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ABSTRACT

Deploying machine learning models on new tasks is a major challenge due to dif-
ferences in distributions of the train (source) data and the new (target) data. How-
ever, the training data likely captures some of the properties of the new task. We
consider the problem of reweighing the training samples to gain insights into the
distribution of the target task. Specifically, we formulate a distribution shift model
based on the exponential tilt assumption and learn train data importance weights
minimizing the KL divergence between labeled train and unlabeled target datasets.
The learned train data weights can then be used for downstream tasks such as tar-
get performance evaluation, fine-tuning, and model selection. We demonstrate the
efficacy of our method on WATERBIRDS and BREEDS benchmarks. 1

1 INTRODUCTION

Machine learning models are often deployed in a target domain that differs from the domain in which
they were trained and validated in. This leads to the practical challenges of adapting and evaluating
the performance of models on a new domain without costly labeling of the dataset of interest. For
example, in the Inclusive Images challenge (Shankar et al., 2017), the training data largely consists
of images from countries in North America and Western Europe. If a model trained on this data
is presented with images from countries in Africa and Asia, then (i) it is likely to perform poorly,
and (ii) its performance in the training (source) domain may not mirror its performance in the target
domain. However, due to the presence of a small fraction of images from Africa and Asia in the
source data, it may be possible to reweigh the source samples to mimic the target domain.

In this paper, we consider the problem of learning a set of importance weights so that the reweighted
source samples closely mimic the distribution of the target domain. We pose an exponential tilt
model of the distribution shift between the train and the target data and an accompanying method
that leverages unlabeled target data to fit the model. Although similar methods are widely used
in statistics Rosenbaum & Rubin (1983) and machine learning Sugiyama et al. (2012) to train and
evaluate models under covariate shift (where the decision function/boundary does not change), one
of the main benefits of our approach is it allows concept drift (where the decision boundary/function
are expected to differ) (Cai & Wei, 2019; Gama et al., 2014) between the source and the target
domains. We summarize our contributions below:

• In Section 3 we develop a model and an accompanying method for learning source importance
weights to mimic the distribution of the target domain without labeled target samples.

• In Section 4 we establish theoretical guarantees on the quality of the weight estimates and their
utility in the downstream tasks of fine-tuning and model selection.

1Codes can be found in https://github.com/smaityumich/exponential-tilting.
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• We demonstrate applications of our method on WATERBIRDS (Sagawa et al., 2019) (Section 5),
BREEDS (Santurkar et al., 2020) (Section 6) and synthetic (Appendix C) datasets.

2 RELATED WORK

Out-of-distribution generalization is essential for safe deployment of ML models. There are two
prevalent problem settings: domain generalization and subpopulation shift (Koh et al., 2020). Do-
main generalization typically assumes access to several datasets during training that are related to
the same task, but differ in their domain or environment (Blanchard et al., 2011; Muandet et al.,
2013). The goal is to learn a predictor that can generalize to unseen related datasets via learning
invariant representations (Ganin et al., 2016; Sun & Saenko, 2016), invariant risk minimization (Ar-
jovsky et al., 2019; Krueger et al., 2021), or meta-learning (Dou et al., 2019). Domain generalization
is a very challenging problem and recent benchmark studies demonstrate that corresponding meth-
ods rarely improve over vanilla empirical risk minimization (ERM) on the source data unless given
access to labeled target data for model selection (Gulrajani & Lopez-Paz, 2020; Koh et al., 2020).

Subpopulation shift setting assumes that both train and test data consist of the same groups with
different group fractions. This setting is typically approached via distributionally robust optimiza-
tion (DRO) to maximize worst group performance (Duchi et al., 2016; Sagawa et al., 2019), various
reweighing strategies (Shimodaira, 2000; Byrd & Lipton, 2019; Sagawa et al., 2020; Idrissi et al.,
2021). These methods require group annotations which could be expensive to obtain in practice.
Several methods were proposed to sidestep this limitation, however they still rely on a validation set
with group annotations for model selection to obtain good performance (Hashimoto et al., 2018; Liu
et al., 2021; Zhai et al., 2021; Creager et al., 2021). Our method is most appropriate for the subpop-
ulation shift setting (see Section 3), however it differs in that it does not require group annotations,
but requires unlabeled target data.

