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Abstract

A coupled path-planning and sensor configuration method is proposed. The path-planning objective is to minimize exposure to
an unknown spatially-varying scalar field, called the threat field, measured by a network of sensors. Gaussian Process regression
is used to estimate the threat field from these measurements. Crucially, the sensors are configurable, i.e., parameters such as
location and size of field of view can be changed. A main innovation of this work is that sensor configuration is performed
by maximizing a so-called task-driven information gain (TDIG) metric, which quantifies uncertainty reduction in the cost
of the planned path. For computational efficiency, a surrogate metric called the self-adaptive mutual information (SAMI)
is introduced and shown to be submodular. The proposed method is shown to vastly outperform traditionally decoupled
information-driven sensor configuration in terms of the number of measurements required to find near-optimal plans.
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1 Introduction

In a large-scale autonomous system, a mobile agent
may leverage information about the environment gained
from an exteroceptive sensor network. Consider a post-
disaster scenario where many roads are flooded and the
problem is to plan a safe route to transport people from
a dangerous location to a safe location. A network of
unmanned aerial vehicles (UAVs) visually surveys the
extent of flooding and identify safe roads. This applica-
tion example sheds light on two related issues, namely,
how to: (1) configure sensors, e.g., send the UAVs to dif-
ferent locations, and (2) plan with as few measurements
as possible, without significantly reducing the quality of
the plan. A research question that naturally arises is:
how do we optimally configure sensors to find a near-
optimal plan with a minimal number of measurements?
To address this question, we study the problem of find-
ing a path of minimum threat exposure (see Fig. 1(a))
for a mobile agent traversing in an unknown environ-
ment. Information about the threat is gained from an
exteroceptive sensor network.

Related Work: The two main components of this work,
which are traditionally studied independently, are opti-
mal path-planning under uncertainty and sensor config-
uration. Path-planning is well studied for objectives such
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as minimum length, maximum traversal utility, and ob-
stacle avoidance (Aggarwal and Kumar, 2020). Graph-
based algorithms such as Dijkstra’s algorithm, A*, and
its variants (Hart et al., 1968) are frequently used. Par-
tially observable Markov Decision process models are
typically used in uncertain planning tasks with onboard
sensing (Kurniawati et al., 2012).

The literature on sensor configuration is largely re-
stricted to sensor placement. Optimal sensor placement
addresses minimizing uncertainty, or maximizing spatial
coverage and communication reachability (Ramsden,
2009). Optimization metrics include Kullback-Leibler
divergence, Fisher information, and mutual information
(Cochran and Hero, 2013). Sensor placement applica-
tions include estimation of gaseous plumes (Demetriou
et al., 2013), cooperative tracking of forest fires (Merino
et al., 2006), and observing dynamics of volcanic ash
(Madankan et al., 2014). Near-optimal sensor place-
ment for linear inverse problems are studied by Ranieri
et al. (2014). Clustering-based algorithms such as k-
means (Li et al., 2016) and density-based clustering
(Yoganathan et al., 2018) for sensors in office spaces.

The comparison of task-driven versus information-
driven sensor placement in tracking applications were
studied by Kreucher et al. (2005). Task-driven methods
are those where sensor placement is somehow coupled to
a planning or control task, whereas information-driven
methods are decoupled. Similarly, Tzoumas et al. (2021)
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address optimal sensor selection for linear quadratic
Gaussian feedback control systems. Target tracking
UAVs with limited field of view are studied for simul-
taneous path-planning and optimal sensing position
(Skoglar et al., 2006). Allen et al. (2009) study hierar-
chical path-replanning concurrently with data fusion.

In contrast to the existing literature where planning and
sensor configuration are studied independently, we pro-
pose a coupled path-planning and sensor configuration
(CSCP) method and we show that significant benefits
are achieved by introducing this coupling. We consider
path-planning tominimize exposure to an unknown, spa-
tially varying, and temporally static scalar field called
the threat field. Sensors take noisy measurements of the
threat field. We use Gaussian Process regression to es-
timate the threat field from measurements. Sensor con-
figuration is performed by maximizing a so-called task-
driven information gain metric or its surrogate. Cooper
and Cowlagi (2019) first reported such a coupled sen-
sor placement and path-planning approach but consid-
ered pointwise sensors, only. We consider sensors with
configurable fields of view (FoV). We demonstrate that
the proposed CSCP method outperforms decoupled in-
formation-driven sensor configuration in terms of the
number of measurements required to find a comparable
near-optimal plan.

