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ABSTRACT Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of
origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chro-
[ matin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis
B8 of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess
@ these elements allele specifically. However, publicly available SNP databases lack robust verification, mak-

ing analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been devel-
5 oped employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have
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generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single
hybrid strain of Mus musculus. This resource includes verification of SNPs present within 10 of the most
widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a

6l C57BL/6J and CAST/EiJ hybrid strain background.

Genomically imprinted loci, which are expressed mono-allelically de-
pendent upon their parent of origin, highlight how DNA methylation
and chromatin structure can regulate gene expression (Bartolomei and
Ferguson-Smith 2011). For example, many of the chromatin mecha-
nisms that regulate imprinted loci are involved in other contexts, in-
cluding cancer biology and stem cell reprogramming. In addition,
alterations at multiple imprinted loci can be used as a readout of global
epigenetic misregulation. As a result, there is an increasing need to
assay multiple imprinted loci in different mouse models. In this re-
source article, we provide a streamlined resource for assaying the meth-
ylation status of a number of the most studied imprinted genes in a
single hybrid strain background.
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To date, ~150 imprinted genes have been identified in mice and
~100 in humans (Gregg et al. 2010; DeVeale et al. 2012; Kelsey and
Bartolomei 2012). These genes tend to be organized on chromosomes
in clusters (Wan and Bartolomei 2008; Bartolomei 2009). This cluster-
ing allows multiple imprinted loci to be regulated together, under the
control of cis-regulatory domains termed imprinting control regions
(ICRs) (Wan and Bartolomei 2008; Bartolomei 2009). ICRs are typi-
cally between 100 and 3700 bp long and are rich in CpG dinucleotides
(Bartolomei and Tilghman 1997; Barlow 2011; Ferguson-Smith 2011).
In mammals, DNA methylation occurs mainly in the context of CpG
dinucleotides, and within ICRs these CpG dinucleotides are differen-
tially methylated, dependent upon the parent of origin (Reik and Dean
2001; Reik and Walter 2001). This differential methylation determines
the expression status of the multiple imprinted genes located within the
imprinting cluster (Reik and Walter 2001). Therefore, to globally in-
terrogate the epigenetic control of genomically imprinted loci in a
particular mouse model, it is necessary to be able to assay the DNA
methylation status of multiple ICRs allele specifically.

Assessing ICRs allele specifically requires taking advantage of single
nucleotide polymorphisms (SNPs). C57BL/6] (hereafter referred to as
B6) mice are the most commonly used strain of Mus musculus domes-
ticus and were the first mouse strain to be fully sequenced (Beck et al.
2000). To generate hybrids with SNPs on each allele, B6 mice can be
crossed to M. musculus castaneus (hereafter referred to as CAST) mice,
which originate from a well-defined subgroup of wild mice (Beck et al.
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2000). Genome-wide DNA sequence analysis between different strains
of M. musculus revealed a 50% allelic difference between B6 and CAST
at potential SNPs (Frazer et al. 2007). This makes these hybrid progeny
especially useful for analyzing imprinted loci.

SNPs between B6 and CAST are cataloged in the database of SNPs
(dbSNP)  (https://www.ncbi.nlm.nih.gov/projects/SNP/) ~ (Smigielski
et al. 2000; Sherry et al. 2001). This database reports SNPs that have
been observed in various assays performed by individual researchers,
consortiums, and genome sequencing centers, for the purpose of facil-
itating genome-wide association studies (Smigielski et al. 2000; Sherry
et al. 2001). Unfortunately, this database is phasing out all nonhuman
organism data by September 2017. However, very similar information
will still be housed in the European variation archive (http://www.ebi.
ac.uk/eva/?Home). This database overlaps with the dbSNP database
and also the Sanger SNP viewer database (https://www.sanger.ac.uk/
sanger/Mouse_SnpViewer/rel-1505) (Keane et al. 2011; Yalcin et al.
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Figure 1 Workflow for SNP verification
within ICRs. Known ICRs were first pulled
from literature followed by identification of
putative SNPs present within each region.
These SNPs then underwent a verification
process through bisulfite analysis of both
parental and hybrid progeny strains. SNPs
that fail to verify were fed back to the
verification process.

BS-PCR using

optimized primers on
B6, CAST, and hybrid
B6/CAST animals

Process PCR product
for via gel purify, TA
clone, miniprep and

digest cloned PCR prod-
uct prior to sequencing

2011), which provides SNP information in multiple different strain
backgrounds.