Model selection on out-of-distribution (OOD) data is an important and challenging problem as
noted by several authors (Gulrajani & Lopez-Paz, 2020; Koh et al., 2020; Zhai et al., 2021; Creager
et al., 2021). Xu & Tibshirani (2022); Chen et al. (2021b) propose solutions specific to covariate
shift based on parametric bootstrap and reweighing; Garg et al. (2022); Guillory et al. (2021); Yu
et al. (2022) align model confidence and accuracy with a threshold; Jiang et al. (2021); Chen et al.
(2021a) train several models and use their ensembles or disagreement. Our importance weighting
approach is computationally simpler than the latter and is more flexible in comparison to the former,
as it allows for concept drift and can be used in downstream tasks beyond model selection as we
demonstrate both theoretically and empirically.

Domain adaptation is another closely related problem setting. Domain adaptation (DA) methods
require access to labeled source and unlabeled target domains during training and aim to improve
target performance via a combination of distribution matching (Ganin et al., 2016; Sun & Saenko,
2016; Shen et al., 2018), self-training (Shu et al., 2018; Kumar et al., 2020), data augmentation
(Cai et al., 2021; Ruan et al., 2021), and other regularizers. DA methods are typically challenging
to train and require retraining for every new target domain. On the other hand, our importance
weights are easy to learn for a new domain allowing for efficient fine-tuning, similar to test-time
adaptation methods (Sun et al., 2020; Wang et al., 2020; Zhang et al., 2020), which adjust the model
based on the target unlabeled samples. Our importance weights can also be used to define additional
regularizers to enhance existing DA methods.

Importance weighting has often been used in the domain adaptation literature on label shift (Lipton
et al., 2018; Azizzadenesheli et al., 2019; Maity et al., 2022) and covariate shift (Sugiyama et al.,
2007; Hashemi & Karimi, 2018) but the application has been lacking in the area of concept drift
models (Cai & Wei, 2019; Maity et al., 2021), due to the reason that it is generally impossible to
estimate the weights without seeing labeled data from the target. In this paper, we introduce an ex-
ponential tilt model which accommodates concept drift while allowing us to estimate the importance
weights for the distribution shift.

3 THE EXPONENTIAL TILT MODEL

Notation We consider a K-class classification problem. Let X ∈ Rd and Y ≜ [K] be the space
of inputs and set of possible labels, and P and Q be probability distributions on X × Y for the
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source and target domains correspondingly. A (probabilistic) classifier is a map f : X → ∆K−1.
We define p{x, Y = k} as the weighted source class conditional density, i.e. p{x, Y = k} = p{x |
Y = k} × P{Y = k}, where p{x | Y = k} is the density of the source feature distribution in class
k and P{Y = k} is the class probability in source. We similarly define q{x, Y = k} for target.

We consider the problem of learning importance weights on samples from a source domain so that
the weighted source samples mimic the target distribution. We assume that the learner has access to
labeled samples {(XP,i, YP,i)}nP

i=1 from the source domain and and unlabeled samples {XQ,i}nQ

i=1
from the target domain. The learner’s goal is to estimate a weight function ω(x, y) > 0 such that

E [ω(XP , YP )g(XP , YP )] ≈ E
[
g(XQ, YQ)

]
for all (reasonable) g : X × Y → R. (3.1)

Ideally, ω = dQ
dP is the likelihood ratio between the source and target domains (this leads to equality

in (3.1)), but learning this weight function is generally impossible without labeled samples from the
target domain (David et al., 2010). Thus we must impose additional restrictions on the domains.

The exponential tilt model We assume that there is a vector of sufficient statistics T : X → Rp

and the parameters {θk ∈ Rp, αk ∈ R}Kk=1 such that

log q{x,Y=k}
p{x,Y=k} = θ⊤k T (x) + αk for all k ∈ [K]; (3.2)

i.e. q{x, Y = k} is a member of the exponential family with base measure p{x, Y = k} and
sufficient statistics T . We call (3.2) the exponential tilt model. It implies the importance weights
between the source and target samples are

ω(x, y) = exp(θ⊤y T (x) + αy).

Model motivation The exponential tilt model is motivated by the rich theory of exponential fam-
ilies in statistics. In machine learning, it was used for learning with noisy labels and for improving
worst-group performance when group annotations are available (Li et al., 2020; 2021). It is also
closely related to several common models in transfer learning and domain adaptation. In particu-
lar, it implies there is a linear concept drift between the source and target domains. It also extends
the widely used covariate shift (Sugiyama & Kawanabe, 2012) and label shift models (Alexandari
et al., 2020; Lipton et al., 2018; Azizzadenesheli et al., 2019; Maity et al., 2022; Garg et al., 2020)
of distribution shifts. It extends the covariate shift model because the exponential tilt model permits
(linear in T (X)) concept drifts between the source and target domains; it extends the label shift
model because it allows the class conditionals to differ between the source and target domains. It
does, however, come with a limitation: implicit in the model is the assumption that there is some
amount of overlap between the source and target domains. In the subpopulation shift setting, this
assumption is always satisfied, while in domain generalization it may be violated if the new domain
drastically differs from the source data (see Appendix C for a synthetic data example).