Statement of Contributions: We provide a method to
configure sensors in the case where noisy observations are
taken over a finite area rather than pointwise, without
lossy aggregation of the observations. To the best of our
knowledge, no comparable method is available in the
literature. Furthermore, we consider two configurations
for each sensor, namely, its location and FoV (which may
be altitude-dependent).We explicitly model sensor noise
dependence on FoV to emulate commonly used EO/IR
sensors. In so doing, we quantify the “exploration v/s
exploitation” trade-off, where “exploration” is achieved
through large FoV (noisy measurements over large ar-
eas) and “exploitation” is achieved through small FoV
(accurate measurements over small areas). We demon-
strate that the proposed method achieves near-optimal
paths using fewer observations by orders of magnitude
compared to traditional sensor placement methods.

Preliminary results of the work presented in this paper
were previously reported in conferences (St. Laurent and
Cowlagi, 2021a,b,c). The crucial innovation in this paper
is a new metric called self-adaptive mutual information,
which we show is submodular.

2 Problem Formulation

We denote by R and N the sets of real and natural
numbers, respectively, and by {N} the set {1, 2, . . . , N}
for any N ∈ N. For any a ∈ RN , a[i] is its ith ele-
ment, diag(a) is the diagonal matrix with the elements
of a on the principal diagonal, and a◦(−1) denotes the

(a) (b)

Fig. 1. (a) Example of a threat field and optimal path. (b)
Illustrations of sensor FoVs and observations (red dots).

vector with reciprocal elements of a. For any matrix
A ∈ RM×N , A[i, j] is the element in the ith row and
jth column. For A ∈ RN×N and for the indicator vector
a ∈ {0, 1}N , diag(A) is the diagonal vector and A[a] is
the submatrix of rows and columns indicated by a. Simi-
larly,A[i,a] denotes elements in the ith row and columns
indicated by a. IN is the identity matrix of size N. For
µ, σ ∈ R,N (µ, σ2) is the normal distribution with mean
µ and variance σ2. E is the expectation operator.

2.1 Path-Planning and Sensor Configuration

The agent operates in a compact square planar region
called the workspace W ⊂ R2. Consider a uniformly-
spaced square grid of points i = 1, 2, . . . , Ng and a graph
G = (V,E) whose vertices V = {Ng} are uniquely as-
sociated with these grid points. The set of edges E con-
sists of pairs of geometrically adjacent grid points. We
label the vertices the same as grid points. We denote by
pi = (pix, piy) the coordinates of the ith grid point and
by ∆p the distance between adjacent grid points.

A threat field c : W → R>0 is a strictly positive scalar
field. A path π = (π[0],π[1], . . . ,π[λ]) between prespec-
ified initial and goal vertices istart, igoal ∈ V is a finite se-
quence, without repetition, of successively adjacent ver-
tices such that π[0] = istart and π[λ] = igoal for some
λ ∈ N. When the meaning is clear from the context, we
also denote by π the unordered set of vertices in a path.
A path incidence vector vπ ∈ {0, 1}Ng has vπ[i] = 1 if
i = π[j] for j ∈ {λ}\0 and vπ[i] = 0 otherwise. The cost
of a path π is the total threat exposure calculated as

J (π) := ∆p
∑λ

j=1c(pπ[j]). The main problem of interest
is to find a path π∗ of minimum cost.

The threat field is unknown, but it can be observed
by a network of Ns ∈ N sensors. Each sensor mea-
sures the threat in a circular FoV as shown in Fig. 1(b).
The center sk ∈ W and radius ϱk ∈ R>0 of this cir-
cular FoV are parameters that we can choose for each
k ∈ {Ns}. Maximum and minimum FoV radii are pre-
specified as ϱmax and ϱmin, respectively. The set of all
sensor parameters is called a configuration, denoted by
C = {s1, ϱ1, s2, . . . , ϱNs}.

