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Abstract

Multinomial choice models are fundamental for empirical modeling of economic choices
among discrete alternatives. We analyze identification of binary and multinomial choice
models when the choice utilities are nonseparable in observed attributes and multidimen-
sional unobserved heterogeneity with cross-section and panel data. We show that deriva-
tives of choice probabilities with respect to continuous attributes are weighted averages
of utility derivatives in cross-section models with exogenous heterogeneity. In the special
case of random coeflicient models with an independent additive effect, we further charac-
terize that the probability derivative at zero is proportional to the population mean of the
coefficients. We extend the identification results to models with endogenous heterogeneity
using either a control function or panel data. In time stationary panel models with two
periods, we find that differences over time of derivatives of choice probabilities identify
utility derivatives “on the diagonal,” i.e. when the observed attributes take the same val-
ues in the two periods. We also show that time stationarity does not identify structural

derivatives “off the diagonal” both in continuous and multinomial choice panel models.
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1 Introduction

Multinomial choice models are fundamental for empirical modeling of economic choices among
discrete alternatives. Our starting point is the assumption that much of what determines pref-
erences is unobserved to the econometrician. This assumption is consistent with many empirical
demand and other studies where prices, income, and other observed variables explain only a
small fraction of the variation in the data. From the beginning unobserved preference hetero-
geneity has had an important role in multinomial choice models. The classic formulation of
McFadden (1974) allowed for unobserved heterogeneity through an additive term in the utility
of each alternative. Hausman and Wise (1978) developed a more general specification where
coefficients of regressors vary in unobserved ways among agents. Our results build on this
pioneering work as well as other contributions to be discussed in what follows.

Economic theory does not generally restrict the way unobserved heterogeneity affects pref-
erences. This observation motivates allowing for general forms of heterogeneity, as we do in
this paper. We allow choice utilities to depend on observed characteristics and unobserved
heterogeneity in general ways that need not be additively or multiplicatively separable. The
specifications we consider allow for random coefficients but also more general specifications.

In this paper we show that derivatives of choice probabilities with respect to continuous ob-
served attributes are weighted averages of utility derivatives. These results allow us to identify
signs of utility derivatives as well as relative utility effects for different attributes. We also find
that probability derivatives can be even more informative in special cases, such as random coef-
ficients. For example, we find that for linear random coefficients with an independent additive
effect the probability derivative at zero is proportional to the population mean of the coefficients.

We give choice probability derivative results for binary and multinomial choice. We do this
for cross-section data where unobserved heterogeneity is independent of observed attributes. We
also give derivative formulas for two cases with endogeneity. One is where the heterogeneity
and utility variables are independent conditional on a control function. There we show that
derivatives of choice probabilities conditional on the control function have a utility derivative
interpretation. We also verify that under a common support condition, averaging over the
control function gives structural function derivatives.

We also allow for endogeneity by using panel data. We give derivative formulas for discrete
choice in panel data under the time stationarity condition of Manski (1987). For the constant
coefficient case these give new identification results for ratios of coefficients of continuously
distributed variables in panel data without requiring infinite support for any regressor or dis-
turbance. The panel data results are partly based on Hoderlein and White (2012) as extended
to the time stationary case by Chernozhukov et. al. (2015). These results use the ”diagonal”
where regressors in two time periods are equal to each other.

We also consider identification ”off the diagonal,” where regressors in different time periods



are not equal to each other. For the case of a single regressor and two time periods we construct
an alternative, observationally equivalent model that is linear in the regressor. This alternative
model can have a different average utility derivative off the diagonal, showing that utility average
derivatives are not identified there.

The model and goal of this paper are different than that of Gautier and Kitamura (2013)
and Burda, Harding, and Hausman (2008, 2010). Their goal is recover the distribution of het-
erogeneity in a linear random coefficients model. We consider a more general nonseparable
model and a more modest goal of obtaining weighted average effects from probability deriva-
tives. Our results provide a way of recovering certain averages of utility derivatives. Also, our
results are simpler in only depending on nonparametric regressions rather than the Bayesian or
deconvolution methods required to identify distributions of random coefficients.

Section 2 gives derivative formulae for binary choice. Section 3 extends these results to
multinomial choice models. Section 4 obtains derivative results in the presence of a control
function. Section 5 gives identification results for multinomial choice in panel data. Section 6

shows nonidentification off the diagonal. Section 7 concludes. The Appendix gives proofs.

2 Binary Choice Model

We first consider a binary choice model in cross-section data where we observe (Y;, X;), (i =
1,...,n) with Y € {0,1} a binary choice variable and X a vector of observed characteristics
(regressors). Let € be a vector that is possibly infinite dimensional, representing unobserved
aspects of agents’ preferences. We will assume that the utility of choices 0 and 1 is given by

Up(X,e) and Uy (X, ) respectively. The binary choice variable Y is
Y =1(Ui(X,e) 2 Uo(X,¢)).

