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HETEROGENEOUS COEFFICIENTS, CONTROL VARIABLES,

AND IDENTIFICATION OF MULTIPLE TREATMENT EFFECTS

WHITNEY K. NEWEY† AND SAMI STOULI§

Abstract. Multidimensional heterogeneity and endogeneity are important fea-

tures of models with multiple treatments. We consider a heterogeneous coefficients

model where the outcome is a linear combination of dummy treatment variables,

with each variable representing a different kind of treatment. We use control

variables to give necessary and sufficient conditions for identification of average

treatment effects. With mutually exclusive treatments we find that, provided the

heterogeneous coefficients are mean independent from treatments given the con-

trols, a simple identification condition is that the generalized propensity scores

(Imbens, 2000) be bounded away from zero and that their sum be bounded away

from one, with probability one. Our analysis extends to distributional and quan-

tile treatment effects, as well as corresponding treatment effects on the treated.

These results generalize the classical identification result of Rosenbaum and Rubin

(1983) for binary treatments.

Keywords: Treatment effect; Multiple treatments; Heterogeneous coefficients;

Control variable; Identification; Conditional nonsingularity; Propensity score.

1. Introduction

Models that allow for multiple treatments are important for program evaluation

and the estimation of treatment effects (Cattaneo, 2010; Imai and van Dyk, 2004;

Imbens, 2000; Graham and Pinto, 2018; Lechner, 2001). A general class is hetero-

geneous coefficients models where the outcome is a linear combination of dummy

treatment variables and unobserved heterogeneity. These models allow for multi-

ple treatment regimes, with each dummy variable representing a different kind of

treatment. These models also feature multidimensional heterogeneity, with the di-

mension of unobserved heterogeneity being determined by the number of treatment

regimes.

† Department of Economics, MIT, wnewey@mit.edu.
§ Department of Economics, University of Bristol, s.stouli@bristol.ac.uk.
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Endogeneity is often a problem in these models because we are interested in the effect

of treatment variables on an outcome, and the treatment variables are correlated

with heterogeneity. Control variables provide an important means of controlling for

endogeneity with multidimensional heterogeneity. For treatment effects, a control

variable is an observed variable that makes heterogeneity and treatment variables

independent when it is conditioned on (Rosenbaum and Rubin, 1983).

We use control variables to give necessary and sufficient conditions for identification

of average treatment effects based on conditional nonsingularity of the second mo-

ment matrix of the vector of dummy treatment variables given the controls. This

first main result is familiar in the binary treatment case, but its generalization to

multiple treatments appears to be new. With mutually exclusive treatments we find

that, provided the heterogeneous coefficients are mean independent from treatments

given the controls, a simple identification condition is that the generalized propensity

scores (Imbens, 2000) be bounded away from zero and that their sum be bounded

away from one, with probability one. This condition is the same as common support,

that the support of treatment variables conditional on the controls is equal to the

marginal support of the treatment variables. Thus our second main contribution is

to show that, with mutually exclusive treatments, conditional mean independence

and common support are jointly sufficient for identification, a substantial weakening

of the standard assumption that conditional independence hold jointly with com-

mon support (e.g., Frölich, 2004). We also extend our analysis to distributional and

quantile treatment effects, as well as corresponding treatment effects on the treated.

These results provide an important generalization of Rosenbaum and Rubin (1983)’s

classical identification result for binary treatments.

2. Modeling of Treatment Effects

2.1. Modeling framework. Let Y denote an outcome variable of interest, and D a

vector of dummy variables D(t), t ∈ T ≡ {1, . . . , T}, taking value one if treatment t

occurs and zero otherwise, and β a structural disturbance vector of finite dimension.

We consider a heterogeneous coefficients model of the form

(1) Y = p(D)Tβ, p(D) = {1, D(1), . . . , D(T )}T.

This model is linear in the treatment dummy variables, with coefficients β that are

random and need not be independent of D.
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When the potential outcome framework of Rubin (1974) is extended to mutually

exclusive treatment regimes in the definition of D, linearity in model (1) arises

naturally. Denote the vector of potential outcomes by {Y (1), . . . , Y (T )}T, and the

potential outcome in the absence of treatment by Y (0). The observed outcome Y

and the vector of potential outcomes are related by

Y = Y (0) +
T∑

t=1

D(t){Y (t) − Y (0)},

which is of the form (1) upon setting β = (β0, β1, . . . , βT )T with β0 ≡ Y (0) and

βt ≡ Y (t) − Y (0), t ∈ T .

