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Abstract—Granger causality is among the widely used data-
driven approaches for causal analysis of time series data with
applications in various areas including economics, molecular
biology, and neuroscience. Two of the main challenges of this
methodology are: 1) over-fitting as a result of limited data
duration, and 2) correlated process noise as a confounding
factor, both leading to errors in identifying the causal influences.
Sparse estimation via the LASSO has successfully addressed
these challenges for parameter estimation. However, the classical
statistical tests for Granger causality resort to asymptotic analysis
of ordinary least squares, which require long data duration to
be useful and are not immune to confounding effects. In this
work, we address this disconnect by introducing a LASSO-based
statistic and studying its non-asymptotic properties under the
assumption that the true models admit sparse autoregressive
representations. We establish fundamental limits for reliable
identification of Granger causal influences using the proposed
LASSO-based statistic. We further characterize the false positive
error probability and test power of a simple thresholding rule for
identifying Granger causal effects and provide two methods to
set the threshold in a data-driven fashion. We present simulation
studies and application to real data to compare the performance
of our proposed method to ordinary least squares and existing
LASSO-based methods in detecting Granger causal influences,
which corroborate our theoretical results.

Index Terms—Granger Causality, LASSO, autoregressive mod-
els, non-asymptotic analysis.

I. INTRODUCTION

ELIABLE identification of causal influences is one of the
central challenges in time series analysis, with implica-
tions for various domains such as economics [1], neuroscience
[2]-[4] and computational biology [5], [6]. Granger causal
(GC) characterization of time series is among the widely
used methods in this regard. This framework was pioneered
by Granger [7], with subsequent key generalizations provided
by Geweke [8], [9]. The notion of GC influence pertains to
assessing the improvements in predicting the future samples of
one time series by incorporating the past samples of another
one.
While causality, as the relationship between cause and
effect, is a philosophically well-defined concept [10], it eludes
a universal definition in empirical sciences and engineering.

P. Das is with the Department of Anesthesia, Critical Care and Pain
Medicine, Massachusetts General Hospital, Boston, MA, 02114 USA (e-mail:
pdas6 @mgh.harvard.edu).

B. Babadi is with the Department of Electrical and Computer Engineering
and the Institute for Systems Research, University of Maryland, College Park,
MD, 20742 USA (e-mail: behtash@umd.edu).

This work was supported in part by the National Science Foundation Awards
No. CCF1552946 and ECCS1807216 and the National Institutes of Health
Award No. 1U19NS107464 (Corresponding author: Proloy Das).

Granger causality is one of many definitions used in time
series models (see [11], [12] for other notions), with an explicit
data-driven form that admits statistical testing. The stochastic
nature of the time series model, i.e., the uncertainty is the
central feature of GC definition. Unlike regression analysis
that merely reflects correlational association, Granger’s notion
of causality probes if two time series are temporally related
[13], in terms of the precedence established by the direction of
time flow, i.e., if one time series precedes, and thus forecasts,
another. In principle, given two time series z; and y;, one
asserts that ¢, has a GC influence on x; when the posterior
conditional densities p(z¢|Tt—1,Ti—2, -, Yt—1,Yt—2, - - ) and
p(xe|Ti—1, 22, - ) differ significantly. However, estimating
these posterior densities from the observed data is a difficult
task in general, and requires additional modeling assumptions.
A popular set of such assumptions pertains to parametric
multivariate autoregressive (MVAR) models along with certain
distributional specifications (e.g., zero-mean Gaussian process
noise). In these models, the aforementioned posterior densities
can be fully characterized by the estimates of parameters and
prediction error variances. As such, the classical notion of
Granger causality focuses on the prediction error variances:
one first aims at predicting x4 by a linear combination of the
joint past observations {z,--- 2o}, {ys, - yo} (.e., the full
model), followed by repeating this task by excluding the past
observations of y; (i.e., the reduced model). If the prediction
error variance in the former case is significantly smaller than
the latter, we say that ¢, has a GC influence on x; (See Section
II-A for a formal definition of GC).

Conventionally, the optimal linear predictors in the mean
square error sense, are obtained by the ordinary least squares
(OLS), and the model orders are determined by the AIC [14] or
BIC [15] procedures. Then, the GC measure is defined as the
logarithmic ratio of the two prediction error variances, and its
statistical significance is assessed based on the corresponding
asymptotic distributions [16]-[18]. While the aforementioned
procedure is relatively simple to carry out, it faces two key
challenges. First, in order to obtain reliable MVAR parameter
estimates via OLS, a relatively long observation horizon
is required. In datasets with small sample size (e.g., gene
expression data [19]), the regression models typically over-
fit the observed data, causing both parameter estimation and
model order selection to break down [4], [20]. In addition,
AIC/BIC may restrict the order of the MVAR in a way that
the resulting model fails to capture the complex and long-range
dynamics of the underlying couplings [2], [21]. Secondly,
correlated process noise arising from latent processes, may
lead to misidentification of GC influences, which is often



referred to as the confounding effect [22].

These challenges have been successfully addressed in the
context of regularized MVAR estimation [23]-[31]. In partic-
ular, the theory of sparse estimation via the LASSO [32]-[36]
provides a principled methodology for simultaneous parameter
estimation and model selection in high dimensional MVAR
models [24]-[29], [37]-[39]. In addition, the Oracle property
of the LASSO in presence of correlated noise ensures robust
recovery of the set of MVAR parameters arising from the direct
GC influences while discarding any spurious couplings due
to correlated process noise, thus alleviating the confounding
effect. The LASSO and its variants have already been utilized
in existing work to identify graphical GC influences based
on the recovered sparsity patterns [40]-[47]. These methods
construct the GC graph based on the estimated model pa-
rameters, either directly [40] or by appropriate thresholding
[45], [46] to control false positive errors. This idea has even
been extended to time series models that account for nonlinear
dynamics using structured multilayer perceptrons or recurrent
neural networks [48]. Another related class of results uses de-
biasing techniques in order to construct confidence intervals
and thereby identify the significant GC interactions [49]-
[55]. There is, however, an evident disconnect between these
LASSO-based approaches and the classical OLS-based GC in-
ference: while the LASSO-based approaches aim at identifying
the GC effects based on consistent parameter estimates in the
non-asymptotic regime, the classical GC methodology relies
on the comparison of the prediction errors across the full and
reduced models by resorting to asymptotic distributions.

In this paper, we address the aforementioned disconnect
between the currently available LASSO-based approaches and
the classical OLS-based GC inference by unifying these two
approaches via introducing a new LASSO-based GC statistic
that resembles the classical GC measure, and by leveraging the
consistency properties of the LASSO to characterize the non-
asymptotic properties of said GC statistic. In particular, we
consider a canonical bivariate autoregressive (BVAR) process
with correlated process noise. We then propose a likelihood-
based scaled F-statistic as the relevant GC statistic, which we
call the LGC statistic, and study its non-asymptotic properties
under both the presence and absence of a GC influence. Our
analysis reveals that the well-known sufficient conditions of
the LASSO for stable BVAR estimation are also sufficient for
accurate detection of the GC influences, if the strength of the
GC effect satisfies additional conditions. We also show that
the conditions on the strength of the GC effect pose a fun-
damental limit for GC identification using LGC. Furthermore,
we characterize the false positive error probability and test
power of a simple thresholding scheme for identification of
GC influences and provide two methods to set the threshold
in a data-driven fashion.

We present extensive simulation studies to compare the
performance of the proposed LGC-based method with the
classical OLS-based and two of the existing LASSO-based
approaches in detecting GC influences. These studies demon-
strate the validity of our theoretical claims, explore the key
underlying trade-offs, and evaluate our contributions in the
context of existing work. We also present an application to

experimentally-recorded neural data from general anesthesia
to assess the GC influence of the local field potential (LFP)
on spiking activity. Our results based on LGC analysis cor-
roborate existing hypotheses on the GC influence of LFP
in mediating local spiking activity, whereas these effects are
concealed by the classical GC analysis due to significant over-
fitting.

In summary, our main contribution is to extend the theo-
retical results of the LASSO to the classical characterization
of GC influences, to identify the key trade-offs in terms of
sampling requirements and strength of the GC effects that
result in reliable GC identification, to characterize the false
positive error probability and test power of GC detection by
thresholding LGC, and to provide data-driven methods to set
the test threshold in practice.

The rest of this paper is organized as follows: Section
I provides background and our problem formulation. Our
main theoretical and methodological contributions are given
in Section III. Section IV presents application to simulated
and experimentally-recorded neural data, followed by our
concluding remarks in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

Throughout this work, we use regular and boldface lower-
case letters to denote scalars and vectors, respectively. Matri-
ces are denoted by boldface uppercase letters. The transpose
and Hermitian of a matrix M are denoted by M and M
respectively. The /,-norm of a vector v € R”™ is denoted
by [|v]l, = (Z?=1|vi\°‘)1/a for @« > 1. In addition, we use
the notation ||v||, = > ; 1[v; # 0] to denote the number
of non-zero elements of the vector v, and drop the subscript
of the {y-norm of v and denote it by ||v||. For a matrix
M, the matrix norm induced by the ¢,-norm is defined as
[IM]|o:= sup |[IMx]|o/]|X||o- We denote the minimum and

x#0

maximum eigenvalues of a M by Apin (M) and Aax (M),
respectively.

A. Granger Causality in a Canonical BVAR Regression Model

Consider finite-duration observations from two time series
x¢ and yg, given by {mt,yt}?:_p_H, where n is the sample
size and p is the order. The BVAR(p) model can be expressed
as:

|:{I?t:| _A, |:1't1:| LA, |:£Ct2:| bt A, |:xtp:| n {61 M
Yt Yt—1 Yt—2 Yt—p €

with A; € R**? fori € {1,2,---,p} denoting the BVAR
parameters and [e;, ¢;]T denoting the process noise with
known distribution. It is commonly assumed that [e;, €}]T ~
N(0,%,). Using this BVAR(p) model and considering
{z4, yt}ngp 41 as the initial condition, one can form a pre-
diction model of z; as follows:

x = X0 + €, 2

where the response x, regressors X, and residuals € are defined
as in (3).

The regression coefficients 6 consist of 2p parameters:
{6;}_,, representing the autoregression coefficients obtained



from (A;)11, ¢ = 1,2,---,p and {Qi}?ﬁpﬂ represent-
ing the cross-regression coefficients obtained from (A;); 2,
i =1,2,---,p. Hereafter, we denote the true coefficients by
0* c R?P. Also, for a generic coefficient vector 8 € R?P,
the corresponding auto- and cross-regression components are
denoted by 0(1) € RP and 0(2) € RP, respectively, i.e.,
0 =: [9(1);9(2)]-

In the context of this bivariate model, let U; be the sigma-
field generated by all random variables up to and including
time ¢t — 1, and (U\y), be the sigma-field generated by all
random variables up to and including time ¢ — 1, except
{Yt—1,Yt—2,---}. In addition, let the variance of a random
variable, Z conditional on these sigma-fields be o (Z|;) and
o%(Z|(U\y);). With this notation, Granger Causality (GC) is
formally defined for Gaussian BVAR models as follows:

Definition 1 (Granger Causality [7]). We say y; has a Granger
causal link to x4, if o2(z¢|Us) < 02 (2¢|(U\y)1), i€, we are
better able to predict z; using all available data than excluding
Yt.