Here we impose no restrictions on the way that X and ¢ interact. As we will discuss, this
specification includes but is not limited to random coefficient models. This specification is
general enough to be like the stochastic revealed preference setting of McFadden and Richter
(1991).

We begin our analysis under the assumption that X and ¢ are independently distributed:

ASSUMPTION 1: (Independence) X and e are independently distributed.

In what follows we will relax this condition when we have a control function or when we have

panel data. It is helpful to think about this model as a threshold crossing model where

Y =1(6(X,e) > 0), 0(X,e)=Ui(X,e) — Up(X,¢).



The classic constant coefficients model is a special case where ¢ is a scalar and
§(X,e) =B X +e.

This model only allows for additive unobserved heterogeneity. An important generalization is a

random coefficients model where € = (v,7')" is a vector and
d(X,e)=n'X +wv.

This specification allows for the coefficients of the regressors to vary with the individual. Haus-
man and Wise (1978) proposed such a specification for Gaussian €. Berry, Levinsohn, and Pakes
(1995, BLP henceforth) proposed a mixed logit/Gaussian specification where v is the difference
of Type I extreme value variables and 7 is Gaussian. Gautier and Kitamura (2013) gave results
on identification and estimation of the distribution of n when that distribution is unknown. The
nonseparable specification we consider is more general in allowing for §(X, ) to be nonlinear in
X and/or e.
In this binary choice setting the choice probability is given by

P(X):=Pr(Y =1| X) =Pr(§(X,e) > 0] X) = / 1(6(X, ) > 0)F.(de),

where F, denotes the CDF of €. Here we derive a formula that relates the derivatives of the
choice probability with respect to X to the derivatives of §(X,¢). Let 0, denote the vector of
partial derivatives with respect to all the continuously distributed components of X and 0, the

partial derivative with respect to a scalar v.

ASSUMPTION 2: (Monotonicity) For some n and v, € = (n',v)" where v is a scalar, 6(z,€) =
d(z,m,v) is continuously differentiable in x and v, and there is C' > 0 such that 0,6(x,n,v) >
1/C and ||0.0(z,n,v)|| < C everywhere. The variable v is continuously distributed conditional

on n with a conditional density f,(v | n) that is bounded and continuous in v.

As discussed below, for binary choice this condition will be equivalent to d(z, €) being additive
in v that is continuously distributed with a density satisfying the above condition. Let f5. )
denote the density of d(z, €).

THEOREM 1: If Assumptions 1 and 2 are satisfied then,
0, P(x) = E[0,0(x,¢€) | 0(x,€) = 0] - fi(a(0).

Theorem 1 shows that derivatives of the choice probability are scalar multiples of averages

of the derivative 0,0(z,e) conditional on being at the zero threshold, i.e. conditional on being



indifferent between the two choices. Here the choice probability is one minus the CDF of d(x, ¢)
at zero, so that the choice probability derivative is the negative of the CDF derivative at zero,
ie.

0, P(z) = —0, Pr(6(z,e) < y)l|y=o.

The formula in Theorem 1 corresponds to the derivative of the CDF of a nonseparable model
derived in Blomquist et. al. (2014), which builds on the quantile derivative result of Hoderlein
and Mammen (2007). The conclusion of Theorem 1 is an important application of this formula
to the choice probability derivative in a nonseparable model.

Assumption 2 restricts our model somewhat relative to the stochastic revealed preference
model of McFadden and Richter (1991). It is possible to obtain another informative derivative
formula under regularity conditions like those of Sasaki (2015) and Chernozhukov, Fernandez-
Val, and Luo (2015), that are different than Assumption 2. Those conditions lead to a more
general formula for 0, P(x). That formula allows for multiple crossings of the threshold 0 while
the monotonicity condition in Assumption 2 implies that there is only one threshold crossing
conditional on 7. It is not clear how restrictive Assumption 2 or the alternative conditions
are relative to the stochastic revealed preference setting of McFadden and Richter (1991). For
brevity we omit further discussion of this issue.

Another special case of a nonseparable model is an index model where §(z, ) = h(fjz, ) for
some constant coefficients 5y. Here P(X) = 7(8,X) for 7(u) = Pr(h(u,e) > 0) = [ 1(h(u,e) >
0)F.(de). This model results in a choice probability that depends on X only through the index
ByX, similarly to Stoker (1986), Ichimura (1993), and Ai (1997). By Theorem 1 it follows that

Tu(u) = 0,7(u) = E[0,h(u,€) | h(u,e) = 0] - frue(0).

Differentiating with respect to the continuous components of X gives the well known index

derivative formula,
0. P(x) = By - 7u(By).

Here the derivatives of the choice probability are scalar multiples of the components of §.
There is an alternative version of Theorem 1 that provides further insight and motivates our
multinomial choice results that follow in Section 3. By the monotonicity condition of Assumption
2
6(z,n,v) >0 < h(z,n)+v >0,

where h(z,n) == — 6! (x,n,7)|._, and the function inverse is with respect to the v argument in

d(z,m,v). Then the choice probability is

P(x) = E[Pr(v > —h(z,n) | n)] = E[1 = F,(=h(z,n) [ n)] = /[1 — Fy(=h(z,n) | n)]F,(dn),
(2.1)



where Fy,(v | 1) is the conditional CDF of v given 1, and F,(n) is the CDF of 7.