Mutually exclusive treatment regimes are important in a wide variety of nonexperi-

mental settings, such as program or policy evaluation with a multivalued treatment

(e.g., Ao et al., 2021; Lechner, 2002; Uysal, 2015). Consider for example evaluation

of active labor market programs with a treatment taking on T ≥ 2 values, according

to different types or levels of program participation. Central objects of interest are

average effects on earnings for each treatment value,

E(βt) = E{Y (t) − Y (0)}, t ∈ T .

Allowing for multivalued treatments thus permits to capture different average effects

across program types or levels, going beyond the sole effect of program participation

considered in binary treatment analysis. Another important example is policy or

medical treatment evaluation with non-mutually exclusive policies or treatments,

implemented both separately and jointly. In that case, a distinct treatment dummy

variable is assigned to each policy or treatment and to each implemented policy

mix (Becker and Egger, 2013; Tortú et al., 2020) or combined therapy (Feng et al.,

2012; Nian et al., 2019). Resulting treatment regimes in the definition of D are then

mutually exclusive, by construction.

A main motivation for defining the components of D according to mutually exclusive

treatment regimes is the general validity of model (1) in that case. In contrast, when

treatment regimes are non-mutually exclusive, model (1) restricts the average effect

of any combination C of K ≤ T treatments t1, . . . , tK ∈ T to be additive in the

average effects of each component of C, i.e., the average treatment effect of C is

(2)
∑

t∈C

E(βt) =
∑

t∈C

E{Y (t) − Y (0)}, C = {t1, . . . , tK}.
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In addition to average effects of each treatment, model (1) is then able to capture av-

erage effects of potentially complex interventions by restricting the form the average

effects of combined treatments can take. The additivity restriction has been used

in evaluation of randomized medical experiments implementing combinations of a

large number of treatments (see Petropoulou et al., 2021, for a literature review),

but does not appear to be common in nonexperimental settings.

In general, heterogeneous coefficients β need not be independent of D because of

confounding factors denoted X. Here we assume that these factors are observable

and that there is sufficient independent variation in D from β once conditioning

on X. In the empirical examples above, X includes a variety of individual char-

acteristics of program participants, such as age, gender, measures of cognitive and

non-cognitive skills, as well as socio-economic characteristics. Formally, we assume

that the vector β is mean independent of the endogenous treatments D, conditional

on an observable control variable X.

Assumption 1. For the model in (1), there exists a control variable X such that

E(β | D, X) = E(β | X).

The Rosenbaum and Rubin (1983) treatment effects model is included as a special

case where D ∈ {0, 1} is a treatment dummy variable that is equal to one if treatment

occurs and equals zero without treatment, and

p(D) = (1, D)T.

In this case β = (β0, β1)
T is two dimensional with β0 giving the outcome without

treatment, and β1 being the treatment effect. Here the control variables in X would

be observable variables such that Assumption 1 holds, i.e., the coefficients (β0, β1) are

mean independent of treatment conditional on controls; this is the unconfoundedness

assumption of Rosenbaum and Rubin (1983).

2.2. The average structural function. A central object of interest in model (1)

is the average structural function given by µ(D) ≡ p(D)TE(β); see Chamberlain

(1984), Blundell and Powell (2003) and Wooldridge (2005). This function is also

referred to as the dose-response function in the statistics literature (e.g., Imbens,

2000). When D ∈ {0, 1} is a dummy variable for treatment, µ(0) gives the average

outcome if every unit remained untreated and µ(1) the average outcome if every
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unit were treated, with µ(1) − µ(0) being the average treatment effect. In general,

the average effect of some treatment t ∈ T is

µ(et) − µ(0T ),

with et = (0, . . . , 0, 1, 0, . . . , 0)T defined as a T -vector with all components equal

to zero, except the tth, which is one, and 0T a T -vector of zeros. Pairwise average

treatment effect comparisons are formed as µ(et)−µ(es), for any s, t ∈ T , s 6= t. For

non-mutually exclusive treatment regimes, the average effect of some combination

C of treatments t1, . . . , tK ∈ T , K ≤ T , is formed as
∑

s∈C {µ(es) − µ(0T )}, C =

{t1, . . . , tK}, and the corresponding relative average effect with respect to some

treatment t ∈ T as
∑

s∈C {µ(es) − µ(et)}.

