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1. Introduction and main statements

Exotic quantum dynamical effects can be reproduced with classical degrees of freedom [1,2]. In
fact, there are several instances where topological dynamics predicted for electronic systems has
been actually observed for the first time with classical metamaterials (see [3-7] for some examples).
This close relation between quantum dynamics and classical dynamics of metamaterials was and
continue to be beneficial to both condensed matter and materials/metamaterials communities. In
recent years, another classical platform for simulating interesting dynamical features of condensed
matter systems has emerged, namely, that of population dynamics over graphs [8,9]. This platform
is further developed here to a point where every time-evolution of a quantum Hamiltonian over a
Cayley graph of a group can be observed from a classical population dynamics.
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Fig. 1.1. Abstraction of the manufacturing process of a square.

Population dynamics is, of course, very interesting in itself. An example of a discrete dynamics
over a graph is that of population migration between different settlements. Here, the settlements
are mapped into the nodes of a graph that are labeled by their geographical location, and the
migration routs are mapped to the edges of the graph. Each settlement is occupied by a number
of people and population dynamics is reflected in the time evolution of those numbers. There are
other situations where the mapping to a graph is not so obvious, yet the perspective brought in
by such mapping can be extremely valuable. Consider, for example, a product being manufactured
in a factory. There are many different parts at one time inside the production line and each part
evolves into another part under the manufacturing process. In this case, the problem of labeling the
parts is more subtle. Indeed, although the number of distinct parts is finite, labeling them in some
order 1,2, etc., will not add much value to the abstraction of the manufacturing process. It will be
much more illuminating if we use the manufacturing process itself to label the parts. An example is
shown in Fig. 1.1, where one can see all the parts involved in the assembly of a square and how they
are transformed by the elementary manufacturing process. In this simple example, the elementary
operations consist of attaching/removing one edge to/from an existing part (rotations of the pieces
are excluded). These (reversible) elementary processes are represented by the two-headed arrows
in Fig. 1.1. The point of this example is to show that, when the parts are organized via the relations
induced by the manufacturing process itself, then they naturally populate a graph whose edges
represent the elementary manufacturing processes. When approached this way, various analyses of
the manufacturing process can be done geometrically. For example, detecting the optimal assembly
processes and how many of them exist reduces to examining the paths between the obvious points
of the graph. Following this model, any assembly and self-assembly process can be rationalized
using graphs and discrete dynamics over these graphs.

The different parts shown in Fig. 1.1 can be thought of as the square without the left edge,
the square without top and left edges, etc. Thus, all the nodes seen in Fig. 1.1 can be interpreted
as different configurations or states of the same object, the square. This is a useful perspective
because, for example, playing with a Rubik cube, does not involve assembling, but each of the
allowed elementary moves changes the cube’s configuration, set by the colors of its 48 elementary
squares. This example is special because, unlike for the situation described in Fig. 1.1, an elementary
move can be applied to every single configuration of the Rubik cube. In fact, an elementary move
permutes the colors of the 48 squares. These elementary permutations generate a subgroup G of
the full permutation group of 48 squares and any configuration of the Rubik’s cube is uniquely
associate to an element of this G. Every discrete group and set of finite elements generate a Cayley
graph (see Section 2.1). It turns out that playing with the Rubik cube is the same as walking on this
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Cayley graph. Solving the Rubik cube is equivalent to walking on a path on this graph that ends
at the winning configuration of the cube. This example is not singular: If the elementary processes
just permute the configurations of an object, i.e. they are bijections from the set of configurations
to itself, then the information can be always organized in a Cayley graph of a subgroup of the
permutation group. Thus, Cayeley graphs are interesting and occur often in this type of problems.

