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Abstract—Extracting directional connectivity in a neuronal
ensemble from spiking observations is a key challenge in under-
standing the circuit mechanisms of brain function. Existing meth-
ods proceed in two stages, by first estimating the latent processes
that govern spiking, followed by characterizing connectivity using
said estimates. As such, the extracted networks in the second
stage are highly sensitive to the accuracy of the estimates in the
first stage. In this work, we introduce a framework to directly
extract Granger causal links from spiking observations, without
requiring intermediate time-domain estimation, by explicitly
modeling the endogenous and exogenous latent processes that
underlie spiking activity. Our proposed method integrates several
techniques such as point processes, state-space modeling and
Pólya-Gamma augmentation. We demonstrate the utility of our
proposed approach using simulated data and application to real
data from the rat brain during sleep.

I. INTRODUCTION

Recent advances in neural data acquisition techniques such
as high-density arrays and two-photon calcium imaging have
paved the way to recording the simultaneous activity of large
neuronal populations [1], [2]. Extracting the networks underly-
ing such population activity is key to studying the mechanisms
of cognitive and sensory processing [3]–[8]. Granger causality
is a well-established method for characterizing such directional
connectivity: considering two processes Xt and Yt, if the
knowledge of process Xt, significantly improves the prediction
of Yt+1 we say there is a Granger causal (GC) link from X
to Y [9]. This notion of directed connectivity has been widely
used in the analysis of neuroimaging data as well as spiking
neuronal ensembles [8], [10], [11].

While point process modeling [11], [12] provides a prin-
cipled framework to analyze spiking data, existing methods
for inferring GC networks from spiking observations have
several shortcomings. First, commonly used approaches pro-
ceed in two stages, where the underlying latent processes
driving spiking activity are first estimated from the spiking
data, followed by GC inference from said estimates [13]–
[15]. As a result, biases incurred in the estimation of the
latent processes propagate to the subsequent GC inference
stage. While recent results use history-dependent point process
models to directly extract GC links from spiking observations
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[8], [16], the neuronal dynamics in these models are limited to
the binary-valued history of the ensemble and may not fully
account for the rich range of endogenous (i.e., spontaneous)
and exogenous (i.e., stimulus-driven) processes that drive
spiking activity. On the other hand, latent variable models that
are used to capture neural dynamics from spiking activity,
consider instantaneous correlations and do not account for
delayed interactions between the neurons [17], [18]. Thus, a
unified modeling and estimation framework to extract GC links
directly from spiking data by explicitly modeling the effect of
exogenous and endogenous processes is lacking.

We here address these issues and propose a methodology to
directly extract GC links from spiking data using an inverse
problem shown in Fig. 1. We integrate point processes and
multivariate autoregressive modeling to relate the spiking
observations to the underlying network, while explicitly taking
into account the spontaneous and stimulus-driven activity. We
combine several methods such as Pólya-Gamma augmentation
[19] and Expectation-Maximization [20] to directly solve the
inverse problem and recover the underlying GC connectivity.
Furthermore, we assess the significance of the detected GC
links using Youden’s J-statistics [8], [21]. We compare the
performance of our method to existing approaches using a
simulation study, which reveals significant improvements in
hit and false alarm rates. Finally, we apply our method to
experimentally-recorded data from the rat cortical neurons
during sleep to identify network-level changes across different
sleep stages.

II. METHODS

A. Problem Formulation
Suppose that we observe the spiking activity of a pop-

ulation of neurons across multiple repeated trials. Let n(j)t,l
denote the spiking of the jth neuron at the tth time bin and
lth trial. We assume that spiking observations are Bernoulli
realizations primarily driven by two independent covariates, an
endogenous process x(j)t,l accounting for spontaneous activity
and an exogenous component capturing the activity driven by
a stimulus st,l. We assume that these covariates change over
a slower time scale than the observed spiking, i.e., spiking
observations within a small window of length W are driven
by the same processes. Accordingly, we have:

n
(j)
t,l ∼ Bernoulli

(
logistic

(
µ
(j)
l + x

(j)
k,l + d>j sk,l

))
(1)
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Fig. 1: A schematic depiction of the generative model and the
inverse problem. The spiking activity of networked neurons in an
ensemble is driven by latent endogenous processes (red traces) as
well as an exogenous stimulus (green traces). Black arrows show the
GC connectivity. Our contribution is to solve the inverse problem by
estimating the underlying GC connectivity directly from the spiking
observations.