We denote by Fk ⊂ V the set of vertices with grid points
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lying within the FoV of the kth sensor. A sensor cover
incidence vector νk is defined such that νk[i] = 1 if
i ∈ Fk and νk[i] = 0 otherwise. The union of all FoVs
is F := ∪k∈{Ns}Fk and the cover incidence of all sensors
in the network is ν := (ν1 ∨ ν2 ∨ ... ∨ νNs

). Within its
FoV, the kth sensor takes Mk ∈ N pointwise and noisy
measurements zkm = c(xkm) + ηkm, for m ∈ {Mk}.

Assumption 1 The measurement error ηkm is inde-
pendent and identically distributed (i.i.d) with ηkm ∼
N (0, σ2

k), where σ2
k is a monotonically increasing func-

tion of the FoV radius ϱk.

We denote by z = [z11 . . . z1M1
. . . zNsMNs

]⊺ the mea-
surements made by the collection of all sensors. We may
use these measurements to construct a stochastic esti-
mate of the threat field, and in turn, to find an optimal
path that minimizes the expected cost. Furthermore, we
would like to reduce the uncertainty in the estimated
path cost, i.e., require that the variance of the path cost
be less than a certain prespecified threshold. To do so,
we must collect a sufficient number of measurements,
which may be achieved by repeatedly changing the sen-
sor configuration over multiple iterations. Conceptually,
at each iteration ℓ = 0, 1, . . . , a sensor configuration C∗

ℓ
is chosen, the threat field estimate is updated using the
new measurements, and an optimal path is computed.
The main problem of interest is formulated as follows.

Problem 2 Let ε > 0 be a prespecified termination
threshold. Over finite iterations ℓ = 0, 1, . . . , L, find sen-
sor configurations C∗

ℓ and a path π∗ of minimum expected
cost E[J (π∗)] such that E[(J (π∗)− E[J (π∗)])2] ⩽ ε.

2.2 Threat Field Modeling

We employ a Gaussian Process (GP) model to esti-
mate the threat field from measurements. GP regression
(GPR) is a supervised machine learning method that is
known to be a universal approximator given sufficient
training data and a stationary kernel (Micchelli et al.,
2006). For a set of training points X = {x1, . . . ,xM},
we define a matrix kernel K = κ(X,X) ∈ RM×M

using anisotropic scaled radial basis functions as
K [i, j] = θc exp(− 1

2 (xi − xj)
⊺Θ−2

r (xi − xj)), where
θc is a scalar coefficient and Θr is a matrix of input
dimension hyperparameters, both to be chosen. On the
diagonal of Θr are the dimension-specific length scales
whereas the off-diagonal are the length scale correla-
tions between dimensions. For a set of training points
X and a set of test points X∗, we can define kernels
K∗ = κ(X,X∗) and K∗∗ = κ(X∗,X∗) similarly.

In the present context GPR is applied as follows. At
each iteration ℓ = 0, 1, . . . , the algorithm maintains
and recursively updates a pointwise estimated mean
threat f ℓ ∈ RNg and an estimation error covariance
matrix P ℓ ∈ RNg×Ng . The expected cost of any path
π is Eℓ[J (π)] = ∆p v⊺

πf ℓ. The path cost variance is
Varℓ(π) := Eℓ[(J (π)− Eℓ[J (π)])2] = (∆p)2v⊺

πP ℓvπ.

At the ℓth iteration, the sensor configuration C∗
ℓ provides

Nm :=
∑Ns

k=1 Mk measurements. The training point set
X = {x11, . . . ,xkm, . . . ,xNsMNs

} represents the loca-
tions where these measurements are taken and the test
points X∗ are the grid points. The associated measure-
ment error vector is σ := (σ2

1 , . . . , σ
2
km, . . . , σ2

NsMNs
).

The hyperparameters θ = (θc,Θr) are calculated by
minimizing the negative marginal log-likelihood,

log p(z|X,θ) = − 1
2

(
z⊺K−1

z z + log |Kz|+Nm log 2π
)
,

where Kz := K + diag(σ). From the joint distribution
of observations z and the mean threat f , we can obtain
the threat field estimate and error covariance matrix as:

f ℓ = K⊺
∗K

−1
z z, P ℓ = K∗∗ −K⊺

∗K
−1
z K∗. (1)

The aforementioned kernel is a local approximation ker-
nel because it has the property of regressing to the func-
tion mean κ(x,x′) → 0 as ∥x − x′∥ → ∞. This prop-
erty enforces high uncertainty and an “optimistic” mean
threat estimate (i.e., approaching zero) in regions far
away from training data locations.

