

1 **Validation of an Augmented Parcel Approach for Hurricane Regional Loss Assessments**

2 Tracy Kijewski-Correa¹, Barbaros Cetiner², Kuanshi Zhong³, Chaofeng Wang⁴, Adam
3 Zsarnoczay⁵, Yunhui Guo⁶, Meredith Lochhead⁷, Frank McKenna⁸

4 ¹Corresponding Author, Department of Civil & Environmental Engineering and Geological
5 Sciences and Keough School of Global Affairs, University of Notre Dame, 236 Hesburgh Center
6 for International Studies, Notre Dame, IN 46556, USA, tkijewsk@nd.edu

7 ²Civil and Environmental Engineering, University of California, Los Angeles, 420 Westwood
8 Plaza, 3771 Boelter Hall, Los Angeles, CA 90095, bacetiner@ucla.edu

9 ³Department of Civil and Environmental Engineering, Stanford University, Panama Mall,
10 Building 02-540, Stanford, CA 94305, kuanshi@stanford.edu

11 ⁴M.E. Rinker, Sr. School of Construction Management, University of Florida, 573 Newell Dr.,
12 Gainesville, FL 32603, chaofeng.wang@ufl.edu

13 ⁵Department of Civil and Environmental Engineering, Stanford University, 439 Panama Mall,
14 Building 02-540, Stanford, CA 94305, adamzs@stanford.edu

15 ⁶Electrical Engineering and Computer Sciences, University of California at Berkeley, 387 Soda
16 Hall, Berkeley, CA 94720, yunhui@berkeley.edu

17 ⁷Department of Civil & Environmental Engineering and Geological Sciences, University of
18 Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA, mlochhea@nd.edu

19 ⁸Department of Civil Engineering, University of California at Berkeley, Berkeley, CA 94720,
20 fmckenna@berkeley.edu

21 **Abstract**

22 While simulation environments for the study of community resilience are rapidly advancing,
23 they remain constrained by the completeness of inventory data. This paper presents an
24 augmented-parcel approach leveraging various sources of open data, machine learning modules
25 and time-evolving rulesets to support Hazus-compatible risk assessments on a wide class of
26 buildings under hurricane wind and flood hazards. These techniques are implemented within the
27 open-source regional hurricane loss assessment workflow of the NHERI SimCenter. Illustrative
28 examples demonstrate building inventory generation in both data-rich and data-scarce

29 environments. The study's validations of computer vision-based modules underscore the
30 importance of training on "in the wild" images labeled with explicit knowledge of the region and
31 representative of architectural nuances such as carports. Validations further reveal the challenges
32 of simplifying complex contemporary roof geometries to the simplified shapes adopted in Hazus
33 and the criticality of accurate year built data, given the augmented parcel approach's reliance on
34 time-evolving code-based rulesets. Published field observations collected in Lake Charles, LA
35 following the landfall of Hurricane Laura demonstrate that the use of an augmented-parcel
36 inventory within the SimCenter's workflow for Hazus-compatible loss assessments yields
37 damage states consistent with ground-truth observations for minor to moderate damage states.
38 Simulations of extreme damage states (characterized by fewer ground-truth observations) bias
39 toward minor damage for undamaged structures and plateau at moderate damage even for
40 severely damaged and collapsed buildings. This trend persists when considering uncertainty in
41 hazard intensity, as well as the low rates of shutter compliance. Root causes of inconsistencies
42 revealed in this validation exercise will require further processing of street-level panoramic
43 images to generate more samples of severely damaged and collapsed buildings as well as post-
44 2007 construction.

45 **1.0 Introduction**

46 Communities are routinely faced with the challenge of describing their inventories of buildings
47 and other infrastructure assets. Ultimately the way in which inventories are described, and the
48 fidelity and frequency with which those descriptions are updated, depends entirely on the end use
49 of that data, creating challenges when that data is then leveraged for engineering analyses
50 (Zsarnóczay et al. 2022). Some of the earliest forms of inventorying were driven by the need to

51 assess value for the purposes of taxation, e.g., (Department of the Treasury 2018); it was only
52 fitting that these same inventories were mobilized by the need to assess losses for the purposes of
53 catastrophe. Soon the assessment of losses under different disaster scenarios, as either part of
54 planning and preparedness or during response and recovery, e.g., (New Jersey Office of
55 Emergency Management 2014), became a routine exercise in hazard-exposed communities,
56 creating a new valuable end use for inventory data, e.g., (New Jersey Department of
57 Environmental Protection 2019).

58 The generation of such inventories can be conceptualized as a classification exercise,
59 where the degree of nuance required in the data model, and thus the number of fields, is dictated
60 by the fidelity of the loss estimation approach adopted. While the Hazus general building stock
61 has been engaged by scholars, practitioners and policymakers, it has inherent limitations with
62 respect to the granularity and accuracy it affords (Shultz 2017). Developing a context-specific
63 inventory capable of overcoming these limitations requires parsing data, often from a number of
64 sources, to construct the inventory. Unfortunately, the completeness and reliability of the data
65 exposed by local authorities varies widely, especially where governments have limited capacity
66 to generate, maintain and expose even the most basic inventory data, challenging the notion of
67 standardizing inventory generation using data sources that are relevant, consistent, and useful
68 (Jaiswal and Wald 2008). Still, the efforts to create a global earthquake model have made
69 important strides in cataloging the distribution of buildings in such environments based on
70 material, lateral force resisting system, and occupancy type (Jaiswal et al. 2010), and the use of
71 Bayesian updating based on open-source data has continued to evolve the capacity to classify
72 occupancies (Stewart et al. 2016). For hurricanes, efforts like the Florida Public Loss Model

73 have made important strides to both highlight the challenges of integrating diverse sources of
74 data for catastrophe models and offer multi-faceted strategies to address the associated
75 uncertainties (Pinelli et al. 2020). Other states like New Jersey have made similar strides in
76 assembling critical data needed to assess risks due to hurricanes, with efforts centered on
77 federating a large number of hazard and inventory data sources into singular geospatial
78 environments (Kijewski-Correa et al. 2020). The Center for Risk-Based Community Resilience
79 Planning has also worked on develop building inventories for testbeds exposed to different
80 hazards, which include applications to tornadoes (Joplin, MO), hurricanes/coastal flooding
81 (Lumberton, NC and Galveston, TX), and tsunamis (Seaside, OR), accessible through their IN-
82 CORE platform (Center for Risk-Based Community Resilience Planning 2022), using a variety
83 of methodologies developed by the Center (Rosenheim et al. 2021). Their efforts have
84 highlighted the need for more precise building descriptions and potentially the purchase of
85 inventories from third-party providers or the creation of inventories using tax appraiser data,
86 which inevitably requires additional enrichment with structural data in order to be used for
87 hazard risk assessment (Roohi et al. 2021). Tax appraiser data also inevitably has gaps in its
88 reported fields, which may be addressed by manually interrogating Google Street View and
89 satellite imagery or conducting a rapid visual screening in the field (Park et al. 2017), and further
90 automated using deep learning approaches (Aravena Pelizari et al. 2021). Access to other data
91 sources and models can further enrich the economic and demographic information associated
92 with each parcel (Waddell 2002).

93 The issues surrounding the completeness and accuracy of available inventory data are
94 only compounded by the fact that high-performance computing has now enabled the theoretical

95 frontiers of loss estimation to move away from their origins as an aggregated measure of impacts
96 to portfolios of buildings described by fragilities and toward the description of specific assets by
97 physics-based models (Deierlein and Adam Zsarnóczay 2021). The exciting potential for
98 increasing granularity and fidelity of loss estimation that can bring assessments down to the scale
99 at which individual mitigation decisions are made will unfortunately outpace the existing
100 inventory-generation mechanisms in municipalities, requiring new venues to characterize the
101 growing list of required geometries, dimensions and components across thousands of buildings.

102 Fortunately, technological advancements are poised to address these challenges both by
103 aiding municipalities in more efficiently generating and exposing valuable digital information
104 and also maximizing the discovery potential from existing data sources. For example, fusions of
105 blockchain technology (BCT) and building information modeling (BIM) are now streamlining
106 post-disaster permitting (Nawari and Ravindran 2019) and thereby digitizing data critical to loss
107 modeling. Meanwhile, innovations in computer vision and machine learning have helped to
108 automate the digitization of inventories from aerial and surface imagery at various scales, from
109 coarse spatial and fine temporal scales necessary to characterize the evolution of cities in data-
110 scarce settings (Jaiswal et al. 2010) to finer spatial scales necessary to resolve features like soft-
111 stories (Yu et al. 2019). As the lack of high-quality, parcel-level descriptions of building
112 inventories could potentially stymie the rapid advances in computational simulation capabilities
113 for high-fidelity loss assessment, continuing to advance the ability to automate the mining,
114 enrichment and augmentation of existing data sources is vital to inventory development.

115 In response this paper offers the following contributions: (1) the introduction of an
116 *augmented-parcel approach*, defined as a set of operations that enrich the information normally

117 exposed for parcels within municipal databases. Augmented-parcel approach leverages existing
118 open data, machine-enabled techniques, and heuristic rulesets grounded in local codes/standards
119 and normative construction practices to automatically generate a suite of hazard and structural
120 attributes necessary to conduct loss assessments and in a manner that is replicable and tractable
121 over large-scale inventories. Illustrative examples in Atlantic County, NJ and Lake Charles, LA
122 (2) demonstrate the real-world application of the augmented-parcel approach to generate large-
123 scale inventories for Hazus-compatible loss assessment, overcoming data deficits in settings
124 with limited data availability. Finally, (3) validations throughout the paper demonstrate the
125 performance of various parcel augmentation strategies using ground truth data and offer a
126 validation of Hazus-compatible loss assessments using field observations gathered in Lake
127 Charles, LA following Hurricane Laura. While the emphasis of this paper is regional hurricane
128 loss estimation within a Hazus-compatible framework, given the opportunity to validate
129 computer vision estimates of geometric features required for wind loss estimation, the
130 methodologies and overall workflow are generalizable to other hazards and loss estimation
131 approaches, as demonstrated by complementary efforts directed toward detecting features such
132 as soft stories (Yu et al. 2020) and enabling component-based loss estimation in accordance with
133 FEMA P-58 (Zsarnóczay and Deierlein 2020).

134 **2.0 Overview of Augmented Parcel Approach**

135 The transition from census-block-level loss projections to parcel-level projections of damage to
136 individual buildings under hazard events demands a wider range of inventory data, though the
137 specific building and hazard attributes required depend upon the hazards included in the analysis
138 as well as the adopted loss modeling approach. The adoption of the Hazus loss modeling

139 framework in this study demonstrates specifically how machine learning and computer vision
140 techniques can be coupled with time-evolving heuristic rulesets grounded in local
141 codes/standards and normative practice to generate the building information necessary to widen
142 access to asset-level implementations of this de-facto loss modeling approach, regardless of a
143 community's level of data readiness. Following the overall computational workflow in Wang et
144 al. (2021a), this section describes the process of assigning attributes to a large-scale inventory of
145 building footprints defined over a specific geographic region. The flow chart in Figure 1
146 illustrates the various phases of the augmented parcel approach described herein. Illustrative
147 examples in the subsequent section will then introduce a pair of real-world inventories generated
148 using this methodology.

149 **2.1 Phase I: Attribute Definition**

150 A generalized data model is first developed to organize the universe of attributes necessary to
151 describe each of the building footprints. Attributes include all building, hazard and site features
152 necessary to select the appropriate fragility curve in the Hazus wind and flood loss models, as
153 well as any secondary variables that may be necessary to assign that attribute based on the data
154 commonly reported in municipal building inventories used in tax assessment and permitting;
155 these are organized under the building classes defined by Hazus. See the Supplemental Materials
156 for a complete listing of the residential, commercial, industrial, agricultural, religious,
157 government, education and essential facilities building classes defined for hurricane wind (Table
158 A.1a), inundation (Table A.1b) and wave-induced (Table A.1c) hazards. The structural and
159 hazard attributes required to assign fragility functions in Hazus wind and flood loss models for
160 each supporting building class were subsequently inventoried and potential data sources and

161 augmentation strategies were mapped to each attribute. While hazard attributes are often
162 available from third party data (3PD), a review of inventories compiled in the data-rich NJcoast
163 project (Kijewski-Correa et al. 2020) highlighted a number of structural attributes that were
164 unlikely to be available in municipal data (MD); evaluation of data scarce communities in
165 Louisiana suggested that even some basic property data may additionally need to be addressed
166 through an augmentation strategy. Strategies to address these gaps were identified, including
167 machine-enabled (ME) techniques and rule-defined (RD) assignments based on legacy building
168 codes, local construction practices/norms, and human subjects data. By working backwards to
169 map the finest level of data required to complete a Hazus loss assessment on a specific building
170 footprint, secondary data required for rules-based assignments were also identified and included
171 in a comprehensive data model. Supplemental Materials Table A.2 reports the resulting data
172 model with fields grouped by category: *Building Information* for basic property data,
173 *Construction Features* for largely geometric and dimensional data, *Hazard Attributes* for wind
174 and flood-related hazard and site data, *Structural Attributes* for the data needed by Hazus wind
175 and flood loss models (FEMA 2018a; b) to select appropriate fragility descriptions, and
176 *Simulation Parameters* for regional simulation settings. The method(s) that can be used to
177 populate each field are also mapped in Table A.2 and detailed in the following subsections, in
178 some cases providing multiple potential approaches, with some values either default assigned
179 (A) or derived (D) from other fields.

180 **2.2 Phase II: Initial Population**

181 The data model developed in Phase I is then initially populated by web scraping available open-
182 data sources to populate as many fields as possible (refer back to Table A.2 for list of fields

183 associated with MD and/or 3PD designations). Available municipal data such as tax appraiser
184 and permit databases may contain most Building Information data fields, as well as some
185 Construction Features, however, there are considerable challenges in accessing the data required
186 for loss estimation (Zsarnóczay et al. 2022). As the data are generated and maintained in a
187 fragmented manner, possibly without the enforcement of county/parish or statewide data
188 standards, there is wide variation in the fields reported, their completeness, and accuracy. As the
189 case studies later in this paper demonstrate, some states have invested in expanding the data
190 reported for the purposes of hurricane loss estimation and floodplain management (what we term
191 *data rich* environs), whereas other states may be in their infancy in exposing even the most basic
192 building information (what we term *data scarce* environs). More standardized data is available
193 nationwide to support hazard/exposure descriptions, e.g., FEMA Flood Insurance Rate Maps
194 (FIRMs), Land Use Land Cover (LULC) databases, and the Applied Technology Council
195 (ATC)'s Hazards by Location Application Programming Interface (API) (Applied Technology
196 Council n.d.), which can be used to populate many Hazard Attributes.

