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Abstract 
Tristetraprolin (TTP) is a nonclassical CCCH zinc finger (ZF) that plays a crucial role in regulating inflammation. TTP regu-
lates cytokine mRNAs by specific binding of its two conserved ZF domains (CysX8CysX5CysX3His) to adenylate-uridylate-
rich sequences (AREs) at the 3ʹ-untranslated region, leading to degradation of the RNA. Dysregulation of TTP in animal 
models has demonstrated several cytokine-related syndromes, including chronic inflammation and autoimmune disorders. 
Exposure to Pb(II), a prevalent environmental toxin, is known to contribute to similar pathologies, in part by disruption of 
and/or competition with cysteine-rich metalloproteins. TTP’s role during stress as a ubiquitous translational regulator of 
cell signaling (and dysfunction), which may underpin various phenotypes of Pb(II) toxicity, highlights the importance of 
understanding the interaction between TTP and Pb(II). The impact of Pb(II) binding on TTP’s fold and RNA-binding func-
tion was analyzed via UV–Vis spectroscopy, circular dichroism, X-ray absorption spectroscopy, nuclear magnetic resonance 
spectroscopy, and fluorescence anisotropy. A construct containing the two ZF domains of TTP (TTP-2D) bound to Pb(II) 
with nanomolar affinity and exhibited a different geometry and fold in comparison to Zn2-TTP-2D. Despite the altered sec-
ondary structure, Pb(II)-substituted TTP-2D bound a canonical ARE sequence more selectively than Zn2-TTP-2D. Taken 
together, these data suggest that Pb(II) may interfere with proper TTP regulation and hinder the cell’s ability to respond to 
inflammation.
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Introduction

Pollution of Pb(II) is evident throughout the United States 
from industrial use and outdated infrastructure, as a result 
of its low cost and malleability as a metal. Over the last four 
decades, various federal agencies and departments (EPA, 
FDA, OSHA, CDC, etc.) have implemented regulations 
aimed at significantly reducing Pb(II) exposure, which can 
occur through several environmental routes and consumer 
products [1–3]. Comparing blood lead levels (BLLs) in chil-
dren across the U.S. highlights regional differences of Pb(II) 
exposure, specifically the disproportionate impact on low-
income households [4–6]. The National Health and Nutri-
tion Examination Survey (NHANES) has served to monitor 
the blood lead reference values (BLRVs) for Pb(II), a value 
that is established based on the 97.5th percentile of Pb(II) 
burden in children. These BLRVs have decreased since the 
1960s, when the BLRV was at 60 µg/dL, to a current value 
of 3.5 µg/dL. This indicates that the top 2.5% of BLLs in 
children has reduced dramatically and mean BLL of all chil-
dren has decreased [7, 8]. However, it is important to note 
that (1) exposure to Pb(II) can begin early in development 
through the mother (in utero and with breastfeeding), (2) 
the BLRV is not based on available scientific evidence, and 
(3) no safe level of exposure has been determined [9, 10]. 
Even trace levels of Pb(II) can be associated with significant 
behavioral and developmental effects. Pb(II) accumulates 
in the body either in the short-term (blood) or long-term 
(bone) and is correlated with chronic inflammation, suscepti-
bility to immune disorders, and neurodegeneration [11, 12]. 
Although the biochemical mechanisms are not fully eluci-
dated, it is understood that Pb(II) interacts promiscuously 
with metal coordinating motifs in proteins, replacing the 
native metal, and perturbs a plethora of pathways through 
oxidative stress and cytokine signaling [12–17].

The cellular targets for Pb(II) toxicity include a wide 
range of proteins and biomolecules, owing to the inter-
mediate/soft base character of Pb(II), as detailed by the 
hard–soft–acid–base (HSAB) theory [18]. Its potential to 
interact with S, O, N, and P ligands underscores the many 
coordination environments it can adopt and the variety of 
consequences on the biological system [19]. However, due 
to Pb(II)’s preference for and tight binding of thiol groups, 
cysteine-rich biomolecules and proteins have been a focal 
point for elucidating the mechanism of Pb(II) toxicity. 
Interaction of Pb(II) with important metalloproteins and 
competition for their metal binding motifs has been docu-
mented in the Ca(II)-binding messenger Calmodulin (CaM), 

aminolevulinic acid dehydratase (ALAD), metallothioneins 
(MTs), and zinc fingers (ZFs) [11, 12, 19–31]. Zinc fingers 
are a broad family of proteins, with 30 different classes cur-
rently recognized [32–39]. ZFs all contain motifs of cysteine 
and histidine with four residues that coordinate Zn(II) in a 
tetrahedral geometry [32, 38–40]. Zinc is considered a struc-
tural cofactor which allows for ZFs to function in transcrip-
tional and/or translational regulation [32, 33, 38, 41]. ZFs 
are ubiquitous throughout the human body and are essential 
to maintain proper function of the nervous system, including 
transcriptional upregulation of MTs, via the ZF metallothio-
nein transcription factor-1 (MTF-1), and MT’s ability to 
sequester xenobiotic metals [26, 42–47]. More broadly, Zn 
homeostasis (and proper loading/function of ZFs) is crucial 
in managing inflammatory pathways (i.e., the NF-κB sign-
aling pathway) and cytokine signaling [7, 12, 30, 43, 48].

ZFs have been proposed as biological targets of Pb(II) 
toxicity, as the ZF sites are thiol rich and thus good ligands 
for Pb(II) [11, 22]. As such, the CCCH-type and CCCC-
types represent the ZF domains that are likely most suscepti-
ble to Pb(II) toxicity. The groups of Pecoraro, Penner-Hahn, 
and Godwin have demonstrated in their use of peptides that 
correspond to singular ZF domains (~ 25 to 30 residues) 
that optimal Pb(II)-binding affinity is achieved with CCCH, 
CCHC, or CCCC binding domains [21, 23, 24, 27]. Their 
work established that Pb(II) preferentially binds in a PbS3 
trigonal pyramidal geometry. This finding was further dem-
onstrated with 207Pb-NMR, where Pecoraro and coworkers 
observed that Pb(II) forms a trigonal complex with three Cys 
residues, even when four are available [25]. Taken together, 
along with the work of the Giedroc and Petering groups 
[49, 50], a hierarchy of Pb(II) binding affinity for Cys-rich/
ZF domains of CCCC > CCCH = CCHC > CCHH has been 
defined [20, 21]. In contrast to this trend, Zawia and cow-
orkers have demonstrated that even Sp-1 and Egr-1, both 
CCHH-type transcriptional regulators crucial for neurologi-
cal development, tightly bind Pb(II) and exhibit altered DNA 
binding [51–53]. In the case of Sp-1, they further elucidated 
through in vivo rat models that Pb(II) may enhance or inhibit 
DNA-binding based on the concentration of Pb(II) present. 
Additionally, Pb(II) inhibited the complex of recombinant 
Sp-1 and its target DNA, suggesting that Sp-1 is not pro-
tected from Pb(II)’s influence by complexation [51]. This 
demonstrates that although the affinity of Pb(II) for CCHH 
ZF domains may be orders of magnitude weaker than Zn(II), 
it can still have detrimental effect. In addition to the CCHH 
ZFs, GATA ZFs are CCCC-type transcriptional regulators 
involved in developing the nervous system, as well as the 
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cardiovascular and hematopoietic systems [20, 54, 55]. In 
their work with GATA ZF domains, Godwin and coworkers 
determined that Pb(II) can replace Zn(II) in the metal site 
and partially inhibit transcriptional activation [20]. Taken 
together, these studies support the hypothesis that Pb(II) 
toxicity, in part, is mediated through displacement of Zn(II) 
from active sites of critical metalloproteins, including vari-
ous classes of ZFs.