3 Coupled Sensor Configuration and Planning

We propose an iterative solution to Problem 2, as de-
scribed in Fig. 2 and illustrated in Fig. 3. At each itera-
tion, a sensor configuration is found and new measure-
ments are obtained. Next, the threat field estimate is
updated using the new measurements. Finally, the path
plan is updated according to the updated threat field
estimate and the iterations repeat. The iterations stop
when the planned path cost variance is reduced below a
user-specified threshold ε. We call this method coupled
sensor configuration and path-planning (CSCP) because
the sensor configuration is dependent on the planned
path. Note that this coupling is a property of the pro-
posed solution, not of Problem 2 itself. The premise of
this work is that, whereas traditional solutions to Prob-
lem 2 decouple the sensor configuration and planning
subproblems, the proposed coupled method can reach
near-optimal solutions more efficiently.

The algorithm initializes with an optimistic field repre-
sentation and high uncertainty by setting f0 = 0 and
P 0 = χI, where χ is a large arbitrary number. At any
iteration ℓ ∈ N, including initialization with ℓ = 0, an
optimal path π∗

ℓ of minimum expected cost is found us-
ing Dijkstra’s algorithm.

3.1 Sensor Configuration

The proposed sensor configuration method relies on the
notion of a region of interest (ROI) “nearby” the planned
path π∗

ℓ . The ROI Rℓ ∈ V at any iteration ℓ, is a set
of vertices in graph G, which indicates a subregion of
the workspace that the FoV of each sensor must overlap.
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1: Initialize: ℓ := 0, f0 := 0,P 0 := χI
2: π∗

0 := argminJ 0(π)
3: while Varℓ(π

∗
ℓ ) > ε do

4: Find optimal sensor configuration C∗
ℓ

5: Record new measurements z
6: Increment iteration counter ℓ := ℓ+ 1
7: Update f ℓ and P ℓ per §2.2
8: Find π∗

ℓ := argminJ ℓ(π)
9: end while

Fig. 2. Proposed iterative CSCP solution for Problem 2.

Similar to the path incidence vector, we define an ROI
incidence vector r ∈ {0, 1}Ng .

We consider a posterior sampling-based ROI by taking
a fixed number of random samples Na ∈ N, from the
path incidence vector space {0, 1}Ng . For each sample
gi for i ∈ {Na}., we construct a posterior estimated

mean threat as f̂
(i)

:= f ℓ +Qgi, where Q is such that

QQ⊺ = P ℓ. Next, we find a path π
(i)
a = ∆p v⊺

π f̂
(i)

ℓ ,

where π
(i)
a is the ith set of alternate estimated optimal

path-plan vertices, and then define the ROI as Rℓ =

πa := π∗
ℓ ∪ {∪i∈Na

π
(i)
a }. Informally, this ROI covers a

set of alternative paths that may minimize the expected
cost in the next iteration. If the grid resolution is high,
i.e., Ng is large, then the posterior sampling-based ROI
can have a large cardinality. To mitigate this problem,
we may define a union set I ⊂ V of vertices covered by
the FoVs of sensors placed in previous iterations. The
ROI definition is updated as Rℓ = Rℓ ∩ {V \I}, which
restricts the ROI to “new” vertices that have not previ-
ously been observed by sensors.