While Definition 1 applies to any time ¢, in practice the GC
is assessed within blocks of the time-series data, e.g., for 0 <
t < n, since estimating the prediction variance reliably for all
time points and using a single trial of the time-series data is
challenging. A convenient framework to test the GC influence
of y; on z; is to pose it as hypothesis testing, with the null
hypothesis Hy .z : 9{2 = 0. To this end, one considers the
following BVAR(p) models:

Full Model: x = X0 + ¢,
Reduced Model: x = X6 + €, with 5(2) =0.

(4a)
(4b)

In words, in the full model, all columns of X are used
to estimate x, but in the reduced model, only the first p
columns are used. The conventional GC measure [7]-[9] is
then defined as the logarithmic ratio of the residual variances:
Fysa = log (var(€)/var(e)). Note that when the residuals
are Gaussian, Fy,,, is the log-likelihood ratio statistic. Given
that the reduced model is nested within the full model, we
have Fy ., > 0.

In order to compute Fy,, from the time series data,
empirical residual variances are used based on OLS parameter
estimates under both models [1]:

. 1
OoLs = argmin — ||x — X0, (5a)
] n
= 1
OoLs = argmin — [|x — XBH2 . (5b)
0:0(5y=0 T

The estimated JF,,; is a random variable over R>¢, and
typically has a non-degenerate distribution. Thus, a non-
zero JFy, does not necessarily imply a GC influence. To

control for false discoveries, the well-established results on
the asymptotic normality of maximum likelihood estimators
can be utilized: under mild assumptions, n.f, ., converges
in distribution to a chi-square ij with degree p. In addition,
under a sequence of local alternatives Hy, ,, ; : 92‘2) =4§/v/n,
for some constant vector 8, nFy. ., converges in distribution
to a non-central chi-square X%(u) with degree p and non-
centrality v > 0 [17], [18]. These asymptotic results lead to
a simple thresholding strategy: rejecting the null hypothesis if
Fyse exceeds a fixed threshold. A key consideration in this
framework is choosing the model order p. To this end, criteria
such as the AIC [14] and BIC [15] are widely used to strike
a balance between the variance accounted for and the number
of coefficients to be estimated.

While the foregoing procedure works well in practice for
large sample sizes, its performance sharply degrades as the
sample size decreases. This performance degradation has two
main reasons:

1) The regression models become under-determined and
result in poor estimates of the parameters [28], and

2) The conventional model selection criteria fail to capture
possible long-range temporal coupling of the underlying
processes [27].

As a result, the classical GC measure is highly susceptible
to over-fitting. In addition, when the process noise elements
e; and €, are highly correlated, the OLS estimates incur
additional error in capturing the true BVAR parameters, and
hence result in mis-detection of the GC influences. While some
existing nonparametric methods aim at entirely bypassing
MVAR estimation by utilizing spectral matrix factorization
[56] or multivariate embedding [57] for system identification,
they are similarly prone to the adverse effects of small
sample size. It is noteworthy that there also exists a slew of
partial correlation-based nonparametric methods that employ
conditional independence tests for GC detection [58]-[60],
thus avoiding time series modeling assumptions altogether.

B. LASSO-based GC Inference in the High-Dimensional Set-
ting

In the so-called high-dimensional setting, where the model
dimension becomes comparable to or even exceeds the sam-
ple size [34], regularization schemes are employed to guard
against over-fitting. These schemes include Tikhonov regu-
larization [61], [62], ¢;-regularization or the LASSO [32],
[33], [35], [36], smoothly clipped absolute deviation [63],
[64], Elastic-Net [65], and their variants, and have particularly
proven useful in MVAR estimation [23]-[26], [30], [31].
Among these techniques, the LASSO has been widely used
and studied in the high-dimensional sparse MVAR setting,

Tn Tn—1 Tn—p Yn—1 Yn—p €n
Tp—1 Tp—2 Tn—p—1 Yn—2 Yn—p—1 €n—1
X = . , X = . . , €= ) . 3)
1 Zo T—p+1 Yo o Y—pt1 €1



under fairly general assumptions [24]-[26]. By augmenting
the least squares error loss with the ¢1-norm of the parameters,
the LASSO simultaneously guards against over-fitting and pro-
vides automatic model selection [36]—[39], [66], [67], under
the hypothesis that the true parameters are sparse. In the con-
text of MVAR estimation, assuming that the time series data
admit a sparse MVAR representation, the LASSO estimates
enjoy tight bounds on the estimation and prediction errors
under suitable sample size requirements, even for models with
correlated noise [28], [29].

By leveraging the foregoing properties, the LASSO and its
variants have been utilized in existing work to identify GC
influences in a graphical fashion [40]-[46]. Fujita et al. [41]
used sparse autoregressive models to identify the structure of
gene regulatory networks; Arnold et al. [40] provided a formal
treatment of LASSO-based Granger causality detection using
sparse parameter estimates. Lozano et al. [42] and Shimamura
et al. [47] used Group LASSO and Elastic-Net penalties,
respectively, to reduce the number of false positives while
maintaining a high true positive rate in network inference.
Finally, Shojaie and Michailidis [43] introduced a truncating
LASSO penalty in order to identify the correct order of the
VAR model and thereby enhance the reliability of GC dis-
covery. To deal with time series data with extreme events, i.e.,
exhibiting heavy-tailed distributions, Liu et al. [44] utilized the
theory of extreme value modeling to modify the distributional
assumptions.

The aforementioned methods translate the non-zero values
of estimated parameters (in a group-wise sense) to GC either
directly or after appropriate pruning [45] (See [46] for a
through overview). Alternatively, de-biasing techniques have
been introduced for constructing confidence intervals over the
estimated parameters and thereby identifying the significant
GC effects [49]-[55] to maintain high number of true positives
while reducing false discoveries.

C. Unifying the Classical OLS-based and LASSO-based Ap-

proaches

Comparing the classical OLS-based GC and the recent
LASSO-based approaches to GC inference reveals an evident
disconnect: the latter approach directly utilizes the estimated
parameters from a single model to identify the GC influence
with non-asymptotic performance guarantees, while the former
is based on comparing the prediction error performance of
two different models by resorting to asymptotic distributions
for statistical testing.

Our main objective here is address this disconnect by
unifying these two approaches. To this end, we first replace
OLS estimation in (5b) by its LASSO counterpart:

6 — argmin %HX—XGHQ + A6l 6a)
6

6 = argmin — x — X8| + A0,
9:0(2):0

(6b)

where \,, denotes the regularization parameter. Let

1 .
5(0(1),0(2)) = E ||X — X0H2 with 6 = [9(1);0(2)].

By similarly grouping the solutions of (6) as 6 = [5(1); §(2)]

and 6 = [5(1);0], we then propose to use the following

statistic:
_ :M_lz ¢(81).0) —z(é}l)ﬁ@))’

5(5(1), 5(2)) 5(6(1)’ 5(2))

)

akin to a scaled likelihood-based version of the F-statistic,
which we call the LASSO-based GC (LGC) statistic. Note that
the LGC statistic can be related to the conventional GC statistic
as Ty = exp(Fysg) — 1, when X, = 0. Therefore, it is
expected for 7y, to be near 0 under the null hypothesis. One
advantage of using this statistic is that a simple thresholding
strategy, similar to that used for the classical GC statistic, can
be used to reject the null hypothesis Hy, 0 : 0?2) = 0.
In the next section, we will characterize the non-asymptotic
properties of the LGC statistic and seek conditions that allow
us to distinguish between the null (i.e., absence of a GC effect)
and a suitably defined alternative (i.e., presence of a GC effect)
hypothesis.

To evaluate the benefits of unifying these two approaches,
i.e., using the robust estimation performance of the LASSO
in comparing the prediction error performance of the full and
reduced models, we will present a simulation study in Section
IV-A to compare LGC-based GC identification with two
existing LASSO-based approaches, namely, the confidence
interval (CI)-based LASSO [50], [53], and truncating LASSO
(TLASSO). Our simulation results show that when the strength
of the GC link is relatively weak, the CI-based LASSO method
results in a high false positive rate and TLASSO exhibits low
true positive rate; LGC, however, strikes a reasonable balance
between true and false positive discovery, in accordance with
our main objective.

III. THEORETICAL RESULTS

Our main theoretical contribution in this section is to
characterize 7., under both the null and a suitably chosen
alternative hypothesis, and establish sufficient conditions that
guarantee distinguishing these hypotheses with high proba-
bility. Furthermore, we show that some of these conditions
are indeed necessary and thus pose a fundamental limit for
the separation of null and alternative hypotheses. We then
analyze the false positive error probability corresponding to the
aforementioned thresholding strategy, under slightly weakened
sufficient conditions. The latter result can be used to obtain
suitable thresholds in practice, as we will discuss in Section
III-F and demonstrate in Section IV. Before presenting the
main results, we state our key assumptions and discuss their
implications in the following section.

A. Key Assumptions and Their Implications
We adopt the following assumption on the BVAR process
from [28]:

Assumption. 1. The {ze,ye}i ot i§ apartof a real%zatior'l of
zero-mean bivariate process that admits a stable and invertible



BVAR(p) representation, with a zero-mean i.i.d. Gaussian
process noise with positive definite covariance X.. Further,
the initial condition of the process is such that the samples
under consideration attain the stationary distribution.

To elaborate on the implications of Assumption 1 for the
second order statistics of the BVAR process, let I'() be the
auto-covariance matrix of the BVAR process at lag [ and

1 o

F(w) = — (1) exp (—ilw)

27 =
be its spectral density matrix. It can be shown that the
spectral density exists, if > ;°/||T(l)]3< oco. Furthermore,
if 32, |IT(1)|]a< oo, the spectral density is bounded and
continuous, so that the essential supremum is indeed achieved
[28].

For the BVAR(p) process in (1), the matrix valued char-
acteristic polynomial is defined as A(z) :=1— ?21 Az,
Then, the following consequences of Assumption 1 provide a
simple characterization of the spectral density matrix [28]:

1) The process noise covariance matrix 3. is positive

definite with bounded eigen-values, i.e.,

0< Amin(ze) < Amax(E

2) The BVAR process is stable and invertible, i.e.,
det(A(z)) # 0 on or inside the unit circle, {z € C :
|z|< 1}
Under these two conditions, the spectral density matrix exists,
and its maximum eigen-value is bounded almost everywhere
on [—m, 7], i.e.,

M(F):

) < 00.

ess sup Amax(F(w)) < o0.
wE[—m,m]

Furthermore, it is bounded and continuous, and admits the
representation:

(exp (—iw)) B AH w)).

