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Abstract

The elasticity of taxable income with respect to the net of tax rate is a key parameter
for predicting the effect of tax reform or designing an income tax. Bunching at kinks and
notches in a single budget set has been used to estimate the taxable income elasticity. We
show that when the distribution of preferences is unrestricted the amount of bunching at
a kink or a notch is not informative about the size of the taxable income elasticity, and
neither is the entire distribution of taxable income for a convex budget set. Kinks do
provide information about the size of the elasticity when a priori restrictions are placed on
the preference distribution. They can identify the elasticity when the preference distribution
is completely and correctly specified across the kink and provide bounds under restrictions
on the preference distribution. We find wide estimated bounds in an empirical example
using data like Saez (2010) based on upper and lower bounds for the preference density.
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1 Introduction

The elasticity of taxable income with respect to the net of tax rate is a key parameter when
predicting the effect of tax reform or designing an income tax. A large literature has developed
over several decades which attempts to estimate this elasticity. However, due to a large variation
in results between different empirical studies there is still some controversy over the size of the
elasticity. A common way to estimate the taxable income elasticity has been to use variation
in budget sets, often from data for several tax systems at different points in time. More
recently kinks and notches for a single budget set have been used to estimate the taxable
income elasticity.

We show that when the distribution of preferences is unrestricted the amount of bunching
at a kink or a notch is not informative about the size of the taxable income elasticity. We also
show that the entire distribution of taxable income for a convex budget set is not informative
about the size of the elasticity. The problem is that a kink or notch probability may be large
or small because of the size of the elasticity or because more or fewer individuals like to have
taxable income around the kink or notch. Intuitively, for a single budget set, variation in the tax
rate only occurs with variation in preferences. The conjoining of variation in the tax rate and
preferences makes it impossible to distinguish the taxable income elasticity from the preference
distribution with a single budget set. Small kinks do not solve this problem. Whether the kink
is large or small it is possible to match the distribution of taxable income to any elasticity by
specifying the distribution of preferences in a certain way.

This lack of identification can also be understood as failure of the order condition for iden-
tification, that there be as many distinct equations relating reduced form and structural para-
meters as there are structural parameters. There is one equation giving the kink probability as
a function of two structural "parameters," the elasticity and the preference distribution. One
equation is not enough to identify two structural parameters. Similarly there is one equation at
each taxable income value that relates the distribution of taxable income to the distribution of
preferences and the taxable income elasticity is an additional structural parameter that cannot
be separately identified from any of these equations or from all of them together.

Kinks do provide information about the size of the elasticity when a priori restrictions are
placed on the preference distribution. The elasticity can be identified when the preference
distribution is completely and correctly specified across the kink for isoelastic utility. We also
give bounds on the elasticity based on bounds on the preference density. These bounds can
be viewed as measures of sensitivity of the taxable income elasticity to assumptions about the

preference distribution. We find in an empirical example using data like Saez (2010) that the
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taxable income elasticity can be quite sensitive to the bounds on the preference distribution.

In this paper we set aside the issue of statistical inference and focus on identification. This
allows us to clarify fundamental issues of what can be learned about taxable income elasticities
from data. The bounds we give can be estimated from data and we do so. It is straightforward
to derive confidence intervals based on these bounds as in Chernozhukov, Hong, and Tamer
(2007) or Imbens and Manski (2004). To avoid additional notation and detail we omit these
derivations.

Bunching estimators of the taxable income elasticity were developed and extended in influ-
ential work by Saez (2010), Chetty et al. (2011), and Kleven and Waseem (2013).! The Saez
(2010) estimator can be interpreted as combining density values at the edges of the bunching in-
terval with assuming that the density is linear across the kink to estimate the elasticity. Chetty
et al. (2011) assume that the density is a polynomial near the kink. These results impose a
known preference distribution across the kink. Imposing a known distribution of preferences
seems unusual in the literature on identifying the effects of changing the slope of a budget set.

The rest of this paper is organized as follows. In the remainder of this Section we give a
brief literature review. Section 2 lays out the model of individual behavior we consider and
shows nonidentification from a single budget set. Section 3 gives bounds on the taxable income
elasticity based on a single budget set and bounds on the density of preferences. Section 4
applies these results to data like that used in Saez (2010). Proofs are given in the Appendix.

Nonparametric nonidentification of compensated tax effects from a kink was shown and
bounds provided in Blomquist et al. (2015). The nonidentification results we give for para-
metric isoelastic utility imply those for the more general nonparametric model. McCallum and
Seegert (2017) give identification results when covariates are present and preferences have a
Gaussian distribution. Blomquist and Newey (2017) showed that for a parametric, isoelas-
tic utility function the distribution of taxable income for one convex budget set provides no
information about the elasticity, provided bounds, and showed identification from budget set
variation holding the preference distribution fixed. These nonidentification and bounds results
are incorporated in Sections 2 and 3 of this paper. Bertanha, McCallum, and Seegert (2017)
consider nonidentification results and give bounds based on variability of the preference density.

Blomquist and Newey (2002) used variation in budget sets to nonparametrically estimate
the average labor supply effect of the Swedish tax reform of 1990-1991 for scalar preferences
with optimization errors. Blomquist et al. (2015) showed that these results are valid with

general preferences and demonstrated how to impose all the restrictions of utility maximization

'Bastani and Selin (2014), Gelber et al. (2020), Marx (2012), Le Maire and Schjering (2013) and Seim (2017)
are a few of the recent papers that apply the bunching method.
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in estimating taxable income effects. Manski (2014) and Kline and Tartari (2016) nonpara-
metrically identified and estimated bounds on important effects. Einav et al. (2017) provided
recent empirical evidence on the sensitivity of policy effects to kink modeling assumptions for
the elderly in Medicare Part D, where there is substantial bunching around the famous “donut
hole.” Van Soest (1995), Keane and Moffitt (1998), Blundell and Shephard (2012), and Manski
(2014) have considered labor supply when hours are restricted to a finite set.

Before the development of bunching methods, following the seminal work by Feldstein
(1995), the elasticity of taxable income was typically estimated by difference-in-differences.
Saez et al. (2012) provided a review of this literature. Whereas early studies mostly found
elasticities between one and three, the subsequent literature found elasticities between zero and
one, with the benchmark estimate of approximately 0.4 by Gruber and Saez (2002) being fre-
quently cited. Blomquist and Selin (2010), Weber (2014), Burns and Ziliak (2017), and Kumar
and Liang (2020) provided recent estimated elasticities between 0.2 and 1.0.

2 Nonidentification from Bunching

We consider individuals with preferences defined over after-tax income ¢ (value of consumption)
and before tax income y (cost of effort). After and before tax income are related by ¢ =

A(y),where A(y) =y — T (y) for taxes T'(y). The utility function of an individual will be

Ule,y,m),

where 7 represents unobserved heterogeneity in preferences.

Figure 1 illustrates a budget set that has two linear segments with slopes (net of tax rates)
p1 > po and a kink at K. An individual with preferences of type n will choose the point on the
budget set where utility is highest for that 7. Different individuals may have different 1 and so
choose different taxable incomes. In this utility maximization model the variation in taxable
income for one budget set comes from variation in preferences. Heterogeneity of preferences
is necessary in order to have a distribution of taxable income for a single budget set. If all
individuals had the same preferences we would only observe one taxable income choice and no
inference about preferences could be drawn from that.

Bunching estimators estimate the taxable income elasticity from the proportion Py of in-
dividuals at K. We follow Saez (2010) as we describe the general idea behind this approach,
but omit some details that are not important for our analysis. Saez (2010) considers a coun-
terfactual, hypothetical change in a budget constraint. In Figure 2 we consider individuals
maximizing their utility for a linear budget set with slope p;. Suppose next that a kink is intro-

duced, and the slope of the budget constraint after the kink is p, < p;. Suppose that individuals
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who would have been in the interval (K, K + AY] along the first segment now choose the kink
point. We refer to the individual who would have chosen K + AY when there is no kink as the
marginal buncher. In Figure 2 we have drawn two indifference curves for the marginal buncher.
Before the (hypothetical) change in the budget constraint, the individual had a tangency on
the extended segment at K + AY. After the change in the budget constraint the individual
has a tangency on the second segment at K. The discrete (e.g. arc) taxable income elasticity
of the marginal buncher is
AY/K

Sl Py @1)

With a kink in place we cannot observe incomes at the individual level on the extended first
segment that goes beyond K and has slope p;, so that we do not know AY. From the data we
identify the proportion Pg of individuals located at the kink. Then we have

K+AY
Pg = /K f1(y)dy, (2.2)

where fi(y) is the density of taxable income along the extended first segment. If fi(y) were
identified we could identify AY from this equation. The problem is fi(y) is not identified,
because it is the density for those grouped at the kink. This means that there are two structural
parameters, the AY and the density fi(y), but only one equation involving the reduced form
parameter. It is impossible to identify two structural parameters from one equation. An order
condition of having as many identifying equations as structural parameters is not satisfied.

This nonidentification problem does not go away as the bunching probability becomes
smaller. No matter how small Px is there are still two unknown structural parameters AY
and fi. For every positive Px there will be multiple values of AY and f; such that equation
(2.2) is satisfied.

An important preference specification is the isoelastic utility function considered by Saez
(2010),

0 8
Ulc,y,m) =c— =z ,n>0,06>0, 2.3
@on=c (1) =00 23)

where 7 is a scalar. Maximizing this utility function subject to a linear budget constraint
A(y) = py + R with slope (net of tax rate) p and intercept (nonlabor income) R gives the

taxable income function for a linear budget constraint

Y(p,B,m) = p™n.

The taxable income elasticity dInY (p, 8,m)/0Inp = B is constant for this specification and

there is no income effect of changing R. The variable 7 is a scalar that represents unobserved
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individual heterogeneity in preferences with each 7 corresponding to a type of individual. We
note that Y'(p, 5,7) is increasing in 7 and p.