The conditional mean independence assumption and the form of the structural func-

tion p(D)Tβ in (1) together imply that the control regression function of Y given

(D, X), E(Y | D, X), is a linear combination of the treatment variables:

(3)

E (Y |D, X) = p(D)TE (β|D, X) = p(D)TE (β|X) = p(D)Tq0(X), q0(X) ≡ E (β|X) .

The average structural function can thus be expressed as a known linear combination

of E{q0(X)} from equation (3). By iterated expectations,

(4) p(D)TE {q0(X)} = p(D)TE {E (β | X)} = µ(D).

We use the varying coefficient structure of the control regression function (3) and the

implied linear form of µ(D) to give conditions that are necessary as well as sufficient

for identification. For non-mutually exclusive treatment regimes, Appendix A gives

an example of a model for which the implied average structural function is of the

linear form (4) while the average effect of some combination of treatments takes the

additive form (2).

3. Identification Analysis

3.1. Main results. Under the maintained Assumption 1, a sufficient condition for

identification of the average structural function is nonsingularity of the second mo-

ment matrix of the treatment dummies given the controls,

E
{
p(D)p(D)T | X

}
,
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with probability one. Under the additional assumption that E{p(D)p(D)T} is non-

singular, this condition is also necessary.

Theorem 1 states our first main result. The proofs of all formal results are given in

Appendix B.

Theorem 1. Suppose that E(‖β‖2) < ∞, E{p(D)p(D)T} is nonsingular, and As-

sumption 1 holds. Then: E{p(D)p(D)T | X} is nonsingular with probability one if,

and only if, µ(D) is identified.

When D ∈ {0, 1} and p(D) = (1, D)T, the identification condition becomes the

standard condition for the treatment effect model

Y = β0 + β1D, E (β | D, X) = E (β | X) , β ≡ (β0, β1)
T.

The identification condition is that the conditional second moment matrix of (1, D)T

given X is nonsingular with probability one, which is the same as

(5) var(D | X) = P (X){1 − P (X)} > 0, P (X) ≡ Pr(D = 1 | X),

with probability one, where P (X) is the propensity score. Here we can see that the

identification condition is the same as 0 < P (X) < 1 with probability one, which is

the standard identification condition.

Because p(D) includes an intercept, the identification condition is the same as non-

singularity of the variance matrix var(D | X) with probability one. This result

generalizes (5).

Theorem 2. E{p(D)p(D)T | X} is nonsingular with probability one if, and only if,

the variance matrix var(D | X) is nonsingular with probability one.

Considerable simplification occurs with mutually exclusive treatment regimes,

which allows for the formulation of an equivalent condition for nonsingularity of

E{p(D)p(D)T | X} solely in terms of the generalized propensity scores (Imbens,

2000). This result generalizes the standard identification condition for binary D.

Theorem 3. With mutually exclusive treatment regimes, E{p(D)p(D)T | X} is

nonsingular with probability one if, and only if, Pr{D(t) = 1 | X} > 0 for each

t ∈ T and

ΣT
s=1 Pr{D(s) = 1 | X} < 1,

with probability one.

6



X = x

β D = 0T D = e1
. . . D = eT

Y

Figure 1. A directed acyclic graph representation of lack of iden-
tification caused by conditional singularity: treatments are mutually
exclusive and treatment 1 occurs with zero probability given X = x,
and hence the corresponding treatment effect is not identified.

For mutually exclusive treatment regimes, the two standard assumptions for identi-

fication are common support, i.e., Pr(D = 0T | X) > 0 and Pr{D(t) = 1 | X} > 0

with probability one for each t ∈ T , and conditional independence, i.e.,

(6) Y (t) ⊥ D | X, (t = 0, 1, . . . , T );

cf., for instance, Frölich (2004, pp. 190–192) for a review. By conditional proba-

bilities adding up to unity, Theorem 3 shows that common support is equivalent

to conditional nonsingularity, and hence is necessary as well as sufficient for iden-

tification under Assumption 1. It follows that, provided common support holds,

identification only requires conditional mean independence, and assumption (6) is

not necessary.