where k = ceil
(
t
W

)
, logistic(·) = exp (·)

1+exp (·) , dj is the
receptive field of neuron j encoding the effect of stimulus
sk,l, and µ(j)

l is the baseline activity.
To investigate the underlying GC connectivity, we model the

latent variables x(1:J)k,l as a multivariate autoregressive (AR)
process. Defining xk,l := [x

(1)
k,l , · · · , x

(J)
k,l ]
> ∈ RJ , we have:

xk,l =
P∑
p=1

Apxk−p,l + wk,l, wk,l ∼ N (0,Σ) (2)

where Ap ∈ RJ×J represents the AR coefficients of the pth

time lag and the noise covariance Σ ∈ RJ×J is a diagonal
matrix with the jth diagonal entry given by σ2

j . Further, we
regularize the AR coefficients using the `2 norm, to mitigate
over-fitting in the regime of large P .

Given spiking observations of J neurons over a time period
T (i.e., K = ceil

(
T
W

)
windows) and L trials, n(1:J)1:T,1:L, we aim

at extracting the GC links among the neurons in the population.
To this end, we first estimate the AR coefficients and the
state covariance matrix without any restrictions, namely the
full model. Then, to assess the GC link from neuron i to j,
we remove the contribution of neuron i to neuron j in the AR
model and re-estimate the AR coefficients and state covariance
matrix to get the reduced model parameters. If including x(i)k,l
improves the prediction of x(j)k,l , the full model is preferred
over the reduced model, and we say that there exists a GC
link from neuron i to j. Thus, by assessing the significance of
the difference in the log-likelihoods of these two models, we
can test for the existence of a GC link.

B. Parameter Estimation via Expectation-Maximization

To estimate the unknown parameters θ := {Ap,Σ,dj , |p ∈
{1, 2, · · · , P}, j ∈ {1, 2, · · · , J}} we use Expectation-
Maximization (EM) [20]. To illustrate this procedure, first
consider the full model. The joint log-likelihood of the ob-
servations, latent processes and parameters can be written as:

log p
(
n
(1:J)
1:T,1:L, x

(1:J)
1:K,1:L,θ

)
=

J,K,L,W∑
j,k,l,w=1

(
n
(j)
(k−1)W+w,l(µ

(j)
l + x

(j)
k,l + d>j sk,l)

− log(1 + exp(µ
(j)
l + x

(j)
k,l + d>j sk,l))

)
−

K,L∑
k,l=1

1

2

(
xk,l−

P∑
p=1

Apxk−p,l

)>
Σ−1

(
xk,l−

P∑
p=1

Apxk−p,l

)

− KL

2
log|Σ|−λ

P∑
p=1

‖Ap‖22+C, (3)

where C represents terms that are not functions of n(1:J)1:T,1:L,
x
(1:J)
1:K,1:L or θ, and λ represents the `2-regularization parameter.
1) E-Step: We need to compute the so-called Q-function

given by:

Q(θ|θ̂(r)) := E
[
log(p(n

(1:J)
1:T,1:L, x

(1:J)
1:K,1:L))|n

(1:J)
1:T,1:L, θ̂

(r)
]
,

where θ̂(r) is the parameter estimates at iteration r.
This requires evaluation of E[xk,l|n(1:J)1:T,1:L, θ̂

(r)] and
E[xk,lx>k−p,l|n

(1:J)
1:T,1:L, θ̂

(r)], for p = 1, · · · , P . Using a
standard state augmentation, we define:

xk,l
xk−1,l

...
xk−(P−1),l


︸ ︷︷ ︸

x̃k,l

= A


xk−1,l
xk−2,l

...
xk−P,l


︸ ︷︷ ︸

x̃k−1,l

+


wk,l

0(P−1)J×1


︸ ︷︷ ︸

w̃k,l

,

A =


A1 A2 · · · AP

I(P−1)J×(P−1)J 0(P−1)J×J

 ,
with w̃k,l ∼ N (0, Σ̃) where

Σ̃ =

[
Σ 0J×(P−1)J

0(P−1)J×J 0(P−1)J×(P−1)J

]
.