197 **2.3 Phase III: Machine-Enabled Attribute Assignment**

198 A range of machine-enabled techniques were then developed to populate missing Building
199 Information and Construction Features. These modules are available through the NHERI
200 SimCenter as part of CityBuilder, a python application that incorporates different artificial
201 intelligence (AI)/machine learning (ML) modules from the center's backend tool BRAILS
202 (Wang et al. 2021b). Each module's subsequent presentation includes a description of the
203 methodology and associated validation process.

204 2.3.1 *Roof Shape*

205 The roof shape (Attribute: *RoofShape*) is considered a high-priority attribute both for importance
206 in assessing wind vulnerability but also its limited reporting in standard open municipal data.
207 Thus an image classifier operating on available satellite imagery (e.g., Google Maps) was
208 developed using the convolutional neural network (CNN) ResNet50 (He et al. 2016). The
209 classifier was trained to assign roof images for each building footprint to one of three categories
210 used in Hazus: gable, hip, or flat. The original training of the AI model utilized 6,000 images
211 obtained from Google satellite imagery in conjunction with roof labels obtained from
212 OpenStreetMap (OSM). The training set was distributed equally across the three roof types, i.e.,
213 2,000 images labeled as ‘flat’, ‘gabled’, and ‘hipped’, respectively. During the development of
214 the model, 80% data was used for training and 20% was used for testing. As many roofs have
215 more complex shapes, a similitude measure is used to determine which of these roof geometries
216 is the best match to a given roof, with full details and the trained model released as part of the
217 BRAILS backend component (SimCenter 2022). The classifier was then validated using a
218 cleaned dataset of 125 unobstructed satellite images sampled nationwide from OpenStreet Maps.
219 The selected roof images were screened to match the idealized gable, hip and flat geometries
220 adopted by Hazus in order to establish the efficacy with which these three fundamental roof
221 shapes could be identified from publicly available satellite imagery, achieving a detection rate of
222 93.15% across all three roof classes Wang (2021a). However, it is important to note that over
223 time, roof geometries have become increasingly more complex, blending traditional hip and
224 gable forms that deviate significantly from the idealized shapes adopted by Hazus. While the
225 classifier’s similitude measure negotiates this reality by forcing these complex roofs into one of

226 these simple geometries, performance of a Hazus-consistent roof classifier will inevitably see a
227 degradation in performance when applied to inventories with more complex roof geometry, as
228 discussed further in *StEER Validation Exercise* for Lake Charles, LA following Hurricane Laura.

229 *2.3.2 Building Dimensional Data*

230 The roof dimensions (Attributes: *MeanRoofHt*, *RoofSlope*) and other building elevation data
231 (Attributes: *ElevationR0*, *ElevationR1*, *FirstFloorHt*, *FirstFloorHt1*, *NumberOfStories*) are also
232 considered high-priority attributes not reported by most open municipal data but critical to
233 classifying hurricane-vulnerable buildings. Generating such critical dimensional data requires
234 identification of the building stories and their relative elevations.

235 A detection model that can automatically detect rows of building windows was
236 established to generate the image-based detections of visible floor locations from street-level
237 images. The model was trained on the EfficientDet-D7 architecture (Tan et al. 2020) with a
238 dataset of 60,000 images, using 80% for training, 15% for validation, and 5% testing of the
239 model. In order to ensure faster model convergence, initial weights of the model were set to
240 model weights of the (pretrained) object detection model that, at the time, achieved state-of-the-
241 art performance on the 2017 COCO Detection set (Lin et al. 2014). For this specific
242 implementation, the peak model performance was achieved using the Adam optimizer (Kingma
243 and Lei Ba 2014) at a learning rate of 0.0001 (batch size: 2), after 50 epochs.

244 For a given Google Street View image of a building in the inventory, the floor detection
245 model generates a bounding box output for its detections and calculates the confidence level
246 associated with each detection (see Fig. 2). A post-processor that converts stacks of neighboring

247 bounding boxes into floor counts was developed to convert this output into an estimate of the
248 number of stories. An image may contain multiple buildings; therefore, this post-processor was
249 designed to perform counts for each building in an image by clustering the bounding box
250 detections for every building. When multiple buildings are encountered in an image, the post-
251 processor yields multiple floor counts in the order the buildings are detected from left-to-right.

252 To validate performance, a test set was established by randomly selecting 3,000 parcels
253 for which the number of floors was reported from the New Jersey Property Tax System Database
254 (Department of Treasury 2018), called MODIV. These samples were drawn randomly from all
255 counties of New Jersey, except Atlantic County, as this county is the site of one of the illustrative
256 examples discussed later in this paper. Figure 3 provides the confusion matrix of model
257 classifications, where a diagonal value of 1.0 indicates perfect classification. Validation against
258 images with arbitrary camera orientations (termed “in the wild” images) results in 86% accuracy
259 in classifying the number of stories (Fig. 3a). Validation using only “cleaned” images, where the
260 building of interest is captured with minimal obstructions from trees or cars, is at the center of
261 the image, and perspective distortions are limited, results in a detection accuracy of 94.7% (Fig.
262 3b).

263 Once the floors of a building are detected, the elevation of the bottom plane of the roof
264 (lowest edge of roof line) and elevation of the roof (peak of gable or apex of hip) must be
265 estimated with respect to grade (in feet) from street-level imagery (e.g., Google Street View), in
266 order to estimate the roof height and mean roof height by respectively taking the difference or
267 average of these elevations.

268 As in any single-image metrology application, extracting the building elevations from
269 imagery requires: (1) rectifying image perspective distortions, typically introduced during image
270 capture; (2) determining the pixel counts representing the distances between ends of the objects
271 or surfaces of interest (e.g., for first floor height, the orthogonal distance between the ground and
272 first-floor levels); (3) converting these pixel counts to real-world dimensions by matching a
273 reference measurement with the corresponding pixel count.

274 Given that the number of street-level images available for a building can be limited and
275 sparsely spaced, a single image rectification approach was deemed most applicable for regional-
276 scale inventory development. The first step in image rectification requires detecting line
277 segments on the front face of the building. This is performed by using the L-CNN end-to-end
278 wireframe parsing method (Zhou et al. 2019). Once the segments are detected, vertical and
279 horizontal lines on the front face of the building are automatically detected using RANSAC line
280 fitting (Fischler and Bolles 1981), based on the assumptions that line segments on this face are
281 the predominant source of line segments in the image and the orientation of these line segments
282 change linearly with their horizontal or vertical position depending on their predominant
283 orientation. The other support vector model implemented for image rectification focuses on the
284 street-facing plane of the building in an image, and, based on the Manhattan World assumption
285 (i.e., all surfaces in the world are aligned with two horizontal and one vertical dominant
286 directions), iteratively transforms the image such that horizontal edges on the facade plain lie
287 parallel to each other, and its vertical edges are orthogonal to the horizontal edges.

288 In order to automate the process of obtaining the pixel counts to then determine the
289 elevation of identified stores, a facade segmentation model was trained to automatically label

290 ground, facade, door, window, and roof pixels in an image. The segmentation model was trained
291 using DeepLabV3 architecture on a ResNet-101 backbone (Chen et al. 2017), pretrained on
292 PASCAL VOC 2012 segmentation dataset (Everingham et al. 2012), using a facade
293 segmentation dataset of 30,000 images supplemented with relevant portions of ADE20K
294 segmentation dataset. The peak model performance was attained using the Adam optimizer
295 (Kingma and Lei Ba 2014) at a learning rate of 0.001 (batch size: 4), after 40 epochs. The
296 conversion between pixel dimensions and real-world dimensions were attained by use of field of
297 view and camera distance information collected for each street-level imagery. The identification
298 of these elevations then enables the derivation of other attributes such as the *RoofSlope*,
299 calculated as the ratio between the roof height and the roof run (defined as half of the smallest
300 plan dimension of the building footprint).

301 *2.3.3 Occupancy Class*

302 In some data-scarce environments, occupancy data (Attribute: OccupancyClass) essential to
303 assigning standard Hazus Building Classes may be unavailable or missing for a number of
304 parcels in tax assessor data, prompting the development of an occupancy classifier. While the
305 classifier can be expanded to encompass the full suite of Hazus Building Classes, it was initially
306 developed to separate residential buildings: RES1 (single-family residence) and RES3 (multi-
307 family residence), and general COM (commercial) buildings that encompass all defined
308 commercial classes in Hazus (COM1-COM10). The occupancy classifier employs a
309 convolutional neural network, trained using 15,743 Google Street View images with labels
310 derived from OpenStreetMaps and an enriched inventory created by the New Jersey Department

311 of Environmental Protection (NJDEP), discussed later as one of the paper's illustrative examples.
312 The distribution of occupancies and sources of labels are summarized in Table 1.

313 The performance of the classifier was first validated against a ground truth dataset that
314 contains 293 Google Street View images from the United States with labels from
315 OpenStreetMap (98 RES1, 97 RES3 and 98 COM1 buildings) with unobstructed views of the
316 buildings (cleaned data), which one can consider as examples of these occupancy classes that are
317 easily identifiable by non-expert human agents. The confusion matrix, which presents visually
318 the predictions versus actual data with ideal classification as 1.0 on the diagonal, is as shown in
319 Figure 4a. A second validation is conducted using 3000 randomly sampled RES1, RES3 and
320 COM buildings in the NJDEP dataset (1000 for each class). Google Street View images are
321 downloaded for each sampled building. While classifying with accuracies as high as 99% for the
322 OpenStreetMap testing dataset, classification accuracy diminishes for the NJDEP validation (Fig.
323 4b) due to two likely causes. First OSM validation data is cleaned whereas NJDEP is validating
324 against a more realistic condition of “in the wild” images permitting obstructions, which will
325 understandably reduce classification accuracy across all occupancies. Second, OSM labels were
326 assigned semantically, without direct knowledge of the building, and thus the model is trained on
327 commercial construction that was easy to visually identify by human agents. NJDEP data is
328 locally-generated by officials whose classifications include non-semantic knowledge, based not
329 upon appearance, but zoning, tax and other property information. This underscores the value of
330 having access to reliable regional data labeled with direct knowledge of building
331 function/occupancy when training image classifiers for this task. Further, the classifier was
332 trained on images of common commercial buildings, and similar to the roof classifier, would

333 necessarily assign each one of three classes (RES1, RES3, or generic COM) to every building it
334 encounters. The generalization of occupancy to three classes in order to separate residential from
335 non-residential construction should expect to see degraded performance when encountering
336 buildings outside of traditional commercial construction. Though not explored herein, in
337 municipalities where at least some building attributes are reported, multi-modal learning
338 approaches fusing computer-vision and available building attributes may prove fruitful in
339 classifying occupancy as well as assigning other missing attributes. Further, training a model to
340 classify non-residential occupancy with greater nuance based on imagery alone presents practical
341 challenges considering the diverse non-residential occupancies formalized in Hazus (see
342 Supplemental Materials Table A.1a). Since these diverse classes of non-residential construction
343 make up a small fraction of building inventories, there are inevitable limits on the amount of
344 reliable training data available.

345 *2.3.4 Year Built*

346 One of the most critical features for the augmented parcel approach is the year built (Attribute:
347 *YearBuilt*), given its essential role in the heuristic rulesets that assign many construction details
348 necessary for loss estimation. Unfortunately, this attribute is not always reported in data-scarce
349 communities. In such situations, third-party data sources like the National Structure Inventory
350 (NSI) can be mined to extract this field for geocoded addresses across the United States.
351 However, it should be noted that not all buildings are included in the NSI dataset, and the
352 geocodes of the addresses may not align with building locations defined by available footprint
353 data. As theorized in Wang et al. (2021a), a neural network can be used to predict the year built
354 information for each building based on the spatial patterns learned from the NSI dataset. The

355 SimCenter’s SURF application (Wang, 2019) is therefore employed to construct and train a
356 neural network on the available NSI year built information within the inventory’s geographic
357 boundaries, allowing a *YearBuilt* assignment to be made at each footprint within that domain. In
358 an effort to validate this approach, the authors used real estate websites (Zillow) to identify
359 *YearBuilt* information for buildings listed on the market within the inventory domain. It is
360 assumed that real estate listings, which require legally binding disclosures of building
361 information, can be treated as “ground truth” in instances where tax assessor data is not
362 available. This validation exercise was conducted in Lake Charles, LA, resulting in 1182 listings
363 that were then used to train a neural network to generate *YearBuilt* values at all footprints for
364 which a companion NSI-trained model had already predicted values. Figure 5a shows a scatter
365 plot of the NSI-predicted year built against the Zillow-scraped results; while perfect agreement
366 would cluster along the solid diagonal, the predicted year built data have a R2 value of 0.60 with
367 respect to the Zillow data. The dashed lines in the figure define the 10-year boundaries about the
368 perfect agreement line. As Phase IV will use time-evolving rulesets largely driven by code eras,
369 *YearBuilt* must be estimated more accurately in the modern code era, which is post-2006 in
370 Louisiana, and with a precision less than 10 years (depending on the frequency of code
371 adoption/amendment cycles in a state/municipality and how much structural requirements
372 change in each cycle). Note that the SURF-predictions trained on NSI data bias toward newer
373 *YearBuilt*, which may result in predictions of less vulnerability using rulesets grounded in model
374 building codes. These implications will be discussed further in *Hurricane Laura Verification &*
375 *Validation Exercise*.