Choosing T The goal of T is to identify the common subpopulations across domains, such that

(XP , YP ) | {T (XP ) = t, YP = k} d≈ (XQ, YQ) | {T (XQ) = t, YP = k}.
If T segments the source domain into its subpopulations (i.e. the subpopulations are {(x, y) ∈
X × Y | T (x) = t, y = k} for different values of t’s and k’s), then it is possible to achieve perfect
reweighing of the source domain with the exponential tilt model: the weight of the {T (X) = t, Y =
k} subpopulation is exp(θ⊤k t + αk). However, in practice, such a T that perfectly segments the
subpopulations may not exist (e.g. the subpopulations may overlap) or is very hard to learn (e.g. we
don’t have prior knowledge of the subpopulations to guide T ).

If no prior knowledge of the domains is available, we can use a neural network to parameterize T
and learn its weights along with the tilt parameters, or simply use a pre-trained feature extractor as
T , which we demonstrate to be sufficiently effective in our empirical studies. We also study the
effects of misspecification of T using a synthetic dataset example in Appendix C.

Fitting the exponential tilt model We fit the exponential tilt model via distribution matching.
This step is based on the observation that under the exponential tilt model (3.2)

qX{x} =
∑K

k=1 p{x, Y = k}exp(θ⊤k T (x) + αk), (3.3)
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where qX is the (marginal) density of the inputs in the target domain. It is possible to obtain
an estimate q̂X of qX from the unlabeled samples {Xi,Q}ni=1 and estimates p̂{x, Y = k} of the
p{x, Y = k}’s from the labeled samples {(Xi,P , Yi,P )}mi=1. This suggests we find θk’s and αk’s
such that ∑K

k=1 p̂{x, Y = k}exp(θ⊤k T (x) + αk) ≈ q̂X{x}.
Note that the θk’s and αk’s are dependent because q̂X must integrate to one. We enforce this restric-
tion as a constraint in the distribution matching problem:

{(θ̂k, α̂k)}Kk=1 ∈

argmin{(θk,αk)}K
k=1

D
(
q̂X{x}∥∑K

k=1 p̂{x, Y = k}exp(θ⊤k T (x) + αk)
)

subject to
∫
X
∑K

k=1 p̂{x, Y = k}exp(θ⊤k T (x) + αk)dx = 1 ,
(3.4)

where D is a discrepancy between probability distributions on X . Although there are many possible
choices of D, we pick the Kullback-Leibler (KL) divergence in the rest of this paper because it leads
to some computational benefits. We reformulate the above optimization for KL-divergence to relax
the constraint which we state in the following lemma.
Lemma 3.1. If D is the Kullback-Leibler (KL) divergence then optima in (3.3) is achieved at
{(θ̂k, α̂k)}Kk=1 where

{(θ̂k, α̂′
k)}Kk=1 ∈ argmax{(θk,α′

k)}
K
k=1

EQ̂X

[
log

{∑K
k=1 η̂P,k(X)exp(θ⊤k T (X) + α′

k

}]
− log

{
EP̂

[
exp(θ⊤Y T (X) + α′

Y )
]}

η̂P = {η̂P,k}Kk=1 is a probabilistic classifier for P and α̂k = α̂′
k− log

{
EP̂

[
exp(θ̂⊤Y T (X)+ α̂′

Y )
]}

.

One benefit of minimizing the KL divergence is that the learner does not need to estimate the
p{x, Y = k}’s, a generative model that is difficult to train. They merely need to train a discrimina-
tive model to estimate η̂P from the (labeled) samples from the source domain.

We plug the fitted θ̂k’s and α̂k’s into (3.5) to obtain Exponential Tilt Reweighting Alignment (Ex-
TRA) importance weights:

ω̂(x, y) = exp(θ̂⊤y T (x) + α̂y). (3.5)
We summarize the ExTRA procedure in Algorithm 1 in Appendix B.2.

Next we describe two downstream tasks where ExTRA weights can be used:

1. ExTRA model evaluation in the target domain. Practitioners may estimate the target perfor-
mance of a model in the target domain by reweighing the empirical risk in the source domain:

E [ℓ(f(XQ), YQ)] ≈ 1
nP

∑nP

i=1 ℓ(f(XP,i), YP,i)ω̂(XP,i, YP,i), (3.6)

where ℓ is a loss function. This allows to evaluate models in the target domain without target
labeled samples even in the presence of concept drift between the training and target domain.

