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Abstract

In this expository article, we present a systematic formal derivation of the Kubo
formula for the linear-response current due to a time-harmonic electric field applied
to non-interacting, spinless charged particles in a finite volume in the quantum set-
ting. We model dissipation in a transparent way by assuming a sequence of scatter-
ing events occurring at random-time intervals modeled by a Poisson distribution.
By taking the large-volume limit, we derive special cases of the formula for free
electrons, continuum and tight-binding periodic systems, and the nearest-neighbor
tight-binding model of graphene. We present the analogous formalism with dissipa-
tion to derive the Drude conductivity of classical free particles.
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1 Introduction
1.1 Motivation

The partial differential equations modeling solid mechanics, fluid mechanics, and
electromagnetics include material moduli (heat, magnetic, and electric susceptibil-
ity, transport coefficients, etc.) that describe the macroscopic response to a small
perturbation. A general approach to formulating the linear response of a physical
system at equilibrium was proposed by Ryobo Kubo in the seminal papers [1, 2].

In this article, we give a systematic formal derivation of the Kubo formula for the
electrical conductivity of non-interacting, spinless charged particles, e.g., spinless’
electrons in a material. This Kubo formula plays a key role in explanations of many
important phenomena such as the quantum Hall effect [1-19].2

The specific form of Kubo’s formula we derive is general enough to apply to a
wide variety of models of interest. However, we also show, in detail, how this form
reduces to well-known simplified forms in common special cases. Our goal is to
stimulate studies of this subject in the context of modern materials applications. We
believe that this research direction can inspire exciting questions in mathematical
modeling and numerical analysis.

1.2 General Kubo formula

We start by presenting the Kubo formula we derive without details, to communicate
the main ideas. Consider a system of negatively-charged, non-interacting, spinless
quantum particles in d dimensions, that are initially at equilibrium. Applying a time-
harmonic electric field E(w)e™™ to this system will excite an electrical current den-
sity at the same temporal frequency J(w)e . Formally, we can expand the current
density in powers of the field as

J(@) = 8,0y + o(@)E(w) + OE), (1.1)

where @ denotes the temporal frequency of the field, and J,, denotes the current
density in equilibrium. The Kubo formula is an expression for the linear coefficient
in this expansion, ¢, known as the electrical conductivity.

To state the formula, consider, more specifically, N non-interacting spinless par-
ticles confined to a subset Q C R¢ with volume |Q|. In the quantum setting, this sys-
tem can be described by the density matrix p, acting on a single-particle Hilbert
space H, evolving according to the von Neumann equation with Hamiltonian H. We

! Although electrons have spin, many phenomena of practical interest can be captured by treating elec-
trons as spinless and then taking into account spin degeneracy at the end of the calculation.
2 For further discussion of these references, see Sect. 1.5.
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The Kubo formula with dissipation

assume that, at equilibrium, p equals the Fermi—Dirac distribution function ®(H).
Then, the Kubo formula can be formulated as [11]

2
0 (@) = —%Tr{(a,H)(LH —iw + F)_lam(D(H)}, 1<im<d. (12

In the above, —e, 71, I" denote the electron charge (e > 0), reduced Planck’s constant,
and inverse mean scattering time, respectively; Tr denotes the trace density in 7,
defined by the trace divided by the volume |Q|; 9, := —i[X,, -] denotes derivation’
with respect to the components, X;, where 1 <[ < d, of the position operator X; and
Ly = [H -] denotes the Liouvillian of H, where [A, B] := AB — BA is the com-
mutator of the operators A, B. The notation 0, for the derivation is natural, since
—i[X, -] acts as J in the Fourier and Bloch domains where 7k; is the /-th component

of the momentum vector.

It is important to emphasize the generality of formula (1.2). It applies equally
well to continuum Schrodinger Hamiltonians as to tight-binding Hamiltonians, and
does not require periodicity. However, we will show that it contains many standard
forms of the Kubo formula as special cases. For example, the Drude conductivity for
free particles (1.3), and the Kubo formula for periodic systems including both Drude
and “interband” contributions (1.9).

1.3 Formalism

The first systematic derivation of a linear relation between electric field and current
in metals was introduced by Drude [21, 22]. Drude’s model gave qualitative agree-
ment with some experimental results, but also gave incorrect predictions for the spe-
cific heat [8], for example, since it considers electrons to be classical particles. The
emergence of quantum mechanics led to early improvements to the Drude model,
most simply by replacing the Boltzmann—-Maxwell statistics by Fermi-Dirac statis-
tics [23]. More systematic quantum theories that utilize the band structure of crys-
tals were proposed by Bloch [24] and others have continued to be actively developed
in the physics literature.

To the best of our knowledge, the Kubo formula in the form (1.2), with @ =0,
was first introduced and derived by Bellissard, van Elst, and Schulz-Baldes. The for-
mula played a key role in their investigation of the quantum Hall effect [25], because
it allowed for a formulation of the Hall conductivity even in the presence of mag-
netic fields and random disorder breaking translational symmetry. In particular,
they were able to prove that, under appropriate conditions, the large volume limit
|Q] — oo of (1.2) converges to — times an integer. The formula (1.2) with w # 0
was then introduced and rlgorously justified in [11]. The works [25] and [11] use the
C*-algebra formalism, which is well-suited for studying quantum systems without
translational symmetry. Other discussions of Kubo’s formula across the physics and

3 Here we use the mathematical notion of derivation as an operation which generalizes the ordinary
derivative. Derivations are linear operations which satisfy Leibniz’s law; see, e.g., [20].
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mathematics literature include, for example, [4—10, 12—16, 26-28]. We discuss these
works in more detail in Sect. 1.5.

The first goal of this work is to systematically derive (1.1)—(1.2), following the
main ideas of [25]-[11], but avoiding the C*-algebra formalism, and without striving
for mathematical rigor. We hope that this presentation will make the core ideas of
these works accessible to a wider array of practitioners across mathematics, physics,
and engineering.