376 2.3.5 *Attached Garage*

377 As failures of attached garages can propagate damage into the primary structure, the presence of
378 garages (Attribute: *Garage*) is critical to accurate loss assessments in residential construction,
379 though not commonly reported in open-city data. A garage detector was trained to conduct a
380 binary classification based on the presence of an attached garage in Google Street View imagery
381 (which includes both detached garages and homes with no garage). The model was trained on the
382 EfficientDet-D4 object detection architecture (Tan et al. 2020) using a subset of the SimCenter
383 Labeled Building Facades dataset (Wang et al. 2021a). This subset comprises 1,887 Google
384 Street View images from California, New Jersey, and Louisiana, sites of the SimCenter’s
385 regional simulation testbeds, and was utilized such that 80% of the images were marked for
386 training, 10% for validation, and 10% for testing of the model. All of these images were pre-
387 screened before model training to ensure that the buildings in the images are minimally occluded
388 and are not heavily distorted. Similar to the number of stories detector, initial weights were set to
389 model weights of the (pretrained) object detection model that, at the time, achieved state-of-the-
390 art performance on the 2017 COCO Detection set (Lin et al. 2014). For this task, the peak
391 detector performance was attained using the Adam optimizer (Kingma and Lei Ba 2014) at a
392 learning rate of 0.0001 (batch size: 2) after 25 epochs. The classification includes a bounding
393 box that expresses the confidence associated with the detection. A post-processor converts
394 bounding box detections into garage existence information, with the ability to parse garages for
395 multiple building instances in a single input image, as demonstrated by Figure 6, which also
396 highlights the variation in confidence resulting from the presence of obstructions like vehicles
397 and garbage cans. The model was validated on two datasets. The first used the validation subset

398 reserved during initial training (N=189), which yielded the confusion matrix in Figure 7a
399 showing 92% accuracy in detecting attached garages. A second validation was conducted using
400 300 randomly selected and manually labeled Google Street View images from Lake Charles, LA
401 (Fig. 7b), the site of one of the illustrative examples later in this paper. In this region, attached
402 garage detection drops to 82%, with “no garage” scenarios detected with 62% accuracy.

403 A deeper look at the differences between the training data used to generate the garage
404 detection model and Lake Charles building inventory provides explanations for the discrepancy
405 between the accuracies observed for the two validations. First, compared to denser urban
406 environments, Lake Charles has a higher density of carports that may share the home’s primary
407 roof line, but are not fully enclosed with a door. The lower garage detection rates are likely due
408 to the fact that this regional garage type was underrepresented in the training dataset. Moreover,
409 most suburban homes in Lake Charles are architecturally unique in comparison to those in the
410 initial training data, which may have affected “no garage” detection accuracy. Although a
411 detection model can typically compensate for such differences, since the training data was drawn
412 from three different states, the model understandably was unable to extrapolate well to the
413 different building appearances in the Lake Charles building stock. It is important to note that
414 none of the issues discussed above point to deficiencies in deep learning models but rather the
415 need for representative training data in each region to recalibrate models to the architectural
416 nuances in a given community.

417 **2.4 Phase IV: Augmentation by Heuristic Rulesets**

418 Basic building information scraped from municipal inventories in Phase II or mined from
419 imagery in Phase III offer basic descriptions of a building and even geometric/dimensional data,

420 e.g., single family home, made of wood, 1-story, but these are not the attributes the adopted loss
421 model (Hazus) ultimately requires to determine damage and loss, e.g., secondary water resistance
422 or roof-deck attachment. Thus the challenge lies in inferring these more granular attributes
423 associated with the primary load path or water-resistant envelope from the data available in
424 Phases II and III. The specific attributes required by Hazus also vary based on the building class,
425 e.g., a wood single family home is described by five such attributes while a masonry version of
426 the same home requires the assignment of up to three additional attributes. This thus requires a
427 first step of assigning each footprint to a relevant Hazus building class based on the data
428 generated in Phases II and III, followed by the assignment of required attributes for that footprint
429 based on its building class. Thus three families of rulesets were developed to infer the Hazus
430 building class and class-specific attributes for Hazus wind and flood loss models from data
431 generated in Phases II and III. Rulesets include two aspects: the formal logic that evaluates
432 various combinations of data from Phase II and III to determine the appropriate attribute
433 assignment (including provenance metadata for any references used to justify the assignment),
434 and then its implementation in Python for execution in the loss estimation workflow. The former
435 is published on DesignSafe (Kijewski-Correa et al. 2022) and the latter in GitHub (Angeles et al.
436 2021).

437 The first family of rulesets is used to assign each footprint to a corresponding Hazus
438 building class. For wind losses, buildings are grouped by primary building material (wood,
439 masonry, concrete, steel, manufactured home) and then subclassified into one of fifty-five
440 corresponding Hazus building classes (Table A.1a) and rulesets make this determination based
441 on the occupancy, number of stories and plan area. For flood losses, rulesets assign one of thirty-

442 two building classes based on the occupancy, number of stories and foundation type (Table
443 A.1b). For wave-induced losses, footprints are assigned to one of ten classifications by rulesets
444 that consider building use, construction material and number of stories (Table A.1c). The rulesets
445 include a default building class for each hazard if footprints are lacking one or more fields
446 required to make the assignment. The defaults and formal logic are published for the 97 Hazus
447 building classes on DesignSafe (Kijewski-Correa et al. 2022); the Supplemental Material Tables
448 A.1a-c include an example of these rules to illustrate the process.

449 Next, rulesets were developed for each building class in the Hazus wind, flood and wave
450 loss model to infer the required features, like roof to wall connection, from building and site
451 information generated in Phase II and III. Whenever possible, the formal logic for these
452 assignments derived from a review of the legacy building codes/standards (CS), creating rules
453 that were time varying based on the requirements of different code eras in that regions. For
454 attributes not specified by code, online research was conducted to determine likely construction
455 practices/norms (PN) used in these code eras. As some attributes like use of window shutters
456 requires agency on the part of homeowners, rates of compliance in existing human-subjects
457 surveys (HS) where used to assign these attributes (Javeline and Kijewski-Correa 2019). When
458 the attribute was expected to change over time, either based on changes in codes/standards for
459 industry practices/norms, the rules are written as a function of YearBuilt, assigning attributes
460 based on the governing code edition or availability of specific mitigation measures in the market
461 at the time of construction. In cases where engineering judgment was required, rules were
462 assigned based on the authors' understanding of the most common construction practices in a
463 given region or conservative adoption of the most vulnerable configuration. In cases where

464 variability is expected, attributes may be assigned as random variables (RV). Table 2 lists the
465 methodological basis for the attributes used in Hazus wind and flood loss assessments, with
466 some Direct Assignment (DA) of attributes based on attributes determined in Phases II and III.
467 Note that some attributes may be assigned by multiple techniques based on the Year Built and
468 eras when norms shifted or code requirements took effect, e.g., CS methods may apply in the
469 modern code era, whereas PN or HS methods may govern in the era predating modern codes.
470 Rulesets for each of the attributes in Table 2 again include default assignments in instances
471 where one or more fields required by the ruleset are missing for that footprint, in which case
472 attributes associated with an archetype building for that building class are assigned. The defaults
473 and formal logic are published for the Hazus building classes on DesignSafe (Kijewski-Correa et
474 al. 2022); the Supplemental Material Table A.2 includes an example of these rules to illustrate
475 the process.

476 **3.0 Illustrative Examples**

477 Two illustrative examples are now presented to demonstrate the application of the above
478 inventory generation processes at the municipal- and county-level. In either case, the process
479 initiates with identification of building footprints, which should be preferably sourced from open
480 governmental data generated with human oversight. Third-party footprint data may be necessary
481 (Microsoft 2021), though hand-digitized footprints, e.g., 2017 Microsoft footprints, are
482 preferable over computer-generated footprints, e.g., 2018 Microsoft footprints, that may fail to
483 discern individual buildings in multi-building complexes/parcels. All data is ultimately
484 georeferenced to the coordinates at the centroid of these footprints. BRAILS CityBuider
485 application was used to develop the building inventories and assemble accompanying satellite

486 and Street View imagery associated with each footprint for use in subsequent computer vision
487 tasks (Wang et al. 2021b). Note that tax assessor data, one of the most valuable municipal data
488 sources used in Phase II of inventory generation, is specified at the parcel level; parcels may
489 contain multiple footprints and/or a footprint may cross multiple parcels, in which case rules
490 used by the NJDEP were used to assign parcel attributes to those footprints (New Jersey
491 Department of Environmental Protection 2019).

492 **3.1 Scenario 1: Data Rich Environments**

493 Many coastal communities have made substantive investments in open data that benefit a
494 number of planning, emergency response and service delivery functions at the state and local
495 level; among these is the State of New Jersey. Notably the New Jersey Geographic Information
496 Network (NJGIN) has open access to federated data from different state agencies and counties to
497 centralize base/hazard maps and datasets supporting emergency response, transportation, hazard
498 assessments, and public works (Kijewski-Correa et al. 2020). Grant programs following
499 Superstorm Sandy have helped many municipalities contract local firms to create GIS endpoints
500 with local versions of these and other datasets describing their properties/parcels, infrastructure
501 assets, planning/zoning polygons, and flood-vulnerability, e.g., repetitive loss structures and
502 elevation certificates. The substantive investment in open data following a major damaging
503 storm made this an ideal data-rich scenario for inventory development. Ultimately, Atlantic
504 County, NJ and specifically Atlantic City and its surrounding municipalities were adopted as a
505 case study, noting that this region is under active redevelopment with questions of resilience to
506 climate-driven hazards of particular concern. The built environment in this region is quite diverse
507 with a blend of low-rise commercial (1-3 stories), industrial, high-rise hotels/casinos (over 20

508 stories), and single/multi-family residences in a fairly compact geography. Thus this inventory
509 can encompass both extremes in building typologies vulnerable to wind: wood frame single-
510 family homes and tall flexible structures. From the perspective of hazard exposure, this region is
511 also characterized by beachfront communities exposed to storm surge and breaking waves on the
512 ocean-facing coastline coupled with back bay and riverine flooding.

513 A pair of inventories was developed in this region to allow the targeted investigation of
514 flood-exposed properties as well as a wider study inclusive of properties outside the floodplain.
515 Inventory development initiated with NJDEP Footprint Data, which includes flood-exposed
516 properties cataloged in two geodatabases encompassing approximately 453,000 footprints across
517 the entire state inclusive of all building footprints within the 1% annual chance (AC) floodplain,
518 as defined by FEMA FIRMs as well as footprints that fall within a 200-ft buffer of the 1% AC
519 floodplain boundary. These databases were combined and then clipped to retain only those
520 within the limits of Atlantic County to form the *Flood-Exposed Inventory*. Half of this
521 inventory's 32,828 buildings is derived from the three most populated municipalities in Atlantic
522 County: Atlantic City, Margate City, and Ventor City, with 30,827 residential buildings and the
523 remainder dominated by other occupancies such as commercial (N=1496) and governmental
524 (N=7338) buildings. The majority are two-story (60%) or single-story (25%) construction, with
525 wood as the dominant construction material (94%), with some masonry (3%) and concrete (3%)
526 typologies. This inventory was then extended to include the remaining footprints within Atlantic
527 County, with the Microsoft Footprint Database (Microsoft 2021) as the primary source of non-
528 NJDEP footprint polygons. A separate roof segmentation algorithm (Durnov 2020) was applied
529 to Google satellite images to parse multiple footprints out of errant singular footprints for multi-

530 building parcels. This resulted in the full *Atlantic County Inventory*. This larger inventory is
531 comprised of 100,721 buildings across the 23 municipalities of Atlantic County, with 90,017
532 residential buildings and the remainder dominated by other occupancies such as governmental
533 (N=7338) and commercial (N=2366) buildings. With some tall buildings in Atlantic City, the
534 vast majority are single story (91%) or two-story (6%) construction, with wood as the primary
535 construction material (88%), followed by concrete (11%). This inventory pair is shown in Figure
536 8.

537 NJDEP also enriched its floodplain footprints with various attributes necessary to
538 conduct standard FEMA risk assessments. All footprints included a set of Basic Attributes
539 inclusive of parcel and site data and then Advanced Attributes required by Hazus User Defined
540 Facilities (UDF) Module, which includes material, occupancy, replacement value, year built,
541 area, number of stories, first floor height, and foundation type (New Jersey Department of
542 Environmental Protection 2019). The augmentation also included data required by the FEMA
543 Substantial Damage Estimator (SDE) Tool classifying residential superstructure, foundation,
544 roof cover and exterior finishes. Thus the initial population of the data model for these two
545 inventories exploited this augmented data to assign relevant fields to all properties in the
546 floodplain (100% of buildings in the Flood-Exposed Inventory and that same subset within the
547 Atlantic County Inventory, which was approximately one third of that larger inventory). For
548 footprints not included in the NJDEP augmented datasets, these fields were assigned by parsing
549 MODIV data, which is the New Jersey Tax Assessor Data (New Jersey Geographic Information
550 Network 2021) with reference to the MODIV User Manual (Department of the Treasury 2018).
551 Specifically, *OccupancyClass*, *BuildingType* (construction material) and *FoundationType* were

552 parsed from MODIV data using the aforementioned heuristic rulesets (Angeles et al. 2021), with
553 default values for any footprints where the required MODIV fields were lacking. Inclusion of a
554 wide range of occupancies (see Supplemental Materials Table A.1a-c) required additional third
555 party data from NJGIN Open Data portal to establish locations of essential facilities (using
556 critical facilities layers) and define terrain characteristics using basic transformations of Land
557 Use Land Cover data. Machine-enabled techniques introduced in Section 2.3.2 were then
558 leveraged to estimate *NumberofStories* for all Atlantic County Inventory footprints not
559 previously augmented by NJDEP, noting that this attribute tends to be under-reported in the
560 MODIV database. Meanwhile *RoofShape*, assorted building elevation fields (as well as all
561 derived roof dimensions), and *WindowArea* (assuming the proportion of windows on the front
562 face is representative of the proportion on all faces) were respectively augmented by the
563 machine-enabled techniques in Sections 2.3.1 and Section 2.3.2 for both the Flood-Exposed
564 Inventory and the Atlantic County Inventory. Full details of the resulting data model and
565 rulesets, with full provenance information, have been released on DesignSafe (Kijewski-Correa
566 et al. 2022). The diversity of occupancy, number of stories and year of construction encompassed
567 by this pair of inventories is affirmed by the statistical summaries in Figure 8.