Additionally, consider the infimum of the spectral density over
unit circle:

F(w) = %A‘l (exp (—

m(F) := ess inf Ay, (F(w)).

we€[—m,m]
Then, the following useful bounds hold for the BVAR(p)
process in (1) [28]:

ME) S 3 o

where fimax (A) = max Apax (A7 (2)

|z|=1

lrrllinlAmin (A (2)A(2)).

We note that the characteristic polynomial A(z) en-
codes the temporal dependencies of the process, whereas
3. captures the correlation between the process noise
components, possibly due to latent processes. Expressing
the error bounds in our theoretical analysis in terms of
Mmax(A)’Mmin(A)’Amax(Ee)7Amin(ze)’ instead of M(F)
and m (F), helps to distinguish the contributions of these two
sources of BVAR dependencies [28] (See Appendix A).

®)

1 Amin(ze)
> o AN
27 fmax (A)

(2)) and fimin

)
A)i-

We also consider the 2p-dimensional alternative BVAR(1)
representation of the 2-dimensional BVAR(p) process: X, =
Alxt_l + €, where X is the first the row of X in (3) orga-
nized as a column vector, and Al and € are constructed by the
corresponding augmentation of A;’s and ¢,’s, respectively. The
process X has a characteristic polynomial, A(z) :==I— A,z
and is stable if and only if the original process is stable [68].

The remaining component of our key assumptions is the
following sparsity assumption, frequently arising in high-
dimensional regime, specially in LASSO literature.

Assumption 2. The regression coefficients in (2), 6* is k-
sparse, i.e., [|0*]o= k

The implication of this assumption for the full model is
fairly standard, under both the null and alternative hypotheses.
However, for the reduced model under the alternative hypoth-
esis, where only the autoregressive parameters are unspecified
and the cross-regression parameters are enforced to be O,
we need to define a suitable surrogate “true” model whose
parameters can be used to quantify the estimation error and
thereby establish concentration bounds (See Proposition A.4).
Let the columns of X corresponding to 6;) be denoted by
X(iy» for @ = 1,2. Using the fact that the error residuals
of the optimal linear estimator, in the mean square error
sense, are uncorrelated with the columns of the design matrix
[69, pp. 386]), we define the surrogate “true” autoregression
coefficients in the reduced model as:

60, = 01y + C1; C120(3), (10)
where
1
IE{ X |E|[-X/,X
1 (1) (1)} [n (1) (2)}
E|[-X'X| =
[” } 1 o Lot
E|-XoXm B |-XoXe
. Cin Ci2 .
=: {Cm CQJ = C. (11

Note that even though the MVAR coefficients under the
alternative hypothesis are k-sparse, the surrogate “true” au-
toregression coefficients under the reduced model may not be.
To deal with this issue, we follow the treatment of [35] in
analyzing the LASSO under weakly sparse or compressible
parameters, and further impose a norm condition on 02‘2)
(See the statement of Theorem 1) to restrict the alternative
hypothesis. The latter ensures that the full and reduced models
are distinguishable under the alternative hypothesis.

Finally, we use the following definition throughout the rest
of the paper:

Definition 2. We say that a threshold ¢ correctly distinguishes
the null and alternative hypotheses, if the ranges of the statistic
T under the null and alternative hypotheses are respectively
subsets of 7 < ¢ and T > %.

B. Main Theoretical Results

Our main theorem is stated as follows:



Theorem 1 (Main Theorem). Suppose that the key assump-
tions 1 and 2 hold. Then, for the proposed LGC statis-
tic Ty—y evaluated at the BVAR(p) parameter estimates
from the solutions of (6) with a regularization parameter
An = 49d\/log(2p)/n, there exists a threshold that correctly
distinguishes the null and the local alternative hypothesis
Hy oq : 116 )H2> %k‘log(2p)/n with probability at least
1 — Ky exp (—né) — Ka/p?, if n > max{®", D"k} log(2p),
with oA, B, 6", D", K1, Ky, ¢, and d > 0 denoting constants
that are explicitly given in the proof.

Proof. The proof has three main steps. First, we bound the
deviation of the empirical quantities £(6(1), 0 2)) (full model)

and ¢ (5 (1),0) (reduced model) with respect to their counter-
parts evaluated at the true parameters. After invoking suitable
concentration results for £(6(,),67,) and 8(0(1), 0), we can
then lower bound 7., under the alternative hypothesis and
upper bound it under the null hypothesis. Secondly, we seek
conditions under which the bounds do not coincide, which
further restricts the alternative hypothesis. The last step of the
proof establishes that these deviation and concentration results
indeed hold with high probability.

Step 1. We first assume the deviation bounds:

10(801),80)) — £(671,60)) | < A, (12)
‘5(3(1),0) 0 (Ngq),o)‘ <Ap (3)
and the concentration inequalities:
0(601),00)) — (Bona| =an a4
‘6(5(*1),0> — (67, 67)) —D‘ <Ap (15

hold for some non-negative quantities, Ap, Ag, Ay, Ap
and D := 607, " (Caz — C21C;;'C12)0},. Using the bounds
in (12) and (13), we get:

0(8),0) =ar  £(8,0)  £(8;),0) +Ag

0(00),60)) + &r (80, 00))  £(071),00)) — Ar
(16)

)

which gives the following lower and upper bounds on Ty, :
0) — ¢(611).65)) — An— Ar
0(81),00)) + Ar
! (67),0) = £(671),60,)) + A+ ar
. (01 00)) A

(0,

< Tysa

17

Now, under the null hypothesis Hy .0 : 92*2) = 0, we have

l (5?1),0) = 6(02‘1), 2‘2)) and thus Apg in Proposition A.2

can be chosen equal to A in Proposition A.1. This implies:
Ap+ Ap 2A R

6(0(1), (Q)fAF (Be)1a N F

Ty—a < , (18)

with application of (14).
On the other hand, under a general alternative hypothesis
Hyszo: 0?2) # 0, (15) can be used to show that:

- ¢ (9;‘1), ) e(ea), ;2)) —Ap—Ap
0(67,),65)) + Ar
—(Ap+Ag+ Ap)
()11 + AN+ AFp
From the upper and lower bounds in (18) and (19), it is

possible to choose a threshold to correctly distinguish the two
hypotheses, if:

—(AD+AR+AF) 2Ap
()11 +An +Ap ()11 —An — Ap’
which after rearrangement translates to:

()11 +Av+Ap >
(B — (An +Ar)

19)

(20)

D>Ap+Agp+ Ap <1+2
(21)

Next, we choose Ay = (X.)1,1/4. Then, assuming Ap <
(Xe)1,1/4, the bound of (21) further simplifies to

D>Ap+ Ar+T7Ap. (22)

Step 2. Next, we assume that the following conditions hold:
Condition 1 (Restricted eigenvalue (RE) condition). The
symmetric matrix S =XTX /n € R?P*?P satisfies restricted

eigenvalue condition with curvature o > 0 and tolerance
7>0,ie., ¥ ~RE(a,7):
¢3¢ > allp|3-7lollf, V ¢ € R,
with
m—1 «

m 32k

for some constant m > 1.

Condition 2 (Deviation condition). There exist deterministic

functions Q(6*,%,), Q'(6*,X.) such that
[ ix70c-x07)| < e,z
n 00 n
1o+ . log(2p)
an(l) (X 9(1))” <Q(67, %) —

Under these conditions, we can use the expressions for the
non-negative quantities, Ar, Ar and Ap derived in Proposi-
tions A.1 and A.2 (Appendix A) and Lemma C.3 (Appendix
C), respectively, to obtain the following bound on the right
hand side of (22):

log(2p)

/klog 2p) ‘

o= 2 (lenicunl+1).

Ap+Ar+T7Ap <

klog(2
o og( p)’

where



6 =i [ (32v2m +73) |[C Cus| + 1],
169 ( 168 )
<= +20 ),

a/m \m+1
provided the LASSO problems are solved with the choice of
An = 4sd4/log(2p) /n, for o satisfying (See Propositions B.2
and B.3 in Appendix B):

s > max {Q(67, Xc), Q'(6", 2e)} -
Also, note that the assumption Ap < (X.);,1/4 requires:
24 kX2 ( 1.1
23
m+1 a/m - 4 23)

and imposes an upper bound on A,. The implications of this

upper bound are further discussed in Remark I at the end of

this section.

_ Next, we use the~following lower bound on D: D >
mln”e* ||§’ with Amln = Amln (022 - C2IC;11012)

which glves the following sufficient condition for inequality

(22) to hold:

Ao le log k log 2p)

k log 2p
24
. (24)

By further requiring n > €’ log(2p), where

v 20 ([|CTCua; + 1)
B 27 A rmin ’

we have Kmin — a/log(2p)/n > Kmin/Q. The latter com-

bined with (24), and an application of Lemma C.5 (Appendix
C) gives the sufficient condition: ||9 ||2 > Bk log(2p)/n for
unambiguous discrimination of the LGC statistic under the
null and the local alternative hypothesis H,, ,, o : |6, 13>
Bk log(2p)/n, as long as n > max{6’', D'k} log(2p), where

462 4
93::( +/~\C>,and9b’::

1536m  d?
m+1 a(Ee)M '

A2

Note that the condition n > D’klog(2p) ensures the upper
bound (23) on \,.

Step 3. It only remains to provide a lower bound on the
probability of the event that the proposed LGC statistic un-
der the null and local alternative hypotheses are correctly
distinguishable by a threshold. Proposition B.1 (Appendix B)
establishes that Condition 1 holds with probability at least

1 — ¢y exp(—conmin{¢~2,1}), (25)

if n > Cpmax{(?, 1}klog(2p), for some constants Cy, c1, Ca,
and ¢ (> 0). Also, Propositions B.2 and B.3 (Appendix B)
establish that Condition 2 holds with probability at least

di dy

S @2p® (2p)% (26

if n > max{Dy, D{}log(2p), for some constants dy,d},ds,
d5, Do, and Djj (> 0).

From Lemma C.2 (Appendix C), the first deviation bound
(12) holds with probability 1 — 2exp (—n/128) with the
choice Ay = (X,)1,1/4. Lastly, from Lemma C.3 (Ap-
pendix C), the deviation bound (12) holds with probability
1 — c3 exp(—cqn min{¢ =2 log(2p)/n, 1}), under Condition 2.