The main ideas of this calculation can be summarized as follows. The current
density is initially defined as the trace of jp, where j := VH is the current density
observable, where V = (9,); ., In the absence of dissipation, p evolves according
to the von Neumann equation, a differential equation with time-periodic coefficients,
which models the effect of the applied field E together with the unperturbed sys-
tem Hamiltonian H. Dissipation is, then, modeled by a sequence of scattering events
which return p to its equilibrium distribution. These events occur at random time
intervals, whose lengths are modeled by a Poisson distribution with rate I'. With
these ingredients in place, the current density J appearing in (1.1) is defined as an
average as the number of scattering events tends to infinity (in an appropriate sense);
see (2.8) and (2.11). The fact that scattering and the parameter I" are introduced at
the level of the von Neumann equation makes our treatment of dissipation transpar-
ent. Equations (1.1)—(1.2) are calculated by a careful analysis of the propagator of
the von Neumann equation for p between scattering events, for which we find a sim-
ple representation; see (3.12). We provide details of our modeling assumptions and
results in Sect. 2, before giving the detailed derivation in Sect. 3.

1.4 Simplified forms of the Kubo formula

The second goal of the present work is to clarify how (1.2) unifies various well-
known simplified forms of the Kubo formula, including those for free particles
and for particles in a periodic potential. We provide detailed derivations of these
forms starting from the trace formula (1.2) by taking a large volume limit |Q| — oo.
Although we have not found these details in the literature, we are likely not the first
to carry out such calculations. These calculations are provided in Sect. 4.

In a similar vein, we also show that the formalism discussed in Sect. 1.3 for
deriving (1.1)—(1.2) has a natural classical analog. For example, we can replace the
density matrix p by a classical phase space density, and its evolution under the von
Neumann equation by evolution under the classical Liouville equation. We apply
this classical formalism to the simplest case, of free particles, in order to derive the
Drude conductivity, in Sect. 5. To the best of our knowledge, this calculation is orig-
inal to this work. We expect it is possible to derive our classical formalism from the
quantum one via a semiclassical limit, but we do not attempt this here.

For free particles, treated either quantum-mechanically via a large-volume limit
of (1.2), or classically, we derive (1.1), with ¢ given by the isotropic Drude conduc-
tivity [8, 21, 22]
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The Kubo formula with dissipation

2~ ~
o(w) = _eN N = N

m( — iw)’ Ql (1.3)

Here, N, m denote the electron density and mass, respectively. We derive (1.3) from
(1.2) in Sect. 4.1.

For particles in a periodic potential, modeled either by a continuum Hamiltonian
(Sect. 4.2) or tight-binding model (Sect. 4.3), we derive (1.1), with

o(w) = P (@) + X (w). (1.4)

The first term in (1.4), 6P, known as the Drude conductivity, generalizes (1.3) as

e2 N(meff )—1
D Im
o) = ————
I'-iw
Here, m® is a possibly anisotropic effective mass tensor, most conveniently defined

through the entries of its inverse as

eff\—1 . 1
== dk
i n2Q2x )N Z /r

neN

(1.5)

(E (k))< pALI] <—(k)> )(n(k)>< pAL] <—(k)> )(n(k)>-

Here, 1 <I,m <d, the symbol I'* denotes a unit cell of the reciprocal lattice
(Brillouin zone), and H(k), y,,, and E, denote the Bloch Hamiltonian, periodic Bloch
functions, and Bloch band functions, respectively.

If every band of H(k) is simple (separated from all other bands by gaps), for-
mula (1.5) can be written in two more suggestive forms. The first one,

. 1
0 = [ S o

neN,,

(1.6)

emphasizes derivatives of the Bloch bands, which equal the group velocity of wave-
packets formed by superposing Bloch functions; see, e.g., [29-32]. The second one,
obtained from (1.6) via integration by parts,

eff\—1 __ 1
U = S i 2 / PE R T ak (.7

neN,,

emphasizes second derivatives of the Bloch bands, which are related to the “effec-
tive mass” of wave-packets formed by superposing Bloch functions; see e.g.,
[33-35]. Expression (1.7) reduces stralghtforwardly to the diagonal matrix ; when
there is just one band, E(k) = |k|2 so that N = e [ @(E(k)) dk.

The second term in (1.4), GR has no classical analog. It is known as the regu-
lar, or interband, conductivity
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2
R e
= dk
o (@) R Qry n#nzeN 0 /r

(P, (k) = O, k) 1,60 (5200 ) 00 Y 00| (280 ) 2,000)
(B, k) = E, ) £ (E, (k) — E,(®)) — i +T) '

X

(1.8)
This term is responsible for materials’ optical properties; see, e.g., [10]. An explicit
asymptotic formula for the interband conductivity of the one-dimensional Su-Schri-
effer-Heeger model [36], which demonstrates the importance of interband “reso-
nances”, was derived in [19].
A convenient expression of the Kubo formula for periodic systems, which
takes into account both the Drude and regular contributions, is [3, 8]

alm(w) h2(2 )dnn/eN /dk

(P, (o) = DCE,000) { 1,00] (220 ) 1)) (2 RO 220 ) ,0)

X .
(E, (k) — En(k))(é (E, (k) — E, (k) — i + r)

(1.9)
Similar reductions of the electrical conductivity are also possible for certain aperi-
odic systems under ergodicity assumptions; see Sect. 1.5. In the specific case of the
nearest-neighbor tight-binding model of graphene, analytical formulas are available
for H(k), E,, and y,,, so that the Drude and regular conductivities can be expressed
through explicit formulas. We review this case in Sect. 4.4.

1.5 Related work

Discussions of Kubo’s formula in the physics literature, in addition to Kubo’s origi-
nal papers [1, 2], can be found in [4-10]. Mathematically rigorous approaches to the
Kubo formula, other than [11, 25], include [12-16, 18, 26-28]. We do not review
these works in detail since, other than [11, 25], they do not model dissipation.
Note that some of these works, e.g., [15, 16, 18, 27, 28], treat the full many-body
Schrodinger equation with interactions.

As discussed in Sect. 1.3, large volume limits of (1.2) exist even for some aperi-
odic systems under ergodicity assumptions [11, 13, 14, 25]. We do not address this
case in the present work, except to mention that another case where such limits exist
can be found in models of incommensurate twisted bilayers; see, e.g., [17, 37, 38].
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1.6 Structure of the paper

We present our precise modeling assumptions, especially the treatment of dissipa-
tion, and our results in the quantum case, in Sect. 2. We then derive the general
quantum Kubo formula in Sect. 3. We derive simplifications of the Kubo formula in
the large volume limit for free particles, particles in periodic potentials modeled by
continuum and tight-binding models, and the nearest-neighbor tight-binding model
of graphene, in Sect. 4. We derive the classical Drude conductivity, via an analogous
formalism, in Sect. 5. We give a conclusion in Sect. 6.

