci, it can be used across a

number of fields. There are two major instances where we envision the

utility of this resource: (1) cases where a regulatory mechanism directly

interacts withmultiple imprinted loci and (2) cases where a mechanism

either indirectly regulates many imprinted loci or affects multiple

imprinted loci by generally disrupting the epigenetic landscape.

Recently, a number of proteins have been demonstrated to directly

regulate multiple imprinted loci. These include, but are not limited to,

Dnmt3l, Dnmt1, Lsd2, Trim28, Zfp57, and Tet1/2, each with a different

mechanism of action (Bourc’his et al. 2001; Howell et al. 2001; Reik

et al. 2003; Li et al. 2008; Karytinos et al. 2009; Fang et al. 2010;

Messerschmidt et al. 2012; Yamaguchi et al. 2013; Canovas and Ross

2016). For example, deletion of the regulatory subunit of the de novo

DNA methyltransferase Dnmt3L results in the failure to establish ma-

ternal DNA methylation at a number of maternally imprinted loci,

including Peg3, Lit1/Kcnq1ot1, and Snrpn (Bourc’his et al. 2001; Hata

et al. 2002). Another maternal effect enzyme required for the establish-

ment of DNA methylation at maternally imprinted loci is the histone

demethylase Lsd2. Mechanistically, Lsd2 is required to remove H3K4

methylation to get proper DNA methylation at imprinted loci includ-

ingMest, Grb10, and Zac1 (Ciccone et al. 2009; Fang et al. 2010; Zhang

et al. 2012; Stewart et al. 2015). Furthermore, Zfp57, a KRAB domain

zinc-finger protein, is required both maternally and zygotically to

maintain the imprinting status of various imprinted loci including

Snrpn (Li et al. 2008; Strogantsev and Ferguson-Smith 2012;

Strogantsev et al. 2015). This protein is thought to bind directly to

Figure 10 SNP verification within Snrpn
ICR. (A) Schematic of Snrpn ICR. Probed
region is highlighted by double-dashed
line with number of base pairs covered
reported. CpG island indicated by dotted
box. Green indicates primer sequences;
orange indicates CpG dinucleotides; red
star and bases indicate verified SNPs. The
chromosome location is from high to low,
see Materials and Methods for more de-
tails. (B) Verified SNPs presented as se-
quences from B6 female and CAST male.
T-to-G, TTT-to-del, T-to-A, G-to-A, and
G-to-T SNPs are highlighted by red dotted
rectangle. (C) Verification of proper
imprinted status in hybrid B6/CAST prog-
eny. SNP highlighted by red dotted rect-
angle. DNA methylation presented as
lollipop diagram; white circles indicate
unmethylated cytosines; black circles indi-
cate methylated cytosines. (D) Other SNPs
reported in all three databases within the
probed region with the SNP highlighted
by red dotted rectangle. dbSNP identifica-
tion number indicated under each SNP.
Red star indicates validated SNP and blue
closed circle indicates C-to-T polymor-
phism that cannot be assayed in bisulfite
analysis. (E) Optimal PCR conditions for
probed region with the given primers. (F)
The electropherograms indicating T-to-G,
TTT-to-del, T-to-A, G-to-A, and G-to-T
polymorphisms for the SNP regions. ♀,
maternal; ♂, paternal.
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DNA with its zinc fingers and subsequently recruit factors that repress

transcription (Li et al. 2008; Quenneville et al. 2011; Strogantsev et al.

2015). These studies demonstrate how disruptions in mechanistically

distinct regulatory mechanisms can affect multiple imprinted loci.

Alternatively, a number of mechanisms have been demonstrated to

indirectly affect imprinted loci via general epigenetic disruptions. For

example, mutations in human NLRP genes, which are required mater-

nally for the transition to zygotic gene expression, result in hydatidiform

moles and loss of imprinting (Docherty et al. 2015). Another maternal

effect gene, Lsd1, the homolog of Lsd2, is also maternally required at

fertilization for the maternal to zygotic transition (Ancelin et al. 2016;

Wasson et al. 2016). Loss of maternal Lsd1 leads to a general disruption

of DNA methylation in the resulting progeny at both maternally and

paternally imprinted loci (Ancelin et al. 2016; Wasson et al. 2016).