568 **3.2 Scenario 2: Data Scarce Environments**

569 The process used in New Jersey was repeated in Lake Charles, LA to demonstrate how to
570 efficiently generate inventories for the study of impacts and recovery following Hurricane Laura.
571 Emphasis was placed on wind damage to residential construction, given the potential for
572 validation exercises discussed in the next section. The attributes required for this class of
573 construction were downsampled from the full data model presented previously in Supplemental

574 Materials A.2a and source data was identified. Unfortunately, there was a scarcity of open data in
575 Lake Charles and Calcasieu Parish, requiring the use of machine-enabled approaches to assign
576 the *YearBuilt* and *OccupancyClass*. While Louisiana has different code eras and code
577 amendments that would require adaptation of the initial rulesets developed for Scenario 1, the
578 rulesets from New Jersey were directly applied since both states employ IBC for contemporary
579 construction. Beyond differences in the effective dates for specific years when code revisions
580 became effective, Louisiana had no statewide code prior to 2006 and currently enforces 2015
581 IBC, with critical amendments related to wind speed caps in 2014, 2015, and 2017, and a
582 freeboard cap in 2018, based upon the state's numerous hurricane recovery experiences; whereas
583 New Jersey adopted statewide codes much earlier (1975), including IBC since 2003 and
584 currently enforces 2018 IBC. With losses from Superstorm Sandy dominated by storm surge,
585 New Jersey did not have the same intense periods of amendments to design wind speeds, making
586 it well-suited to serve as the model for ruleset development with codes following the typical 3-
587 year adoption cycle. While direct translation of the New Jersey rulesets without modification
588 may result in predictions of better performance in Louisiana buildings constructed before 2006,
589 extending effort to revise the New Jersey rulesets for this example was not warranted given the
590 lack of reliable data on *YearBuilt* and *OccupancyClass* required for ruleset execution. The
591 inventory and associated rulesets were further constrained to wood residential properties within
592 the city limits of Lake Charles, LA (keeping 26,516 of the total 30,072 properties) and
593 supporting only Hazus Building Classes WSF1-2 and WMUH 1-3 (see asterisks in Table A.1a
594 indicating the retained classes). Figure 9 visualizes the geospatial distribution of *YearBuilt* in the
595 resulting residential inventory with inset statistical distributions of key attributes. An additional
596 cluster of homes south of Lake Charles was also included in the inventory to support subsequent

597 validation exercises (this cluster and another within the city limits are shown in the inset in Fig.
598 9). Notably, this residential inventory is typified by older vintages of construction (pre-1980)
599 (85%), with a dominance (98%) of low-rise (1-2 story) buildings and single-family (81%)
600 residences. See asterisks in Table A.2 for fields retained in the downsized data model; details of
601 the resulting data model and rulesets, with full provenance information, have been released on
602 DesignSafe (Wang et al. 2021c).

603 **4.0 Hurricane Laura Verification & Validation Exercise**

604 Validation of the augmented parcel approach to generate inventories in support of hurricane loss
605 assessment leverages the Lake Charles, LA inventory introduced under Scenario 2 to study the
606 impacts of Hurricane Laura. As detailed in Roueche et al. (Roueche et al. 2020), the storm made
607 landfall as a strong Category 4 hurricane near Cameron, LA in the early hours of 27 August
608 2020, tying the Last Island Hurricane of 1856 as the strongest landfalling hurricane in Louisiana
609 history. Wind speeds are estimated to have reached or exceeded the design wind speed for Risk
610 Category II buildings and other structures, as defined in ASCE 7-16 (American Society of Civil
611 Engineers 2017) and the 2018 International Building Code (MRI = 700 years) (International
612 Building Code 2018), by as much as 8 km/h (5 mph) near Lake Charles, LA (specifically,
613 northeastern Calcasieu Parish and the eastern half of Beauregard Parish) (Applied Research
614 Associates 2020). As the storm's well-predicted track facilitated coordinated, multi-entity
615 surface measurements of wind fields and storm surge, Laura is one of the best documented storm
616 events and thus provides novel opportunities to understand the vulnerabilities underpinning
617 losses and robustly verify and validate workflows intended to predict ensuing losses.

618 The Structural Extreme Events Reconnaissance (StEER) Network building performance
619 assessments captured between 27 August and 12 September 2020 will serve as the ground truth
620 observations for this validation exercise. Notably, the areas impacted by Laura were previously
621 impacted by Hurricane Rita (2005), resulting in a sizable population of modern (post-IBC/IRC)
622 single-family homes exposed to design-level winds. As such, the validation exercise focuses on
623 wood 1-2 story single-family (WSF1-2) and 1-3 story multi-unit residential (WMUH1-3)
624 construction subjected to wind hazards. In accordance with the regional simulation workflow
625 introduced in Deierlein et al. (Deierlein et al. 2020), the augmented parcels of the Lake Charles,
626 LA Inventory were assigned appropriate damage and loss functions from the Hazus Hurricane
627 Damage and Loss Model (FEMA 2018b, 2021), implemented in the SimCenter's PELICUN
628 application (Zsarnoczay 2019). For wind damage assessment, the HAZUS damage functions
629 consist of tabular data for multiple damage states to describe their fragilities as functions of 3-
630 second peak wind speed (PWS) at reference height (10 m) in open terrain. These tabular data are
631 parsed in PELICUN to fit a continuous normal or lognormal cumulative density function for
632 each fragility. For wind loss assessment, the HAZUS loss functions consist of tabular data
633 mapping the peak wind speed to expected loss ratio. These tabular data are used by PELICUN to
634 calibrate the expected loss ratio of individual damage states so that the damage and loss models
635 are coupled for more realistic outcomes (Zsarnóczay and Deierlein 2020).

636 The regional simulation used in the following verification and validation exercises is
637 orchestrated using the NHERI SimCenter's Regional Resilience Determination (R2D)
638 Application (McKenna et al. 2021), driven by a surface-level wind field produced on 4
639 September 2020 by Applied Research Associates (ARA) and made available by National

640 Institute of Standards and Technology (NIST) on DesignSafe (Applied Research Associates
641 2020). The wind field incorporates storm track and central pressure data from the National
642 Hurricane Center (NHC) through Forecast Advisory Number 33 and observations through 1200
643 UTC on 28 August 2020. The ARA windfield is first mapped to a rectangular grid with 0.01 to
644 0.02 degree intervals; the peak wind speed at the centroid of each building footprint is estimated
645 by randomly sampling the PWS from its nearest four neighboring grid points. The hazard
646 intensities defined by the PWS are then related to probabilities of damage and loss.

647 The geospatial distribution of estimated wind damage states and losses under Hurricane
648 Laura are shown in Figure 10a,b, with Figure 10c plotting the cumulative distribution function
649 (CDF) of the damage states. Hazus Damage States (DS) are defined as DS-0: no/very minor
650 damage, DS-1: minor damage, DS-2: moderate damage, DS-3: severe damage and DS-4:
651 destroyed (Vickery et al., 2006). Most residential buildings (75%) in the Lake Charles inventory
652 were projected to have relatively minor to moderate wind damage (expected Damage State no
653 greater than 2). Few residences are predicted to be in the extremes of the distribution: about 5%
654 with damage no greater than DS-1 and another approximately 5% exceeding DS-3. The
655 corresponding CDF of projected loss ratios is shown in Figure 10d, illustrating that about 20% of
656 residences would expect a loss of no more than 10% of the total reconstruction cost, with about
657 10% of residences seeing a loss of half or more of the total reconstruction cost. All estimates are
658 based on a *YearBuilt* predicted using NSI-trained machine-enabled techniques.

659 **4.1 Verification Process**

660 A two-step process was used for verification, with hand calculations of estimated losses for a
661 subset of 98 randomly-sampled buildings in the inventory, followed by a parametric

662 investigation. These hand calculation involve the manual assignment of the appropriate HAZUS
663 building class based on the building attributes, followed by the manual selection of the
664 corresponding damage fragilities and loss ratios from the HAZUS database that were described
665 by best-fit curves in the SimCenter's Pelicun application (Zsarnóczay and Deierlein 2020). Peak
666 wind speeds are determined using geolocation data from the ARA wind field contours. These
667 peak wind speeds can then be substituted into the fitted damage and loss functions, for an overall
668 verification that the loss estimatinon workflow is properly implemented. Hand-calculations
669 simulated expected loss ratios for the sampled buildings showed excellent correlation with the
670 simulated values, achieving a correlation coefficient of 0.9996. As a second verification step,
671 parametric investigations on select case study buildings are used to heuristically examine the
672 ruleset logic founded upon *YearBuilt*. Herein we present the parametric case study for a single-
673 family house (1-story wood structure with a gable roof). The original building record is
674 expanded to 51 different buildings by varying the *YearBuilt* between 1970 and 2020. For each
675 building, the expected loss ratio is estimated using 50 realizations to consider the uncertainty
676 from the rulesets assigning some attributes as random variables (e.g., the ruleset assigns use of
677 secondary water resistance to buildings built after 2000 according to a 60% probability). The
678 black curves in Figure 11 plot the individual realizations of expected loss ratio against different
679 *YearBuilt* values. The red curve shows the mean value of 50 realizations for each *YearBuilt*. As
680 expected, building performance generally improves following major code revisions. For
681 example, as labeled by the yellow dashed line at 2000, the IRC 2000-2009 requires 8d nails (with
682 spacing 6"/6" or 15.2 cm mm/15.2 cm) for sheathing thickness of 1" (25.4 mm) for basic wind
683 speeds greater than 160 km/h (100 mph), which enhances the building performance (reducing the
684 expected loss ratio). When this ultimate wind speed is increased to 130 mph (215 km/h) (just

685 above the design wind speed) in a 2016 revision accepting the use of 6"/12" (15.2 cm/30.5 cm)
686 spacing, a corresponding slight degradation in building performance is observed. This
687 observation highlights the particular importance of nail spacing requirements for sheathing in
688 reducing wind-induced losses for this class of construction.

689 **4.2 Influence of Competing Data Sources**

690 As demonstrated by the above verification process, YearBuilt is critical to assigning attributes
691 within an Augmented Parcel approach reliant on time-evolving rulesets. Herein we examine the
692 implications of assigning YearBuilt in data scarce environments using machine-enabled
693 techniques trained against NSI and the commercial real estate platform, Zillow. Figure 12a
694 illustrates the difference in estimated YearBuilt as predicted by Zillow- and NSI-trained models.
695 The ensuing implications of using different sources of YearBuilt information to predict damage
696 are visualized in Figure 12b. Note that differences in YearBuilt matter only when those
697 differences shift the structure into not only a different code era in the ruleset logic, but to one
698 with substantive changes either to the hazard description or the building's load path or affected
699 components, thus making the implications of errors in *YearBuilt* on the final loss estimation
700 context dependent. Those types of substantive amendments can be on the scale of decades in less
701 frequently-exposed locales like New Jersey, or even annually in more frequently-exposed locales
702 like Louisiana. Figure 13a illustrates the subtle differences in the CDF for DS-2 and DS-3
703 between NSI- and Zillow-trained models, with Zillow tending to predict slightly higher damage
704 states outside of the tails of the distribution where the transition to the modern code era takes
705 place. The impact on damage ratings is not prominent in some of the areas with the largest
706 differences in year built predictions, such as downtown Lake Charles (shown by dashed box in

707 Fig. 12b) or areas to the east to either side of I-10, where the construction is older and pre-dates
708 the modern code era. However, some of the newer developments at the southernmost boundary
709 of the municipality are in the modern code era, where differences in *YearBuilt* may translated
710 into marked differences in ruleset-assigned attributes. This is illustrated by the previous
711 validation case study and reinforced by Figure 13b, which shows the probability of a residence
712 achieving the expected DS for four different *YearBuilt* ranges: Pre-1960, 1960-1979, 1980-1999,
713 Post-2000. This underscores the challenges created both by the underreporting of *YearBuilt*
714 values in this area, as well as the fact that the attributes necessary for loss estimation by Hazus
715 are not routinely reported in inventory data nationwide. Finally, since the Zillow data used in this
716 study was taken from Zillow Transaction and Assessment Database (ZTRAX), which has
717 proprietary restrictions, the NSI-predicted *YearBuilt* is used for the loss assessments in the next
718 section as this data is available to all readers without restriction.

719 **4.3 StEER Validation Exercise**

720 StEER used human visual inspections to rate damage on the Hazus-defined wind loss scale for a
721 sampling of buildings in Lake Charles and surrounding areas (Roueche et al. 2021), referred to
722 herein as *StEER Buildings*. Ninety-nine of these buildings correspond to footprints in the Lake
723 Charles inventory, which offers an opportunity to validate the end result of this loss assessment
724 workflow built upon augmented-parcel inventories. It is important to note that these damage
725 assessments were not conducted according to StEER's standard protocols due to COVID-19
726 restrictions on travel. Instead, assessments were conducted virtually by humans remotely
727 interrogating street-level panoramic images collected from car-mounted platforms (Roueche et
728 al. 2021). Thus, StEER buildings offer a “ground truth” that is potentially less reliable in

729 discerning some aspects of the damage than a traditional StEER mission with in-person, up-close
730 forensic assessments. Also note that since rulesets from New Jersey are applied to assign
731 attributes and are not consistent with the historical regulatory environment in Louisiana, the
732 predicted damage states are also likely to be slightly lower, particularly for construction older
733 than 2006 (the year Louisiana first adopted ICC model codes statewide). Finally, as also
734 discussed in StEER's report (Roueche et al. 2020), there were low rates of compliance with
735 shuddering requirements in the affected area. Thus it is likely that shudder use would be assigned
736 by rulesets at a rate higher than actually observed in this hurricane, leading to lower levels of
737 predicted damage than those observed in the field, as discussed shortly.