Combining the two steps, the claim of the theorem holds
with probability at least

1—2exp ( 128) — ¢y exp(—conmin{¢ ™2, 1})

— c3exp (—C4n min{¢ =2 max{Dy, Dy}, 1})
dq dy
@)%~ 2%
if n > max{8€', D"k}log(2p), where D" =
max{P’, Comax{¢? 1}} and €” = max{®’, Dy, D}}.
Finally, this probability can be lower bounded by

27)

K
1 —Kjexp(—nc) — —d?,
p
where
— . 1 _ ’
¢ = min {128 C2, 4, 02C 2, el 2maX{DO,DO}},

d = min {dg,dQ} ,

d d;
Ki=24c¢ +c3, K2:2712 2d1’2'
This concludes the proof of the main theorem. O

From the proof of Theorem 1, it is apparent that large
enough sample size n is sufficient for the LASSO estimates
under both the full and reduced models to be consistent given
the choice of )\,,, which in turn allows us to control the
prediction errors. Also, large enough ||02*2)H2 is sufficient to
distinguish the null and alternative hypotheses.

In order to establish the fundamental limit for separating the
null and alternative hypotheses, however, we need to inspect
the necessity of these conditions. From the proof of Theorem
1, for any threshold ¥, there exists a constant ', such that if
An < 4d’\/log(2p)/n, then T, > ¢ with high probability,
which results in a type I error. Thus, the choice of A, in
Theorem 1 is necessary to control false positives (See Remark
1 in Section III-F).

In what follows, we focus on the necessity of the lower
bound on HOE*Q)HQ and the condition on n for detecting a
Granger causal link. To prove this necessity result, we need
a lower bound on the performance of the LASSO under the
alternative hypothesis. To obtain a lower bound, we take the
approach of [27], [70] by constructing a family of BVAR
processes with k-sparse parameters 6, for which the LASSO
makes significant errors under the alternative hypothesis. The
remaining key element of the proof is the Fano’s inequality,
which provides the required lower bound (See Lemma C.4):

Theorem 2 (Necessary Conditions). Suppose that the key
assumptions 1 and 2 hold. Then, there exists a constant B
for which the proposed LGC statistic Ty, in Theorem 1 fails
to reject the null hypothesis for any threshgld 1 under the
alternative hypothesis H) H0(2)|| < Bklogp/n, with

y—x,l



probability at least 1/2, if n < D'k log p. The constants %
and D’ are explicitly given in the proof.

Proof. Consider a class Z of BVAR processes with a fixed
l-sparse 6(;) and k-sparse 65y over any subset K C
{1,2,---,p} satisfying |KC|= k, with elements given by

(02)), = e ", VLK. (28)

where b is a constant to be chosen. We also assume, without
loss of generality, that (6(;)), = e~" or 0. Note that the vector
0 = [0(1),0(2)] is (k+ 1)-sparse, but the following arguments
can be repeated by redefining k as k— 1, pertaining to k-sparse
parameter vectors. We also add the vector of all zeros to Z.
For a fixed K, we have 2+! 4 1 such parameters forming a
subfamily Zy.. Consider the maximal collection of (Z) subsets
K for which any two subsets differ in at least k/4 indices.
The size of this collection can be identified by A(p, %, k) in
coding theory, where A(n,d,w) represents the maximum size
of a binary code of length n with minimum distance d and

constant weight w [71]. It can be shown that

k-1
A(p, %7 k) pT»
for large enough p [72, Theorem 6]. Also, by the Gilbert-
Varshamov bound [71], there exists a subfamily Zg C Z,
of cardinality |Z}|> 2L*/8]1+1 -1  such that any two distinct
0%,67 € Z; differ in at least k/16 elements. Thus for 0%, 67 €
Z* = UZ,*C, we have
K

6" — 67|, > \fe—b =: h, (29)
and |Z*[> p8 ““olk/SI+1 4 1. For an arbitrary estimate
0 =: [0 1),§(2)] consider the testing problem between the
25" 9lk/8]+1 4 1 hypotheses Hj - 6y, 0( 5 € 2%, using

the minimum distance decoding strategy By construction, if
k > 16, we have:

sup P {He 0* (30)

h . .
> } —sup P 0 # 67|,
2 2 i

given that ||0é1) lo=e~? or 0. Let fg; denote joint probability
distribution of {w)};_, conditioned on {x4})__, ., and
{yk}};:_p 1 under the hypothesis H;. Fano’s inequality given
in Lemma C.4 provides the following lower bound on the
probability in (30):

&+ log2

supP 0 £ 60/ |H, ] >1 - ST 982
wP |07 0/1H;] 2 1 - i

€Y

where ¢ is an upper bound on the Kullback-Leibler divergence

fea‘) <
&,Vi # j. Given Gaussian innovations in the BVAR process,
for i # j, we have

between fgi and fg; for any i # j, i.e., Dk (fg'i

Joi
foi

DL (fe'i

foj) <supE [log
i#]

=supE |—

1 QN2
oy [ 2(26)1,1 (HX_XG H

~[lx - x07|") ]H}

1
<sup ————
iztj 2(Be)11

E[[x (6 -

‘|

n . T . .
=———sup(0'—6’) C (6" —¢
ORI ) Cf )
Amax C
< e sup ot - o1
2(26)1,1 i£]
2n(k + 1) Apax (C)e2b
(25)1,1
Using Lemma C.4, Egs. (29), (30) and (32) yield:
2n(k+1)Amax (C)e %
N h 2 ( ()11 +log 2)
sup]P’ HB 0 27 >1— .
2 (k+1)logp
(33)
for p large enough so that logp > %ﬁ%. Assuming

k
(k+1)logp > 8log2 and choosing b > 1 log (%3’1‘(:3)) +
1 log (n/logp), we get:

supIP> [HB o0* (34)

h 1
> —| >z,
— 272
Thus, there exist a choice in Z* for which the error of an

arbitrary estimator is larger than h/2 with probability at least
1/2. By this choice of 8", the condition on b gives [|67,, [2<

* 07 O e
[0 ||2< Bklog p/n, where B = 165\n,zik1(3)'
Next, under the alternative hypothesis, for a given threshold

1, the null hypothesis is not rejected if

o) L,
e(al),e@)

Using Lemma C.1, Lemma C.3, and Proposition A.2, the
numerator on the left hand side of (35) can be upper bounded
by (3¢)11+ D+ Ap + Ag + Ay. Thus, (35) holds if

~ ~ (26)1‘1+D+AD+AR+AN
N ;
(60,80 > T+ 1) |

For large enough n and p, the numerator in (36) can be further
upper bounded by 5(X);,; with high probability. Next, we
need to lower bound the left hand side of (36). We have
0(81),82)) = LIX(B - 6")[3> 2516 - 673, given
the RE condition and the assumption on 7- in Proposition A.1.
Under the condition that ||@ — 6*||2> %, which holds with

(35)

(36)

2’
probability at least 1/2, if
a(m + 1) 2 5(25)1 1
h : 37
gm LT (b)) 37)

then the inequality (36) holds, which implies that the null
hypothesis is not rejected. Replacing h from (29) into the
inequality (37) gives the condition n < P’ klogp, where
Q' = —m+D)(A+1) 0
10240mAmax (C) *

It is noteworthy that while the result of Theorem 2 imposes
necessary conditions for reliable GC detection via LGC, it
is a weak converse result as it does not quantify necessary
conditions that hold for all test statistics.



C. False Positive Error Analysis

Theorem 1 provides sufficient conditions that implicitly
guarantee high sensitivity and specificity in detecting GC
influences using the LGC statistic. To make these implications
more explicit, by slightly weakening the sufficient condition
on the sample size, n > "k log(2p) in Theorem 1, we arrive
at the following corollary to Theorem 1 that upper bounds the
false positive error probability:

Corollary 1 (False Positive Error Probability). Suppose that
assumptions 1 and 2 as well as conditions 1 and 2 in the proof
of Theorem 1 hold. Then, for some arbitrary ty > 0, threshold-
ing the proposed LGC statistic Ty, at a level t > 0 for re-
Jecting the null hypothesis results in a false positive error prob-

ability of at most 2exp (—n/S (1 + vtm/log(2p)/n> 2)

with v := (1 +2)/1, if
n > 2max{D?k?/t2, 2Dk} log(2p),
for some constant D that is explicitly given in proof.

Proof. First, we note that under Condition 1 and Condition 2
there exist some real numbers s,¢ > 0 such that

‘6(0(*1),9{2)) - (26)1,1‘ < (B)ra/s,
Ap < (Zo)11t/s.

(38a)
(38b)

This allows us to set a problem independent threshold, since
the upper bound on 7y, under the null hypothesis given in
(18) simplifies to:

2t/s

Tysz < m (39

Now, given any threshold ¥ > 0, we can solve for s in terms
of ¢ and ¢ as:

2414
s:1+%t:1+7t. (40)

To ensure Ap < (3.)1,1t/s, we need the following to hold:

(m+1)a (26)1,1 n 1

40
2m 1642 klog(2p) ¢ | ©

(41)

On the other hand, using the expression for s from (40)
and invoking Lemma C.2 (Appendix C) yield the following
statement that can be used to bound the false positive error
probability:

* * (26)1,1
P Uf(@(l)ﬂ(z)) - (26)1,1‘ >

S

n
<2 ). @
- eXp( 8(1—1—71&)2) “2)

With a choice of t = ty+/log(2p)/n for any to > 0, applying
Lemma C.5 (Appendix C) on (41) then gives the sampling
requirement of

~ 2 ~
n > (Qb/to) k% log(2p) + 2Dk log(2p),

and the false positive error probability given in the corollary,
where
~  42m 1642
C (m+1a (B
This concludes the proof of the corollary.

Note that by further choosing ty < \/gbk/Q’y, one can
simplify the sampling requirement and the corresponding

upper bognd on false positive error probability to n >
2 (Ejb/t(')) k?log(2p) and 2exp (—n/(l + \/g)Q) , respec-
tively. The later inequality follows from the fact n >
4D k~ylog(2p) which is also guaranteed by choice of t5. [

D. Power Analysis

Intuitively, detecting a GC effect arising from a small cross-
regression coefficient 67,, is challenging, and often requires a
long observation horizon to be identified. Theorem 1 quantifies
this intuition via a lower bound on the norm of the cross-
regression coefficients in terms of the spectral properties of
the process (via 9B), sparsity k, sample size n and model
order p. In particular, as ||0Z‘2)||2—> 0, a scaling of n =
O(klog(2p)/ ||02k2>|\§) maintains the sensitivity/specificity of
Ty with high probability. This lower bound on ||92‘2)||2
exhibits the same scaling as that in the thresholding procedure
of [45] (i.e., the scaling of the LASSO estimation error), as
well as the classical scaling of [17], [18] (up to logarithmic
factors), and we thus believe is not significantly improvable.