We formalize the coupling of sensor configuration and
path-planning by introducing the task-driven informa-
tion gain (TDIG)metric τ,which depends on the ROIRℓ

as well as the sensor configuration Cℓ. The TDIG quan-
tifies reduction in threat field estimation uncertainty in
the ROI. We may find a sensor configuration C∗

ℓ by max-
imizing τ(Cℓ,Rℓ), where

τ(Cℓ,Rℓ) := r⊺ℓ (P ℓ − P ℓ+1)rℓ. (2)

The dependence on sensor configuration Cℓ is through
the posterior covariance P ℓ+1. To estimate P ℓ+1, we as-
sume that spatial correlations remain fixed or assume
spatial independence. The assumption is justified be-
cause spatial points within a local neighborhood do not
contribute to the maximization of TDIG. We approx-
imate P̂ ℓ+1 = diag(q) where q is such that q◦(−1) =

diag(P ℓ)
−1 +

∑Ns

k=1(νk/σ
2
k). Recall from §2.1 that νk

and σ2
k are both sensor configuration parameters. Sensor

configuration is achieved by numerical maximization of
the TDIG over Cℓ = {s1, ϱ1, s2, . . . , ϱNs

}. However, the
TDIG does not have convenient properties to establish
guarantees on the convergence and/or optimality of nu-

Fig. 3. Illustration of the CSCP iterative method.

merical optimization. To resolve this problem, we define
a surrogate function and show it is submodular.

3.2 Self-Adaptive Mutual Information

The proposed TDIG surrogate, which we call self-
adaptive mutual information (SAMI), is defined as the
difference between a reward term and a penalty term
as discussed next. The TDIG and SAMI are calculated
at each iteration ℓ ∈ N. For clarity in notation we
drop the iteration number subscript for various quan-
tities in this subsection, e.g., we write P instead of
P ℓ. We denote P [R,R] := P [i, j] ∀ i, j ∈ R and by
P [R, j] := P [i, j] ∀ i ∈ R and for any j ∈ V . An ROI
R excluding a point i ∈ V is denoted R\i. We calculate

the entropy of a vertex i ∈ V as h(i) := 1
2 ln(2πeP [i, i]).

We rely on the conditional entropy of some point i given
the set R which involves matrix inversion. To ease the
computational burden, we note that the computation of
conditional entropy h(i|R\i) can partially be computed
as a one-time batch operation and partially computed in
parallel for efficiency. For any i /∈ R, we may perform the
following vectorized conditional entropy h(·|R\i) calcu-
lation which is a one-time batch operation:

h(·|R\i) =
1
2 ln((2πe)diag(P − P [·,R]P [R,R]−1P [R, ·])).

When i ∈ R, we can compute the following conditional
entropy equation for any i ∈ V in parallel batches:

h(i|R\i) =
1
2 ln((2πe)(P [i, i]

− P [R\i, i]
⊺P [R\i,R\i]

−1P [R\i, i])).
(3)

The mutual information I for the ROIR at vertex i ∈ V
is then calculated as I(R\i; i) := h(i)−h(i|R\i). Finally,
we define the SAMI reward γ for i ∈ V with R and its
complement Rc := V \R, as:

γ(i) := (1− α)I(R\i; i) + αI(Rc
\i; i). (4)

The adaptation parameter α is formulated as the re-
lationship between the average mutual information be-
tween the workspace vertices and the ROI Ī(R\i; i) and
the average mutual information between the workspace
vertices and the ROI complement Ī(Rc

\i; i):

α := Ī(R\i; i)/
(
Ī(R\i; i) + Ī(Rc

\i; i)
)
. (5)
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Informally, α compares the estimation error within the
current ROI compared to the overall estimation error.
A small α indicates that the iterative solution is nearing
convergence and sensor configuration should exploit the
current ROI. We define the vector of rewards for each
i ∈ V as γ := (γ(1), γ(2), . . . , γ(Ng)) ∈ RNg×1. The
information gain for a configuration Cℓ is defined as

Γ(Cℓ) := ν⊺γ. (6)

Next, we define a SAMI penalty function as the entropy
of the measurement noise for a sensor configuration:

Υ(Cℓ) := − 1
2

∑
i∈F

(
1
2 ln(2πe)− ln

∑
k∈Ns

νk

σ2
k

[F]
)
. (7)

The summation over F ensures that nonzero elements
are removed prior to computing the elementwise entropy.
Finally, the SAMI is written as the sum of the informa-
tion gain and penalty: S(Cℓ) = Γ(Cℓ) + Υ(Cℓ).

3.3 Optimization of Sensor Configuration

To find an optimal sensor configuration we maximize
either the TDIG or SAMI objective functions subject
to spatial constraints, e.g., workspace limits on sensor
placement and FoV radius bounds. The decision vari-
ables for optimization are {s1, ϱ1, s2, . . . , ϱNs

}, i.e., a to-
tal of 3Ns scalar variables in a 2D workspace. If the num-
ber of sensors Ns is moderate or high, this optimization
problem is high-dimensional.

