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ELECTRONIC OBSERVABLES FOR RELAXED BILAYER
TWO-DIMENSIONAL HETEROSTRUCTURES IN MOMENTUM
SPACE*

DANIEL MASSATT!, STEPHEN CARRY, AND MITCHELL LUSKIN$

Abstract. Momentum space transformations for incommensurate two-dimensional electronic
structure calculations are fundamental for reducing computational cost and for representing the data
in a more physically motivating format, as exemplified in the Bistritzer-MacDonald model [Proc.
Natl. Acad. Sci. USA, 108 (2011), pp. 12233-12237]. However, these transformations can be diffi-
cult to implement in more complex systems such as when mechanical relaxation patterns are present.
In this work, we aim for two objectives. First, we strive to simplify the understanding and imple-
mentation of this transformation by rigorously writing the transformations between the four relevant
spaces, which we denote real space, configuration space, momentum space, and reciprocal space.
This provides a straightforward algorithm for writing the complex momentum space model from the
original real space model. Second, we implement this for twisted bilayer graphene with mechanical
relaxation effects included. We also analyze the convergence rates of the approximations and show
the tight-binding coupling range increases for smaller relative twists between layers, demonstrating
that the 3-nearest neighbor coupling of the Bistritzer—-MacDonald model is insufficient when me-
chanical relaxation is included for very small angles. We quantify this and verify with numerical
simulation.
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1. Introduction. Interest in accurate models for twisted incommensurate ma-
terials has exploded in recent years after the discovery of superconductivity in twisted
bilayer graphene (TBG) at the so-called magic angle [5]. Two-dimensional (2D) ma-
terials with almost identical periodicities form large scale moiré patterns [15, 16, 31]
that are generally incommensurate [14, 17, 21, 24], or aperiodic, which has motivated
the development of methods to overcome the theoretical and computational chal-
lenges posed by the lack of periodicity. Most current physics investigations overcome
the lack of periodicity by utilizing a low-energy continuum approximation that safely
removes the details of the precise atomic structure. The best-known such model is by
Bistritzer and MacDonald (BM model), which made a number of assumptions that
greatly simplify the study of TBG near 1° twist. Although the BM model is built
specifically for TBG, the general framework is applicable for some other materials.
The BM model’s simple structure and formalism have made it a centerpiece of the-
oretical work on moiré materials. However, its strict assumptions of atomic rigidity
and smooth interlayer tunneling lead to low accuracy at twist angles below 1° [7].
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MOMENTUM SPACE WITH RELAXATION 1345

Recent work has developed theory and efficient computational methods for study-
ing the electronic structure of incommensurate 2D heterostructures via configuration
space and momentum space representations [4, 8, 18, 23, 24]. These approaches are
strongly related, as the BM model can be understood as a momentum space model for
TBG with well-chosen approximations simplifying the structure [30]. Both the BM
model and the momentum space model share computational speedup and physically
useful momenta information. The BM model approximations are in the mechanically
unrelaxed regime, and it is known that the mechanical relaxation significantly im-
pacts the geometry and the electronic structure [10, 13, 25, 32]. Both relaxation and
electronic structure models in [8, 10, 32] are derived from density functional theory
(DFT) calculations, so in principle their accuracy is on the level of Kohn—-Sham DFT
for these specific systems.

In this work, we consider a generalized class of tight-binding Hamiltonians that
allows for mechanical relaxation and general material types, and we prove this class
of Hamiltonians can be transformed into a momentum space model. In particular,
we start with a formula for the understood real space observable, and we develop a
method for computing the same observable in the momentum space framework. We
present this by building a diagram of isomorphic mappings of Hamiltonians over the
four relevant spaces for this model: real, configuration, momentum, and reciprocal
spaces.

The tight-binding model starts with a discrete space Q2 of degrees of freedom,
and a collection of hopping functions h. A real space operator acting on ¢?(£2) is
constructed from the hopping functions, denoted 7' (). There is a unitary trans-
formation G that we prove maps this to a momentum framework, a description of
the Hamiltonian as a coupling of waves to other waves given by wms(ﬁ) =Ggn'P(h)G*
where 6 are hopping functions now on the reciprocal lattices describing a momentum
“tight-binding” model. All the interactions between the two 2D materials arise from
weak Van der Waals forces, and as a consequence all Hamiltonian terms arising from
these interactions will in some sense be perturbations of the isolated 2D material
Hamiltonians.

Our main result, Theorem 3.1, gives a family of finite matrices H(q) for momenta
q that can be used to approximate observables that are dependent on a finite region
of spectra ¥ C R for an appropriate class of 2D materials. Theorem 3.1 gives expo-
nential rates of convergence with respect to the hopping truncation and the momenta
truncation. The theorem also proves that the decay rate with respect to the hopping
truncation is independent of 6 for the unrelaxed Hamiltonian, but is proportional to
1/6 for the relaxed Hamiltonian.

Further, H(q) gives a pseudo-band structure as we can write the eigenvalues of
H(q) as a function of momenta g. It is denoted in the literature by “quasi-band
structure” as the eigenvalues of H(q) do not actually represent precise continuous
spectrum, but rather the spectra of H(q) give rise to approximate observables of the
true system.

Momentum space models require detailed analysis to construct, and we hope
this work will be a bridge to simplify the construction of these models for varying
materials and additional mechanical effects such as relaxation by presenting a form
for b, deriving b, from b deriving H (¢), and proving observables converge exponentially
in truncation with only a logarithmic dependence on spectral resolution required for
the observable. We note that the classification of the four spaces also gives a strong
mathematical foundation for the duality between momentum and configuration space
[9] and provides a general class of observables including density of states and the Kubo
formula for electronic transport [4, 18, 22, 26].
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Our second result is the implementation of the momentum space algorithm to
TBG [10, 13, 25], along with analysis of the band structure via the momentum space
Hamiltonian. We derive an exact momentum space formulation directly from the
real space model without any (uncontrolled) approximations. Numerical tests of the
convergence rate of the momentum space algorithm show stark differences between
the unrelaxed and mechanically relaxed atomic geometries. Importantly, we note that
a number of the interlayer tunneling approximations that are central to the simple
continuum model [1] no longer hold as the twist angle approaches zero. This has
implications for recent attempts to connect realistic models of TBG to the so-called
chiral symmetric limit [20, 27, 28, 29], which is an analytically solvable version of
the BM model which requires the interlayer AA and BB orbital tunnelings (tunneling
between orbitals of similar honeycomb sublattice index) to be set to zero.

The chiral symmetric model of TBG also admits an analytically solvable form of
the correlated ground state [3], making it an important model Hamiltonian for un-
derstanding moiré correlated insulators and superconductors. Due to the relaxation
of the moiré interface into large domains of AB stacking, the effective AA and BB
tunneling strengths go to zero proportionally with the twist angle [7]. Therefore, one
may hope that small-angle TBG represents an experimentally achievable form of the
chiral symmetric model. But in this strongly relaxed limit we find that one can no
longer omit the higher momentum scatterings of the AB and BA tunneling types, as
the range of relevant scattering distances grows like the inverse of the twist angle. This
prevents the low-angle limit of relaxed TBG from mapping onto the chiral symmet-
ric model, as it includes interlayer scattering from only the three lowest momentum
scattering modes.

In section 2, we present the real, configuration, momentum, and reciprocal spaces
and the natural transformations between the four spaces along with the observable
formulas. We highlight the relation between the hopping functions in these spaces to
show how to move from a real space model to a momentum space model. As discussion
of the four spaces involves a fair quantity of notation, we simplify the representation
by keeping almost all notation in section 2.1 for easy reference. In section 2.3, we
introduce the tight-binding model with mechanical relaxation and write it in a form
compatible with momentum space. In section 3, we formulate an efficient algorithm in
momentum space, provide a bound for the convergence, and quantify the convergence
slow-down from mechanical relaxation effects. In section 4, we numerically illustrate
the algorithm for TBG with mechanical relaxation. In section 5, we put the majority
of the proofs, and in Appendix A we discuss the mechanical relaxation model, which
is considered an input model for the tight-binding Hamiltonian.

2. Real, configuration, momentum, and reciprocal spaces. In this
section, we build the four spaces and the isomorphic diagram between them. Our
assumed starting point is a real space tight-binding model defined over two incom-
mensurate lattices with a finite number of orbitals associated to each lattice site
forming a discrete basis. To define the geometry of these lattices in the 2D plane, we
write for j € {1,2}

(21) Rj = AjZQ, R;‘ = 27TAJ-_TZQ,
(2.2) T, = A;[0,1)% s =2mA;7[0,1)%,
(2.3) Aj, Ay are finite orbital sets, Fj,I‘; used as tori.
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b: configuration vectors

Fic. 1. A twisted lattice of two sheets, with layer two the dots connected by dashed lines, while
layer one is the isolated dots. The vectors b € I'a (denoted by arrows) parameterize different sites
ReR:.

R; are the real space lattices, R} are the reciprocal lattices, and I';, I'; are the
corresponding unit cells. In the tight-binding approximation, associated with each
lattice site R € R; there is a set of orbitals A;. Ra then parametrizes all orbitals in
the system, where R € R, a € A;, j € {1,2}. A Hamiltonian operator H then couples
orbitals with hopping terms denoted Hp,, r'o’- These hopping terms are calculated
via matrix-valued functions h such that Hga pra’ = hao (R — R’). Here o, o’ sample
the matrix entries of h(R— R'). We see the hopping functions define the Hamiltonian.
For this reason, we focus on careful bookkeeping of the hopping functions through the
transformation between spaces.