Dynamics over Cayley graphs can occur naturally or it can be created synthetically for different
purposes. This author is more interested in the synthetic ones for the sake of visualizing various
dynamical effects, such as witnessing topological bulk and edge states [8,9], in settings that can be
implemented with desktop experiments. To fix the main points, let us use the simple group Zy and
introduce first the deterministic population dynamics we have in mind. The Cayley graph of the
group Zy is a closed linear chain with N nodes. Let us assume that the graph was populated with
N, chips at position n, with n sampling Zy. Then we can split each of the N, chips into two stacks
and move one stack at position n — 1 and the other one at position n + 1. The resulting algorithm
is

{Nn}neZN = {N;, = %(anl +Nn+1)}neZN- (1.1)

Using this concrete description, the time evolution of the population of chips can be easily observed
and studied in a desktop experiment.

Passing now to a more abstract setting, the numbers {N;}nez, can be encoded in a vector from
the Hilbert space £2(Zy):

{Nadnezy > 1¥) = ) Nuln). (1.2)

nezZn

The generator of the dynamics we just described can be encoded into a linear operator over same
Hilbert space:

H=3> " (In—1)nl+ n— 1)(n)). (1.3)

nezy

Indeed, one can verify that the algorithm described above translates into

l¥) = 1¥') = HI). (1.4)

Repeating the arguments for a general discrete group G, one can easily see how dynamics over £2(G)
can be generated using similar algorithms.

The type of linear operators resulting from such algorithms appear quite often in condensed
matter physics, where they generate the quantum dynamics of the electrons in crystals. As we
already mentioned, simulating such dynamics using classical degrees of freedom is a very active area
of research and various exotic dynamical features observed or predicted for the electrons have been
reproduced with mechanical, acoustic and photonic crystals. In fact, any entry from the periodic
table of topological insulators and superconductors [10] can be simulated, in principle, with passive
metamaterials [3]. In practice, however, this proved to be extremely difficult because such efforts
often result in metamaterials with quite complex couplings and the progress in this direction is
very slow. For example, an acoustic crystal simulating a topological superconductor from class D
in dimension two has been designed only recently [7]. The readers can see for themselves how
complicated these designs can get, even when a minimal model of the topological quantum system
is used, as in [7]. On the other hand, a topological superconductor from class D in dimension two
has never been observed in a quantum electronic system. This is not a singular situation because
there are many entries in the periodic table of insulators and superconductors that have never
been observed experimentally. For these reasons, it is extremely important to validate parallel
experimental platforms and the pioneering works [8,9] are very exciting because they point us to
an entirely new framework for performing dynamical experiments, which could be as simple as
shuffling objects between the vertices of a Cayley graph. Let us mention that the periodic table of
topological insulators and superconductors classifies the topological phases over the Cayley graph
of Z% but, for the population dynamics experiments, there is no reason for us to restrict to such
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simple groups. Any finitely generated group can be considered instead and, as it was the case of
Z% group [11,12], the topological phases over a generic Cayley graph are classified by K-theory
of the group’s algebra (for the latter, see Section 2.3). Cayley graphs of new groups can support
entirely new topological phases and the author has recently started an investigation of what he
calls Cayley crystals [13]. The reader can find examples of new topological phases supported by the
Cayley graphs of Fuchsian groups in his followup work [14], which, among other things, conveys
the virtually limitless potential of the program for discovering new topological phases.

Despite the apparent analogies, there is a major impediment for reproducing dynamical features
seen in electronic systems with population dynamics. For example, suppose we want to visualize
the eigenvectors of Hamiltonian (1.3) using the algorithm described above. One can immediately
see that is impossible because these eigenvectors have complex coefficients, while the state of
a population always involves real positive coefficients. Furthermore, many interesting electronic
models require complex coefficients while the generators of any population dynamics have real
positive coefficients. This constraint, for example, prohibits us from simulating with population
dynamics the celebrated Haldane model of a Chern insulator and its topological edge states [15].

The present work supplies a simple practical solution to the difficulty we just mentioned. In
mathematical terms, this difficulty comes from the fact that the generators of the population
dynamics over a Cayley graph of a group G are all drawn from the semi-ring R, G, while the
Hamiltonian for electrons’ dynamics come in general from the complex group algebra CG. Our
solution consists of a Z4-decoration of the graph, that is, passing to the Cayley graph of Z4 x G and
using a natural surjective semi-ring homomorphism 7 : R, (Z4 x G) — CG. Then, any time evolution
from CG can be faithfully simulated inside the quotient R, (Z4 x G)/Ker n. At the practical level, this
amounts to porting the complex models into models of population dynamics over the Cayley graph
of Z4 x G and then “reading” this dynamics in a precisely specified way in order to drop to the
quotient space R (Z4 x G)/Ker 1.