In previous works we discussed different heuristic meth-
ods to mitigate the high dimensionality of the problem.
We first applied an evolutionary computation method
for global optimization (St. Laurent and Cowlagi,
2021a), and later proposed a depth-first (DF) method
(St. Laurent and Cowlagi, 2021c) and a breadth-first
(BF) (St. Laurent and Cowlagi, 2021b) method for
TDIG maximization. Briefly, the DF method makes
use of the set of identified vertices in the acting agent’s
workspace. The approach first targets unidentified re-
gions and prunes those which have been identified in a
prior iteration. Once the region of interest is fully iden-
tified, sensor configurations are batched until either the
estimated TDIG is reduced below ε. The BF approach
weighs the least frequent regions of sampled path plans
proportional to the inverse frequency of visits. These
methods pursue joint optimization, i.e., finding all sen-
sor configurations simultaneously.

Another method to mitigate the high dimensionality is
sequential optimization, i.e., finding the optimal con-
figuration for one sensor at a time. The main result of
this paper is that the proposed SAMI surrogate function
is submodular (see Prop. 7). Therefore, sequential opti-
mization provides a near-optimal solution (see Prop. 8).

3.4 Theoretical Analysis

Proposition 3 The CSCP algorithm terminates in a
finite number of iterations L ∈ N for Ns > 0.

Proof. At any iteration ℓ ∈ N, by Line 4 of Algo-
rithm 2, each sensor is configured such that its FoV in-
tersects with the ROI Rℓ. By any definition of the ROI
in §3.1, π∗

ℓ ⊂ R and therefore, at least one measure-
ment is taken on at least one vertex of path π∗

ℓ . There-
fore, Varℓ+1(π

∗
ℓ ) < Varℓ(π

∗
ℓ ), i.e., the path cost vari-

ance monotonically decreases at each iteration. Because
the path cost variance is also lower bounded by zero,
infℓ{Varℓ(π∗

ℓ )} = 0, and it follows that there exists a fi-
nite L ∈ N such that VarL(π

∗
L) < ε, which is when the

algorithm terminates. ✷

Corollary 4 The CSCP algorithm solves Problem 2.

Proof. Upon termination the CSCP algorithm returns
a path π∗

L of minimum expected cost that satisfies
VarL(π

∗
L) = EL[(J (π∗

L) − E[J (π∗
L)])

2] < ε per Line 3,
thereby solving Problem 2. ✷

Corollary 5 The path π∗
L is near-optimal in the that

P
[
|J (π∗

L)− EL[J (π∗
L)]| ⩽ 3

√
ε
]
⩾ 0.9973.

Proof. Due to the GPR-based estimation and linearity
ofJ , the path cost is normally distributed, and the result
follows immediately from the standard normal table. ✷

Due to the linearity of J and the fact that the path
cost is normally distributed, a stronger statement about
the near-optimality of π∗

L follows immediately from the
standard normal table.

Corollary 6 The path π∗
L is near-optimal in that

P
[
|EL[J (π∗

L)]− J (π∗)| ⩽ 3
√
ε
]
⩾ 0.9973,

where π∗ is the true optimal path.

Proposition 7 The SAMI, S, is submodular.

Proof. By (6), the gain Γ is proportional to the number
of vertices lying within the union F := ∪k∈{Ns}Fk of
the sensor FoVs. Therefore, Γ is a weighted coverage
function and consequently submodular.

For the SAMI penalty Υ, first consider two sensors i, j ∈
Ns with disjoint FoVs, i.e., Fi ∩ Fj = ∅. Then, per (7),
Υ(Fi) + Υ(Fj) = Υ(Fi ∪ Fj). Next, consider sensors
i, j ∈ Ns with overlapping FoVs and note that Υ(Fi) +
Υ(Fj) = Υ({Fi ∪ Fj}\{Fi ∩ Fj}) + 2Υ(Fi ∩ Fj). Let
Υ(Fm) ⩽ Υ(Fi ∩ Fj) be the reduced cost function due
to the weighted update from intersecting sensor covers
in (7). Therefore Υ(Fi ∪ Fj) + Υ(Fi ∩ Fj) = Υ({Fi ∪
Fj}\{Fi ∩ Fj}) + Υ(Fi ∩ Fj) + Υ(Fm). Therefore, Υ
exhibits the following condition for submodularity:

Υ(Fi) + Υ(Fj) ⩾ Υ(Fi ∪ Fj) + Υ(Fi ∩ Fj).