This model is also observationally equivalent to a threshold crossing model
Y = 1(3(2,9,9) 2 0), (z,0,0) := h(w,n) +7,

with a disturbance ¥ that is independent of X and 7. Let h(X,7n) := —F,(—h(X,n) | n) and
o ~ U(0,1) independently of (X,7). Then since 0 < —h(z,n) < 1,

Pr(i > —h(x,m) = B[l — Pr(s < —h(w,n) | )] = E[L + h(z,n)] = P(x).
Moreover, by Theorem 1,

E[ax$($, m, f}) | 5(%, 7, @> = O] ’ fg(a:,n,ﬁ)(()) = E[aré(xv m, U) | 5(1’, m, U) = 0] ’ ffs(wﬂ%v)(())'

In this sense there is no loss of generality in assuming that v is independent of (X, 7).

Differentiating the expression of P(x) in (2.1) with respect to x gives the following result:

COROLLARY 2: If Assumptions 1 and 2 are satisfied then

Ou P () = E[{0:h(z,n)} fo(=h(z,n) [ n)] = / (Db, m)] fo(=h(z,n) [ M)dE,(n).

The formula given here is relatively easy to interpret. We can clearly see that the derivative
of the choice probability is a weighted average of the derivative d,h(x,n) where the weight is the
conditional pdf of v given 1 evaluated at —h(z,n). For instance, consider a binary mixed logit
specification like BLP where v is the difference of two Type I extreme value disturbances that
are independent of 7 and each other, and where 7 are random coefficients with h(z,n) = n'z,
so that we can take §(X,e) = n'z +v. Let f,(v) = e¢?/[1 + €*]? be the logit pdf. Then from the

previous formula,
0. P (x) = E[fo(=n'z)n].
Here the probability derivative is a weighted average of the random coefficients, with the weight

being the logit pdf values evaluated at the regression —n'x.

It is interesting to note that at x = 0 the conclusion of Corollary 2 implies

axp(x”a;:o = E[fv(o)n] = fv(o) : E[U] (2'2)

Thus, when X has positive density around zero and v and 7 are independent, the derivative
of the choice probability at zero estimates the expected value of the random coefficients up to
scale. Consequently

(00, P(2)/ 00, P(2)] |,y = Elnj]/Elns]-



This equation is a binary choice analog of the result that in a linear random coefficients model
the regression of y on X estimates the expectation of the coefficients. With binary choice only

ratios of coefficients are identified, so here only ratios of expected values are identified.

COROLLARY 3: If Assumptions 1 and 2 are satisfied, 0(x,e) = n'x+v, and v is independent
of n, then equation (2.2) is satisfied.

Weighted average derivatives of the choice probability can be used to summarize the effect
of z on h(x,n). From Theorem 1 we can see that weighted average derivatives will be weighted
averages of 0,h(z,n) conditional on §(x,e) = 0. In particular, for any bounded nonnegative

function w(x) it follows from Corollary 2 that
E[w(X)0, P(X)] = E[w(X) fo(=h(X, n) | n) {0:1(X, n)}].

Here the derivative is weighted by both w(X) and the density f,(—h(X,n) | ). The density
weight is present because the derivatives of h(x,n) have been “filtered” through the discrete

choice and so the probability derivative only recovers effects where h(z,n) + v = 0.

3 Multinomial Choice Models

In this Section we extend the analysis to the nonseparable multinomial choice model. Here there
are J choices j = 1,..., J. Each choice has a utility U;(X,¢) associated with it, depending on
observed characteristics X and unobserved characteristics €. Let Y; denote the choice indicator

that is equal to one if the j** alternative is chosen and zero otherwise. Then
Y, =1{U;(X,e) > Up(X,e); k= 1,..., J}).

The probability Pj(x) := Pr(Y; = 1 | X = z) that j is chosen conditional on X = z is the

probability that U;(z,¢) is the maximum utility among the J choices, i.e.
Pi(z) = Pr{U;(x,e) > Uy(z,e);k=1,....,J} = /1({Uj(x,€) > Up(x,e);k=1,...,J})Fe(de),

where we maintain Assumption 1 and assume that the probability of ties is zero.

We can obtain a useful formula for the derivative of this probability under a condition
analogous to Assumption 2. Recall that the monotonicity condition of Assumption 2 is equivalent
to the existence of a scalar additive disturbance. Here we will impose scalar additive disturbances

from the outset.

ASSUMPTION 3: (Multinomial Choice) There are n,vj,u;(z,n),(j =1,...,J) such that ¢ =
(', ") for v:=(vq,...,0y),
Uj(ﬂ?, 5) = Uj(ﬂ?, 77) + vy,

7



and ui(x,n) is continuously differentiable in x with bounded derivative.