Using SNPs from all of these databases, we sought to develop allele-
specific DNA methylation assays at multiple ICRs in a B6/CAST hybrid
background. However, we encountered two significant hurdles. First,
since the dbSNP database and the European variation archive are public
repositories, many reported SNPs have not been additionally verified
(Mitchell et al. 2004; Nekrutenko and Taylor 2012). Moreover, they
currently have no minimum requirements for allelic frequencies
(Mitchell et al. 2004; Nekrutenko and Taylor 2012). This further con-
tributes to the lack of verification for many SNPs. As a result, false
positives have been reported at a rate of between 15 and 17% (Mitchell
et al. 2004; Nekrutenko and Taylor 2012). In addition, these two data-
bases pool sequence differences from different strains into one com-
bined output. Thus, we discovered that relying solely on the dbSNP
database or European variation archive leads to an even higher rate of
false positives within ICRs. These hurdles can partially be overcome by
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Table 1 Primer sequences

Gene DNA Sequence 5'— 3’ Bisulfite Converted Sequence 5' — 3’

Grb10 F-GAGAAAAAAGGTTCAGTTACCCCAG(A/G) F-GAGAAAAAAGGTTTAGTTATTTTAG(A/G)
R-CCTCCCGAAATCTGCAATGGTC R-CCTCCCAAAATCTACAATAATC

H19 F-ATTCACAAATGGCAATGCTGTGG F-ATTTATAAATGGTAATGTTGTGG
R-CCTCATGAAGCCCATGACTAT R-CCTCATAAAACCCATAACTAT

Igf2r F-CAGAGGATTTTAGCACAACTCCAA F-TAGAGGATTTTAGTATAATTTTAA
R-CACTTTTGAGCTTGCCTCTCTTGC R-CACTTTTGAGCTTGCCTCTCTTGC

Impact F-CTGCATAGTTTTGCTCTCATAAGTG F-TTGTATAGTTTTGTTTTTATAAGTG
R-GGCCTGCTCATGTGACAATGCGGC R-AACCTACTCATATAACAATACAAC

Lit1 F-CAAGGTGAGTGGCCTAGGAC F-TAAGGTGAGTGGTTTAGGAT
R-AATCCCCCACACCTGAATTC R-AATCCCCCACACCTAAATTC

Mest F-GGGTGTTTTATGTCTTCCAGGG(T/G) F-GGGTGTTTTATGTTTTTTAGGG(T/G)
R-CCCAGATTCTAGTGAAGAAAGCCTTCCCAT R-CCCAAATTCTAATAAAAAAAACCTTCCCAT

Peg3 F-GGTGCATCTTTACTGCCAACTAGCAAAG F-GGTGTATTTTTATTGTTAATTAGTAAAG
R-CAGGTTTGCTGCACAGGCTTATCC R-CAAATTTACTACACAAACTTATCC

Peg10 F-GCAAAGTGACTGGCTCTGCACTCTTAAGTG F-GTAAAGTGATTGGTTTTGTATTTTTAAGTG
R-TTGGTTACTCTCCTGCAGCTTTCCAAATT R-TTAATTACTCTCCTACAACTTTCCAAATT

Snrpn F-GCAATTATATCCATTATTCCAGATTGACAGTGA(T/G) F-GTAATTATATTTATTATTTTAGATTGATAGTGA(T/G)

R-ATAGGATGCACTTTCACTACTAGAATCC
Zacl F-GGGTAGGTAAGTAGTGACAA
R-CCTAAAACACCAAAGTAGCA

R-ATAAAATACACTTTCACTACTAAAATCC
F-GGGTAGGTAAGTAGTGATAA
R-CCTAAAACACCAAAATAACA

also incorporating the Sanger database, which contains information
from individual strain backgrounds. However, a drawback of the
Sanger database is that it contains much less information on intergenic
regions, where many ICRs are found. For example, it contains no in-
formation on three of the ICRs that we sought to interrogate. In the end,
we assessed 93 B6/CAST SNPs from the three databases at 10 of the
most commonly studied mouse ICRs, and were able to validate only
18 of them (19%).

The second hurdle that we encountered is the generation of bisulfite
PCR assays within ICRs. The gold standard in probing the DNA
methylation status of any locus is bisulfite analysis (Hayatsu et al.

A Grb10 B
"' ¢hr11:12025354-12025722 I"
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2008; Laird 2010). As bisulfite analysis relies on detecting base pair
changes at CpG dinucleotides, primer sets used for bisulfite PCR cannot
contain any CpG dinucleotides because of the uncertainty of whether a
cytosine base in the primer-annealing sequence may be methylated. As
a result, generating bisulfite-specific primer sets in these highly CpG-
rich ICR regions can be difficult. In addition, because the CpG-rich
ICRs tend to be repetitive, finding primer sets that amplify a unique
product can also be challenging.

Based on the significant hurdles we encountered, we identified a need
for optimized protocols for allele-specific DNA methylation analysis of
ICRsinaB6/CAST hybrid mouse background. Asa result, we developed

Figure 2 SNP verification within Grb10

ICR. (A) Schematic of Grb10 ICR. Probed

region is highlighted by double-dashed
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Figure 3 SNP verification within H19 ICR.
(A) Schematic of H19 ICR. Probed region is

A H19 cher: 1a2ss1087- 142581607 B highlighted by double-dashed line with
- o ;‘ " number of base pairs covered reported.
- = b CpG island indicated by dotted box.
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CCATCTATGATCCCA CATGGGCT GAGG from B6 female and CAST male. G-to-
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i o % 5 o % lighted by red dotted rectangle. (C) Verifi-
= = =¥ = cation of proper imprinted status in hybrid
- B6/CAST progeny. SNPs highlighted by
* * jﬂgg * red dotted rectangle. DNA methylation
rs216287265 rs33822017 rs33821081 H H 1 1
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a resource that includes verification of SNPs present in ICRs, primer
information, and optimal PCR conditions. This resource will enable the
systematic interrogation of many significantimprinted genes in different
mouse models.