In order to keep the presentation as simple as possible, we exemplify the procedure using the
simple group G = Zy, which is use here to show how various dynamical effects can achieved and
observed with population dynamics. More elaborate models, such as those simulating topological
insulators, will be provided in a subsequent work. By expanding the framework from semi-rings to
complex algebras, the current work will unlock general techniques coming from operator algebras,
e.g. operator K-theory and index theory, to the study of population dynamics.

2. Population dynamics over Cayley graphs
2.1. Cayley graphs and diagraphs

Cayley graphs encode the data of a group in a geometric fashion [16]. For example, word prob-
lems and other theoretical problems in group theory can be solved by inspecting these geometric
objects. On the applied side, Cayley graphs can be used to generate systematic generalizations of
the crystal lattices investigated in materials science. Hence they can be an abundant source of new
dynamical effects, which is our main motivation for studying them.

Definition 2.1. Given a discrete group G and a finite subset S of G, the Cayley graph ¢(G, S) is the
un-directed graph with vertex set G and edge set containing an edge between g and sg whenever
geGandseS.

In this definition, S can any finite subset of G and one should be aware that the geometry of the
Cayley graph depends quite strongly on the choice of S. As we shall see in the explicit examples,
the choice of this set S is dictated by the particular models that are investigated. Many groups,
however, have standard presentations in terms of generators and relations and, in such cases, there
are the particular Cayley graphs that are constructed from the finite set of generators. We call them
the standard Cayley graphs of the groups and denote them simply by ¢(G). Below, we supply two
examples showcasing the beauty of the Cayley graphs:
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Fig. 2.1. (a) A section of C(F?(a, b), {a, b}) containing all elements of length up to 3, where A =a"! and B = b™'. (b)
Section of C(m1(X,)). In both panels, the color scheme is used to organize the graph by the length of the words.

Example 2.2. The Cayley graph of the free abelian group with n generators, Z", is the regular graph
in the Euclidean space of dimension n. ¢

Example 2.3. The non-abelian free group F" with n-generators contains all the words made up
from an alphabet of 2n letters, the generators and their inverses. Multiplication of two words results
in the concatenation of the words. For a generic F" group, the Cayley graph corresponding to the
asymmetric set of generators, i.e. the standard Cayley graph, is a regular tree with coordination n.
Such trees are referred to in the physics literature as Bethe lattices. The standard Cayley graph of
F? is shown in Fig. 2.1(a). ¢

Example 2.4. The standard Cayley graph of the surface group 71(X>) is shown in Fig. 2.1(b), where
X, is the two-hole torus. In this case, the graph displays closed cycles, which are a reflection of the
non-trivial set of relations that defines this group. ¢

A more refined geometric object is the Cayley diagraph:

Definition 2.5. Given a discrete group G and a subset S of G, let ¢ : S — Color assign a distinct
color to each s € S. Then the Cayley digraph é(G, S, c) is the colored graph with vertex set G and
directed edges from g to sg for g € G and s € S. All directed edges produced by s € S are assigned
the color c(s).

Example 2.6. The standard Cayley diagraph of F? is shown in Fig. 2.2. ¢

2.2. Algorithms for population dynamics

Let ¢(G) be the standard Cayley graph of a discrete group G. We populate the nodes of this
graph with identical objects, which we will call chips from now on, and denote by N, the number
of chips stacked at node g. We are seeking algorithms that take {N,},cc as input and return
new values {N,},cc, in @ manner that respects the symmetry of the graph, in the sense that, if
{Nglgec > {Nglgec, then {Ngglgec > {Nég,}gec if the algorithm is applied to {Ngg}gec. In other
words, the algorithm is invariant to the translations of the Cayley graph. Additionally, we require
that the number of chips be preserved. Then, a repeated application of the algorithm will generate
a discrete dynamics for the population of chips.