In Corollary 1, we formalized the foregoing argument in
terms of the test specificity. In order to similarly quantify the
test sensitivity, we consider the effect size » := %HB{Q)HQ
pertaining to the cross-regression coefficients. The power
analysis for detecting a GC effect using LGC is given in the
following corollary to Theorem 1:

Corollary 2 (Power Analysis). Suppose that assumptions 1
and 2 as well as conditions 1 and 2 in the proof of Theorem
1 hold. Then, for an effect size v := %”0?2) |? and an
arbitrary constant 0 < 1 < 1, thresholding the proposed
LGC statistic Ty, at a level 1 > 0 gives a test power of at
least 1 — 2 exp (— 13 ) — 2 exp(—cnmin{¢ =2 log(2p)/n, 1}),
if v > (%—F%)%and

"

n > max{ )Z,Q’k}log@p),

(1=
for the same constant D' in Theorem I and some constants

+o, ¥1, 2, and B" that are explicitly given in proof.

Proof. Starting from (19), we seek sufficient conditions to

ensure

D— (Ap+Agr+ Ap)
()11 + AN+ AR

with high probability for a given threshold ¢. Recall that:

1<

(43)

2
Ay 2R
m+1a/m
kA2 -
Ap =200 4 (8\/2m n 18) A I
a/m 1



D .= GFQ)T(CQQ - CglellClg)GEkz),

and

Ap = Q6,3 /log 2p) H

H[ Cu Cw”@)”’@ﬂ

11 Cua6z): 00 )|

with a choice of A\, = 44 +/log(2p)/n. By rearranging (43),
we equivalently seek conditions to ensure:

D>Ap+Ap+(1+1)Ar +1AN +1(2)11-  (44)
As in the proof of Theorem 1, we have:
log(2p) klog(2p)
Ap+Ap<a /1og(2p) ’ g p) 2)
klog 2p)
n )
where
@ _ 2
o =2 (Joicunlt+1).
= [(32v2m +73) ||C1! Cra | +1]
. 320md?
¢ =—)
o
and D Z InlIl||9(2 ||2’ Wlth Kmln =
mm (CQQ — Cglcll Clg) Choosmg AN = ( )1 1/4
and assuming that the upper bound (23) on )\, is met with

equality, we have Ap = )1 1/ 4 and hence (44) holds if:

i /10g 2p) /klog 2p) ‘
k‘l (2p)
< Og p : (45)
n
where ¢” = 16’”342 % +20). By an application of

Lemma C.5, the 1nequa11ty in (45) holds if

N 2 ﬁQ 20,,
‘ 0(2) ‘ 2 = 5+ ~
(Kmin - IOg’ELQ;D) ) <Amin —w \/@)
, Flog(2r) o
n

leen that ||6; )Hz— kv and using the condition n >

= w)Q log(2p) with € := @2/A2. . the following bound
on the effect size » ensures the inequality in (46):

> <1‘g L hn +1‘2{) 108;(219)7
(0 (0

n
where

ﬁ2
o = K2 )

32 2 24
- < 20),

aAmin m+ 1

4608m$212

Vo =

Finally, assuming that Conditions 1 and 2 hold, the deviation
bound for the full model with Ay = (3.)1,1/4 holds with
probability at least 1 — 2exp (—n/128) and the deviation
bound under the reduced model holds with probability at least
1—2exp(—cnmin{¢~21og(2p)/n, 1}), with the constant  in
Condition 2. Combining the two, the test power is at least

1—2exp (71728) — 2exp(—cnmin{¢ % log(2p)/n,1}),

This concludes the proof of the corollary. [

E. Data-driven Choice of the Threshold for Hypothesis Testing

While Theorem 1 establishes the existence of a threshold
{ that can separate the null and alternative hypotheses, a key
practical factor in the utility of LGC is to be able to set this
threshold in a data-driven fashion. A careful inspection of the
proofs of Theorem 1 and Corollaries 1 and 2 indeed allows us
to estimate these thresholds in practice. Here, we consider two
practical methods to choose the test threshold in a data-driven
fashion:

Method 1: As in most practical applications of LASSO, we
assume that n is sufficiently large and satisfies the sufficient
lower bound of Corollary 1 for a nominal choice of the free
parameter ty. Then, by setting ¢ty = 1, we have the following
proposition for the first method to choose the test threshold
and the corresponding type I and II error characterization:

Proposition 1. Suppose that assumptions 1 and 2 as well as
conditions 1 and 2 in the proof of Theorem I hold. Given
a target false positive probability mg, the threshold 1 can be
chosen as:

‘= 2/ <\/8 log (2/x¢) log(2p) ~ Vilog(2p) 1) - @D

Furthermore, if the effect size is large enough such that v >
1\ log(2

(Vg + ot ) og( p), the type Il error probability
(0 P n

satisfies:

BSQeXp(

) + 2exp(—cnmin{¢ "2 log(2p)/n, 1}).

128 48)

Proof. This result is a specialization of Corollaries 1 and 2 to
the specific choice of the threshold given in (47). O

We used this method of setting the threshold in our simu-
lation study in Section IV-A (Fig. 2, dashed traces) as well as
in our real data validation in Section I'V-C.

Method 2: If the assumption of Method 1, that n is large
enough to satisfy the sufficient lower bound in Corollary 1,
is not valid, we need to choose the free parameter ¢y to be
compatible with the lower bound on n in Theorem 1. To this
end, we need to estimate three key parameters in a data-driven
fashion: the sparsity level k, the noise variance (3.); 1, and
the curvature parameter « in the RE condition. We hereafter
assume that 7 in the RE condition is small enough so that
m = 2. We also assume that )\, is empirically chosen via
cross-validation. Also, let /(X)) denote the mutual coherence
of the matrix X. We have the following proposition that



provides the second method to choose the threshold ¢ and
the corresponding type I and II error analysis:

Proposition 2. Suppose that assumptions 1 and 2 hold and the
sufficient conditions of Theorem 1 are met, but with B replaced
by another constant B’ (given in the proof). Given a target
false positive probablllty 7, let mg be such that T < my +
K{exp(—nd) + pd,, for some known constants K},¢, K},

and d'. Then, the threshold © can be chosen as:

1 n n
tZQ/ <t0<¢810g<2/m>log<2p>_ log<2p>)_1>’

(49)
where
28k 2 log(2
o = —22kAn Og(Qp) ’ (50)
K@(Ee)l,l SIOg( /TFO)
with
o k= ‘é\‘s . where 0° is the estimate 0 thresholded at a
0

4 1 -
e & := - min <XTX> (1 - ./ﬂ(X)%), where
J(X) is the mutual coherence of X,

and Kk is a constant given in the proof. Furthermore, if the
effect size is large enough such that it satisfies the condition
in Corollary 2, the type II error probability [ satisfies:

1

K
B < K{exp(—nd’) + p‘;/ , (51

where K/, &", KY, and d" are constants explicitly given in the
proof.

Proof. Given a choice of ¢y, choosing the threshold ¢ as:

t=2 / 1 " ) -1
to \ \/8log (2/m) log(2p) log(2p) ,

(52)
ensures that the false positive error expression in Corollary 1
is bounded by m. On the other hand, for (41) to hold, we
need to have

Dk [log(2p)
to n '

Qbk <1-

log(2p) _
. (53)

We choose ty to satisfy the foregoing bound with equality,
which along with the threshold in (52) leads to:

P+ log(2p) 42m A2 log(2p)
0= 8log (2/mo)  (m+ 1) (Te)1 || 8log (2/m)
(54)

For this choice of 3, one needs to empirically estimate the
sparsity level k, the noise variance (X, )1 1, and the curvature
parameter « in the RE condition. For &, we use the estimator
R=o) .
0>0.1It can be shown that if § is chosen as O(An /), then

k > (1 —€)k for some constant €, given Conditions 1 and 2
[73, Theorem 7.3].

where 6° is the estimate @ thresholded at a level

Next, we estimate (3.)1,1 as

~

CINSETS

which with probability at least 1 — 2exp(—n/32) —
c1 exp(—canmin{¢~2,1}) — dz , satisfies

(25)1,1
2

(55)

[(Be)ra — (2
where Ap = mzil j;‘i
Estimating the curvature parameter o, however, is not trivial.
We thus replace it with a lower bound using the mutual
coherence of the design matrix, /((X), following a result from
[74] that holds with high probability:

< XTX) (1 - /%(X)k). (57)
Recalling the sufficient condition ||0(2)H§2 Bk log(2p)/n
in the statement of Theorem 1, where % linearly depends
on 5o, we weaken the lower bound on |67, ||2 as
Bk log(2p)/n, where B’ is the same as B with « replaced
by the foregoing lower bound. The estimate & is obtained by
using the lower bound with an estimate of = for k. Note
that this lower bound on o may be too conservatlve in practice
and may result in reducing the test power.

We next set m = 2. For large enough n and p, we also have

1,1]< + Ap, (56)

2m

o> min
m+ 1 0<i<2p

Ap < (3.)1,1/2, so that the estimate of t;, namely to, using
the empirical estimates of k and (X.); 1 satisfies
to 1-€6
—<— =K. 58
0= 2 K (58)
Thus, the false positive error can be bounded as
mr <7 + 2exp(—n/32) + c1 exp(—can min{(_2 1})
d
+ czexp ( csnmin{¢ 2 max{Dy, D}, 1}) G ;d2
14
(59

Letting

1 /
¢ = min {32, Co,Ca,02C 2 a2 max{ Dy, DO}} ,

di

5
d _d27 2727

K1=2+Cl—|—63, Ké:

provides the assumed bound on 7p.

To bound the type II error, we use the result of Corollary 2,
but need to ensure that the deviation condition for the reduced
model also holds. Therefore, we have:

B < 2exp(—n/128) 4+ 2exp (—n/32)

+ 2exp(—cn min{C_2 log(2p)/n,1})

+ cgexp (—C4n min{¢~? max{Dy, Dy}, 1})
d; di

(60)
Letting

1 ’
&' = min { 55 ,C, Ca, CC C4<_2 maX{Do, DO}} ,



. d d,

d" =min{dy,dy}, K =6-+cs, K=o+ o
establishes the bound on /. This concludes the proof of the
proposition. O

While the choice of {5 = 1 in Method 1 is quite convenient
and results in a threshold independent of the details of the
BVAR process, it may be too conservative in practice and
may result in low test power if n is not sufficiently large.
Method 2, however, selects ty based on empirical estimates of
process-dependent parameters, and is thus expected to provide
a higher test power. We will further evaluate the type I and
IT error for these two methods for setting the test threshold
using simulation studies in Section IV-B and compare their
performance.

