

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

A Resource for the Allele-Specific Analysis of DNA Methylation at Multiple Genomically Imprinted Loci in Mice

Jadiel A. Wasson,* Onur Birol,† and David J. Katz^{†,1}

*Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 and [†]Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322

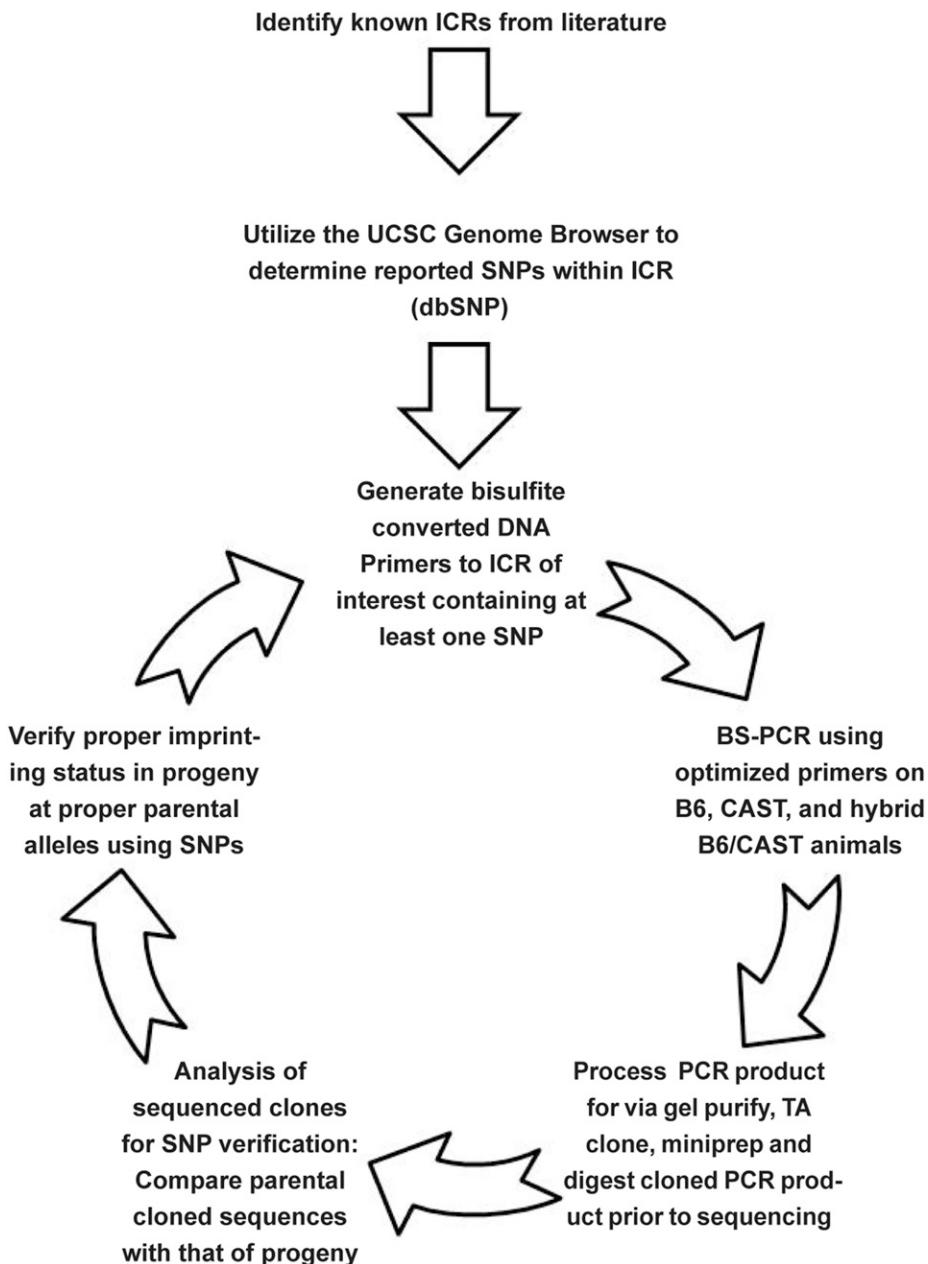
ABSTRACT Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chromatin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess these elements allele specifically. However, publicly available SNP databases lack robust verification, making analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been developed employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single hybrid strain of *Mus musculus*. This resource includes verification of SNPs present within 10 of the most widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a C57BL/6J and CAST/EiJ hybrid strain background.

Genomically imprinted loci, which are expressed mono-allelically dependent upon their parent of origin, highlight how DNA methylation and chromatin structure can regulate gene expression (Bartolomei and Ferguson-Smith 2011). For example, many of the chromatin mechanisms that regulate imprinted loci are involved in other contexts, including cancer biology and stem cell reprogramming. In addition, alterations at multiple imprinted loci can be used as a readout of global epigenetic misregulation. As a result, there is an increasing need to assay multiple imprinted loci in different mouse models. In this resource article, we provide a streamlined resource for assaying the methylation status of a number of the most studied imprinted genes in a single hybrid strain background.

Copyright © 2018 Wasson et al.
doi: <https://doi.org/10.1534/g3.117.300417>

Manuscript received July 14, 2017; accepted for publication October 30, 2017; published Early Online November 14, 2018.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Supplemental material is available online at www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300417/-DC1.

¹Corresponding author: Department of Cell Biology, Emory University School of Medicine, 615 Michael St., Rm. 443, Whitehead Medical Research Bldg., Atlanta, GA 30322. E-mail: djkatz@emory.edu

To date, ~150 imprinted genes have been identified in mice and ~100 in humans (Gregg *et al.* 2010; DeVeale *et al.* 2012; Kelsey and Bartolomei 2012). These genes tend to be organized on chromosomes in clusters (Wan and Bartolomei 2008; Bartolomei 2009). This clustering allows multiple imprinted loci to be regulated together, under the control of *cis*-regulatory domains termed imprinting control regions (ICRs) (Wan and Bartolomei 2008; Bartolomei 2009). ICRs are typically between 100 and 3700 bp long and are rich in CpG dinucleotides (Bartolomei and Tilghman 1997; Barlow 2011; Ferguson-Smith 2011). In mammals, DNA methylation occurs mainly in the context of CpG dinucleotides, and within ICRs these CpG dinucleotides are differentially methylated, dependent upon the parent of origin (Reik and Dean 2001; Reik and Walter 2001). This differential methylation determines the expression status of the multiple imprinted genes located within the imprinting cluster (Reik and Walter 2001). Therefore, to globally interrogate the epigenetic control of genomically imprinted loci in a particular mouse model, it is necessary to be able to assay the DNA methylation status of multiple ICRs allele specifically.

Assessing ICRs allele specifically requires taking advantage of single nucleotide polymorphisms (SNPs). C57BL/6J (hereafter referred to as B6) mice are the most commonly used strain of *Mus musculus domesticus* and were the first mouse strain to be fully sequenced (Beck *et al.* 2000). To generate hybrids with SNPs on each allele, B6 mice can be crossed to *M. musculus castaneus* (hereafter referred to as CAST) mice, which originate from a well-defined subgroup of wild mice (Beck *et al.*

KEYWORDS	62
bisulfite analysis	63
DNA methylation	64
imprinting	65
mouse	66
single nucleotide polymorphism	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100

Figure 1 Workflow for SNP verification within ICRs. Known ICRs were first pulled from literature followed by identification of putative SNPs present within each region. These SNPs then underwent a verification process through bisulfite analysis of both parental and hybrid progeny strains. SNPs that fail to verify were fed back to the verification process.

2000). Genome-wide DNA sequence analysis between different strains of *M. musculus* revealed a 50% allelic difference between B6 and CAST at potential SNPs (Frazer *et al.* 2007). This makes these hybrid progeny especially useful for analyzing imprinted loci.

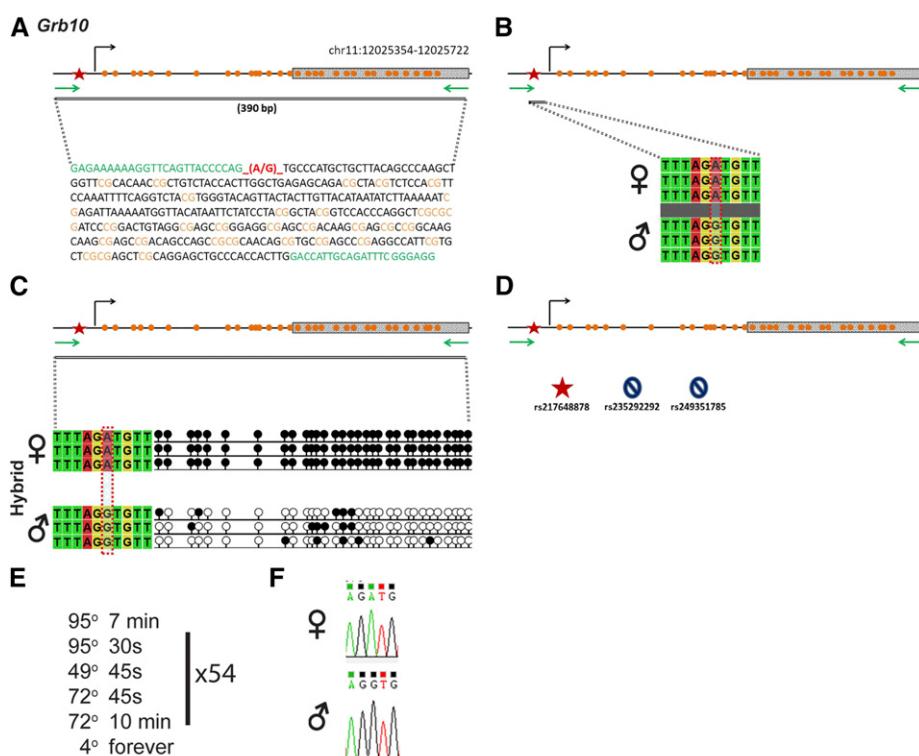
SNPs between B6 and CAST are cataloged in the database of SNPs (dbSNP) (<https://www.ncbi.nlm.nih.gov/projects/SNP/>) (Smigelski *et al.* 2000; Sherry *et al.* 2001). This database reports SNPs that have been observed in various assays performed by individual researchers, consortiums, and genome sequencing centers, for the purpose of facilitating genome-wide association studies (Smigelski *et al.* 2000; Sherry *et al.* 2001). Unfortunately, this database is phasing out all nonhuman organism data by September 2017. However, very similar information will still be housed in the European variation archive (<http://www.ebi.ac.uk/eva/?Home>). This database overlaps with the dbSNP database and also the Sanger SNP viewer database (https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505) (Keane *et al.* 2011; Yalcin *et al.*

2011), which provides SNP information in multiple different strain backgrounds.