We can see nonidentification even more clearly for the isoelastic utility function. As 7
increases from zero the choice of taxable income will move along the first segment of the budget
set. The highest value n, giving a tangency solution on the first segment satisfies K = ngp/f .
As 7 increases beyond 7, each individual will choose the kink until 7 equals the lowest value 7,
giving a tangency solution on the second segment, which satisfies K = nupg . Thus the set of 1
where an individual will choose to be at the kink is [,,7,] = [K pl_ﬂ ,Kpy A], which we refer to

as the bunching interval. Therefore the kink probability satisfies

U Kpy"
P =Py =K)= [“otman= [ " omdn (24)
e Kp,

where ¢(n) is the probability density function (pdf) of 7. Here we can clearly see the problem
with trying to identify g from the kink. The kink probability Pk is one "reduced form" object
that is identified from the data. There are two "structural parameters" that appear in this
equation, the taxable income elasticity 5 and the pdf ¢(n) of n, but only one equation (2.4)
relating structural parameters to reduced form parameters. It is true that as 5 increases the
right side of this equation increases. However, it is also true that for a given taxable income
elasticity, the larger the mass of the preference distribution located in the bunching interval
[M¢,7M,], the larger the bunching will be. It is not possible to separate those two effects using
one kink equation, and so the taxable income elasticity is not identified from a kink.

Using more information about the distribution of taxable income than the kink probability
does not help to identify the taxable income elasticity. The next result shows that for any dis-
tribution of taxable income with positive kink probability and any 8 > 0 there is a distribution

of n that generates the distribution of taxable income.

THEOREM 1: Suppose that the CDF F(y) of taxable income y is continuously differentiable
of order D > 0 to the right and to the left at K, with pdf bounded away from zero in a
neighborhood of K, and Px = Pr(Y = K) > 0. Then for any (3 there exists a CDF ®(n) of
n such that the CDF of taxable income obtained by maximizing the utility function in equation

(2.3) equals F(y) and ®(n) is continuously differentiable of order D.

Theorem 1 shows that for any possible taxable income elasticity we can find a preference
distribution such that the CDF of taxable income for the model coincides with that for the data.
Furthermore, we can do this with a preference CDF that is differentiable to the same order as
the taxable income CDF. Thus we find that the entire distribution of taxable income for one

budget set with one kink has no information about the size of the taxable income elasticity
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when the distribution of preferences is unrestricted. The same result can be shown for any
continuous, piecewise linear budget frontier with nondecreasing marginal tax rates and each
kink having positive probability.

Theorem 1 implies nonidentification of the average taxable income elasticity, averaged over
any income range and over preferences, for any class of utility functions that includes isoelastic
utility as a special case. This wider implication of Theorem 1 occurs because it is more dif-
ficult to identify a parameter in a more general model, so that nonidentification in the more
restrictive isoelastic model implies nonidentification in the more general model. For example,
Theorem 1 implies the nonidentification of the average compensated taxable income elasticity
for individuals located at a kink that was shown in Blomquist et al. (2015).

Figure 3 illustrates the nonidentification result in Theorem 1. In Panel A we present a pdf
for taxable income when utility is isoelastic, the budget set is piecewise linear with one kink at
K =20,000, p; =1, py = .84, and 8 = 0.4. Above the kink the distribution of taxable income
is Gaussian and calibrated to the histogram of observed taxable income in Figure 6A in Saez
(2010), having the same mode of 40,000 USD and the same quantile at 60,000 USD. We also
assumed that the distribution of n is Gaussian before the kink. Because our purpose here is
just to illustrate nonidentification we did not attempt to find a preference distribution below
the kink that matches well the taxable income distribution there.

In Panel B of Figure 3 we graph the density of three differentiable pdf’s, all of which produce
the same distribution of taxable income, but with three different values of the taxable income
elasticity at 8 = .2, § = 4 or § = .8. Below the kink the preferences densities are the same
because p; = 1. To highlight the differences between these pdf’s we choose the density to be
nearly constant in the bunching interval, approximately equal to the value which makes the
integral over the bunching interval equal to Px. We see that choosing # = .2 well below the
value 8 = .4 leads to a preference density that is large over the bunching interval, while choosing
8 = .8 well above § = .4 leads to a preference density that is low over the bunching interval.
This pattern occurs because the length of the bunching interval [n,,n,] = [K pfﬁ ,Kpy p | is
monotonic increasing in 5. In order to make the integral of the preference density over the
bunching interval be equal to Py for each 5 we must have a large preference density across the
bunching interval when § is small and a small preference density when (3 is large.

The taxable income elasticity is not identified no matter how close p, is to p;. As long as
Px > 0 then for any 8 there will be a density of n over the bunching interval that satisfies
equation (2.4). It is true that large values of 5 will require that the density of 7 be small and
small values of 8 require that the density be large. Nevertheless, such preference densities are

allowed when there is no a priori information on the distribution of preferences. In Section 3
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we will consider what can be learned if there are bounds on the preference density.

The proof of Theorem 1 relies entirely upon nonidentification from a kink. For any particular
[ there is only one preference density that is consistent with the taxable income distribution
away from the kink. This occurs because taxable income Y = pPp is a scalar multiple of n
away from the kink, where p is the slope of the budget frontier on a segment away from the
kink. Therefore for any possible 8 we only have freedom to choose the preference density over
the kink, i.e. in the bunching interval [n,,n,]. Over the bunching interval any pdf ¢(n) such
that equation (2.4) holds will do. To show Theorem 1 we choose such a pdf with D derivatives
with D derivative equal to that of taxable income at 7, and 7,. In this way for any 8 > 0 we
can find a preference density such that the implied distribution for taxable income is the actual
distribution of taxable income.

A kink having positive probability does identify that 8 > 0 when 7 is continuously distrib-
uted. If 3 =0 then Y =7 so Y is continuously distributed by n being continuously distributed
and hence Px = Pr(Y = K) = 0, so Px > 0 implies 8 > 0. For the isoelastic utility model
a positive kink probability means that we know that individuals respond to incentives, i.e. to
changes in the tax rate. However Theorem 1 shows that the size of 3 is not identified from a sin-
gle tax schedule. Since the size of the taxable income elasticity is the key parameter determining
important policy questions, such as predicting the effect of tax reform or designing an income
tax, Theorem 1 shows that the distribution of taxable income for a single tax schedule is not
informative about these policy questions when the distribution of preferences is unrestricted.

Notches have also been used to estimate the taxable income elasticity, beginning with Kleven
and Waseem (2013). A notch occurs at an income value where there is a discontinuity in the
budget set so that the average tax rate changes. Figure 4 illustrates such a budget set with a
drop in the average tax rate at the notch point K. The marginal tax rate could also change
at a notch, though for notational convenience Figure 4 includes no change in the marginal tax
rate. Figure 4 shows how bunching at a notch can occur for isoelastic utility. As 7 increases
from zero the choice of taxable income will move along the first segment of the budget set.
The highest value 7, giving a tangency solution on the first segment satisfies K = Wpf . Asn
increases beyond 7, each individual will choose the kink until 7 equals the value 7, (B) where
the indifference curve passing through the notch point on the first segment is tangent to the

second segment. The notch probability is

o(B)
Pi — / " g(m)n, (2.5)

Kp;?

and the bunching interval is now [K pfﬁ s 1g(B)]-

The probability of bunching at a notch is not informative about § for similar reasons that
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the probability of bunching at a kink is not informative. For Px > 0 and any  we can
choose ¢(n) such that equation (2.5) is satisfied. Thus the probability of bunching at a a notch
provides no information about the size of 5. Unlike a kink, for isoelastic utility the entire
distribution of taxable income does identify § from the size of the "gap" between K and y4(f),
where no taxable income is observed, as shown in Bertanha, McCallum, and Seegert (2018) and
Blomquist and Newey (2018). However this identification result for 5 depends crucially on the
isoelastic utility specification and seems not relevant for applications where gaps are generally
not present.

Saez (2010) and Chetty et al. (2011) do estimate the taxable income elasticity from a kink.
By the order condition for identification we know that to identify S from the kink nothing else,
other than £, must be unknown. In particular, any information about the density of n across the
kink must come from somewhere else. The Saez (2010) estimator can be obtained by assuming
that the density ¢(n) is linear over the bunching interval [n,,7,] and is continuous from the
left at 7, and from the right at 7,,. To demonstrate, let f~(K) and f*(K) denote the limit
of the density of taxable income at the kink K from the left and from the right, respectively.
Accounting for the Jacobian of the transformation y = 77,0? we have ¢(n,) = f~(K )p? and
é(n,) = fT(K )pg . Assuming that ¢(n) is linear on the bunching interval we then have

P = [ otmdn=3 000+ 0wt~ (26)
e

1

= 5[ w ) 6] (K - Kpr?)

K

= S [ @+ 1 5 a0 [(0a12) 1]

This is the formula for 8 found in equation (5) of Saez (2010).
Here we see that the Saez (2010) formula of 5 can be obtained by imposing linearity of the
preference density over the bunching interval [n,,n,]. More generally equation (2.6) imposes

the trapezoid assumption

[ etndn =5 ko6 + o) ),

Ne
and will be valid under this condition. We could obtain other formulas for 3 by making other
assumptions about ¢(n) on [1,,n,], e.g. those of Chetty et al. (2011). The elasticity that is
implied by a distribution of taxable income will generally vary as f:ﬁu ¢ (n) dn varies with the
choice of ¢(n) in the bunching interval.
It is argued in Saez (2010, Section IB) and Kleven (2016, p. 440) that the use of a linear pdf
¢(n) in the bunching interval should not be seen as a restrictive functional form assumption,

but as an approximation that works well if the kink is sufficiently small. The idea being that,

8]



if the bunching interval is very small, any smooth density will look linear in this very small
interval. However, for this to be a meaningful idea we must have some way to determine
whether a given kink (bunching interval) is small or not. We can see from equation (2.4) that
the bunching interval depends on the location of the kink, the slope before and after the kink,
and the taxable income elasticity. We do not know the taxable income elasticity, which means
that we have no operational way to tell whether a given kink (bunching interval) is small or
not, so this reasoning is circular. Since, in the absence of knowledge of the taxable income
elasticity, we cannot tell whether a given kink (bunching interval) is small or not, the idea that
the approximation works well for small kinks is vacuous.

It is also thought, e.g. in Chetty (2011) and Kleven (2016, p. 450), that a polynomial fit to
the observed distribution of taxable income, excluding data in a range around the kink point, can
be used to predict a counterfactual distribution of taxable income in the kink region. However,
what one is actually doing here is completely specifying the exact value of the preference
density over the bunching interval to be that implied by the polynomial that fits the data
away from the bunching interval. Instead of specifying a linear pdf in the bunching interval
one is specifying that the pdf in the bunching interval has the polynomial form that fits the
distribution of earnings outside the excluded range. If this polynomial specification is incorrect
then the elasticity may be incorrect. There is no information in the data about the value of
the density over the bunching interval. The polynomial approach gives just one specification of
the preference density over the bunching interval but there are many specifications consistent
with the data that one could choose. Theorem 1 shows that any taxable income elasticity is
consistent with some specification of the preference distribution over the bunching interval.