Tristetraprolin (TTP, NUP475, ZFP36), shown in 
Scheme 1, is an RNA-binding ZF that negatively regulates 
the NF-kB pathway by controlling tumor necrosis fac-
tor alpha (TNFα) and other cytokines’ expression, which 
further activate the pathway [56–58]. TTP contains two 
CCCH-type ZF domains that each bind a Zn2+ cofactor and 
adopt a structure with limited alpha-helical character and 
some loops around the metal site [59]. This folding event 
allows for tight and specific binding of adenylate-uridylate 
rich elements (AREs) in the 3’-UTR of cytokine mRNA, 
with each ZF domain binding a minimum sequence of 
5’-UAUU-3’ [59]. The binding of TTP to AREs allows 
for recruitment of the CCR4-NOT1 protein complex and/
or the DCP1/DCP2 decapping complex, destabilizing the 
mRNAs, ultimately reducing their overall translation and 
ability to further potentiate signaling [60]. Approximately 
26% of human mRNA 3’-UTRs contain at least one TTP 
binding site of 5’-UA(U)3-5AU-3’ and proper TTP function 

has been demonstrated as a vital factor in several disorders, 
including inflammation, apoptosis, cancer, and immune-
related diseases [61–68]. TTP’s role in managing cytokine 
expression and limiting inflammation connects it to the del-
eterious effects of Pb(II) toxicity, in addition to the potential 
for Pb/Zn competition for the metal site. Recent work from 
our laboratory and others demonstrated that e-cigarettes and 
other aerosolizing devices may contribute to heavy metal 
exposure, namely Pb(II) [69]. As e-cigarettes are becoming 
a popular and so-called “safe” alternative to cigarettes, their 
use is on the rise, specifically in high school students where 
it is the major form of tobacco use [70, 71]. This trend rep-
resents another possible route of exposure to Pb(II) by the 
general public and particularly in the developing bodies of 
adolescents and young adults. We hypothesize that Pb(II) 
targets TTP during exposure, disrupting the native confor-
mation, ultimately affecting the function of TTP.

To determine how Pb(II) affects TTP structure and func-
tion, we performed a series of experiments on the CCCH-
type ZF, TTP, which has a pivotal role in regulating the 
pathologies associated with Pb(II) toxicity. Interactions 
between Pb(II) and the two-domain construct, TTP-2D, were 
assessed via several spectroscopies to examine how Pb(II) 
would affect the structure and function of the RNA-binding 
ZF domains of TTP. We show that Pb2-TTP-2D exhibits 
a dissimilar fold to Zn2-TTP-2D while retaining tight and 

Scheme  1   NF-kB signaling pathway and regulation of cytokine 
mRNAs by tristetraprolin (TTP). Activation of the pathway through 
surface receptors (shown here: Toll-Like Receptor [TLR],  Tumor 
Necrosis Factor Receptor [TNFR], and Interleukin-1 Receptor [IL-
1R])  leads to translocation of NF-kB to the nucleus and expression 
of associated cytokine/chemokine genes, increasing mRNA levels 

of these inflammatory mediators which further activate the pathway. 
Binding by TTP and other CCCH-type ZFs (MCPIP, Roquin) nega-
tively regulates this signal by decreasing mRNA stability, leading to 
mRNA degradation, and dampening further signaling of the pathway 
by mature cytokine/chemokine peptides
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specific binding for a canonical mRNA ARE sequence. 
Notably, the relative affinities for altered RNA sequences 
were significantly weaker for Pb2-TTP-2D than Zn2-TTP-2D, 
suggesting that Pb2-TTP-2D may be more selective for target 
RNA than the native Zn2-TTP-2D. As such, we propose that 
Pb(II) may serve as a functional mimic of Zn(II) for TTP 
binding activity, either over activating mRNA decay or stall-
ing it by preventing necessary protein–protein interactions 
(PPIs).

Materials and methods

Pb(II) acetate trihydrate (Pb(OAc)2), acetonitrile, trif-
luoroacetic acid (TFA), and Chelex 100 sodium resin were 
purchased from Sigma. Pb(II) nitrate atomic absorption 
standard (PbNO3 AAS; 4.3 mM in 2% nitric acid) was pur-
chased from Fluka Analytical. Zinc(II) chloride (ZnCl2), 
cobalt(II) chloride (CoCl2), dithiothreitol (DTT), deute-
rium oxide (D2O), and HEPES (free acid and sodium salt) 
were purchased from Sigma-Aldrich. 2-(N-morpholino)
ethanesulfonic acid sodium salt (MES) was purchased from 
VWR. Tris(hydroxymethyl)aminomethane (Tris)-HCl was 
purchased from Promega. Tris base was purchased from 
Fisher. 3 kD molecular weight cutoff (MWCO) centrifugal 
spin-filters (0.2 μM polyethersulfur (PES) membrane) were 
purchased from Millipore Sigma. All buffers were prepared 
with Chelex-treated Milli-Q water, filtered through a 0.2 μM 
PES membrane (VWR), degassed via vacuum purging/
N2-sparging, and stored in a Coy anaerobic chamber (3% 
H2/97% N2). Pb(OAc)2, ZnCl2, and CoCl2 metal salts were 
prepared in degassed Chelex-treated Milli-Q water. PbNO3 
AAS was diluted to working stocks with 100 mM HEPES 
buffer, pH 7.5. All metal solutions were then syringe-filtered 
and stored in the Coy anaerobic chamber.