Consider a quantum wave function in real space restricted to the first sheet,
denoted ¥ = {YRa } RaecRy x A, - In moiré systems, it is useful to label each site R € R
by its respective position to the second sheet. This disregistry, notated as b € T'o,
is obtained by modulating R with respect to I's. The indexing of atomic sites by
configuration instead of real space location is the basis for configuration space (see
Figure 1). We can then interpret the Hamiltonian H as coupling between sites on
the tori I'y to sites on I's. The “hopping” between different sites will be defined
through translation operators over the tori. Momentum space exploits the Bloch
basis, which corresponds to waves on a single layer parametrized by wavenumber
q € T%, Yo (q) = {€9%5,0 }ra. The presence of a lattice mismatch between the
sheets (e.g., a twist) introduces a nontrivial scattering condition between the Bloch
bases of the two sheets, coupling a wavenumber ¢ € I'] to a set of Bloch states with
distinct wavenumbers in I'5. These wavenumbers in turn couple back to a collection
of wavenumbers in sheet 1, and so forth. This scattering leads to a lattice model over
momenta, which is the basis of momentum space and reciprocal space. This scattering
will be understood via translation operators over the reciprocal lattice unit cells I';
and I'; connecting corresponding momenta.

Next, we introduce a compact notation section for easy reference. First, we
introduce the four spaces of relevance. Second, we discuss the so-called hopping
functions, which describe how lattice sites couple. Then we define the Hamiltonian
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from the hopping functions for the four spaces. Next we define the relevant operator
spaces, and finally we introduce the transformations that map between the four spaces.

1. Notation. We will use G to represent entries of reciprocal lattices, R for
real space lattice entries, and « for orbitals. We will typically skip reiterating which
lattice or orbital set they are in, as the operator and function space context will make
this apparent.

2.1.1. Four spaces. “rl” will be used to denote real space, “cf” configuration
space, “rp” reciprocal space, and “ms” momentum space. First, we define the four
spaces and their sheet decompositions. X will be used to denote the spaces. A
subscript of 1 or 2 will be the space restricted to sheet 1 or 2, respectively, and the
superscript will denote the space, either rl, cf, rp, or ms.

O =Ry x Ay, D =Ry x Ay,  Q=03UQy,

O =Rj x Ay, Q=R x Ay, Q' =0Q70UQ;,

A= L (M C), A5 = Lier<r1;<cA2>, X=X e Ay,

X = L3 (M1 CY), ™ =10, (T5C%), ™ =4 e 5™,

Xy =02 (), x5 = 42(92), Xt =xt'e x5 = 2(9),
=02(Q}), XP=02(Q5),  XP=XP 6" =10

When we use ¢ € X**® where arb is either 11, ms, rp, or cf, then we will denote the
decomposition into sheets as ¢ = (¢1,12)T for ¢; € Xj‘rb, € X,

2.1.2. Hopping functions. Before defining the hopping functions, we define
a couple of relevant spaces. We let M;; be the space of complex-valued |A4;| x |.A;]
matrices. We denote H(T1, Ta; M) to be the space of multivariable analytic functions
over the tori T; whose elements h have corresponding Fourier modes hy, 1, € M where
L; is a lattice vector of the Bravais lattice with corresponding unit cell T}, i.e.,

1 —1 . .
e = [ b g e g ag,
T TTS] Jr, Jr,
(51752 ZZhLlL eiL1-&1+L2-&2)

Ly Lo

Here M is some vector space, for example, the M;;’s. The intralayer hopping of sheet
1 for configuration and momentum space are respectively denoted as

(24) hR(b) = Z hRGBZG.b: F h’(Qa b>671R.qu7 he H(Fika F27 M11)7 Re Rlv

GER3 1/
(2.5 =y horefi= L h(b,q)e”"“Pdb, heH(I2,T5; M), GE€R;.
ReER: F Tz

Parallel notation will be used for sheet 2 intralayer hopping.
We use the following convention for the Fourier transform and its inverse:

20 hO)= g [ Moy ) = [ niggersae

To help define interlayer hopping functions, we define the space

S(M):={he L*(R* M) : |h(z)| < e " |h(&)| < e ¢l for some 7, v/ > 0}.
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Note that intralayer hopping functions have Fourier modes that decay exponentially
due to the analyticity, and interlayer coupling also exhibits exponential decay by defi-
nition. This decay rate is useful for Combes—Thomas type estimates of the resolvents.
The model is reasonable as many tight-binding models are approximated by Wannier
orbitals, which either exhibit exponential decay or can be reasonably approximated
by exponential decay [2, 19].

Next we describe momentum space and configuration space hopping functions.
One set of coupling functions will uniquely determine the Hamiltonian in all four
spaces:

Tef — <H(FT7F2;M11) S(Mys) >
S(Ma1) H(I5,T1; M)

H™s — <H(F27F>{;M11) S(MIQ) >
S(My1) H(Ty,T%; Moy)

Hherm {b—(gi ?)Z)GHCf [hJJ]RG_[hJJ] R,—-G¢ lG'R’ hlZ(b)—h;1(—b)}7

hcrm {b <gll 912) eH™ : [hjj} [h]]] G, —RC€ - .Rv 1712_[1;1}
21 D22

Here we use “herm” to refer to hermitian, and in the setting of hopping functions we

should understand it as hopping functions that give rise to Hermitian or self-adjoint

operators.

We recognize there are multiple subscripts necessary for the notation, and as such
we use brackets to separate objects and their sheet index labels from the orbital or
Fourier mode indices, which will be outside the brackets. For example, if h € HSE
then [h11]rG e is the intralayer sheet 1 hopping function’s (R, &) Fourier mode of
the (a,a’) entry. If h € H we will find the equivalent hopping functions for

herm>
momentum space given by the following h € H™S . Let ;= |1";f|1/ 2,

herm
(2.8) b5 (§) = c1c3hi;(§).
Here i # j.

2.1.3. Operators. Before defining the operators and Hamiltonians, we define a
few symmetry operators:

Tr: X — x5 Trp(b) =9(b+ R),
Ta: X — X, Te¥(q) =v(q+G),
St xel S¢(b) = p(=b).

Suppose b € Hhcrm with corresponding h. Then we define the corresponding generated
operators, where matrix-valued functions are understood as multiplication operators.
Below we assume i # j:

w5t (05) = > [0i5]r(-)T-g, mit i (bics) = Y [hij](- = R)STr,

RER; RER;
“—7,(hu) = Z [Eii}G(')T—Gv z<—] hl] Z bz_] +G)TG7
GE'R; GeER}
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(7

z(—z(h”))]{a Ra! = [DiilrR-r' a0 (R), (W;Li(hji))pmﬂ/a/ = [hji]aa’ (R— R,
( Z<—z( ZZ) Ga,G' o’ :[ ]G—G/,O&a’(G)v (W;F:—i(ﬁji))gmgla/ :[Bji]aa’(G+G/)y
(71'1<—1 b11) 7715—2(512)> mS(()) (7?}51(611) Wini2([:)l2)>

(h21) 77212({)22) ’ 521 (h21) T a(h22) /)

rl T 1(b11) WI{Lz(bH)) P (F; (ﬁiﬁ@u) ﬂig(fiu))
o= (i) B o= (T ).

2.1.4. Operator spaces. We define the spaces of Hamiltonian operators over
the four spaces.

(29) Oherm - (Hherm) Oherm (Hherm)
(210) Oflre)rm = er( herm)7 Oherm = ms( hmesrm)'

We will construct a space of operators associated to observables dependent on a set of
Hamiltonian operators. This generalization includes observables such as entries of the
Kubo formula, density of states, and Chern numbers. For H an operator, we define

¢.(H)={C a contour around ¢(H) :d(C,o(H)) > ¢},
Int(S) := x7_; Int(C}),

§=x7_,Cj,

A(S) :={g analytic on Int(S)},

where Int(C};) denotes the interior of the contour C; and d(A, B) denotes the distance
between the sets A and B in the complex plane. We denote dz = dz;---dz,, z =
(21, 2n), and

Of;”b:{/ H ) ldz:n>0, Hy,---H, € OFP  C; € €. (Hy), gEA(C)}

=1
Oarb = UE>O OE

We represent O € O by the set (g, Hy,--- Hy,).

2.1.5. Observables. Computing observables of quantum systems requires tak-
ing traces of appropriate objects. For [) € Hi ., we define ¢, by

(2.11) (tq'0)15(b,a) = b5 (b,a + ), (te'0)ij(€) = cieshi; (€ + ).

. . f
Likewise we have for h € Hy,

(2.12) (torh);;(q:b) =bj; (g, b+ (=1)7T18"), (toh)ij(z) = hij(z + (—1)"D").