For non-mutually exclusive treatment regimes, conditional independence assump-

tion (6) and common support are not jointly necessary either. In that case, the

marginal support D of D has cardinality T̃ > T . Suppose there exist both a subset

D̃ ⊂ D of cardinality T such that E{1(D ∈ D̃)p(D)p(D)T | X} is nonsingular

with probability one, and a value d ∈ D\D̃ such that Pr(D = d | X) = 0 with

positive probability. Then common support does not hold but E{p(D)p(D)T | X}

is nonsingular with probability one, and hence µ(D) is identified under Assumption

1. Therefore, Theorems 1 and 3 together establish that conditional independence

assumption (6) and common support are not jointly necessary for identification, for

either type of treatment regime.
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Theorem 3 also clarifies the role played by conditional nonsingularity in identifica-

tion. For mutually exclusive treatment regimes Pr{D(t) = 1 | X} = Pr(D = et | X),

t ∈ T , and hence conditional singularity on a set with positive probability means

that at least one of the events {D = 0T },{D = e1},. . .,{D = eT }, has probability

zero conditional on X on that set. Therefore, in this instance, failure of identi-

fication occurs because common support does not hold. Using a directed acyclic

graph (Pearl, 2009), Figure 1 illustrates this failure with the event {D = e1} having

probability zero given X = x, for almost every x in a set with positive probability.

The absence of an arrow between this event and Y reflects failure of identification.

3.2. Extensions. Our identification results are useful for the analysis of other in-

teresting objects. When Assumption 1 is strengthened to conditional independence

(7) β ⊥ D | X,

conditional nonsingularity is also sufficient for identification of distributional and

quantile treatment effects. Define the distribution structural function G(y, d) and,

when Y is continuous, the quantile structural function Q(τ, d) by

G(y, d) ≡ Pr{p(d)Tβ ≤ y}, Q(τ, d) ≡ τ th quantile of p(d)Tβ,

where d is fixed in these expressions. Distributional and quantile treatment effects

are formed as G(y, et)−G(y, 0T ) and Q(τ, et)−Q(τ, 0T ), respectively, for each t ∈ T ,

and pairwise distributional and quantile treatment comparisons as G(y, et)−G(y, es)

and Q(τ, et) − Q(τ, es), respectively, for any s, t ∈ T , s 6= t.

With mutually exclusive treatment regimes, by Theorem 3 the conditional support

of D given X coincides with the marginal support of D, and hence the conditional

support of X given D coincides with the marginal support of X, with probability

one. Therefore, by Imbens and Newey (2009, p. 1489) conditional nonsingularity

and conditional independence property (7) together imply identification of G(Y, D)

and, when Y is continuous, also of Q(τ, D), from

G(Y, D) =

ˆ

FY |DX(Y | D, X = x)FX(dx), Q(τ, D) = G−1(τ, D),

where FY |DX(Y | D, X) and FX(X) are the cumulative distribution functions of Y

given (D, X) and of X, respectively, and τ 7→ G−1(τ, D) denotes the inverse function

of y 7→ G(y, D).
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With non-mutually exclusive treatment regimes, conditional nonsingularity need

not coincide with common support. Identification without common support can

nonetheless be achieved under additional restrictions imposed on model (1). When Y

is continuous and letting Qβt|DX(u | D, X) denote the conditional quantile function

of βt given (D, X), u ∈ (0, 1), an example of sufficient model restrictions is that

unobserved heterogeneity components βt satisfy conditional independence property

(7) as well as the additional scalar heterogeneity restriction

(8) βt = Qβt|DX(U | D, X), U | D, X ∼ Un(0, 1), (t = 0, 1, . . . , T ),

where the unobservable U is the same for each βt. The control quantile regression

function of Y given (D, X) then takes the linear form

QY |DX(U | D, X) = p(D)TqU (X),

qU (X) ≡ {Qβ0|X(U | X), Qβ1|X(U | X), . . . , QβT |X(U | X)}T,

by strict monotonicity of u 7→ Qβ0|DX(u | D, X) +
∑T

t=1 D(t)Qβt|DX(u | D, X).

Conditional nonsingularity implies identification of qU(X), and hence of QY |DX(U |

D, X). Since the structural functions G(Y, D) and Q(τ, D) are known functionals

of FY |DX(Y | D, X), the relation

FY |DX(Y | D, X) =

ˆ 1

0

1{QY |DX(u | D, X) ≤ Y }du

implies identification of distributional and quantile treatment effects

(Newey and Stouli, 2021).

Theorem 4 summarizes the above discussion of the role of conditional nonsingularity

in identification of distributional and quantile treatment effects.

Theorem 4. Suppose that conditional independence property (7) holds and

E{p(D)p(D)T | X} is nonsingular with probability one. The following hold: (i)

with mutually exclusive treatment regimes, G(Y, D) and, when Y is continuous,

also Q(τ, D), τ ∈ (0, 1), are identified; (ii) with non-mutually exclusive treatment

regimes and continuous outcome Y , if the scalar heterogeneity restriction (8) holds

and supu∈(0,1) E{||qu(X)||2} < ∞, then G(Y, D) and Q(τ, D), τ ∈ (0, 1), are identi-

fied.