For this, let S = {g1, ..., g} be a finite sub-set of the group G and consider the following protocol.
The stack of Ng chips sitting at site g is divided in s smaller stacks containing Né := pjNg chips,
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Fig. 2.2. The Cayley diagraph of F?(a, b), where A=a"! and B=b"".

j=1,...,s, where p; € [0, 1] are fixed predefined weights that add to one: p; + --- +ps = 1.
After this operation is completed for each g € G, the stack of Nfg chips is moved at the site gjg,
and this step is repeated for g’s and j's. For finite groups, the processes we just described can be
carried manually or it can be automated. Let us point out that sometimes the dynamics generated
in this way can be understood more effectively if we pass from the standard Cayley graph of G to
the Cayely graph generated by the set S. This will certainly be the case for all our applications.

At a more formal level, if the population is encoded in the vector

¥) =Y Nelg) € £2(G), (2.1)
g

then the dynamics we just described is given by |¥) — D|¥), where

D=Y"Y plgegl. (22)

j=1 geG

Thus the operator D generates the dynamics and, as such, it will be called the dynamical matrix.
We point out that D is a self-adjoint operator if and only if the set S is invariant under taking the
inverse of its elements and if p; = p; whenever g; is the inverse of g;.

Remark 2.7. As stated in the introduction, in our applications, the generators of the population
dynamics are derived from quantum models and it is not always the case that such population
dynamics preserves the number of members. However, a re-scaling of the time unit results in a
multiplication of the quantum Hamiltonian by a positive factor «. This factor passes to the generator
of the population dynamics and it can be adjusted such that a(p; + - - - 4+ ps) = 1. In other words,
our assumption that the population dynamics preserves the number of members does not impose
any limitations on what type of quantum systems we can simulate. ¢
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Using this formal description of the dynamics, it is easy to see that the proposed algorithms
respect the two constraints we stated above. Indeed, the right action of the group G on itself induces
the right regular representation mz of G on £2(G):

Ulg) = lg'e™"), g.8 €G. (2.3)

These operations are often called the translations of Cayley graph. Then one can easily check that
the dynamics is invariant relative to this group action:

7r(g)D = Drg(g), Vg eG. (24)

Indeed, on the basis |g’) of £2(G), we have
g)Dlg’) Zp] I(gg")e ng, g'g™") = Dm(g)lg)). (2.5)

Thus, our protocols respect the symmetry of the Cayley graphs, a feature that is automatically
present due to the associativity of the group multiplication rule.

Furthermore, due to our constraint on the weights {p;}, the uniform state v, is a right and a left
eigenvector of the dynamical matrix, which is not assumed self-adjoint:

[Yo) := Zlg Dlyo) = [¥o), D'|o) = |¥o). (2.6)
geG

In fact, it is important to note that if v is a left eigenvector of D then it is automatically also a
right eigenvector (i.e. a left eigenvector for D). Now, note that if |) is any state of the population
of chips, then

(Yolr) = ) Ng, (2.7)
geG

which supplies a convenient way to compute the total number of chips carried by the state 1. Now,
computing the number of chips for the time evolved state D|y), we get

(YoIDI) = (DTl ¥r) = (Yol ¥), (2.8)

hence the number of chips is conserved by the dynamics. An important conclusion is that v
being an eigenvector of D with eigenvalue 1 is a simple necessary and sufficient condition for the
conservation of chips during the dynamics.

Remark 2.8. In general, N; defined above are not natural numbers and in practice we will have
to take the integer part of those values. This will result in the loss of a small number of chips at
every step of the discrete dynamics. This issue will be carefully monitored during our numerical
experiments. ¢

2.3. Group algebra: The natural environment for dynamics

Given a discrete group G, its group algebra CG consists of formal series
q=) a8 o €eC, (2.9)
geG

where all but a finite number of terms are zero. Addition and multiplication of such formal series
work in the obvious way using the group and algebraic structures of G and C, respectively. In
addition, there exists a natural x-operation