TTP‑2D sample preparations and anaerobic 
measurements

Unless otherwise specified, all TTP-2D manipulations and 
UV–visible titrations were performed in a Coy anaerobic 
chamber (3% H2/97% N2). UV–visible spectroscopy was 
performed in 1 cm pathlength quartz cuvettes (Starna Cells) 
using a Cary 60 UV–Vis Spectrophotometer (Agilent). For 
circular dichroism (CD) and fluorescence anisotropy (FA), 
samples were prepared in the anaerobic chamber with 1 mm 
quartz and 5 mm Spectrosil quartz cuvettes (Starna Cells), 
respectively, and Teflon-stoppered for measurements outside 
the Coy anaerobic chamber. All analyses were performed 
in triplicate.

TTP‑2D overexpression and purification

A two-domain construct of TTP (TTP-2D), containing both 
CCCH zinc finger domains was prepared as previously 
reported [72, 73]. The expression vector, a pET-15b vector 
ligated with the gene for AA 94–166 of Zfp36, encoded the 
following sequence: SRYKTELCRTYSESGRC​RYG​AKC-
QFAHGLGELRQANRHPKYKTELCHKFYLQGRCPYG-
SRCHFIHNPTEDLAL. The vector was transformed into 
BL21 (DE3) competent cells and the cells were incubated in 
Luria–Bertani (LB) medium containing 100 μg/mL ampicil-
lin at 37 °C until mid-log phase, around an OD600 of 0.6–0.8. 
A solution of 1 mM isopropyl β-d-1-thiogalactopyranoside 
(IPTG) was then added to the incubation flasks to promote 
protein expression. At 4 h post-induction, cells were centri-
fuged at 7000 rpm for 20 min at 4 °C. The cell pellet was 
resuspended in a lysis buffer consisting of 8 M urea, 10 mM 
MES buffer, pH 6 with an EDTA-free protease inhibitor 
mini-tablet. Dithiothreitol (DTT) was added to the resuspen-
sion for a final concentration of 10 mM to prevent oxidation 
of the cysteinyl sulfur groups during purification. Cell lysis 
was performed on ice via sonication (Fisher Scientific Sonic 
Dismembrator Model 100). Centrifugation of the cell lysate 
at 5000×g for 20 min at 4 °C yielded a distinct pellet and 
supernatant. The pellet was discarded while the supernatant 
was applied to an SP-sepharose column and incubated at 
room temperature while rocking for 1 h. A separation gradi-
ent of sodium chloride was prepared in similar lysis buffer 
(4 M urea) and was applied to the column from 0 to 2 M 
NaCl, with TTP-2D eluting at 600 mM NaCl. An additional 
25 mM DTT was applied to the elution and incubated at 
56 °C for 2 h to ensure full reduction of thiol bonds. TTP-
2D was subsequently purified via either a Waters HPLC 
or Agilent HPLC with a C-18 column using reverse phase 
chromatography. A gradient of H20/CH3CN, both contain-
ing 0.1% TFA, was applied to elute TTP-2D at 32% CH3CN. 
Elutions were immediately placed in a Coy anaerobic cham-
ber (97% nitrogen/3% hydrogen) and lyophilized to dryness. 
Peptide was confirmed for purity and metal-binding ability 
by SDS-PAGE and UV–visible spectroscopy. Further protein 
manipulations and sample preparations were made in the 
anaerobic chamber.

Direct titration of apo‑TTP‑2D with Pb(II) and Zn(II)

The optical spectrum of TTP-2D was measured from 220 
to 820 nm as Pb(II) was added to the protein. A solution of 
apo-TTP-2D (typically 17 μM) in 100 mM HEPES buffer, 
pH 7.5 was titrated with Pb(OAc)2 up to 2 molar equivalents 
(in increments of 0.2), followed by larger additions until 20 
total equivalents Pb(II) were added. The Pb2-TTP-2D solu-
tion was then titrated in the same manner with ZnCl2. The 
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changes in the absorption band at 336 nm with Pb(II) and 
Zn(II) addition were monitored.

Job plot by UV–visible spectroscopy

Apo-TTP-2D and Pb(NO3)2 were kept at a constant total 
concentration of 20 μM in 100 mM HEPES, pH 7.5 and 
analyzed by UV–Visible spectroscopy from 220 to 820 nm. 
Peptide/Pb(II) solutions were prepared where the mol frac-
tion of Pb(II) in each reaction was varied as 0.10, 0.31, 0.36, 
0.41, 0.51, 0.69, 0.72, 0.92. Corrected absorbance (A − A0) 
at 260 and 336 nm were used to generate the Job Plot; mole 
fraction (Xa) of Pb(II) vs the corrected absorbance, where 
mole fraction = [Pb(II))]/{[Pb(II) + [apo-TTP-2D]} [74–76].

Competition titrations of Co(II)‑TTP‑2D with Pb(II) 
or Zn(II)

Co2-TTP-2D was prepared and analyzed by UV–visible 
spectroscopy from 220 to 820 nm. A solution of apo-TTP-
2D (42 μM) in 100 mM HEPES, pH 7.5 buffer was titrated 
with an excess of CoCl2 (2.4 molar equivalents) and the 
characteristic d-d transition bands between 600 and 700 nm 
of tetrahedral Co(II) binding were monitored. Then Pb(II) or 
Zn(II) were added (increments of 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 
and 2.8 molar equivalents) to observe the disappearance of 
the d-d transition bands, indicative of either Pb(II) or Zn(II) 
displacement of Co(II) from the TTP-2D metal-binding 
domains. In separate experiments, apo-TTP-2D (~ 20 μM) 
was titrated with 15 equivalents of CoCl2 and the absorb-
ance at 650 nm (the maximum of the Co(II) d-d absorp-
tion bands) was fit to a 1:1 binding equilibrium with linear, 
least squares analysis (KaleidaGraph, Synergy Software). 
The relative affinity of TTP-2D for Pb(II) was then deter-
mined by adding Pb(OAc)2 in equal fashion to the forward 
titration and monitoring the loss of d-d band absorbance at 
650 nm. An upper limit dissociation constant (Kd) for Pb(II) 
was determined by fitting the data to a competitive binding 
equilibrium (below) previously reported by our laboratory 
and others [72, 77].

Circular dichroism (CD) spectroscopy

Circular dichroism (CD) spectra for M-TTP-2D (M = Pb2+ 
or Zn2+) were measured between 200 and 250 nm using a 
Jasco-1500 spectropolarimeter set for high sensitivity. Scan-
ning speed was 50 nm/min, with 4 nm bandwidth, and 4 s 
response time. A total of four scans were collected and dis-
played as an average for the final plot. A peptide concentra-
tion of 30 μM ([M] = 60 μM) was prepared in 10 mM tris 

Co
2
-TTP-2D + Pb(II)⇔

KPb

d

Pb
2
-TTP-2D + Co(II)

buffer, pH 7.5. Apo peptide was first scanned followed by a 
scan with 2-eq of either Pb(II) or Zn(II), with both corrected 
for the initial spectrum obtained of buffer alone.