The complete log-likelihood of Eq. (3) can be expressed as:
J,K,L,W∑
j,k,l,w=1

(
n
(j)
(k−1)W+w,l(µ

(j)
l + x̃

(j)
k,l + d>j sk,l)

− log (1 + exp(µ
(j)
l + x̃

(j)
k,l + d>j sk,l))

)
−

K,L∑
k,l=1

1

2
(x̃k,l −Ax̃k−1,l)

>Σ̃−1(x̃k,l −Ax̃k−1,l)

− KL

2
log(|Σ|)− λ

P∑
p=1

‖Ap‖22+C. (4)



3

Given that the Bernoulli log-likelihood is not quadratic in
xk,l, computing the expectation of Eq. (4) is intractable. To
address this issue, we use Pólya-Gamma (PG) augmentation,
which leverages the following identity [17], [19]:

aψ − log (1 + exp (ψ)) =

(
a− 1

2

)
ψ − log 2

+

∫ ∞
0

(
−ω
2
ψ2 + log pPG(1,0)(ω)

)
dω, (5)

where pPG(1,0)(ω) is the PG density. Comparing the first term
in Eq. (4) with the left hand side of Eq. (5), we see that by
setting a := n

(j)
(k−1)W+w,l, ψ := µ

(j)
l + x̃

(j)
k,l + d>j sk,l, the PG

augmented log-likelihood can be expressed as:

log
(
p
(
n
(1:J)
1:T,1:L, x

(1:J)
1:K,1:L, ω

(1:J)
1:K,1:L,θ

))
=

J,K,L,W∑
j,k,l,w=1

((
n
(j)
(k−1)W+w,l −

1

2

)(
µ
(j)
l + x̃

(j)
k,l + d>j sk,l

)

−
ω
(j)
k,l

2

(
µ
(j)
l + x̃

(j)
k,l + d>j sk,l

)2
+ logPPG(1,0)

(
ω
(j)
k,l

))

−
K,L∑
k,l=1

1

2
(x̃k,l −Ax̃k−1,l)

>Σ̃−1(x̃k,l −Ax̃k−1,l)

− KL

2
log(|Σ|)− λ

P∑
p=1

‖Ap‖22+C (6)

introducing PG distributed i.i.d. latent random variable ω(j)
k,l ∼

PG(1, 0), for 1 ≤ k ≤ K, 1 ≤ l ≤ L and 1 ≤
j ≤ J . Note that the augmented log-likelihood in Eq.
(6) is quadratic in x̃k,l, hence the conditional distribution
p(x̃k,l|n(1:J)1:T,1:L, ω̂

(1:J)
1:K,1:L, θ̂

(r)) is indeed Gaussian. Thus, we
can use fixed interval smoothing [22] and covariance smooth-
ing [23] to efficiently compute the conditional expectations of
x̃k,l, x̃k,lx̃

>
k,l, and x̃k−1,lx̃

>
k,l given n(1:J)1:T,1:L, ω̂

(1:J)
1:K,1:L, θ̂

(r).

From the augmented log-likelihood in Eq. (6), we note that
the conditional distribution p(ω(j)

k,l |x
(1:J)
1:K,1:L,θ) ∼ PG(1, c

(j)
k,l),

where c
(j)
k,l = |µ(j)

l + x̃
(j)
k,l + d>j sk,l|. Thus, we estimate

ω̂
(j)
k,l = E[ω(j)

k,l |x
(1:J)
1:K,1:L, θ̂

(r)] = 1

2c
(j)
k,l

tanh
(
c
(j)
k,l

2

)
. To increase

the accuracy of latent variable estimation, we iterate between
estimating the moments of x̃k,l and ω(j)

k,l , before advancing to
the M-step.