MATERIALS AND METHODS

Bisulfite analysis and bisulfite PCR optimization

Mouse tail DNA from single C57BL/6] and CAST/Ei]J animals was used
for the original identification of SNPs. Subsequently, DNA from sagittal
sections of perinatal pups was used for allele-specific DNA methylation
analysis. Bisulfite conversion was done according to the Zymo EZ DNA
Methylation Kit (Zymo D5001) protocol from 400 ng of DNA. PCR
products were amplified in a 15-pl reaction and 3 pl was saved for
subsequent TA cloning using the standard TOPO TA cloning protocol
(K4500J10; ThermoFisher). The remaining volume was run on a 1%
agarose gel to confirm that there is a single PCR product. Bisulfite
primers were optimized on bisulfite-converted DNA using 12 different
conditions, including four different concentrations of MgCl, (1.5, 2.5,
3.5, and 4.5 mM) paired with three different concentrations of DMSO
(0, 1.5, and 5%). In addition, primers were optimized across a temper-
ature gradient. Primer sets, polymorphisms, and optimal PCR condi-
tions for each gene are listed in the individual figures. Of note, because
of the difficulty in finding primer sequences in highly CpG-rich regions
that do not contain a CpG dinucleotide, many of the primers contained
suboptimal base composition and/or did not match the annealing tem-
perature of the other primer used in the reaction. As a result, several of
the optimized PCR protocols contain relatively large numbers of cycles
to enable the amplification of a product. The BiQ Analyzer program
was used for the analysis of bisulfite-converted sequences. During the
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rs33822014

sines. (D) Other SNPs reported in all three
databases within the probed region with
the SNP highlighted by red dotted rectan-
gle. dbSNP identification number indi-
cated under each SNP. Red star indicates
validated SNP and blue closed circle indi-
cates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal
PCR conditions for probed region with
the given primers. (F) The electrophero-
grams indicating G-to-del, G-to-A, and
A-to-G polymorphisms for the SNPs. Q,
maternal; &, paternal.

bisulfite analysis, depending on the choice of primers, two different
DNA strands will lead to two different sequencing results. Some of
the genes we report here were surveyed on the opposite strand of the
gene assembly and therefore have a reversed order of their SNPs com-
pared to the databases. These genes are shown with their chromosome
location number in reverse order, from high to low, and this is noted in
the corresponding figure legend.

Data availability
The authors affirm that all data necessary for confirming the results in
the article are present in the article. Reagents are available upon request.

RESULTS

To begin the process of interrogating specific imprinted loci, we generated
a workflow to streamline the process (Figure 1). Our first criterion was to
identify well-defined ICRs that have been extensively studied. We focused
on the following ICRs due to their prevalence in the literature: Grb10,
HI19, Igf2r, Impact, Litl/Kcnqlotl, Mest/Pegl, Peg3, PeglO, Snrpn, and
Zacl/Plagll. These ICRs also had well-defined locations in the genome
and are associated with differentially methylated regions that allowed us
to probe their methylation status via bisulfite analysis.

We then used the UCSC Genome Browser in conjunction with
dbSNP to determine reported SNPs within a 10-kb window surrounding
and including the ICRs, and these SNPs were then cross-checked against
the European database as well as the Sanger database to determine their
presence in specific strain backgrounds. Following this in silico analysis,
we designed bisulfite-specific primers to the regions of interest
(Table 1). These regions were <1 kb and were within our 10-kb defined
window, including a significant portion of the ICR and at least one SNP.
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Figure 4 SNP verification within Igf2r ICR. (A)
Schematic of Igf2r ICR. Probed region is
highlighted by double-dashed line with num-
ber of base pairs covered reported. CpG
island indicated by dotted box. Green indi-
cates primer sequences; orange indicates
CpG dinucleotides; red star and bases in-
dicate verified SNPs. (B) Verified SNPs pre-
sented as sequences from B6 female and
CAST male. G-to-A and A-to-G SNPs are
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNPs highlighted
by red dotted rectangle. DNA methylation
presented as lollipop diagram; white circles
indicate unmethylated cytosines; black circles
indicate methylated cytosines. (D) Other SNPs
reported in all three databases within the
probed region with the SNP highlighted by
red dotted rectangle. dbSNP identification
number indicated under each SNP. Red star
indicates validated SNP and blue closed circle
indicates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal PCR
conditions for probed region with the given
primers. (F) The electropherograms indicating
G-to-A and A-to-G polymorphisms for the
SNP regions. @, matemal; &, patemal.