5



(a) ℓ = 1 (b) ℓ = 3 (c) ℓ = 5 (d) ℓ = 7

Fig. 4. Threat estimate (mean values) at various intermediate iterations.

Because the SAMI S is the sum of Γ and Υ that are each
submodular, it follows that S is submodular. ✷

3.4.1 Computational Complexity

Jointly optimizing all sensors and their parameters with
the TDIGmetric has a time complexity ofO(N2

g ) during
each step in the optimization process. By comparison,
the SAMI metric has a time complexity of O(Ng) for
computing the information gain and penalty functions.

The TDIG requires joint optimization of NdNs param-
eters, where Nd = 3 is the dimensionality of each sen-
sor configuration. This can make finding a near-globally-
optimal solution difficult. By comparison, due to its sub-
modularity SAMI optimization can be performed se-
quentially while achieving near-optimal results per the
following result, for which the reader interested is re-
ferred to Krause et al. (2008b) for a proof.

Proposition 8 Sequential optimization of submodular
functions in general, and S in particular, is guaranteed
to be at least (1− 1/e) the optimal value.

4 Results & Discussion

In this section, we provide computational results of im-
plementing the CSCP iterative solution, specifically: (1)
an illustrative example, (2) results showing the benefits
of CSCP via numerical optimization of the TDIG, over
traditional sensor configuration methods and (3) results
showing that the SAMI is an appropriate and efficient
surrogate for the TDIG.

Illustrative Example: Consider the problem of finding a
minimum threat path, where the true threat field (un-
known to the planner) is as shown in Fig. 1(a). Fig. 4
shows the evolution of the estimate mean f over several
CSCP iterations with a termination threshold of ε = 1.0.
Fig. 5 (a) shows the threat estimate mean at the last iter-
ation, with the resultant path (indicated in yellow) over-
laid the true optimal path (in red). Fig. 5 (b) indicates
the estimation error covariance P at the final iteration.

The candidate optimal path (yellow) is spatially close
to the true optimal path, and is found to be 0.02% sub-
optimal. TDIG BF optimization yielded a solution in 9

(a) fL and π∗
L (b) PL and C∗

L

Fig. 5. Final threat estimate and error covariance along with
estimated path-plan and sensor FoVs.

iterations of CSCP. If the termination threshold is made
more stringent to ε = 0.01, the TDIG BF optimization
took 15 iterations. As we show next, any of the three
task-driven strategies outperforms existing traditional
approaches by orders of magnitude.

CSCP vs. Traditional Sensor Configuration: To numer-
ically assess the performance of the CSCP approach,
we established a study that randomly generated, for
each experiment, 100 threat fields of the form c(x) =∑Np

n=1 bnϕn(x). Here Np represents the number of radial
basis functions ϕn the support of which together covers
the workspaceW, which is set to be a square region. The
threat intensity bn > 0 is a randomly chosen coefficient.
We fixed the number of threat parameters to beNp = 50.
The sensor FoV radii were constrained to ϱmin = 0.01 km
and ϱmax = 0.5 km, respectively, and the the sensor noise

was modeled as σ2
k = 1

2 log(1+expπϱ
2
k)−0.1505, which is

monotonically increasing for ϱk ⩾ 0 per Assumption 1.
The termination threshold was fixed to ε = 0.01.