These studies demonstrate how maternal factors, deposited into the

zygote from the mother, are required for proper imprinting and devel-

opment of the embryo.

As ICRs are inherently asymmetric in their epigenetic modifications

andopposingmechanisms are required at eachparental ICR, even slight

disturbances in the epigenetic landscape can lead to significant changes

in expression at these loci. For example, disruptions in the maternal

expression of Grb10 results in developmental defects in mice, while

disruption of the paternal allele of Grb10 leads to changes in behavior,

including increased social dominance (Garfield et al. 2011; Dent and

Isles 2014). This highlights differences in the roles of imprinted parental

alleles in mice. Another study that highlights the relative contributions

of each parental allele describes parental-specific duplications of the

15q11.2-q13.3 region of human chromosome 15 (Isles et al. 2016).

Paternal duplications were more associated with autism spectrum dis-

order and developmental delay, while maternal duplications were more

associated with psychiatric disorders (Isles et al. 2016). These studies

demonstrate the complexity of outcomes associated with maternal vs.

paternal inheritance.

Finally, mechanisms that affect imprinted genes indirectly though

general epigenetic disruptions highlight how the methylation status of

ICRs can act as a proxy for global epigenetic alterations. For example,

studies have demonstrated hypomethylation of a differentially methyl-

ated region in the Igf2-H19 locus inWilms tumor patients (Scharnhorst

et al. 2001). In addition, embryos conceived using artificial reproductive

technologies have higher incidences of Prader–Willi and Angelman

syndromes (Horsthemke and Wagstaff 2008; Buiting 2010; Butler

2011). These syndromes are caused by large-scale chromosomal abnor-

malities that affect multiple imprinted loci (Horsthemke and Wagstaff

2008; Buiting 2010; Butler 2011). It is also possible that imprinting may

be disrupted by environmental factors. For example, Bisphenol A, an

environmental toxin, as well as various endocrine disruptors, have been

revealed to significantly alter the epigenetic landscape (Kang et al. 2011;

Susiarjo et al. 2013). Also, Vinclozolin exposure in mice leads to in-

fertility due to sperm defects in mice, which correlates with global

alterations in the DNA methylation landscape (Anway et al. 2005;

Kang et al. 2011). These studies demonstrate additional mechanisms

that may lead to broad imprinting disruptions.

Conclusion

Duetovariousmechanisms thatcandisrupt the epigenetic landscape,we

anticipate a growing need to assay imprinted loci in different mouse

models. The resource provided here will facilitate the future analysis of

multiple imprinted loci in a single hybrid genetic background.

Figure 11 SNP verification within Zac1/
Plagl1 ICR. (A) Schematic of Zac1/Plagl1
ICR. Probed region is highlighted by dou-
ble-dashed line with number of base pairs
covered reported. CpG island indicated by
dotted box. Green indicates primer se-
quences; orange indicates CpG dinucleo-
tides; red star and bases indicate verified
SNP. (B) Verified SNP presented as se-
quences from B6 female and CAST male.
A-to-G SNP is highlighted by red dotted
rectangle. (C) Verification of proper
imprinted status in hybrid B6/CAST prog-
eny. SNP highlighted by red dotted rect-
angle. DNA methylation presented as
lollipop diagram; white circles indicate
unmethylated cytosines; black circles in-
dicate methylated cytosines. (D) Other
SNPs reported in all three databases within
the probed region with the SNP high-
lighted by red dotted rectangle. dbSNP
identification number indicated under
each SNP. Red star indicates validated
SNP and blue closed circle indicates
C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal
PCR conditions for probed region with the
given primers. (F) The electropherogram
indicating A-to-G polymorphism for the
SNP region. ♀, maternal; ♂, paternal.
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n Table 2 The complete list of all the SNPs from 3 databases within surveyed regions

(continued)
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