The bisulfite primers could not contain any CpG dinucleotides, reduc-  the mating. Reported SNPs were compared in B6 and CAST sequences.
ing the availability of genomic regions to amplify. Bisulfite primers were  If validated in this initial comparison, further validation was performed
optimized on bisulfite-converted DNA (detailed in Materials and  via analysis of the methylation status in hybrid B6/CAST progeny.

Methods). After optimization, bisulfite PCR was performed on a B6 Using this workflow, we validated SNPs in all 10 ICRs and identified
female and a CAST male, along with the hybrid progeny resulting from  PCR conditions for the analysis of each. The relevant details are reported
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Figure 5 SNP verification within Impact ICR.
(A) Schematic of Impact ICR. Probed region
is highlighted by double-dashed line with
number of base pairs covered reported.
CpG island indicated by dotted box. Green
indicates primer sequences; orange indi-
cates CpG dinucleotides; red star and bases
indicate verified SNPs. (B) Verified SNPs
presented as sequences from B6 female
and CAST male. T-to-A, Ato-G, and T-to-A
SNPs are highlighted by red dotted rectan-
gle. (C) Verification of proper imprinted
status in hybrid B6/CAST progeny. SNPs
highlighted by red dotted rectangle. DNA
methylation presented as lollipop diagram;
white circles indicate unmethylated cyto-
sines; black circles indicate methylated cyto-
sines. (D) Other SNPs reported in all three
databases within the probed region with the
SNP highlighted by red dotted rectangle.
dbSNP identification number indicated un-
der each SNP. Red star indicates validated
SNP and blue closed circle indicates C-to-T
polymorphism that cannot be assayed in
bisulfite analysis. (E) Optimal PCR conditions
for probed region with the given primers. (F)

The electropherograms indicating T-to-A, [10]

Ato-G, and T-to-A polymorphisms for the
SNP regions. Q, matemal; &, patemal.
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Figure 6 SNP verification within Lit1/
Kenglotl ICR. (A) Schematic of Lit1/

Lit1/Kengtot1 . . .
A S —— i Kenglotl ICR. Probed region is high-
lighted by double-dashed line with num-
—_—> €« .
v - " ber of base pairs covered reported. CpG
P . . .
; island indicated by dotted box. Green
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AGTCTAGAGT_(G/A)_GAGTCACGATTGGAATCGGGTAGAGAT e
TCGGGTCTGGAGCCGACTCGGAATTCAGGTGTGGGGGATT Verified SNP presented as sequences from
B6 female and CAST male. G-to-A SNP is
Cc r D r : highlighted by red dotted rectangle. (C)
— S— = WESSEER Verification of proper imprinted status in
hybrid B6/CAST progeny. SNP high-
@ don @E ggi S5EE lighted by red dotted rectangle. DNA
% . : e P g; B .. SN BB methylation presented as lollipop dia-
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for each gene below. In addition, we have shown each single band
amplicon run in an agarose gel (Supplemental Material, Figure S1).

Grb10
Grbl10 is regulated by an ICR that is ~1.4 kb and located on chromo-
some 11 in mouse (Figure 2A). Within our probed region, we validated
one SNP out of three reported SNPs from the dbSNP database (Figure
2D). The validated SNP is within a 390-bp region containing 31 CpG
residues (Figure 2A), with the polymorphic base being an A in the B6
background and a G in the CAST background (Figure 2B). Grb10 is
methylated on the maternal allele and unmethylated on the paternal
allele. This methylation pattern was correctly observed in the hybrid
progeny using our optimized assay (Figure 2, C and E).

H19

H1I9 is regulated by an ICR on chromosome 7 (Figure 3A). Within our
probed region, we validated three SNPs out of four reported SNPs from
the dbSNP database (Figure 3D). These validated SNPs are within a 291-bp
region containing nine CpG residues (Figure 3A). The three validated SNPs
include (1) a G in the B6 background and a deletion in the CAST back-
ground, (2) a G in the B6 background and an A in the CAST background,
and (3) an A in the B6 background and a G in the CAST background
(Figure 3B). H19 is methylated on the paternal allele and unmethylated on
the maternal allele. This methylation pattern was correctly observed in the
hybrid progeny using our optimized assay (Figure 3, C and E).

Igf2r

Igf2ris regulated by an ICR on chromosome 17 (Figure 4A). Within our
probed region, we validated two SNPs out of 13 reported SNPs from the
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ated cytosines. (D) Other SNPs reported
in all three databases within the probed
region with the SNP highlighted by red
dotted rectangle. dbSNP identification
number indicated under each SNP. Red
star indicates validated SNP and blue
closed circle indicates C-to-T polymor-
phism that cannot be assayed in bisulfite
analysis. (E) Optimal PCR conditions for
probed region with the given primers. (F)
The electropherogram indicating G-to-A
polymorphism for the SNP region. Q, ma-
ternal; J, paternal.