2) M-Step: In the M-step we update the values of A, Σ
and D maximizing the Q-function. The update rules for the
jth row of A, Σ and dj are given by:

â
(r+1)
j =

(∑K,L
k,l E

[
x
(j)
k,l x̃

>
k−1,l

])(∑K,L
k,l E

[
x̃k−1,lx̃

>
k−1,l

]
+ λσ2

j I
)−1

,

Σ̂(r+1) =
1

KL

(K,L∑
k,l

E
[
x̃k,lx̃

>
k,l

]
− E

[
x̃k,lx̃

>
k−1,l

]
A>

−AE
[
x̃k−1,lx̃

>
k,l

]
+ AE

[
x̃k−1,lx̃

>
k−1,l

]
A>
)
,

d̂
(r+1)
j =

[
W

K,L∑
k,l

ω̂
(j)
k,l sk,lsk,l

>
]−1[K,L,W∑

k,l,w

(
n
(j)
(k−1)W+w,l−

1

2

)
sk,l

− µ(j)
l ω̂

(j)
k,l sk,l − ω̂

(j)
k,l sk,lE

[
x
(j)
k,l

] ]
,

where we have dropped the conditioning of the expectations by
n
(1:J)
1:T,1:L, ω̂

(1:J)
1:K,1:L, θ̂

(r) for notational convenience. To check
for the convergence of the EM algorithm, we compare the
normalized relative error of the estimated AR coefficients
and the state covariance matrix with a pre-specified threshold
(here, we used a threshold of 10−2).

We follow the same EM procedure when estimating the
parameters of the reduced model, with slight modifications to
the update rules. Note that in the reduced model, we remove
the contributions of the source neuron to the activity of the
target neuron in Eq. (2), by setting the corresponding AR
coefficients to zero. In the reduced model for testing the GC
link from neuron i to neuron m, the update rules for âj are
the same as before, for j 6= m. However, for j = m, we
use the reduced vector x̃red.

k−1,l ∈ R(J−1)P by removing the
elements of x̃k−1,l corresponding to neuron i, and then update
â
(r+1)
m ∈ R(J−1)P as

â
(r+1)
m =

(∑K,L
k,l E

[
x
(m)
k,l (x̃

red.
k−1,l)

>
])(∑K,L

k,l E
[
x̃red.
k−1,l(x̃

red.
k−1,l)

>
]
+ λσ2

mI
)−1
,

and set the coefficients corresponding to neuron i to zero.
Similarly, when deriving the reduced model to test for the GC
effect of stimulus to neuron m, we set dm = 0.

C. Statistical Testing of Granger Causal Links

To assess the significance of the GC links, we use the
deviance difference between the reduced and full models [8],
[24] defined as:

D(i 7→j) = 2(`f − `r), (7)

where `f and `r denote the log-likelihood of the observations
in the full and reduced models, respectively. Since a direct
evaluation of the observation log-likelihood is intractable, we
simplify it using Bayes’ theorem and the sampling scheme of
[25] as follows:

P
(
n
(1:J)
1:T,1:L

)
=
p(n

(1:J)
1:T,1:L, x̃1:K,1:L)

p(x̃1:K,1:L|n(1:J)1:T,1:L)

=

∏J,T,L
j,t,l P (n

(j)
t,l |x̃1:K,1:L)

∏K,L
k=2,l=1 p(x̃k,l|x̃k−1,l) p(x̃1,l)∏L

l=1 p(x̃K,l|n
(1:J)
1:T,1:L)

∏K−1,L
k,l=1 p(x̃k,l|x̃k+1:K,l, n

(1:J)
1:T,1:L)

.