2 Assumptions and main results

In this section, we introduce our formalism for deriving the general Kubo for-
mula (1.1)-(1.2), and state our result precisely. In particular, we introduce the
Fermi—Dirac distribution, von Neumann equation for the evolution of the density
matrix, and our treatment of dissipation via random scattering events with rate I".
Details of the calculations which lead to the Kubo formula (2.12) will be given in
Sect. 3.

Equilibrium density matrix We consider the density matrix p of a system of
non-interacting electrons in a region Q C R, with volume |Q|. We denote the
effective single-particle Hamiltonian in the absence of applied fields by H, and
the single-particle Hilbert space by H. The equilibrium density matrix is, then,
given by the Fermi-Dirac distribution function

O(H) = {0 41} @.1)

Here, f := (kgT)™!is inverse temperature T scaled by Boltzmann’s constant kg, and
u is the chemical potential. The number of particles in the region Q, N, and the par-
ticle density, NV, are given by

N :=Tr®&H), N:=-—

where Tr denotes the trace over H.

Evolution of density matrix under applied field When a (possibly time-depend-
ent) electric field E is applied for > 0, and in the absence of dissipation (see
below), the density matrix evolves according to the von Neumann equation:

d
S Ly =—Lup+ S Vo 120, O =0H). (D)

Here, Hy, denotes the Hamiltonian of the system subject to the applied electric field,
Hp :=H+¢E - X.

In addition, we denote the Liouvillian operators of H and Hy by
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&p=%ULm z%:=imbq=ﬁy—%E.w

n

and introduce notation for the derivation
V= _l[X’]’ (a )1<m<d = ( l[ m> ])lSde’ (23)

where X = (X)), ,,<, denotes the position operator.

Modeling of dissipation We introduce dissipation as follows. We assume that
scattering events occur at a random sequence of times 0 = £, < f; < -+, such that
the differences 7, :=1,, | —t, > 0 are modeled by a Poisson distribution with rate
I' > 0, so that

pmgw=/rﬂ%@r (2.4)
0

The average time between scattering events is thus I'"!. After each scattering event,
we assume that the system returns to equilibrium, before evolving again according
to (2.2) in-between scattering events. Hence, we assume that p evolves according to
(forn € Ny ()

dp

E
T —Lyp=—Lyp+ % -Vp, t,<t<t,, pi)=>H). (2.5)

Remark 2.1 The electron scattering can be modeled more accurately using a scat-
tering kernel. The replacement of such a scattering kernel formalism by the above
process involving the (scalar) rate I" is known as the relaxation time approximation
[8, 11].

Current operator We invoke procedures of averaging, both over time and over
scattering times modeled by (2.4), of the current den51ty expectation J. This expec-
tation is defined in terms of the trace density Tr : = HTr where Tr is the trace over
'H, and the current density operator j. The related expression is

= Tilip) = 57 Trlip). J:=~5VH. 26)

Thus, the current density in equilibrium is
Joq 1= = TH((VE)D(H)). @.7)

The equilibrium current (2.7) vanishes for free particles because of the invariance
(even-ness) of the free dispersion relation under k — —k. The equilibrium current
vanishes, similarly, for particles in a periodic potential, as long as the Bloch bands
E, (k) are even under k — —k. A sufficient condition for this to hold is realness of the
Hamiltonian H = H (often called “time-reversal symmetry” condition). This holds
for tight-binding models with real coefficients, or continuum Hamiltonians —A + V,
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The Kubo formula with dissipation

with V real, and hence holds for essentially all models of materials (e.g. graphene,
twisted bilayer graphene) in the absence of an applied magnetic field. Alternatively,
it suffices to have invariance of the Hamiltonian H under x — —x (often called “par-
ity symmetry”). For a discussion, see, for example, [39].

2.1 Result for constant applied field E

We now make our result precise for the case of time-independent (constant) E. Con-
sider the long-time average of the current density expectation J (2.6), averaged over
scattering times modeled by (2.4)

(Jy := lim <tl / "J(z')dt'> . 2.8)
n JO T

More precisely, (-)p denotes taking the expectation over the Poisson distributions
defining each 7, :=1t,,, — 1, (2.4). Then, write the vectors (J), J,,, and E, in terms
of their components as

)= (<‘Il>)1glgd’ Jeq = (‘qu,l)glgd’ E= (Em)ISde'

Our main result for constant E is the following expression for (J) in terms of E,
known as the Kubo formula:

eq’

= eql+zo'[mE +O0(E?), 1<i<d,
(2.9)
Oy 1= —%’fr{(a,H)(llH + F)_lade(H)}, 1<lLm<d.

Note that (2.9) agrees with (1.2) when w = 0. We present a systematic formal deri-
vation of (2.9) in Sect. 3.1.

2.2 Result for time-harmonic applied field E

To state our result precisely for the case of time-dependent E is somewhat more
involved. Let E be time-harmonic with frequency @ € R, so that

1 .
E@®0) := 37 (@i+0) B (), (2.10)

where E(w) is a fixed vector, and 8 € [—=x, 7) is a parameter which we will average
over to ease calculations; see (2.11). It seems possible that our results hold with-
out this averaging step, especially since it is not necessary in the classical case (see
(5.8)), but we do not investigate this in this work. We define p(#;0) and J(z;0) by
(2.5) and (2.6), with E given by (2.10).

We consider the following quantity
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L, T
(J)(w) := lim <tl / / @0 J(1.0) do dt> . 2.11)
n—co nJo - T

Note that we average over the phase 6 of the applied field (2.10). This simplifies the
calculation considerably; see (3.13). Note that this is unnecessary in the classical
case, where the Liouville equation (the classical counterpart of the von Neumann
equation used here) can be solved explicitly in simple closed form even for time-
dependent fields; see (5.6).

We introduce notation for the vector components of (J) and E as

D@ = (@), E@) = (E, (@),

Our main result for time-dependent E is given by the following expressions:

d
(I)@) =Y 0, (@E, (@) +O(E?), 1<1<d,
m=1 (2.12)

e’ . -1
oy, (@) 1= —ﬁTr{(a,H)(cH —iw+T) 0md>(H)}, 1<lLm<d.
We present a systematic formal derivation of (2.12) in Sect. 3.2. In Sect. 4, we study
the limit of (2.12) as |Q2] —» oo. Therefore, we derive important reductions of (2.12)

in special cases of the Hamiltonian H, namely, for free particles and particles in a
periodic potential.