We performed numerical experiments (100 trials each)
with all combinations of the following problem data:
(A) Area of workspace W = 9 km2 or 25 km2, (B)
Number of sensors Ns = 3, 5, or 9, and (C) Number of
grid points Ng = 225 or 400. In each trial of each exper-
iment, we compared the execution time of the following
TDIGmaximization methods in CSCP: (1) direct TDIG
maximization along the path-plan, (2) the BF method
with three different values of the sampling parameter
Na = 25, 50, or 100, and (3) the DF method. For com-
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Fig. 6. Comparison of CSCP methods vs. traditional Info–
Max method to find paths with cost variance below ε. Sam-
ple result for |W| = 25 km2, and Ng = 400.

parison, we also developed a traditional (non-CSCP)
method based on maximization of mutual informa-
tion (Info-Max), as described by Krause et al. (2008a).
Because the traditional MI-maximization literature ad-
dresses only sensor placement, i.e., neglects sensor FoV,
for the Info-Max computations we fixed the sensor FoV
to 0.1 km. Per Cor. 6, by either approach the resultant
path costs are, with high probability, within 3

√
ε of the

minimum.

Figure 6 shows a sample results of these experiments,
specifically, the average number of iterations required for
the path cost variance to reduce below ε. Notice that the
CSCP methods easily outperform the traditional Info-
Max approach in all experiments. The advantages of the
CSCP methods are particularly evident when the num-
ber of sensors is small. For the case shown in Fig. 6, the
Info-Max method needs more than thrice as many it-
erations as the standard CSCP method to converge to
a path of similar cost. Because Ns = 3, the number of
measurements required for the Info-Max method is an
order of magnitude larger than CSCP.

TDIG vs. SAMI Maximization: We demonstrate next
that maximizing SAMI is computationally more effi-
cient compared to TDIG. To this end, we performed
a series of numerical experiments of 100 trials each
with grid resolutions Ng ∈ {112, 212, 312, 412, 512} and
Ns ∈ {1, 3, 5, 7, 9} sensors. The termination threshold
was fixed to ε = 0.1. In each experiment, the ratio of
the maximum sensor FoV ϱmax to the workspace area
W was varied. The sampling-based ROI parameter was
fixed at Na = 10. The sensor FoVs were constrained to
ϱmin = 0.05 km and ϱmax = 0.5 km.

Figure 7 shows that, in these experiments, the SAMI
maximization enables the overall CSCP approach to con-
verge in comparable or fewer iterations compared to
TDIG maximization. Figure 8 shows the comparison of
computation times per iteration. Note that sequential
SAMI maximization is always faster and it is over an
order of magnitude faster when Ns is large.

Finally, we conducted a numerical experiment to study
the effects of the SAMI parameter α.We studied sequen-
tial SAMI optimization for fixed values of the parame-
ter α ∈ {0, .25, .5, .75, 1} against the adaptive value as

Fig. 7. Comparison of SAMI vs. TDIG maximization for
number of CSCP iterations to convergence.

Fig. 8. Average computation time per iteration (in seconds)
for TDIG and SAMI maximization with respect to sensor
count.

Fig. 9. Average iterations to converge for various fixed α
values and self-adaptive α with sequential SAMI.

formulated in (5). An α = 1 corresponds to exploration
greedy optimization whereas α = 0 corresponds to ex-
ploitation greedy optimization. Figure 9 shows the per-
formance of the various (manually chosen) values of α
in comparison to the self-adaptive method. Performance
improves as we move from exploration to exploitation,
but the self-adaptive method blends exploration and ex-
ploitation and performs the best.

The reader interested may find further detailed results
in the first author’s dissertation (St. Laurent, 2022).
A software implementation of CSCP is available here:
https://github.com/Chase1325/CSCP_SAMI
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5 Conclusions

We presented an iterative coupled sensor configuration
and path-planning method to minimize the number of
sensor measurements required to find a near-optimal
path. The task-driven information gain (TDIG) met-
ric and its submodular surrogate self-adaptive mutual
information (SAMI) were introduced. Due to submod-
ularity, sequential maximization of the SAMI leads to
near-optimal sensor configurations. The CSCP method
was proven to provide near-optimal path plans in a fi-
nite number of iterations. Through numerical simula-
tion experiments, we first demonstrated that sensor con-
figuration via TDIG maximization outperforms tradi-
tionally decoupled information maximization. Next, we
showed that SAMI maximization is significantly faster
compared to TDIG maximization. Finally, we demon-
strated that the self-adaptive property of SAMI out-
performs any manual choice of the parameter α, which
quantifies an exploration versus exploitation trade-off.
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