Other objects of interest include treatment effects on the treated. For some specified

treatment s ∈ T , average effects are formed using the average structural function
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for the treated, µ(D, es) ≡ p(D)TE(β | D = es). Distributional and, when Y is

continuous, quantile treatment effects are formed using the distribution and quantile

structural functions for the treated,

G(y, d, es) ≡ Pr{p(d)Tβ ≤ y | D = es},

Q(τ, d, es) ≡ τ th quantile of p(d)Tβ given D = es,

respectively, where d is fixed in these expressions. These structural objects are useful

for decomposition and counterfactual analysis (e.g., Ao et al., 2021). The average

effect of treatment t on units treated with treatment s is µ(et, es) − µ(0T , es), and

distributional and quantile effects of treatment t on units treated with treatment s

are G(y, et, es) − G(y, 0T , es) and Q(τ, et, es) − Q(τ, 0T , es), respectively.

Let X (s) denote the conditional support of X given D = es. The average structural

function for the treated can be expressed as a linear combination of E{q0(X) | D =

es}. By conditional mean independence and iterated expectations,

p(D)TE{q0(X) | D = es} = p(D)TE{E(β | X, D = es) | D = es} = µ(D, es),

and hence µ(D, es) is identified if q0(X) is identified on X (s). Thus, for average

treatment effects on the treated, the identification condition becomes nonsingularity

of E{p(D)p(D)T | X = x} for almost every x in the set X (s). This conditional

nonsingularity condition is also necessary for identification of µ(D, es) under the

additional condition that E{p(D)p(D)T} is nonsingular.

Theorem 5. Suppose that Assumption 1 holds, E{p(D)p(D)T} is nonsingular, and

supx∈X (s) E(‖β‖2 | X = x) < ∞ for some specified s ∈ T such that Pr{X (s)} > 0.

Then: E{p(D)p(D)T | X = x} is nonsingular for almost every x ∈ X (s) if, and only

if, µ(D, es) is identified. Furthermore, with mutually exclusive treatment regimes and

for almost every x ∈ X (s), E{p(D)p(D)T | X = x} is nonsingular if, and only if,

Pr{D(t) = 1 | X = x} > 0 for each t ∈ T and ΣT
s=1 Pr{D(s) = 1 | X = x} < 1.

If conditional independence property (7) holds, the distribution and, when Y is

continuous, quantile structural functions for the treated also are identified, from

G(Y, D, es) =

ˆ

FY |DX(Y |D, X = x)FX|D(dx|D = es), Q(τ, D, es) = G−1(τ, D, es),

respectively, where τ 7→ G−1(τ, D, es) denotes the inverse function of y 7→ G(y, D, es).

Here identification only requires the support of X conditional on D to contain X (s)
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with probability one, and hence that the support of D conditional on X = x be

the same as the marginal support of D for almost every x ∈ X (s). With mutually

exclusive treatment regimes, this support condition is equivalent to nonsingularity

of E{p(D)p(D)T | X = x} for almost every x ∈ X (s), by Theorem 5. There-

fore, this conditional nonsingularity condition is sufficient for identification. With

non-mutually exclusive treatment regimes, this condition is also sufficient for identi-

fication of qU(X) on X (s), and hence of QY |DX(U | D, X) and FY |DX(Y | D, X) on

D×X (s), when the outcome Y is continuous and the scalar heterogeneity restriction

(8) holds. Thus, results analogous to Theorem 4 hold for distribution and quantile

treatment effects on the treated.

Theorem 6. Suppose that conditional independence property (7) holds and

E{p(D)p(D)T|X = x} is nonsingular for almost every x ∈ X (s), for some

specified s ∈ T such that Pr{X (s)} > 0. The following hold: (i) with mu-

tually exclusive treatment regimes, G(Y, D, es) and, when Y is continuous, also

Q(τ, D, es), τ ∈ (0, 1), are identified; (ii) with non-mutually exclusive treatment

regimes and continuous outcome Y , if the scalar heterogeneity restriction (8) holds

and sup(u,x)∈(0,1)×X (s) E{||qu(X)||2 | X = x} < ∞, then G(Y, D, es) and Q(τ, D, es),

τ ∈ (0, 1), are identified.

4. Discussion

The heterogeneous coefficients formulation we propose for multiple treatment effects

reveals the central role of the conditional nonsingularity condition for identification.