G I
1 3
il 'G:.';' rs582360752

33837838 Go o

rs215749528

dbSNP database (Figure 4D). These validated SNPs are within a 549-bp
region containing 33 CpG residues (Figure 4A). These polymorphic
bases include (1) a G in the B6 background and an A in the CAST
background, and (2) an A in the B6 background and a G in the CAST
background (Figure 4B). Igf2r is methylated on the maternal allele and
unmethylated on the paternal allele. This methylation pattern was
correctly observed in the hybrid progeny using our optimized assay
(Figure 4 C and E).

Impact

Impact is regulated by an ICR on chromosome 18 (Figure 5A). Within
our probed region, we validated three SNPs out of 10 reported SNPs
from the dbSNP and European databases (Figure 5D). One of the SNPs
that was not validated was an unnamed SNP from the European data-
base. The validated SNPs are within a 433-bp region that contains
17 CpG residues (Figure 5A). These polymorphic bases include (1) a
T in the B6 background and an A in the CAST background, (2) an A in
the B6 background and a G in the CAST background, and (3) a T in the
B6 background and an A in the CAST background (Figure 5B). Impact
is methylated on the maternal allele and unmethylated on the paternal
allele. This methylation pattern was correctly observed in the hybrid
progeny using our optimized assay (Figure 5, C and E).

Lit1/Kenqlot1

Litl/Kcnglotl is regulated by an ICR on chromosome 7 (Figure 6A).
Within our probed region, we validated one SNP out of 12 reported
SNPs from the dbSNP and European databases (Figure 6D). One of the
SNPs that was not validated was an unnamed SNP from the European
database. The validated SNP is within a 420-bp region that contains
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17 CpG residues (Figure 6A). The polymorphic base is a G in the B6  Mest/Peg1

background and an A in the CAST background (Figure 6B). LitI is
methylated on the maternal allele and unmethylated on the paternal
allele. This methylation pattern was correctly observed in the hybrid
progeny using our optimized assay (Figure 6, C and E).
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Figure 7 SNP verification within Mest/Peg1
ICR. (A) Schematic of Mest/Pegl ICR.
Probed region is highlighted by double-
dashed line with number of base pairs
covered reported. CpG island indicated by
dotted box. Green indicates primer se-
quences; orange indicates CpG dinucleo-
tides; red star and bases indicate verified
SNP. (B) Verified SNP presented as se-
quences from Bé female and CAST male.
T-to-G SNP is highlighted by red dotted
rectangle. (C) Verificaton of proper
imprinted status in hybrid B6/CAST progeny.
SNP highlighted by red dotted rectangle.
DNA methylation presented as lollipop dia-
gram; white circles indicate unmethylated
cytosines; black circles indicate methylated
cytosines. (D) Other SNPs reported in all
three databases within the probed region
with the SNP highlighted by red dotted
rectangle. doSNP identification number in-
dicated under each SNP. Red star indicates
validated SNP and blue closed circle indi-
cates C-to-T polymorphism that cannot be
assayed in bisulfite analysis. (E) Optimal PCR
condiitions for probed region with the given
primers. (F) The electropherogram indicating
T-to-G polymorphism for the SNP region. Q,
matemal; &, paternal.

Mest/Pegl is regulated by an ICR on chromosome 6 (Figure 7A).
Within our probed region, we validated one SNP out of two reported
SNPs from the dbSNP database (Figure 7D). This validated SNP is
within a 136-bp region that contains four CpG residues (Figure 7A).

Figure 8 SNP verification within Peg3 ICR.
(A) Schematic of Peg3 ICR. Probed region is
highlighted by double-dashed line with
number of base pairs covered reported.
CpG island indicated by dotted box. Green
indicates primer sequences; orange indi-
cates CpG dinucleotides; red star and
bases indicate verified SNP. (B) Verified
SNP presented as sequences from B6
female and CAST male. T-to-G SNP is
highlighted by red dotted rectangle. (C)
Verification of proper imprinted status in
hybrid B6/CAST progeny. SNP highlighted
by red dotted rectangle. DNA methylation
presented as lollipop diagram; white circles
indicate unmethylated cytosines; black cir-
cles indicate methylated cytosines. (D)
Other SNPs reported in all three databases
within the probed region with the SNP
highlighted by red dotted rectangle.
dbSNP identification number indicated un-
der each SNP. Red star indicates validated
SNP and blue closed circle indicates C-to-T
polymorphism that cannot be assayed in
bisulfite analysis. (E) Optimal PCR condi-
tions for probed region with the given
primers. (F) The electropherogram indicat-
ing the T-to-G polymorphism for the SNP
region. @, matemal; &, paternal.
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— Figure 9 SNP verification within Peg10
ICR. (A) Schematic of Peg10 ICR. Probed
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GCACAGGCATAAGACCTGCAGCCTCTTAAGTGA
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This polymorphic base is a T in the B6 background and a G in the
CAST background (Figure 7B). Mest is methylated on the maternal
allele and unmethylated on the paternal allele. This methylation pattern
was correctly observed in the hybrid progeny using our optimized assay
(Figure 7, C and E).