2. ExTRA fine-tuning for target domain performance. Since the reweighted empirical risk (in
the source domain) is a good estimate of the risk in the target domain, practitioners may fine-tune
models for the target domain by minimizing the reweighted empirical risk:

f̂Q ∈ argminf∈FEP̂ [ℓ(f(X), Y )ω̂(X,Y )] . (3.7)

We note that the correctness of (3.4) depends on the identifiability of the θk’s and αk’s from (3.3);
i.e. the uniqueness of the parameters that satisfy (3.3). As long as the tilt parameters are identifiable,
then (3.4) provides consistent estimates of them. However, without additional assumptions on the
p{x, Y = k}’s and T , the tilt parameters are generally unidentifiable from (3.3). Next we elaborate
on the identifiability of the exponential tilt model.

4 THEORETICAL PROPERTIES OF EXPONENTIAL TILTING

4.1 IDENTIFIABILITY OF THE EXPONENTIAL TILT MODEL

To show that the θk’s and αk’s are identifiable from (3.3), we must show that there is a unique solu-
tion to (3.3). Unfortunately, this is not always the case. For example, consider a linear discriminant
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analysis (LDA) problem in which the class conditionals drift between the source and target domains:
p{x, Y = k} = πkϕ(x− µP,k), q{x, Y = k} = πkϕ(x− µQ,k) ,

where ϕ is the standard multivariate normal density, πk ∈ (0, 1) are the class proportions in both
source and target domains, and µP,k’s (resp. the µQ,k’s) are the class conditional means in the source
(resp. target) domains. We see that this problem satisfies the exponential tilt model with T (x) = x:

log q{x,Y=k}
p{x,Y=k} = (µQ,k − µP,k)

⊤x− 1
2∥µQ,k∥22 + 1

2∥µP,k∥22 .
This instance of the exponential tilt model is not identifiable. Any permutation of the class labels
σ : [K] → [K] also leads to the same (marginal) distribution of inputs:∑K

k=1 p{x, Y = k}exp
(
(µQ,k − µP,k)

⊤x+ 1
2∥µP,k∥22 − 1

2∥µQ,k∥22
)

=
∑K

k=1 p{x, Y = k}exp
(
(µQ,σ(k) − µP,k)

⊤x+ 1
2∥µP,k∥22 − 1

2∥µQ,σ(k)∥22
)
.

From this example, we see that the non-identifiability of the exponential tilt model is closely related
to the label switching problem in clustering. Intuitively, the exponential tilt model in the preceding
example is too flexible because it can tilt any p{x, Y = k} to q{x, Y = l}. Thus there is ambiguity
in which p{x, Y = k} tilts to which q{x, Y = l}. In the rest of this subsection, we present an
identification restriction that guarantees the identifiability of the exponential tilt model.

A standard identification restriction in related work on domain adaptation is a clustering assumption.
For example, Tachet et al. (2020) assume there is a partition of X into disjoint sets Xk such that
supp(P{· | Y = k}), supp(Q{· | Y = k}) ⊂ Xk for all k ∈ [K]. This assumption is strong:
it implies there is a perfect classifier in the source and target domains. Here we consider a weaker
version of the clustering assumption: there are sets Sk such that

P{Y = k | X ∈ Sk} = Q{Y = k | X ∈ Sk} = 1.

We note that the Sk’s can be much smaller than the Xk’s; this permits the supports of P{· | Y = k}
and P{· | Y = l} to overlap.
Definition 4.1 (anchor set). A set Sk ⊂ X is an anchor set for class k if p{x, Y = k} > 0 and
p{x, Y = l} = 0, l ̸= k for all x ∈ Sk.
Proposition 4.2 (identifiability from anchor sets). If there are anchor sets Sk for all K classes (in
the source domain) and T (Sk) is p-dimensional, then there is at most one set of θk’s and αk’s that
satisfies (3.3).

This identification restriction is also closely related to the linear independence assumption in Gong
et al. (2016). Inspecting the proof of proposition 4.2 (see Appendix A.3), we see that the anchor set
assumption implies linear independence of {pk(x)exp(θ⊤k T (x) + αk)}Kk=1 for any set of θk’s and
αk’s. We study the anchor set assumption empirically in a synthetic experiment in Appendix C. Our
experiments show that the assumption is mild and is violated only under extreme data scenarios.