3 Derivation of general Kubo formula

3.1 Derivation for constant applied field E

We start by re-writing the current density expectation averaged over time and scat-
tering events (2.8) using a Tauberian theorem [40] as

t, 1,
(J) = lim <l / J(t’)dt’> = lim lim <5 / e () dt'> .
n—oo tn 0 r 610 n—oo 0 r

We can now split the infinite integral into integrals over intervals between scattering
events

n—1 byt
Jy= 13{51 lim & < / e—f”J(t’)dt’> )
n—oo [m r

m=0

Substituting the formula for J (2.6) and exchanging the orders of trace and time-
integral and trace and summation over n, we have
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Iy=-- 11m llm 5Tr{(VH) Z </ '”+le_5,/p(t/) dt'> } G0
r

Iy,

We now write p in terms of the propagator for (2.5)

p(t') = e~ ns D(H),

Wegan then computeithe integral
[ als 7@ PR 011y 0t = (L, + 077100 (1= 147 Yo,
1, 1,

m m

where 7,, =1, —t,. Substituting this back into (3.1) we have

n—1
Jy=-< hm n lim 6 Tr{ (VE)(Ly, +8)" Y < =t (1 - e_(£H5+5)Tn'>>Fd)(H) }

m=0

3.2)

We now perform the averaging. We will do so in detail for the m =0 and m = 1
terms; the pattern for m > 2 will then be clear. The m = 0 term is (recall that z, = 0)

[s9)
<e‘5’°(1— e—(ﬁHE+5)ro>> _ / [e~T70 (1_ e—(cHE+5)TO> dr,
r 0

=1-T(Ly, +5+D)7"

The m = 1term is

< o=0h ( = e—(EHE+6)r1)> _ < o < j= e—(LHE+5)TI>> ,
r r

which we have to average over both 7, and 7,. Since the variables are independent,
we can simply average over each variable in turn. The average over 7, obviously
gives the same factor as before, and the average over 7, gives

/ Te e dg, = L
0 r'+s

Hence, the m = 1 term in the sum is

<e_5’1 (1 L +orm ) >r - (r i . ) (I-T(Ly +6+D)7).

Continuing in this way, using the fact that

m—1

e—étm — I Ie—é‘rj’

J=0
we find that the mth term in the series is

(FLM)”’(I—F([,HE +6+1)7).
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We can sum the series, obtaining

i <e—5zm (1 _ e_([:HE+5)Tm>>F _ FT-HS(I “T(L,, +6+ n). (3.3)

m=0

Substituting (3.3) into (3.2) we have

)= —% lim(I" + OTr{(VH)(Ly, +6) (I —T(Ly, +5+1)7")DH)}.
(34)

The second resolvent identity (see, for example, Proposition 1.9 of [41]) essentially
states that A~! — B~! = A=!(B — A)B~! for invertible operators A and B. Applying
this identity with A = L +6+T'and B= Ly _+ 6, we have

Ly, +6+D) 7 =(Ly, +8) =T(Ly, +8)"(Ly, +5+1)7"
=(Ly, +0) 7 (I-T(Ly, +6+D)7"),

so that (3.4) simplifies to
Jy= —% léilr(r)l(l" + 5)T”r{(VH)(£HE +5+ D) 'O}
Exchanging the order of taking the trace and taking the limit 6 | O we arrive at
J) = —%*fr{lﬁi{g(r +O)VH)(Ly, + 6+ F)‘ch(H)},
where it is trivial to take the limit, resulting in
Jy= —%Tr{(VH)([ZHE + D)7 OH)}. (3.5)

‘We now note that

Ly, +D)7 =Ly +D7 + (Ly, +D7 = (Ly+ D7)

3.6
= (Ly+D)7 +(Ly +D) (%E : V)([,H +ry, GO
where the second equality follows from
e
Ly, =Ly— 7E-V (3.7)

and the second resolvent identity [41]. Substituting (3.6) into (3.5) separates (3.5)
into equilibrium (corresponding to the first term on the right-hand side of (3.6)) and
non-equilibrium (corresponding to the second term) contributions to the conductiv-
ity. Hence, noting that (£, + ™' ®(H) = "' ®(H), we simplify (3.5) to

I _ _
Jy=Jog - %Tr{(VH)(L’HE +) 1<%E )Ly + T () .
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which further simplifies to
2 ~
Jy=Je - %Tr{(VH)(EHE +D)NE - VYOH)}. (3.8)

It is worth emphasizing that the calculation up to this point has been exact, in the
sense that we have not made any expansion in powers of E. We now make such an
approximation. Using (3.7) and the second resolvent identity once more, we obtain

Ly, +D)7' =Ly +D)7 + OE).
Substituting this into (3.8), and writing everything out in components, we obtain

(2.9).

3.2 Derivation for time-harmonic applied field E

The first task is to find a convenient representation of the propagator for the von
Neumann equation (2.5) when E is given by (2.10) and thus time-dependent. It is
convenient to introduce notation

EO) = %e‘io’E(a)), (3.9)

so that E(t;0) = E(wt + 0) and the von Neumann equation is
0,0(1,0) = (—EH + %S(wt +0)- V)p(t, 0). p(t,,0)=®H).  (3.10)

We introduce a change of variables /' = 7 and 8’ = 0 + wr to (3.10) and a new func-
tion P such that p(¢;0) = P(¢', ") which evolves by the equivalent PDE

'y — Ceonh .o _ ' gt
a,,P(t,e)_( Ly+ €OV a)dg,>P(t,0), -
P(1,,0') = DH).