In this condition we assume directly an additive disturbance condition that we showed is
equivalent to Assumption 2 in the binary case. Assumption 3 generalizes that additive dis-
turbance condition to multinomial choice. Similarly to binary choice, we are not sure what
restrictions this additive specification would impose in the stochastic revealed preference setting
of McFadden and Richter (1991).

As for binomial choice we could formulate the results in terms of differences of utilities.
However, we find it convenient to work directly with choice specific utilities U;(z, €) = u;(x,n)+

v;j rather than differences. Let u := (uy, ..., u;) denote a J x 1 vector of constants and
pi(u|n) :=Pr(u; +v; >uy+uvk=1,...,J | n).

This p;(u | n) is just the usual multinomial choice probability, conditioned on 7. For example,
if v is a vector of i.i.d. Type I extreme value random variables independent of 7, then p; has

the multinomial logit form

U

et
iy €
In general when f,(v | n) is continuous, p;(u | n) will be continuously differentiable in each wy.
Let

pi(u|n) =

pik(u | ) = Op;(u | n)/Ouk, ul(w,n) = (ui(z,n), ..., us(x,m))"

THEOREM 4: If Assumptions 1 and 3 are satisfied, the conditional density f,(v | n) of v
given 1 is continuous in v, and p;i(u | n), (J, k = 1, ..., J) are bounded, then Pj(x) is differentiable
n x and

0. Pj(x) = [Zm uz, n) | m)dyur(x 77] / [Zm u(@, ) | m)dzur(x,n)

£y (dn).

As an example consider again the multinomial logit where v consists of i.i.d Type I extreme

value random variables that are independent of 7. Define §;(z, 7)) := %@ / 377 eus@n) Then,

k=1

0,Pj(z) =E [p](a: n) {3 uj(x,n) Z (x,n)Opur(z, 77)}]

For example, if some z* affects only wu;,(x,n) for some j,, then

0Py @) = [ ) (1= B 0)} Dy, . ) ).



An important class of examples are those where u;(z,n) = n/z? for choice specific observable
characteristics 2. This example is similar to BLP where 27 could be thought of as the charac-
teristics of an object for choice j, such as characteristics of the j* car type. Here an additional
unit of some component of 27 affects the utility the same for each alternative 7, i.e. there is no

utility interaction between the choice j and the characteristics z7. In this class of examples,

Oux Pj(z) = Elpji(u(z,n) | n)n).

Here we see that the derivative of the j** choice probability with respect to the regressor vector
a2 for the k' alternative is an expectation of the random coefficients multiplied by a scalar

Op;(u(x,n) | n)/Ouk. As in the binary case if 1 is a constant vector f, then

0.+ Pj(x) = Elp;r(u(z,n) | n)] - Bo,

so that the derivative of the choice probability is proportional to (3, for all z*. Also if v is
independent of 7 so that p;(u | ) = pj(u), and each of the characteristic vectors is zero, then

the scalar is a constant and

8:ck‘Pj(x)|w1:...:mJ:0 = pjk(u)|u:0 : E[n]

Similarly to the binary case the derivative of the probability at the origin is a scalar multiple of

the expectation of the random coefficients.

4 Control Functions

A model where it is possible to allow for nonindependence between £ and X is one where there

is an observable or estimable control function w satisfying

ASSUMPTION 4: (Control Function) X and ¢ are independently distributed conditional on

As shown in Blundell and Powell (2004) and Imbens and Newey (2009), conditioning on a
control function helps to identify objects of interest.! Here we show how a control function can
be used to estimate averages of utility derivatives. These derivatives will be exactly analogous

to those considered previously, except that we also condition on the control function.

!Berry and Haile (2010) considered an alternative approach based on the availability of “special regressors”
and instrumental variables satisfying completeness conditions in multinomial choice demand models where the
endogenous part of the unobserved heterogeneity is scalar. This approach identifies the entire distribution of

random utilities.



The choices Y; are determined as before but now we consider choice probabilities that con-

dition on w as well as X. These probabilities are given by
P;(X,w) :=Pr(Y; =1| X, w).
Let u := (uy,...,uy) denote a J x 1 vector of constants and
pj(u | nw) :=Pr(u; +v; > up +vik=1,...,J | n,w).

This pj(u | n,w) is just the usual multinomial choice probability, conditioned on n and w. For
example, if v is a vector of i.i.d. Type I extreme value random variables independent of 1 and

w, then p; has the multinomial logit form

el

N Zi:l ek

In general, when the conditional density of v given 7 and w is continuous, p;(u | n,w) will be

pj(u | 777w)

continuously differentiable in each wy. Let pjp(u | n,w) := Op;(u | n,w)/0u, and u(x,n) =
(ui(z,m), ...,us(z,n))" as before.