(8)

While the numerator in Eq. (8) has a closed-form expression,
the denominator does not, due to the coupling of xk,l and
the Bernoulli observation model. Thus, we use the Laplace
approximation to simplify the denominator in Eq. (8). Specif-
ically, for k = 1, · · · ,K and l = 1, · · · , L we assume:

p(x̃k,l|x̃k+1:K,l, n
(1:J)
1:T,1:L ∼ N (x̂k|K,l,Pk|K,l),

where x̂k|K,l and Pk|K,l satisfy:

x̂k|K,l = (I−Ck+1,lÂ)x̃k|k,l + Ck+1,lx̃k+1,l,
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Pk|K,l = (I−Ck+1,lÂ)Pk|k,l,

Ck+1,l = Pk|k,lÂ
>(ÂPk|k,lÂ

> + Σ̂)−1,

with x̃k|k,l and Pk|k,l being the outputs of the Kalman filter
in the E-step, respectively given by E[x̃k,l|n(1:J)1:kW,l, θ̂] and

E(x̃k,l − x̃k|k,l)
(
x̃k,l − x̃k|k,l

)> |n(1:J)1:kW,l, θ̂].
We use the fact that the deviance difference D(i 7→j) ∼

χ2(M) in the absence of a GC link and D(i 7→j) ∼
χ2(M,ν(i 7→j)) in the presence of a GC link, where χ2(M)
and χ2(M,ν(i 7→j)) are respectively central and non-central
chi-square distributions with M degrees of freedom and non-
centrality parameter ν(i 7→j) [8]. The degrees of freedom M is
equal to the number of parameters removed in the reduced
model. In the analysis of GC links between the neurons
M = P , and assessing the GC effect of the stimulus on
a neuron, M is equal to the length of the receptive field
vector dj . The non-centrality parameter can be estimated as
ν̂(i 7→j) = max{D(i 7→j) −M, 0} [8].

To summarize the strength of a GC link at a significance
level α, we use the J-statistic for the link i 7→ j defined as:

J (i 7→j) = 1− α− η(i 7→j)(α), (9)

where η(i 7→j)(α) := Fχ2(M,ν̂(i 7→j))(F−1χ2(M)(1 − α)) with
Fχ2(M,ν̂(i 7→j))(.) and Fχ2(M)(.) denoting the cumulative dis-
tribution functions of the non-central and central chi-square
distributions with M degrees of freedom and non-centrality
ν̂(i 7→j). The J-statistic summarizes the overall performance
of a diagnostic test by accounting for both type-I and type-
II errors. When J (i 7→j) ≈ 0 there is no strong evidence to
reject the null hypothesis, whereas when J (i 7→j) ≈ 1, there
is strong evidence that the alternative hypothesis is true. Thus
J (i 7→j) ∈ [0, 1] is an indicator of the strength of the detected
GC link. Finally, to account for the multiple comparisons
performed to detect the GC links in a network, we use the
Benjamini-Hochberg [26] (BH) procedure to correct the false
discovery rate (FDR).

III. RESULTS

We demonstrate the utility of our proposed method using a
simulation study and application to real data. In the simula-
tions, we compare our method with two existing approaches:

1) Two-Stage AR Estimation Method: This method first
estimates the conditional intensity of the spiking activity
through a logistic link as follows:

n
(j)
t,l ∼ Bernoulli

(
logistic

(
y
(j)
k,l

))
,

where y
(j)
k,l is the logit of the conditional intensity and is

modeled as an AR(1) process to enforce temporal smoothness
[27]. Then, the GC links are assessed by fitting a multivari-
ate AR model using Eq. (2) and assuming a linear model
y
(j)
k,l = x