738 *4.3.1 Roof Classifier*

739 Since StEER data undergoes a data enrichment and quality control process that generates over
740 100 fields of component, material and geometric information, its records can be used to validate
741 various aspects of the augmented parcel approach. For example, in order to further validate the
742 roof classifier used to populate RoofShape attributes in the Lake Charles inventory, StEER
743 Buildings were pre-processed to retain only those single-family homes tagged with roof shapes
744 consistent with the three Hazus classes (N=56), discarding records labeled as "complex"
745 according to StEER's more robust roof classification standards. The confusion matrix in Figure
746 14 affirms the effectiveness of the roof shape classifier in this validation exercise, recalling that
747 perfect classification would have 1.0 scores along the diagonal. Comparison of this validation
748 result (with 70% accuracy for hip and gable roofs) against the over 90% accuracy reported in
749 Wang et al. (2021) underscores that contemporary roof shapes are far more complex than the
750 three simplified geometries adopted by Hazus and even idealized in the initial training sets used

751 to develop the SimCenter's roof classifier module. The limitations of simplifying roofs into one
752 of three shapes not as common in contemporary construction forces humans classifying roofs,
753 including StEER assessors, to attempt to subjectively force every roof into one of these
754 categories, begging the larger question regarding the ability of our loss modeling capabilities to
755 keep pace with modern construction trends. The adopted approach of using similitude measures
756 to more objectively force classifications to the nearest simplified roof shape (gable, hip, flat)
757 remains the most viable means to negotiate the very real disconnects between the simplified
758 shapes adopted in conventional loss models and contemporary geometries in practice.

759 *4.3.2 Damage Rating*

760 Uncertainties inherent the hazard, building inventory and vulnerability models will affect the
761 predicted level of damage. Unfortunately, the ground truth observations available from StEER do
762 not include on-site wind speeds or reporting of all the building attributes employed by the
763 adopted vulnerability model to allow isolation of the potential effects of these uncertainties on
764 the overall damage rating. However, the implication of such uncertainties is explored herein for
765 both hazard inensity and the building attribute most critical to the use of heuristic rulesets:
766 *YearBuilt*. Assuming this building attribute follows a normal distribution with mean at the value
767 assigned by machine-enabled techniques and standard deviation of 10 years, a sample of 100
768 *YearBuilt* values is generated for each of the 99 StEER buildings. This results in a distribution of
769 simulated Damage States for that building (see example in Figure 15a). Figure 15b compares the
770 resulting mean and 95th-percentile of these distributions of the simulated damage states to the
771 StEER-observed damage state, where perfect agreement would cluster about the dashed diagonal
772 line. Note that the simulated damage states are the result of three WSF1-2 attributes being

773 assigned as random variables (see Table 2), which in addition to *YearBuilt* uncertainties, results
774 in the scatter across simulated damage states. To aid in interpretation, an overall trend is
775 visualized by the red points that define the bin average across the values at each damage state.
776 The results suggest that while minor and moderate damage states are on average consistent with
777 ground-truth observations, which is where the most observations cluster, the extremes
778 characterized by fewer ground-truth observations suggest a bias toward minor damage for
779 undamaged structures, with simulated damage rates plateauing around the moderate damage state
780 even for severely damaged and collapsed buildings. The same type of uncertainty analysis is
781 conducted for the peak wind speed, randomly sampling 100 PWS values from a normal
782 distribution with mean set to the PWS specified by ARA for that building's location and a
783 standard deviation of 20 mph. Analysis of the resulting mean and 95th-percentile of the
784 distribution of these simulated damage states compared to the StEER-observed damage state in
785 Figure 15c reiterates the same trend. Further note that changing the wind speed to explore the
786 effect of uncertainties in the hazard intensity at a given site does not account for site-specific
787 variations in the wind field itself, e.g., localized flow effects, which can have considerable
788 impacts on the level of damage observed.

789 In an effort to understand potential sources of the simulation's unconservative bias for
790 buildings with observed severe damage (DS-3) and destruction (DS-4), the rulesets used to
791 generate the Lake Charles inventory were overridden to apply window protection as a random
792 variable with compliance rates of 20% for all *YearBuilt* values, approximately half that observed
793 in other coastal communities (Javeline and Kijewski-Correa 2019) and more consistent with
794 StEER's anecdotal observations (Roueche et al. 2020). While this does slightly elevate the

795 simulated damage values across all damage states, DS3 and DS4 are still underestimated (Fig.
796 15d). As damage states are driven by a number of attributes and site factors, including
797 construction errors and material defects, the limited number of observations in DS-3 and DS-4
798 limits the ability to draw further conclusions. Still, access to StEER's field observations under
799 design-level winds, acquired using component-level quantifications of damage that map to Hazus
800 damage states, provides invaluable opportunities to validate and further improve loss modeling
801 frameworks.

802 **5.0 Conclusions**

803 While computational simulation tools and high performance computing are rapidly advancing
804 the collective potential to study the impact of hurricanes on communities and entire regions at
805 unprecedented fidelity and granularity, their use in the study of real-world scenarios remains
806 constrained by the availability and completeness of reliable parcel data. Even in the most data
807 rich communities, exposed municipal data lacks a number of structural attributes necessary to
808 predict damage and ensuing losses at the level of individual building footprints. This paper
809 presents an augmented-parcel approach that defines a comprehensive data model inclusive of
810 hazard and structural attributes necessary for Hazus-compatible risk assessments on a wide class
811 of buildings under hurricane wind and flood hazards. The study further demonstrates how
812 existing open municipal and third party data can be scraped to initially populate the required
813 fields across a large-scale building inventory, assigning the remaining attributes using a series of
814 machine learning modules and time-evolving rulesets grounded in local codes/standards,
815 regional construction practices/norms, and human subjects data. These techniques are
816 implemented within the regional hurricane loss assessment workflow of the NHERI SimCenter

817 and available to the community as open software. Illustrative examples in a data-rich setting
818 (Atlantic County, NJ) and a data-scarce municipality (Lake Charles, LA) demonstrate the
819 workflow's replicability in digitizing large-scale building inventories, both of which are curated
820 on DesignSafe.

821 The study's validations of computer vision-based modules to generate underreported
822 building attributes underscores the importance of algorithms that are robust enough to reliably
823 classify "in the wild" images scraped from platforms like Google Street View. Among these, the
824 validation of an occupancy classifier further reiterated the need to go beyond semantically-
825 inferred image labels for training data, ideally drawing data from local agencies where the
826 targeted attribute is the focus of ongoing data gathering and quality assurance efforts. Improving
827 performance further will require enabling nuanced classifications of the wide diversity of non-
828 commercial construction, which can be challenging given the limited amounts of training data
829 for occupancies that comprise a small fraction of the overall inventory. Validations of attached
830 garage detectors similarly reinforced the need for representative local training data to recalibrate
831 models to the architectural nuances in a given community, such as the carports. This reiterates
832 that reliable regional inventory data is critical to the continued refinement of these classifiers.

833 The phased approach of augmenting available parcel data is in theory region-, hazard-
834 and even loss model-agnostic, meaning that the same steps would be executed and tools engaged
835 to mine required hazard, site and building attributes. Extensions outside of hurricane wind/flood
836 within a Hazus framework would however require the development of a data model in Phase I
837 that defines the relevant attributes for that hazard and/or adopted loss model. The population of
838 that data model in Phase II would need to be accordingly adapted based on the data sources

839 available in that region or for that hazard, as the case studies in New Jersey and Louisiana
840 demonstrate. The techniques developed to efficiently scrape and parse such data are themselves
841 universal. Developing the augmented parcel approach for a data scarce environ like Louisiana at
842 minimum ensures Phase III is supported by a robust collection of available tools that can be
843 deployed to assign under-reported data essential to the loss estimation in future applications.
844 These tools may require recalibration in regions where construction practices, particularly
845 aesthetic features, are dramatically different from those used in the development or the extension
846 of these tools to new classes of features, e.g., vulnerabilities like soft stories (Yu et al. 2020).
847 Finally, Phase IV would require some adjustment if translated to a new region with different
848 code eras, design wind speeds, or load path requirements, as the discourse herein on New Jersey
849 vs. Louisiana underscored. The availability of the rulesets used here in GitHub is intended to aid
850 such adaptations. However, entirely new rulesets would be required for any changes in the
851 hazard or loss estimation framework – though the adoption of Hazus herein addresses the most
852 universal model in US practice. The SimCenter's released testbeds for earthquakes
853 (<https://simcenter.designsafe-ci.org/testbeds/>) demonstrate such extensions of the methodology
854 for other hazards, with its Pelicun application supporting loss assessments using Hazus and
855 FEMA P-58 (Zsarnóczay and Deierlein 2020).

856 The study further underscored the criticality of accurate year built data for post-IBC/IRC
857 construction eras, given the augmented parcel approach's reliance on time-evolving rulesets, in
858 this case exploring the use of spatial inference to assign this critical field from limited
859 observations in the National Structure Inventory and commercial real estate platforms like
860 Zillow. Finally, a verification and validation exercise is conducted using StEER field

861 observations collected in Lake Charles following the landfall of Hurricane Laura. The
862 validations highlighted the incompatibilities between Hazus-simplified roof shapes and
863 contemporary roof geometries, and the challenges it creates for classification by both human and
864 machine agents. The SimCenter's workflow applying Hazus-based fragilities to the augmented-
865 parcel inventories generated in this study were found to be consistent, on average, with ground-
866 truth observations for the minor to moderate damage states that comprised the majority of field
867 observations. Extreme damage states were characterized by fewer ground-truth observations,
868 with simulations biasing toward minor damage for undamaged structures and plateauing at
869 moderate damage even for severely damaged and collapsed buildings. This trend was maintained
870 when investigating the uncertainty in hazard intensity, as well as the low rates of shutter
871 compliance. This exercise in particular reiterates the importance of collecting rich post-disaster
872 field observations to validate established loss-estimation frameworks and demonstrates the reuse
873 potential of component-level quantifications of damage that map readily to damage states used
874 by Hazus. Though beyond the scope of this study, root causes of inconsistencies revealed in this
875 validation exercise will require further processing of street-level panoramic images captured by
876 StEER. Such efforts should focus on expanding the limited number of structural assessments
877 released in DesignSafe to increase the sample of severely damaged and collapsed buildings, as
878 well as revisiting the forced classification of roofs into Hazus classes by using the classifier's
879 similitude measures to establish thresholds defining roofs that are not accessible due to
880 significant incompatibilities with basic roof geometries. Such efforts should leverage the
881 inventory generated in this study and published on DesignSafe to identify regions reconstructed
882 after Hurricane Rita to determine if damage states are more reliably estimated by an augmented
883 parcel approach when minimum construction practices are enforced.

884 **Data Availability Statement**

885 Some or all data, models, or code generated or used during the study are available in a repository
886 online in accordance with funder data retention policies. Specifically, inputs (inventories,
887 rulesets, and hazard data), outputs (results), and supporting documentation for Lake Charles, LA
888 are available in DesignSafe (<https://doi.org/10.17603/ds2-83ca-r890>). The pair of inventories and
889 rulesets for Atlantic County, NJ are also available in DesignSafe (<https://doi.org/10.17603/ds2-jpj2-zx14>). See <http://doi.org/10.5281/zenodo.5033626> to download the R2D application used to
890 execute the regional simulations described herein. Full documentation for each of the inventories
891 and R2D is available at <https://nheri-simcenter.github.io/R2D-Documentation/index.html>.

893 **Acknowledgements**

894 This material is based upon work supported by the National Science Foundation under Grant
895 Nos. CMMI 1612843 & 2131111. Any opinions, findings, and conclusions or recommendations
896 expressed in this material are those of the author(s) and do not necessarily reflect the views of
897 the National Science Foundation. The authors acknowledge the larger collaborations with Sascha
898 Hornauer, Wael Elhaddad, Greg Deierlein, and Andrew Kennedy on the regional testbeds for the
899 NHERI SimCenter. The authors appreciate the special access to ZTRAX data provided by the
900 University of California at Los Angeles (UCLA) and the group of Professor Ertugrul Taciroglu,
901 access to NJDEP data and other inventory information by the New Jersey Department of
902 Community Affairs (NJ DCA) and the office of Keith Henderson, and the assistance of Rachel
903 Hamburger of the University of Notre Dame in assembling the literature review.

904 **References**

905 American Society of Civil Engineers. 2017. *Minimum Design Loads and Associated Criteria for*

906 *Buildings and Other Structures. Minim. Des. Loads Assoc. Criteria Build. Other Struct.*

907 American Society of Civil Engineers.

908 Angeles, K., M. Lochhead, T. Kijewski-Correa, K. Zhong, and A. Zsarnoczay. 2021. “NHERI-
909 SimCenter/AssetRepresentationRulesets: Version 1.0.0.”
910 <https://doi.org/10.5281/ZENODO.5496056>.

911 Applied Research Associates. 2020. “Hurricane Laura Rapid Response Windfield
912 Estimate.” <https://www.designsafe-ci.org/data/browser/public/designsafe.storage.community/Recon%20Portal/20d20Hurricane%20Laura%20Cameron%20Louisiana%20USA>. Accessed March 12, 2022.
913 <https://www.designsafe-ci.org/data/browser/public/designsafe.storage.community/ReconPortal/20d20HurricaneLauraCameronLouisianaUSA>.

917 Applied Technology Council. n.d. “ATC Hazards by Location.” Accessed March 12, 2022.
918 <https://hazards.atcouncil.org/>.

919 Aravena Pelizari, P., C. Geiß, P. Aguirre, H. Santa María, Y. Merino Peña, and H. Taubenböck.
920 2021. “Automated building characterization for seismic risk assessment using street-level
921 imagery and deep learning.” *ISPRS J. Photogramm. Remote Sens.*, 180: 370–386. Elsevier.
922 <https://doi.org/10.1016/J.ISPRSJPRS.2021.07.004>.

923 Center for Risk-Based Community Resilience Planning, v. 3. 5. . 2022. *IN-CORE Manual*.

924 Chen, L.-C., G. Papandreou, F. Schroff, and H. Adam. 2017. “Rethinking Atrous Convolution
925 for Semantic Image Segmentation.” *arXiv Prepr. arXiv1706.05587*.

926 Deierlein, G. G., and eds. Adam Zsarnóczay. 2021. *State of the Art in Computational Simulation*
927 *for Natural Hazards Engineering*. <https://doi.org/10.5281/ZENODO.4558106>.