Using SNPs from all of these databases, we sought to develop allele-specific DNA methylation assays at multiple ICRs in a B6/CAST hybrid background. However, we encountered two significant hurdles. First, since the dbSNP database and the European variation archive are public repositories, many reported SNPs have not been additionally verified (Mitchell *et al.* 2004; Nekrutenko and Taylor 2012). Moreover, they currently have no minimum requirements for allelic frequencies (Mitchell *et al.* 2004; Nekrutenko and Taylor 2012). This further contributes to the lack of verification for many SNPs. As a result, false positives have been reported at a rate of between 15 and 17% (Mitchell *et al.* 2004; Nekrutenko and Taylor 2012). In addition, these two databases pool sequence differences from different strains into one combined output. Thus, we discovered that relying solely on the dbSNP database or European variation archive leads to an even higher rate of false positives within ICRs. These hurdles can partially be overcome by

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Table 1 Primer sequences


Gene	DNA Sequence 5' → 3'	Bisulfite Converted Sequence 5' → 3'
Grb10	F-GAGAAAAAAAGGTTCAGTTACCCAG(A/G) R-CCTCCCGAAATCTGAATGGTC	F-GAGAAAAAAAGGTTAGTTATTTAG(A/G) R-CCTCCCAAATCTACAATAATC
H19	F-ATTCAAAATGGCAATGCTGTGG R-CCTCATGAAGCCCATGACTAT	F-ATTATAATGGTAATGTTGTGG R-CCTATAAAACCCATAACTAT
lgf2r	F-CAGAGGATTAGCACAACCTCCAA R-CACTTTGAGCTGCCTCTCTTC	F-TAGAGGATTAGTATAATTAA R-CACTTTGAGCTGCCTCTCTTC
Impact	F-CTGCATAGTTTGTCTCTATAAGTG R-GGCCTGCTCATGTGACAATGCGGC	F-TTGTATAGTTTGTCTTATAAGTG R-AACCTACTCATATAACAAATACAAAC
Lit1	F-CAAGGTGAGTGGCCTAGGAC R-AATCCCCCACACCTGAATT	F-TAAGGTGAGTGGTTAGGAT R-AATCCCCCACACCTAAATTC
Mest	F-GGGTGTTTATGTCTCCAGGG(T/G) R-CCCAGATTCTAGTGAAGAAAGCCTCCAT	F-GGGTGTTTATGTCTTGTAGG(T/G) R-CCCAATTCTAATAAAAAAAACCTCCCAT
Peg3	F-GGTGCATTTACTGCCACTAGCAAAG R-CAGGTTGCTGCACAGGCTTATCC	F-GGTGTATTTATTGTTAATTAGTAAAG R-CAAATTACTACACAAACTATTC
Peg10	F-GCAAAGTGAATGGCTCTGCACTCTTAAAGTG R-TTGGTTACTCTCTGCAGCTTCCAAATT	F-GTAAAGTGAATGGTTGTATTTAGTG R-TTAATTACTCTCTACAACCTTCCAAATT
Snrpn	F-GCAATTATATCCATTATTCAGATTGACAGTG(T/G) R-ATAGGATGCACTTCACTACTAGAAATCC	F-GTAATTATATTTATTAGATTGATAGTG(T/G) R-ATAAAATACACTTCACTACTAAATCC
Zac1	F-GGGTAGGTAAGTAGTGACAA R-CCTAAAACACCAAAGTAGCA	F-GGGTAGGTAAGTAGTGATAA R-CCTAAAACACCAAAGATAACA

also incorporating the Sanger database, which contains information from individual strain backgrounds. However, a drawback of the Sanger database is that it contains much less information on intergenic regions, where many ICRs are found. For example, it contains no information on three of the ICRs that we sought to interrogate. In the end, we assessed 93 B6/CAST SNPs from the three databases at 10 of the most commonly studied mouse ICRs, and were able to validate only 18 of them (19%).

The second hurdle that we encountered is the generation of bisulfite PCR assays within ICRs. The gold standard in probing the DNA methylation status of any locus is bisulfite analysis (Hayatsu *et al.*

2008; Laird 2010). As bisulfite analysis relies on detecting base pair changes at CpG dinucleotides, primer sets used for bisulfite PCR cannot contain any CpG dinucleotides because of the uncertainty of whether a cytosine base in the primer-annealing sequence may be methylated. As a result, generating bisulfite-specific primer sets in these highly CpG-rich ICR regions can be difficult. In addition, because the CpG-rich ICRs tend to be repetitive, finding primer sets that amplify a unique product can also be challenging.

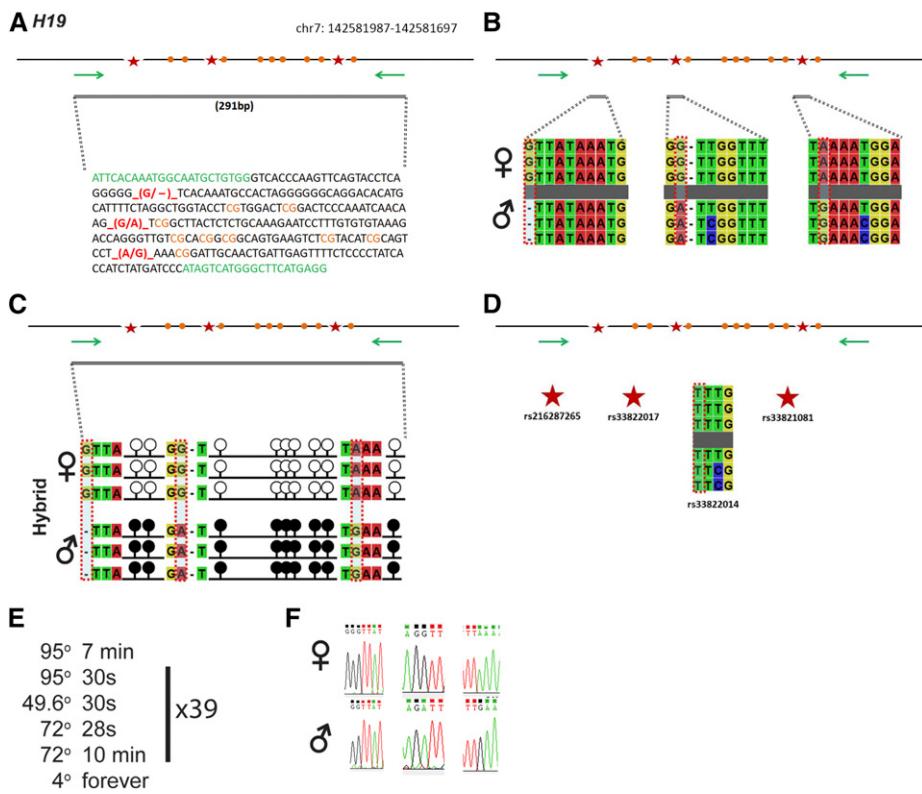

Based on the significant hurdles we encountered, we identified a need for optimized protocols for allele-specific DNA methylation analysis of ICRs in a B6/CAST hybrid mouse background. As a result, we developed

Figure 2 SNP verification within Grb10 ICR. (A) Schematic of Grb10 ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNP. (B) Verified SNP presented as sequences from B6 female and CAST male. A-to-G SNP is highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; White circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherogram indicating A-to-G polymorphism for the SNP region. ♀, maternal; ♂, paternal.

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

Figure 3 SNP verification within H19 ICR. (A) Schematic of H19 ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNPs. The chromosome location is from high to low, see Materials and Methods for more details. (B) Verified SNPs presented as sequences from B6 female and CAST male. G-to-del, G-to-A, and A-to-G SNPs are highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNPs highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherograms indicating G-to-del, G-to-A, and A-to-G polymorphisms for the SNPs. ♀, maternal; ♂, paternal.

a resource that includes verification of SNPs present in ICRs, primer information, and optimal PCR conditions. This resource will enable the systematic interrogation of many significant imprinted genes in different mouse models.