=Y ag ', (@V=q (e =aq", a€cC, (2.10)
geG
where the bar indicates complex conjugation. Hence, CG is naturally a *-algebra.
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We denote by e the neutral element of G. Then the map
T:CG—C, 7(q) = o, (2.11)
defines a positive trace on CG and a pre-Hilbert structure on CG via

(a.q9) :=7(q"q), q,q €CG. (2.12)

The completion of the linear space CG under this pre-Hilbert structure supplies the Hilbert space
£2(G). Indeed, one can verify that

(8.8)=6:g., 88 €G. (2.13)

The action of CG on itself can be extended to the action of a bounded operator on £(G), and this
supplies the left regular representation inside ]B%((ZZ(G)), denoted by 7; in the following. Specifically,

m(q)lg') = ) ogleg)), qeCG g €. (2.14)
g

Now, if p = Z;:] p; g, then m;(p) is exactly the generator (2.2) of the dynamics defined by our
protocols. Also, note that m;(p*) = 7;(p)" and that

s * s
O _ng) =D ng (2.15)
j=1 j=1

from where we can quickly see when a dynamical matrix is self-adjoint or not. The main point
here is that any dynamical matrix can be canonically generated from CG and the dynamics can be
studied entirely inside CG.

Remark 2.9. Another reason we brought up the group algebras is because any group homomor-
phism G — H induces a natural homomorphism between their corresponding group algebras.
Thus, a group homomorphism creates a bridge between dynamical models generated on different
Cayley graphs. Furthermore, any homomorphism between group algebras generates a natural
transformation between their left regular representations. This is relevant for us because we will
often jump from one group algebra to another and we do not need to explicitly specify the
transformations between the respective Hilbert spaces. ¢

3. Quantum dynamics versus population dynamics
3.1. Main issues

We will work with the finite abelian group Zy = Z/(N Z) and its Cayley graph. If S is the
generator of Zy, then the self-adjoint operator

H=23(S+5)=1> (In+1)(n|+ n)n+1|) (3.1)

nezy

can generate a quantum dynamics for, say, an electron hopping on a molecular chain, or a population
dynamics via the algorithms described in the previous section. At the level of states, however, even
for this simple case, there are major differences between the quantum and population dynamics.
Indeed, the quantum states can have complex coefficients, while the states encoding a population
must have real positive coefficients. Note that the eigenvalue problem Hyy = € is solved by the
pairs

127kn
{wk =N Z e N |n), = COS(%’()}keZ , (32)
‘N

nezZy

and, as we can see, all eigenvectors involve complex or negative coefficients, except for the uniform
state 1. The sad conclusion is that these eigenstates and their characteristics cannot be observed
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or demonstrated with the standard population evolution. Furthermore, for example, the following
self-adjoint operator

H=1(S+S*+15—1S). (3.3)

can generate a quantum dynamics, but by no means it can generate a population dynamics. Indeed,
the coefficients entering the dynamical matrices must all be real and positive. Lastly, if H is quantum
Hamiltonian with real or complex coefficients, at first sight, there seems to impossible to simulate
its quantum dynamics e |v+) with population dynamics.

3.2. The proposed solution

Mathematically, the difference between the quantum and population dynamics over a Cayley
graph ¢(G), is that the former is associated to the group algebra CG and its left regular represen-
tation, while the latter is associated with the semi-ring R, G and its left-regular representation.
Indeed, in the latter case, both the states and the Hamiltonians are constraint to take positive real
values.

However, let us point out a close relation between the field of complex numbers C and the
semi-ring R, Z,4, which is the backbone of our solution. For this, let & be the generator of Z4, hence
Z4 = {1,£,£%, &%} and an element of R, Z4 accepts a unique presentation as

3
> BE. BeR,. (34)
j=0

On the other hand, the field C of complex numbers is also a ring, hence also a semi-ring. Then,
viewing C as a semi-ring, we note the surjective semi-ring morphism y : R.Z4 — C defined by

x(M =1, x&) =1 xE)=-1, x(&¥)=-1 (3.5)
It has a non-trivial kernel given by the ideal

ker x = (14 £2)- Ry Zys. (3.6)
All this information can be summarized as the following exact sequence:

00— (14+£&2)-RyZs > Ry Zy — C =Ry Zg/(1+E2) Ry Zy — 0. (3.7)

The conclusion is that the field C can be generated as the quotient semi-ring
C=RyZs/(14£%) RyZ4 (3.8)

and the quotient map, of course, coincides with the map x defined above. Furthermore, the exact
sequence (3.7) is not split at the level of semi-rings, but a particularly relevant section (i.e. a right
inverse for x, x os = id) exists at the level of linear spaces:

Csz=a+1br> s(z) = |a| £ 78" 4 |p| g2758D) c R, 7,. (3.9)

In fact, both C and R;Z4 have a structure of R;-modules and s is a homomorphism of such
semi-modules:

s(rz) =rs(z), VreR,. (3.10)

Now, in order to use this simple observation to the problem of quantum and population
dynamics over C(G), we pass to the ordinary group product Z4 x G and consider population dynamics
over its Cayley graphs. In this case, the generators of the dynamics come from the group semi-ring

R+(Z4 X G) =~ (R+Z4)G. (311)
An element of this semi-ring is a formal finite sum
G=) 8 @R, Zy (3.12)
geG



E. Prodan

Annals of Physics 457 (2023) 169430

(a) site g site g (b) site g site g°
a
site g site g’ site g site g° 2 éz
—0 @ 0 ‘ a b E
. I3 . r b
(a+ib)|g"Mgl (a+ib)|g'Mgl 5 1
a>0, b>0 a>0, b<0
(0 site g site g’ (d)
3
dite g site g 22 site g site g'
o——0 mm) : e—0
(a+ib)|g'Ngl b 1 (a+ib)lg'Mgl
a<0, b>0 a<0, b<0

Fig. 3.1. If the quantum Hamiltonian contains a hopping term (a +1b)|g’)(g|, coming from the left regular representation
of (a+1b)g’g~", the map s transforms this term into the collections of hopping terms on the decorated graph shown in
the four panels, depending on the signatures of parameters a and b.

Note that the commutative semi-ring R, Z, is canonically embedded in (R Z4)G via

Obviously (@ e)q = q(ae), hence (R, Z4)G has a structure of semi-algebra over the commutative

ring R, Z,.
The essential observation is that (1 4 £2) - (R4Z4)G is an ideal of the above semi-ring and that
(R4 Z4)G/(1+ &%) (R4 Z4)G =~ CG. (3.14)

The quotient map from (R, Z4)G to CG is implemented by a straightforward extension of the map
x (denote by the same symbol x):

(RiZ4)G> Y @z g x(dg)g € CG.
geG geG

(3.15)

It is important to keep in mind that this map, denoted by the same symbol y, is a semi-
ring homomorphism. Thus, it respects the addition and multiplication operations and, as such, it
commutes with the functional calculus, in the sense that

x(¢(@) = ¢(x(@) (3.16)
for any polynomial ¢. Lastly, the section defined in Eq. (3.9) extends to a right inverse for y,
CG> ) agg > Y slag)g € (RyZa)G. (3.17)

geG geG

This extension will be denoted by the same symbol s and note that s is a homomorphism between
R;-modules.

The map x and its right inverse s are our essential tools that will enable us to port models
from CG into models from R, (Z4 x G) and, as such, to simulate a quantum dynamics on ¢(G) with
a population dynamics over ¢(Z4 x G). Explicitly, the map s transforms a complex hopping term
between two sites of the original graph into the collections of hoppings specified in Fig. 3.1. Specific
experiments enabled by our solution will are discussed next.

3.3. Applications

One interesting experiment is visualization of stationary quantum states. Specifically, if H is a
quantum Hamiltonian and v is an eigenvector Hy. = €., we can generate a dynamical matrix
and an initial state for a population dynamics on G(Z4 x G) as

D=s(H), [¥e) = ls(e)), (3.18)
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where for fb we used Remark 2.9. We can then use our algorithm to time-evolve the population

[e(0)) := DY), teN. (3.19)
Projecting back on CG and its left regular representation, we will find that
X (Fet0) J= 2 (B 1)) = x (B) () = x (B) ) = H\ Iy, (3:20)

hence, apart from a scaling factor, this projected state is stationary under the discrete time
evolution. As one can see, the property of the map x of respecting the addition and multiplication
is essential for our arguments.