928 Deierlein, G. G., F. McKenna, A. Zsarnóczay, T. Kijewski-Correa, A. Kareem, W. Elhaddad, L.
929 Lowes, M. J. Schoettler, and S. Govindjee. 2020. “A Cloud-Enabled Application
930 Framework for Simulating Regional-Scale Impacts of Natural Hazards on the Built
931 Environment.” *Front. Built Environ.*, 6. <https://doi.org/10.3389/fbuil.2020.558706>.

932 Department of the Treasury, S. of N. J. 2018. “MOD IV User Manual.”
933 <https://www.state.nj.us/treasury/taxation/pdf/lpt/modIVmanual.pdf>.

934 Durnov, V. 2020. “1st Place Solution for xView2: Assess Building Damage Challenge.” GitHub.
935 Accessed August 16, 2022. https://github.com/DIUx-xView/xView2_first_place.

936 Everingham, M., L. van Gool, C. K. I. Williams, J. Winn, and A. . Zisserman. 2012. “The
937 PASCAL Visual Object Classes Challenge 2012 (VOC2012).” Accessed March 12, 2022.
938 <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html>.

939 FEMA. 2018a. *HAZUS – Multi-hazard Loss Estimation Methodology 2.1, Flood Model*
940 *Technical Manual*. Washington, DC: Federal Emergency Management Agency.

941 FEMA. 2018b. *HAZUS – Multi-hazard Loss Estimation Methodology 2.1, Hurricane Model*
942 *Technical Manual*. Washington, DC: Federal Emergency Management Agency.

943 FEMA. 2021. *Hazus Hurricane Model Technical Manual Hazus 4.2 Service Pack 3*.
944 Washington, DC: Federal Emergency Management Agency.

945 Fischler, M. A., and R. C. Bolles. 1981. “Graphics and Image Processing Random Sample

946 Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and

947 Automated Cartography.” *Commun. ACM*, (J. D. Foley, ed.), 24 (6): 381–395.

948 He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition.”

949 *Proc. IEEE Conf. Comput. Vis. pattern Recognit.*

950 International Building Code. 2018. *2018 International Building Code (IBC) | ICC Digital Codes*.

951 Jaiswal, K., and D. J. Wald. 2008. *Creating a Global Building Inventory for Earthquake Loss*

952 *Assessment and Risk Management.*

953 Jaiswal, K., D. Wald, and K. Porter. 2010. “A Global Building Inventory for Earthquake Loss

954 Estimation and Risk Management.” *Earthq. Spectra*, 26 (3): 731–748.

955 <https://doi.org/10.1193/1.3450316>.

956 Javeline, D., and T. Kijewski-Correa. 2019. “Coastal homeowners in a changing climate.” *Clim.*

957 *Change*, 152 (2): 259–274. <https://doi.org/10.1007/s10584-018-2257-4>.

958 Kijewski-Correa, T., B. Cetiner, K. Zhong, C. Wang, A. Zsarnóczay, M. Lochhead, F. McKenna,

959 and G. Deierlein. 2022. *SimCenter Hurricane Testbed: Atlantic County, NJ*. DesignSafe,

960 <https://doi.org/10.17603/ds2-83ca-r890>.

961 Kijewski-Correa, T., A. Taflanidis, C. Vardeman, J. Sweet, J. Zhang, R. Snaiki, T. Wu, Z. Silver,

962 and A. Kennedy. 2020. “Geospatial Environments for Hurricane Risk Assessment:

963 Applications to Situational Awareness and Resilience Planning in New Jersey.” *Front. Built*

964 *Environ.*, 6. <https://doi.org/10.3389/fbuil.2020.549106>.

965 Kingma, D. P., and J. Lei Ba. 2014. *ADAM*: A method for stochastic optimization. arXiv preprint
966 811 arXiv:1412.6980.

967 Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
968 2014. *LNCS 8693 - Microsoft COCO: Common Objects in Context*. In Proc., European Conf.
969 *on computer vision*, 740-755. Springer, Cham

970 McKenna, F., S. Gavrilovic, A. Zsarnoczay, K. Zhong, and W. Elhaddad. 2021. “NHERI-
971 SimCenter/R2DTool: Version 1.1.0.” <https://doi.org/10.5281/ZENODO.5033626>.

972 Microsoft. 2021. “GitHub - microsoft/USBuildingFootprints: Computer generated building
973 footprints for the United States.” Accessed March 12, 2022.
974 <https://github.com/microsoft/USBuildingFootprints>.

975 Nawari, N. O., and S. Ravindran. 2019. “buildings Blockchain and Building Information
976 Modeling (BIM): Review and Applications in Post-Disaster Recovery.” *Buildings*, 9: 149.
977 <https://doi.org/10.3390/buildings9060149>.

978 New Jersey Department of Environmental Protection. 2019. *NJDEP Building Footprints: Final
979 Report*. Trenton, NJ.

980 New Jersey Geographic Information Network. 2021. “Parcels and MOD-IV of Atlantic County,
981 New Jersey.” NJGIN Open Data, <https://njgis-newjersey.opendata.arcgis.com/documents/newjersey::parcels-and-mod-iv-of-atlantic-828-county-nj-shp-download/about>.

984 New Jersey Office of Emergency Management. 2014. *State of New Jersey 2014 State Hazard*

985 *Mitigation Plan*. Trenton, NJ.

986 Park, H., D. T. Cox, and A. R. Barbosa. 2017. "Comparison of Inundation Depth and Momentum
987 Flux based Fragilities for Probabilistic Tsunami Damage Assessment and Uncertainty
988 Analysis." *Coast. Eng.*, 10–26.

989 Pinelli, J.-P., J. Da Cruz, K. Gurley, P.-T. Andres Santiago, M. Baradaranshoraka, S. Cocke, and
990 D. Shin. 2020. "Uncertainty Reduction Through Data Management in the Development,
991 Validation, Calibration, and Operation of a Hurricane Vulnerability Model." *Int. J. Disaster
992 Risk Sci.*, 11: 790–806. <https://doi.org/10.1007/s13753-020-00316-4>.

993 Roohi, M., J. W. van de Lindt, N. Rosenheim, Y. Hu, and H. Cutler. 2021. "Implication of
994 building inventory accuracy on physical and socio-economic resilience metrics for informed
995 decision-making in natural hazards." *Struct. Infrastruct. Eng.*, 17 (4): 534–554. Taylor &
996 Francis. <https://doi.org/10.1080/15732479.2020.1845753>.

997 Rosenheim, N., R. Guidotti, P. Gardoni, and W. G. Peacock. 2021. "Integration of detailed
998 household and housing unit characteristic data with critical infrastructure for post-hazard
999 resilience modeling." *Sustain. Resilient Infrastruct.*, 6 (6): 385–401. Taylor & Francis.
1000 <https://doi.org/10.1080/23789689.2019.1681821>.

1001 Roueche, D., S. Kameshwar, J. Marshall, N. Mashrur, T. Kijewski-Correa, K. Gurley, I.
1002 Afanasyeva, G. Brasic, J. Cleary, D. Golovichev, O. Lafontaine, F. Lombardo, L. Micheli,
1003 B. Phillips, D. Prevatt, I. Robertson, J. Schroeder, D. Smith, S. Strader, M. Wilson, K.
1004 Ambrose, H. Rawajfih, and L. Rodriguez. 2020. *Hybrid Preliminary Virtual
1005 Reconnaissance Report-Early Access Reconnaissance Report (PVRR-EARR) in StEER -*

1006 *Hurricane Laura*. DesignSafe-CI. <https://doi.org/10.17603/ds2-ng93-se16>.

1007 Roueche, D., S. Kameshwar, M. Vorce, T. Kijewski-Correa, J. Marshall, N. Mashrur, K.

1008 Ambrose, C. Brown, O. Childress, D. Fox, K. Morris, H. Rawajfih, and L. Rodriguez. 2021.

1009 *Field Assessment Structural Teams: FAST-1, FAST-2, FAST-3 in StEER-Hurricane Laura*.

1010 DesignSafe. <https://doi.org/10.17603/ds2-dha4-g845>.

1011 Shultz, S. 2017. “Accuracy of HAZUS General Building Stock Data.” *Nat. Hazards Rev.*, 18 (4).

1012 [https://doi.org/10.1061/\(ASCE\)NH.1527-6996.0000258](https://doi.org/10.1061/(ASCE)NH.1527-6996.0000258).

1013 SimCenter. 2022. “Building Recognition using AI at Large-Scale, NHERI SimCenter

1014 Documentation.” <https://nheri-simcenter.github.io/BRAILS-Documentation/index.html>.

1015 Stewart, R., M. Urban, S. Duchscherer, J. Kaufman, A. Morton, G. Thakur, J. Piburn, J. Moehl,

1016 and R. Stewart stewartrn. 2016. “A Bayesian machine learning model for estimating

1017 building occupancy from open source data.” 81: 1929–1956.

1018 <https://doi.org/10.1007/s11069-016-2164-9>.

1019 Tan, M., R. Pang, and Q. V. Le. 2020. “EfficientDet: Scalable and Efficient Object Detection.”

1020 *Proc. IEEE/CVF Conf. Comput. Vis. pattern Recognit.*, 10781–10790.

1021 Waddell, P. 2002. “UrbanSim: Modeling Urban Development for Land Use, Transportation, and

1022 Environmental Planning.” *J. Am. Plan. Assoc.*, 68 (3): 297–314. Paul Waddell.

1023 <https://doi.org/10.1080/01944360208976274>.

1024 Wang, C., S. Govindjee, F. McKenna, S. Yu, M. Schoettler, and K. Law. 2021a. “SimCenter

1025 Labeled Building Facades from Street View | DesignSafe-CI.” DesignSafe.

1026 https://doi.org/10.17603/ds2-z5ra-2260.

1027 Wang, C., S. Hornauer, B. Cetiner, Y. Guo, F. McKenna, Q. Yu, S. X. Yu, E. Taciroglu, and K.
1028 H. Law. 2021b. “NHERI-SimCenter/BRAILS: Release v2.0.0.”
1029 https://doi.org/10.5281/ZENODO.4570554.

1030 Wang, C., K. Zhong, B. Cetiner, T. Kijewski-Correa, A. Zsarnóczay, F. McKenna, and G.
1031 Deierlein. 2021c. “SimCenter Hurricane Testbed: Lake Charles, LA.” DesignSafe-CI.
1032 https://doi.org/10.17603/ds2-jpj2-zx14.

1033 Yu, Q., C. Wang, B. Cetiner, S. X. Yu, F. McKenna, E. Taciroglu, and K. H. Law. 2019.
1034 “Building Information Modeling and Classification by Visual Learning At A City Scale.”
1035 https://doi.org/10.5281/zenodo.3996808.

1036 Yu, Q., C. Wang, F. McKenna, S. X. Yu, E. Taciroglu, B. Cetiner, and K. H. Law. 2020. “Rapid
1037 visual screening of soft-story buildings from street view images using deep learning
1038 classification.” *Earthq. Eng. Eng.*, 19 (4). https://doi.org/10.1007/s11803-020-0598-2.

1039 Zhou, Y., H. Qi, and Y. Ma. 2019. “End-to-End Wireframe Parsing.” *Proc. IEEE/CVF Int. Conf.*
1040 *Comput. Vis.* , 962–971.

1041 Zsarnoczay, A. 2019. “NHERI-SimCenter/pelicun: pelicun v2.0.0.” Accessed March 12, 2022.
1042 https://zenodo.org/record/3491100.

1043 Zsarnóczay, A., A.-M. Deierlein, Gregory G. Williams, Caroline J. Kijewski-Correa, Tracy L.
1044 Esnard, L. Lowes, and L. Johnson. 2022. “Community Perspectives on Simulation and Data
1045 Needs for the Study of Natural Hazard Impacts and Recovery.” *Nat. Hazards Rev.*, In Press.

1046 Zsarnóczay, A., and G. G. Deierlein. 2020. "PELICUN - A Computational Framework for
1047 Estimating Damage , Loss and Community Resilience." *17th World Conf. Earthq. Eng.*, 1–
1048 12. Sendai, Japan.

1049

Figure Captions

Figure 1. Flow chart depicting the four sequential phases of the augmented parcel approach.

Figure 2. Sample images of the floor detection model (each detection is indicated by a green bounding box). The percentage value shown on the top right corner of a bounding box indicates model confidence level associated with that prediction.

Figure 3. Confusion matrices for the `NumberOfStories` predictor for (a) in the wild and (b) cleaned images.

Figure 4. Validation of predicted *OccupancyClass* using (a) OpenStreetMap and (b) NJDEP.

Figure 5. SURF-predicted YearBuilt based on NSI data compared to “ground truth” scraped from Zillow real estate listings in Lake Charles, LA displayed as (a) scatter plot and (b) histogram. Dashed lines denote +/- 10-years.

Figure 6. Examples of garage detection model showing successful identification of attached garages.

Figure 7. Confusion matrices for the garage predictor for validation sets from (a) New Jersey and California and (b) Lake Charles, LA.

Figure 8. Geospatial visualization of occupancy for New Jersey inventories with summaries of: occupancy class, year built and number of stories. Inset maps show progressive zoom-in on Atlantic City and surrounding municipalities.

Figure 9. Geospatial visualization of year built for the Lake Charles, LA building inventory with summaries of: (a) number of stories, (b) occupancy class, and (c) year built. Inset box identifies two clusters of buildings used in subsequent validations.

Figure 10. Geospatial distribution of (a) damage states and (b) loss ratios for Lake Charles inventory with cumulative distribution functions for (c) damage state and (d) expected loss ratio for Hurricane Laura Validation Exercise.

Figure 11. Parametric verification of expected loss ratio as a function of *YearBuilt* for case study single family home in Lake Charles inventory.

Figure 12. Difference between Zillow and NSI predicted (a) YearBuilt and (b) Damage State for Lake Charles inventory.

Figure 13. (a) Probability of meeting or exceeding DS-2 and DS-3 and (b) probability of meeting or exceeding the expected damage state using NSI-trained results based on YearBuilt for Lake Charles inventory.

Figure 14. Validation of BRAILS-predicted roof shapes to roof shapes labeled by StEER assessors in Lake Charles metro area.