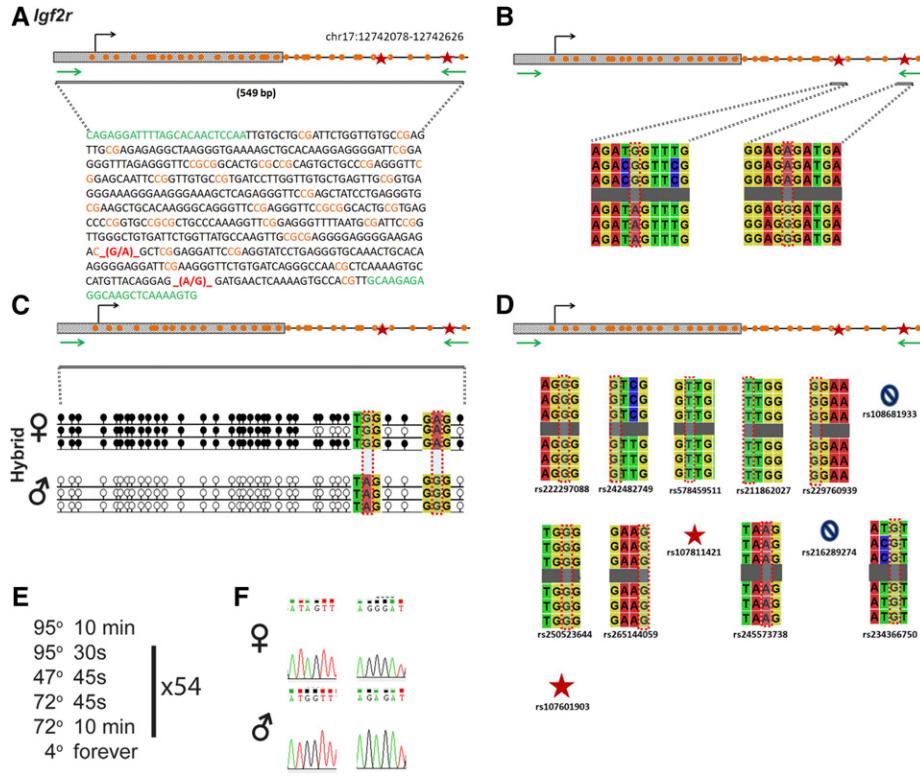
MATERIALS AND METHODS

Bisulfite analysis and bisulfite PCR optimization

Mouse tail DNA from single C57BL/6J and CAST/Ei animals was used for the original identification of SNPs. Subsequently, DNA from sagittal sections of perinatal pups was used for allele-specific DNA methylation analysis. Bisulfite conversion was done according to the Zymo EZ DNA Methylation Kit (Zymo D5001) protocol from 400 ng of DNA. PCR products were amplified in a 15- μ l reaction and 3 μ l was saved for subsequent TA cloning using the standard TOPO TA cloning protocol (K4500J10; ThermoFisher). The remaining volume was run on a 1% agarose gel to confirm that there is a single PCR product. Bisulfite primers were optimized on bisulfite-converted DNA using 12 different conditions, including four different concentrations of MgCl₂ (1.5, 2.5, 3.5, and 4.5 mM) paired with three different concentrations of DMSO (0, 1.5, and 5%). In addition, primers were optimized across a temperature gradient. Primer sets, polymorphisms, and optimal PCR conditions for each gene are listed in the individual figures. Of note, because of the difficulty in finding primer sequences in highly CpG-rich regions that do not contain a CpG dinucleotide, many of the primers contained suboptimal base composition and/or did not match the annealing temperature of the other primer used in the reaction. As a result, several of the optimized PCR protocols contain relatively large numbers of cycles to enable the amplification of a product. The BiQ Analyzer program was used for the analysis of bisulfite-converted sequences. During the

bisulfite analysis, depending on the choice of primers, two different DNA strands will lead to two different sequencing results. Some of the genes we report here were surveyed on the opposite strand of the gene assembly and therefore have a reversed order of their SNPs compared to the databases. These genes are shown with their chromosome location number in reverse order, from high to low, and this is noted in the corresponding figure legend.

Data availability

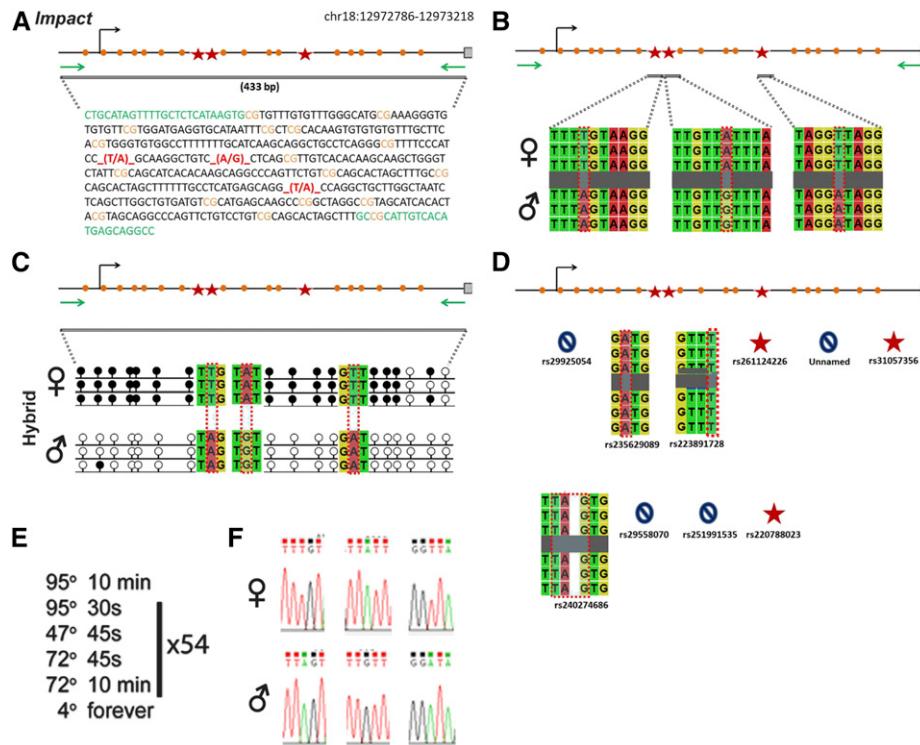

The authors affirm that all data necessary for confirming the results in the article are present in the article. Reagents are available upon request.

RESULTS

To begin the process of interrogating specific imprinted loci, we generated a workflow to streamline the process (Figure 1). Our first criterion was to identify well-defined ICRs that have been extensively studied. We focused on the following ICRs due to their prevalence in the literature: *Grb10*, *H19*, *Igf2r*, *Impact*, *Lit1*/*Kcnq1ot1*, *Mest*/*Peg1*, *Peg3*, *Peg10*, *Snrpn*, and *Zac1*/*Plag1*. These ICRs also had well-defined locations in the genome and are associated with differentially methylated regions that allowed us to probe their methylation status via bisulfite analysis.

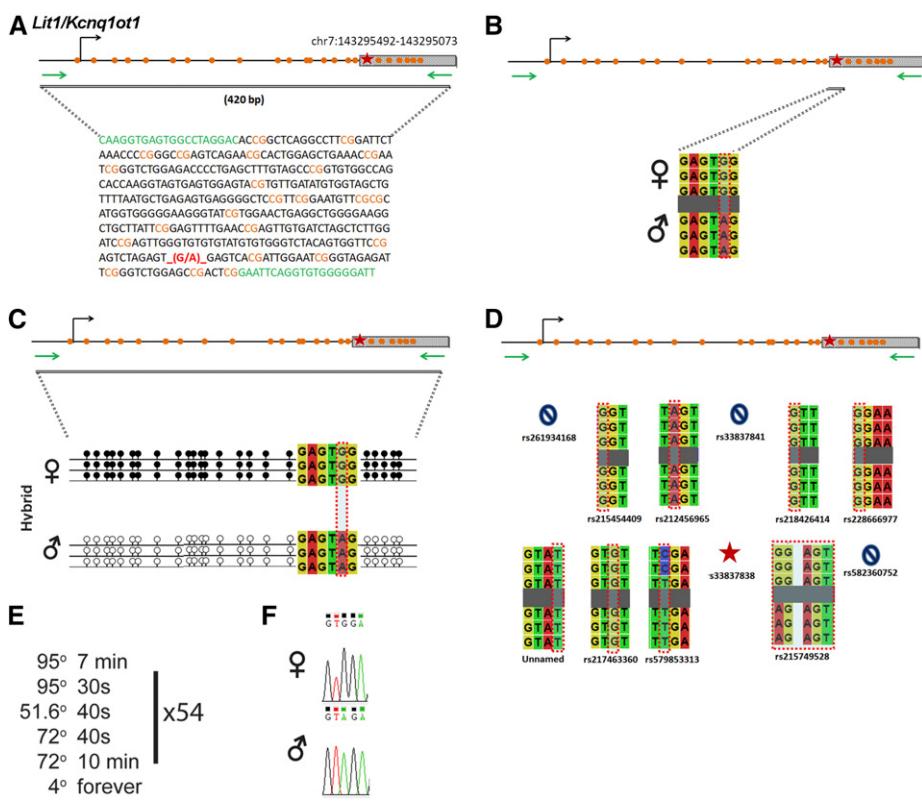
We then used the UCSC Genome Browser in conjunction with dbSNP to determine reported SNPs within a 10-kb window surrounding and including the ICRs, and these SNPs were then cross-checked against the European database as well as the Sanger database to determine their presence in specific strain backgrounds. Following this *in silico* analysis, we designed bisulfite-specific primers to the regions of interest (Table 1). These regions were <1 kb and were within our 10-kb defined window, including a significant portion of the ICR and at least one SNP.

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527



The bisulfite primers could not contain any CpG dinucleotides, reducing the availability of genomic regions to amplify. Bisulfite primers were optimized on bisulfite-converted DNA (detailed in *Materials and Methods*). After optimization, bisulfite PCR was performed on a B6 female and a CAST male, along with the hybrid progeny resulting from

Figure 4 SNP verification within Igf2r ICR. (A) Schematic of Igf2r ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNPs. (B) Verified SNPs presented as sequences from B6 female and CAST male. G-to-A and A-to-G SNPs are highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNPs highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherograms indicating G-to-A and A-to-G polymorphisms for the SNP regions. ♀, maternal; ♂, paternal.


the mating. Reported SNPs were compared in B6 and CAST sequences. If validated in this initial comparison, further validation was performed via analysis of the methylation status in hybrid B6/CAST progeny.