Any choice of ¢(n) in the bunching interval, such as a linear or polynomial density, is
extrapolation, meaning an assumption about the preference distribution that is not based on
data. The bunching probability is jointly determined by ( and the preference density ¢(n) in
the bunching interval, so there is no information in the bunching probability about the density
¢(n). This information must come from a source other than the observed distribution of taxable
income, i.e. from extrapolation.

Identification of S from bunching should not be thought of as nonparametric. We have
shown here that existing identification methods are based on completely and correctly spec-
ifying the preference density over the bunching interval. Saez (2010) implicitly specifies the
preference density to be linear (or the trapezoid formula to hold). Chetty et al. (2011) explic-
itly specifies the preference density to be polynomial. These assumptions are more restrictive
than specifying that the density over the bunching interval is parametric because they specify

the exact value of the density. This is a stronger assumption than is made even in parametric
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models of distributions, so that identification of 8 from bunching cannot be considered to be

nonparametric.

3 Elasticity Bounds for a Single Kink

For isoelastic utility, bounds on the preference density will imply bounds on 3. Panel B of
Figure 3 illustrates that in order to obtain a given probability of bunching at a given kink, the
preference density will need to be large over the bunching interval when the true § is small or
small when the true g is large. This pattern suggests that prior knowledge of bounds on the
preference density could lead to bounds on . We specifically consider elasticity bounds based
on upper and lower bounds on the preference density. The bounds we give will also be satisfied
if the preference density is monotonic on the bunching interval. We could also consider how
other kinds of information could help us bound the taxable income elasticity but for simplicity
we focus on upper and lower bounds on the density.

The bounds we give here depend on the correctness of the isoelastic utility specification,
in particular on the taxable income elasticity being the same for all individuals. Our purpose
is to use these bounds to check sensitivity of isoelastic estimates to assumptions about the
density of preferences, for which purpose the isoelastic assumption seems sufficient. Bounds for
the average elasticity over individuals located at a kink, with nonparametric preferences and
elasticities that vary over individuals, are given in Blomquist et al. (2015).

To apply the bounds for isoelastic utility we need to account for a common feature of data
that the proportion of individuals that locate exactly at a kink is very close to zero. Instead
of a positive proportion of individuals at a kink data tend to display a sharp increase in the
density of individuals as taxable income nears the kink. This data feature is often explained
as resulting from optimization errors, meaning variations in taxable income away from utility
maximization. Individuals who would locate at the kink if they were maximizing utility instead
locate near the kink. The high density of individuals near the kink could also be explained by
measurement error, though many modern administrative data sets are thought to be accurate
enough that measurement error is low.

In the bunching literature optimization errors are accounted for by specifying an excluded
range [y1,y2], containing the kink, such that optimization errors can be ignored for income
outside this range, at least for purposes of estimating the taxable income elasticity. We follow
this approach by specifying bounds for the taxable income elasticity that only use the distrib-
ution of taxable income outside an excluded range. The idea is that the distribution of taxable
income within the excluded range is potentially contaminated by optimization errors in such a

way that the bounds for § would be incorrect, while the distribution outside the excluded range
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is not contaminated in this way. Sensitivity to the excluded range can be checked by varying
[y1, yal-

In practice the excluded range [y1,y2] is often chosen by picking y; to be a value equal to
or smaller than where the taxable income density begins to rise as the kink is approached from
below and by picking y2 to be a value where the density has returned back to a level that
does not appear to be related to the kink. These choices are generally made by examining a
graph of the taxable income density by eye, as we will illustrate in Section 4. This method
implicitly assumes that for learning about the taxable income elasticity the optimization errors
are accounted for by only using the distribution of taxable income outside the excluded range.

We consider bounds when y; < K < y» for the kink K. Let n; = ylpl_’B and 17y = Y2py p
denote lower and upper endpoints for n that correspond to y; and ys respectively. Also let

fT)= lim  f(y), [T ()= lim_ f(y).

Y—Y1,Y<y1 Y—yY2,Y>y2
Consider the two functions

D (8) = f~(m) [yz (ﬂ)ﬂ - 3,1] LD (B) = fH() [yz - <@>ﬁ] |

P2 P1
We have the following result:
THEOREM 2: If F(y) equals the CDF of taxable income obtained by maximizing the utility

function in equation (2.3), n is continuously distributed with density ¢(n), and there are positive

scalars ¢ > 1 and o <1 such that

omin{¢(n), p(n2)} < d(n) < o max{d(n,), ¢(ng)}, for n € N1, myl; (3.7)

then the taxable income elasticity B satisfies
omin {D (8),D% (8)} < Pr(y1 <Y < yo) <omax(D™ (8),D% (B)}.  (3.8)

If &(n) is monotonic then these bounds hold for 0 = 6 = 1. If Pr(yn <Y < y2) < o(y2 —
y1) min{f~(y1), fT(y2)} then there is no B satisfying equation (3.8). Otherwise the set of
all nonnegative [ satisfying this equation is a nonempty subset of [0,00). In addition these
bounds are sharp, meaning that for any [ satisfying equation (3.8) there is ¢(n) such that
Pr(y1 <Y <o) = f:f o(n)dn and equation (3.7) is satisfied.

Intuitively, upper and lower bounds on the preference density provide information about the
elasticity because the length of the bunching interval increases monotonically in 5. The upper

bound on ¢(n) rules out small values of S that make the bunching interval so small that the
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preference density would have to exceed its upper bound in order to match Pr(y; <Y < ).
Similarly, the lower bound on ¢(n) rules out large values of 5 that make the bunching interval
so large that the preference density would have to be below its lower bound to match Pr(y; <
Y <up).

The sharpness of the bounds given here depends on only using the distribution of taxable
income outside the excluded range (y1,ys2). If the distribution inside the excluded range were
informative about the distribution of preferences then these bounds would not be sharp. We
follow the literature in assuming that because of optimization errors the distribution of taxable
income inside the excluded range is not informative so that only the data outside the excluded
range should be used. In the empirical application we also consider the sensitivity of the bounds
to the length of the excluded range.

The bounds given here are based on the a priori restriction in equation (3.7) for the prefer-
ence density. For ¢ = & = 1 this inequality imposes the restriction that the density of n across
the kink is bounded between the maximum and minimum of the density at the endpoints.
A monotonic ¢(n) would satisfy this condition and so would any other ¢(n) that is bounded
between that maximum and minimum. Such an assumption might be plausible if the density
of taxable income appeared to be monotonic increasing (or decreasing) before and after the
excluded range. Equation (3.7) with 0 = & = 1 would not be very plausible if the excluded
range was thought to include a mode in the distribution of preferences. In that case it might
be more plausible to set & > 1 equal to the ratio of an upper bound on the model to maximum
density at the ends of the excluded range.

The bounds will tend to be wider when f(y2) is further from f~(y1). Smaller differences in
ft(y2) and f~(y1) are sometimes evident on the right side of the mode of the taxable income
distribution, so that we would expect to find tighter bounds in such locations. Note though
that if one wanted to include the possibility of a mode in an excluded range on the right side
then one would want to choose & > 1, which would increase the width of the bounds.

It is difficult to economically motivate or justify the assumptions on which the bounds are
based. The bounds are based on assumptions about the preference density, i.e. about tastes,
over a kink, where the data provides no information about the preference density, as discussed
in Section 2. Consequently bounds on the preference density must come from information
other than that provided by data, i.e. are extrapolation. Extrapolation is based entirely on
researchers views about how identified features extend to unidentified ones.

No assumptions or extrapolations about preferences are required for many of the bounds
in the econometrics literature. For example, the Manski (1989) selection bounds impose no

restrictions on the distribution of preferences or other unobservables. Also the Haile and Tamer
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(2003) bounds for auctions do not impose such restrictions, but instead use economic behavior
to bound the distribution of preferences, which is the distribution of auction valuation. No
economic behavior is used to construct the bounds given here. Instead they are based entirely
on restricting the distribution of preferences, on extrapolating from where the data provides
information to where data does not.

These bounds do depend on the restrictive isoelastic utility specification. As discussed
following Theorem 1, identification is more difficult in more general models. Consequently,
because the bounds are sharp, we know that bounds for the average taxable income elasticity
would only be wider in more general models.

One could think of these bounds as a sensitivity check on how the results are affected by
allowing variation in the preference density in the bunching interval. This could make them
difficult to interpret because different individuals might have different ideas about upper and
lower bounds on the density of preferences. Also, these bounds are correct only if they are not
affected by optimization errors outside the excluded range.

To estimate the bounds we can plug in nonparametric estimators f~(y1) and f*(y2) to

obtain

A~ A~

D=B) = f7 ) [s2(or/p2)’ =]
DY (B) = fT(w) [y2_3/1 (Pz/lﬁ)ﬁ}-

Estimated bounds for § are Bg and Bu that solve
0 max {f)* (/BK) , Dt (Bz)} — Pr(y <Y <), (3.9)
ouin {0 ()07 (1)) = P T

4 An Application to US Data
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In this Section we analyze the federal income tax application in Saez (2010, Figure 6A) for
married joint tax filers for the years 1960 to 1969, for isoelastic utility. Like Saez (2010),
we use Individual Public Use Microdata files from 1960 to 1969 released by the Statistics of
Income Division of the Internal Revenue Service. We access the data through the NBER Unix
System. The 1960-1969 data currently existing on NBER servers differ slightly from those used
by Saez (2010), but yield estimates similar to Saez (2010). These files are stratified random
samples of the entire tax filing population of the United States with oversampling of high-income
individuals. Like Saez (2010), years 1961, 1963, and 1965 are excluded from analysis, as public

use files for these years are not available. The sample size ranges from approximately 86,000
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to 100,000 in various years between 1960 and 1969. The public-use files come with some well-
known limitations, e.g., individual identifiers are removed, some variables are blurred to prevent
public disclosure, and demographic information is missing. Our definition of taxable income
is identical to Saez (2010)—Adjusted Gross Income (AGI) net of exemptions and deductions.
Following Saez (2010), we focus on tax returns with taxable income (in 2008 dollars) between
-20,000 and 65,000. All bunching estimation is based on binned data, with $100 wide bins,
constructed using population weights.