THEOREM 5: If Assumptions 3 and 4 are salisfied, the conditional density f,(v | n,w) of v
gwen n and w is continuous in v, and pjx(u | n,w), (j,k =1,...,J) are bounded, then P;(z,w)

1s differentiable in x and

:/ [ijk(u(:c,n) | n,w)Opu(z,m) | F,(dn | w).

As an example consider again multinomial logit where v consists of i.i.d Type I extreme value

random variables that are independent of  and w. Define p;(z, ) := %@ /37 ews@n) Then,

Op Py, w) = E [ﬁj(ﬂc, ) {@cuj (w,1) = Y Brla, m)dun(x, 77)} | w]

k=1

= /ﬁj(xm) {@:uj(xm) - Zﬁk(mm)@cuk(%m)} F(dn | w).

k=1

For example, if some x¢ affects only u;,(z,n) for some j, then
a’czpje(wi) = /ﬁjz(%ﬁ){l —ﬁjAI,U)}axeu]‘[(I,n)F(dn | w)'

10



An important class of examples are those where u;(z,n) = n/z? for choice specific observable
characteristics 2. This example is similar to BLP where 27 could be thought of as the charac-
teristics of an object for choice j, such as characteristics of the j* car type. Here an additional
unit of some component of 27 affects the utility the same for each alternative 7, i.e. there is no

utility interaction between the choice j and the characteristics z7. In this class of examples,
0P w) = [lpie(uon) [ n.w) - 9lF (| )

Here we see that the derivative of the j** choice probability with respect to the vector z* for the
k™ alternative is an expectation of the random coefficients multiplied by a scalar dp;(u(z,n) |

w)/Oug. As above, if 1 is a constant vector f3y, then

O Py, w) = flo - / Pz, m) | n,w)F(dy | w),

so that the derivative of the choice probability is proportional to 3y for all  and w. Also, if v is

independent of 7 and w so that p;(u | n,w) = p;(u), then at x = 0 the scalar is a constant and

O Py (2, W) 1.y g = Pik(W)],—g - Eln [ w].
Similarly to above, the derivative of the probability at the origin is a scalar multiple of the
expectation of the random coefficients, here conditional on the control function.
As is known from the previous literature, integrating over the marginal distribution of the
control function gives probability derivatives identical to those for X and e independent, when

a common support condition is satisfied:

COROLLARY 6: If Assumptions 3 and 4 are satisfied, the conditional density f,(v | n,w) of
v given n and w is continuous in v and bounded, and the conditional support for w given X = x

equals the marginal support for w, then P-(x w) is differentiable in x and

/8P:cw) (dw) /

where F,(w) is the CDF of w.

ijk u(@,n) | n)Ozur(x,n)| Fy(dn),

It is interesting to note that the common support condition is not needed for identification
of interesting effects. Averages of utility derivatives are identified from probability derivatives,
conditional on the control function, as in Theorem 5. Also, because 7 is independent of X
conditional on w, averages over 7 conditional on X can be identified by integrating the objects
in Theorem 5 over the conditional distribution of w given X. This integration gives local average
probability responses analogous to the local average response given in Altonji and Matzkin
(2005). In addition, averaging over the joint distribution of X and w gives average derivatives
analogous to those considered by Imbens and Newey (2009). None of these effects rely on the

common support condition.

11



5 Panel Data

Panel data can also help us identify averages of utility derivatives when X and e are not in-
dependent. Invariance over time of the distribution of € conditional on the observed X for all
time periods can allow us to identify utility derivative averages analogous to those we have
considered. This invariance over time of the distribution of £ conditional on regressors is the
basis of previous panel identification results by Manski (1987), Honore (1992), Abrevaya (2000),
Chernozhukov et. al. (2013), Graham and Powell (2012), Chernozhukov et. al. (2015), and is
an important hypothesis in Hoderlein and White (2012). Pakes and Porter (2014) and Shi et.
al. (2017) have given identification results for multinomial choice models under this condition.
These papers allow for some time effects while Evdokimov (2010) allowed for general time effects
while imposing independence and additivity among disturbances.

In this Section we consider a panel multinomial choice model with panel binary choice as a
special case. For simplicity we just consider two time periods. It is straightforward to extend
the results to more than two time periods. Let Y}, denote the choice indicator, equal to 1 if
alternative j is chosen in time period ¢t. Let X; denote the observable characteristics and &
the unobservable ones in period ¢. We assume that choice is based on a time stationary utility
function Uj(z,e) = u;(z,n) + v; having the additive form considered in the previous Section.
The time stationarity of the utility is important to our results though it may be possible to relax
that condition similarly to Chernozhukov et. al. (2015).

It is assumed that the individual makes the choice that maximizes utility in each time period,
so that

Y = 1({U;(Xy,e1) > Up( Xy e0), k=1,...,J}),(j=1,...,J,t =1,2).

To identify averages of utility derivatives we use choice probabilities conditional on the regressors
X := (X, Xy) for both time periods, given by

Py (X) :=Pr(Y;; = 1] X1, Xs).