Peg3

Peg3 is regulated by an ICR on chromosome 7 (Figure 8A). Within our
probed region, we validated one SNP out of four reported SNPs from
the dbSNP database (Figure 8D). This validated SNP is within a 228-bp
region that contains 11 CpG residues (Figure 8A). This polymorphic
base is a T in the B6 background and a G in the CAST background
(Figure 8B). Peg3 is methylated on the maternal allele and unmethy-
lated on the paternal allele. This methylation pattern was correctly
observed in the hybrid progeny using our optimized assay (Figure 8,
Cand E).

Peg10

Peg10is regulated by an ICR on chromosome 6 (Figure 9A). Within our
probed region, we validated one SNP out of 23 reported SNPs from the
dbSNP and European databases (Figure 9D). One of the SNPs that was
not validated was an unnamed SNP from the European database. The
validated SNP is within a 663-bp region that contains 54 CpG residues
(Figure 9A). This polymorphic base is a C in the B6 background and an
A in the CAST background (Figure 9B). Pegl0 is methylated on the
maternal allele and unmethylated on the paternal allele. This methyl-
ation pattern was correctly observed in the hybrid progeny using our
optimized assay (Figure 9, C and E).
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220730338

Snrpn

Snrpn is regulated by an ICR on chromosome 7 (Figure 10A). Within our
probed region, we validated four SNPs out of 11 reported SNPs from the
dbSNP database (Figure 10D). We also identified a novel SNP that is not
present in any of the three databases. All five of the validated SNPs are
within a 356-bp region that contains 16 CpG residues (Figure 10A).
These polymorphic bases include (1) a T in the B6 background and a
G in the CAST background, this is the novel SNP that we identified; (2)
a TTT in the B6 background and a deletion in the CAST background; (3)
a T in the B6 background and an A in the CAST background; (4) a G in
the B6 background and an A in the CAST background; and (5) a G in the
B6 background and a T in the CAST background (Figure 10B). Snurpn is
methylated on the maternal allele and unmethylated on the paternal
allele. This methylation pattern was correctly observed in the hybrid
progeny using our optimized assay (Figure 10, C and E).

Zac1/Plagl1

Zacl/Plagll is regulated by an ICR on chromosome 10 (Figure 11A).
Within our probed region, we validated one SNP out of 11 reported
SNPs from the dbSNP and European databases (Figure 11D). The un-
named SNPs are not found in the dbSNP. The validated SNP is within a
578-bp region that contains 33 CpG residues (Figure 11A). This poly-
morphic base is an A in the B6 background and a G in the CAST
background (Figure 11B). Zacl is methylated on the maternal allele
and unmethylated on the paternal allele. This methylation pattern was
correctly observed in the hybrid progeny using our optimized assay
(Figure 11, C and E).
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Figure 10 SNP verification within Snrpn
ICR. (A) Schematic of Snrpn ICR. Probed
region is highlighted by double-dashed
line with number of base pairs covered
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_(T/G)_TTTTTTTT_(TTT/-)_(T/A)_AATA
CAC_(G/A)_CTCAAATTTCC GCAGTAGGAATGCTCAAGCATTCCTTTTGGTAGCTGCCTTTT
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s CATGTGCAGCCATTGCCTGGGAC GCATGC GTAGGGAGCLC GACAAACCTGAGCCAT
TGCGOCAAGACTAGE G CAGAGAGGAGAGG GAGCCGGAGATGLCAGA CTTGGTTCTGA &
GGAGTGATTTGCAA CAATGGAGCGAGGAAGGTCAGCTGGGCTTGTG G

GCAATTATATCCATTATTCCAGATTGACAGTGA,
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reported. CpG island indicated by dotted
box. Green indicates primer sequences;
orange indicates CpG dinucleotides; red
star and bases indicate verified SNPs. The
chromosome location is from high to low,
see Materials and Methods for more de-
tails. (B) Verified SNPs presented as se-
quences from B6 female and CAST male.
T-to-G, TTT-to-del, T-to-A, G-to-A, and
G-to-T SNPs are highlighted by red dotted
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DISCUSSION