In Figure 5, Panels A and B, we reproduced the taxable income distribution but shifted
the domain upwards by 20,000 to avoid negative values, for which the elasticity is not defined.
We have chosen the bandwidth to be 500 as did Saez (2010). At the first 20,000 kink that
Saez focused on, the marginal tax rate went up from 0 to 16 percent (across-year average) for
married tax filers for the years 1960 to 1969. There are additional smaller kinks after 45,000.
See Saez (2010) for a detailed description of the institutional setting. We think this application
is important for several reasons. First, it concerns a large part of the population. Second,
the fairly low elasticity estimates that Saez (2010) found for this application were less sensitive
across specifications compared to other applications in which it was harder to plausibly quantify
the bunching probability with any precision. Third, similar low income tax elasticities for broad
population groups have been found in other countries (e.g., Chetty et al., 2011; Bastani and
Selin, 2014).

To help us select the excluded range we plot in Figure 5 the histogram and kernel density
estimate with vertical lines located at K = 20,000 and the endpoints K + 2000 in Panel A
and K 44000 in Panel B. We look for a sharp increase and decrease in the estimated density
around the kink. To us it appears that there may be some effect of the kink outside an excluded
range K + 2000 and no effect of the kink outside an excluded range K + 4000. Based on these
observations we report results for four choices of excluded range, K 4+1000, K +2000, K + 3000,
and K =+ 4000.

For purposes of comparison we compute versions of the Saez (2010) and Chetty et al. (2011)
bunching estimators for each of the excluded ranges. We use data outside the excluded range
to estimate f~(K), fT(K), and the counterfactual density within the excluded range. The
kink probability P is estimated as the excess mass that is the area between the observed and
predicted counterfactual densities inside the excluded range. We then plug-in the estimates of
[ (K), fT(K), and Pk to a formula for the elasticity obtained by specifying the distribution
of preferences over the bunching interval. For the Saez (2010) method we estimate f~(K)
as the average density in the interval to the left of y; that is the same length as K — y; and
analogously on the right. In the next step we apply equation (2.6) of this paper. For the Chetty
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et al. (2011) method we fit a seventh-order polynomial using the entire observed distribution
outside the excluded range to predict the counterfactual distribution inside the range. We then
apply equation (6) in Chetty et al. (2011) which makes a different functional form assumption
on the preference density inside the bunching interval compared to equation (2.6). In columns
2 and 3 of Table 1 we report the resulting Saez (2010) and Chetty et al. (2011) elasticity

estimates.

Table 1: Comparing Saez, Chetty et al., and bounds for Saez data ‘

Excluded Range | Saez | Chetty et al. | Lower bound | Upper bound
K £+1000 .088 156 .036 144
K + 2000 157 .247 0 .385
K £+ 3000 .335 378 0 .908
K £+ 4000 .390 454 0 1.516

Notes: K = 20,000. The second and third columns are the Saez (2010) and Chetty et al.
(2011) estimates described in this Section. The estimates of the bounds in the fourth and fifth

columns are from equation (3.9).

We find an elasticity estimate of 0.157 for the K + 2000 range in column 2 of Table 1 which
is quite close to Saez’s (2010) preferred estimate of 0.170 using a K £ 1500 range. Columns
2 and 3 of Table 1 reveal some differences between estimates from Saez (2010) and Chetty et
al. (2011) methods. Also, the elasticity estimates in columns 2 and 3 increase as the excluded
range increases.

In columns 4 and 5 of Table 1 we provide estimates of the bounds on ( using equation
(3.9). We use the same estimates of f~(y1) and f*(y2) as we did for the Saez (2010) estimates
in column 2. We set ¢ = & = 1, which includes the case where the preference density is
monotonic. The purpose of constructing these bounds is to provide information about the
elasticity under weaker functional form assumptions than those made by previous bunching
methods. The bounds are useful for assessing the sensitivity of elasticity estimates to functional
form assumptions. When the excluded range is K + 1000 the Chetty estimate exceeds the
upper bound, which can occur because the Chetty elasticity estimate uses different estimators
of f~(y1) and f*(y2) than the bounds use.

The estimated bounds in columns 4 and 5 of Table 1 are quite wide and the width increases
with the size of the excluded range. The estimated bounds vary as the excluded range changes
for two reasons. First, as the excluded range widens, the observed mass inside the range
becomes consistent with more extreme combinations of counterfactual distribution and excess
mass. Each combination is in turn consistent with a range of preference densities inside the

bunching interval and thus with multiple elasticities. Second, the variability of counterfactual
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densities inside the excluded range is constrained by the difference between the densities at
the edges f~(y1) and f*(y2). This difference increases as the excluded range widens, since
the taxable income density on either side of the excluded range is steeply increasing in this
application, and this reinforces the widening of the bounds.

One could construct tighter bounds by putting more restrictions on the density of prefer-
ences. However, all such bounds are based entirely on prior information when there is only a

single budget set and data inside the excluded range are not informative.

5 Appendix A: Proofs of Theorems

Proof of Theorem 1: Let F(y) denote the distribution function of taxable income. Let
d(n) = F(pfn) for n < pf’BK and let ®(n) = F(pgn) for n > p;BK. By p%n being the
choice of taxable income for a linear budget set with slope p and Theorem 2 of Blomquist
et al (2015), on the lower segment where y < K the distribution of taxable income will be
Pr(npf <y = <I>(,01_6 y) = F(y). Similarly, on the upper segment where y > K, the distribution
of taxable income will be Pr(np’g <y) = @(pgﬁy) = F(y). For pfﬁK <n< p;BK let ®(n) be
any differentiable, monotonic increasing function such that @(pfﬁ K) = limy_ g y<x F(y) and
@(p;BK) = F(K). Then by construction, we have

(py "K) = @(py K) = F(K) = lim_ Fla),

where the last equality holds by standard results for cumulative distribution functions.

Let ¢(n) = d®(n)/dn denote the pdf of n below n, = pfﬁK and above 7, = p;BK respec-
tively for the ®(n) constructed above. By hypothesis there is £ > 0 such that ¢(n) is bounded
away from zero for

n EN = [772—5777£)U(77u»77u+5]-

Also let w(n) = Ing(n) in N and wP~1(n) = dP~'w(n)/dn”~! be the D — 1 derivative. Let
P
1) is
continuous on [, — €,71, + ). Let w(n) the (D — 1) integral of w(n) and ¢(n) = exp(w(n)).

w™ = limy—y, yen, wP7H(n) and w = lim,—, ,sy wP71(n). For n € [n,,7,] define w

to be the height of the line connecting (n,,w~) and (7,,w"). By construction w?~1(

Let B(n) be a D order B-spline basis function with support [r,,7,] and

wa(n) = [1 +aB(n)]w(n).

Then wy(n) is D — 1 continuously differentiable, wy(n) = w(n) for n < n, or n > n,, and

limg—— oo wq(n) = —o0 and limg— 4 oo we(n) = 00 for n € (n,,n,,). By the dominated conver-
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gence theorem f,}%“ exp(wq(n))dn is continuous in a and

nu nu
lim [ exp(wa(n))dy =0, lim / exp(wa())diy = oo,
e

a—>—00 a—>+00
e

Therefore there exists ag such that f:@“ exp(way(n))dn = Px. Then by construction a pdf

satisfying the conditions of the Theorem is

d(n) = exp(wqy(1)).Q.E.D.

Proof of Theorem 2: Let n; = ylpfﬁ and ny = ygp;ﬁ be the endpoints of the heterogene-
ity bunching interval for 1 corresponding to y; and yo respectively. The bounds on the density

are that for n € (ny,1,),

omin{¢(n;), d(n2)} < ¢(n) < dmax{e(n), d(n2)}
Also, ¢() and ¢(n,) are given by ¢(n1) = f~(y1)p7, ¢(113) = £+ (y2)p5- Then we have

P = Pr(yn <Y <yo) = " d(n)dn < (ny — 1) max{e(ny), d(ns) } (5.10)
A1

= Glyapy” — yipy " max{f~(y1)py, fT(y2)ps} = 5 max{D~(B), D*(B)},
P > omin{D (B8),D7(B)},

where the second inequality follows similarly to the first, giving the first conclusion.
Next, note that both D~ () and D (3) are strictly monotonic increasing in 3, so both
max{D~(3), D*(8)} and min{D~(3), D (B)} are as well. Also, at 3 =0,

Pr(y; <Y <o) < o(y2 —y1) min{f~(y1), [T (y2)}
D™(0) = f~(y1)(y2 — v1), DT(0) = fH(y2)(y2 — v1)-

Therefore if
P < o(yo —y1)min{f~ (y1), fT(y2)} = cmin{D~(0), DT (0)},

it follows that P < o min{D~(83), D (B)} for all 3, implying the second conclusion.
Next, consider the case where P > o min{D~(0), D*(0)}.

P > amax{f~ (), f"(y2)} (w2 —u1).

then by strict monotonicity of D~ (8) and D* () in 8 there will be unique 3, and f3,, satisfying

5ma‘X{D7(6£)7D+(5€)} - P7 Omin{Di(/Bu)7D+<Bu)} - P7
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such that the above inequality is satisfied for all g € [3,,3,]. If

omin{f~(y1), [T (y2)}y2 —y1) < P < omax{f (y1), [ (y2)} (y2 — v1)

then we can take 5, = 0.

To show sharpness, consider any (3 such that equation (3.8) is satisfied. Let 1y = y2pqy p ,
m =y, ¢(n) = P/(ng —my) = ¢ for n, < n <y, d(n) = f~(pn)p! for n < ny, and
o(n) =f( gn)pg, n > ny. As in Theorem 1 ¢(n) is constructed so that the pdf of Y = np? is
f(y) for y ¢ [y1,y2]. Also, by construction,

T2 J T2 P J p
"o n—/m ——(n)dn = P,

Also, by ¢ = P/(ny — 1) and equation (5.10)

y P M2 — 11)0 max{¢(n1), p(n _
5= L < U momadoln) 00}t < 5 paioin,). o).
M2 — M M2 — "
It follows similarly that ¢ > omin{¢(n;), #(n5)}, so that ¢(n) satisfies the bounds on the
density, showing sharpness. Q.E.D..
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Figure 5. Taxable income distribution for joint filing married taxpayers 1960-1969

Notes: The data contain 170,973 observations. We use bins of 500 USD for the histogram
and a bandwidth of 500 USD for the kernel. The kink at K = 20,000 USD is marked with a
short-dashed vertical line. The long-dashed vertical lines mark the excluded ranges of K +
2000 in Panel Aand K + 4000 in Panel B.
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1 Introduction

The elasticity of taxable income with respect to the net of tax rate is a key parameter when
predicting the effect of tax reform or designing an income tax. A large literature has developed
over several decades which attempts to estimate this elasticity. However, due to a large variation
in results between different empirical studies there is still some controversy over the size of the
elasticity. A common way to estimate the taxable income elasticity has been to use variation
in budget sets, often from data for several tax systems at different points in time. More
recently kinks and notches for a single budget set have been used to estimate the taxable
income elasticity.