With panel data we can replace the assumption of independence of € and X with the following

time stationarity condition:

ASSUMPTION 5: (Time Stationarity) The distribution of e, given X =(Xy,X3) does not
depend on t.

For a constant vector u := (uq, ..., uy) let
pi(u | n, X) = Pr(u; + vy > up + ok =1,...,J | n, X).

This is like the usual choice probability, as discussed earlier, only now it depends on X as well as

1. What allows us to identify derivative effects despite the dependence of p; on X is that p; does

12



not depend on t because of the time stationarity condition of Assumption 5. Time stationarity
allows us to difference out the confounding effect of X that acts through the correlation of X

with €. By iterated expectations the choice probability is
Py (X) = Pr(Yje = 1| X) = Ep;(u(X¢, m) | ne, X) | X].
The difference over two time periods is
Ppp(X) = P (X) = E[pj(w(X2,m2) | 12, X) | X]=E[p;(w(X1,m2) | 72, X) | X],

where we have used the time stationarity in replacing n; by 72 in Pj;(X). When we differentiate
this with respect to X, the presence of Pj;(X) removes all the derivatives with respect to Xo
except the utility derivatives, where X; = Xo.

If the conditional density f,(v | n:, X) is continuous in v then p;(u | n;, X) will be continuously
differentiable in u. Let pji(u | n:, X) == Opj(u | n, X)/O0uy and p;(z | X) = Elp;(u(x,n) |
e, X) | X].

THEOREM 7: If Assumptions 8 and 5 are satisfied, the conditional density f,(v | n, X) of v,
giwen 1 and X is continuous in v, pjp(u | n, X), (j,k =1, ..., J) are bounded, and p;(z | X, Xs)

1s differentiable in x and X, then,
0x,EYj — Vi1 [ X][x,_x, = 3X2{P‘ (X)=Pj(X) Hy,—x,

=k Zp]k (X2, m2) | M2, X)0pur(Xa, n2) | X]

X1=X

As an example consider again multinomial logit where v; consists of i.i.d Type I extreme value
random variables that are independent of 7; and of X. Define §;(x,n) := %@/ Z eu(@n),
Then,

anED/}Q - }/jl | X]|X1=X2

J
=E [ﬁj(X2>772) {axuj(Xzﬂh) - Zﬁk(X2an2)8xuk(X27n2)} | X]

X1=X2

For example, if some X3 affects only u;,(Xs,7), then for logit

anE[Y}eQ - Y}'zl ‘ X] = E[ﬁjz(X%n?){l - ﬁje(X% 772)}890"”]'@ <X2>772) ‘ X”Xlng, :

X1=X2

An important class of examples are those where u;(z,n) = 7'z for choice specific observable
characteristics 7. This example is like panel BLP where 27 could be thought of as the charac-

teristics of an object for choice j, such as characteristics of the j** car type. Here an additional
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unit of some component of 27 affects the utility the same for each alternative j, i.e. there is no

utility interaction between the choice j and the characteristics 7. In this class of examples,

6X§E[Yj2 = Y1 [ X] = Elpjr(u(X2,m2) | 72, X) - 12 | X]|X1:X2 .

X1=X2

Here we see that the derivative of the j choice probability difference with respect to X} for the
k™ alternative is an expectation of the random coefficients multiplied by a scalar pjz(u(X2,7) |
n)-

Time stationary panel data provides a way of controlling for endogeneity of prices in imper-
fectly competitive markets where the price is one element of X;. The time stationarity condition
of Assumption 5 allows for unobserved features of preferences corresponding to &; to be corre-
lated with X in unspecified ways, as long as that relationship is the same for each time period.
In particular, as mentioned earlier, components of € that do not vary over time automatically
satisfy this condition. In this sense Assumption 5 is a very general condition for preferences that
do not vary over time. It can also be extended to settings where the dimension ¢ corresponds
to different markets or locations instead of time periods.

Similar to the cross section case, if 7 is a constant vector 3y then

IxsE[Yjo — Y1 [ X] = Elpjr(u(Xa,m2) | 2, X) | X]|y,_x, - Bo- (5.1)

1=X2

Thus we find that that the derivative of the choice probability is proportional to Sy for all

X1 = X, in a panel data multinomial choice model where u;(z,n) = Gya’.

THEOREM 8: If Assumption 4 is satisfied, U;(x,e) = Byl + vj, and pij(x | X1, Xo)
is differentiable in © and X,, then for each j and k, equation (5.1) is satisfied. Also, if
Elpjr(u(X1,me) | m, X) | X]lx,_x, # 0 for some j, k, and X1, then [y is identified up to scale.