Of the SNPs that we analyzed, we were able to validate 18, while we failed
to validate 75 SNPs within those same regions (Table 2, red and black).
In addition, of those 75 SNPs, 28 of them were C/T polymorphisms that
bisulfite analysis was unable to differentiate (Table 2, blue). We also
identified a SNP in the Snrpn ICR, which was not present in any of the
three databases (Table 2, orange). Furthermore, during our optimiza-
tion we failed to validate multiple SNPs that lie outside of our bisulfite
primers. These SNPs are reported in Figure S2. Among the many SNPs
reported in the dbSNP database that we failed to verify, most were
identified as SNPs between strains other than CAST in the Sanger
database. In the end, we could only find one SNP that was supposed
to show a polymorphism based on the reported data but did not in our
experiments (Table 2, purple). Thus, in general, we recommend using
the Sanger database. However, it is important to note that since the
Sanger database primarily contains SNPs located close to or within
genes, certain ICR SNPs had to be identified in the dbSNP database.
In this resource, we have validated a number of SNPs within the ICRs
of the most commonly imprinted loci. In addition, we have demon-
strated a high frequency of invalid SNPs within ICRs when the pooled
SNPs from the dbSNP (European variation archive) are used alone,
highlighting the drawbacks of the mixed strain databases compared to
the Sanger strain-specific polymorphism database. Using the validated
SNPs, we have optimized allele-specific DNA methylation assays that
will allow for the rapid analysis of multiple imprinted loci in a variety of
contexts, including at several ICRs that are not contained within the
Sanger database. This resource will enable the systematic analysis of
multiple imprinted genes in a number of potential applications.
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rectangle. (C) Verification of proper
imprinted status in hybrid B6/CAST prog-
eny. SNP highlighted by red dotted rect-
angle. DNA methylation presented as
lollipop diagram; white circles indicate
unmethylated cytosines; black circles indi-
cate methylated cytosines. (D) Other SNPs
reported in all three databases within the
probed region with the SNP highlighted
L by red dotted rectangle. dbSNP identifica-
j o tion number indicated under each SNP.
Red star indicates validated SNP and blue
closed circle indicates C-to-T polymor-
phism that cannot be assayed in bisulfite
analysis. (E) Optimal PCR conditions for
probed region with the given primers. (F)
The electropherograms indicating T-to-G,
TTT-to-del, T-to-A, G-to-A, and G-to-T
polymorphisms for the SNP regions. Q,
maternal; J, paternal.
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Potential Applications
As this resource offers extensive and straightforward assays to interro-
gate the most commonly studied imprinted loci, it can be used across a
number of fields. There are two major instances where we envision the
utility of this resource: (1) cases where a regulatory mechanism directly
interacts with multiple imprinted loci and (2) cases where a mechanism
either indirectly regulates many imprinted loci or affects multiple
imprinted loci by generally disrupting the epigenetic landscape.
Recently, a number of proteins have been demonstrated to directly
regulate multiple imprinted loci. These include, but are not limited to,
Dnmt3l, Dnmtl, Lsd2, Trim28, Zfp57, and Tet1/2, each with a different
mechanism of action (Bourc’his et al. 2001; Howell et al. 2001; Reik
et al. 2003; Li et al. 2008; Karytinos et al. 2009; Fang et al. 2010;
Messerschmidt et al. 2012; Yamaguchi et al. 2013; Canovas and Ross
2016). For example, deletion of the regulatory subunit of the de novo
DNA methyltransferase Dnmt3L results in the failure to establish ma-
ternal DNA methylation at a number of maternally imprinted loci,
including Peg3, Lit1/Kcnglotl, and Snrpn (Bourc’his et al. 2001; Hata
et al. 2002). Another maternal effect enzyme required for the establish-
ment of DNA methylation at maternally imprinted loci is the histone
demethylase Lsd2. Mechanistically, Lsd2 is required to remove H3K4
methylation to get proper DNA methylation at imprinted loci includ-
ing Mest, Grb10, and ZacI (Ciccone et al. 2009; Fang et al. 2010; Zhang
et al. 2012; Stewart et al. 2015). Furthermore, Zfp57, a KRAB domain
zinc-finger protein, is required both maternally and zygotically to
maintain the imprinting status of various imprinted loci including
Surpn (Li et al 2008; Strogantsev and Ferguson-Smith 2012;
Strogantsev et al. 2015). This protein is thought to bind directly to
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Figure 11 SNP verification within Zac1/
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DNA with its zinc fingers and subsequently recruit factors that repress
transcription (Li et al. 2008; Quenneville et al. 2011; Strogantsev et al.
2015). These studies demonstrate how disruptions in mechanistically
distinct regulatory mechanisms can affect multiple imprinted loci.

Alternatively, a number of mechanisms have been demonstrated to
indirectly affect imprinted loci via general epigenetic disruptions. For
example, mutations in human NLRP genes, which are required mater-
nally for the transition to zygotic gene expression, result in hydatidiform
moles and loss of imprinting (Docherty et al. 2015). Another maternal
effect gene, Lsdl, the homolog of Lsd2, is also maternally required at
fertilization for the maternal to zygotic transition (Ancelin et al. 2016;
Wasson et al. 2016). Loss of maternal Lsd1 leads to a general disruption
of DNA methylation in the resulting progeny at both maternally and
paternally imprinted loci (Ancelin et al. 2016; Wasson et al. 2016).
These studies demonstrate how maternal factors, deposited into the
zygote from the mother, are required for proper imprinting and devel-
opment of the embryo.

As ICRs are inherently asymmetric in their epigenetic modifications
and opposing mechanisms are required at each parental ICR, even slight
disturbances in the epigenetic landscape can lead to significant changes
in expression at these loci. For example, disruptions in the maternal
expression of Grbl0 results in developmental defects in mice, while
disruption of the paternal allele of Grb10 leads to changes in behavior,
including increased social dominance (Garfield et al. 2011; Dent and
Isles 2014). This highlights differences in the roles of imprinted parental
alleles in mice. Another study that highlights the relative contributions
of each parental allele describes parental-specific duplications of the
15q11.2-q13.3 region of human chromosome 15 (Isles et al. 2016).
Paternal duplications were more associated with autism spectrum dis-
order and developmental delay, while maternal duplications were more
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SNP region. @, maternal; &, paternal.

associated with psychiatric disorders (Isles et al. 2016). These studies
demonstrate the complexity of outcomes associated with maternal vs.
paternal inheritance.