Figure 15. (a) Damage State distribution compared to median damage state of StEER Buildings, (b) influence of uncertainty in YearBuilt on simulated Damage States, (c) influence of uncertainty in Peak Wind Speed on simulated Damage States, (d) influence of uncertainty in YearBuilt on simulated Damage States for low shuddering compliance. Red trend line shows the average of the displayed bins.

Table 1. Distribution of occupancies and label sources for occupancy classifier (N=15,743)

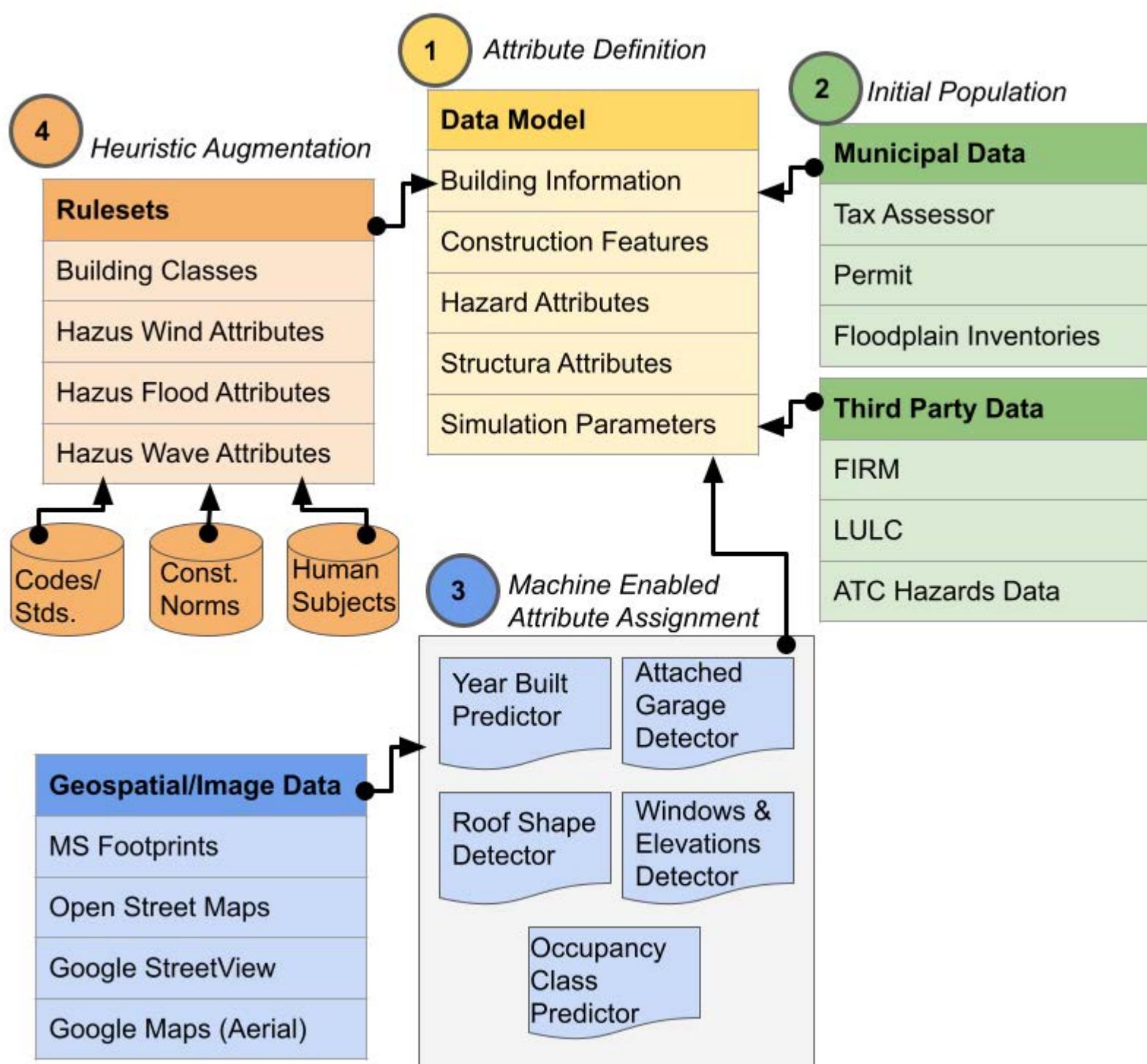
	RES 1	RES3	COM
OpenStreetMap	2,868	2,207	2,418
NJDEP	4,999	2,867	386
Total	7,868	5,074	2,804

Table 2. Methodology adopted for ruleset development

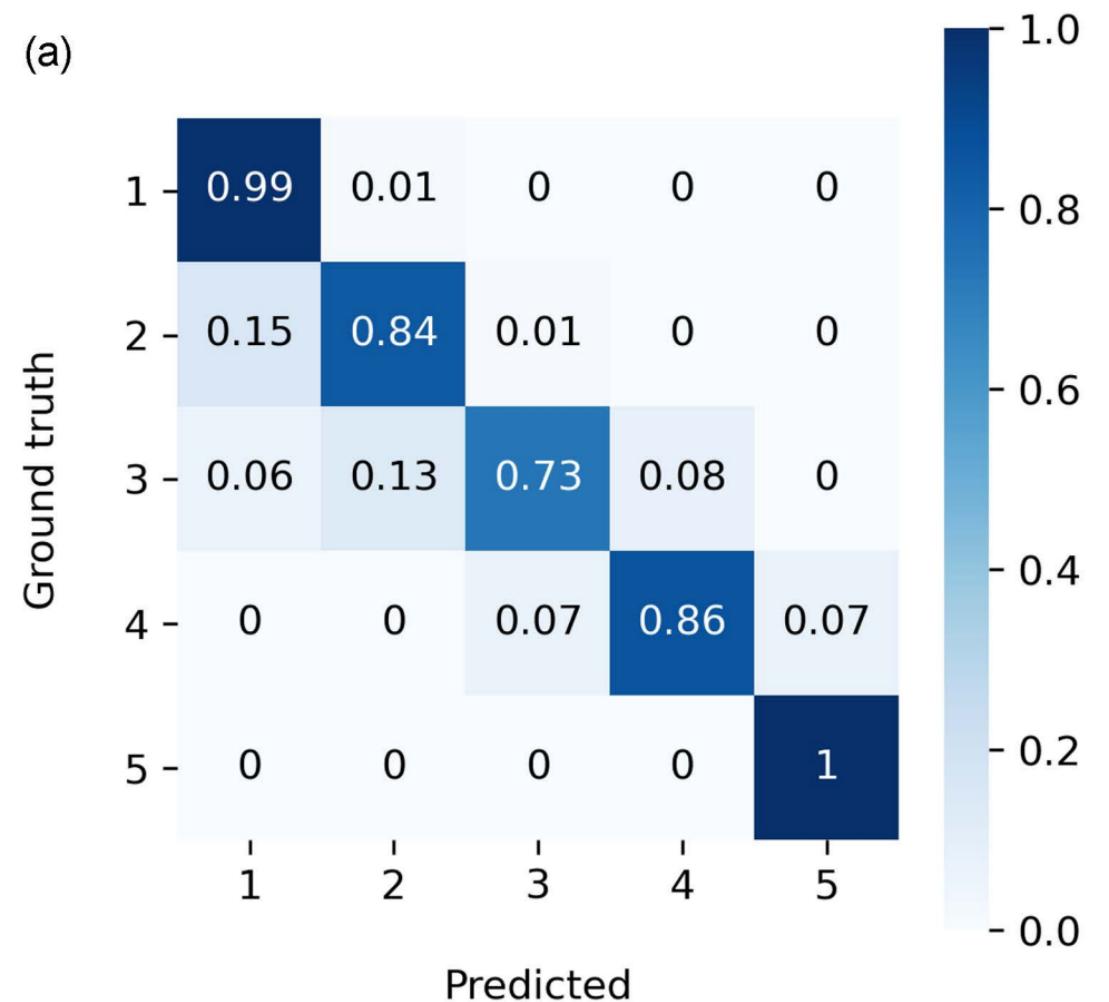
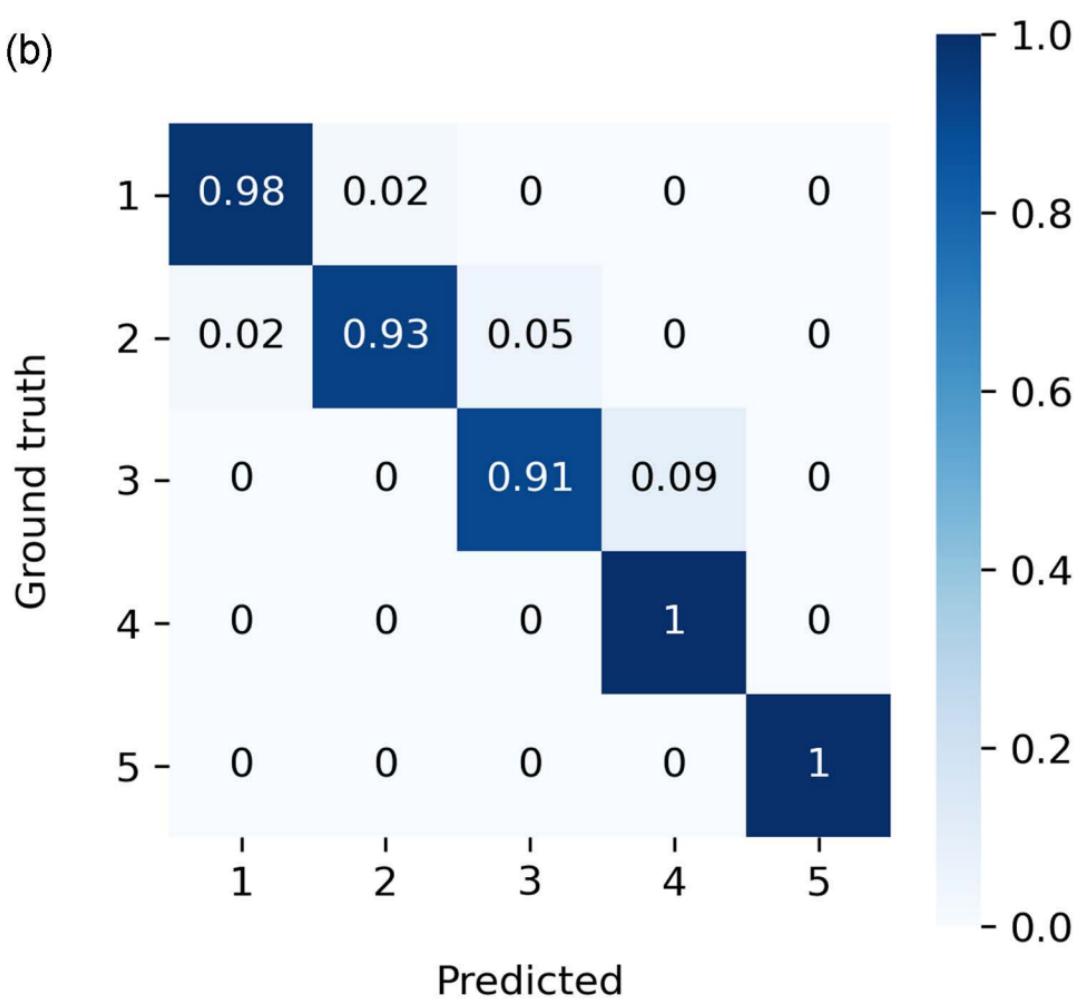
Attribute	Description	CS	PN	HS	RV	DA
Structural Attributes: Wind						
RoofSystem	Underlying roof structure			X		
SecondaryWaterResistance	Secondary Water Resistance (SWR)	X		X	X	
RoofCover	Roof cover material			X		
RoofQuality	Roof cover quality			X		
RoofDeckAttachmentW	Wood Roof Deck Attachment (RDA)	X			X	
RDA-OWSJ	OWSJ Roof Deck Attachment (RDA)	X				
RoofToWallConnection	Roof to Wall Connection (R2WC)	X				
Shutters	Window opening protection	X		X	X	
AttachedGarage	Presence of attached garage					X
MasonryReinforcing	Presence of reinforcement in masonry walls		X			
OWSJ-r	Property of open web steel joist (OWSJ)				X	
RoofDeckAttachmentM	Defines metal roof deck attachment (RDA)		X			
RoofDeckAge	roof deck age			X		
UnitClass	number of units in strip mall					X
JoistSpace	joist spacing for multi-unit strip malls		X			
WindDebris	likely sources of wind debris		X			
WindowAreaRatio	window to wall ratio (WWR)		X			X
TieDowns	Foundation attachment (mobile homes)	X			X	
Structural Attributes: Flood						
FloodType	Flood zone type					X
FirstFloorElev	First floor elevation, defined by Hazus					X
PostFIRM	FIRM applicability		X			
NumberofStoriesH	Hazus-defined number of stores					X
BasementType	Hazus basement classification					X
OccupancyType	Hazus occupancy type					X

Notes: Assigned by CS: codes/standards, PN: local construction practices/norms, HS: human-subjects surveys,