To be effective, we must supply an experimental protocol for applying the quotient map (3.15).
For this, an experimenter examines a coefficient &, = ZJ o o€, which is encoded in the four

stacks ai, of chips. Now,

x(@g) = ag — g + 1oy — ap), (3.21)

thus, the experimenter simply needs to compare the stacks ag and ag3 of chips, remove a number
of chips from a stack such that the two stacks remain with equal number of chips, and place those
chips in a stack called ozg above the zero level if oe > cxg and below the zero level otherwise.

Similarly from the stacks a and a , the experlmenter creates the stack o,. For a state

3
V)= dlg) =) Y ol&g) € (s x G), (3.22)

geG j=0 geG

by repeating the procedure for all &;'s, the experimenter creates the stacks {cx o } encoding the
real and imaginary parts of |x(¥)). ThlS gives a simple protocol for visualizing quantum states with
a population of chips.

Another class of quantum experiments that can be simulated with a population of chips is
visualizing the time evolution of a quantum state

ly(t) =e™ly), teRy. (3.23)
For this, we use the standard approximation of the exponential function
e = lim (1+ %H)" (3.24)
m—0o0

and generate a dynamical matrix and an initial population of chips

D=ys(1+LH), [¥(0) = |s(¥)), (3.25)

where y is a positive factor that ensures that the number of chips are conserved. We then perform
the discrete time evolution

li(k) =Dlgr(k—1)), k=1,....m, (3.26)

on the Cayley graph of Z4 x G and finally project back on CG and its left regular representation, to
find:

y " I (m)) )=y x (D) 1x(¥) = (1+ LH)"|y) ~ e™|y). (3.27)

Concrete experiments along these lines are presented in the next section.
4. Examples
4.1. Experiment 1

In this experiment, we will demonstrate and visualize a stationary quantum state. For this, we
consider the quantum Hamiltonian H = %(S + S§*) introduced in Section 3, which now is viewed as

11
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a)

Fig. 4.1. Cayley diagraph corresponding to: (a) (Z4 ® Zy), {S}), and (b) (Z4 ® Zy), {S, &S}), for N = 8. Here, the red arrows
correspond to the action of S, the generator of Zy, and the green arrows to the element &£S.

an element of R, (Z4 x Zy). To convey this fact, we will work with D= (9) , even though D has
the same expression as H. Fig. 4.1 shows the Cayley diagraph corresponding to the group Z4 x Zy
and element S € Zy. We call this the Z4-decorated Cayley graph. For the Hamiltonian (3.1), the
decorated dynamics remains very simple because this Hamiltonian has real positive coefficients.
Now, we choose a state ¥ as in Eq. (3.2) and ported it on £%(Z4 x Zy) using the section s from
Eq. (3.17):

Uk =s() =N Z [ |COS(2:’r\Iﬁ)||$17sgn(cos(zf;vkn)), )
nezy (41)

+ [sin( 2k [& 158 nCRED )]

The population corresponding to this state is reported in the top row of Fig. 4.2(a), together with
the visualization of x () (second row) and a comparison between x () and ¥ (third row), for
k = 1. The data seen in this figure confirms that the maps xy and s work as expected. Same
information is reported in Fig. 4.3(a) for the stationary state generated with k = 3. Panels (b) and
(c) in Fig. 4.2 report the states [y(t)) = D'|y) for t =5 and t = 10, respectively, visualizations of
[y (t)) = |x (¥(t)) ). together with checks of their expected relations |y(t)) = €|yt — 1)). Same
information is reported in Fig. 4.3(b,c) for the case k = 3 and times t = 2 and t = 4, respectively.