4.2 CONSISTENCY IN ESTIMATION OF THE TILT PARAMETERS

Here, we establish a convergence rate for the estimated tilt parameters (Lemma (3.1)) and the Ex-
TRA importance weights (Equation (3.1)). To simplify the notation, we define S(x) = (1, T (x)⊤)⊤

as the extended sufficient statistics for the exponential tilt and denote the corresponding tilt param-
eters as ξk = (αk, θ

⊤
k )

⊤. We let ξ⋆k = (α⋆
k, θ

⋆
k
⊤)⊤’s be the true values of the tilt parameters ξk’s

and let ξ = (ξ⊤1 , . . . , ξ⊤K)⊤ ∈ RK(p+1) be the long vector containing all the tilt parameters. We
recall that estimating the parameters from the optimization stated in Lemma 3.1 requires a classifier
η̂P on the source data. So, we define our objective for estimating ξ through a generic classifier
η : X → ∆K . Denoting ηk(x) as the k-th co-ordinate of η(x) we define the expected log-likelihood
objective as:

L(η, ξ) = EQX
[log{∑K

k=1 ηk(X)exp(ξ⊤k S(X))}]− log[EP {exp(ξ⊤Y S(X))}] ,
and its empirical version as

L̂(η, ξ) = EQ̂X
[log{∑K

k=1 ηk(X)exp(ξ⊤k S(X))}]− log[EP̂ {exp(ξ⊤Y S(X))}] .

To establish the consistency of MLE we first make an assumption that the loss ξ 7→ −L(η⋆P , ξ) is
strongly convex at the true parameter value.
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Assumption 4.3. The loss ξ 7→ −L(η⋆P , ξ) is strongly convex at ξ⋆, i.e., there exists a constant
µ > 0 such that for any ξ it holds:

−L(η⋆P , ξ) ≥ −L(η⋆P , ξ
⋆)− ∂ξL(η

⋆
P , ξ

⋆)⊤(ξ − ξ⋆) + µ
2 ∥ξ − ξ⋆∥22 .

We note that the assumption is a restriction on the distribution Q rather than the objective itself. For
technical convenience we next assume that the feature space is bounded.

Assumption 4.4. X is bounded, i.e., there exists an M > 0 such that X ⊂ B(0,M).

Recall, from Lemma 3.1, that we need a fitted source classifier η̂P to estimate the tilt parameter:
ξ⋆ is estimated by maximizing L̂(η̂P , ξ) rather than the unknown L̂(η⋆P , ξ). While analyzing the
convergence of ξ̂ we are required to control the difference L̂(η̂P , ξ) − L̂(η⋆P , ξ). To ensure the
difference is small, assume the pilot estimate of the source regression function η̂P is consistent at
some rate rnP

.

Assumption 4.5. Let f⋆
P,k(x) = log{η⋆P,k(x)}− 1

K

∑K
j=1 log{η⋆P,j(x)}. We assume that there exist

an estimators {f̂P,k(x)}Kk=1 for {f⋆
P,k(x)}Kk=1 such that the following holds: there exists a constant

c > 0 and a sequence rnP
→ 0 such that for almost surely [PX ] it holds

P(∥f̂P (x)− f⋆
P (x)∥2 > t) ≤ exp(−ct2/r2nP

), t > 0 .

We use the estimated logits {f̂P,k(x)}Kk=1 to construct the regression functions as η̂P,k(x) =

exp(f̂P,k(x))/{
∑K

j=1 exp(f̂P,j(x))}, which we use in the objective stated in Lemma 3.1 to analyze
the convergence of the tilt parameter estimates and the ExTRA weights. With the above assumptions
we’re now ready to state concentration bounds for ξ̂ − ξ⋆ and ω̂ − ω⋆, where the true importance
weight ω⋆ is defined as ω⋆(x, y) = exp(ξ⋆y

⊤S(x)).

Theorem 4.6. Let the assumptions 4.3, 4.4 and 4.5 hold. For the sample sizes nP , nQ define
αnP ,nQ

= rnP

√
log(nQ) + {(p+ 1)K/nP }1/2 + {(p+ 1)K/nQ}1/2. There exists constants

k1, k2 > 0 such that for any δ > 0 with probability at least 1− (2K + 1)δ the following hold:

∥ξ̂ − ξ⋆∥2 ≤ k1αnP ,nQ

√
log(1/δ), and ∥ω̂ − ω⋆∥1,P ≤ k2αnP ,nQ

√
log(1/δ).

In Theorem 4.6 we notice that as long as rnP
log(nQ) → 0 for nP , nQ → ∞ we have αnP ,nQ

→ 0.
This implies both the estimated tilt parameters and the ExTRA weights converge to their true values
as the sample sizes nP , nQ → ∞.