(j)
k,l + d>j sk,l + v

(j)
k,l , where v(j)k,l ∼ N (0, σ2

v).
2) Two-stage PSTH Method: This method is a simplifica-

tion of the Two-Stage AR Method, where the latent process
y
(j)
k,l is estimated by the peri-stimulus time histogram (PSTH)

of the spiking activity ŷ(j)k,l :=
1
W

∑W
w=1 n

(j)
(k−1)W+w,l

A. Simulation Study

We consider J = 5 neurons and a stimulus given by
an AR(2) process. There are 4 GC links as shown in Fig.
2-A, where red (resp. blue) arrows show facilitative (resp.
suppressive) GC links, reflecting the positive (resp. negative)
sign of the aggregate AR coefficients or receptive fields. The
spiking activity was simulated over bin sizes of 10 ms over
L = 3 trials for total duration of T = 30 s. The stimulus
and the endogenous AR process (with P = 2 lags) were
generated over 100 ms sampling intervals, corresponding to
W = 10. Fig. 2-B shows the ground truth GC links, as well
as those estimated by our proposed method and the two-stage
approaches. While our proposed method accurately detects all
the true GC links, with only one false detection, the two-stage
methods significantly deviate from the ground truth. Also,
our proposed method is the only one that correctly identifies
the GC link from the stimulus neuron 4. To further quantify
this observation, we repeated this experiment 10 times and
computed the average hit and false alarm rates as shown in
Fig. 2-C (FDR controlled at 10−4). Our method exhibits a hit
rate close to 1, while also resulting in a lower false alarm rate
as compared to the other methods.

1
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Fig. 2: Result of the simulation study. (A) Schematic depiction
of the simulated network with 5 neurons and an external stimulus,
(B) GC links, from left to right: ground truth, proposed method,
Two-stage AR method, and Two-stage PSTH method. (C) Detection
performance of the three methods, with FDR controlled at 10−4.

B. Application to Experimentally-Recorded Data

Finally, we applied our proposed method to experimentally
recorded data from the rat’s brain during the nonREM and
REM phases of sleep (dataset from [28], publicly available
in the Collaborative Research in Computational Neuroscience
data sharing website [29]). This dataset includes the spiking
activity of J = 2 neural populations: putative pyramidal
cells (pE) and putative interneurons (pI). Since there is no
external stimulus, we set sk,l = 0. We considered two neurons
from each population and assumed their spike trains to be
independent trials L = 2, segmented the data into 30 s
episodes sampled at fs = 50 Hz and considered a stationary
window of length W = 10 samples. We assessed the GC
links between the pE and pI populations over 47 nonREM and
29 REM episodes, and compared the changes in connectivity
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Fig. 3: Application to experimentally-recorded data from the rat
brain during sleep. The GC links from pE to pI populations sig-
nificantly decrease from nonREM to REM stage (t-test, ∗p < 0.05).

across the two sleep stages as shown in Fig. 3. We found
that the average number of GC links from pE to pI neurons
significantly decreased during REM as compared to nonREM
sleep, while there was no significant change in the GC links
from pI to pE neurons.

IV. CONCLUSION

In this work, we developed a framework to infer Granger
causal links from spiking activity of a neuronal population
using a latent variable model accounting for the endogenous
and exogenous effects. By explicitly modeling the latent
endogenous processes that govern spontaneous activity and
the exogenous effect of external stimuli on the observed
spiking data, we developed a direct inference framework to
identify the GC connectivity in a neuronal ensemble. We used
multivariate AR modeling, Pólya-Gamma augmentation, and
point process modeling to address the shortcomings of existing
methods. Using simulated data, we demonstrated the superior
performance of our method compared to existing approaches.
Application of our proposed method to real data from the
rat brain during sleep revealed changes in the connectivity
of neuronal populations across different sleep stages.
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“Network homeostasis and state dynamics of neocortical sleep,” Neuron,
vol. 90, no. 4, pp. 839 – 852, 2016.

[29] B. O. Watson, D. Levenstein, J. P. Greene, J. N. Gelinas, and
G. Buzsáki, “Multi-unit spiking activity recorded from rat frontal
cortex (brain regions mPFC, OFC, ACC, and M2) during wake-
sleep episode wherein at least 7 minutes of wake are followed
by 20 minutes of sleep,” CRCNS.org, 2016. [Online]. Available:
http://dx.doi.org/10.6080/K02N506Q