We use O*P € @™ to be an operator of an observable. Reciprocal and real spaces
have thermodynamic limit traces, which we denote

1
rl : rl _ .
Tr O =m 2o g [O"Ra,Ras Q,={RacQ:|R|<r},
RaeQ,
1
Tr O™ = lim —— P o= a0 .
O™ = lim o GQEEQ*[O JGa,Ga r={Ga e Q"G <r}

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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We define traces over configuration space and momentum space as follows:
oM = [ w0 = [ albl@d
T3 ;

Traces over the full momentum and configuration spaces are given by

2
Tr O =vy T [0%);;, v= (1A Do + | As] - [T1) 7,
Jj=1
2
TrO™ =v" Y Tr[0™];, v* = (A 0|+ [ A2 - T3]
Jj=1

2.1.6. Transformations. We noted that the hopping functions uniquely deter-
mined the Hamiltonian in all four spaces. Real and configuration Hamiltonians share
the same underlying functions, and likewise momentum and reciprocal. We thus de-
fine the natural transform from configuration (momentum) to real (reciprocal). We
first define two separate inner products and associated Hilbert spaces for real space
and reciprocal space. To do this, we first define

X2 = {op € X¥P o) is analytic}

for arb either cf or ms. Then without writing the Hilbert space associated with the
range quite yet, we write £ : Xf — £(XC) and £ : XS — £(X™S) by

(2.13) EVra =Ya(R), aeA;,

(2.14) EVca =1a(G), a€A;.

Next we define the ergodic inner products and the ergodic Hilbert spaces, associated

with the completion of the range of & and éq. Consider arbitrary ¥, ¢ € X, Let
#Q,. correspond to the cardinality of Q.. Then [4, 24]

<gwag¢>er = Z <gwRa;g¢Ra>
" Ra€Q,
(Z (1 (b), ¢1(b))db + Z/ >db>
oA, /T2 acAs

= <¢7¢>'

We call the associated Hilbert space X' For 1, € X™, we define the inner product

<51/1 €¢)>crg = hm Z g¢Go¢a£¢Ga>

#7QTGO¢EQ*
(Z/ (1(q), ¢1(q qurZ/ (12(1), ¢2(q >d9>
acAy ac Az
= (¥, ).
Here
= (] - [Ta| + [A2] - D1 )7, v = (] - T3]+ [As] - [T5)) 1
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We note these operators are unitary mappings between Hilbert spaces. We define

(2.15) Us (0F) = £(0)E™, 0% € Ofcrnms
(2.16) Uz (O™5) = E(0™)E, O™ € Opeim-

Here € and € are utilizing the ergodic structure of configuration and momentum space
to unfold via ergodicity onto infinite incommensurate lattices as described above. We
note that O,1(h) can be seen either over the Hilbert space X! or X*! (and likewise
for reciprocal space). Since the representation of the operator is the same, we use the
same notation for both. It will be important to realize, however, that in the diagram in
Figure 2, the operations Ugs and Uz map operators over configuration and momentum
space to operators over the completion of X! and X'P, respectively. The momen-
tum transformations we next define will now consider the same operators O(h) and
O™s(h) as operators over X™ and AP, respectively. While this representation switch
clearly changes the operators and the Hilbert space, a result of this work is that
observables remain the same regardless of this switch in Hilbert spaces.

We also wish the real and reciprocal spaces to be able to describe various local
configurations in configuration and momentum space, and to this end we define the
shifted ergodic maps

_of(Ty O
(2.17) E=E ( 0 Tb) ,

= (T, 0
(2.18) £q_5<0 Tq)

acting on configuration and momentum spaces, respectively.
The transformation from real (reciprocal) to momentum (configuration) is given
by the correct Bloch transform. We define G, : Xjﬂ — X and G; : AP — X]»Cf and

Fic. 2. The isomorphic diagram is presented above with configuration space at top left, real
space at top right, momentum space at bottom right, and reciprocal space at bottom left. The
rectangular image gives a pictorial representation of the space, the operators are listed on the corners,
and the transformations of the operators are written over the arrows between the spaces. We note
that there are two Hilbert spaces and inner products associated with real and reciprocal space, so the
diagram, while isomorphic, isn’t unitary.
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combine them to form the unitary transformations G : X™ — X™s and G:xw® — xef
as follows:

(2.19) Givba(q) =IT5172 D e Fpa, Giha(ba) =T 72 Y 9Py,

ReR4 GERS
(2.20) Gatba(ge) =131/ Z e ' ppa,  Gotha(br) =T 1/? Z " ga,
RER: GER;

Vi) _ (Gra(qr) = (V1(b2) _ (Gt (ba)
(221) ¢ (1/12(612)) B <g21/12(Q2)> ’ g (%(bl)) B (Qﬂﬁz(h)) .
The unitary transformations Ug := G(-)G* and Uz := Q()Q* complete the isomorphic

diagram. The sign change in the definition of G; and Q~j was chosen for the user’s
bookkeeping convenience.

2.1.7. Summary. In summary, for arb either rl, cf, ms, or rp, X®® corresponds
to the basis of the quantum wave functions, O*" to the space of operators, Oﬁgr)m
to the self-adjoint Hamiltonian operators, and 7P to the transformation of hopping
functions into the operator space. For arb either ms or cf, HP s the space of
hopping functions that give rise to self-adjoint Hamiltonian operators. Ug, Ug, U,
and Uz form the isomorphic diagram between the four operator spaces (see Figure 2).
A key takeaway here is that the formal notation gives direct formulas for computing
the hopping functions corresponding to momentum and reciprocal spaces from the
hopping functions corresponding to real and configuration spaces, which will allow
population of the matrices necessary for simulations over momentum space.

2.2. The isomorphic diagram of the four spaces. As outlined in the nota-
tion section, we have four spaces in which to represent the Hamiltonian through the
hopping functions. A™ and X°f are continuous L? spaces that act over momenta
and local configurations, respectively, while X™ and X! are discrete ¢? lattice models
We also have the ergodic versions of reciprocal and real space X'P and X’'. When
working with the ergodic transformations £ or £, we will assume the ergodic inner
products and Hilbert spaces for reciprocal and real spaces. When working with the
Bloch transforms, we assume the ¢ inner products and Hilbert spaces. The objective
of this section is to derive the relations between the four spaces. Most importantly
for numerics, this will give a clear connection between the formulas for observable cal-
culations in real space to that of momentum space, the latter space being the space
where the BM model arises from.

We begin by stating the transformation of operators from configuration to real
space, and from momentum to reciprocal space, which involves ergodic unfolding.

THEOREM 2.1. For h e HY  we have

herm?’

(2.22) U, (7/(h)) = 7" (ts1),

(2.23) Ue, (7™ (h)) =7"P(tgh).

Suppose O € O is constructed from the set (9,7 (1), - 7 (h,)), Ot € O™ is
constructed from the set (9,7 (tpb1), - 7" (tphn)), O™ € O™ is constructed from the

set (g,7™(1),--- 1™ (hy,)), and Og? € O™ is constructed from the set (g, 7P (tyh1), -
7P (tyhn)). Then
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(2.24) Us,(09) =0},
(2.25) Z/lgq (O™) =0
Proof. The proof is in section 5.1. ]

The theorem above relates reciprocal space with momentum space, and real space
with configuration space through a similarity transform, where the transform describes
ergodic sampling. This completes the two horizontal legs of the isomorphic diagram
as shown in Figure 2. To complete the two vertical legs of the diagram, we must define
the relationship between real and momentum spaces, or reciprocal and configuration
spaces. These two relationships are understood through the Bloch transforms.

THEOREM 2.2. For bh e Hhmm, we have
(2.26) U (7"'(h)) = 7™ (b),
(2.27) Us (7 (b)) =7(h).

Suppose OF € O is constructed from the set (g, 7% (hy),---7(bh,)), O™ € O™ is
constructed fmm the set (g, 7" (b1), - 7" (bn)), O™ € O™ is constructed from the
set (g, (), - 7™ (b)), and O™ € O™ is constructed from the set (g, 7"P(hy), -
7'?(hy,)). Then

(2.28) Ug(O™) =0™,
(2.29) U (O™) =0
Proof. The proof is in section 5.2. O

With the isomorphic map defined, we next state local site and local momenta
sampling formulations for observables in configuration and momentum space.

THEOREM 2.3. Suppose O € O is constructed from the set (g, 7% (b1),---7¥(h,)),
Opt € O™ is constructed from the set (g, 7™ (tpb1),- - 7" (tshy)), O™ € O™ is con-
structed from the set (g,7™*(h1),---7™(hy,)), and OFF € O™ is constructed from the

set (g, 71'”’(15,161), -~ (tehy)). Then

(2.30) TrO =y ( Z / Ob 0,00 db + Z / Ob Oa oadb>
acA, /T2 acA;
(2.31) Tro™ = ( Z / ?loa,0adq +/ [O;p]ocy,oadQ> .
ac Ay L
Proof. The proof is in section 5.3. a0

Finally, we prove the equivalence of observables in all spaces.

THEOREM 2.4. For O%% ¢ 0% with hopping functions b € Hherm for real and
configuration spaces, and f) for reciprocal and momentum spaces, we have

(2.32) TrO™ = TrO™ = TrO™ = TrO%.

Proof. The proof is in section 5.4. ]

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/02/23 to 131.179.71.158 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MOMENTUM SPACE WITH RELAXATION 1355

F1G. 3. Atomic positions for a twisted bilayer of MoS> (0 = 3°) after mechanical relazation.
The relazation was computed according to the model in [10]. To generate this image, the interlayer
coupling strength is exaggerated by a factor of 100 so that the displacement effects are easily visible
even at this relatively large twist angle.