We next provide theoretical guarantees for the downstream tasks (1) fine-tuning and (2) target per-
formance evaluation that we described in Section 3.

Fine-tuning We establish a generalization bound for the fitted model (3.7) using weighted-ERM
on source domain. We denote F as the classifier hypothesis class. For f ∈ F and a weight function
ω : X × Y → R≥0 define the weighted loss function and its empirical version on source data as:

LP (f, w) = EP [ω(X,Y )ℓ(f(X), Y )], L̂P (f, w) = EP̂ [ω(X,Y )ℓ(f(X), Y )] .

We also define the loss function on the target data as: LQ(f) = EQ

[
ℓ(f(X), Y )

]
. If {(θ⋆k, α⋆

k)}Kk=1
is the true value of the tilt parameters in (3.2), i.e., the following holds:

q{x, Y = k} = p{x, Y = k}exp{α⋆
k + (θ⋆k)

⊤T (x)}; k ∈ [K] ,

then defining ω⋆(x, k) = exp{α⋆
k + (θ⋆k)

⊤T (x)} as the true weight we notice that LP (f, ω
⋆) =

LQ(f), which is easily observed by setting g(x, y) = ℓ(f(x), y) in the display (3.1).

To establish our generalization bound we require Rademacher complexity (Bartlett & Mendelson,
2002) (denoted as RnP

(G); see Appendix A.1 for details) and the following assumption on the loss
function.

Assumption 4.7. The loss function ℓ is bounded, i.e., for some B > 0, |ℓ{f(x), y}| ≤ B for any
f ∈ F , x ∈ X and y ∈ [K].
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With the above definitions and the assumption we establish our generalization bound.
Lemma 4.8. For a weight function ω and the source samples {(XP,i, YP,i)}nP

i=1 of size nP let
f̂ω = argminf∈F L̂P (f, ω). There exists a constant c > 0 such that the following generalization
bound holds with probability at least 1− δ

LQ(f̂ω)−minf∈F LQ(f) ≤ 2RnP
(G) +B∥ω − ω⋆∥1,P + c

√
log(1/δ)

nP
, (4.1)

where RnP
(G) is the Rademacher complexity of G = {ω⋆(x, y)ℓ(f(x), y) : f ∈ F} defined in

Appendix A.1.

In Theorem 4.6 we established an upper bound for the estimated weights ω̂, which concludes that
f̂ω̂ has the following generalization bound: for any δ > 0, with probability at least 1− (2K + 2)δ

LQ(f̂ω̂)−minf∈F LQ(f) ≤ 2RnP
(G) + k2αnP ,nQ

√
log(1/δ) + c

√
log(1/δ)/nP ,

where k2 is the constant in Theorem 4.6 and c is the constant in Lemma 4.8. The generalization
bound implies that for large sample sizes (nP , nQ → ∞) the target accuracy of weighted ERM on
source data well approximates the accuracy of ERM on target data.

Target performance evaluation We provide a theoretical guarantee for the target performance
evaluation (3.6) using our importance weights. Here we only consider the functions g : X ×Y → R
which are bounded by some B > 0, i.e. |g(x, y)| ≤ B for all x ∈ X and y ∈ Y . The simplest and
the most frequently used example is the model accuracy which uses 0-1-loss as the loss function:
for a model f the loss g(x, y) = I{f(x) = y} is bounded with B = 1. For such functions we
notice that EQ[g(X,Y )] = EP [g(X,Y )ω⋆(X,Y )], as observed in display (3.1). This implies the
following bound on the target performance evaluation error∣∣EQ[g(X,Y )]−EP [g(X,Y )ω̂(X,Y )]

∣∣ = ∣∣EP [g(X,Y )ω⋆(X,Y )]−EP [g(X,Y )ω̂(X,Y )]
∣∣

≤ BEP [|ω̂⋆(X,Y )− ω⋆(X,Y )|] ≤ B∥ω̂ − ω⋆∥1,P .

We recall the concentration bound for ∥ω̂ − ω⋆∥1,P from Theorem 4.6 and conclude that the esti-
mated target performance in (3.6) converges to the true target performance at rate αnP ,nQ

.

5 WATERBIRDS CASE STUDY

To demonstrate the efficacy of the ExTRA algorithm for reweighing the source data we (i) verify
the ability of ExTRA to upweigh samples most relevant to the target task; (ii) evaluate the utility of
weights in downstream tasks such as fine-tuning and (iii) model selection.