FE. Discussion of the Results

To discuss the implications of these results, several remarks
are in order:

Remark 1. Unlike the conventional estimation error results of
the LASSO that specify a lower bound on the regularization
parameter \,, Theorem 1 prescribes a fixed choice of A, for
both the full and reduced estimation problems in (6). This
is due to an interesting phenomenon revealed by our analysis:
while conventional analyses of LASSO focus on the estimation
performance of a single model and thus provide a lower bound
on \,, in our framework we have two competing models (i.e.,
full and reduced) which need to be distinguishable under the
null and alternative hypotheses in order to reliably detect the
GC influences. The latter imposes an upper bound on A,,. As
such, there is a suitable interval for choosing A,, that results
in both consistent estimation and discrimination of the two
models. We note that we have presented our theoretical results
under the assumption that a single A, within the aforemen-
tioned interval is used for both models, for the simplicity of
analysis. The strategy of using the ‘same )\,, for both full and
reduced models’ is also appealing from a practical perspective,
since the empirical methods for choosing \,, generally involve
solving the problems for multiple values of \,, to evaluate a
selection criterion and to pick the optimal \,,. This process is
typically computationally intensive and performing it only for
the full model saves processing time. For example, the user
may select the optimal \,, via k-fold cross-validation for the
full model which leads to smallest out of sample error across
different folds (i.e., best predictive performance), and then use
the resulting value of \,, for both the full and reduced models
to estimate the VAR parameters and prediction error variance
using the whole data, thus avoiding extra computational costs
of cross-validation.

Remark 2. Corollary 1 bounds the false positive error proba-
bility, i.e., type I error rate, for a simple thresholding scheme
for detecting GC influences from 7., under a slightly
weakened sufficient condition on n, i.e., n = O(k*log(2p))
instead of n = O(klog(2p)). This non-asymptotic result
provides a principled guideline for choosing a threshold that
controls the false positive error rate, as shown in Section III-E.
As such, this result extends the conventional statistical testing

framework based on the asymptotics of log-likelihood ratio
statistic using OLS to the non-asymptotic setting using the
LASSO. This result can further be utilized in the assignment
of p-values (i.e., the false positive error probability when
the observed LGC statistic is used as the threshold), as is
commonly done in the conventional OLS-based setting based
on the asymptotic x? distribution under the null hypothesis.

Remark 3. We have presented our results for a BVAR model
in order to parallel the classical GC analysis. Our results
can be extended to the general MVAR setting by using the
conditional notion of Geweke [9] in a natural fashion, given
that Condition 1 and Condition 2 readily generalize to this
setting. To elaborate on this point, consider a case where the
BVAR(p) model in (1) is augmented by (d — 2) other time
series to result in a general d-dimensional MVAR(p) setting.
Following the formulation of Section II-C, the conditional
LGC statistic can be defined as:

5(5(1)70,5(3)7“',5(@) X

6(0(1),5(2)7 §(3), ) é\(d))

Typsa = (61)

where 5(1-) and é\(i) denote the MVAR parameters from the
it process to the first time series, under the reduced and full
models, respectively. Then, using a similar procedure as in
the proof of Theorem 1 and Corollary 1, the results can be
extended to this setting, by replacing the various occurrences
of 2p by dp and by adopting slightly different constants.

Remark 4. The constants in the proofs of Theorems 1 and 2
and Corollaries 1 and 2 solely depend on the joint spectrum of
processes x¢, Y as well as some absolute constants. As an il-
lustrative example, by assuming . = 0.011, pax(A) = 0.9,
/«Lmin(A) = ﬂmin(A) = 00]., Amin = 07, ||Cf11012||2: 05,
[[C1'Ci2; 10y o= 1.5, m = 8, dy = 52 x 1074
dy = 4.2 x 1074, Dy = 100, Cy = 107°, and ¢ = 0.02,
the key constants in Theorem 1 take the following numerical
values: of = 107%, B = 5.136, €' = 7.41 x 1074,
D = 24.38, K; =6, Ko =6, ¢ =2.06 x 107* and d = 1.
These translate to \,, = 1073/log (2p)/n, a requirement of
n > max{100, 24.38k} log(2p), local alternative hypotheses
satisfying (|67, |2> 5.136klog (2p) /n, and failure probability
< 6exp (—2.06 X 107611) + 6/p. Similarly, for Corollary 1,
we get P = 10.67, translating to a sample size requirement
of n > 2max {28.46k?, 396k } log(2p) (with {, = 2 and
{ = 0.114). The potentially large numerical values of some
of these constants suggest that the non-asymptotic advantage
may come with large values of n and p.

IV. APPLICATION TO SIMULATED AND
EXPERIMENTALLY-RECORDED DATA

In this section, we examine our theoretical results through
application to simulated and real data, and by comparing the
performance of classical OLS-based GC and the proposed
LGC statistic in detecting GC influences. We use the fast
implementation in [75] to solve the LASSO problems. Unless
otherwise stated, the regularization parameter \,, is chosen via
five-fold cross-validation performed over the full model, with
the same ),, used for the reduced model.
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Fig. 1. Simulation Results. (a) Ground truth GC pattern. (b) Estimation setup, in which z; is latent and thus introduces a spurious GC link (dashed gray
arrow) from y; to x¢. (c) Effect of A, on the LGC statistics for n = 250, p = 100. The LGC statistics Ty, (red) and Tz, (blue) are separable for a
suitable range of \,, marked by the dashed vertical lines (colored hulls show the range of LGC over 30 realizations).

A. Simulation Studies

We simulated three time series x, y:, 2; according to the
sparse MVAR(11) model:

xy =—0.67x4—1 +0.224_5 — 0.1x4_11 + 0.0524—3 + v1 ¢,

Yy =—0.62y,—1 + 0.1y;—5 — 0.2y;—17 — 0.1z4y_o — 0.124_3,
+0.52¢—11 — 0.0012;_4 — 0.0042;_5 + V0.6v2,

zt = — 0.902524—0 + V3 4.

where v; ¢+ ~ N(0,1), i.id. for ¢ = 1,2,3. In this model, z;
has a direct GC influence on y;, but there is no GC influence
from y; to x;. The latent process z;, however, influences both
x; and y; (Fig. 1(a)). As such, the correlated process noise
components ¢; and €} in (1) are modeled as 0.05z;_3+v1 ; and
—0.001z4_4 — 0.004z;_5 + \/(EVM, respectively. As shown
in Fig. 1(b), removing z; from the analysis indeed induces a
false (i.e., indirect) GC influence from y, to x;. We performed
two sets of numerical experiments to evaluate the effects of
An, M, and p on the identification of GC influences between
x¢ and gy, based on Ty, and Tyt

1) Evaluating the Effect of \,: Fig. 1(c) shows the LGC
statistics 7y, (red) and 7., (blue) for n = 250 and
p = 100, obtained by varying A, in the interval [1076,1073]
uniformly in the log-scale. The dotted lines and colored hulls
represent the average and range of the values, respectively,
over 30 realizations. As discussed in Remark 1, there is an
evident range of )\, that provides a meaningful separation
between Ty, and Tg,, which is marked by the dashed
vertical lines in Fig. 1(c).

2) Evaluating the Effect of the Sample Size n: We fixed a
model order of p = 100 and varied n uniformly in the interval
[100, 1000]. Fig. 2(a) and (b) show the resulting LGC statistics
Ty—so and Ty, corresponding to the LASSO and OLS (A, =
0), respectively. In Fig. 2(a), we also plotted the threshold ¢
corresponding to a false positive probability of 0.01, according
to Method 1 in Section III-E (dashed line). As n grows larger,
the ranges of the two LGC statistics are saliently separated.
The proposed thresholding rule of Corollary 1 is also able to
correctly identify the true GC effects for n > 250.

The OLS results shown in Fig. 2(b), however, require much
larger values of n to be stable, whereas the LGC statistic
provided by the LASSO (Fig. 2(a)) are stable even for n < 2p.

In addition, OLS requires n > 400 for the ranges of the GC
measures to be distinguishable.

3) Evaluating the Effect of the Model Order p: Finally, we
fixed n = 300 and varied p in the interval [10, 300] uniformly
in the log-scale. Fig. 2(c) and (d) show the corresponding GC
measures for the LASSO and OLS, respectively, along with
the threshold { corresponding to a false positive probability
of 0.01. For p < n, the LASSO and OLS exhibit similar
performance. But, the OLS-based GC measures become un-
stable for p ~ n, whereas those of the LASSO remain stable
throughout. The LGC statistics also remain saliently separable
over a wider range of p for the LASSO, as compared to their
OLS counterparts.

4) Comparison with Existing LASSO-based Methods: We
used the same setting as in Section IV-A to compare the
performance of LGC with two existing LASSO-based meth-
ods, namely the confidence interval (CI)-based LASSO and
truncating LASSO (TLASSO) GC detection. For the CI-based
LASSO, we used de-biasing via node-wise regression [50]
and the confidence interval construction technique of [53]: if
the confidence interval of at least one of the cross-regression
coefficients does not include zero (after Bonferroni correction),
we identify it as a GC link. We used the Bonferroni correction
for its simplicity and common usage in the applications of GC
[76], [77]. It is however possible to use other multiple com-
parison correction schemes such as the Benjamini-Hochberg
procedure [78]. The TLASSO, as a graphical LASSO-based
method, uses the truncating LASSO penalty to automatically
determine the order of the VAR models, and thus performs
model simplification by reducing the number of covariates to
control false discoveries [43].

Fig. 3 shows the receiver operating characteristic (ROC)
plot for varying sample sizes, n € {200,350,500, 750,
1000, 1250, 1500}, computed from 200 realization of the same
process in Section IV-A. The marker sizes are proportional to
n, for visual convenience. We fixed the BVAR order p at 50
for LGC and Cl-based LASSO, while TLASSO automatically
determined the BVAR order (p < 50). For LGC, we considered
a threshold for false positive error rate of 0.1 based on Method
1 in Section III-E, and accordingly set a confidence level of
90% for the CI-based LASSO and a false negative rate of 0.1
for TLASSO. The TLASSO is the most conservative of the
three methods in terms of controlling the false positive error,
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Fig. 3. Comparing the performance of LGC, CI-based LASSO, and TLASSO
for GC identification. True positive and false positive error rates are computed
from 200 realization of the BVAR process in Section IV-A with p = 50 by
varying n € {200, 350, 500, 750, 1000, 1250, 1500}. The marker sizes are
proportional to n.

which comes at the cost of low test power. On the other hand,
the CI-based LASSO exhibits a high test power, but at cost
of increasing false positive errors. LGC, however, adheres to
the middle ground between these two extremes by striking a
reasonable balance between true and false positive error rates.
Note that this simulation study was intentionally designed to
evaluate the performance of LGC in presence of weak GC
influences. As expected, when the GC influence gets stronger,
all three methods exhibit similar performance.