For each #’, this equation has constant coefficients in ¢/, so we can write its solution
as

—('—1,) (LH— £E0)V+wdy )

P({,0)=e ®(H). (3.12)

We note that the von Neumann equation (2.5) is the characteristic equation for (3.11)
and that (¢, 0) are the characteristic variables.
We now again use a Tauberian theorem to write

t, rw ]
(J)(w) = lim lim <5 / / e %60 J(1:0) dO dt> .
610 n—oco 0 _r r

Splitting up the time integral and substituting the forms of J and p we have
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(N(w) = ——hm lim Tr{(VH)< / / —ot @0 py, 0+cot)d6dt> }
m=0

Changing variable in the 6 integral to 8’ = 6 + wr we find

() = ——hm hm Tr{(VH)< / / ~tei0 p(t, ) do dt> }
m=0

(3.13)

Substituting the form of P we have

I w) =—= hm hm Tr{(VH)s

_ L1 n . (e _ec . @
X< z / / e—5fel€e (r tm)(£H 7 £(0)-V+ ao)d)(H) de dt> } ,
m=0* In - r

which we can re-write as

(@) =-— 11m lim Tr{(VH)s

< /”m/ 0, —— ,)< _28(0)~V+w09+5)q>(H)d9dt> }
r

Exchanging the orders of the 6 and n limits with the trace, integral over 6, and aver-
age over the Poisson process, we find

(@) = —%fr{wm

T n—1
X / ¢ lim lim 5( ) ¢ / ~-1)(£ _’5(9)'V+‘”‘)9+5><I>(H)dt do %.
- 810 n—eo m=0 r

We are now back to the setting of the DC case. By the same steps: performing the
t integrals, averaging over the Poisson process, summing up the series, and then
manipulating using the second resolvent identity [41], we arrive at

@) =~ Tr((VH)
x/ ¢ lim(T + 5)(£H - %8(6) Y+ w0y + 6+ r) D(H) de}.
Taking the limit then yields

(@) = —%T}{(VH) /”el’"(zﬂ - %g(a) -V + wdy + F)_ICD(H) da}.
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Just as in the DC case, we can use the second resolvent identity to isolate the non-
equilibrium part, (the equilibrium part contributes 0 for @ # 0 because of the inte-
gral over ), and then using (L, + wd, + IN~'®H) = T-'O(H), we arrive at

() = —;—i"fr{(VH) / ﬂeig(,cﬁs + wd, + 1“)‘18(9) do - VCD(H)}.

Again, we emphasize that the calculation is, up to this point, exact with respect to
E. Just as in the DC case, we now use the second resolvent identity to take the limit
&€ — 0 in the resolvent. We can then insert the formula for £ (3.9) and evaluate the
integral over 6 to obtain

62

(@) ==+ ’fr{ (VH)(Ly; — io+T) " E() - VdD(H)} + O(ED),

from which we obtain (2.12).

4 Applications of the Kubo formula
4.1 Free particles

We consider the special case of free particles, taking Q to be a d-dimensional box with
sides of length L, so that |Q| = L4 The Hilbert space, H, and Hamiltonian, H, are

It is now straightforward to compute the current operator (recall (2.3) and (2.6))

. [, h*A o
J=_%[X, zmx] =—%(—1Vx). .1

Note that we adopt the notation of putting a subscript x to denote ordinary differen-
tial operators in order to distinguish from our notation for derivations (2.3). A natu-
ral orthonormal basis for H is given by the Fourier modes

ik-x
{e - :kez—”Z"}.
L L

The particle number N is given by the trace of the Fermi—Dirac distribution over H,
which we can evaluate as

-1
R D D R G

keXzd

Taking the limit L — oo, the sum converges to an integral, and we derive the rela-
tionship between particle density N and chemical potential u
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-1
- N _ 1 p(EEE_,
N.—Lh_)rgﬁ—(zn)d/w{e< ) o1 b ak 4.2)

It is straightforward to verify that the current density vanishes in equilibrium:

1 eh B2 -
S THOWH)) = —— k{eﬂ( ) +1} =0,
kezf”zd

because of even-ness of the Fermi—Dirac distribution with respect to k.
Evaluating the trace in the Kubo formula (2.12), we derive

62
Cn2Ld

w2112 121k12 -2
o S G A e e e I
keZxz4 " n

Anti-symmetry in k implies immediately that 6, (w) = 0 unless / = m, so we derive,
after taking L — oo,

e? 0 ﬂ( k2 —M) -
= -5 | k= om +1 dk.
(@) = O AT i) Je o0 {e

Oim (CL)) =

Integrating by parts, we arrive at (recall (4.2))

82 ~

- N
=5, ——N, N=—=,
Iin(®) = Oy m( — iw) Ld

which is consistent with the literature; see, for example, [8].

4.2 Particles in continuum periodic potential

We now consider the case of particles in a periodic potential.
Let A denote a real and invertible d X d matrix. Then, we can introduce the Bra-
vais lattice and real space unit cell

1 1\¢
Ai={R=am:mez'}, T:=4|-3.5),
{ m:m } 35
and the reciprocal lattice and momentum space unit cell (Brillouin zone)

d
A*:={G=Bn:nez'}, T :=B[—%,%) , B:=2zA"T.

We then set
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Q=I, :=A|-=

L I:>d
2’2/

so that |Q| = |I'|L¢, where we restrict L to the positive even integers. We consider
the Hilbert space, H, and Hamiltonian, H, given by

d 2
M :=L2<A[—I§‘,%‘> ) H:= —2h—mAx+V(x),

where we assume V € C*(R4, R), and
Vx+R)=V(x), xeR,ReA.

The current operator is, again, given by (4.1).
It is natural to introduce the basis of Bloch functions, defined as follows. Consider,
for k € I'*, the eigenvalue problem defined by

Hp =Ep, ¢x+Rk) =e*Rpxk), x €T R €A,

for each k € I'*. The operator H has compact resolvent for each k, and hence a
sequence of discrete eigenvalues which can be labelled with multiplicity

E(k) <Ey(k) < -+ <E, (k) < -,

with associated eigenfunctions ¢, (x;k). To be consistent with the free case, we
assume that these functions are normalized in L*(I), i.e.,

/|¢,,<x;k>|2dx —1 neNgkel™.
r
Introduce the discretized Brillouin zone

Bn L L d
' i={k=—": e{——,...,——l} ,
L { L " 27D }

then the set of Bloch functions

{ ¢,(-k)
L5

tkel},ne N>0} 4.3)

d
forms an orthonormal basis of L2 <A [—%, 5) ) It is straightforward to check that

each Bloch function can be decomposed as

b, (k) = %7y, (x5k),

where the y’s satisfy the eigenvalue problem
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n? ~ 2
Hky =Ey,, Hk) :=—(&—-iV Vv
k) x, Xn (k) 2m( ivV,)" + V) 44
Yax +Rk) = y,(xik), x€l,REA,

foreach k e I'™.
It is now natural to evaluate the trace in the basis (4.3) as

vetenn e 3 3 (e )

neN, o kel

where the sum over n converges because of the Weyl asymptotics [42], which state
that there exist positive constants N, ¢;, ¢, such that

2 2
cini <E, <cynd, Vn>N.