WATERBIRDS dataset combines bird photographs from the Caltech-UCSD Birds-200-2011 (CUB)
dataset (Wah et al., 2011) and the image backgrounds from the Places dataset (Zhou et al., 2017).
The birds are labeled as one of Y = {waterbird, landbird} and placed on one of A = {water
background, land background}. The images are divided into four groups: landbirds on land (0);
landbirds on water (1); waterbirds on land (2); waterbirds on water (3). The source dataset is highly
imbalanced, i.e. the smallest group (2) has 56 samples. We embed all images with a pre-trained
ResNet18 (He et al., 2016). See Appendix B.1 for details.

We consider five subpopulation shift target domains: all pairs of domains with different bird types
and the original test set (Sagawa et al., 2019) where all 4 groups are present with proportions vastly
different from the source. For all domains, we fit ExTRA weights (with ResNet18 features as T (x))
from 10 different initializations and report means and standard deviations for the metrics. See Ap-
pendix B.2 for the implementation details.

ExTRA weights quality For a given target domain it is most valuable to upweigh the samples in the
source data corresponding to the groups comprising that domain. The most challenging is the target
{1, 2} consisting only of birds appearing on their atypical backgrounds. Groups {1, 2} correspond
to 5% of the source data making them most difficult to “find”. To quantify the ability of ExTRA
to upweigh these samples we report precision (proportion of samples from groups {1, 2} within the
top x% of the weights) and recall (proportion of {1, 2} samples within the top x% of the weights)
in Figure 1. We notice that samples corresponding to 10% largest ExTRA weights contain slightly
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Table 1: Model selection results on WATERBIRDS

target accuracy rank correlation

target groups ExTRA SrcVal ATC-NE ExTRA SrcVal ATC-NE

{0, 2} 0.819±0.012 0.854 0.871 0.419±0.01 0.807 0.760
{1, 2} 0.741±0.047 0.616 0.646 0.747±0.106 -0.519 -0.590
{0, 3} 0.978±0.001 0.978 0.976 0.962±0.004 0.956 0.906
{1, 3} 0.757±0.011 0.737 0.747 0.361±0.168 -0.318 -0.411
{0, 1, 2, 3} 0.856±0.034 0.803 0.818 0.658±0.295 0.263 0.178

average 0.83 0.798 0.812 0.753 0.166 0.110

over 80% of the groups {1, 2} in the source data (recall). This demonstrates the ability of ExTRA to
upweigh relevant samples. We present examples of upweighted images and results for other target
domains in Appendix B.3.
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Figure 1: ExTRA precision and recall
for samples with top x% weights.

Model fine-tuning We demonstrate the utility of ExTRA
weights in the fine-tuning (3.7). The basic goal of such
importance weighing is to improve the performance in
the target in comparison to training on uniform source
weights S -> T, i.e. ERM. Another baseline is the DRO
model (Hashimoto et al., 2018) that aims to maximize
worst-group performance without access to the group la-
bels, and JTT (Liu et al., 2021) that retrains a model after
upweighting the misclassified samples by ERM. We con-
sider two additional baselines that utilize group annota-
tions to improve worst-group performance: re-weighing
the source to equalize group proportions (RWgr) and
group DRO (gDRO) (Sagawa et al., 2019). The afore-
mentioned baselines do not try to adjust to the target domain. Finally, we compare to πT -> T that
fine-tunes the model only using the subset of the source samples corresponding to the target domain
groups. In all cases we use logistic regression as model class.
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Figure 2: Performance on WATERBIRDS.

We compare target accuracy across domains in Fig-
ure 2. Analogous comparison with area under the re-
ceiver operator curve can be found in Figure 6 in Ap-
pendix B.3.1. Model trained with ExTRA weights
outperforms all “fair” baselines and matches the per-
formance of the three baselines that had access to ad-
ditional information. In all target domains ExTRA
fine-tuning is comparable with the πT -> T support-
ing its ability to upweigh relevant samples. Notably,
on {1,2} domain of both minority groups and on
{0,3} domain of both majority groups, ExTRA out-
performs RWgr and gDRO that utilize group annota-
tions. This emphasizes the advantage of adapting to
the target domain instead of pursuing a more conser-
vative goal of worst-group performance maximization. Finally, we note that ExTRA fine-tuning did
not perform as well on the domain {1,3}, however neither did πT -> T.

Model selection out-of-distribution is an important task, that is difficult to perform without target
data labels and group annotations (Gulrajani & Lopez-Paz, 2020; Zhai et al., 2021). We evaluate
the ability of choosing a model for the target domain based on accuracy on the ExTRA reweighted
source validation data. We compare to the standard source validation model selection (SrcVal) and
to the recently proposed ATC-NE (Garg et al., 2022) that uses negative entropy of the predicted
probabilities on the target domain to score models. We fit a total of 120 logistic regression models
with different weighting (uniform, label balancing, and group balancing) and varying regularizers.
See Appendix B.2 for details.