B. Comparing the Data-Driven Methods for Setting the Test
Threshold

In the foregoing simulation studies, we used Method 1 in
Section III-E to set the test threshold due to its convenient

form. In order to compare the two data-driven methods for
setting the test threshold given in Section III-E, we consider a
slightly modified version of the simulation setting in Section
IV-A:

Ty = — O.ll’t_l + O.Qllit_5 - 0.1:6,5_11 + 0.05Zt_3 + Vi,
ye =—01y;1 —ax 0.1z, o+ a x 0.52,_17 —0.001z;_4

— 0.004Zt_5 + V 0.61/27t,
Zt = — 0.90252t72 + V3t

In this modified setting, the sparsity level is reduced to
k = 3, and the leading VAR coefficients are decreased,
so that the estimate of the curvature parameter « using the
mutual coherence is reliable for small values of n and p. The
multiplier 0 < a < 1 is chosen to control the effect size of the
GC link. Similar to the previous case, we consider p = 50,
and use a range of n € {100, 150,200, 250,300,350} to
closely examine the role of the effect size in the performance
of the two methods. To speed up simulations, we tuned A,
for n = 100 via 2-fold cross-validation, and used the scaling
1/100/n to obtain the subsequent values of A,,.

Fig. 4(a) shows the ROC plot for the two methods for setting
the test thresholds given in Section III-E. The marker sizes
are proportional to n. As it can be observed from the figure,
Method 1 (blue stars) is expectedly more conservative and
while it maintains negligible false positive rates, it requires
larger values of n for reliable detection of the GC link. Method
2 (purple stars), however, is more sensitive, but for n > 150
achieves both high test power (more than 0.9) and a false
positive error less than the target level of 0.1.

Fig. 4(b) shows the performance of both methods with
respect to the effect size. The line widths are proportional to
n. Consistent with Fig. 4(a), Method 1 is more conservative
and while consistently achieves a negligible false alarm rate,
it requires a larger value of n to detect GC links with small
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effect size, as indicated by the horizontal dashed line at 0.9.
Method 2, however, achieves a false alarm rate below the
target level (horizontal dashed line at 0.1) for n > 150, while
reliably capturing GC links of small effect size. As expected,
the performance of both methods become comparable as n
gets larger.

C. Application to Experimentally-Recorded Neural Data from
General Anesthesia

Finally, we present an application to simultaneous local field
potentials (LFPs) and an ensemble of single-unit recordings
from the temporal cortex in a human subject under Propofol-
induced general anesthesia (Data from [79]). The LFP signal
is the electrical field potential measured at the cortical surface
and represents mesoscale dynamics of brain activity with both
cortical and sub-cortical (e.g., thalamic) origins. Single-unit
spike recordings, on the other hand, represent the neuronal
scale cortical dynamics.

Brain states under anesthesia and sleep are associated
with the emergence of periodic and profound suppression of
neuronal spiking activity that is strongly phase-locked to the
peaks of the LFP slow oscillations [79]-[82]. Specifically, by
comparing the average LFP signals triggered at the trough of
the slow oscillations under no-spike and many-spike condi-
tions, [80] argues that neuronal spiking activity may have a
GC influence in high-amplitude peaks of the slow oscillations
manifested in the LFP. Here, we examine the role of neuronal
spiking activity in mediating the LFP slow oscillations by
assessing the GC influences between them.

We use a time duration of 51.2s during anesthesia, cor-
responding to n = 1280 samples (sampling frequency of
25 Hz). The ensemble spiking activity is represented by its
peristimulus time histogram (PSTH) (i.e., ensemble average
over 23 units). Fig. 5(a) shows the LFP (green) and PSTH
(orange) signals used in the analysis. We use a model order
of p = 100, corresponding to a history length of 4s, to
ensure that slow oscillations (~0.25Hz to 0.5Hz) can be

captured by the BVAR model. Fig. 5(b) shows the estimated
BVAR coefficients by the LASSO (top) and OLS (bottom).
A visual comparison of the two sets of coefficients suggests
that OLS has likely over-fitted the data. The corresponding
LGC statistics 7 rp—pstH and TpsTHLrp for both methods
are reported in Table I. The numbers in parentheses show
the p-values, i.e., the false positive error probability, when
the observed GC statistics are used as thresholds. For the
LGC statistics, the p-values are computed via Corollary 1
(with a choice of ¢ty = 0.25), while in the conventional OLS
setting we used the x? distribution against the threshold

For a false positive error probability of 0.01, the LGC-
based test clearly detects the GC effect PSTH — LFP (bold-
face number) as significant, and discards the GC effect
LFP + PSTH. The conventional y? test applied to the classi-
cal GC statistics F| rpspstH and FpsTHsLFp, however, fails
to detect any GC influence, even at a significance level as
high as 0.05. The outcome of the LASSO-based LGC analysis
is therefore consistent with the aforementioned hypothesis in
[80] on the GC influence of spiking activity in mediating the
LFP dynamics.

TABLE I
OBTAINED LGC STATISTICS AND p-VALUES

I LASSO OLS |
Tirpspsth | 0.0055 (0.1079)  0.1001 (0.1832)
TesthoLrp | 0.0096 (0.0015)  0.1046 (0.1135)

V. CONCLUDING REMARKS

In this work, we proposed a GC statistic based on the
LASSO parameter estimates, namely the LGC statistic, in
order to identify GC influences in a canonical sparse BVAR
model with correlated process noise. By analyzing the non-
asymptotic properties of LGC statistic, we established that
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the well-known sufficient conditions for the consistency of
LASSO also suffice for accurate identification of GC in-
fluences, if the strength of the GC effect is large enough.
We also established the necessity of the constraint on the
strength of the GC effect for reliable GC identification via
LGC. We also analyzed the false positive error performance
and test power of a simple thresholding rule for detecting
GC influences and provided data-driven methods to set the
test threshold in practice. We validated our theoretical claims
through application to simulated and experimentally-recorded
neural data from general anesthesia. In particular, we showed
that the proposed LGC statistic is able to identify a GC
effect from spiking activity to LFP slow oscillations under
anesthesia, whereas the conventional OLS-based GC analysis
does not detect this effect. Our contribution compared to
existing literature is to provide a simple statistic inspired
by the classical log-likelihood ratio statistic used for GC
analysis, which can be directly computed from the LASSO
estimates without the need to resort to de-biasing procedures or
asymptotic results for testing. Future work includes extending
our results to autoregressive generalized linear models with
time-varying parameters and obtaining necessary conditions
that hold for any test statistic.

APPENDIX A
PREDICTION ERROR ANALYSIS OF THE FULL AND
REDUCED MODELS

In this section, we establish the deviation bounds of (12)
and (13) under Conditions 1 and 2. Note that both the full and
reduced models share the same RE condition (Condition 1),
since the reduced model is nested within the full model.
However, the deviation conditions required by Condition 2 are

different for the two models. For the full model, we require:

HTllXT(x—XH*) < Q(o*,x,) @, (62)

‘ oo

for some deterministic function Q(8*,
model, however, we require

3.). In the reduced

log(2p)
n

H Xy (x = X0 H <Qe.%) (©3)
for another deterministic function Q'(6*,X.). These condi-
tions guarantee consistent and stable recovery of the autore-
gressive parameters in the LASSO problems of (6), and hence
lead to suitable deviation results for both the full and reduced
models.

Proposition A.1 (Deviation Result for the Full Model). Sup-
pose & ~ RE («, 7), with 7 satisfying 32k7/a = (m — 1)/m
for some m > 1 and (X, x) satisfying the deviation bound
(62). Then for any A, > 4Q(0*,X.)+/log(2p)/n, the solution
to the full model in (6) satisfies:

V(‘;(l)»é(z)) —6(02‘1),0(*20‘ =

Proof. For the full model, we have:

24 kX2
m+1a/m

0(801),8) — £(67,).0)) = %(0 0") X X(0—0%)

—g(e —0")"XT(x—X6).

(65)
To obtain bounds on the left hand side of (65), we bound

the terms on the right hand side individually. The bound on
the first term follows from (70) on the consistency of the



LASSO under the RE and deviation bound assumptions (See
Proposition A.3),

)
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while the second terms can be bounded using (69) as

l(é—a*)Txﬁ(x—xa*) le(x—Xe*)
n n

“Jo-o
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3m kX2
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where we have used the choice of \,, and (62) to conclude:

e

© = 4

Combining these two bounds via the triangle inequality con-
cludes the proof. O

[XT(x—X6%)|

Proposition A.2 (Deviation Result for the Reduced Model).
Suppose ¥ ~ RE(a,7), with 7 satisfying 32k7/a =
(m —1)/m for some m > 1 and (X(1),x) satisfying the
deviation bound (63). Let J denote the support of 02‘1),
with its complement denoted by J¢. Then, for any A\, >

40Q)'(6*,3.)+/log(2p)/n, the solution to reduced model in
(6) satisfies:

‘6(5(1),0> y (5&,0)‘ < 20:;\5’1
n (8\/%+ 18) A |67
=: AR, (66)

Proof. In a similar fashion to Proposition A.1, by invoking the
consistency results of LASSO for the reduced model under the
RE and deviation bound assumptions (See Proposition A.4)
and noting (63) we have:

(80:0)~¢ (87, 0)’ = 125/%
+(8(\/%+1>+2)>\n 5?1)% L
Nk [
16, 50 (s Cr

Simplifying the last term using Arithmetic Mean-Geometric
Mean inequality proves the claim. O

To establish the consistency results used in Proposition A.1
and Proposition A.2, we first state a result adapted from [28]
on the prediction error of LASSO under the full model:

Proposition A.3 (Prediction Error for the Full Model). Sup-
pose X ~ RE («, 7), with 7 satisfying 32k7/a = (m — 1)/m
for some m > 1 and (X, x) satisfying the deviation bound

(62). Then for any \,, > 4Q(0*, 26)\/@

—5=2 the solution to
the full model in (6) satisfies:

n

~ 3m  VEM
0—-0%, < —— i 68
R L N
~ 12m kM,
-6 <——m—, (69)

m+1 «

18m %

0-0)"S06-6%) < : 70
(6-6)T8(0-0") <~ (70)
Proof. The proof closely follows that of [28, Proposition 4.1],
and is thus omitted for brevity. O

In what follows, we show that the particular choice of

T satisfying 32k7/a = (m —1)/m for some m > 1 will
simplify the prediction error analysis of the reduced model.
As for the reduced model, the main technical difficulty in
establishing prediction error bounds stems from the fact that
02‘1) is no longer k-sparse. We address this issue in the
following proposition:
Proposition A.4 (Prediction Error for the Reduced Model).
Suppose ¥ ~ RE («,7), with 7 satisfying the relation in
Proposition A.3 and (X(;), x) satisfying the deviation bound
(63). Let J denote the support of 92‘1), with its complement
denoted by J¢. Then, for any \,, > 4Q’'(0*, X.)+/log(2p)/n,
the solution to reduced model in (6) satisfies the inequalities
(71), (72) and (73).