Taking the limit L — oo, the sum converges to an integral and we obtain

- . N 1 / _ -1
N := lim = {eﬂ(E"(k) “) 4 1} dk.
e LA @y ENZ .

We now want to evaluate the trace formula with respect to the normalized Bloch
basis (4.3). We start by considering the matrix elements

1 -— ’
7 Fqun(x;k)(@/H ) (x:k') dx

_h [ .0 2
- /r Ld)n(x,k)( zax1>¢n,(x,k)dx.

Expanding the Bloch functions we have

n? ik —k)x TN .0
=D /F e "”‘ﬂrn(x;k)<kz—la—xl)xn/(x;k’)dx. 4.5)

Introducing the truncated lattice

L L d
A =4 R=Am : e{——,...,——l} ,
) { meme{-L L }

we can further simplify (4.5) as

2 o oy [
-2 DI / ey (k) k;—ii 2, (k) dx.
mLe gex, r 0x;

Evaluating the sum we find that
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1 iR _ _J1k=FK,
Ld Rg e = 6kk/7 6kk! .= 0 k # k/.
L

We thus have that
1 -— / n [—— . 0
7a Fqun(x;k)(aZH) ¢y (k") dx = S p g Xl k — l()—xl X (k) dx,

which can also be written succinctly in terms of H(k) (4.4) as

1

14
IﬁL

b, (k) (0,H ),y (x:k") dx = S / ;{n(x;k)<g—llj(k)>;(n/(x;k) dx. (4.6)
r 1
We now simplify

b eH) (Lyy — iw +T) ™ (0, D(H) ) b, (x:k') dx
l—‘L
_ 1 : B 65K (0, D(H) ) b (eiK') i,
(E,(k) - E, (k")) —iw+T Jr,

n
which can be further simplified as

b, (x:k) (0, O(H) ) ¢, (x:K') dx

3
= / b, (k) (x,, D(H) — D(H)x,, ) b,y (x:k") dx
1—‘L

_ D(E,(K) - DE,K))
~ E,(K)-E,k

/ b, (x:k)(9,, H) b, (x:k") dx.
r L

L

The above expression requires interpretation when k = k" and n = »’, or in the pres-
ence of degeneracies; see (4.8). Using (4.6), we then have that

]% / ¢, (k) (Ly — i + F)_l (0, D(H)) b,y (x:K') de
Iy

(PE, 0)) = OE,100) J; 2,Ced) (SR ) i) e

= O ;
(£, — E,00) (4 (E 0 - E, (k) = iw+T)

We can now evaluate the trace per unit volume as
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2 2

nn' €Ny kel’y

e
o-lm(w) = _h2|l"|Ld

(P, () = O, k)  1,60| (L2800 ) 00 Y 00| (228 ) 2,00)
(B0 = E,@0)(£ (E,(0) — E,@0) =i+ T) |

X

Taking the limit L — oo, we obtain

2

nn' €Ny

o) = h2(2ﬂ)d

(PE, U0) — D(E, (K)) ( 10| (260 208 ) e 0] (SR ) 2,0

X
(B, ®) = E, () 1 (E, |) — E,(0)) = i + T

>

%))

which is consistent with the literature; see, for example, Chapter 13 of [8]. It is often
convenient to separate the n = n’ and n # n’ terms in this sum. The n = n’ terms,
known as the Drude conductivity, are
2
e
7224 — iw) di
neN,, I

(E (k))<)(,,(k)|< (k)) xn(k)><xn(k)| (—(k))xn(k>>.

If every band of H(k) is simple, the Drude conductivity can be simplified further as

D _ _ e’
(@) = T PR T i) 2 /r az & (k)) (k

neN

D —
Glm(w) -

(4.8)

The remaining terms are then known as the regular, or interband, conductivity

dk
h2(2ﬂ-)d n#n' €Ny /

(PCE,10) = DE, R)) { 1,00] (2200)) 00 ) 20 O] (2K ) 1K) )
(B, 0) = E,(0)( £ (E, () — E,(®)) i +T) '

R —
O-lm(w) -

X

4.3 Particles in periodic potential in the tight-binding limit
We now consider the case of periodic tight-binding models. Since tight-binding models

approximate continuum models, it should be possible to derive the Kubo formula for
tight-binding models directly from (4.7). The idea would be to approximate the inner
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products of Bloch functions in (4.7) by linear combinations of inner products of atomic
orbitals, following, e.g., [8, 43—48]. Here we provide a direct derivation, starting from a
discrete model.

Let A,T,A,A*,T*,B be as in Sect. 4.2. We initially consider the infinite Hilbert
space

Higg 1= 2 (MCY). Hine DW= (Wi)gens ¥R = (WR) 1 <uen-
and local Hamiltonians satisfying

(Hy)g = 2 Hppwg, |Hpgl < Ce7HHL
R'eA
We assume further that H is periodic, so that

/
Hpywpoy = Hpr, R.R,v€EA.

Recall A; and I}, the truncated lattice and discretized Brillouin zone. We can, then,
consider the restriction of H to the truncated Hilbert space

=2 (ACY), HOw = (Wr)gen,s Y& = (W) e

where we identify points in A related by vectors in LA. A basis of H is provided by
the discrete Bloch functions

eik'R,}’n(k) .
{TikEFL,lﬁnSN}, 4.9)
2

where the ys are eigenvectors of the Bloch Hamiltonian
Hk) := ) Hope™*.
ReA

Evaluating the trace of the Fermi—Dirac distribution with respect to the basis (4.9) to
derive N and N proceeds exactly as in Sect. 4.2, except that the sum over n is now a
finite sum from 1 to N.

To evaluate the trace formula, we again start by evaluating the matrix elements

1 — i 'R
70 2 ) Y O i, &)
ReA; R’eAL

1 —ik-R~_ 1~ . ik'-R'
7 z A 2 i(R' = R)Hyggre™ ™ y,,(k").