X‑Ray absorption spectroscopy (XAS)

A Pb2-TTP-2D sample was prepared for XAS by mixing 
apo-TTP-2D with a slight excess of Pb(OAc)2 in 200 mM 
HEPES buffer, pH 7.5. The sample was then concentrated 
and desalted with a 3 kD MWCO spin filter. Finally, dilu-
tion with 200 mM HEPES buffer containing 60% glycerol 
yielded a Pb2-TTP-2D sample at 1 mM peptide, 2 mM 
Pb(II), and 30% glycerol (%v/v).

X-ray absorption spectra at the Pb(II) L3-edge were col-
lected at the Stanford Synchrotron Radiation Lightsource 
(SSRL) on beamline 7–3. Beamline 7–3 utilized a Si[220] 
double crystal monochromator with an inline mirror for 
X-ray focusing and for harmonic rejection. During data col-
lection, Pb-loaded TTP2D samples were maintained at 10°K 
using a liquid He continuous flow cryostat. Fluorescence 
XAS spectra were collected using a 30 element Ge detector 
from Canberra. Spectra were collected in 5 eV increments 
in the pre-edge region (12,830–13,040 eV), 0.25 eV incre-
ments in the edge region (13,040–13,080 eV) and 0.05 Å−1 
increments in the extended X-ray absorption fine structure 
(EXAFS) region (out to k = 13 Å−1), integrating from 1 
to 25 s in a k3 weighted manner for a total scan length of 
approximately 50 min. The X-ray energy in each spectrum 
was calibrated individually by collecting a Pb-foil absorption 
spectra simultaneously with the compound spectra, utilizing 
the Pb(II) foil L3-edge at 13,055 eV.

XAS spectra were processed using the Macintosh OS X 
version of the EXAFSPAK program suite [78] integrated 
with the Feff v8 software [79] for theoretical model gen-
eration. Data reduction utilized a Gaussian spline for back-
ground removal in the pre-edge region and a three-region 
cubic spline throughout the EXAFS. Data were converted 
to k-space using a Pb(II) E0 value of 13,080 eV. The k3 
weighted EXAFS was truncated at 12.0 Å−1 due to the 
intense presence of monochromator crystal imperfections 
in the data above this value. This k range corresponds to a 
spectral resolution of ca. 0.14 Å for all lead-ligand interac-
tions; therefore, only independent scattering environments 
outside 0.14 Å were considered resolvable in the EXAFS 
fitting analysis [80]. EXAFS fitting analysis was performed 
first on filtered data and then verified on the raw unfiltered 
data. EXAFS data were fit using single scattering ampli-
tude and phase functions calculated with the program Feff 
v8. Single scattering theoretical models were calculated for 
carbon, nitrogen, and sulfur coordination to simulate lead 
nearest-neighbor ligand environments. Scale factor (Sc) and 
E0 values, used in a static manner during the simulations, 
were calibrated by fitting crystallographically characterized 
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Pb(II) solid state models; specific values include a Scale 
Factor of 0.7 and E0 values of − 20 eV for N/C and − 24 eV 
for S interactions. Criteria for judging the best-fit simulation 
utilized both the lowest mean square deviation between data 
and fit (Fʹ), corrected for the number of degrees of freedom, 
and a reasonable Debye–Waller factor [81, 82].

Fluorescence anisotropy (RNA binding)

A K2 spectrofluorometer (ISS, Inc.) was configured in 
the L format for all fluorescence anisotropy (FA) experi-
ments. Excitation and emission wavelengths were set at 495 
and 517 nm, respectively, each with a band pass of 2 nm. 
Cuvettes were prepared with 10 nM RNA in a 200 mM 
HEPES/100 mM NaCl buffer containing 0.1 mg/mL bovine 
serum albumin (to prevent non-specific binding) at pH 7.5. 
The anisotropy (r) of unbound RNA was measured as a func-
tion of M-TTP-2D added to the cuvette. Each data point is 
an average of 22 readings over 60 s. Raw anisotropy values 
were converted to fraction bound (Fbound; the fraction of 
RNA bound to Pb2-TTP-2D at a given RNA concentration), 
via the following equation:

where rfree is the anisotropy of the unbound RNA in the 
initial scan, rbound is the anisotropy of the RNA–protein 
complex at the point of saturation, and Q is the quantum 
yield (Q = Intensitybound/Intensityfree). Q is applied as a cor-
rection factor to account for change in fluorescence intensity 
throughout the titration. A plot of FBound as a function of 
M-TTP-2D addition to the RNA was fit using KaleidaG-
raph (Synergy Software) with a 1:1 binding model, consid-
ering the following equilibria and equation, where P is the 
[M-TTP-2D] and R is the [RNA]:

NMR spectroscopy

NMR experiments were performed with an Agilent DD2 
500 MHz spectrometer at 25.0 °C. Both 1-D and 2-D experi-
ments used approximately 350 μM apo-TTP-2D prepared 
in D2O or H2O and pH-adjusted to 6.5 with a solution of 
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tris(hydroxymethyl)aminomethane (tris) in D2O. Metal 
stocks used were prepared in D2O. After metal addition, pH 
was verified and adjusted to 6.5 (if necessary) with tris in 
D2O.

1-D NMR experiments were performed in 100% D2O 
with instrument parameters of 32 transients, 16,384 total 
points, 5 s relaxation time, and a spectral width of 6009 Hz. 
2-D gCOSY experiments were performed in (90%/10%) 
H2O/D2O with a spectral width of 8102 Hz, 2 s of delay 
between transients immediately followed by 1 s of presatu-
ration to suppress the solvent signal, 32 transients, 4096 
total points per fid, and 400 indirectly detected increments. 
Transmitter offset was set on the residual water peak for all 
experiments.