2.3. Hamiltonian with mechanical relaxation effects. Mechanical relax-
ation occurs when the atoms relax from their perfect homogeneous configurations
to minimize their energy due to the presence of the neighboring layer (see Figure 3).
These effects are of relevance in the regime where there is a large moiré pattern, which
occurs when the two lattices are nearly aligned.

DEFINITION 2.1. We define the incommensurate Brillouin zone
3 =2m(A; 7 — A77)[0,1)
with lattice matriz
gy =2m(A; T — ATT).
Assumption 2.1. We assume the inverse moiré scale is small, which we denote
0 :=|O21]l0p < 1.

Each lattice site R; € R; will be displaced. The assumption made in [10, 13]
is that this displacement will be regular in configuration, which is a reasonable ap-
proximation given that the local geometry varies smoothly in shift. We consider
displacement fields of each sheet

(2.33) uy : Ty — R2,
(2.34) uy: T — R2
The orbital dependence is important in the modeling, as the orbitals have different
spatial locations, and thus configurations. We also will use the periodic extensions

of u; and uy so they can be defined over the domain R?. To describe how R; eR;
changes position under mechanical relaxation, one simply uses the mapping

Rj — Rj +UJ(RJ)

To find derivations and modeling of the u;’s, see [10, 13]. We also outline the modeling
in Appendix A. We reiterate here that this displacement field is taken as an input to
our model and is not calculated in this work.
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We let h¥ be the tight-binding coupling function between sites on sheet i and
j dependent on the vector distance between sites. The real space Hamiltonian has
matrix elements:

, Ra,R'a’ €9y,
Ra, R'a’ €Q,,
, RacQy, Ra' €Qy,
Hpo ror = [P?aa (R +ui(R) — R —us(R)), RaeQy,Ra € Q.

Our next task is to interpret this Hamiltonian in configuration space so we can write
the hopping functions h € H}Clirm. We start by simple algebraic manipulations of the
intralayer hoppings

[(W'"aa (R4 u1(R) — R —ui(R')) = [A' oo (R — R+ u1(R) —u1(R— (R—R))
and interlayer hoppings
(Moo (R +uz(R) = R — w1 (R) = [ ]aor (R = R +ua(R — R') —ur (—(R = R"))).
Parallel equations hold for the other sheet couplings, and so we readily find

hh(b) =" (R +u1(b) —u1(b— R)), REeTRy,
h% (D) = h**(R + ug(b) — ua (b — R)), RER,.

We then get the underlying functions h by
bi1(g,b) = > € Fhi(b),

RER:
h22(g,b) = Z 'R (b),

ReER2
ha1 () = h*! (& + ua(2) — w1 (=),
br2(z) = h'% (2 + ui (z) — ua(—2x)).

Hence we have the mechanically relaxed tight-binding model
H=n"(h).

To consider a momentum or reciprocal space formulation, we now only need to con-
struct h and use the above procedure to understand how to populate the momenta
hopping terms (see Figure 4).

3. Numerical method. The principle gain of using momentum space that we
outline here is that all interlayer and mechanical relaxation effects are arising from
weak Van der Waals forces, which allows us to consider them as a form of perturba-
tion to the two monolayer structures. This perturbative idea must be treated with
great care, however, as the perturbative effect arises from the relationship between
energies and momenta in the monolayer band structures, the short hopping distance
in momenta due to the inverse moiré scale being small, and the hopping strength and
range along the reciprocal lattices. We outline this section as follows. First we will dis-
cuss the energy and momenta relationship arising from the monolayer band structure.
Then we will construct the appropriate truncation of the discrete operators 7P (¢,h;)
to generate a set of finite matrices H;(g). If we have an observable O™ represented
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Fic. 4. Here we show the interlayer coupling of TBG for a small twist angle 6 = 0.3° in
both real and momentum space. A and B here refer to the two orbitals associated with a sheet of
graphene, i.e., orbital index sets A1 and Az each consist of orbitals A and B. The first column is
AA coupling in real space, while the second column is the magnitude of AA coupling in momentum
space. Similarly for columns three and four, but for AB coupling. Across all four columns, the top
row is without relaxation while the bottom row is with relaxation.

by (g, Wms(ﬁl), e wms(f)n)), then we will be able to write our approximation of Tr O™
motivated by (2.31) as an integral over the incommensurate Brillouin zone instead of
the two reciprocal lattice unit cells I'f and I';, and with finite matrices H;(q) replacing
P (tqﬁn). We will then conclude with the convergence result of observables.

A key point here is that the spectral information coming from a Hamiltonian
H is now captured by a corresponding family of finite matrices H(q) for ¢ € T'5;,
which instantly gives a band structure representation. This provides the traditional
physical insight into the relationship between energy and momenta in a crystalline
material. Most observables can be computed from the spectral information of a single
Hamiltonian, so for the rest of the section we will assume we are considering a single
Hamiltonian H = 7*!(h). We conclude the section with a numerical convergence result
for the energy eigenstates in the center of the energy window of interest and comment
on how to approach general observables. We do not derive a general convergence result
for observables, as the convergence is modified by both the observable’s dependence
on spectral properties and the energy landscape of the monolayer band structures.

3.1. Energy and momentum selection. We already assumed a long moiré
length scale. Our next assumption is that we are only interested in a specific range
of energies, which typically will be a small subset of the monolayer Hamiltonians’
spectra. We call H; and H, the unrelaxed periodic monolayer Hamiltonians over
X and X3!, respectively. We denote their momentum space counterparts my(q) and

ms

my(g) as multiplication operators over X1 and A%, respectively. Let o;(¢) be the
set of eigenvalues of m;(g). We denote

m= my 0
o 0 mo
as the two monolayer operators defined over X™°. Let

(3.1) YCR

be an open set that corresponds to the energy region of interest. To focus on this
energy region with relaxation (or phonon) and interlayer coupling effects, however,
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FiG. 5. For a two-band graphene model, we show the relationship between an energy region X
and momenta for the energy region near the Fermi energy. On the left is a graphene monolayer band
structure, and on the right is the reciprocal lattice unit cell of monolayer graphene. The highlighted
region on the right corresponds to T'j (X + By).

it is more convenient to expand the energy region we consider by a width equal to
something a little larger than twice the strength of the coupling, which we denote

(3.2) 1= (2+a)|[7"P () — 7 (m)]|op.

Here o > 0 so that n is larger than twice the coupling strength. We denote the ball in
R of radius n as B,,. Then our extended energy region is X + B,. We find there are
corresponding momenta regions in I'f and I'5 that correspond to this energy region:

(3.3) I3(S+ By) ={q €T} :0;(q) N (Z + B,) #0}.

As an example of the energy and momenta relationship, see Figure 5.

3.2. Reciprocal space truncation. For the numeric study of observables and
related objects, it is also useful to define spaces of operators with a specified exponen-
tial decay rate in their hopping functions. We define a secondary space O (v,7) C

Oﬁirm to be operators with hopping functions satisfying

|[055]ra| < ceRITTEL gy ()] < cem 1, b5 ()] < e,

for some ¢ > 0. The v controls the decay in orbital hopping distance, while 4 controls
the regularity of the hoppings as a function of configuration. We likewise define
ors L (3,7) C O with hopping functions b by

|[b);]ar| < ceICI1EL 16 (&)] < ce™ T, i ()] < ce 1],

The « controls regularity of the hoppings in terms of momenta, while the 4 con-
trols hopping distance along the reciprocal lattices. Here b;; refers to inverse Fourier

transform of b;;. To better understand how the twist angle affects the regularity, we
define

0¥ (y1,72) = {/ 9(z) H(Zj —Hj) 'dz:n>0, Hy, - Hy € Op (71,72),
s

J=1
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Tt is observed in [10, 13] that relaxation in configuration space becomes sharper pro-
portional to #~'. We assume there exists -, > 0, independent of # such that

(3.4) ©(h) € 0% (,70),
(3.5) 5(h) € O™S(56, 7).

This assumption is motivated by [10]. In other words, configuration space methods
suffer a loss of regularity with respect to configuration, while momentum space suffers
with slower reciprocal space localization (see Figure 4 for interlayer hopping func-
tions in momentum and configuration spaces with and without mechanical relaxation
effects).

When considering ﬂrp(tqﬁ), we note each basis element of X™P, denoted Ga, is
associated with a wavenumber ¢ + G. It likewise has a corresponding energy set
0j(¢ + G), where j is the sheet index corresponding to site Go. We define for an
energy region A C R and r > 0 a corresponding set of basis elements:

0i(q,A) = {Ga e :q+GET5(A) + By, j=1,2}.

Here we consider I'j(A4) + B, as a subset of the torus I'}, and so ¢ + G is modulated
by the torus I'] in the definition above. For U CV C Q*, we define

Jvev:2(U) = (V).

Choice of r controls our accuracy. As seen in Figure 6, for appropriate systems,
Q% (q,X + B,)) consists of isolated regions. Regions can be defined as connected or
isolated over reciprocal space, but here we skip the technical definition as we consider
it reasonably intuitive, and simply cite [23] for the details of connectedness. We define
B(2*) as the collection of subsets of Q*. Then we define I : B(2*) — B(2*) as the
operation that maps a subset of Q* to its isolated degrees of freedom containing a site
Oc for any a. As an example, see the circled red region in Figure 6 corresponding to

I(Q(q, S+ By)).