Using this workflow, we validated SNPs in all 10 ICRs and identified PCR conditions for the analysis of each. The relevant details are reported

Figure 5 SNP verification within Impact ICR. (A) Schematic of Impact ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNPs. (B) Verified SNPs presented as sequences from B6 female and CAST male. T-to-A, A-to-G, and T-to-A SNPs are highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNPs highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherograms indicating T-to-A, A-to-G, and T-to-A polymorphisms for the SNP regions. ♀, maternal; ♂, paternal.

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

589
590
591
592
593
594
595
596
597
598
599
600

Figure 6 SNP verification within *Lit1/Kcnq1ot1* ICR. (A) Schematic of *Lit1/Kcnq1ot1* ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNP. The chromosome location is from high to low, see Materials and Methods for more details. (B) Verified SNP presented as sequences from B6 female and CAST male. G-to-A SNP is highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherogram indicating G-to-A polymorphism for the SNP region. ♀, maternal; ♂, paternal.

for each gene below. In addition, we have shown each single band amplicon run in an agarose gel (Supplemental Material, Figure S1).

Grb10

Grb10 is regulated by an ICR that is ~1.4 kb and located on chromosome 11 in mouse (Figure 2A). Within our probed region, we validated one SNP out of three reported SNPs from the dbSNP database (Figure 2D). The validated SNP is within a 390-bp region containing 31 CpG residues (Figure 2A), with the polymorphic base being an A in the B6 background and a G in the CAST background (Figure 2B). *Grb10* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 2, C and E).

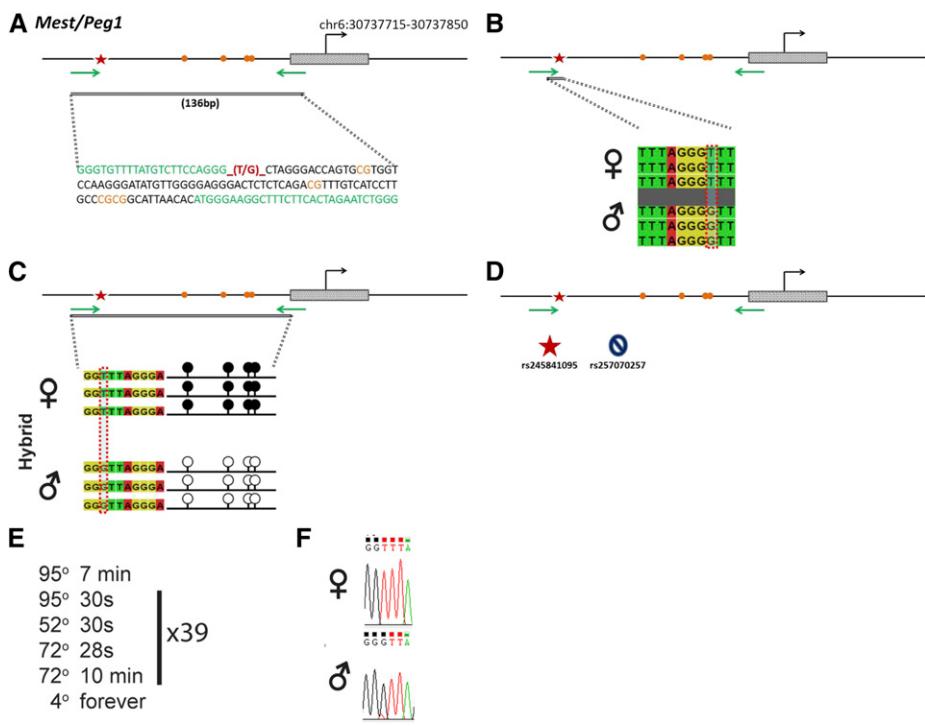
H19

H19 is regulated by an ICR on chromosome 7 (Figure 3A). Within our probed region, we validated three SNPs out of four reported SNPs from the dbSNP database (Figure 3D). These validated SNPs are within a 291-bp region containing nine CpG residues (Figure 3A). The three validated SNPs include (1) a G in the B6 background and a deletion in the CAST background, (2) a G in the B6 background and an A in the CAST background, and (3) an A in the B6 background and a G in the CAST background (Figure 3B). *H19* is methylated on the paternal allele and unmethylated on the maternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 3, C and E).

Igf2r

Igf2r is regulated by an ICR on chromosome 17 (Figure 4A). Within our probed region, we validated two SNPs out of 13 reported SNPs from the

dbSNP database (Figure 4D). These validated SNPs are within a 549-bp region containing 33 CpG residues (Figure 4A). These polymorphic bases include (1) a G in the B6 background and an A in the CAST background, and (2) an A in the B6 background and a G in the CAST background (Figure 4B). *Igf2r* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 4 C and E).

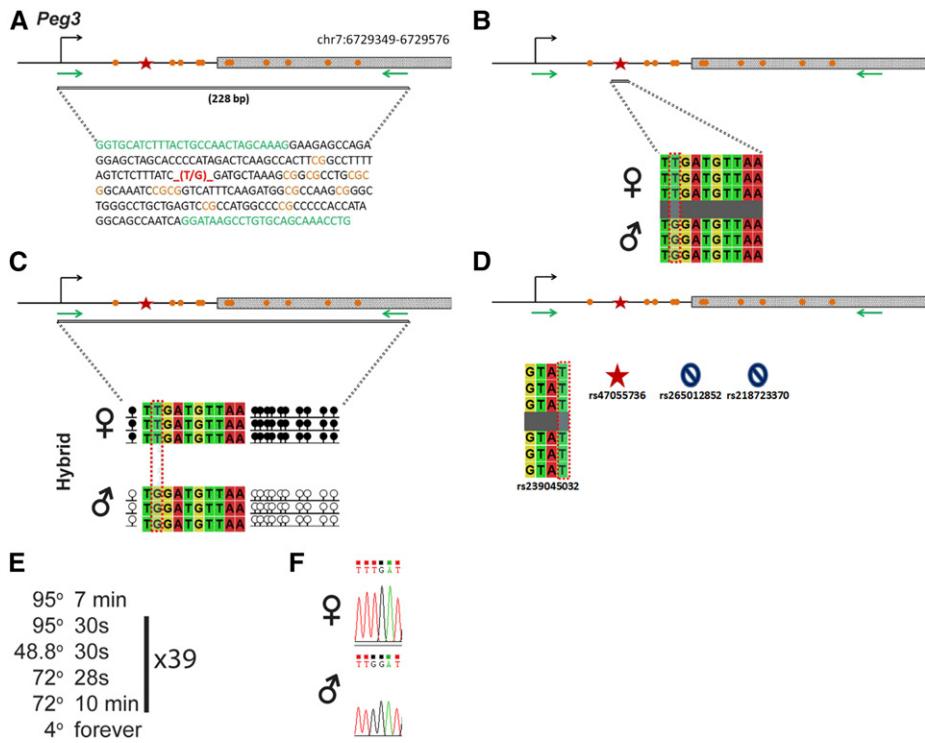

Impact

Impact is regulated by an ICR on chromosome 18 (Figure 5A). Within our probed region, we validated three SNPs out of 10 reported SNPs from the dbSNP and European databases (Figure 5D). One of the SNPs that was not validated was an unnamed SNP from the European database. The validated SNPs are within a 433-bp region that contains 17 CpG residues (Figure 5A). These polymorphic bases include (1) a T in the B6 background and an A in the CAST background, (2) an A in the B6 background and a G in the CAST background, and (3) a T in the B6 background and an A in the CAST background (Figure 5B). *Impact* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 5, C and E).

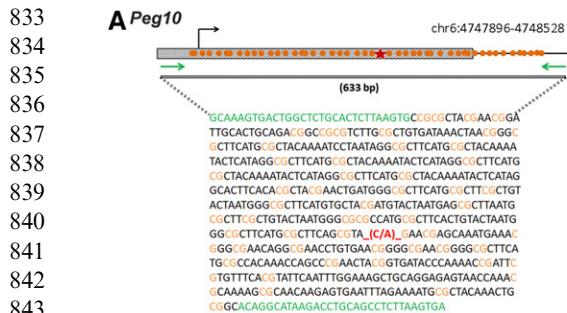
Lit1/Kcnq1ot1

Lit1/Kcnq1ot1 is regulated by an ICR on chromosome 7 (Figure 6A). Within our probed region, we validated one SNP out of 12 reported SNPs from the dbSNP and European databases (Figure 6D). One of the SNPs that was not validated was an unnamed SNP from the European database. The validated SNP is within a 420-bp region that contains

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771



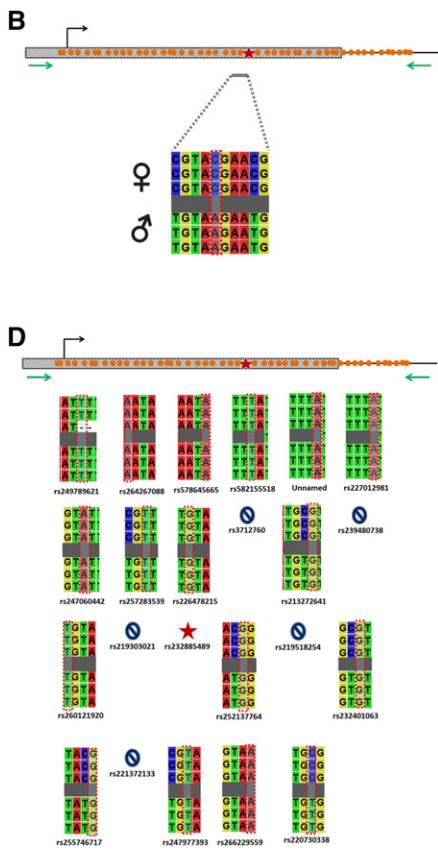
17 CpG residues (Figure 6A). The polymorphic base is a G in the B6 background and an A in the CAST background (Figure 6B). *Lit1* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 6, C and E).