Finally, mechanisms that affect imprinted genes indirectly though
general epigenetic disruptions highlight how the methylation status of
ICRs can act as a proxy for global epigenetic alterations. For example,
studies have demonstrated hypomethylation of a differentially methyl-
ated region in the Igf2-H19locus in Wilms tumor patients (Scharnhorst
etal. 2001). In addition, embryos conceived using artificial reproductive
technologies have higher incidences of Prader-Willi and Angelman
syndromes (Horsthemke and Wagstaff 2008; Buiting 2010; Butler
2011). These syndromes are caused by large-scale chromosomal abnor-
malities that affect multiple imprinted loci (Horsthemke and Wagstaff
2008; Buiting 2010; Butler 2011). It is also possible that imprinting may
be disrupted by environmental factors. For example, Bisphenol A, an
environmental toxin, as well as various endocrine disruptors, have been
revealed to significantly alter the epigenetic landscape (Kang et al. 2011;
Susiarjo et al. 2013). Also, Vinclozolin exposure in mice leads to in-
fertility due to sperm defects in mice, which correlates with global
alterations in the DNA methylation landscape (Anway et al. 2005;
Kang et al. 2011). These studies demonstrate additional mechanisms
that may lead to broad imprinting disruptions.

Conclusion

Due to various mechanisms that can disrupt the epigeneticlandscape, we
anticipate a growing need to assay imprinted loci in different mouse
models. The resource provided here will facilitate the future analysis of
multiple imprinted loci in a single hybrid genetic background.
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Table 2 The complete list of all the SNPs from 3 databases within surveyed regions
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Grb10 11 12,025,379 rs217648878 A o A - . . @ o & o
Grb10 11 12,025,628 rs235292292 /T o2 owmozomo oo o= o: e - = s o= 2= Ng
Grb10 11 12,025,688 rs249351785 T/C - - - - - - - - & - - - - = . No
H19 7 142,581,765 rs33821081 i) - - - - - - - © - - - c C - Yes
H19 7 142,581,783 rs33822014 G - . . c - - - c - Yes
H19 7 142,581,852 rs33822017 G S . - T T - Yes
H19 7 142,581,933 rs216287265 C - - - - - - - - DEL - = - = = 5 - No
lgfar 17 12,742,167 rs222297088 G S . N C - A - Yes
lgfr 17 12,742,203 rs242482749 G S - . B .- A - Yes
Igf2r 17 12,742,239 5578459511 T * i = - = - “ o = " W # . - A - Yes
Igf2r 17 12,742,253 rs211862027 T/- = - - - - - - - - - - - - - - No
Igf2r 17 12,742,283 rs229760939 G - - - - - A - - A - - - - - - Yes
Igf2r 17 12,742,373 rs108681933 © - - - T - - - - Yes
lgfr 17 12,742,426 rs250523644 G Y = = : = 2 B : = - . S Yes
lgf2r 17 12,742,469 rs265144059 G - B ST o Yes
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Igf2r 17 12,742,517 rs245573738 A - - - - - - - - - - - G - - - - Yes
lgfr 17 12,742,538 rs216289274 i = . - . ; B ; c Yes
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Impact 18 12,972,960 UNNAMED o/T .. . B} 2 . B . . = NG
Impact 18 12,972,965 rs31057356 A - - - - - - - - G - - - - - No
Impact 18 12,972,968 rs240274686 CAG/- - - - - = =2 a2 = - No
Impact 18 12,973,031 rs29558070 /T - - - - - - . - - - No
Impact 18 12,973,055 rs251991535 /T | . . g wx o = No
Impact 18 12,973,080 rs220788023 (g - - - - - A E = - = - = - No
Litl 7 143,295,133 rs582360752 G/A = E & = 5 & z z = = i No
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Table 2, continued
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Peglo 6 4,748,351 rs232401063 G = e = = N - [ s
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Snrpn 7 60,005,223 rs48319825 (& T - - - . » - - T & i . - T - - Yes
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Snrpn 7 60,005,301 rs227207367 T/- - - = % = x 5 = & = - = % = % = x No
Snrpn 7 60,005,303 rs262190054 AAAAAAA/- - - - - - - - - o = - - .. - - No
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Orange indicates that the SNP is the SNP we have found; it is not present in any database. Red indicates that SNPs are validated polymorphisms. Blue indicates that
SNPs are C/T (or G/A) variations that bisulfite sequencing assay can't detect. Purple indicates that the SNP is the only inconsistency between our sequencing result (C
on Bé background) and the reported Sanger data (G on Bé background). Green nucleotides indicate the present polymorphism on both assayed backgrounds (Bé and

CAST) at reported SNP locations
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