Results and discussion

TTP‑2D as a model for Pb(II) binding of CCCH type 
zinc fingers

TTP is a ‘CCCH’ type ZF protein that contains two con-
served Cys3His ZF domains. TTP regulates cytokine and 
chemokine mRNAs that are related to several inflamma-
tory and chronic pathologies, including cancer, arthritis, 
and autoimmunity [62, 63, 83]. TTP achieves this regula-
tion by binding to AU-rich elements present at the 3ʹ-UTR 
of cytokines and chemokines. Upon TTP/RNA binding, 
the CCR4-NOT1 protein complex and/or the DCP1/DCP2 
decapping complex associate with TTP/RNA leading to 
destabilization of the mRNAs [58, 60]. RNA binding by TTP 
requires only the two CCCH domains. We have previously 
reported that a construct of TTP (TTP-2D) containing the 
tandem-ZF domains can bind zinc, adopt secondary struc-
ture, and function (i.e., bind to a canonical ARE sequence), 
making it an appropriate construct to examine the effect of 
Pb(II) binding [73, 84, 85]. Moreover, the approach of uti-
lizing single- and multi-ZF domain peptides to interrogate 
metal binding, structure, and function for ZFs is commonly 
used in their study [33, 49, 86, 87]. Here, we over-expressed 
and purified TTP-2D, and isolated in the apo-form for metal 

binding and functional studies [72].

Characterization of Pb(II) binding to TTP‑2D

Apo-TTP-2D was titrated with Pb(OAc)2 to determine 
whether Pb(II) binds to TTP-2D. Upon addition of Pb(OAc)2 
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an intense absorption band centered at 235 nm with a shoul-
der at 260 nm was observed. In addition, a well-resolved but 
less intense absorption band was seen at 336 nm (Fig. 1a). 
These bands suggest that Pb(II) is binding to apo-TTP-2D. 
We propose that these bands are ligand-to-metal charge 
transfer (LMCT) and intra-atomic transitions with Pb(II) 
based upon early Pb–S site studies by the Godwin and Pec-
oraro groups [23, 27]. Extinction coefficients for the absorb-
ance at 260 nm (Ɛ = ca. 12,000 M−1 cm−1 per domain) and 
336 nm (Ɛ = ca. 3,600 M−1 cm−1 per domain) were deter-
mined. These values are in agreement with those reported as 
charge transfer bands between sulfur and Pb(II) by Giedroc, 
Pecoraro, and Jalilehvand, and offer further support for Pb–S 
binding [24, 25, 88, 89]. Increases in the absorbance bands 
at 260 and 336 nm were observed until 2 molar equivalents 
of Pb(OAc)2 had been titrated (Fig. 1b), indicative of a 2:1 
stoichiometry of binding (2Pb: 1TTP-2D). This stoichi-
ometry was further supported by applying the method of 
continuous variation with respect to the absorbance at 260 
and 336 nm. The Job Plot in Fig. 1c shows that the optimal 
absorbance value for the Pb–S LMCT at 336 nm is at a mole 
fraction for Pb(II) of 0.66, further supporting the 2:1 binding 
stoichiometry.

To confirm that Pb(II) indeed binds TTP-2D in the CCCH 
ZF domains and to determine a dissociation constant (Kd), 
apo-TTP-2D was first bound with excess Co(II) (15 equiv-
alents) and then titrated with Pb(II). Co(II) is a common 
spectroscopic probe for Zn(II) binding to ZF domains, as 
Zn(II) is a spectroscopically silent metal due to its d10 shell 
and affinities cannot be directly determined [34, 72, 73, 77, 
85, 90–93]. Co(II) has a d7 electron shell and exhibits dis-
tinct d-d transition bands between 550 and 750 nm when 
coordinating ligands in a tetrahedral geometry. In the case 
of TTP-2D’s CCCH domains, Co(II) d-d transition bands are 
observed from 600 to 700 nm, with maxima at ca. 650 and 
675 nm, and a shoulder at ca. 600 nm. The same competi-
tive binding approach was performed for Pb(II). As shown 
in Fig. 2a, we observed a loss of the d-d bands upon titra-
tion with Pb(II), indicative of Pb(II) binding to TTP-2D at 
the same site as Co(II) (and by inference Zn(II)). The data 
were fit to a competitive binding equilibrium and yielded 
a dissociation constant (Kd) of 9.0 × 10–9  M  (Fig.  2b), 
which compares closely to that of Cd(II) for TTP-2D 
(Kd = 3.5 × 10–9 M) and is in-line with the reported Pb(II) 
affinities for Cys3 sites (Table 1) [84] (Fig. 2). 

Binding affinities of other lead finger peptides are 
presented in Table  1 as dissociation constants (Kd). 
The preference for thiolate sites is demonstrated by 
the consensus peptides and typical site preference of 
CCCC > CCCH = CCHC > CCHH. Although Pb(II) does not 
bind TTP-2D as tightly as Zn(II), it binds more tightly than 
Co(II) and Fe(III) (3.5 × 10–6 M and 3.0 × 10–5 M, respec-
tively) [1], and in the same order of magnitude (10–9 M) 

as Cd(II), which has been shown to displace Zn(II) from 
TTP-2D in native ESI–MS experiments [94]. We note that 
Godwin and others have reported nano- and even picomolar 
Pb(II)-binding of ZF peptides often using consensus peptide 
(CP) sequences which are optimized and often lead to tighter 
metal binding affinities than peptides based on wild-type 
proteins [20, 21]. In addition to the binding affinity of Pb(II) 
for TTP-2D, the absorption bands and maxima compare well 
to the available literature.

Structure and coordination geometry of Pb2‑TTP‑2D

Circular dichroism

To understand the impact of Pb(II) binding on secondary 
structure, circular dichroism (CD) was employed. While 
classical zinc finger domains (CCHH-type) adopt a well-
defined ββα fold upon Zn(II) addition [91, 95], the nonclas-
sical CCCH ZF domains of TTP gain a small but measurable 
change in structure with Zn(II) [38]. Figure 3a shows the CD 
spectra of apo-TTP-2D and Zn2-TTP-2D and reveals that 
Zn(II) addition induces some secondary structure compared 
to the apo-peptide, indicated by the small peaks centered at 
218 and 227 nm. These data are supported by the findings 
of Wright and coworkers on Tis11D, a close homolog of 
TTP and a member of the same ZFP36 family, that revealed 
that Zn(II) imparts limited structure to the apo-ZF [59]. 
In comparison to the native Zn(II) cofactor, Pb(II) addi-
tion leads to a different CD spectrum (Fig. 3a) which more 
closely resembles the apo-TTP-2D spectrum. Additionally, 
in Fig. 3b, a Zn2-TTP-2D sample titrated with molar equiva-
lents of Pb(OAc)2 exhibited immediate and stepwise shifts 
in the CD spectra from 215 to 230 nm, the region attributed 
to alpha-helical structure gained from Zn(II) coordination. 
The final CD spectrum resembles the spectrum observed for 
Pb2-TTP-2D (Fig. 3a), suggesting that Pb(II) is affecting the 
secondary structure of folded Zn2-TTP-2D.