Figure 7 SNP verification within Mest/Peg1 ICR. (A) Schematic of Mest/Peg1 ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNP. (B) Verified SNP presented as sequences from B6 female and CAST male. T-to-G SNP is highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherogram indicating T-to-G polymorphism for the SNP region. ♀, maternal; ♂, paternal.

Mest/Peg1

Mest/Peg1 is regulated by an ICR on chromosome 6 (Figure 7A). Within our probed region, we validated one SNP out of two reported SNPs from the dbSNP database (Figure 7D). This validated SNP is within a 136-bp region that contains four CpG residues (Figure 7A).

Figure 8 SNP verification within Peg3 ICR. (A) Schematic of Peg3 ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNP. (B) Verified SNP presented as sequences from B6 female and CAST male. T-to-G SNP is highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherogram indicating the T-to-G polymorphism for the SNP region. ♀, maternal; ♂, paternal.


This polymorphic base is a T in the B6 background and a G in the CAST background (Figure 7B). *Mest* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 7, C and E).

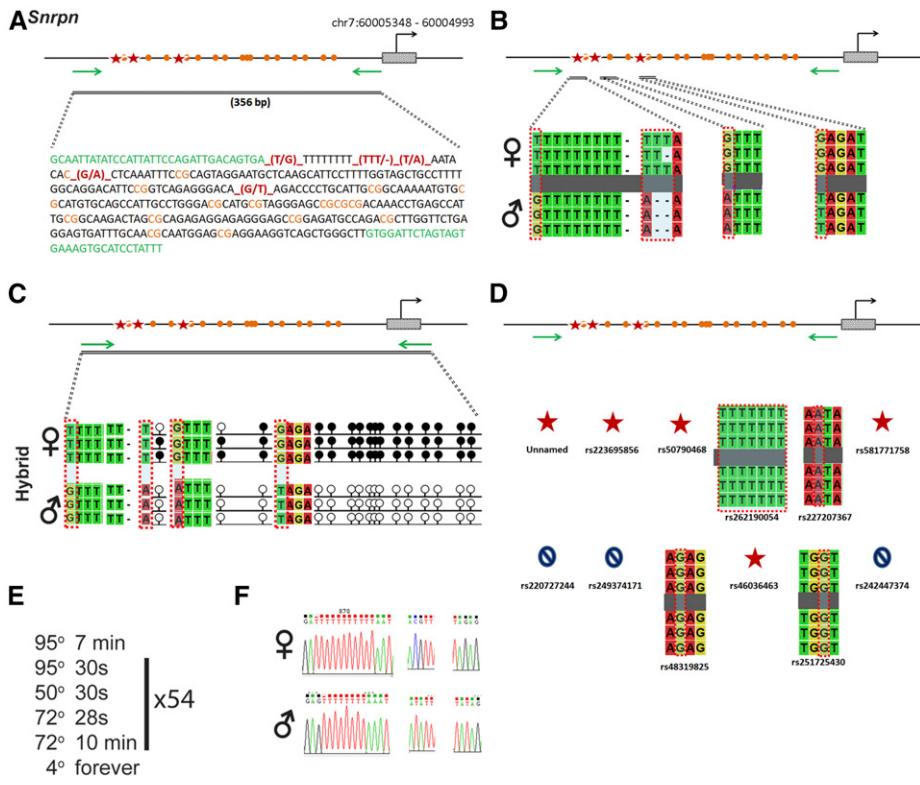
Peg3

Peg3 is regulated by an ICR on chromosome 7 (Figure 8A). Within our probed region, we validated one SNP out of four reported SNPs from the dbSNP database (Figure 8D). This validated SNP is within a 228-bp region that contains 11 CpG residues (Figure 8A). This polymorphic base is a T in the B6 background and a G in the CAST background (Figure 8B). *Peg3* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 8, C and E).

Peg10

Peg10 is regulated by an ICR on chromosome 6 (Figure 9A). Within our probed region, we validated one SNP out of 23 reported SNPs from the dbSNP and European databases (Figure 9D). One of the SNPs that was not validated was an unnamed SNP from the European database. The validated SNP is within a 663-bp region that contains 54 CpG residues (Figure 9A). This polymorphic base is a C in the B6 background and an A in the CAST background (Figure 9B). *Peg10* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 9, C and E).

Figure 9 SNP verification within Peg10 ICR. (A) Schematic of Peg10 ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNP. (B) Verified SNP presented as sequences from B6 female and CAST male. C-to-A SNP is highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherogram indicating C-to-A polymorphism for the SNP region. ♀, maternal; ♂, paternal.


Snrpn

Snrpn is regulated by an ICR on chromosome 7 (Figure 10A). Within our probed region, we validated four SNPs out of 11 reported SNPs from the dbSNP database (Figure 10D). We also identified a novel SNP that is not present in any of the three databases. All five of the validated SNPs are within a 356-bp region that contains 16 CpG residues (Figure 10A). These polymorphic bases include (1) a T in the B6 background and a G in the CAST background, this is the novel SNP that we identified; (2) a TTT in the B6 background and a deletion in the CAST background; (3) a T in the B6 background and an A in the CAST background; (4) a G in the B6 background and an A in the CAST background; and (5) a G in the B6 background and a T in the CAST background (Figure 10B). *Snrpn* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 10, C and E).

Zac1/Plagl1

Zac1/Plagl1 is regulated by an ICR on chromosome 10 (Figure 11A). Within our probed region, we validated one SNP out of 11 reported SNPs from the dbSNP and European databases (Figure 11D). The unnamed SNPs are not found in the dbSNP. The validated SNP is within a 578-bp region that contains 33 CpG residues (Figure 11A). This polymorphic base is an A in the B6 background and a G in the CAST background (Figure 11B). *Zac1* is methylated on the maternal allele and unmethylated on the paternal allele. This methylation pattern was correctly observed in the hybrid progeny using our optimized assay (Figure 11, C and E).

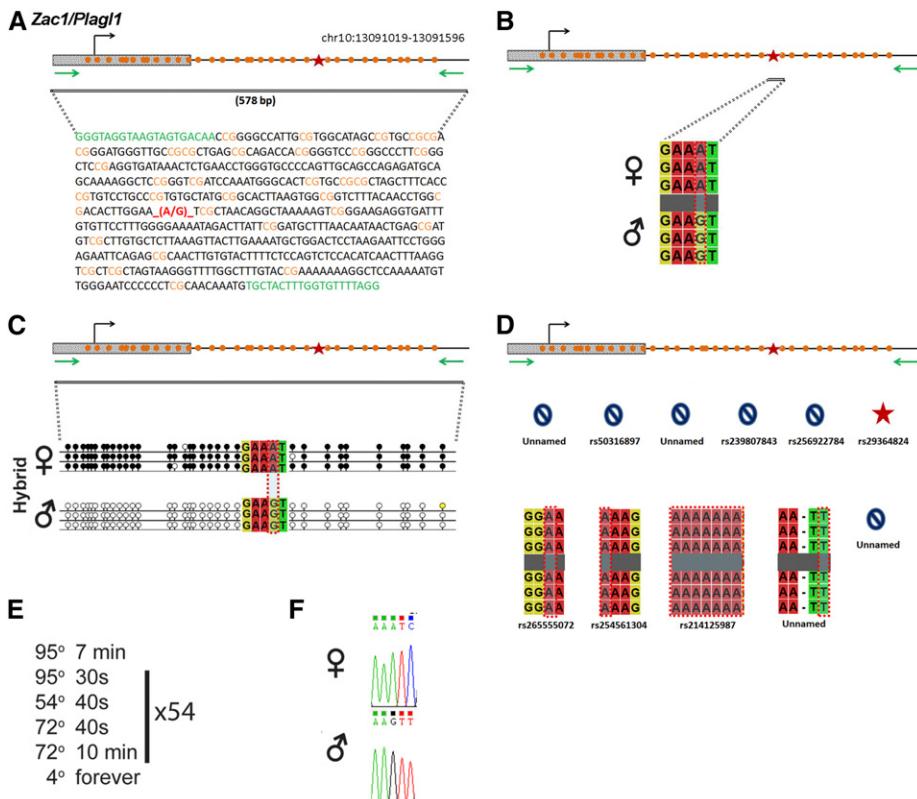
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

Figure 10 SNP verification within *Snrpn* ICR. (A) Schematic of *Snrpn* ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNPs. The chromosome location is from high to low, see *Materials and Methods* for more details. (B) Verified SNPs presented as sequences from B6 female and CAST male. T-to-G, TTT-to-del, T-to-A, G-to-A, and G-to-T SNPs are highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherograms indicating T-to-G, TTT-to-del, T-to-A, G-to-A, and G-to-T polymorphisms for the SNP regions. ♀, maternal; ♂, paternal.

DISCUSSION

Of the SNPs that we analyzed, we were able to validate 18, while we failed to validate 75 SNPs within those same regions (Table 2, red and black). In addition, of those 75 SNPs, 28 of them were C/T polymorphisms that bisulfite analysis was unable to differentiate (Table 2, blue). We also identified a SNP in the *Snrpn* ICR, which was not present in any of the three databases (Table 2, orange). Furthermore, during our optimization we failed to validate multiple SNPs that lie outside of our bisulfite primers. These SNPs are reported in Figure S2. Among the many SNPs reported in the dbSNP database that we failed to verify, most were identified as SNPs between strains other than CAST in the Sanger database. In the end, we could only find one SNP that was supposed to show a polymorphism based on the reported data but did not in our experiments (Table 2, purple). Thus, in general, we recommend using the Sanger database. However, it is important to note that since the Sanger database primarily contains SNPs located close to or within genes, certain ICR SNPs had to be identified in the dbSNP database.