We show that when the distribution of preferences is unrestricted the amount of bunching
at a kink or a notch is not informative about the size of the taxable income elasticity. We also
show that the entire distribution of taxable income for a convex budget set is not informative
about the size of the elasticity. The problem is that a kink or notch probability may be large
or small because of the size of the elasticity or because more or fewer individuals like to have
taxable income around the kink or notch. Intuitively, for a single budget set, variation in the tax
rate only occurs with variation in preferences. The conjoining of variation in the tax rate and
preferences makes it impossible to distinguish the taxable income elasticity from the preference
distribution with a single budget set. Small kinks do not solve this problem. Whether the kink
is large or small it is possible to match the distribution of taxable income to any elasticity by
specifying the distribution of preferences in a certain way.

This lack of identification can also be understood as failure of the order condition for identi-
fication, that there be as many distinct equations relating reduced form and structural param-
eters as there are structural parameters. There is one equation giving the kink probability as
a function of two structural ”parameters,” the elasticity and the preference distribution. One
equation is not enough to identify two structural parameters. Similarly there is one equation at
each taxable income value that relates the distribution of taxable income to the distribution of
preferences and the taxable income elasticity is an additional structural parameter that cannot
be separately identified from any of these equations or from all of them together.

Kinks do provide information about the size of the elasticity when a priori restrictions are
placed on the preference distribution. The elasticity can be identified when the preference
distribution is completely and correctly specified across the kink for isoelastic utility. We also
give bounds on the elasticity based on bounds on the preference density. These bounds can
be viewed as measures of sensitivity of the taxable income elasticity to assumptions about the

preference distribution. We find in an empirical example using data like Saez (2010) that the
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taxable income elasticity can be quite sensitive to the bounds on the preference distribution.

In this paper we set aside the issue of statistical inference and focus on identification. This
allows us to clarify fundamental issues of what can be learned about taxable income elasticities
from data. The bounds we give can be estimated from data and we do so. It is straightforward
to derive confidence intervals based on these bounds as in Chernozhukov, Hong, and Tamer
(2007) or Imbens and Manski (2004). To avoid additional notation and detail we omit these
derivations.

Bunching estimators of the taxable income elasticity were developed and extended in influ-
ential work by Saez (2010), Chetty et al. (2011), and Kleven and Waseem (2013).! The Saez
(2010) estimator can be interpreted as combining density values at the edges of the bunching in-
terval with assuming that the density is linear across the kink to estimate the elasticity. Chetty
et al. (2011) assume that the density is a polynomial near the kink. These results impose a
known preference distribution across the kink. Imposing a known distribution of preferences
seems unusual in the literature on identifying the effects of changing the slope of a budget set.

The rest of this paper is organized as follows. In the remainder of this Section we give a
brief literature review. Section 2 lays out the model of individual behavior we consider and
shows nonidentification from a single budget set. Section 3 gives bounds on the taxable income
elasticity based on a single budget set and bounds on the density of preferences. Section 4
applies these results to data like that used in Saez (2010). Proofs are given in the Appendix.

Nonparametric nonidentification of compensated tax effects from a kink was shown and
bounds provided in Blomquist et al. (2015). The nonidentification results we give for para-
metric isoelastic utility imply those for the more general nonparametric model. McCallum and
Seegert (2017) give identification results when covariates are present and preferences have a
Gaussian distribution. Blomquist and Newey (2017) showed that for a parametric, isoelas-
tic utility function the distribution of taxable income for one convex budget set provides no
information about the elasticity, provided bounds, and showed identification from budget set
variation holding the preference distribution fixed. These nonidentification and bounds results
are incorporated in Sections 2 and 3 of this paper. Bertanha, McCallum, and Seegert (2017)
consider nonidentification results and give bounds based on variability of the preference density.

Blomquist and Newey (2002) used variation in budget sets to nonparametrically estimate
the average labor supply effect of the Swedish tax reform of 1990-1991 for scalar preferences
with optimization errors. Blomquist et al. (2015) showed that these results are valid with

general preferences and demonstrated how to impose all the restrictions of utility maximization

!Bastani and Selin (2014), Gelber et al. (2020), Marx (2012), Le Maire and Schjering (2013) and Seim (2017)
are a few of the recent papers that apply the bunching method.
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in estimating taxable income effects. Manski (2014) and Kline and Tartari (2016) nonpara-
metrically identified and estimated bounds on important effects. Einav et al. (2017) provided
recent empirical evidence on the sensitivity of policy effects to kink modeling assumptions for
the elderly in Medicare Part D, where there is substantial bunching around the famous “donut
hole.” Van Soest (1995), Keane and Moffitt (1998), Blundell and Shephard (2012), and Manski
(2014) have considered labor supply when hours are restricted to a finite set.

Before the development of bunching methods, following the seminal work by Feldstein
(1995), the elasticity of taxable income was typically estimated by difference-in-differences.
Saez et al. (2012) provided a review of this literature. Whereas early studies mostly found
elasticities between one and three, the subsequent literature found elasticities between zero and
one, with the benchmark estimate of approximately 0.4 by Gruber and Saez (2002) being fre-
quently cited. Blomquist and Selin (2010), Weber (2014), Burns and Ziliak (2017), and Kumar
and Liang (2020) provided recent estimated elasticities between 0.2 and 1.0.

2 Nonidentification from Bunching

We consider individuals with preferences defined over after-tax income ¢ (value of consumption)
and before tax income y (cost of effort). After and before tax income are related by ¢ =

A(y),where A(y) =y — T(y) for taxes T'(y). The utility function of an individual will be

Ule,y,m),

where 7 represents unobserved heterogeneity in preferences.

Figure 1 illustrates a budget set that has two linear segments with slopes (net of tax rates)
p1 > p2 and a kink at K. An individual with preferences of type n will choose the point on the
budget set where utility is highest for that n. Different individuals may have different n and so
choose different taxable incomes. In this utility maximization model the variation in taxable
income for one budget set comes from variation in preferences. Heterogeneity of preferences
is necessary in order to have a distribution of taxable income for a single budget set. If all
individuals had the same preferences we would only observe one taxable income choice and no
inference about preferences could be drawn from that.

Bunching estimators estimate the taxable income elasticity from the proportion Py of in-
dividuals at K. We follow Saez (2010) as we describe the general idea behind this approach,
but omit some details that are not important for our analysis. Saez (2010) considers a coun-
terfactual, hypothetical change in a budget constraint. In Figure 2 we consider individuals
maximizing their utility for a linear budget set with slope p;. Suppose next that a kink is intro-

duced, and the slope of the budget constraint after the kink is ps < p;. Suppose that individuals
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who would have been in the interval (K, K + AY] along the first segment now choose the kink
point. We refer to the individual who would have chosen K + AY when there is no kink as the
marginal buncher. In Figure 2 we have drawn two indifference curves for the marginal buncher.
Before the (hypothetical) change in the budget constraint, the individual had a tangency on
the extended segment at K + AY. After the change in the budget constraint the individual
has a tangency on the second segment at K. The discrete (e.g. arc) taxable income elasticity
of the marginal buncher is
AY/K

= =)o 21)

With a kink in place we cannot observe incomes at the individual level on the extended first
segment that goes beyond K and has slope p1, so that we do not know AY. From the data we
identify the proportion Pg of individuals located at the kink. Then we have

K+AY
Pg = /K fi(y)dy, (2.2)

where fi(y) is the density of taxable income along the extended first segment. If fi(y) were
identified we could identify AY from this equation. The problem is fi(y) is not identified,
because it is the density for those grouped at the kink. This means that there are two structural
parameters, the AY and the density fi(y), but only one equation involving the reduced form
parameter. It is impossible to identify two structural parameters from one equation. An order
condition of having as many identifying equations as structural parameters is not satisfied.

This nonidentification problem does not go away as the bunching probability becomes
smaller. No matter how small Py is there are still two unknown structural parameters AY and
f1. For every positive Pg there will be multiple values of AY and f; such that equation (2.2)
is satisfied.

An important preference specification is the isoelastic utility function considered by Saez
(2010),

0 18
Ulc,y,m) =c— =z ,n>0,06>0, 2.3
o =e- e (1) =0 23)

where 7 is a scalar. Maximizing this utility function subject to a linear budget constraint
A(y) = py + R with slope (net of tax rate) p and intercept (nonlabor income) R gives the

taxable income function for a linear budget constraint

Y(p, B,m) = p’n.

The taxable income elasticity dInY (p, 8,m)/0Inp = B is constant for this specification and

there is no income effect of changing R. The variable 7 is a scalar that represents unobserved
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individual heterogeneity in preferences with each 7 corresponding to a type of individual. We
note that Y'(p, 5,7) is increasing in 7 and p.

We can see nonidentification even more clearly for the isoelastic utility function. As 7
increases from zero the choice of taxable income will move along the first segment of the budget
set. The highest value 7, giving a tangency solution on the first segment satisfies K = ngpf .
As n increases beyond 7, each individual will choose the kink until 7 equals the lowest value 7,
giving a tangency solution on the second segment, which satisfies K = nupg . Thus the set of 7
where an individual will choose to be at the kink is [ng, n,] = [K pl_B ,Kpy A), which we refer to
as the bunching interval. Therefore the kink probability satisfies

Nu KPQ_B
P =Pr(Y =K) = [ “o@dn= [ " oman (24)
ul Kp,

where ¢(n) is the probability density function (pdf) of 7. Here we can clearly see the problem
with trying to identify § from the kink. The kink probability Pk is one "reduced form” object
that is identified from the data. There are two ”structural parameters” that appear in this
equation, the taxable income elasticity § and the pdf ¢(n) of 7, but only one equation (2.4)
relating structural parameters to reduced form parameters. It is true that as § increases the
right side of this equation increases. However, it is also true that for a given taxable income
elasticity, the larger the mass of the preference distribution located in the bunching interval
[Me, M), the larger the bunching will be. It is not possible to separate those two effects using
one kink equation, and so the taxable income elasticity is not identified from a kink.