Because this condition is in principle testable, establishing that it is also necessary

demonstrates testability of identification (e.g., Breusch, 1986). With mutually ex-

clusive treatments, the formulation of the equivalent common support condition in

Theorem 3 thus relates testability of identification to the generalized propensity

scores. This is a generalization of the relationship between testability of identifica-

tion and the propensity score in the binary treatment case.

Conditions that are both necessary and sufficient are also important for the deter-

mination of minimal conditions for identification. In an unpublished 2004 working

paper (cemmap CWP03/04), Wooldridge considers a restricted version of our model

with E(D | β, X) = E(D | X) and E{p(D)p(D)T | β, X} = E{p(D)p(D)T | X},
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and shows that q0(X) is identified if E{p(D)p(D)T | X} is invertible. The addi-

tional conditional second moments assumption implies that his identification con-

dition differs from ours. Thus his result and proof do not apply in our setting

which only assumes conditional mean independence E(β | D, X) = E(β | X), and

our results show that conditional second moments independence is not necessary

for identification in multiple treatment effect models. Graham and Pinto (2018)

consider a related approach in work independent of the first version of this pa-

per (Newey and Stouli, 2018) where we derived our identification result (Lemma 1

in the Appendix). The conditional nonsingularity condition we propose is weaker

than their identification condition, and we study necessity as well as sufficiency for

identification of average treatment effects.

We analyze the role of conditional nonsingularity for identification of multiple treat-

ment effects under the maintained conditional mean independence Assumption 1.

Although itself not testable in general, this assumption is substantially weaker than

the standard conditional independence property (6). In the general case of mutually

exclusive treatment regimes, the relaxation of conditional independence afforded by

our heterogeneous coefficients approach is the same as the conditional mean inde-

pendence condition

(9) E{Y (t) | D, X} = E{Y (t) | X} (t = 0, 1, . . . , T ),

because the formulation of Assumption 1 in terms of potential outcomes,

E{Y (0)|D, X} = E{Y (0)|X}, E{Y (t)−Y (0)|D, X} = E{Y (t)−Y (0)|X}, t ∈ T ,

reveals that Assumption 1 is equivalent to (9). Therefore, our results allow applied

researchers to replace unconfoundedness requirement (6) for identification by the

weaker condition (9) under which conditional nonsingularity is both necessary and

sufficient for identification, thereby improving robustness of empirical studies in

nonexperimental settings. In particular, conditional mean independence property

(9) allows for any higher conditional moment of Y (t) to depend on both D and

X. Our identification results are thus of general interest for the vast treatment

effects literature (e.g., Athey and Imbens, 2017 for a recent literature review) and

complement existing results on identification of treatment effects.
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Appendix A. Treatment effects modeling with non-mutually

exclusive treatment regimes

For non-mutually exclusive treatment regimes, there are T̃ − T ≥ 1 combinations of

treatments in T ≡ {1, . . . , T}, denoted C(s) with s ∈ {T + 1, . . . , T̃} ≡ T̃ . For each

s ∈ T̃ , multiple components of D take value one jointly if treatment combination

C(s) occurs. Define D̃ a vector of dummy variables D̃(s) taking value one for s ∈ T

if only treatment s ∈ T occurs, and for s ∈ T̃ if treatment combination C(s) occurs.

A general model that gives rise to an average structural function of the form (4) is

(10)

Y = p(D̃)Tβ̃ = β̃0 +
T̃∑

s=1

D̃(s)β̃s, E(β̃ | X) = E(β̃ | D̃, X), β̃ = (β̃0, β̃1, . . . , β̃
T̃
)T,

restricted so that heterogeneity satisfies the conditional average additivity property

(11) E(β̃s | X) =
T∑

t=1

1{t ∈ C(s)}E(β̃t | X), s ∈ T̃ .

For s ∈ T , extending the definition of C(s) by setting C(s) = {s} and also writing

E(β̃s | X) =
∑T

t=1 1{t ∈ C(s)}E(β̃t | X), the implied control regression function

E(Y | D̃, X) for model (10)-(11) takes the form

p(D̃)TE(β̃|X) = E(β̃0 | X) +
T̃∑

s=1

D̃(s)

[
T∑

t=1

1{t ∈ C(s)}E(β̃t | X)

]

= E(β̃0 | X) +
T∑

t=1




T̃∑

s=1

1{t ∈ C(s)}D̃(s)


 E(β̃t | X) = p(D)TE(β|X),

the control regression function for model (1) with β = (β̃0, β̃1, . . . , β̃T )T and D

such that D(t) =
∑T̃

s=1 1{t ∈ C(s)}D̃(s), t ∈ T . Therefore, the control regression

functions, and hence also the average structural functions, for model (1) with non-

mutually exclusive treatment regimes and for model (10)-(11) coincide.