In this resource, we have validated a number of SNPs within the ICRs of the most commonly imprinted loci. In addition, we have demonstrated a high frequency of invalid SNPs within ICRs when the pooled SNPs from the dbSNP (European variation archive) are used alone, highlighting the drawbacks of the mixed strain databases compared to the Sanger strain-specific polymorphism database. Using the validated SNPs, we have optimized allele-specific DNA methylation assays that will allow for the rapid analysis of multiple imprinted loci in a variety of contexts, including at several ICRs that are not contained within the Sanger database. This resource will enable the systematic analysis of multiple imprinted genes in a number of potential applications.


Potential Applications

As this resource offers extensive and straightforward assays to interrogate the most commonly studied imprinted loci, it can be used across a number of fields. There are two major instances where we envision the utility of this resource: (1) cases where a regulatory mechanism directly interacts with multiple imprinted loci and (2) cases where a mechanism either indirectly regulates many imprinted loci or affects multiple imprinted loci by generally disrupting the epigenetic landscape.

Recently, a number of proteins have been demonstrated to directly regulate multiple imprinted loci. These include, but are not limited to, *Dnmt3l*, *Dnmt1*, *Lsd2*, *Trim28*, *Zfp57*, and *Tet1/2*, each with a different mechanism of action (Bourc'his *et al.* 2001; Howell *et al.* 2001; Reik *et al.* 2003; Li *et al.* 2008; Karytinos *et al.* 2009; Fang *et al.* 2010; Messerschmidt *et al.* 2012; Yamaguchi *et al.* 2013; Canovas and Ross 2016). For example, deletion of the regulatory subunit of the *de novo* DNA methyltransferase *Dnmt3L* results in the failure to establish maternal DNA methylation at a number of maternally imprinted loci, including *Peg3*, *Lit1*/*Kcnq1ot1*, and *Snrpn* (Bourc'his *et al.* 2001; Hata *et al.* 2002). Another maternal effect enzyme required for the establishment of DNA methylation at maternally imprinted loci is the histone demethylase *Lsd2*. Mechanistically, *Lsd2* is required to remove H3K4 methylation to get proper DNA methylation at imprinted loci including *Mest*, *Grb10*, and *Zac1* (Ciccone *et al.* 2009; Fang *et al.* 2010; Zhang *et al.* 2012; Stewart *et al.* 2015). Furthermore, *Zfp57*, a KRAB domain zinc-finger protein, is required both maternally and zygotically to maintain the imprinting status of various imprinted loci including *Snrpn* (Li *et al.* 2008; Strogantsev and Ferguson-Smith 2012; Strogantsev *et al.* 2015). This protein is thought to bind directly to

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

Figure 11 SNP verification within *Zac1/Plagl1* ICR. (A) Schematic of *Zac1/Plagl1* ICR. Probed region is highlighted by double-dashed line with number of base pairs covered reported. CpG island indicated by dotted box. Green indicates primer sequences; orange indicates CpG dinucleotides; red star and bases indicate verified SNP. (B) Verified SNP presented as sequences from B6 female and CAST male. A-to-G SNP is highlighted by red dotted rectangle. (C) Verification of proper imprinted status in hybrid B6/CAST progeny. SNP highlighted by red dotted rectangle. DNA methylation presented as lollipop diagram; white circles indicate unmethylated cytosines; black circles indicate methylated cytosines. (D) Other SNPs reported in all three databases within the probed region with the SNP highlighted by red dotted rectangle. dbSNP identification number indicated under each SNP. Red star indicates validated SNP and blue closed circle indicates C-to-T polymorphism that cannot be assayed in bisulfite analysis. (E) Optimal PCR conditions for probed region with the given primers. (F) The electropherogram indicating A-to-G polymorphism for the SNP region. ♀, maternal; ♂, paternal.

DNA with its zinc fingers and subsequently recruit factors that repress transcription (Li *et al.* 2008; Quenneville *et al.* 2011; Strogantsev *et al.* 2015). These studies demonstrate how disruptions in mechanically distinct regulatory mechanisms can affect multiple imprinted loci.

Alternatively, a number of mechanisms have been demonstrated to indirectly affect imprinted loci via general epigenetic disruptions. For example, mutations in human NLRP genes, which are required maternally for the transition to zygotic gene expression, result in hydatidiform moles and loss of imprinting (Docherty *et al.* 2015). Another maternal effect gene, *Lsd1*, the homolog of *Lsd2*, is also maternally required at fertilization for the maternal to zygotic transition (Ancelin *et al.* 2016; Wasson *et al.* 2016). Loss of maternal *Lsd1* leads to a general disruption of DNA methylation in the resulting progeny at both maternally and paternally imprinted loci (Ancelin *et al.* 2016; Wasson *et al.* 2016). These studies demonstrate how maternal factors, deposited into the zygote from the mother, are required for proper imprinting and development of the embryo.

As ICRs are inherently asymmetric in their epigenetic modifications and opposing mechanisms are required at each parental ICR, even slight disturbances in the epigenetic landscape can lead to significant changes in expression at these loci. For example, disruptions in the maternal expression of *Grb10* results in developmental defects in mice, while disruption of the paternal allele of *Grb10* leads to changes in behavior, including increased social dominance (Garfield *et al.* 2011; Dent and Isles 2014). This highlights differences in the roles of imprinted parental alleles in mice. Another study that highlights the relative contributions of each parental allele describes parental-specific duplications of the 15q11.2-q13.3 region of human chromosome 15 (Isles *et al.* 2016). Paternal duplications were more associated with autism spectrum disorder and developmental delay, while maternal duplications were more

associated with psychiatric disorders (Isles *et al.* 2016). These studies demonstrate the complexity of outcomes associated with maternal vs. paternal inheritance.

Finally, mechanisms that affect imprinted genes indirectly through general epigenetic disruptions highlight how the methylation status of ICRs can act as a proxy for global epigenetic alterations. For example, studies have demonstrated hypomethylation of a differentially methylated region in the *Igf2-H19* locus in Wilms tumor patients (Scharnhorst *et al.* 2001). In addition, embryos conceived using artificial reproductive technologies have higher incidences of Prader-Willi and Angelman syndromes (Horsthemke and Wagstaff 2008; Buiting 2010; Butler 2011). These syndromes are caused by large-scale chromosomal abnormalities that affect multiple imprinted loci (Horsthemke and Wagstaff 2008; Buiting 2010; Butler 2011). It is also possible that imprinting may be disrupted by environmental factors. For example, Bisphenol A, an environmental toxin, as well as various endocrine disruptors, have been revealed to significantly alter the epigenetic landscape (Kang *et al.* 2011; Susiarjo *et al.* 2013). Also, Vinclozolin exposure in mice leads to infertility due to sperm defects in mice, which correlates with global alterations in the DNA methylation landscape (Anway *et al.* 2005; Kang *et al.* 2011). These studies demonstrate additional mechanisms that may lead to broad imprinting disruptions.

Conclusion

Due to various mechanisms that can disrupt the epigenetic landscape, we anticipate a growing need to assay imprinted loci in different mouse models. The resource provided here will facilitate the future analysis of multiple imprinted loci in a single hybrid genetic background.

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

Table 2 The complete list of all the SNPs from 3 databases within surveyed regions

Gene	Chromosome	Position	dbSNP	Reference	129P2/OlaHsd	129S1/SvImJ	129SSvEvBrd	A/J	AKR/J	BALB/cJ	C3H/HeJ	C57BL/6NJ	CAST/EU	CBA/J	DBA/2J	FVB/NJ	LP/J	NOD/ShiLtJ	NZO/HltJ	PWK/PhJ	SPRET/EU	WSB/EU	Present in SANGER
Grb10	11	12,025,379	rs217648878	A	-	-	-	-	-	-	-	-	G	-	-	-	-	-	-	-	-	No	
Grb10	11	12,025,628	rs235292292	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Grb10	11	12,025,688	rs249351785	T/C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
H19	7	142,581,765	rs33821081	T	-	-	-	-	-	-	-	-	C	-	-	-	-	-	C	C	-	Yes	
H19	7	142,581,783	rs33822014	G	-	-	-	-	-	-	-	-	C	-	-	-	-	-	C	-	-	Yes	
H19	7	142,581,852	rs33822017	C	-	-	-	-	-	-	-	-	T	-	-	-	-	-	T	T	-	Yes	
H19	7	142,581,933	rs216287265	C	-	-	-	-	-	-	-	-	DEL	-	-	-	-	-	-	-	-	No	
Igf2r	17	12,742,167	rs222297088	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	Yes	
Igf2r	17	12,742,203	rs242482749	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	Yes	
Igf2r	17	12,742,239	rs578459511	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	Yes	
Igf2r	17	12,742,253	rs211862027	T/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Igf2r	17	12,742,283	rs229760939	G	-	-	-	-	-	-	-	A	-	A	-	-	-	-	-	-	-	Yes	
Igf2r	17	12,742,373	rs108681933	C	-	-	-	-	-	-	-	T	-	-	-	-	-	-	-	-	-	Yes	
Igf2r	17	12,742,426	rs250523644	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	Yes	
Igf2r	17	12,742,469	rs265144059	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	Yes	
Igf2r	17	12,742,474	rs107811421	G	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	Yes	
Igf2r	17	12,742,517	rs245573738	A	-	-	-	-	-	-	-	-	-	-	-	-	-	G	-	-	-	Yes	
Igf2r	17	12,742,538	rs216289274	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	Yes	
Igf2r	17	12,742,554	rs234366750	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	Yes	
Igf2r	17	12,742,579	rs107601903	A	-	-	-	-	-	-	-	-	G	-	-	-	-	-	G	G	-	Yes	
Impact	18	12,972,845	rs29925054	T/C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,972,852	rs235629089	A/G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,972,910	rs223891728	T/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,972,953	rs261124226	T	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,972,960	UNNAMED	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,972,965	rs31057356	A	-	-	-	-	-	-	-	G	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,972,968	rs240274686	CAG/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,973,031	rs29558070	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,973,055	rs251991535	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Impact	18	12,973,080	rs220788023	C	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,133	rs582360752	G/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,136	rs215749528	ACTCC/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,140	rs33837838	C	-	-	-	-	-	-	-	T	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,152	rs579853313	G/C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,180	rs217463360	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,277	UNNAMED	A/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,291	rs228666977	C/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,295	rs218426414	C/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,335	rs33837841	A/G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,366	rs212456965	T/C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,375	rs215454409	C/G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Lit1	7	143,295,438	rs261934168	G/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Mest	6	30,737,737	rs245841095	T	-	-	-	-	-	-	-	-	G	-	-	-	-	-	G	G	-	Yes	
Mest	6	30,737,801	rs257070257	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	-	Yes	
Peg3	7	6,729,398	rs239045032	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	Yes	
Peg3	7	6,729,440	rs47057736	T	-	-	-	-	-	-	-	-	G	-	-	-	-	-	G	G	-	Yes	
Peg3	7	6,729,451	rs265012852	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
Peg3	7	6,729,539	rs218723370	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	-	Yes	
Peg10	6	4,748,007	rs249789621	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	Yes	
Peg10	6	4,748,010	rs264267088	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	-	Yes	
Peg10	6	4,748,036	rs578645665	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	-	Yes	
Peg10	6	4,748,039	rs582155518	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	Yes	
Peg10	6	4,748,069	UNNAMED	A/G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	