Proof. Recall that 67, := 0, + C;'C2,6),

) Let us define

1
F(01) == — [[x = X1y8[3 + AallO) 1.
n

and consider the quantity, AF’ (5@) = F(é(l)) —F(gz‘l))
Also, let v := 02‘1) — 5(1) and V:i=v + CﬁlCuBZ‘Q). Then,
AF (5(1)) can be simplified as:

AF (5(1)) = F(E(l)) ~F (0

1. 9 ~
= ﬁVTXErl)X(l)V + EXEE) (X —X(l)e(l))

o [Eol, = o)
+ < ol ~ Yol

Using the fact that

2 T n* )‘n
2 x5
we get:
Py | ~ A= ~
AF(80)) =9 XX = Z R+ 90 )

A (IR0 I = 19511 -2| 83y 2. )

where we split the error v into components within J and
components within J¢. Now, since ?TX(Tl)X(l)\N/ is non-
negative, we arrive at:

An o~ ~
0z-= (Vvally + vaelly)
+n (190l = 191l = 2|87 )

An

- 1). (74)

The rest of the treatment follows the derivation of weakly
sparse or compressible models (See, for example, the deriva-
tion of the main theorem in [35]). Using the inequality (74),
we can write:

61y

(3195 =197 11 +4{| 8

90 = 19+ ¥l 41 1+4]| 87

1
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where the last inequality follows from the fact |J| < k. This
inequality together with the RE condition and 7 satisfying the
relation in Proposition A.3, allows to write:

m—1 aml‘ 2

1t
—VTX]\X 1)V > e e
VX)XV = el ¥li—am—|V]3—— =

am

> *H~||2 (76)

e

using the inequality 1/2(a2 + b2) >(a+b

Combining (74) and (76), we then finally arrive at:

= o~ am—1|~, 2
AF<6’(1)) > EHVHg*ET’ 01)¢ )
An - ~
-2 (31 =19 )
o am—1|~,
2 EH"H%*ET’ e, (77
An - ~,
—7(3\/E|\v||2+4‘0(1)ﬂ 1), (78)

where the last step follows from the inequalities ||V (1<
VE[V]2< VE|[¥ ]2 and [[¥[1> 0

An application of Lemma C.5 establishes that the right hand
side of the inequality (78) will be positive if:

e
= 12 m?
An 2 am-—1|x%, 2 ~
a/m <)\nm k 1)Je 1+4H0(1)‘]C 1>'

(79)

From the latter inequality, the first claim of the proposition
follows using the fact that |ja]|; > |la||,; the second claim

follows from the first claim together with (75); the last claim
follows from the fact that:

1_ ~ An ~ ~ n*
STX0X )V < 3 (31919 4] 0y e | )
(80
which concludes the proof of the proposition. O

APPENDIX B
VERIFICATION OF CONDITIONS 1 AND 2

Having established Propositions A.1 and A.2, it only re-
mains to show that Condition 1 and Condition 2 hold with
high probability, under both the full and reduced models.

The following proposition establishes that the RE condition
(Condition 1) holds with high probability:

Proposition B.1 (Verifying RE for & = XX /n)). Let

¢ = g (D) bmin(A) A (Be)
. Amin(zf)/umax(A) ’ 2/’LmaX(A) ’
_ damax{¢%,1} log(2p)

C n

Then, for n > Comax{(¢?, 1}klog(2p), there exist constants
1, co such that

P {f] ~RE (a,7)| > 1 — ¢ exp(—conmin{¢"2,1}). (81)

Proof. The proof closely follows that of [28, proof of Propo-
sition 4.2], and is thus omitted for brevity. O

Remark B.1. In order for 7 to satisfy 32km/a = (m —1)/m
for some m > 1, we precisely need n > (128/c)(m/(m —
1)) max{¢?, 1}klog(2p).

Finally, the following two propositions establish that the
deviation conditions (Condition 2) hold with high probability.
Proposition B.2 (Deviation Condition for the full Model). For
n > Dylog(2p), there exist constants dy, d; and da > 0 such
that

P

Hle(xxe*)
n

‘z@(e*,za logfp)]< a

— (2p)d2 b)
(82)
where

1 + ,umax(A)

Q(e*a EE) = dOAIII X(2€) <1 + T AN
* Hmin (A)

Proof. The proof follows that of [28, Proposition 4.3], and is

thus omitted for brevity. O

Proposition B.3 (Deviation Condition for the Reduced
Model). For n > D{log(2p), there exist constants dj, d}, and
dy > 0 such that

1
H X(l)(

where Q' (6%,

log(2p) | . _di
no T (2p®
(83)

P X(l)%))

‘ >Q'(6", %)

3.) is defined as in (84).

Proof. In the reduced model, the deviation can be expressed
as:

1 T n*
pRey (x = X8 — X20)

1 T —1 * *
R (‘Xu)Cn Cr203) + X260z + 6)

1 ! = N2k
T 0 n* n
- <9<1> - 9(1)) XX <9<1> - 9(1)> a/m

( (r+1)+2)

2m 4, |5,
O =0y = 2 a/m a/m "7y 7
=~ . Ank ~, Ank
61— 05, o (\/2m+1)‘ e +8,/a/m,/‘0(1)ﬂ , (72)

[ A3k )
12 a/m,/ 0(1)JL (73)




1 T —1 * 1 T * 1 T
== EX(DX(l)Cn Ci20(y) + gX(1)X(2)9(2) + gX(mﬁ-

similar fashion
th

The last term can be bounded in a
as done for the deviation in Proposition B.2. The i
component of the first two terms can be expressed as

Tlex{ Ci'Cia6fy; (2)], for i = 1,2,---
e;’s are the standard unit bases in R??. Invoking [28, Propo-
sition 2.4(a)] and noting that M(F) < AmaX(EE)/,umin(A),
we get (85). Using the union bound, we can then arrive at (86).
Using the latter inequality, the statement of the proposition
follows from the same arguments used in the proof of [28,

,p where

Proposition 4.3]. O
APPENDIX C
CONCENTRATION INEQUALITIES AND TECHNICAL
LEMMAS

Lemma C.1. Given i.i.d. samples from a normal distribution,
i.e., wy ~ N(0,0?), the following holds:

1 o= w?

,E:ﬂ
n < g2

-1

2
> t] < 2exp (_n;) ,Vt e (0,1).
(87)

Proof. Define z, = wy/o ~ N(0,1), then Y.} | 27 ~ x*(n).
Clearly, 2? is sub-exponential with parameters (2,4), so is
the sum ) ;" , 22 with parameters (2,/n,4). The claim of the
lemma then follows from standard sub-exponential tail bounds.

O

Lemma C.2 (Concentration of the Full Model Deviation).
Under the full model, we have, for Ay < (26)111:

nA%, )
8(Xe)i1/

ay (2)> = Z?:l €2/n. Since € ~
1), using Lemma C.1 we get:

2
t] < 2exp <_n£) , vt € (0,1).

P [‘6(0?1)’0?2)) - (26)1,1‘ > AN} < 2exp (

Proof. Note that ¢ (0
N(0, (B

d

n 2
DNC R E
n (26)1,1

t=1

Lemma C.3 (Concentration of the Reduced Model Deviation).
Suppose that the deviation conditions (Condition 2) hold.
Then, there exist constants c3 and ¢4 > 0 such that

’z(é{l),o) — (67,61 - D’ < Ap,

with probability at least

log(2
1 —czexp (C4nmin {C2Og(p), 1}) ,
n

Ap = QO /log H 01110129(2 0 }H

H[ Cu 0120(2),0(2)]

(89)

and
D .= G?Q)T(CQQ — 02101711012)0?2).

with « and Q(0*,X,) defined in Proposition B.1 and Propo-
sition B.2, respectively.

Proof. Since 56) = 92*1) + Cl_llcm@a),
f(egq), o) - z(eg}), 032))
1 . 2
=[x~ X8 - Xeo]
1 *
- ||X — X075

- *||€||2

we have:

2
X(1)Cry C120(y) + X(2)0(3) + €H2

1
_ 22X +9T=XTX9,
n n

.
where 9 = {(—C C120(2)) ,Og)} . Using the Condi-

tion 2, we get:

1 1
’JX&‘< HXTE
n n

191

oo

2

(88) < Q6. %
By letting Ay := ¢(3¢)1,1, the claim of the lemma follows. . log(2p)
0 < Q7. %) log(%p) (HC C12H1+1)
3 Ccylc 0
1+ fimax(A) H[ 11 12 2)’ }H
Q(0*,3,) = dyAmax (Ze) | 1+ (84)
( ) 0 ( ) Lmin (A) Mmin(A)
1 — * * Amax 26 — % * .
Plle/ XX [—01110129(2);9(2>H > 31&)77“ [—01110129(2);9(2)} H 1 < 6 exp[—cnmin{n, *}]. (85)
Mmin
3 C;C,0%,: 6%
1 L () | 3] -G C1a80:6% ||
P ||—e/ (XTX |-Ci'C1205); 005 | + X €)| > Amax(Ze) | 1+ 2
’n ( [ 11 =125(2) (2)] ) - ( ) ,Ufmin(A) Hmin(A)
< 12 exp[—enmin{n, n*}]. (86)



Furthermore, from [28, Proposition 2.4], for any 9 € R?P and
7 > 0, there exists a constant ¢ > 0 such that:
1 Amax 26
P ‘ﬁT (XTX—C>19‘ > n||19|\2#
n HMmin

< 2exp[—enmin{n,n’}].

Next, with the choice of n = (7' /log2p/n, the latter
concentration inequality establishes that:

ﬁTl
n

with probability at least 1 -
2exp(—cnmin{¢~2log(2p)/n,1}). This along with the
following observation concludes the proof of the lemma:
97 CY = 07 (Caz — C21C1! C12)8}y). O

Lemma C.4 (Fano’s Inequality). Let Z be a class of densities
with a subclass Z* of densities f%), parameterized by 9%2),

for i € {0, ,2M1} . Suppose that for any two distinct

o0y < 2D (i,
&. Let 6 be an estimate of the parameters. Then

~ ; + log 2
supP [0(2) ” 0{2)|HJ} >1- ng’
J

log(2p)

)19 ﬂTCﬂ\ 1912,

< & for some constant

(90)

where H; denotes the hypothesis that 8; is the true parameter,
and induces the probability measure P[-|H].

Proof. See [83, Page 323]. O

Finally, the following elementary lemma provides a useful
technical tool for simplifying some of the algebraic inequali-
ties:

Lemma C.5. The quadratic function f(x) = ax? — bxr — ¢
with a, b, c > 0 is positive for all real = satisfying

= (0)
> —-) +2-.
a a

Proof. Clearly, f(x) has only one positive root, denoted here
by x4, which satisfies f(x) >0, V& > z4. Using the
following instance of Jensen’s inequality,

1
\/1+z§§z+1 vV z>0,

the positive root x4 can be upper bounded as:

2
2o (2L (2N Le
T\ 2q 2a a

o () i b (B e

- 2a a 2a 2a a

(2] 2=

Then, x x3 implies az? — bz — ¢ > 0. O
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