R RERErses

‘\}\\ 50
b
3
diireees

1.
g% i}
Sany
RS

El 0 1 2 3 4

(b) Here we plot reciprocal space with
each reciprocal lattice site color-coded ac-
cording to the corresponding wavenumber
region. The central circled region is the
region corresponding to a starting point
¢1 containing lattice site 0.

(a) The central regions are I'] (X + By), and
adding the dark regions around them we ob-
tain I'1 (X + By) + Br. Here ¢1 and ¢2 in the
central regions are considered starting points.

Fi1Gc. 6. Momentum space and reciprocal space correspondence for TBG.
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We will let 7 be a truncation in hopping distance on 7" (¢,h) by using new hopping
functions

0 )= D halg)e™,
GER3NB,

150 (ba)= > halq)e™C,
GERINB,

b7 (€) = X (©)hi; (€).

Here x () is smooth and 1 on [~7+1/2,7—1/2] and compactly supported on [, 7].
With 7 selected, we have the new Hamiltonian 7™ (¢,h(™)). We note this operator does
not actually exist in O'P as the hopping functions are not in Hj.. . To generate a
finite matrix corresponding to the energy window of interest, we consider

(3.6) Qi (q) =1(25(q, X+ By)),
(3.7) J-(q) = Jaraz (g
(3.8) H,(q) = J; ()7 (tsb) T (q).

This is a finite matrix over the basis space I (Qﬁ (¢, 2+ B,,)) as long as the region se-
lected by I was an isolated collection of a finite number of elements. This is where the
relationship between the energy window of interest and the monolayer band structure
becomes vital. If I'; (¥+ B;)+ B, C I} is not homotopically trivial, then 7 (q, >+ By)
is not finite for ¢ € I'; (X + By)) + B,. We note that if ¢ I';(X + B;)) + By, then Q7(q)
is empty.

We observe the following symmetry, which is useful for recognizing the set of
starting momenta of interest is the incommensurate Brillouin zone.

PROPOSITION 3.1. If G; = (—1)12nA; "n for n € Z?, G, € R} and G € R}, and
6q =09 n=2mw(A;" — A7 )n,
then

[HT(q)](Gj-‘rG;-)a,(G[-i-éz)a/ = [Hr(q + 5(])}6‘{](1,@(@/7

as long as q,q+5q€F;(E+Bn) + B, for j=1,2.
Proof. The proof is in section 5.5. ]

In other words, H,.(q) is an identical matrix when shifted along the lattice defined
by the incommensurate Brillouin zone, aside from a simple relabeling of the basis
elements. As a consequence, we will select one momenta per isolated region labeled
q1, - qn- In the case of bilayer gaphene, n =2 and ¢; and g2 correspond to the two
unique Dirac points. The two corresponding Dirac cones are often referred to as the
two “valleys,” and they are related by a time-reversal symmetry. We first consider
convergence of the density of states, as it is the simplest observable. The density of
states is approximated by the following for spectral resolution e:

(3.9) D.(E) =Tt ¢.(E — (b)),

. 1 —E2/2¢?
(3.10) 6c(B) = —5—e .
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THEOREM 3.1. Consider an incommensurate bilayer system as described above
with long moiré length scale. Consider E € ¥, and ¢ < 1. Let 7 > 0 be a hopping
truncation. Then there are constants Yn, Ym, and 74 corresponding to hopping trun-
cation error, momenta truncation error, and Gaussian decay rates, respectively, such
that

(3.11) ‘DE(E) _ Ds,r(E)’ < 573/2(6*%,7 +e 2~ 4 67795—2)7
where

D.,(E)= Z v /F Tr ¢.(E — H,(q))dq.

31+4;

When mechanical relazation effects are not included, i.e.,

(3.12) 7"(h) € 0" (%,7),

then we have 7y, is independent of 0, but v, = O(0~1). Meanwhile if mechanical
relazation effects are included, i.e.,

(3.13) 7™ (h) € O™ (30,7),

then we have v, = O(0) and v, = O(1).
Proof. The proof is in section 5.6. ]

We note that 7 is measured in reciprocal lattice length scale, while r is a radius of
a ball living within a single reciprocal lattice unit cell. When mechanical relaxation
effects are included, momenta convergence looks like e~ /™",

Remark 3.1. If we take r too large, we will lose homotopic triviality of our
truncated region, which would lead to an infinite sized matrix. Hence there is a limit
to how large we can take r before we lose the ability to write a meaningful numeric
scheme. In practice, v,, is quite large even with mechanical relaxation effects included
due to the weak Van der Waals coupling between sheets in bilayer 2D heterostructures.
So while we can’t converge to arbitrary accuracy with this approach, we can converge
to a sufficiently small error that the resulting information is physically meaningful. In
other words, isolated momenta regions must be considered coupled if you are interested
in an arbitrarily small energy resolution scale €, but most physically relevant questions
don’t require this level of accuracy in the answer.

Remark 3.2. At this point, H,.(q) for TBG is very close to the BM model. The
latter model can be derived from H,.(q) by the following approach. First, mechanical
relaxation effects are neglected. Second, monolayer coupling terms m; are replaced
with a Dirac cone recentered around the momenta K corresponding to the tip of the
Dirac point: m;(K + ¢q) = (qz_iqy qzzlqy ), where ¢ = (¢, qy). Finally, the interlayer
coupling near the Dirac point is approximated by just the three smallest scattering
directions, with equal hopping strength, and all other hoppings are neglected. This
makes an elegant model for approximating unrelaxed TBG. Our method allows ex-
tension of this idealized model to more complex momentum space hopping effects,
for example, those produced by mechanical relaxation effects at small angles. Note
from Figure 4 that the momentum space hopping range increases with moiré length
scale. The approach outlined in this paper applies to materials other than TBG,
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and to more complicated moiré systems such as strained interfaces and multilayered
heterostructures.

Remark 3.3. We note more complex observables can be computed by this method
as well, as long as the observable is primarily dependent on spectral information in
an energy window yielding a collection of finite matrices H,(q). For example, the
calculation of electrical conductivity via linear response using momentum space is
treated in [22].

4. Numerics. We now describe practical details on the implementation of our
momentum basis model for relaxed TBG [12] and present results on band structure
and convergence. At energies near the Fermi energy, monolayer graphene’s band
structure near the Brillouin zone corners K and K’ can be described by the Dirac
equation

(4.1) H(q) = —hvpd - q,

with ¢= (¢z,¢qy) and & = (01,02), the first two Pauli matrices [11, 12]. Importantly,
the only free parameter is the Fermi velocity vg, which sets the dispersion (slope)
of the bands, and it is linearly dependent on the nearest-neighbor hopping param-
eter in the graphene tight-binding model. However, as ¢ moves away from K, this
simple model becomes less accurate due to missing terms from higher-order hopping
parameters. Instead, for our model we implement H(q) as a Bloch wave defined by
the tight-binding hopping parameters up to the fifth nearest neighbor, with values
obtained from a previous first-principles study of graphene [19].

For TBG, the set of basis elements within the selected energy window, F;(Z +
B,) + B,, can be described more succinctly in terms of a fixed truncation radius A.
This is because the conical bands of graphene lead to a linear relationship between
spatial cutoffs and energy cutoffs. As any basis element can be given in terms of a
reciprocal lattice index n € Z2, the truncation corresponds to keeping only those with
position [O21n| < A.

For interlayer coupling, we use a direct plane-wave inner product to populate a
specialized grid of momenta, and then perform quadratic interpolation to obtain the
tunneling value at any generic £. To ensure proper symmetry in the final Hamiltonian,
one must ensure the sampling of both the real space and momentum space grids is
consistent with the symmetries of the twisted bilayer. For real space, the tunneling is
sampled on a triangular lattice of points, with a smoothed radial cutoff at 8 A.

We use an interlayer hopping functional derived from previous first-principle cal-
culations [6, 19]. We sample the plane-wave inner products (k) on a truncated doubly
nested grid with moment G + G’, with G € R} and G’ € R}. We truncate this model
by only considering |G|, |G’| < 7, for some truncation radius 7, which limits both the
large and small grid samplings. For small twist angles, this truncation procedure leads
to a momentum sampling which consists of “islands” sampled at the moiré reciprocal
lattice scale, separated from one other on the monolayer reciprocal lattice scale.

The large (monolayer) scale sampling captures the rough scattering direction, with
the three smallest such scatterings corresponding to the three tunneling directions in
the BM model. The small (moiré¢) scale sampling captures the gradient of h in the
vicinity of each scattering direction, a correction to the BM model which causes most
of the particle-hole asymmetry in the low-energy bands of TBG [7]. For any given
g+ G + G’, we then interpolate the tunneling strength from this customized grid of
precalculated values of haq. We note that if instead one attempts a square-grid 2D

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/02/23 to 131.179.71.158 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MOMENTUM SPACE WITH RELAXATION 1363

e

4 0 1 2 3 4

FI1G. 7. Here we consider a starting wavenumber qgo €I'] and let n € 72. If Go = 27rA2_Tn with

corresponding G1 = —2wAan, then the momenta q + G2 can also be written as q+ G2 + G1 =
q+ ©21n. We thus see that ©21 well characterizes the shift in momentum when we move along
lattice sites in reciprocal space.