This gives an identification result for multinomial choice models in panel data. It shows that
the vector of coefficients of continuous regressors in a multinomial choice model with additive
fixed effect is identified up to scale from the diagonal where X; = X5. This identification result
holds even if X; is bounded, unlike that of Manski (1987). It can also hold even with v; having
bounded support, unlike that of Shi et. al. (2017). Note though that we only identify the
coefficients [y up to scale, whereas the identification results of Manski (1987) and Shi et. al.
(2017) are for fy itself. In independent work Chen and Wang (2017) has recently shown that in
panel binary choice the entire vector 3y can be identified up to scale if just one component of

X, is continuously distributed.
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6 Nonidentification Off the Diagonal

The panel data results show identification of utility derivatives on the diagonal where X; = Xs.
We can also show that off the diagonal, where X; # X5, utility derivatives are not identified.
Specifically, off the diagonal one can obtain multiple values of conditional expectations of utility
derivatives from the same distribution of the data.

To provide intuition we first show nonidentification for the smooth case where
Y, = (b(Xt: 815)7 (61>

X, is a scalar, ¢(z,e) is continuously differentiable in z, and the distribution of &, given
X = (X1, X3) is time stationary. Suppose that equation (6.1) is true. We can construct an

alternative, observationally equivalent nonseparable model with time stationary disturbances as

}/t =€, + éb*th = gb(Xtaé)a gb(l‘,&:) =Eq Tt gbI, g:= (éaaéb)/a
Eo:=Y1 —6X1, & :=a—-Y))/(Xo—Xy).

By construction & does not vary with ¢, so that it is time stationary. Also, Y; = @(X;,&) so
that the alternative model is observationally equivalent to the original one. Furthermore, the

expected value of ¢, (Xy, &) := d¢(x, &) /0z|,—x, conditional on X is

Blb. (%2,9)| X] = By | X] = D22 =082 [ K] (62)

In contrast

(6.3)

Bl (Xa,20 | X] = [2522)  x].

Ox
In general the expected derivative in equation (6.2) will not equal the expected derivative in
equation (6.3) when E[¢(x,e2) | X] is nonlinear in x over the set where X; # X,. Thus we
have constructed an observationally equivalent nonseparable model with E[¢, (X,,&) | X] #
El¢, (X2, e2) | X], implying that E[¢, (X2, e2) | X] is not identified, on the set where X; # Xo.

The following is a precise statement of this nonidentification result.

THEOREM 9: If i) Y; = ¢(Xy,e1), € is time stationary conditional on X; 1) ¢(x,¢€) is
continuously differentiable in x with bounded derivative; and iii) there does not ezist any A(X)
such that

E[p(Xy, e2) — d(X1, 89) | X] = A(X)(Xy — Xy)

for Xy # Xo, then E[¢, (Xo,e2) | X] is not identified on the set X, # Xo.

It is interesting that the form of the alternative, observationally equivalent model Y; = &, +
£pX; is linear in X;. This is the model considered by Graham and Powell (2012). Observational
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equivalence of this model to the true model means that it is impossible to distinguish from
the data a linear in x model from a nonlinear one, when there is one regressor and two time
periods. Furthermore, this also shows that the object estimated by the Graham and Powell
(2012) estimator will be the expected difference quotient

P( Xy, €2) — 9( X1, €2)

Elg) =E
=) X, - X,

This could be an interesting object. Of course one might also be interested in the expected
derivative on the diagonal given by Ox,E[Y> — Y1 | X]| _y,; see Hoderlein and White (2012)
and Chernozhukov et. al. (2015). It might be best to report both kinds of effects in practice,
given the impossibility of distinguishing a linear from a nonlinear model when there is a scalar
X; and two time periods.

We can give an analogous result for binary choice. Consider a binary choice panel model
where P(X) = E[l — F,(—h(Xy,n:) | 7:, X) | X], similar to the cross-section model in (2.1).

Consider

Y, = 1(fla + X — 1+ 0, > 0),5, ~ U(0,1),
Mo = P (X) = X1, = [P(X) — Pi(X)] /(X2 — X3),

where @, is independent of everything else. Note that Pr(Y; =1 | X) = P,(X), (t = 1,2), so that
this alternative model is equivalent to the first one. In this alternative model Fj(h | 7, X) = h,
for 0 < h <1 and = (7, 7), and h(z,7) = i, + 7oz — 1. Then

E[fs (~h(Xa, 1) | 7, X)0:h(Xz2,77) | X] = Eliy | X] = [P(X) — P(X)] /(X2 — X))

_ g [ Fo(h(Xzym2) | m2, X) = Fy(=h(Xy,mo) | 172, X) X
Xo— X,

# Elfo(=h(X2,m2) | n2, X)0:h(X2,m2) | X],

where the last not equal holds when

Fv(_h(X27772) | 7727X) - Fv(_h(X17772) | 7727X)

E
Xo— Xy

LX) | 1 X)Ouh(Xs ) | x} 40

THEOREM 10: If i) P(X) =E[l — F,(=h(X¢,m) | ne, X) | X] and &, is time stationary; ii)
fo(h | me, X) is bounded; iii) h(x,n) is continuously differentiable in x with bounded derivative;
and ) there does not exist any A(X) such that