Using more information about the distribution of taxable income than the kink probability
does not help to identify the taxable income elasticity. The next result shows that for any dis-
tribution of taxable income with positive kink probability and any 8 > 0 there is a distribution

of n that generates the distribution of taxable income.

THEOREM 1: Suppose that the CDF F(y) of taxable income y is continuously differentiable
of order D > 0 to the right and to the left at K, with pdf bounded away from zero in a
neighborhood of K, and Px = Pr(Y = K) > 0. Then for any (3 there exists a CDF ®(n) of
n such that the CDF of taxable income obtained by maximizing the utility function in equation

(2.3) equals F(y) and ®(n) is continuously differentiable of order D.

Theorem 1 shows that for any possible taxable income elasticity we can find a preference
distribution such that the CDF of taxable income for the model coincides with that for the data.
Furthermore, we can do this with a preference CDF that is differentiable to the same order as
the taxable income CDF. Thus we find that the entire distribution of taxable income for one

budget set with one kink has no information about the size of the taxable income elasticity

[5]



when the distribution of preferences is unrestricted. The same result can be shown for any
continuous, piecewise linear budget frontier with nondecreasing marginal tax rates and each
kink having positive probability.

Theorem 1 implies nonidentification of the average taxable income elasticity, averaged over
any income range and over preferences, for any class of utility functions that includes isoelastic
utility as a special case. This wider implication of Theorem 1 occurs because it is more dif-
ficult to identify a parameter in a more general model, so that nonidentification in the more
restrictive isoelastic model implies nonidentification in the more general model. For example,
Theorem 1 implies the nonidentification of the average compensated taxable income elasticity
for individuals located at a kink that was shown in Blomquist et al. (2015).

Figure 3 illustrates the nonidentification result in Theorem 1. In Panel A we present a pdf
for taxable income when utility is isoelastic, the budget set is piecewise linear with one kink at
K =20,000, p; =1, po = .84, and 8 = 0.4. Above the kink the distribution of taxable income
is Gaussian and calibrated to the histogram of observed taxable income in Figure 6A in Saez
(2010), having the same mode of 40,000 USD and the same quantile at 60,000 USD. We also
assumed that the distribution of n is Gaussian before the kink. Because our purpose here is
just to illustrate nonidentification we did not attempt to find a preference distribution below
the kink that matches well the taxable income distribution there.

In Panel B of Figure 3 we graph the density of three differentiable pdf’s, all of which produce
the same distribution of taxable income, but with three different values of the taxable income
elasticity at § = .2, 8 = .4 or § = .8. Below the kink the preferences densities are the same
because p; = 1. To highlight the differences between these pdf’s we choose the density to be
nearly constant in the bunching interval, approximately equal to the value which makes the
integral over the bunching interval equal to Px. We see that choosing 5 = .2 well below the
value 8 = .4 leads to a preference density that is large over the bunching interval, while choosing
5 = .8 well above § = .4 leads to a preference density that is low over the bunching interval.
This pattern occurs because the length of the bunching interval [ng,n,] = [K pfﬁ yKpy p | is
monotonic increasing in 8. In order to make the integral of the preference density over the
bunching interval be equal to Px for each 8 we must have a large preference density across the
bunching interval when  is small and a small preference density when g is large.

The taxable income elasticity is not identified no matter how close ps is to p1. As long as
Pg > 0 then for any § there will be a density of n over the bunching interval that satisfies
equation (2.4). It is true that large values of 5 will require that the density of 7 be small and
small values of 3 require that the density be large. Nevertheless, such preference densities are

allowed when there is no a priori information on the distribution of preferences. In Section 3
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we will consider what can be learned if there are bounds on the preference density.

The proof of Theorem 1 relies entirely upon nonidentification from a kink. For any particular
B there is only one preference density that is consistent with the taxable income distribution
away from the kink. This occurs because taxable income Y = pP7 is a scalar multiple of 7
away from the kink, where p is the slope of the budget frontier on a segment away from the
kink. Therefore for any possible 8 we only have freedom to choose the preference density over
the kink, i.e. in the bunching interval [ng,n,]. Over the bunching interval any pdf ¢(n) such
that equation (2.4) holds will do. To show Theorem 1 we choose such a pdf with D derivatives
with D derivative equal to that of taxable income at 7, and 7,. In this way for any 8 > 0 we
can find a preference density such that the implied distribution for taxable income is the actual
distribution of taxable income.

A kink having positive probability does identify that § > 0 when 7 is continuously dis-
tributed. If 5 = 0 then ¥ = 7 so Y is continuously distributed by 7 being continuously
distributed and hence Px = Pr(Y = K) = 0, so Px > 0 implies § > 0. For the isoelastic utility
model a positive kink probability means that we know that individuals respond to incentives,
i.e. to changes in the tax rate. However Theorem 1 shows that the size of § is not identified
from a single tax schedule. Since the size of the taxable income elasticity is the key parameter
determining important policy questions, such as predicting the effect of tax reform or design-
ing an income tax, Theorem 1 shows that the distribution of taxable income for a single tax
schedule is not informative about these policy questions when the distribution of preferences is
unrestricted.

Notches have also been used to estimate the taxable income elasticity, beginning with Kleven
and Waseem (2013). A notch occurs at an income value where there is a discontinuity in the
budget set so that the average tax rate changes. Figure 4 illustrates such a budget set with a
drop in the average tax rate at the notch point K. The marginal tax rate could also change
at a notch, though for notational convenience Figure 4 includes no change in the marginal tax
rate. Figure 4 shows how bunching at a notch can occur for isoelastic utility. As 7 increases
from zero the choice of taxable income will move along the first segment of the budget set.
The highest value 7, giving a tangency solution on the first segment satisfies K = 772/7?. Asn
increases beyond 1, each individual will choose the kink until  equals the value 14(3) where
the indifference curve passing through the notch point on the first segment is tangent to the

second segment. The notch probability is

ng(B)
Pe= [ dlmn (25)

Kp;

and the bunching interval is now [K pl_ﬁ g (B)].
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The probability of bunching at a notch is not informative about g8 for similar reasons that
the probability of bunching at a kink is not informative. For Px > 0 and any 8 we can
choose ¢(n) such that equation (2.5) is satisfied. Thus the probability of bunching at a a notch
provides no information about the size of 8. Unlike a kink, for isoelastic utility the entire
distribution of taxable income does identify § from the size of the "gap” between K and y4(f),
where no taxable income is observed, as shown in Bertanha, McCallum, and Seegert (2018) and
Blomquist and Newey (2018). However this identification result for 5 depends crucially on the
isoelastic utility specification and seems not relevant for applications where gaps are generally
not present.

Saez (2010) and Chetty et al. (2011) do estimate the taxable income elasticity from a kink.
By the order condition for identification we know that to identify S from the kink nothing else,
other than £, must be unknown. In particular, any information about the density of 1 across the
kink must come from somewhere else. The Saez (2010) estimator can be obtained by assuming
that the density ¢(n) is linear over the bunching interval [ng,7,] and is continuous from the
left at 7 and from the right at 7,. To demonstrate, let f~(K) and f*(K) denote the limit
of the density of taxable income at the kink K from the left and from the right, respectively.
Accounting for the Jacobian of the transformation y = 77,0’? we have ¢(ny) = f~ (K )p’f and
d(ny) = fH(K) pg . Assuming that ¢(n) is linear on the bunching interval we then have

Nu

Pe = [ dn= 31600+ 6 0m) on—m) (26)
Ne

1 _ _
= 3 [f‘ (K)pi +f* (K)pg} (Kpf—KmB)
K
5 [ G+ 1 ) o /o2) ] [(n /) - 1]
This is the formula for 8 found in equation (5) of Saez (2010).

Here we see that the Saez (2010) formula of S can be obtained by imposing linearity of the

preference density over the bunching interval [ns,n,]. More generally equation (2.6) imposes

/nucb(n)dn:

Ne

the trapezoid assumption

(@ (1e) + & (N)] (M — M) 5

N

and will be valid under this condition. We could obtain other formulas for 8 by making other
assumptions about ¢(n) on [ns, 1], e.g. those of Chetty et al. (2011). The elasticity that is
implied by a distribution of taxable income will generally vary as f;l“ ¢ (n) dn varies with the
choice of ¢(n) in the bunching interval.

It is argued in Saez (2010, Section IB) and Kleven (2016, p. 440) that the use of a linear pdf

¢(n) in the bunching interval should not be seen as a restrictive functional form assumption,
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but as an approximation that works well if the kink is sufficiently small. The idea being that,
if the bunching interval is very small, any smooth density will look linear in this very small
interval. However, for this to be a meaningful idea we must have some way to determine
whether a given kink (bunching interval) is small or not. We can see from equation (2.4) that
the bunching interval depends on the location of the kink, the slope before and after the kink,
and the taxable income elasticity. We do not know the taxable income elasticity, which means
that we have no operational way to tell whether a given kink (bunching interval) is small or
not, so this reasoning is circular. Since, in the absence of knowledge of the taxable income
elasticity, we cannot tell whether a given kink (bunching interval) is small or not, the idea that
the approximation works well for small kinks is vacuous.

It is also thought, e.g. in Chetty (2011) and Kleven (2016, p. 450), that a polynomial fit to
the observed distribution of taxable income, excluding data in a range around the kink point, can
be used to predict a counterfactual distribution of taxable income in the kink region. However,
what one is actually doing here is completely specifying the exact value of the preference
density over the bunching interval to be that implied by the polynomial that fits the data
away from the bunching interval. Instead of specifying a linear pdf in the bunching interval
one is specifying that the pdf in the bunching interval has the polynomial form that fits the
distribution of earnings outside the excluded range. If this polynomial specification is incorrect
then the elasticity may be incorrect. There is no information in the data about the value of
the density over the bunching interval. The polynomial approach gives just one specification of
the preference density over the bunching interval but there are many specifications consistent
with the data that one could choose. Theorem 1 shows that any taxable income elasticity is
consistent with some specification of the preference distribution over the bunching interval.