FFT, a large amount of symmetry and resolution inaccuracies occur even with very
fine mesh-sizes, requiring large amounts of memory for poor performance.

One final implementation detail is related to the sublattice orbital shifts between
twisted layers. For each pair of interlayer orbitals, we redefine the sampling grid
such that the two orbitals are aligned at the origin, and then add the relative shift
A as an additional phase factor after interpolation by multiplying by ei(a+G+G")-A
For example, tunneling between two A orbitals would require A = 0, but between
an A and B orbital A would be roughly the sublattice bonding distance (with an
appropriate small twist for the layer of the B orbital).

With our truncation of the momentum basis defined and all relevant intra- and
interlayer terms calculated, we can now diagonalize the Hamiltonian matrix to obtain
electronic band structure. In Figure 8, we show results of our model for a single
valley of TBG [12] for three angles, both relaxed and unrelaxed. We see that at large
angles (6§ = 3.0°), the Dirac cones of graphene are still clearly visible. The effects of
relaxation are small but noticeable: a small moiré band gap opens up near the first
band crossing at £350 eV.

Near the magic angle (§ = 1.1°) [11, 12], the linear dispersion of the Dirac cone
is nearly perfectly compensated by the interlayer band hybridization, creating an
extremely flat band. After relaxations, the band is slightly less flat and the moiré
band gaps near +40 eV are larger. The flat bands are still possible for the relaxed
system, but they are now at a slightly larger angle, due to an increase in the effective
AA interlayer tunnel strength (see Figure 4).

At small angles (6 = 0.3°), accurately capturing atomic relaxation becomes of
upmost importance. As the moiré pattern is now many tens of nm, large domains
of uniform AB or BA stacking occur and are criss-crossed by narrow domain-walls of
intermediate stacking. The unrelaxed band structure does not capture this atomic
reconstruction and shows a large amount of intersecting bands at low-energy. With
relaxations, the electronic structure is less busy at low energy, and clear Dirac points
are still visible along with small moiré band gaps at roughly +5 meV.

The exponential convergence of our relaxed momentum-space algorithm can be
directly assessed by calculating the relative convergence of the eigenvalue at ¢ =0 of
the moiré Brillouin zone (er) as a function of the adjustable parameters. We will look
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Fic. 8. Electronic band structure along high-symmetry lines of the moiré Brillouin zone at a
single monolayer K walley for three twist angles, 3.0° (top), 1.1° (middle), and 0.3° (bottom). The
first column shows the band structure for unrelazed TBG, while the second shows that of relaxed
TBG. The momentum azxes are labeled in terms of the high-symmetry points of the reciprocal lattice
of the moiré supercell, not the graphene monolayer cells.

for a form similar to that used in Theorem 3.1; however, there will be no error due to
the observable because we are performing an eigencalculation and ~,, will be replaced
instead with an exponential decay in A:

(4.2) ler(A,7) —ep| S e T 4 e AN,

In Figure 9, we focus on the momentum basis truncation radius A and the interlayer
tunneling truncation 7. For all twist angles and relaxation assumptions, the error
decreases exponentially with both A and 7. We extract the slope of this exponential
convergence, y5 and vy, respectively in Figures 9(a) and 9(b), and study their depen-
dence on the twist angle #. In general, there are two ranges for the #-dependence of
both ~y values: above and below the magic angle (§ =1.1°). Above the magic angle,
the electronic structure is only weakly affected by the relaxation pattern, while at or
below the magic angle the moiré pattern and atomic relaxations become increasingly
more important to the low-energy eigenvalues as 6 goes to 0.

Starting with A, we see in Figure 9(b) that for the relaxed system, the convergence
rate is roughly constant as a function of €, in agreement with our assumption in
Figure 6(a) that only a finite energy range of the momentum basis must be included to
accurately reproduce the low-energy band structure. However, the unrelaxed system
converges much faster with A as the twist angle decreases (e.g., larger ). This
difference is caused by the fact that the interlayer tunneling function in the unrelaxed
system does not change with the twist angle. So as the twist angle becomes small, a
fixed truncation radius A will include monolayer Bloch states at the same energies,
but the number of “hops” needed in momentum space to reach them grows like §~!
in the unrelaxed case because of its #-independent tunneling range.

Assuming these tunnelings can be considered weak matrix perturbations, each hop
between momentum basis elements reduces the effect that a higher energy state will
have on a low-energy eigenvalue. Therefore, for angles where many states are included
within the sampled A (§ < 1°), we see that the unrelaxed exponential convergence
A o 871 (the number of hops connecting the states) while the relaxed exponential
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Fi1G. 9. Convergence of electronic structure. (a) The relative error for the T'-point electron
etgenvalue closest to the Fermi energy as a function of the momentum basis truncation radius A.
The results for the relaxed system at 0.4° and 1.0° are in purple and green, respectively. A linear
fit to the log of the error is shown, giving a constant cp and slope yp. (b) The dependence of yp on
the twist angle 0 for the unrelazed (black) and relazed (red) calculations. (c), (d) Same as (a), (b)
but for the convergence in the interlayer truncation radius T and its exponential convergence ~yp .

convergence 7y, is a constant, as the relaxed tunneling range grows like 61 as well.
From a computational cost perspective, the unrelaxed system can have its A decreased
linearly with 6. As the magnitude of the moiré reciprocal lattice is also proportional to
0, the matrix size for an accurate calculation does not change with 6 for the unrelaxed
model. However, for the relaxed calculation A must stay a constant. The shrinking
moiré reciprocal lattice scale means the matrix size for an accurate calculation will
grow as 672 in the relaxed model.

Moving on to 7, a different 8 dependence on the exponential convergence
is observed in Figure 9(d). At large angles (0 > 1.0°), the relaxed and unrelaxed
models have identical convergence properties, since the relaxation is quite weak. The
unrelaxed 7y, smoothly approaches a finite value as 6 approaches 0°, consistent with
the observation that the interlayer tunneling range is independent of ¢ in the unrelaxed
model (Figure 4). In contrast, the relaxed 7, goes to 0 as 6 does, showing that the
tunneling range of the relaxed system scales like 1.

For extremely small twist angles, accurate calculation of relaxed TBG’s elec-
tronic band structure therefore requires increasingly higher scattering frequencies in
its Fourier decomposition. This matches the reconstruction of the atomic geometry,
which forms domain-walls of constant 10 nm width [10] that can only be described by
an infinite number of Fourier components as 6 goes to 0°. As mentioned in section 1,
this necessary inclusion of higher momentum components in the interlayer tunneling
function at small angles prevents any mapping of the realistic TBG model [7] onto
the theoretically important chiral symmetric model [20, 27, 28]. We note that in
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Figure 9(d) the relaxed v (6) appears to reach zero at a finite value of . This is
caused by the relatively small effects of the finite sampling of the real space mesh of
interlayer tunnelings, especially at small angles when the atomic relaxation is severe.
We found the effective intercept increased when that mesh was made larger, suggest-
ing it is the source of the error. Due to memory constraints of the one-shot Fourier
transform we have implemented, calculations with large 7 and very fine r-meshes were
not possible. This constraint means at large 7 a residual r-mesh error appears in the
T convergence, affecting the estimation of the slope ~.

5. Proofs.

5.1. Proof of ergodic unfolding: Configuration to real and momentum
to reciprocal spaces. In this section, we prove the following theorem.
cf

THEOREM STATEMENT 1. For h ¢ H’, . we have
(5.1) Us, ((h)) ="' (th),
(5.2) Z/{gq (wms(h)) =7"P(tyh).

Suppose O € O is constructed from the set (9,7 (1), - 7 (h,)), Ot € O™ is
constructed from the set (g,7" (tyh1), - 7" (tphy)), O™ € O™ is constructed from the
set (g,m™*(h1),--7w™*(hn)), and Oy € O™ is constructed from the set (g, 7" (tsh1),
<P (tabhy,)). Then

(5.3) Us, (0) = O,

(5.4) U, (0™) =O.F.

Proof. We first set out to show
Em(h) = 7" (toh) &,
which is sufficient to show (5.1). Consider ¢ € X!, Then for Ra € Qy,
(€67 (D) ] Ra

_¢ P rier, D11lR (O) 1 (Y = R1) + D g, er, [012] (0" — R2)tha (b + Ry)
TN\ Sh,er, [h22] R, (D)2 (b— Re) + >orier, [021](b — R1)Y1 (=0 + Ry)

( Z h11]r, (b+ R)Y1(b+ R— Ry)+ Z [hlz](b+RR2)¢2(bR+Rz)]>

Ri€ERy R2€R2

—< Z b11]r—pr, (b + R)Y1(b+ Ry) + Z [blz](b+R—Rz)¢2(—b+Rz)]>

Ri€ERy R2€R2
= (TP (th)Evv) re, -

Likewise for Ra € (25, we have

(7 (H)¢] Rar
=< Z [b22] R, (—b+ R)Yp2(—b+ R — Ro)

R2ER>

+ Y [hal(=b+ R— Ri)gn(b— R+Rl)>

R1€ERy
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( > [ho2lr-ry(—b+ R)ga(=b+ Ra)+ > [521](—b+R—R1)¢1(b+R1)>

Ro€Ro Ri€ER1

= (1" (tsH)E?) gy, -

(e

This verifies (5.1). Next we work to show

We proceed as above. We consider ¢ € X™®, and write for Ga € Q]

(ngms (6 )1/1) o

5 Eazeng [E{I]Gz (@)Y1(d — Ga) + EcleR; [@12](9/ +G1)2(q + G1)

"\ Xaier: 0226 (@920 = G1) + X, ers 0210 + G2)¥1 (4 + G2)

= Z b11]a, (¢ + G)br(q+ G — Ga) + Z [b12](q + G + G1)¢a(q + G+ G)

G2€R; G1ER;]

= Z [hu]a-c.(a+G)vi(g+ Ga) + Z [b12](q + G+ G1)¢ba(q+ Gh)
G2€R; GieR;

= (er(tqﬁ)ng) o

By symmetry, the same is true for Ga € Q35, and (5.2) is verified. To show (5.3),
consider ¥ € X and ¢ = (2 — 7I(h))yp € XL, Then

&= (2 — 7" (th))Ewth,

and hence

(z = 7P (tyh)) € = Ex(2 — 7 (H)) 1o

In other words,
Us, ((z— () ") = (z =" (tyh)) .