Appendix B. Proofs

Preliminary result.

Lemma 1. Suppose that E(‖β‖2) < ∞ and Assumption 1 holds. If E{p(D)p(D)T |

X} is nonsingular with probability one then q0 (X) is identified.
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Proof. Let λmin(X) denote the smallest eigenvalue of E{p(D)p(D)T | X}. Suppose

that q (X) 6= q0 (X) with positive probability on a set X̃ , and note that λmin(X) > 0

on X by assumption. Then

E
(
[p(D)T{q(X) − q0(X)}]2

)
= E

[
{q(X) − q0(X)}TE{p(D)p(D)T|X}{q(X) − q0(X)}

]

≥ E
{
‖q (X) − q0 (X)‖2

λmin (X)
}

≥ E
{
1(X ∈ X ∩ X̃ ) ‖q (X) − q0 (X)‖2

λmin (X)
}

.

By definition Pr(X̃ ) > 0 and X̃ ⊆ X so that X̃ ∩ X = X̃ . Thus the fact that

‖q (X) − q0 (X)‖2
λmin (X) is positive on X̃ ∩ X implies

E
{
1(X ∈ X ∩ X̃ ) ‖q (X) − q0 (X)‖2

λmin (X)
}

> 0.

We have shown that, for q (X) 6= q0 (X) with positive probability on a set X̃ ,

E
(
[p(D)T{q(X) − q0(X)}]2

)
> 0,

which implies p (D)T
q (X) 6= p (D)T

q0 (X). Therefore, q0 (X) is identified from

E(Y | D, X). �

Proof of Theorem 1. We first show that nonsingularity of E{p(D)p(D)T | X}

with probability one implies identification of µ(D). By Lemma 1, if E{p(D)p(D)T |

X} is nonsingular with probability one then q0(X) is identified, and hence E{q0(X)}

also is. By p(D) being a known function, p(D)TE{q0(X)} = µ(D) is identified.

We now establish that nonsingularity of E{p(D)p(D)T | X} with probability one

is necessary for identification of µ(D). It suffices to show that singularity of

E{p(D)p(D)T | X} with positive probability implies that µ(D) is not identified,

i.e., there exists an observationally equivalent q(X) 6= q0(X) with positive proba-

bility such that p(D)TE{q(X)} 6= p(D)TE{q0(X)} with positive probability. By

nonsingularity of E{p(D)p(D)T} and linearity of µ(D), the conclusion holds if, and

only if, there exists an observationally equivalent q(X) 6= q0(X) with positive prob-

ability such that E{q(X)} 6= E{q0(X)}.

Suppose that E{p(D)p(D)T | X} is singular with positive probability and let ∆(X)

be such that E{p(D)p(D)T | X}∆(X) = 0. We have that ∆(X) 6= 0 on a set X̃

with Pr(X̃ ) > 0. For J = T + 1, define X̃j = {x ∈ X̃ : ∆j(x) 6= 0}, j ∈ {1, . . . , J}.
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Then ∪J
j=1X̃j = {x ∈ X̃ : ∆(x) 6= 0} = X̃ . Hence

0 < Pr(X̃ ) = Pr(∪J
j=1X̃j) ≤

J∑

j=1

Pr(X̃j),

which implies that Pr(X̃j∗) > 0 for some j∗ ∈ {1, . . . , J}.

Set ∆̃(x) = ∆(x) for x ∈ X̃j∗ , and ∆̃(x) = 0 otherwise. By construction ∆̃j∗(X) 6= 0,

and letting

˜̃
∆(X) = sign{∆̃j∗(X)}

∆̃(X)

||∆̃(X)||
,

we have that
˜̃
∆j∗(X) > 0 on X̃j∗ and ||

˜̃
∆(X)|| = 1, and hence E{||

˜̃
∆(X)||} < ∞ and

E{
˜̃
∆j∗(X)} 6= 0. Therefore E{

˜̃
∆(X)} 6= 0, which implies that E{q0(X) +

˜̃
∆(X)} 6=

E{q0(X)}. The result follows. �

Proof of Theorem 2. The matrix E{p(D)p(D)T | X} is of the form

(12) E{p(D)p(D)T | X} =


 1 E(DT | X)

E(D | X) E(DDT | X)