Any choice of ¢(n) in the bunching interval, such as a linear or polynomial density, is
extrapolation, meaning an assumption about the preference distribution that is not based on
data. The bunching probability is jointly determined by £ and the preference density ¢(n) in
the bunching interval, so there is no information in the bunching probability about the density
¢(n). This information must come from a source other than the observed distribution of taxable
income, i.e. from extrapolation.

Identification of 8 from bunching should not be thought of as nonparametric. We have
shown here that existing identification methods are based on completely and correctly spec-
ifying the preference density over the bunching interval. Saez (2010) implicitly specifies the
preference density to be linear (or the trapezoid formula to hold). Chetty et al. (2011) explic-
itly specifies the preference density to be polynomial. These assumptions are more restrictive

than specifying that the density over the bunching interval is parametric because they specify
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the exact value of the density. This is a stronger assumption than is made even in parametric
models of distributions, so that identification of 8 from bunching cannot be considered to be

nonparametric.

3 Elasticity Bounds for a Single Kink

For isoelastic utility, bounds on the preference density will imply bounds on 3. Panel B of
Figure 3 illustrates that in order to obtain a given probability of bunching at a given kink, the
preference density will need to be large over the bunching interval when the true £ is small or
small when the true § is large. This pattern suggests that prior knowledge of bounds on the
preference density could lead to bounds on 5. We specifically consider elasticity bounds based
on upper and lower bounds on the preference density. The bounds we give will also be satisfied
if the preference density is monotonic on the bunching interval. We could also consider how
other kinds of information could help us bound the taxable income elasticity but for simplicity
we focus on upper and lower bounds on the density.

The bounds we give here depend on the correctness of the isoelastic utility specification,
in particular on the taxable income elasticity being the same for all individuals. Our purpose
is to use these bounds to check sensitivity of isoelastic estimates to assumptions about the
density of preferences, for which purpose the isoelastic assumption seems sufficient. Bounds for
the average elasticity over individuals located at a kink, with nonparametric preferences and
elasticities that vary over individuals, are given in Blomquist et al. (2015).

To apply the bounds for isoelastic utility we need to account for a common feature of data
that the proportion of individuals that locate exactly at a kink is very close to zero. Instead
of a positive proportion of individuals at a kink data tend to display a sharp increase in the
density of individuals as taxable income nears the kink. This data feature is often explained
as resulting from optimization errors, meaning variations in taxable income away from utility
maximization. Individuals who would locate at the kink if they were maximizing utility instead
locate near the kink. The high density of individuals near the kink could also be explained by
measurement error, though many modern administrative data sets are thought to be accurate
enough that measurement error is low.

In the bunching literature optimization errors are accounted for by specifying an ezxcluded
range [y1,ys2], containing the kink, such that optimization errors can be ignored for income
outside this range, at least for purposes of estimating the taxable income elasticity. We follow
this approach by specifying bounds for the taxable income elasticity that only use the distribu-
tion of taxable income outside an excluded range. The idea is that the distribution of taxable

income within the excluded range is potentially contaminated by optimization errors in such a
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way that the bounds for S would be incorrect, while the distribution outside the excluded range
is not contaminated in this way. Sensitivity to the excluded range can be checked by varying
[y1,y2].

In practice the excluded range [y1,y2] is often chosen by picking y; to be a value equal to
or smaller than where the taxable income density begins to rise as the kink is approached from
below and by picking y» to be a value where the density has returned back to a level that
does not appear to be related to the kink. These choices are generally made by examining a
graph of the taxable income density by eye, as we will illustrate in Section 4. This method
implicitly assumes that for learning about the taxable income elasticity the optimization errors
are accounted for by only using the distribution of taxable income outside the excluded range.

We consider bounds when y; < K < yo for the kink K. Let n; = ylpl_ﬁ and 12 = yapy g
denote lower and upper endpoints for 7 that correspond to y; and ys respectively. Also let

fm)=_lim_ fly), f* ()= lm f(y).

Y—y1,y<y1 Y—=y2,Y>y2

Consider the two functions
- - P1 7 + + P2 ’
D=(B8)=["(n) y2<> —y1|, DT (B) = f"(y2) yzy1<> :
P2 P1

We have the following result:

THEOREM 2: If F(y) equals the CDF' of taxzable income obtained by maximizing the utility
function in equation (2.3), n is continuously distributed with density ¢(n), and there are positive

scalars o > 1 and o <1 such that

omin{p(m), (n2)} < ¢(n) < o max{g(m), ¢(n2)}, for n € [n,na, (3.7)

then the tazable income elasticity B satisfies
omin{D~ (8),D* (8)} < Pr(y1 <Y <) <omax{D~ (8),D* (8)}.  (3.8)

If ¢(n) is monotonic then these bounds hold for o = & = 1. If Pr(yy <Y < y2) < o(ya —
y1)min{f~(y1), fT(y2)} then there is no B satisfying equation (3.8). Otherwise the set of
all nonnegative [ satisfying this equation is a nonempty subset of [0,00). In addition these
bounds are sharp, meaning that for any B satisfying equation (3.8) there is ¢(n) such that
Pr(y1 <Y <wyy) = f:f ¢(n)dn and equation (3.7) is satisfied.

Intuitively, upper and lower bounds on the preference density provide information about the

elasticity because the length of the bunching interval increases monotonically in 5. The upper
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bound on ¢(n) rules out small values of 8 that make the bunching interval so small that the
preference density would have to exceed its upper bound in order to match Pr(y; <Y < y»).
Similarly, the lower bound on ¢(n) rules out large values of 5 that make the bunching interval
so large that the preference density would have to be below its lower bound to match Pr(y; <
Y < o).

The sharpness of the bounds given here depends on only using the distribution of taxable
income outside the excluded range (yi1,y2). If the distribution inside the excluded range were
informative about the distribution of preferences then these bounds would not be sharp. We
follow the literature in assuming that because of optimization errors the distribution of taxable
income inside the excluded range is not informative so that only the data outside the excluded
range should be used. In the empirical application we also consider the sensitivity of the bounds
to the length of the excluded range.

The bounds given here are based on the a priori restriction in equation (3.7) for the prefer-
ence density. For ¢ = & = 1 this inequality imposes the restriction that the density of n across
the kink is bounded between the maximum and minimum of the density at the endpoints.
A monotonic ¢(n) would satisfy this condition and so would any other ¢(n) that is bounded
between that maximum and minimum. Such an assumption might be plausible if the density
of taxable income appeared to be monotonic increasing (or decreasing) before and after the
excluded range. Equation (3.7) with ¢ = ¢ = 1 would not be very plausible if the excluded
range was thought to include a mode in the distribution of preferences. In that case it might
be more plausible to set & > 1 equal to the ratio of an upper bound on the model to maximum
density at the ends of the excluded range.

The bounds will tend to be wider when f(y2) is further from f~(y1). Smaller differences in
ft(y2) and f~(y1) are sometimes evident on the right side of the mode of the taxable income
distribution, so that we would expect to find tighter bounds in such locations. Note though
that if one wanted to include the possibility of a mode in an excluded range on the right side
then one would want to choose & > 1, which would increase the width of the bounds.

It is difficult to economically motivate or justify the assumptions on which the bounds are
based. The bounds are based on assumptions about the preference density, i.e. about tastes,
over a kink, where the data provides no information about the preference density, as discussed
in Section 2. Consequently bounds on the preference density must come from information
other than that provided by data, i.e. are extrapolation. Extrapolation is based entirely on
researchers views about how identified features extend to unidentified ones.

No assumptions or extrapolations about preferences are required for many of the bounds

in the econometrics literature. For example, the Manski (1989) selection bounds impose no
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restrictions on the distribution of preferences or other unobservables. Also the Haile and Tamer
(2003) bounds for auctions do not impose such restrictions, but instead use economic behavior
to bound the distribution of preferences, which is the distribution of auction valuation. No
economic behavior is used to construct the bounds given here. Instead they are based entirely
on restricting the distribution of preferences, on extrapolating from where the data provides
information to where data does not.

These bounds do depend on the restrictive isoelastic utility specification. As discussed
following Theorem 1, identification is more difficult in more general models. Consequently,
because the bounds are sharp, we know that bounds for the average taxable income elasticity
would only be wider in more general models.

One could think of these bounds as a sensitivity check on how the results are affected by
allowing variation in the preference density in the bunching interval. This could make them
difficult to interpret because different individuals might have different ideas about upper and
lower bounds on the density of preferences. Also, these bounds are correct only if they are not
affected by optimization errors outside the excluded range.

To estimate the bounds we can plug in nonparametric estimators f—- (y1) and fr (y2) to

obtain

D=B) = F7 ) s (or/p2)’ =]
D (B) = @) 1w (/)]

Estimated bounds for 3 are Be and Bu that solve

6max{f?_ (BZ) ,ﬁ+ (Be)} = Pr(ylg?g Y2), (3.9)

w0 (3,).0 (3)} = Prn =T <.
4 An Application to US Data

In this Section we analyze the federal income tax application in Saez (2010, Figure 6A) for
married joint tax filers for the years 1960 to 1969, for isoelastic utility. Like Saez (2010),
we use Individual Public Use Microdata files from 1960 to 1969 released by the Statistics of
Income Division of the Internal Revenue Service. We access the data through the NBER Unix
System. The 1960-1969 data currently existing on NBER servers differ slightly from those used
by Saez (2010), but yield estimates similar to Saez (2010). These files are stratified random
samples of the entire tax filing population of the United States with oversampling of high-income
individuals. Like Saez (2010), years 1961, 1963, and 1965 are excluded from analysis, as public

use files for these years are not available. The sample size ranges from approximately 86,000
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to 100,000 in various years between 1960 and 1969. The public-use files come with some well-
known limitations, e.g., individual identifiers are removed, some variables are blurred to prevent
public disclosure, and demographic information is missing. Our definition of taxable income
is identical to Saez (2010)—Adjusted Gross Income (AGI) net of exemptions and deductions.
Following Saez (2010), we focus on tax returns with taxable income (in 2008 dollars) between
-20,000 and 65,000. All bunching estimation is based on binned data, with $100 wide bins,
constructed using population weights.