Now we have
ch: & . cf 71d )
/ o(2) [] &5 =)

By the resolvent relation above we have

Us, (H(Zj WCf(f)))1> = H(Zj — "l (tph)) "

j=1 j=1

By continuity in z, we obtain (5.3). The same argument yields (5.4). d
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5.2. Proof of Bloch unitary mapping: Real space to momentum and
reciprocal to configuration spaces.

THEOREM STATEMENT 2. For h e Hherm, we have
(5.5) Ug ("' (0)) = 7" (b),
(5.6) Ug(n"? (b)) =7(h).

Suppose O € O is constructed from the set (g,7%(h1), - -7¥(h,)), O™ € O™ is
constructed from the set (g,7"(b1),---7"(h,)), O™ € O™ is constructed from the
set (g, (), - 7™(hy,)), and O™ € O™ is constructed from the set (g, 7 (hy),- --
ﬂ'”’(hn)). Then

(5.7) Ug(0™) =0™,
(5.8) U (0™) =0

Proof. As in the previous proof, we focus on proving the isomorphic relation

Gr'l(h) ="%(h)G.

Consider 9 € X™. For R € R;, we denote g as the vector of size |.A;| of orbitals
corresponding to site R. We will make use of the Poisson summation formula:

Y =I5 ) 0E-G).

RER: GER;

Using the definitions provided and the Poisson summation formula, we calculate

[Gx™ (0)¢]1(q)
=572 ) e SN (bl —r (RO)GR, + Y 1) (R — Ro) g,

R1€R1 Ri€ERy RLERS
~1/2 —iqR G R
I Z e " Z b11]r, —r; a7 Ry
RieRy Ri€R1,G2€R}
Ri—R),
+ > /512 Jels =R ey,
R,€ER2

= Y bulred @G (- Gy)

R1€ER1,G2€RS

Ix(1/2 )
+ :rilm / [512)(£)e” €~ 1 Goiy (€)dE
R1€R1
= Y [bule(@Git(g+Ga) +cies Y /fhz (¢ + G1)G2b2(q + G1)
G2€R3 G167
= [r"*(0)GV 1.

The same argument holds for the second component, which verifies (5.5). Next we
consider
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Then we have for ¢ € X

(G (h)¢):(b)
ib-Ga
= > EW > ey (@vay + D [012)(Ga+ G,
Goery "2 GLER} GreR;}
¢ib-Ga

= > maE | 2 leapme™ g,

G2ER; R1€ER1,GLERS
i —iz-(Ga+G1) d
+ ) e /[512]() Vg, dx

= Z 011) Ry, %2 PGy (b + Ry)

R1€R1,GLERS

Z [b12](2)e" ") C>Gapy (—z)dw
R2

G €ER3

( D hr (0)Gi(b+R)+ D [blz](b—Rz)g*w2<—b+Rz>>

R1€R1 Ro€Ro
= [7°(h) Gl
The same argument holds for the second component by symmetry, and thus we have

(5.6). As in the previous theorem, (5.7) and (5.8) follow by the transformation of the
resolvent, and then continuity of the resolvent with respect to z. 0

5.3. Proof of configuration and momentum space operator representa-
tions.
THEOREM STATEMENT 3. Suppose O € O is constructed from the set (g, 7%(h1),
(b)), Ot € O™ is constructed from the set (g, 7" (tph1), - 7" (tphn)), O™ €
O™ is constructed from the set

(9. (01), -7 (b)),
and O € O is constructed from the set (g,7"" (2, by ), ”’(tqlan)), Then

(5.9) TrO“=v ( Z / [0800,0adb + Z / [040a Oadb>
acA, /T2 acAs
(510) TroO™ = ( Z / Oa Oadq +/ [ng]OQ,OadQ> .
acA, rs

Proof. By definition of the trace,

Tr Of = (/F tr [B11]o (b)db + /F tr [bQQ]O(b)db> .

Then (5.9) is verified by observing the relation
[bjj (b)}o = [(gbOCfglf)Oa,Oa’]a,a’eAj .
The proof for (5.10) is the same. |
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5.4. Proof of equivalence of observables in all space.
THEOREM STATEMENT 4. For O%® € O with hopping functions b € Hherm for
real and configuration spaces, and b for reciprocal and momentum spaces, we have

(5.11) TrO™ = TrO™ = TrO™ = TrO%.

Proof. We first verify Tr O" = Tr O°f, which comes from observing the ther-
modynamic limit trace of real space is an ergodic sampling of configuration space.
Let

La(b) = [OZI]OOA,O(X'
Then [O" ga.Ra = La (R) And we obtain

EOM o r;>oo Q Z

Ra€EQ,
. #Qrmgl #QTQQQ
= lim | ——— Z L,(R)+ ———— Z La(R)>
THOO( # Ra€Q, Ny #r Ra€Q,Ns
= <Z / Db+ > / )
acA, T2 acA;

where the last line follows from the ergodic theorem, as in Theorem 2.1 of [24].
The equivalence of observables in real and configuration space is concluded by using
Theorem 2.3. The proof of

Tr O™ =Tr O
is the same. We then focus on proving the last needed equality,
Tr O™ =Tr O™.

We let e, be the standard ~basis vector in X' and e, the standard basis vector in
C4 for a € Aj. We denote &; acting on XS as

= {w(G)}GE’R;‘
for i # j. Observe that if ¢, € X", then
T3 17Y%(6 ) = Tx (£;6)" (E590),
where Tr here is understood as only being computed over 27, and (+,-) is the standard

L? inner product over X7,
For Rove () (Wlthout loss of generality), we note

[0"] R, ke = (GeRa) "GO G* (GeRa)
:|1"’{|_1/ efier O™se, e idg

=Tr (&i(cac™™))"(E10™eae™ )
(€1(ea ZRq))*(Orp&eae”R'q)

I
\ﬁ \

Z G- G)Og)a G'a
T*)OO #{G €R2 |G| < ’I“} G7G’ER;,\G\<T

Z e—?,RGj[l ]Oa Gadq

GER3

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/02/23 to 131.179.71.158 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MOMENTUM SPACE WITH RELAXATION 1371

The last equality follows from

08 oa,c'—c)a = [0™]Ga,cra

and the ergodic theorem in Theorem 2.1 [24]. To understand Tr O™ then, we observe

1
lim e =dao
r—00 #{R €ER1: ‘R| < T} R€R¥R<T

We then obtain

0" = rlggo 7. Z > > _iR'G]{; [OP)0a,cadq

T =1 Ga€Qr RER;: |R|<r

:VZZ/ "loa0adq

j=lacA;
=Tr O™

This concludes the proof. 0

5.5. Proof of incommensurate Brillouin zone representation.
PROPOSITION STATEMENT 1. If G; = (—1)j27rAj_Tn forn€Z? and

(5.12) 8q=09n=2r(A;T — AT )n,
then
H (D)6, +61yon(GrrGoe = Hr(@+ 00 gr o éyar G, eR;, GieR;,

as long as q,q +6q €5(X + By) + B, for j=1,2.
Proof. For intralayer coupling of sheet 1, starting from the left-hand side of (5.12)
we obtain
[Hr (@) (Gt 6 (Gat Ga)ar = [~§;)]G’2—é2,aa/(q +Ga + GY)
= [037)c oy (0 + 00+ GB)
=[H,(q+q)]

Gha,Gaa’"

The case of intralayer sheet 2 is identical. We next consider interlayer coupling from
sheet 2 to sheet 1:

[HT‘(Q)](G2+G/2)a7(G1+é1)a’ = [6(172—)]04(1’ (¢+ G2+ Gy + G+ Gy)
= 67 Jow (4 + 80+ G + G1)
= [Hr(q+5q)]G'2a7é1a" D

5.6. Proof of numerical convergence rate.

THEOREM STATEMENT 5. Consider an incommensurate bilayer system as de-
scribed above with long moiré length scale, i.e., using Assumption 2.1. Consider
E e and e < 1. Let 7 > 0 be a hopping truncation. Then there are constants
Yhs Ym, and g corresponding to hopping truncation error, momenta truncation error,
and Gaussian decay rates, respectively, such that

(5.13) De(E) — Dey(B)| Se73/2(e™M7 4 =2~ +e‘7g572)7
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where

D. . (E)=v" /F Tro.(E — H,(q))dg.

5
When mechanical relazation effects are not included, i.e.,
(5.14) ©(h) € O™ (3,7),

then we have 7y, is independent of 0, but v, = O(0~1). Meanwhile if mechanical
relaxation effects are included, i.e.,

(5.15) T () € O™ (76, 7),
then we have v, = O(0) and v, = O(1).
Proof. We begin by quantifying truncation error. We observe that
7P (B) = 7P (6 ) op S e
We define
D{D(E) =Tr ¢ (E — =" (57)).
We note as long as 7 is sufficiently large, we have

|D-(E) = DI(B)| S max ¢ (E')e™ "7 e e
By Proposition 3.1, we have
D... / T (B @)dg -3 3 / (62(F — Hy(0)loa0add:
Fa1x+qk J=1acA,

We note that we can expand the integral above to all momenta in I'} as H,(q) is the
empty matrix for ¢  I'; (¥ + B;,) + B, in which case we consider [¢: (£~ H,(¢)]oa,00 =
0. We thus proceed with the right-hand side. For simplicity of notation, we denote
for matrices B(q)

)= v Z 3 / )oer00dd.