ReA, R'eA,

Changing variables in the sum over R’ to R”, where R" = R + R", we find
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1 _
- Z ik’ k)R)( k) Z iR HRR+R”€ Xn’(k’)

d
L ReA; ReA;
1 i —
= 2, R )(n(k)<—(k)>)(,,f(k')-
ReA,

It is now straightforward to see that

ﬁ Y ek Ry (k) Y O H)gwe™ ™ 1, (k)—5kk/xn(k)<—<k>>xnr(k).

ReA; R'eA,

Similar manipulations show that (4.7) also holds for tight-binding models, with the
modifications as above.

4.4 Nearest-neighbor tight-binding model of graphene

In this section we consider the nearest-neighbor tight-binding model of graphene;
for further discussion of this model, see, e.g., [46, 49]. We will show that the con-
ductivity of this model can be written as a two-dimensional integral with explicit
integrand; see (4.10)-(4.11). In a previous work [19], we used an analogous integral
representation for the conductivity to derive asymptotic formulas for the interband
conductivity of the one-dimensional SSH model [36].

The graphene Bravais lattice vectors are

a, ;=‘-’(1,\/§)T, =4(-, \/‘) = (a1.a,).

2

where a > 0 is the lattice constant. Within the Rth fundamental cell of the lattice,
there are two atoms, at positions R + ¢4 and R + 78, which we will take as

a

=0, 2:=0,d)", d:=—.

P

The reciprocal lattice vectors are

]
_dr (V31 _an( V31 -
(Y e (L2) . an

We consider one orbital per atom, so that there are N = 2 orbitals per unit cell. In
the L — oo limit, wave-functions of electrons in graphene are elements of Z2(A;C?),
written as y = (Wg)pey = (y/R, WR);G » Where |wz|? represents the electron den-
sity on sublattice ¢ € {A, B} in the Rth cell. The graphene tight-binding Hamilto-
nian with nearest-neighbor hopping acts as
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B B B
v twe v
(Hy)g =—t| B TR TR, ) " ReA,
Ve T VYRia, T YRia,

where ¢ > 0 is the nearest-neighbor hopping energy.
The Bloch Hamiltonian is given explicitly by

e _ L F(k) . —ik-a, —ik-a,
Hk) = I(F(k) 0 ) Fk) :=1+e +e ,

and can be explicitly diagonalized, with eigenpairs

JRE— T
1 F(k)
E (k) .= xt|Fk)|, x.(k 1,
LK) 1= xt|F®)|,  y. (k) : \/_< |F(k)|>

We can now evaluate the diagonal matrix elements

Re(F) %))
k|| —& k tf—
<)(+( )|<ak,( )>)(+( )> o]
and off-diagonal matrix elements
im(FOL k) )
k k) )y ) ) = #ti——nri—=,
<;(+( )|<akl( ))m( )> o]

from which follow formulas for the Drude conductivity

D e tz
On(®) = AT i) 2 / di

SE+
. Re(FI L)) || Re(Fl 2L )
dE" |F (K| Flol [
and regular conductivity
e
T I

5,8 E+,5%#s =

(@G IFH]) — D(s|FR)D)

* GTF®] = SIFRDG TFR)] — sIF®)] — i@+ T)
im(Fl L) | 1m(Fao L)
3] IF )|

(4.10)

.11
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A similar calculation can be carried out for the Haldane model [50] (for reviews,
see [51-53]). Remarkably, for parameter ranges such that the model has a bandgap,
direct calculation from (1.8) shows that this model exhibits quantized transverse
conductivity at zero temperature, dissipation, and frequency (this phenomenon was
first observed in the context of the quantum Hall effect [3]). This calculation lies
beyond our present scope.

5 Derivation of classical Drude conductivity
5.1 Assumptions and result

In this section, we show how the formalism introduced in Sect. 2 can be adapted
to classical systems to derive the classical Drude conductivity (1.3). The main
difference between the present derivation and standard derivations (see, for exam-
ple, Chapter 1 of [8]) is that we work with the phase space density, which is the
natural analog of the quantum density matrix. Working with the phase space den-
sity allows us to provide a derivation which more closely parallels the derivation
of the quantum Kubo formula (1.2) than standard approaches. We expect that the
present classical formalism would emerge naturally from the quantum formal-
ism via a semiclassical limit, with, for example, the time evolution of the density
matrix by the von Neumann equation being replaced by the time evolution of the
phase space density by the Liouville evolution.

For simplicity, we consider non-interacting, negatively charged, classical parti-
cles, with classical Hamiltonian

2
p
Hyp) == 7.

We restrict the system to a d-dimensional box, with sides of length L, and peri-
odic boundary conditions. We work with the phase space density function p(p, q, 1),
where p and g denote d-dimensional particle momentum and position, respectively.

Equilibrium phase space density At t = 0, we assume the system to be at equilib-
rium, with equilibrium phase space density given by the Maxwellian

[S1EN

P(p.4.0) = Dy (p) := N(i> ¢ PHD), 5.1

2rm

Here, § := (kT)"!is the inverse temperature T scaled by Boltzmann’s constant k, m
denotes the particle mass, and N is the particle density. To see that N represents the
particle density, we can verify that it equals the total particle number N normalized
by the volume L?, since
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N ¢ .
i =N, where N := /[_g,g]d/W(DM(p)dpdq' (5.2)

Remark 5.1 We take the Maxwellian (5.1) as the equilibrium distribution in this sec-
tion because our intent is to show that the main ideas of Sects. 2 and 3 have close
analogs which are entirely classical. If our goal was to give an accurate model of
electrons in a real material, it would make sense to replace (5.1) by the Fermi—Dirac
distribution (2.1). This approach is known as the Sommerfeld theory; see, e.g., [8].

Evolution of phase space density under applied field For t > 0, and in the absence
of dissipation (see below), we assume that the particle density evolves according to the
von Neumann equation

d dp OH dp OH
_p+<_p._E+_P._E

=0, s 70 =<D s
o oq op oy og > P(Pp.q.0) uP)

where Hp; is the classical Hamiltonian perturbed by an electric field

HE(p’ q, t) = HO(p) + EE(Z‘) - q.

Evaluating the partial derivatives of Hy we obtain

dp (% P _ 0p = =
E+<@'E . E(t))-(), o(p.4.0) = ©y (p). 5.3)

The solution of the initial value problem (5.3) is explicit, given by

p(p,t)=(I)M<p+e/E(t')dt'>.
0

In particular, the particle density N (5.2) is conserved by the evolution.