E[F,(=h(Xa,m2) | 12, X) = Fo(=h(X1,m2) | 12, X) | X] = A(X)(X2 — X)

for X1 # Xy, then E[f,(—h(X2,m2) | 12, X)0:h(Xa,m2) | X] is not identified on the set X, #
Xo.
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7 Conclusion

Jerry Hausman pioneered the introduction of flexible forms of unobserved heterogeneity in struc-
tural economic models for multinomial choice. This paper follows this tradition by considering
identification of nonseparable multinomial choice models with unobserved heterogeneity that is
unrestricted in both the dimension and its interaction with observed attributes. Some of our
results are of local nature. For example, we show that derivatives of choice probabilities iden-
tify average utility derivatives only for marginal units that are indifferent between two choices
with cross-section data and for units that have time invariant attributes with time stationary
panel data. It would be interesting to characterize minimal conditions that permit extending
the identification of average utility derivatives to larger populations. We leave this extension to

future work.

8 Appendix: Proofs of Theorems

Proof of Theorem 1: The proof is similar to the proof of Lemma 1 of Chernozhukov et al.
(2015). Let F(v|n) = [ fo(u ] n)du. Under Assumptions 1 and 2,

Pa) =Pr(Y = 1] X =) = [ 1{5(e..0) = 0}F,(dv | n)F (d)
— [0z 5 @m0 Fufdo | )
—1- [ R (w0,0) [ Fy(dn).
Differentiating with respect to z
0.P(a) =~ [ (67 (2.n,0) | 12,57 (w0, 0)Fy ().

where the conditions of Assumption 2 allow us to differentiate under the integral. Note that by

the inverse and implicit function theorems,

0:0(x,m,v)

007 (,,0) = = Dyd(x,m,v)

§(z,m,v)=0

Also, by a change of variable

fo(v | n)

W - fé(z,n’v) (O ‘ 77)7

(z,m,0)=0
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where f5z.0.0)( | 7) is the conditional density of §(x,7,v) given 7. Then substituting in gives

fL‘) = /f&(x,n,v)(o | 77)&@5(%nav)|6(x,n,v):0Fn(d77)

= E[6x5(:13, 7, U) | 5(%, 7, U) - O] ’ f5($:77ﬂ}) (O)
- E[@mé(:z:, 8) | 6(I7 8) = 0] ’ f(s(xﬁ)(o)?

since
Emwmnpw|&anm)zm=3/aﬁunwr%@nn»w%m\&@nw>=m

Jo(e, v(0|77)
/855577; |63377v .](C(Sn) (0) Fn(dn)a
(z,m,0)

by the Bayes rule. Q).FE.D.
Proof of Corollary 2: Given in text.
Proof of Corollary 3: Given in text.

Proof of Theorem 4: By iterated expectations,

Pi(x) = Elp;j(u(z,n) | n)] = /pj( (z,m) | n)F,(dn).

Also by Assumption 3 and the chain rule, p,;(u(z,n) | n) is continuously differentiable in = with

bounded derivative
Zp]k u(@,n) | 1)0zur(z,n).

Interchanging the order of differentlatlon and integration is then allowed, and the conclusion
follows. Q.E.D.

Proof of Theorem 5: By iterated expectations and independence of v and = given w
Py w) = Efpy(utan) [ n.w) | 0] = [ pute,n) |.w)Fydn | )

Also, by f(v | n,w) continuous in v and bounded and the chain rule, p;(u(z,n) | n,w) is

continuously differentiable in x with bounded derivative

ijk w(z,n) | n, w)dur(z,n).

Interchanging the order of differentiation and integration is then allowed, and the conclusion

follows. Q.E.D.
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Proof of Corollary 6: Given in text.
Proof of Theorem 7: By iterated expectations,
Pi(X) = Elp;(w(Xe, ne) | ne, X)] = /pj(U(Xt,n) | 1, X) £y (dn | X),

where F(n | X) denotes the CDF of 7, conditional on X. Also by Assumption 3 and the chain

rule p;(u(z,n) | n,X) is continuously differentiable in = with bounded derivative and

s (u(z,n) [ 1, X ijk u(w,n) | 0, X)Opur(w, m).

It follows by the previous equation that the order of differentiating an integration can be inter-

changed to obtain

x,uj x| X) Zp]k u(z,me) | ne, X)Opun(z,m:) | X

Note that Pj(X) =p;(X; | X). Then by the chain rule we have
Ox,B[Yj2 — Vi | Xl _x, = Ox, {1 (X2 | X) — (X1 [ X)Hy,x,
= Dot | X)L, + Ot (@ X)L [y,
- aXQlu](:I; | X)|£B:X1|X1:X2

= al"/“LJ(x | X>|x*X2‘X1 =X

= ijk (X2, m2) | M2, X)0pur(Xa, 12) | X]

X1=X>
Interchanging the order of differentiation and integration is then allowed, and the conclusion
follows. Q.E.D.

Proof of Corollary 8: Given in text.
Proof of Theorem 9: Given in text.

Proof of Theorem 10: Given in text.
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