 ,

and is positive definite if, and only if, the Schur complement of 1 in (12) is positive

definite (Boyd and Vandenberghe, 2004, Appendix A.5.5.), i.e., if, and only if,

E(DDT | X) − E(D | X)E(DT | X) = var(D | X),

is positive definite with probability one, as claimed. �

Proof of Theorem 3. Suppose that the matrix E{p(D)p(D)T | X} is nonsingular

with probability one. For mutually exclusive treatment regimes, D ∈ {0T , {et}t∈T }

and hence E{p(D)p(D)T | X} is of the form

E{p(D)p(D)T|X} =
{
p(0T )p(0T )T

}
×Pr(D = 0T |X)+

T∑

t=1

{
p(et)p(et)

T
}
×Pr(D = et|X),

a sum of T + 1 rank one (T + 1) × (T + 1) distinct matrices which is singular with

positive probability if either Pr(D = 0T | X) = 0 or Pr(D = et | X) = 0 for some

t ∈ T with positive probability. For mutually exclusive treatment regimes

Pr(D = et | X) = Pr{D(t) = 1 | X}, t ∈ T ,

and hence if either Pr(D = 0T | X) = 0 or Pr{D(t) = 1 | X} = 0 for some

t ∈ T with positive probability, then E{p(D)p(D)T | X} is singular with positive
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probability. Therefore, nonsingularity of E{p(D)p(D)T | X} with probability one

implies that Pr(D = 0T | X) > 0 and Pr{D(t) = 1 | X} > 0 for each t ∈ T with

probability one. Since conditional probabilities add up to unity with probability

one, for mutually exclusive treatment regimes

Pr(D = 0T | X) +
T∑

t=1

Pr{D(t) = 1 | X} = 1

with probability one, and we have shown that Pr{D(t) = 1 | X} > 0 for each t ∈ T

and ΣT
s=1 Pr{D(s) = 1 | X} < 1, with probability one.

We show the converse result. Assume that Pr{D(t) = 1 | X} > 0 for each t ∈ T

and ΣT
s=1 Pr{D(s) = 1 | X} < 1, with probability one. For a vector w ∈ R

T , let

diag(w) denote the T × T diagonal matrix with diagonal elements w1, . . . , wT . For

mutually exclusive treatments, the matrix E{p(D)p(D)T | X} is also of the form

(13) E{p(D)p(D)T | X} =


 1 E(DT | X)

E(D | X) diag{E(D | X)}


 .

The matrix diag{E(D | X)} has diagonal elements E{D(t) | X} = Pr{D(t) = 1 |

X} > 0 for each t ∈ T , by assumption, and hence is positive definite and invertible.

By assumption ΣT
s=1 Pr{D(s) = 1 | X} < 1, and hence

0 < 1 − ΣT
s=1 Pr{D(s) = 1 | X} = 1 − ΣT

s=1E{D(s) | X}

= 1 − E(DT | X)diag{E(D | X)}−1E(D | X).

Thus the Schur complement of diag{E(D | X)} in (13) is positive definite, and hence

E{p(D)p(D)T | X} is positive definite (Boyd and Vandenberghe, 2004, Appendix

A.5.5.). Therefore, E{p(D)p(D)T | X} is nonsingular with probability one, as

claimed. �

Proof of Theorem 4. For mutually exclusive treatments, result (i) follows from

equivalence between conditional nonsingularity and common support and the argu-

ment in the main text. For non-mutually exclusive treatments, qu(X) is identified

for each u ∈ (0, 1) by an argument similar to the proof of Lemma 1, upon sub-

stituting qu(X) for q0(X). Result (ii) then follows from the argument in the main

text. �
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Proof of Theorem 5. The proof is similar to the proofs of Theorems 1 and 3 and

hence is omitted. �

Proof of Theorem 6. For mutually exclusive treatments, by Theorem 5 condi-

tional nonsingularity on X (s) is equivalent to the support of D conditional on X = x

being the same as the marginal support of D for almost every x ∈ X (s). Hence, the

support of X conditional on D contains X (s) with probability one. Result (i) then

follows from the argument in the main text.

For non-mutually exclusive treatments, qu(X) is identified on X (s) for each u ∈ (0, 1)

by an argument similar to the proof of Lemma 1, upon substituting qu(X) for q0(X),

letting q (X) 6= qu (X) on a set with positive probability X̃ ⊆ X (s). Result (ii) then

follows from the argument in the main text. �
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