In Figure 5, Panels A and B, we reproduced the taxable income distribution but shifted
the domain upwards by 20,000 to avoid negative values, for which the elasticity is not defined.
We have chosen the bandwidth to be 500 as did Saez (2010). At the first 20,000 kink that
Saez focused on, the marginal tax rate went up from 0 to 16 percent (across-year average) for
married tax filers for the years 1960 to 1969. There are additional smaller kinks after 45,000.
See Saez (2010) for a detailed description of the institutional setting. We think this application
is important for several reasons. First, it concerns a large part of the population. Second,
the fairly low elasticity estimates that Saez (2010) found for this application were less sensitive
across specifications compared to other applications in which it was harder to plausibly quantify
the bunching probability with any precision. Third, similar low income tax elasticities for broad
population groups have been found in other countries (e.g., Chetty et al., 2011; Bastani and
Selin, 2014).

To help us select the excluded range we plot in Figure 5 the histogram and kernel density
estimate with vertical lines located at K = 20,000 and the endpoints K + 2000 in Panel A
and K 44000 in Panel B. We look for a sharp increase and decrease in the estimated density
around the kink. To us it appears that there may be some effect of the kink outside an excluded
range K + 2000 and no effect of the kink outside an excluded range K + 4000. Based on these
observations we report results for four choices of excluded range, K 4+1000, K 2000, K + 3000,
and K =+ 4000.

For purposes of comparison we compute versions of the Saez (2010) and Chetty et al. (2011)
bunching estimators for each of the excluded ranges. We use data outside the excluded range
to estimate f~(K), ft(K), and the counterfactual density within the excluded range. The
kink probability Pk is estimated as the excess mass that is the area between the observed and
predicted counterfactual densities inside the excluded range. We then plug-in the estimates of
[ (K), fT(K), and Pk to a formula for the elasticity obtained by specifying the distribution
of preferences over the bunching interval. For the Saez (2010) method we estimate f~(K)
as the average density in the interval to the left of y; that is the same length as K — y; and
analogously on the right. In the next step we apply equation (2.6) of this paper. For the Chetty
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et al. (2011) method we fit a seventh-order polynomial using the entire observed distribution
outside the excluded range to predict the counterfactual distribution inside the range. We then
apply equation (6) in Chetty et al. (2011) which makes a different functional form assumption
on the preference density inside the bunching interval compared to equation (2.6). In columns
2 and 3 of Table 1 we report the resulting Saez (2010) and Chetty et al. (2011) elasticity

estimates.

Table 1: Comparing Saez, Chetty et al., and bounds for Saez data ‘

Excluded Range | Saez | Chetty et al. | Lower bound | Upper bound
K 41000 .088 .156 .036 144
K + 2000 157 .247 0 .385
K £+ 3000 .335 378 0 .908
K 44000 .390 454 0 1.516

Notes: K = 20,000. The second and third columns are the Saez (2010) and Chetty et al.
(2011) estimates described in this Section. The estimates of the bounds in the fourth and fifth

columns are from equation (3.9).

We find an elasticity estimate of 0.157 for the K + 2000 range in column 2 of Table 1 which
is quite close to Saez’s (2010) preferred estimate of 0.170 using a K =+ 1500 range. Columns
2 and 3 of Table 1 reveal some differences between estimates from Saez (2010) and Chetty et
al. (2011) methods. Also, the elasticity estimates in columns 2 and 3 increase as the excluded
range increases.

In columns 4 and 5 of Table 1 we provide estimates of the bounds on £ using equation
(3.9). We use the same estimates of f~(y1) and f*(y2) as we did for the Saez (2010) estimates
in column 2. We set ¢ = ¢ = 1, which includes the case where the preference density is
monotonic. The purpose of constructing these bounds is to provide information about the
elasticity under weaker functional form assumptions than those made by previous bunching
methods. The bounds are useful for assessing the sensitivity of elasticity estimates to functional
form assumptions. When the excluded range is K + 1000 the Chetty estimate exceeds the
upper bound, which can occur because the Chetty elasticity estimate uses different estimators
of f~(y1) and f*(y2) than the bounds use.

The estimated bounds in columns 4 and 5 of Table 1 are quite wide and the width increases
with the size of the excluded range. The estimated bounds vary as the excluded range changes
for two reasons. First, as the excluded range widens, the observed mass inside the range
becomes consistent with more extreme combinations of counterfactual distribution and excess
mass. Each combination is in turn consistent with a range of preference densities inside the

bunching interval and thus with multiple elasticities. Second, the variability of counterfactual
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densities inside the excluded range is constrained by the difference between the densities at
the edges f~(y1) and f*(y2). This difference increases as the excluded range widens, since
the taxable income density on either side of the excluded range is steeply increasing in this
application, and this reinforces the widening of the bounds.

One could construct tighter bounds by putting more restrictions on the density of prefer-
ences. However, all such bounds are based entirely on prior information when there is only a

single budget set and data inside the excluded range are not informative.

5 Appendix A: Proofs of Theorems

Proof of Theorem 1: Let F(y) denote the distribution function of taxable income. Let
o(n) = F(pfn) for n < pl_ﬂK and let ®(n) = F(pgn) for n > pQ_EK. By p’n being the
choice of taxable income for a linear budget set with slope p and Theorem 2 of Blomquist
et al (2015), on the lower segment where y < K the distribution of taxable income will be
Pr(np’f <vy)= @(pfﬁy) = F(y). Similarly, on the upper segment where y > K, the distribution
of taxable income will be Pr(npg <y = <I>(p2_6y) = F(y). For pl_ﬁK <n< pgﬁK let ®(n) be
any differentiable, monotonic increasing function such that @(pfﬁ K) = limy_, g y<x F(y) and
q)(p;ﬂK) = F(K). Then by construction, we have

(py K) = @(p K) = F(K) = lim  F(a),

where the last equality holds by standard results for cumulative distribution functions.
Let ¢(n) = d®(n)/dn denote the pdf of n below n, = pfﬂK and above 1, = pgﬁK respec-
tively for the ®(n) constructed above. By hypothesis there is € > 0 such that ¢(n) is bounded

away from zero for

ne N = [775_5777£)U(77u>77u+5]-

Also let w(n) = In¢(n) in N and wP~1(n) = d°~1w(n)/dnP~! be the D—1 derivative. Let w™ =
limy, s, nen, w2 1) and wt = lim,;—, y5n. wP 71 (0). For n € [ne,n] define wP~1(n) to be
the height of the line connecting (1, w™) and (n,,w"). By construction w?”~!(
on [y — e,mu + €]. Let w(n) the (D — 1)™ integral of w(n) and ¢(n) = exp(w(n)). Let B(n) be

a D order B-spline basis function with support [ng, n,] and

n) is continuous

wa(n) = [1+aB(n)jw(n).

Then wy(n) is D — 1 continuously differentiable, w,(n) = w(n) for n < n or n > n,, and

limg—s— oo we(n) = —00 and limg— 4 o0 we(n) = +o00 for n € (1, n,). By the dominated conver-
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gence theorem fTZ]“ exp(wq(n))dn is continuous in a and

Nu Uin
fim [ explea(m)dn =0, Tim [ explea(m)idn = .

a—>—00 ne a—>+00 e

Therefore there exists ag such that f;;“ exp(wqy(n))dn = Pg. Then by construction a pdf

satisfying the conditions of the Theorem is

B(n) = exp(wqy(n)).Q.E.D.

Proof of Theorem 2: Let n; = y; pfﬁ and 12 = Y20y % be the endpoints of the heterogeneity
bunching interval for n corresponding to y; and y, respectively. The bounds on the density are

that for n € (n1,12),

omin{@(m), ¢(n2)} < ¢(n) < & max{p(m), (n2)}-

Also, ¢(m) and ¢(1) are given by ¢(m) = [~ (1)}, 6(112) = F*(y2)p5- Then we have

P o= Py <Y <y)= [ o)< (n—m)omax{é(m). o(ne)} (5.10)

= Glyapy” — yipy P max{f~(w1)pl, [T (y2)p5} = 5 max{D™(8), D*(B)},
P > omin{D~(8),D*(B)},

where the second inequality follows similarly to the first, giving the first conclusion.

Next, note that both D~(8) and DT (3) are strictly monotonic increasing in /3, so both
max{D~(3), D*(8)} and min{D~(8), D" (B)} are as well. Also, at 3 =0,

Pr(y1 <Y < y2) < o(y2 — yr) min{f~(y1), fF(y2)}

D™(0) = f~(y1)(y2 — v1), DT(0) = fH(y2)(y2 — ).

Therefore if
P < o(yo —y1)min{f~ (y1), fT(y2)} = e min{D~(0), DT (0)},

it follows that P < o min{D~(8), D™ (B)} for all 3, implying the second conclusion.
Next, consider the case where P > o min{D~(0), D" (0)}.

P > amax{f~ (), [ (y2)}(y2 — ),

then by strict monotonicity of D~ () and D+ (/) in 8 there will be unique 3; and f3, satisfying

gmax{D~ (B¢), DT ()} = P, cmin{D~(B,), DT (B.)} = P,
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such that the above inequality is satisfied for all 8 € [5, Bu]. If

omin{f~ (y1), /" (y2)}(y2 —y1) < P < dmax{f~ (1), /" (y2)} (2 — 1)

then we can take 8y = 0.
To show sharpmness, consider any 3 such that equation (3.8) is satisfied. Let 2 = y2pqy A ,
m = yipr’ d(n) = P/ne —m) == ¢ for ;i < n < m2, (n) = f(pn)py for n < i, and
o(n) = f_(pgn)p’g, 17 > n2. As in Theorem 1 ¢(n) is constructed so that the pdf of Y = np? is
f(y) for y ¢ [y1,y2]. Also, by construction,
n2 72 P
otn)in = | Sn)dn = P
m m 27N
Also, by ¢ = P/(n2 — n1) and equation (5.10)
P _ (e —m)omax{d(m), (n2)}
m—m o N2 — M
It follows similarly that ¢ > omin{¢(n1), #(n2)}, so that ¢(n) satisfies the bounds on the

¢ = < gmax{d(n1), ¢(n2)}-

density, showing sharpness. Q.E.D..
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Figure 3. Nonidentification: multiple combinations of elasticity and heterogeneity
distribution give the same taxable income distribution
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Figure 5. Taxable income distribution for joint filing married taxpayers 1960-1969

Notes: The data contain 170,973 observations. We use bins of 500 USD for the histogram
and a bandwidth of 500 USD for the kernel. The kink at K = 20,000 USD is marked with a
short-dashed vertical line. The long-dashed vertical lines mark the excluded ranges of K +
2000 in Panel Aand K + 4000 in Panel B.
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