(continued)

Table 2, continued

	Gene	Chromosome	Position	dbSNP	Reference	129P2/OlaHsd	129S1/SvImJ	129S5SvEvBrd	A/J	AKR/J	BALB/cJ	C3H/HeJ	C57BL/6NJ	CAST/EU	CBA/J	DBA/2J	FVB/NJ	LP/J	NOD/ShiLtJ	NZO/HltJ	PWK/PhJ	SPRET/EU	WSB/EU	Present in SANGER
1327	Peg10	6	4,748,127	rs227012981	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	-	Yes
1328	Peg10	6	4,748,133	rs247060442	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	-	Yes
1329	Peg10	6	4,748,174	rs257283539	A/C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1330	Peg10	6	4,748,176	rs226478215	C/G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1331	Peg10	6	4,748,196	rs3712760	T	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	Yes	
1332	Peg10	6	4,748,197	rs213272641	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	Yes
1333	Peg10	6	4,748,249	rs239480738	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	Yes
1334	Peg10	6	4,748,262	rs260121920	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	Yes
1335	Peg10	6	4,748,291	rs219303021	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	-	Yes
1336	Peg10	6	4,748,295	rs232885489	C	-	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	Yes
1337	Peg10	6	4,748,313	rs252137764	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	Yes
1338	Peg10	6	4,748,341	rs219518254	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	-	Yes
1339	Peg10	6	4,748,351	rs232401063	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	-	Yes	
1340	Peg10	6	4,748,382	rs255746717	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	Yes	
1341	Peg10	6	4,748,384	rs221372133	T	-	-	-	-	-	-	-	C	-	-	-	-	-	-	C	C	-	Yes	
1342	Peg10	6	4,748,413	rs247977393	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	C	-	Yes	
1343	Peg10	6	4,748,442	rs266229559	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	G	-	-	Yes	
1344	Snrpn	7	60,005,033	rs242447374	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	Yes	
1345	Snrpn	7	60,005,074	rs251725430	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T	-	-	Yes	
1346	Snrpn	7	60,005,215	rs46036463	C	A	-	-	-	-	-	-	A	-	A	-	-	-	A	A	-	-	Yes	
1347	Snrpn	7	60,005,223	rs48319825	C	T	-	-	-	-	-	-	-	T	-	-	-	-	T	-	-	Yes		
1348	Snrpn	7	60,005,271	rs249374171	G	A	-	-	-	-	-	-	A	-	A	-	-	A	-	-	Yes			
1349	Snrpn	7	60,005,282	rs220727244	G	A	-	-	-	-	-	-	A	-	A	-	-	A	A	-	-	Yes		
1350	Snrpn	7	60,005,295	rs581771758	C	-	-	-	-	-	-	-	T	-	-	-	-	-	-	-	-	-	Yes	
1351	Snrpn	7	60,005,301	rs227207367	T/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1352	Snrpn	7	60,005,303	rs50790468	T	-	-	-	-	-	-	-	A	-	-	-	-	-	-	-	-	-	No	
1353	Snrpn	7	60,005,303	rs223695856	AAA	-	-	-	-	-	-	-	DEL	-	-	-	-	-	-	-	-	-	No	
1354	Plagl1	10	13,091,157	UNNAMED	A	-	-	-	-	-	-	-	C	-	-	-	-	-	-	-	-	-	No	
1355	Plagl1	10	13,091,167	rs50316897	C/T	-	-	-	-	-	-	-	T	-	T	-	-	-	T	-	-	-	Yes	
1356	Plagl1	10	13,091,224	UNNAMED	T/C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1357	Plagl1	10	13,091,272	rs239807843	T	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	-	Yes		
1358	Plagl1	10	13,091,284	rs256922784	C	-	-	-	-	-	-	-	-	-	-	-	-	T	-	-	Yes			
1359	Plagl1	10	13,091,296	rs29364824	A	-	-	-	-	-	-	-	G	-	G	-	-	G	G	G	Yes			
1360	Plagl1	10	13,091,347	rs265555072	A/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1361	Plagl1	10	13,091,403	rs254561304	A/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1362	Plagl1	10	13,091,531	rs214125987	AAAAAAA/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1363	Plagl1	10	13,091,559	UNNAMED	C/-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	
1364	Plagl1	10	13,091,566	UNNAMED	C/T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	No	

Orange indicates that the SNP is the SNP we have found; it is not present in any database. Red indicates that SNPs are validated polymorphisms. Blue indicates that SNPs are C/T (or G/A) variations that bisulfite sequencing assay can't detect. Purple indicates that the SNP is the only inconsistency between our sequencing result (C on B6 background) and the reported Sanger data (G on B6 background). Green nucleotides indicate the present polymorphism on both assayed backgrounds (B6 and CAST) at reported SNP locations

ACKNOWLEDGMENTS

We thank the epigenetic community at Emory University for their feedback, T. Lee for help in editing this article, and A. Ferguson-Smith and M. Bartolomei for feedback on the article. In addition, we thank M. Bartolomei for providing the *H19* assay and D. Cutler for bioinformatics assistance. J.A.W. was supported by the Biochemistry, Cell and Molecular Biology Training Grant (5T32GM008367). The work was supported by a grant to D.J.K. from the National Science Foundation (IOS1354998).

LITERATURE CITED

Ancelin, K., L. Syx, M. Borensztein, N. Ranisavljevic, I. Vassilev *et al.*, 2016 Maternal LSD1/KDM1A is an essential regulator of chromatin

and transcription landscapes during zygotic genome activation. *Elife* 5: e08851.

Anway, M. D., A. S. Cupp, M. Uzumcu, and M. K. Skinner, 2005 Epigenetic transgenerational actions of endocrine disruptors and male fertility. *Science* 308: 1466–1469 (erratum: *Science* 328: 690).

Barlow, D. P., 2011 Genomic imprinting: a mammalian epigenetic discovery model. *Annu. Rev. Genet.* 45: 379–403.

Bartolomei, M. S., 2009 Genomic imprinting: employing and avoiding epigenetic processes. *Genes Dev.* 23: 2124–2133.

Bartolomei, M. S., and A. C. Ferguson-Smith, 2011 Mammalian genomic imprinting. *Cold Spring Harb. Perspect. Biol.* 3: 1–17.

Bartolomei, M. S., and S. M. Tilghman, 1997 Genomic imprinting in mammals. *Annu. Rev. Genet.* 31: 493–525.