The finding that Pb(II) binding to TTP-2D does not 
induce changes in secondary structure as measured by CD 
is consistent with the data we have reported for TTP-2D 
binding to other non-native metals Cd(II) and Cu(I) [84, 
85]. While the spectrum for Cu2-TTP-2D resembles the 
Pb2-TTP-2D spectrum presented in Fig. 3a, the CD spectrum 
for Cd2-TTP-2D does have peak character/spectral shape 
closer to that of Zn2-TTP-2D, although the CD signal inten-
sities and overall shapes are not superimposable. This may 
relate to chemical similarity between Cd(II) and the native 
Zn(II) cofactor, as they are both d10 metals that adopt similar 
geometries [19, 84]. In addition, Pb(II) does not induce a 
stable secondary structure in other types of ZFs. For exam-
ple, Godwin and coworkers found that Pb binding to ZF 
constructs of either the HIV nucleocapsid domain (CCHC) 
or ZF CP-1 (CCHH) show limited secondary structure 
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when measured by CD [21]. Similarly, a study using a Cys-
containing peptide model by Pecoraro and coworkers dem-
onstrated that alpha-helical character could be induced by 
Zn(II) addition but not by Pb(II) [24]. Finally, Isernia and 
coworkers showed that several metals, including Pb(II), did 
not induce conformational changes in the classical ZF Ros87 
[86].

2‑Dimensional 1H‑nuclear magnetic resonance (NMR) 
spectroscopy

Due to the predominantly tetrahedral coordination of Zn(II) 
across all classes of ZFs, in contrast to the propensity for 
trigonal pyramidal binding of Pb(II) in biomolecules, the 
differences in chemical environments of TTP-2D’s amino 
acid side chains would presumably be significantly differ-
ent when bound to either metal [23]. To probe the proton 
environment upon Pb(II) binding, 2-D COSY 1H-NMR was 
utilized to compare Pb- and Zn-bound TTP-2D. In Fig. 4, 
overall chemical shift dispersion demonstrates a lack of 
well-defined proton cross-peaks in the Pb2-TTP-2D sample. 
The crosspeaks between the backbone amide (6–9.5 ppm) 
and the alpha-protons of the residues (3–4.5 ppm) in the 
Zn-bound spectrum are well-dispersed and those in the Pb-
bound spectrum are not. The intra-residue crosspeaks of the 
aromatic sidechain residues (Tyr, Phe, His) are also different 
between the Zn- and Pb-bound forms, as there are more of 
these crosspeaks in the Zn-form, and they are more dispersed 
as well. Our chemical shift dispersion results agree with the 
findings of Godwin and coworkers, who reported that Pb(II) 
binding of an HIV-CCHC construct does not fully fold the 

Fig. 1   a Plot of the change in the absorption spectrum between 
230 and 450  nm as apo-TTP-2D (20  μM) is titrated with 0.4, 0.8, 
1.2, 1.4, 1.6, 1.8, 2, 3, and 5 equivalents of Pb(OAc)2 (inset: mag-
nified plot of the change in the same absorption spectrum between 
300 and 400 nm at the same equivalents of Pb(OAc)2). b Plot of the 
increase in absorbance at 235  nm (blue circle), 260  nm (black tri-
angles), and 336 nm (red diamonds) as apo-TTP-2D is titrated with 

Pb(OAc)2. c Job plot of Pb2+/apo-TTP-2D interaction where absorb-
ance at both 260 (red diamonds) and 336 nm (blue triangles) are plot-
ted against the mole fraction of Pb2+, where mole fraction = [Pb2+]/
{[Pb2+] + [apo-TTP-2D]}. Total concentration of [Pb2+] + [apo-TTP-
2D] was maintained at 20 µM for each data point. All above experi-
ments were performed in 100 mM HEPES buffer, pH 7.5

Table 1   Dissociation constants (Kd), in (M), of reported ZF peptides

Zinc finger peptide Kd Zn(II) Kd Pb(II) References

TTP-2D 6.2 × 10–11 9.0 × 10–9 Zn:[1], Pb: this work
HIV-CCHC 7.0 × 10–11 3.0 × 10–10 [20]
CP-CCHH 5.7 × 10–12 5 × 10–11 [20]
CP-CCHC 3.2 × 10–12 8 × 10–11 [20]
CP-CCCC​ 1.1 × 10–12 3.9 × 10–14 [20]
Ros87 5.8 × 10–10 5.6 × 10–6 [18]
TFIIIA (F3) 1.0 × 10–8 3.4 × 10–8 [17]
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peptide or influence the proton environment in the way that 
Zn2+ does [21]. Furthermore, these NMR data are supportive 
of the CD data (Fig. 3a, b) that Pb(II) has a notably different 
impact on peptide fold/structure in comparison to Zn(II).

Extended X‑ray absorption fine structure (EXAFS)

X-ray absorption spectroscopy (XAS) was utilized to eluci-
date the geometry of Pb(II) binding, as well as its coordi-
nating ligands and near/long range interactions. XAS data 
collected on the Pb(II) L3-edge for Pb2-TTP-2D provided 
a structural picture of metal coordinated in a PbS3 ligand 

Fig. 2   a Plot of the change in the absorption spectrum between 
500 and 800  nm, as 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, and 2.8 equivalents 
of Pb(NO3)2 is added to Co2-TTP-2D. b Plot of the change in the 
absorption spectrum at 650  nm as a function of concentration as 

Co2+ (blue) is added to apo-TTP-2D and Pb2+ (red) is added to 
Co2-TTP-2D. Both titrations were performed with ~ 20 μM apo-TTP-
2D in 100 mM HEPES buffer, pH 7.5

Fig. 3   a Overlay of the CD spectra of apo-TTP-2D (black dashed 
line), Zn-TTP-2D (black line), and Pb-TTP-2D (purple). b Overlay of 
the CD spectra for Zn-TTP-2D (black line) and following additions of 