Modeling of dissipation We introduce dissipation as follows. We assume that
scattering events occur at a random sequence of times 0 = £, < t; < ---, such that
the differences 7, :=1,,; — 1, > 0 are modeled by a Poisson distribution with rate
I' > 0, so that

P(z, <v) = / T dr,. (5.4)
0

The average time between scattering events is thus 1 After each scattering event, we
assume that the system returns to equilibrium, before evolving again according to
(5.3) in between scattering events, i.e., we assume that p evolves according to

dp dp p  Op
il — .2 e . E®) =0, ,q,t,) =d , .
at+<0q L ()) PP, 4.1,) = By (p) (5.5)
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for each interval 7, <t < ¢,

w10 1 € Ny . The solution of (5.5) is again explicit, given
by

p(p, 1) =@y (p + e/ E(t’)dt’). (5.6)

Current observable Our results involve long time averages, averaged over scattering
events, of the current density. The current density is defined by

J@) = —ﬁ /[_é é]L,/pr(p,q, t)dp dq.

It is straightforward to verify that the current density vanishes at equilibrium, i.e.,

__e /
mL4 [-£.

since ®@,,(—p) = ®,,(p). In between scattering events, i.e., within each interval
t, <t < t,.,, using the explicit formula (5.6), we have

=0,
r A POy(p)dpdg

DI

2 t
Jiy =N / E({)dr . (5.7)
m J,

Result For simplicity, we now assume that the applied field is time-harmonic with
frequency w € R, so that

E@) = ¢ E(w). (5.8)

Note that we could allow for a phase e~ in the applied field. Since we do not aver-
age over phases in the classical derivation, the result would be to multiply the cur-
rent by a phase without any other change. In particular, the conductivity would be
unaffected.

We then consider the time-averaged current density at frequency w, averaged over
scattering times distributed according to (5.4), as the number of scattering events
goes to infinity

tll N ,
(J) := lim <l/ e’“”J(t’)dt'> , (5.9
=0 ln 0 r
where (-);- denotes the average over 7, ..., 7,_;, each distributed according to (5.4).

We assume that this limit can be calculated, through a Tauberian theorem, by the
sequence of limits

tll
(J)(w) :=1lim§ lim < / e<iw_5>"J(t’)dt’> .
610 n—-oo r

0

Our result is then the following formula, known as the Drude conductivity
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N
(NN w) = ME@). (5.10)

5.2 Derivation of classical Drude conductivity

We first consider the case w = 0, writing (J) := (J)(0) for simplicity. We start by
writing (5.9) using a Tauberian theorem as

n-l Lyl
. . -6t / /
1318}L%<§5/ ‘ J<f>df>
m= m T
ezN n-1 tm+l
A : =5t () _ ’
=— 1;{6132110 26/; e (t —t,)dt rE

)

m

_ & —ot,, -1’
=— lalﬁ)lr}gg <Z de / ¢ dr >FE,

using the explicit formula for J between scattering events (5.7). Let us focus on the
m = 0 term

%o
5/ e dl = é(] — (1 +148)e™).
0

Averaging over 7, we find

1 « _ 1 r I's 1 r
1=/ ra+78)eTndr ) = ~(1- - = (1— )
5( /0 (1 +7)e 0)=3 T+6 @T+02) T+s\ T+

The n = 1term is

ée“s’o(l — (1 +7,8)e™% ).

Averaging this term over 7, and 7; we derive

5075 (F5)
r+s r+6/\r'+6/

More generally, noting that

o1, _ 1 m =0,
e H?il 5 m > 1, (5.11)

we derive
= (1= L) i 3 ()
m 0 T+6 L +6/n—e0 &\ +6/
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Summing the series and taking the limit n — co we find

)= emN 510 (13<1 B FLJHS>

Equation (5.10) with @ = 0 then follows by noting that

1 r o\ 1 1 1
Th-o L y=1f- )
5( r+5) 5< 1+é> rto®

r

We now consider the case with @ # 0. We follow the exact same steps as above

n-1 tm+l
=1i 1 (iw—6)1' ’ /
@) = 1§$}L%<25[ e J(t)dt>
=0 r
eN lim lim Z P el 03 (g0 _ o) 47 ) E(w)
m(—iw) 510 n—co \ 4=

0 r

62 —6t,, —ot iot' /
v lw)l;mﬂ<;5e /e (1 —-é*ydf ) E(w).

r

The m = 0 term yields
7 -5t (io—38)t | o
/ e—&t( _ lcut) dt = [e_ _ 6‘ ]
0 -6 iw—6],

1 e—&ru e(iw—é)ro 1
T \S 5 iw—6 iw—-6)

Averaging over 7, we find

1 r r L
5 66+ (iw-60B6+T—iw) iw-46
_ 1 1
T 540 S4I-

Again using (5.11), the mth term in the sum is

(753) Gir 5757w
r+s §+T 6+T—iw/’

SO we arrive at

5 n—1
AN 1 1 : I\
= lim & - ! —> :
N = =5 lim <5+r 5+r—iw)n1%r;)<r+5

Summing the series and taking the limit » — oo we arrive at

@ Springer



The Kubo formula with dissipation

AN L1
<J>(w)—m‘;}}}(”5)<5+r 5+F—ia))
AT <l_ 1 >
~ m(—iw)\I' T —io

which implies equation (5.10) with @ # 0.

6 Conclusion

In this paper, we have provided a self-contained, systematic, formal derivation of
a widely applicable form of the Kubo formula for the linear response conductivity,
under assumptions sufficient for understanding many electronic properties of mate-
rials. We have also shown how many commonly-used forms of the Kubo formula,
especially those used in the study of crystalline (periodic atomic structure) materi-
als, arise as special cases of the general formula we derive. We hope that this work
will stimulate further research into the mathematical modeling of materials’ elec-
tronic properties.

For example, the Kubo formula is useful in the prediction of the asymptotic
behavior of the optical (regular) conductivity as a function of frequency in the limit
of small energy bandgap, when a symmetry of the electronic Hamiltonian is broken
(see, e.g., [19]). Another interesting direction of research is the accurate numeri-
cal calculation of the conductivity in twisted multi-layer graphene, for various twist
angles [17, 37, 38].
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