1443 Beck, J. A., S. Lloyd, M. Hafezparast, M. Lennon-Pierce, J. T. Eppig *et al.*,
1444 2000 Genealogies of mouse inbred strains. *Nat. Genet.* 24: 23–25.
1445 Bourc'his, D., G. L. Xu, C. S. Lin, B. Bollman, and T. H. Bestor,
1446 2001 Dnmt3L and the establishment of maternal genomic imprints.
1447 *Science* 294: 2536–2539.
1448 Buiting, K., 2010 Prader-Willi syndrome and Angelman syndrome. *Am.
1449 J. Med. Genet. C Semin. Med. Genet.* 154C: 365–376.
1450 Butler, M. G., 2011 Prader-Willi syndrome: obesity due to genomic im-
1451 printing. *Curr. Genomics* 12: 204–215.
1452 Canovas, S., and P. J. Ross, 2016 Epigenetics in preimplantation mamma-
1453 lian development. *Theriogenology* 86: 69–79.
1454 Ciccone, D. N., H. Su, S. Hevi, F. Gay, H. Lei *et al.*, 2009 KDM1B is a
1455 histone H3K4 demethylase required to establish maternal genomic im-
1456 prints. *Nature* 461: 415–418.
1457 Dent, C. L., and A. R. Isles, 2014 Brain-expressed imprinted genes and adult
1458 behaviour: the example of Nesp and Grb10. *Mamm. Genome* 25: 87–93.
1459 DeVeale, B., D. van der Kooy, and T. Babak, 2012 Critical evaluation of
1460 imprinted gene expression by RNA-seq: a new perspective. *PLoS Genet.*
1461 8: e1002600.
1462 Docherty, L. E., F. I. Rezwan, R. L. Poole, C. L. S. Turner, E. Kivuva *et al.*,
1463 2015 Mutations in NLRP5 are associated with reproductive wastage and
1464 multilocus imprinting disorders in humans. *Nat. Commun.* 6: 8086.
1465 Fang, R., A. J. Barbera, Y. Xu, M. Rutenberg, T. Leonor *et al.*, 2010 Human
1466 LSD2/KDM1b/AOF1 regulates gene transcription by modulating intra-
1467 generic H3K4me2 methylation. *Mol. Cell* 39: 222–233.
1468 Ferguson-Smith, A. C., 2011 Genomic imprinting: the emergence of an
1469 epigenetic paradigm. *Nat. Rev. Genet.* 12: 565–575.
1470 Frazer, K. A., E. Eskin, H. M. Kang, M. A. Bogue, D. A. Hinds *et al.*, 2007 A
1471 sequence-based variation map of 8.27 million SNPs in inbred mouse
1472 strains. *Nature* 448: 1050–1053.
1473 Garfield, A. S., M. Cowley, F. M. Smith, K. Moorwood, J. E. Stewart-Cox
1474 *et al.*, 2011 Distinct physiological and behavioural functions for pa-
1475 rental alleles of imprinted Grb10. *Nature* 469: 534–538.
1476 Gregg, C., J. Zhang, B. Weissbourd, S. Luo, G. P. Schroth *et al.*, 2010 High
1477 resolution analysis of parent-of-origin allelic expression in the mouse
1478 brain. *Science* 329: 643–648.
1479 Hata, K., M. Okano, H. Lei, and E. Li, 2002 Dnmt3L cooperates with the
1480 Dnmt3 family of de novo DNA methyltransferases to establish maternal
1481 imprints in mice. *Development* 129: 1983–1993.
1482 Hayatsu, H., M. Shiraishi, and K. Negishi, 2008 Bisulfite modification for
1483 analysis of DNA methylation. *Curr. Protoc. Nucleic Acid Chem. Chapter*
1484 6: Unit 6.10.
1485 Horsthemke, B., and J. Wagstaff, 2008 Mechanisms of imprinting of the
1486 Prader-Willi/Angelman region. *Am. J. Med. Genet. A* 146: 2041–2052.
1487 Howell, C. Y., T. H. Bestor, F. Ding, K. E. Latham, C. Mertineit *et al.*,
1488 2001 Genomic imprinting disrupted by a maternal effect mutation in
1489 the *Dnmt1* gene. *Cell* 104: 829–838.
1490 Isles, A. R., A. Ingason, C. Lowther, J. Walters, M. Gawlick *et al.*,
1491 2016 Parental origin of interstitial duplications at 15q11.2-q13.3 in
1492 schizophrenia and neurodevelopmental disorders. *PLoS Genet.* 12:
1493 e1005993.
1494 Kang, E.-R., K. Iqbal, D. A. Tran, G. E. Rivas, P. Singh *et al.*, 2011 Effects of
1495 endocrine disruptors on imprinted gene expression in the mouse embryo.
1496 *Epigenetics* 6: 937–950.
1497 Karytinos, A., F. Forneris, A. Profumo, G. Ciossani, E. Battaglioli *et al.*,
1498 2009 A novel mammalian flavin-dependent histone demethylase.
1499 *J. Biol. Chem.* 284: 17775–17782.
1500 Keane, T. M., L. Goodstadt, P. Danecek, M. A. White, K. Wong *et al.*,
1501 2011 Mouse genomic variation and its effect on phenotypes and gene
1502 regulation. *Nature* 477: 289–294.
1503 Kelsey, G., and M. S. Bartolomei, 2012 Imprinted genes... and the number
1504 is? *PLoS Genet.* 8: e1002601.
1505 Laird, P. W., 2010 Principles and challenges of genome-wide DNA meth-
1506 ylation analysis. *Nat. Rev. Genet.* 11: 191–203.
1507 Li, X., M. Ito, F. Zhou, N. Youngson, X. Zuo *et al.*, 2008 A maternal-zygotic
1508 effect gene, Zfp57, maintains both maternal and paternal imprints. *Dev.
1509 Cell* 15: 547–557.
1510 Messerschmidt, D. M., W. de Vries, M. Ito, D. Solter, A. Ferguson-Smith
1511 *et al.*, 2012 Trim28 is required for epigenetic stability during mouse
1512 oocyte to embryo transition. *Science* 335: 1499–1502.
1513 Mitchell, A. A., M. E. Zwick, A. Chakravarti, and D. J. Cutler,
1514 2004 Discrepancies in dbSNP confirmation rates and allele frequency
1515 distributions from varying genotyping error rates and patterns. *Bioin-
1516 formatics* 20: 1022–1032.
1517 Nekrutenko, A., and J. Taylor, 2012 Next-generation sequencing data in-
1518 terpretation: enhancing reproducibility and accessibility. *Nat. Rev. Genet.*
1519 13: 667–672.
1520 Quenneville, S., G. Verde, A. Corsinotti, A. Kapopoulou, J. Jakobsson *et al.*,
1521 2011 In embryonic stem cells, ZFP57/KAP1 recognize a methylated
1522 hexanucleotide to affect chromatin and DNA methylation of imprinting
1523 control regions. *Mol. Cell* 44: 361–372.
1524 Reik, W., and W. Dean, 2001 DNA methylation and mammalian epige-
1525 netics. *Electrophoresis* 22: 2838–2843.
1526 Reik, W., and J. Walter, 2001 Genomic imprinting: parental influence on
1527 the genome. *Nat. Rev. Genet.* 2: 21–32.
1528 Reik, W., F. Santos, and W. Dean, 2003 Mammalian epigenomics: re-
1529 programming the genome for development and therapy. *Theriogenology*
1530 59: 21–32.
1531 Scharnhorst, V., A. J. Van Der Eb, and A. G. Jochemsen, 2001 WT1 pro-
1532 teins: functions in growth and differentiation. *Gene* 273: 141–161.
1533 Sherry, S. T., M. H. Ward, M. Kholodov, J. Baker, L. Phan *et al.*,
1534 2001 dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res.*
1535 29: 308–311.
1536 Smigelski, E. M., K. Sirotnik, M. Ward, and S. T. Sherry, 2000 dbSNP: a
1537 database of single nucleotide polymorphisms. *Nucleic Acids Res.* 28: 352–
1538 355.
1539 Stewart, K. R., L. Veselovska, J. Kim, J. Huang, H. Saadeh *et al.*,
1540 2015 Dynamic changes in histone modifications precede de novo DNA
1541 methylation in oocytes. *Genes Dev.* 29: 2449–2462.
1542 Strogantsev, R., and A. C. Ferguson-Smith, 2012 Proteins involved in es-
1543 tablishment and maintenance of imprinted methylation marks. *Brief.
1544 Funct. Genomics* 11: 227–239.
1545 Strogantsev, R., F. Krueger, K. Yamazawa, H. Shi, P. Gould *et al.*,
1546 2015 Allele-specific binding of ZFP57 in the epigenetic regulation of
1547 imprinted and non-imprinted monoallelic expression. *Genome Biol.* 16:
1548 112.
1549 Susiarjo, M., I. Sasson, C. Mesaros, and M. S. Bartolomei, 2013 Bisphenol A
1550 exposure disrupts genomic imprinting in the mouse. *PLoS Genet.* 9:
1551 e1003401.
1552 Wan, L. B., and M. S. Bartolomei, 2008 Regulation of imprinting in clusters:
1553 noncoding RNAs versus insulators. *Adv. Genet.* 61: 207–223.
1554 Wasson, J. A., A. K. Simon, D. A. Myrick, G. Wolf, S. Driscoll *et al.*,
1555 2016 Maternally provided LSD1/KDM1A enables the maternal-to-zy-
1556 gotic transition and prevents defects that manifest postnatally. *Elife* 5:
1557 e08848.
1558 Yalcin, B., K. Wong, A. Agam, M. Goodson, T. M. Keane *et al.*,
1559 2011 Sequence-based characterization of structural variation in the
1560 mouse genome. *Nature* 477: 326–329.
1561 Yamaguchi, S., L. Shen, Y. Liu, D. Sendler, and Y. Zhang, 2013 Role of Tet1
1562 in erasure of genomic imprinting. *Nature* 504: 460–464.
1563 Zhang, Q., S. Qi, M. Xu, L. Yu, Y. Tao *et al.*, 2012 Structure-function
1564 analysis reveals a novel mechanism for regulation of histone demethylase
1565 LSD2/AOF1/KDM1b. *Cell Res.* 2: 1–17.
1566

Communicating editor: D. Threadgill

GGG January (2018)
Author query sheet Wasson (GGG_300417)

[QAI] If you or your coauthors would like to include an ORCID ID in this article, please provide your respective ORCID IDs along with your corrections.

Note: If you do not yet have an ORCID ID and would like one, you may register for this unique digital identifier at <https://orcid.org/register>.

- [1]** Please verify corresponding author address.
- [2]** Please check all figure legends carefully to confirm that any and all labels, designators, directionals, colors, *etc.* are represented accurately in comparison with the figure images.
- [3]** Please check the Supplemental Material links in your article.
- [4]** Please confirm or update any and all URLs in your article.
- [5]** Please check use of italics throughout your article, including all taxonomic and genetic nomenclature. Uppercase Greek letters should remain roman per journal style even when appearing in a term where the overall style is italic (*e.g.*, a gene name such as *kap108Δ*). Note that headings are set all Roman or all italics based on journal style and should not be changed.
- [6]** Please verify the keywords are correct as listed.
- [7]** Any alternations between capitalization and/or italics in genetic nomenclature have been retained per the original manuscript. Please confirm that all genetic nomenclature has been formatted properly throughout.
- [8]** Throughout the article, instances of “Castaneus background” have been edited to “CAST background” to match the terminology defined in the sentence “To generate hybrids with SNPs on each allele...,” please verify or amend this edit.
- [9]** In the legends for Figures 2–11, “♀, maternal; ♂, paternal” has been inserted to explain the symbols on the diagrams. Please check if this is correct.
- [10]** Figure panel 5F is poor quality. Please provide better quality artwork.