Pb(OAc)2 (2-eq: blue line, 4-eq: purple line). All experiments were 
performed starting with 30 μM apo-TTP-2D in 10 mM tris buffer, pH 
7.5
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environment (Fig.  5). Simulations of the EXAFS data 
showed the nearest neighbor environment of Pb(II) was 
dominated by sulfur scattering at 2.66 Å (Fit 1, Table 2). 
The simulation parameter with the highest accuracy within 
this technique is the bond length (at ± 0.02 Å), and the Pb–S 
value of 2.66 Å agrees closely with reported Pb-S3 bond 
lengths in both proteins and small molecules bound to Pb(II) 
[23, 96, 97]. Although the Pb–S bond length is most consist-
ent with a trigonal pyramidal Pb–S3 complex [23], the best 
fit coordination number (CN) we obtained from the simula-
tion was lower at 2.0; the accuracy of this parameter in the 
simulation is ± 1.0 [81]. We believe the apparent simulation 
number of 2.0 is lower than the actual value of 3.0 due to the 
high disorder between the 3 individual bonds, as indicated 
by the high Debye–Waller bond disorder factor. During the 
simulations, the Debye–Waller factors were > 5 × 103, indi-
cating that there is substantial disorder between the indi-
vidual Pb–S direct bonds, although the average bond length 
was at 2.66 Å. A similar disconnect in EXAFS simulations 
between clear three coordinate Pb sample architecture, 
based on the high accuracy of bond length values obtained 
in the fits, and an unrealistically low 2 coordinate coordi-
nation number from the fit was also observed by Godwin 
and Penner-Hahn [23]. In their CCHC peptides, their data 
predict a CN of 2 sulfur scatterers which yielded a lower 
Debye–Waller factor than a fit with a CN of 3, and this was 
a result of destructive overlap of the EXAFS signals from 
the mixed Pb–S and Pb–N/O scatterers. We conjecture that a 
Pb-S3 coordination environment is therefore most consistent 
with our simulation results. Contributions from long range 
carbon scattering at 3.04 Å (Fit 2, Table 2) and finally at 

4.18 Å provide the optimal simulation metrical parameters 
for Pb(II) bound to TTP-2D (Fit 3, Table 2).

Our XAS data are consistent with additional character-
ized three coordinate Pb(II) coordination sites found in both 
proteins and biomolecules [22, 89]. The Penner-Hahn and 
Giedroc groups highlighted the preference for PbS3 coor-
dination in the metalloregulator CadC [88]. Similarly, in 
2005 work that was focused on the consensus ZF peptide 
CP and related mutations, the Godwin and Penner-Hahn 
groups reported a preference of Pb(II) for trigonal pyrami-
dal sites for Pb binding to a series of modified CP peptides 
(CP-CCHC, CP-CCCH, and CP-CCCC) [23]. 207Pb-NMR 
was used by Pecoraro and coworkers again with ZF pep-
tides, this time to discern whether His imidazole ligands 
had any role in Pb(II) ligation. To confirm Pb-interacting 
species that they observed in the HIV-CCHC peptide, they 

Fig. 4   Comparison of the 2-D 
1H-NMR COSY spectra from 
6 to 10 ppm (x-axis) and 2 to 
10 ppm (y-axis) Pb2-TTP-2D 
(left) and Zn2-TTP-2D (right) 
in 90% H2O/10% D2O. Samples 
were prepared at 350 μM 
peptide with 700 μM metal, 
adjusted to pH 6.5 with tris base

Fig. 5   Pb L3 Edge EXAFS (a) and Fourier transform of the EXAFS 
(b) for Pb2-TTP-2D. Raw/unfiltered data shown in black while simu-
lated data is shown in green
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also prepared and analyzed an HIV-CCGC peptide. The two 
peptides both exhibited similar spectra, ruling out the pos-
sibility of His participation [25]. In a related manner, Fig. 
S1 shows that in 1-D proton spectra of apo-TTP-2D, addi-
tions of Pb(II) did not chemically shift the non-exchangeable 
protons (~ 6 to 8 ppm region) of the His imidazole ring. 
This indicates that the His residues of TTP-2D (3 His in 
total) are not involved in coordinating Pb(II), as was found in 
Cd2-TTP-2D [84], and supports the EXAFS fits that are opti-
mized without N coordination. Taken together, the findings 
of PbS3 coordination in Pb2-TTP-2D (Fig. 5 and Table 2) are 
supported by previous studies of Pb(II) binding to sulfur-rich 
biomolecules.

Functional impact of Pb(II) mismetallation 
via TTP‑2D/RNA interactions

The function of TTP to regulate cytokine mRNA is achieved 
via tight and specific binding of the ZF domains to ARE 
elements in the 3’UTR [98]. NMR analyses have revealed 
important hydrogen-bonding and pi-stacking interactions 
between the folded fingers of TTP and the adenosyl moieties 
of the ARE sequence, as well as the backbone of the RNA 
[41, 59, 99]. To determine the functional impact of Pb(II) 
binding of TTP-2D, a fluorescence anisotropy (FA) assay 
was employed to determine whether Pb2-TTP-2D binds to a 
canonical ARE sequence. Our lab has previously reported 
that Zn2-TTP-2D binds to the ARE sequence 5’-UUU​AUU​
UAUUU-3’ with nanomolar affinity [72]. This binding is 
selective, as Zn2-TTP-2D exhibited 5- and 15-fold weaker 
affinity for two mutant oligonucleotides, 5’-UUU​GUUU​
AUU​U-3’ and 5’-UUU​GUUU​GUUU-3’. Each of the RNAs 
were labeled with a 3’ fluorescein tag to measure the RNAs 
anisotropy as a function of M-TTP-2D titrated into the 
cuvette.

We applied this FA assay to Pb2-TTP-2D and report that, 
surprisingly, RNA-binding to the canonical ARE 11-mer 
is retained with Pb(II). Pb2-TTP-2D binds the canoni-
cal ARE 11-mer with two orders of magnitude higher 

affinity than Zn2-TTP-2D (760 pM versus 16 nM). Addi-
tionally, Pb2-TTP-2D also binds to the oligonucleotides 
with a modified sequence much like Zn2-TTP-2D does; 
however, the binding affinities of Pb2-TTP-2D for these 
mutated sequences show a more significant decrease than 
that observed for Zn2-TTP-2D. For example, the difference 
in binding affinity of Pb2-TTP-2D for the canonical ARE 
sequence UUU​AUU​UAUUU versus the non-canonical ARE 
sequence UUU​GUUU​GUUU sequence is 100X, compared 
to 10X for Zn2-TTP-2D with these same RNA sequences. 
Figure 6a plots the binding data and fits, and the dissociation 
constants (Kd) determined from the fits are summarized in 
Table 3. Figure 6b compares the Kds for each metal and each 
RNA sequence. Collectively, these data show that despite the 
altered geometry and fold, Pb2-TTP-2D exhibits tighter bind-
ing than Zn2-TTP-2D to the 11-mer ARE. The RNA binding 
experiment for Pb2-TTP-2D with the ARE mutants revealed 
that Pb2-TTP-2D requires the adenosine nucleotides for 
tight binding and that Pb2-TTP-2D’s RNA binding is more 
specific than that of Zn2-TTP-2D. Similar trends for RNA-
binding were observed in Cd2-TTP-2D, where Cd2-TTP-2D 
bound the native 11-mer more tightly than Zn2-TTP-2D but 
had greatly diminished binding with mutation of the RNA 
[84]. A key difference in this work is that Pb(II) adopts trig-
onal pyramidal geometry in TTP-2D, while Cd(II) likely 
maintains the native tetrahedral geometry.