In Table 1 we compare the target performance of models selected using each of the model evaluation
scores and rank correlation between the corresponding model scores and true target accuracies.
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Model selection with ExTRA results in the best target performance and rank correlation on 4 out
of 5 domains and on average. Importantly, the rank correlation between the true performance and
ExTRA model scores is always positive, unlike the baselines, suggesting its reliability in providing
meaningful information about the target domain performance.

6 BREEDS CASE STUDY

BREEDS (Santurkar et al., 2020) is a subpopulation shift benchmark derived from ImageNet (Deng
et al., 2009). It uses the class hierarchy to define groups within classes. For example, in the Entity-
30 task considered in this experiment, class fruit is represented by strawberry, pineapple, jackfruit,
Granny Smith in the source and buckeye, corn, ear, acorn in the target. This is an extreme case of
subpopulation shift where source and target groups have zero overlap. We modify the dataset by
adding a small fraction π of random samples from the target to the source for two reasons: (i) our
exponential tilt model requires some amount of overlap between source and target; (ii) arguably, in
practice, it is more likely that the source dataset has at least a small representation of all groups.
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Figure 3: Performance on BREEDS.

Our goal is to show that ExTRA can identify the target
samples mixed into the source for efficient fine-tuning.
We obtain feature representations from a pre-trained self-
supervised SwAV (Caron et al., 2020). To obtain the Ex-
TRA weights we use SwAV features as sufficient statistic.
We then train logistic regression models on (i) the source
dataset re-weighted with ExTRA, (ii) uniformly weighted
source (S -> T), (iii) target samples mixed into the source
(πT -> T), (iv) all target samples (oracle). See Appendix
B.1, B.2 for details. We report performance for varying
mixing proportion π in Figure 3. First, we note that even
when π = 0, i.e. source and target have completely dis-
joint groups (similar to domain generalization), ExTRA improves over the vanilla S -> T. Next, we
see that S -> T improves very slowly in comparison to ExTRA as we increase the mixing propor-
tion; πT -> T improves faster as we increase the number of target samples it has access to, but never
suppresses ExTRA and matches its improvement slope for the larger π values. We conclude that
ExTRA can effectively identify target samples mixed into source that are crucial for the success of
fine-tuning and find source samples most relevant to the target task allowing it to outperform πT ->
T. We report analogous precision and recall for the WATERBIRDS experiment in Appendix B.3.

7 CONCLUSION

In this paper, we developed an importance weighing method for approximating expectations of inter-
est on new domains leveraging unlabeled samples (in addition to a labeled dataset from the source
domain). We demonstrated the applicability of our method on downstream tasks such as model
evaluation/selection and fine-tuning both theoretically and empirically. Unlike other importance
weighing methods that only allow covariate shift between the source and target domains, we permit
concept drift between the source and target. Though we demonstrate the efficacy of our method
in synthetic setup of concept drift (Appendix C), in a future research it would be interesting to in-
vestigate the performance in more realistic setups (e.g. CIFAR10.2 to CIFAR10.2 (Lu et al., 2020),
Imagenet to Imagenetv2 (Recht et al., 2019)).

Despite its benefits, the exponential tilt model does suffer from a few limitations. Implicit in the
exponential tilt assumption is that the supports of the target class conditionals have some overlap
with the corresponding source class conditionals. Although this assumption is likely satisfied in
many instances of domain generalization problems (and is always satisfied in the subpopulation
shift setting), an interesting avenue for future studies is to accommodate support alignment in the
distribution shift model, i.e. to align the supports for class conditioned feature distributions in source
and target domains. One way to approach this is to utilize distribution matching techniques from
domain adaptation literature (Ganin et al., 2016; Sun & Saenko, 2016; Shen et al., 2018), similarly
to Cai et al. (2021). We hope aligning supports via distribution matching will allow our method to
succeed on domain generalization problems where the support overlap assumption is violated.
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8 ETHICS STATEMENT

We recommend considering the representation of the minority groups when applying ExTRA in the
context of fairness-sensitive applications. The goal of ExTRA is to approximate the distribution of
the target domain, thus, in order to use ExTRA weights for fine-tuning or model selection to obtain
a fair model, the target domain should be well representative of both privileged and unprivileged
groups. If the target domain has miss/under-represented groups, a model obtained using ExTRA
weights may be biased.
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