These experiments reveal several interesting observations. First, the time-evolved population
dynamics on the Z4-decorated graph produces somewhat complicated states, yet the projection
onto the original graph, using the protocol described in the previous section, produces clear
stationary states. As we already explained in Remark 2.8, there is a loss of chips during the dynamics,
but this obviously does not affect the demonstrations we actually want to show.

4.2. Experiment 2

Here we consider the following Hamiltonian on £2(Zy):
H=3(S+S"+15—15). (4.2)
It has the same eigenvectors 1y, but with corresponding eigenvalues
€ = %[cos(%") + sin(%")]. (4.3)
12
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Fig. 4.2. Top row: Z,-decorated time evolution 1// = 5(H)‘fh(0) for an initial population of chips prepared as
¥(0) = s(), with ¥, as in Eq. (3.2) and k = 1. Mlddle row: The readout x(y(t)), performed as described in the
text, which should coincide with ¥(t), up to a multiplicative factor (see text). Bottom rows: The absolute values of the
ratios of the coefficients of x(1(0)) and v (panel a) and of the absolute values of the ratios of the coefficients of x(y(t))
and x(y(t — 1)) (panels b and c), as compared to ¢, from Eq. (3.2) and indicated by the red line. The analysis was
generated with N = 20.
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Fig. 4.3. Same as Fig. 4.2, but for k = 3.
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Fig. 4.4. Same as Fig. 4.2, but for Hamiltonian (4.2).

Note that these eigenvalues can be positive and negative as well. Having complex coefficients, the
dynamics of this Hamiltonian cannot be directly associated with a population dynamics. We show,
however, that its dynamics can be studied and observed with population dynamics experiments, if
we use our strategy and port H on ¢%(Z4 x Zy) as:

H D= 3(S+S"+£S+&%). (4.4)

The dynamics of generated by D can be understood from the Cayley diagraph corresponding to
the elements involved in D, namely, S and £S. This Cayley diagraph is shown in Fig. 4.1(b). Note
that £35* = (£5)77, so this element is already covered be the shown Cayley diagraph.

To demonstrate and visualize the stationary states of H, we map iy on the Cayley graph of
Z4 x Zy and act with the dynamical matrix D, as it was done in the previous case. This dynamics is
reported in the top row of Fig. 4.4 for the state generated with k = 1. The projections of y(t) back
on the left regular representation of CG are shown in the middle row of Fig. 4.4 and they reveal
again the stationary character of the quantum state .

4.3. Experiment 3

In this experiment, we reproduce the quantum dynamics |y(t)) = e |y(0)), with H as in
Eq. (3.1) and an initial state localized entirely at one site, (n|y(0)) = &, n/2. For this, we follow
literally the procedure detailed in Section 3.3 and we calculate the dynamical matrix D introduced
in Eq. (3.25), which takes the specific form

D=y(1+ L(ES+ESY), y=1/(1+2t/m). (4.5)

Note that this dynamical matrix is not self-adjoint but it conserves the number of chips. The initial
vector on the decorated Cayley graph is simply

(j, nlyr(0)) = i10nN2, J= 1,4, neZy. (4.6)

To implement the population dynamics, however, we will place a large number of chips at the
location (1, N/2) to ensure that the shuffling does not stop due to lack of chips. This is not an

14
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Fig. 4.5. Quantum evolution simulated with population dynamics over the decorated Cayley graph €(Z4 x Zy). The top
rows show the populations of chips corresponding to the states |y(t)) = D™|v(0)), with D as in Eq. (4.5) and [¥(0)) as
in Eq. (4.6). The second and third rows show the real and imaginary parts of the projected state |x(v/(t))). The numerical
experiments were carried out with N = 20, m = 100 and the initial number of chips was 20,000.

issue because, afterwards, the time-evolved states are properly normalized, hence taking out the
arbitrariness introduced by this little detail. ~ ~

The top row of Fig. 4.5 shows the time evolution [v(t)) of the initial state |y(0)) under the
dynamical matrix D from Eq. (4.5). The second and third rows of the same figure show the real
and imaginary parts of the projections | X(W(t)) ) for different times. The normalizations of these
population states coincide with the exact time-evolved quantum states |y(t)), up to less than 1%
differences.
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