Several groups have demonstrated diminished DNA- and 
RNA-binding of Pb-substituted ZFs, including Transcrip-
tion Factor III A (TFIIIA), Specificity Protein-1 (Sp-1), and 
Early Growth Response (Egr-1) gene [49, 52, 53, 86, 100]. 
However, Zawia and coworkers proposed that the DNA 
binding of Sp-1 with Pb(II) may be biphasic, where it main-
tains function at low levels of Pb(II) but inhibits function 
with greater exposure. The Cys4 GATA ZFs had markedly 
reduced DNA-binding activity both in vitro and in vivo 
(yeast), in gel-shift and LacZ-reporter assays, respectively 
[20]. In contrast, Hartwig and coworkers identified that 
Pb(II) did not affect the activity of two Cys4 ZFs involved 
in DNA repair, Xeroderma Pigmentosum Complementation 

Table 2   Summary of EXAFS 
simulations data of Pb2-TTP-2D

a Independent metal–ligand scattering environment
b Scattering atoms: S (sulfur) and C (carbon)
c Average metal–ligand bond length from two independent samples
d Average metal–ligand coordination number from two independent samples
e Average Debye–Waller factor in Å2 × 103 from two independent samples
f Number of degrees of freedom weighted mean square deviation between data and fit

Nearest-neighbor ligand environmenta Long-range ligand environmenta

Fit # Atomb R (Å)c C.N.d s2 e Atomb R (Å)c C.N.d s2 e Fʹf

1 S 2.66 2.0 5.6 – – – – 0.11
2 S 2.66 2.0 6.0 C 3.04 1.5 4.4 0.10
3 S 2.66 2.0 6.0 C 4.18 2.0 3.3 0.09
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Group A Protein (XPA) and bacterial formamidopyrimi-
dine-DNA glycosylase (Fpg) [101]. The prokaryotic metal-
sensing transcriptional regulators CadC and CmtR, both 
characterized by Giedroc and coworkers as containing PbS3 
coordination sites, are activated by Pb(II) binding [50, 102]. 
These two non-ZF examples are distinct, in that the apo-
protein is inhibitory of DNA translation, but xenobiotic 
metal binding of the Cys3 ligands is required for activation. 
Together, these data reveal that the effect of Pb binding to 
ZFs on oligonucleotide binding may be protein specific, with 
Pb inhibiting binding in some cases, enhancing binding in 
other cases, and having no effect in other cases.

Oxygen-rich side chains, as opposed to the Cys-rich sites 
discussed thus far, have been proposed as one of the ligat-
ing motifs for Pb(II) interaction with Ca(II)-binding pro-
teins calmodulin (CaM) and troponin (TnC) [28, 30]. In 
the case of CaM, Yang and coworkers have demonstrated 
through several publications that Pb(II)’s interaction with 
CaM and the structure/function impact can occur in at least 
three ways; (1) Pb(II) can bind allosterically while Ca(II) is 
bound, or bind at the active metal site and either (2) inhibit 

or (3) hyperactivate CaM signaling [29, 31, 103]. Indeed, 
because TTP regulates itself (in addition to the other ZFP36 
family members), hyperactivity with Pb2-TTP could present 
a significant problem for cellular response to stress by dimin-
ishing TTP levels preemptively. Collectively, these data 
highlight that Pb(II)’s effect on metalloprotein function can 
be multifaceted and must be discerned by empirical studies 
for each specific protein.

Conclusions

Zinc finger proteins have been postulated for more than two 
decades as potential targets for the pathologic toxicity of 
Pb(II) and other toxic metals [11, 104]. This assertion is 
based upon the documented affinity of Pb(II), Cd(II), Hg(II), 
etc. for Cys-thiolate sites [12, 24, 25, 43, 96, 102]. The data 
presented here adds to a body of evidence for Pb(II) binding 
to biochemical sites, specifically those of Cys-rich metallo-
proteins. While Pb2-TTP-2D does not exhibit the same sec-
ondary structure as exhibited by Zn2-TTP-2D, it maintains 
tight binding to the canonical ARE RNA target sequence. 
Examples of both activating and inhibitory effects of Pb(II) 
substitution of ZFs have been described by others, and a 
pathogenic mechanism could be ascribed in either case. 
Indeed, as TTP also regulates its own expression by binding 
the 3’-UTR of TTP mRNA, hyperactivation of TTP activity, 
as seen in Pb(II) mismetallation of Ca(II)-binding proteins, 
could ultimately have a disruptive effect on TTP function 
by the depletion of TTP levels through auto-regulation. It 
is important to note that TTP requires PPIs of NOT1 and/

Fig. 6   a Plot of the change in anisotropy (as fraction bound) 
upon the addition of Pb2-TTP-2D to the RNA oligonucleo-
tides UUU​AUU​UAUUU-F (red), UUU​GUU​UAUUU-F (blue), 
and UUU​GUU​UGUUU-F (green). The solid lines represent a 

nonlinear least-squares fit to the binding model. b Compari-
son of M-TTP-2D affinity for ARE 11-mer oligonucleotides (fold 
increase = Kd Mutant./Kd Canonical) FA experiments were performed in 
200 mM HEPES/100 mM NaCl/0.1 mg/mL BSA buffer at pH 7.5

Table 3   Dissociation constants (Kd) of M-TTP-2D [M = Pb(II), 
Zn(II)]

a Reference [1]

RNA sequences Pb2-TTP-2D Zn2-TTP-2 Da

UUU​AUUU​AUUU​ 0.760 ± 0.2 nM 16.0 ± 1.0 nM
UUU​GUUU​AUUU​ 57.0 ± 15 nM 44.0 ± 12 nM
UUU​GUUU​GUUU​ 780 ± 210 nM 260 ± 10 nM
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or the decapping complex to destabilize target mRNAs [57, 
58, 60], and that the altered fold of Pb2-TTP-2D may not 
be suitable for these PPIs. Further work may consider the 
full picture of TTP activity and the effect that Pb(II) has 
on the many targets of TTP. Similarly, Pb(II) contributes 
to imbalance of inflammatory cytokines and the oxidative 
state of the cell, partly through its inhibition of glutathione 
reductase [17, 105]. Oxidation of zinc fingers, such as TTP, 
would perturb their intracellular levels and affect their ability 
to properly regulate cytokine levels. These broader implica-
tions of Pb(II) toxicity may provide ideas for future studies 
aimed at solving the multifaceted consequences of Pb(II) 
exposure with innovative therapies. Development of better 
prophylactic treatments and longitudinal screening of indi-
viduals exposed to Pb(II) are critical.
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