So in particular,

D. . (E)=T(¢.(E — H,)).

Since we expect different energies to contribute differently to error, we construct a
contour C' around the spectrum of the Hamiltonian such that d(C,#"P(h)) € (g, 2e¢).
If the spectrum has gaps, then C' would not be a simple curve in the complex plane
but a union of one per ungapped interval of spectrum. We next divide C' into two
regions,

Cy={z€C:Re(z) eX+ By}, C_eC\C4.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/02/23 to 131.179.71.158 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MOMENTUM SPACE WITH RELAXATION 1373

Here ' = We observe that for z € C_, there is a 7, > 0 such that

2(2+o¢)
|0=(E — 2)| Se™1/2e70e

We observe

Der a__ - r_ld
+(B) QM]ng H,)™ )z

“\
—_
/N

Likewise

DY)
1

=5 P 9T ((= - TP(t(yh7)) " )dz
C

1 r w(T)\\— r r(T)\\—

=5 ( DT =T N+ § aGIT( =k h) 1>dz> .
n _

The second terms in both equations are bounded up to a constant by e=3/2¢=7s¢"

completing the Gaussian tail error term in (5.13). To complete the error bound, it

suffices to show

Observation of the operators shows it is sufficient to prove for arbitrary z € Cy and
momenta ¢ € I'; (without loss of generality) that

—3/2 ,—ymr
Se e~ Im”,

740 9(2) (T((2 — 7P (b)Y — T((2 — H,)~Y)d

op

—1_—vym7r
SeTteImT,

(5.16) ’ [(z = 7P (teh ™) Hoa0a — (2 — Hr () " oa,0a

op

Here a € A;. The principle technique here is a ring decomposition. We will define
an increasing collection of radii rq,...,r, such that ro = 0 and r, = r. We write
H =7"(h()). We have the following decomposition:

Uo =7, (q),

Uj = (@) \ 2, (q), >0,
Jj=Ja v,

Hy=JHJ,.

We assume one final ring denoted oo that corresponds to remaining degrees of freedom,
ie.,

Uso =2\ Q:(q).

We choose n and r; = j/n in such a fashion that H;; =0 if |i — j| > 1 so that the rings
form a “nearest neighbor” type decomposition (see Figure 10), which can be achieved
as sites couple in a distance 7. This can be achieved for n proportional to 67 with
correctly chosen proportionality constant, since distance in momenta is on the inverse

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/02/23 to 131.179.71.158 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1374 DANIEL MASSATT, STEPHEN CARR, AND MITCHELL LUSKIN

120

FiG. 10. The rings correspond to the sets U;. R} URS are displayed.

moiré scale while 7 is on the lattice scale. For simplicity of notation, we assume n is
divisible by 4. We observe

Hoy Hor 0 0
Hyo Hiy Hipo 0
H=| 0 Ha Hx H

O O Hoo,n HOO,OO

We let H;,; correspond to the matrix restricted to the rings 7 through j for ¢ < j.
As a slight abuse of notation we also use

Ji=Jum v, v,

where the choice of definition of J; will be clear from the context. With our ring
decomposition fully constructed, we now employ Schur complement techniques to
prove (5.16). We use the following resolvent notation:

.RR_U':(,’Z—I‘.]-i(_m')_l7 Rj:(Z—Hjj)_l, R:(Z—H)_l
We also denote the natural injection for the full approximation

We recall the general Schur complement formula for matrices A, B,C, D, M = (é 5),
and M/A:=D—CA B is

M-l (Al +A7IB(M/A)TICAT! —AlB(M/A)l)

(5.17) —(M/A)"lCA (M)A)~!

We denote the ring that ¢ lives on as k € {0,---n,00}. First we consider £k <n/2. In
the newly constructed notation, we observe, using an application of Schur complement
for the ring decomposition via the formula for ]\/[1_11 above,

Ji(z = H) "y, — Ji(z = Hoon) Mk

JiRJy — Ji RocsnJk

op

Ji (Rocsn + RoonJ* HI s J% R so J2o HJ Roesn) Ji — Ji Rocsn Ji

op

op
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= ‘ J,jROHHJ*HJOOJ;‘ORJOOJ;HJROHn)Jk

SE_QHJI:ROHanHOP

op

The last inequality is found by noting J*H JJZ%, only can couple ring n on the left
to ring oo on the right, as J.J%, is the projection onto the oo ring over A™ and H is
nearest neighbor in ring coupling. Matching the Schur complement expression (5.17)
to the second line, we have

A= Hoen, B=J"HJw,
C=J"Hlx, D= J4RJx.

We rewrite J} Roond, using the M1_21 entry in (5.17) in an interative fashion as
follows:

J]:ROHan - _JkROanlanl,an
= J;ROHn—QHn—Zn—1Rn—1Hn—1,an

(5.18)
=(-1)"" L Roordr [[ Hj-1R;.
j=k+1
We now observe, recalling the definition of 7 in (3.2),
-1, R; llop
Sl7 () — 7 (m) op | (2 = Hjj) ™ llop

-1
< |7 () — 7P (m)[op - (IIZ — JimP(tqm)Jjllop — [|1H5 — J}‘er(tqmﬂjllop)

B

< .
T 14 a/2

Here

5 7P (B) — 7P (m) [lop _
II1H 55 = T3 7P (Egm) Jjllop

For « sufficiently large relative to 3, we have 8(1 + a/2)~! < 1. Note as 7 — oo,
B — 1, so in practice we don’t need « large. Taking an operator bound in (5.18), we
obtain

n/2
(5.19) 1 oRoom T lop S =t [ —2 el
nieh~ 14+ a/2

for some A\ > 0. Here we used r ~ n. The momenta cutoff term in the error is now
justified for k <n/2. Next we consider k > n/2.

Ji(z—H)" ) — Ji (2 — Hoon) Mk

I jaRoesnsadi

op

JiRoonjadk + JiRocsnyadnjaHnjanjasrdn s (2 — H) " T jagi Hypaga nga
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- JI:ROHH/AIJIC - J,I:ROHn/4Jn/4Hn/4,n/4+lJ /4+1( HO(—)n)_l

Jnjav1Hnjavinady aBRocsn/adk

op
< 5_2||Jl;kR(]<—>77,/4Jn/4Hop~

By the same argument above, this has the same bound up to choice of 7, as in (5.19).

We observe A informs the value of ~,,. The exact relation is not important as
we know they are proportional with the constant of proportionality independent of 6.
The dependence of the convergence rates 7, on 8 follow from the form of the hopping
functions when mechanical relaxation is included or not, and the +,, dependence
follows from the choice of nearest neighbor rings, so includes a 7 dependence. 0

Appendix A. Mechanical relaxation model. We next define the moiré
superlattice [13] with its unit cell:
R = (A7 — ATH 172,
Pav={(Az" = AT 78 Be[0,1)%}
We can map the moiré supercell to configuration space by the mappings v; : 'y — T,
vt (I — AJ-A}J_I):E.
Here P, =2 and P, = 1. We then define
upm,j (@) :=uj(vp; (2))-

Since A; ~ A, locally the lattice configuration looks periodic. As a consequence,
the interlayer coupling energy can be approximated using a generalized stacking fault
energy functional, ® : I'; — R. In particular, the interlayer energy can be shown to
be well modeled by [ 10, 13]:

Z ry® (%) 4+ upm,p, (1) — upm,j(x))da.

This is effective because the interlayer coupling energy is assumed to be perturbative,
e, ||®|l.c <« 1. The intralayer energy can be modeled via elasticity tensors, ¢;,
j €{1,2}. The intralayer energy is then given by

VuM]+VuM] Vi, + Vuly,
z Yl o T Y
I'm

and the total elastic energy functional to be minimized is then

;][ (20m, () + 1r05) ~ ., ()

1Vupm,+Vuy;,  Vum +V“%,j>dx

2 2 1 2
If the two materials are identical, £; =2 and det(A;) = det(Az), so by symmetry
1 1
UM, 1= 2“./\/[7 Um,2 = 2'LLM,

where up =upm,1 — s, 2.
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Let h;; be the coupling tight-binding functionals defined via the distance between
lattice sites. We shall focus on TBG as a case study, so we will use this symmetry in
the numerics.
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