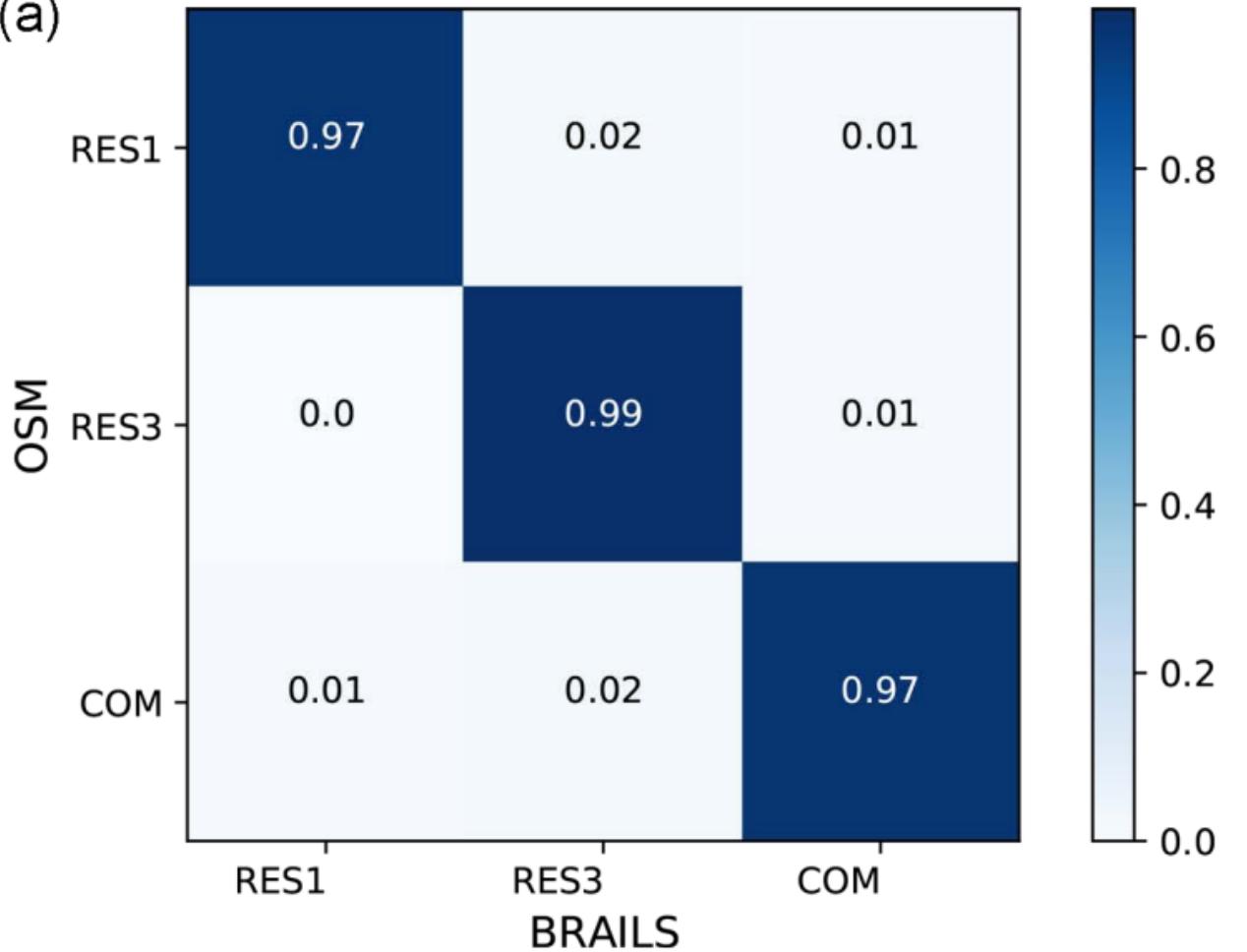
RV: random variable, DA: direct assignment on other fields.



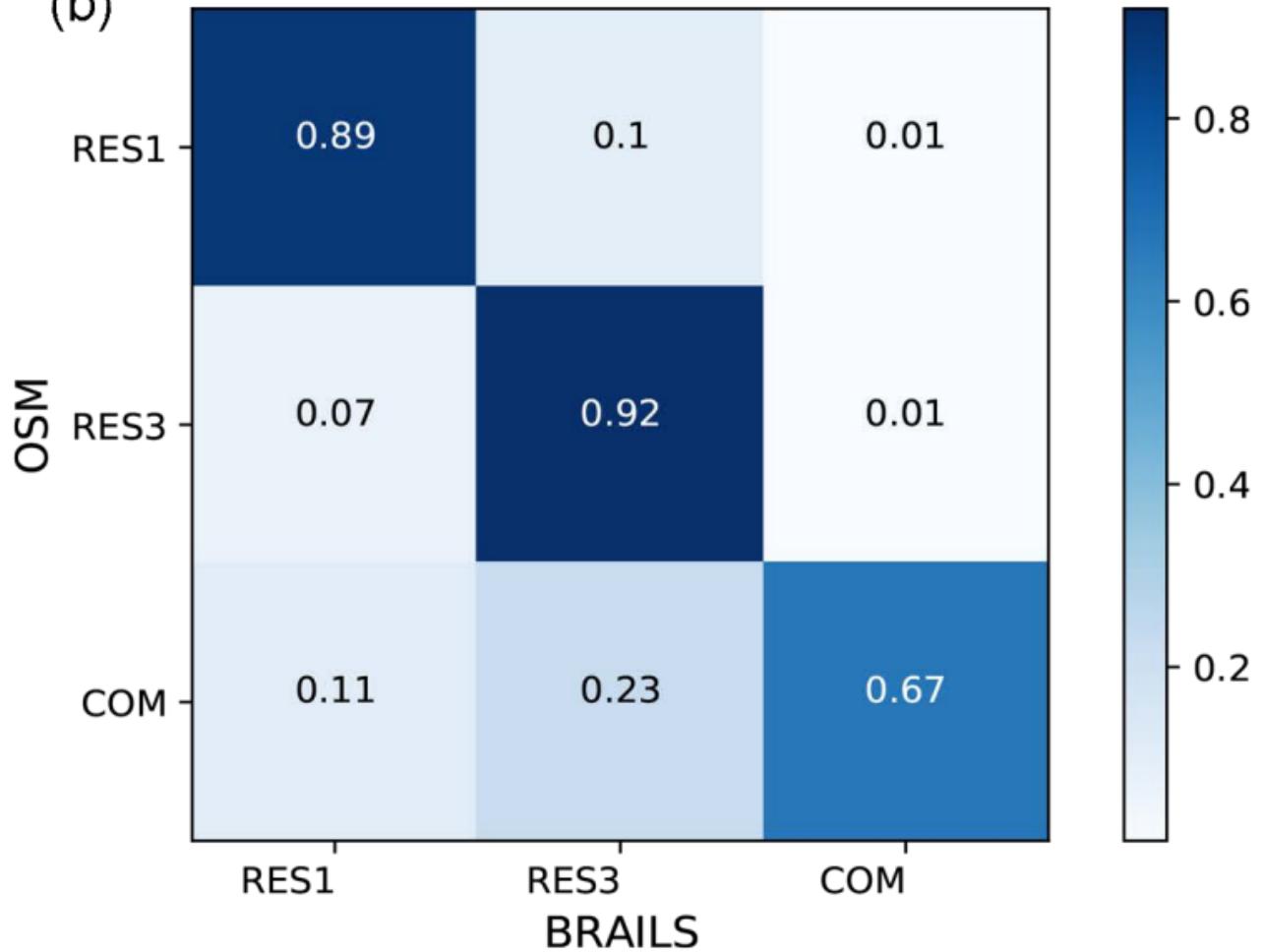


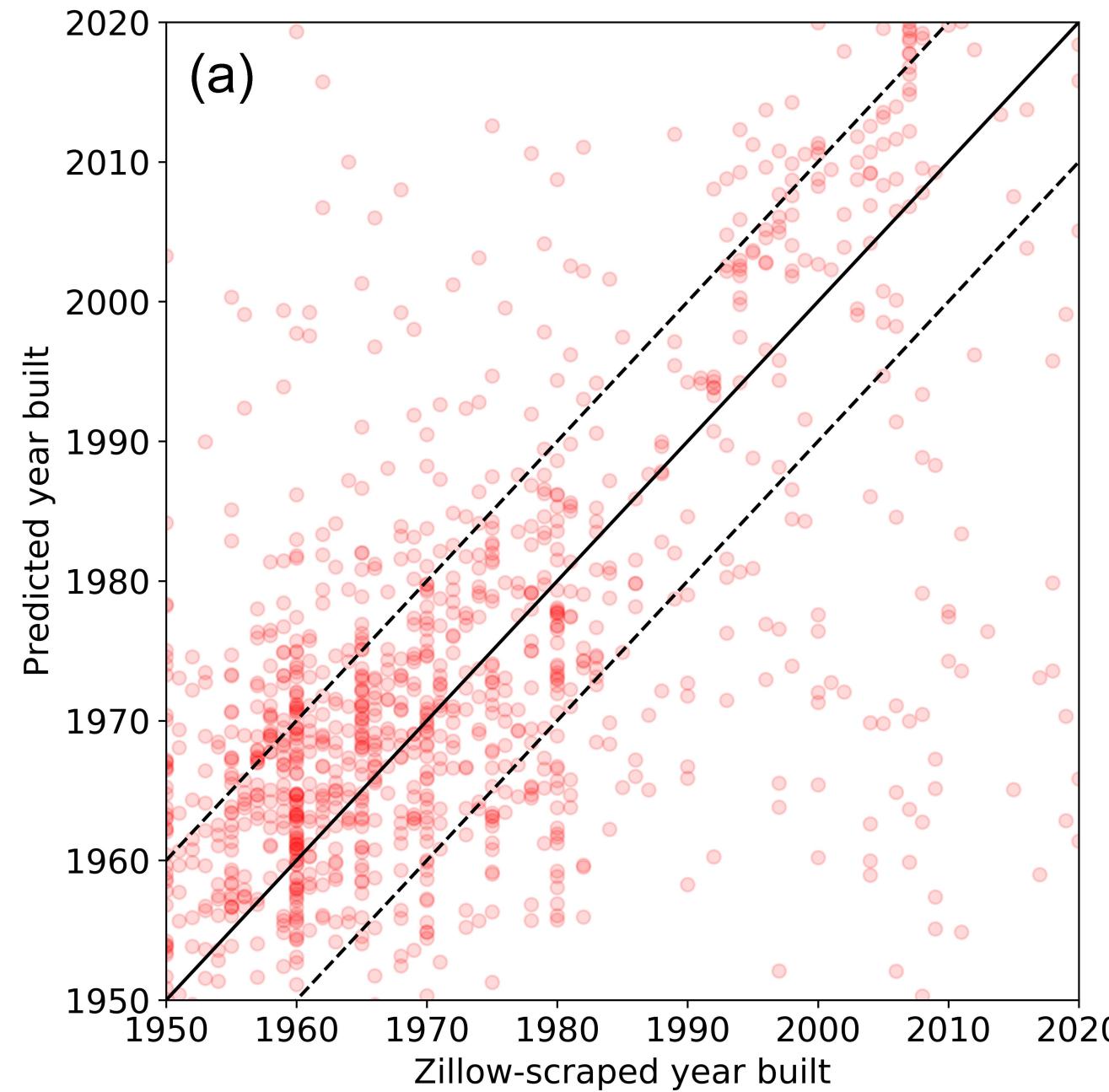
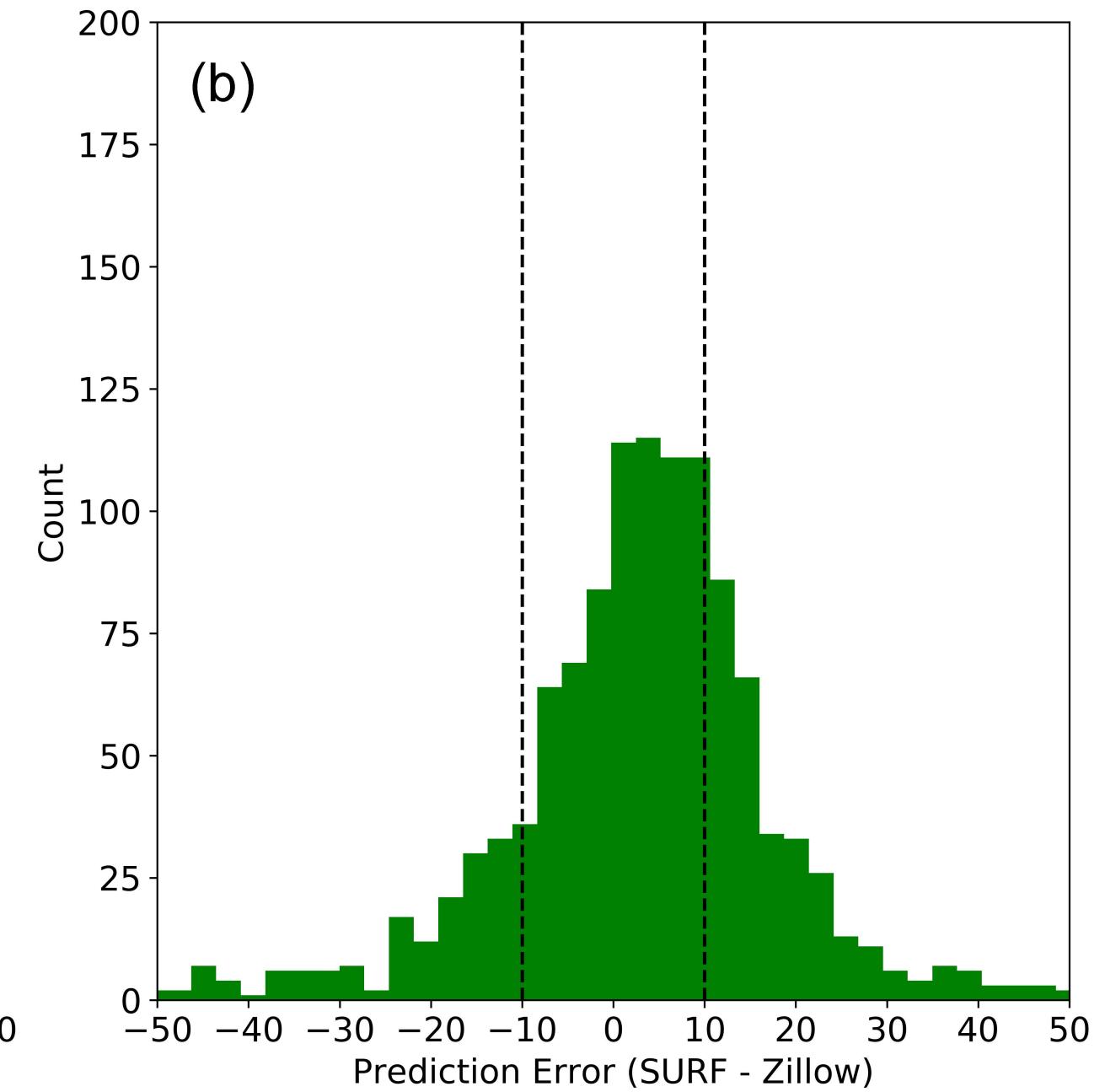


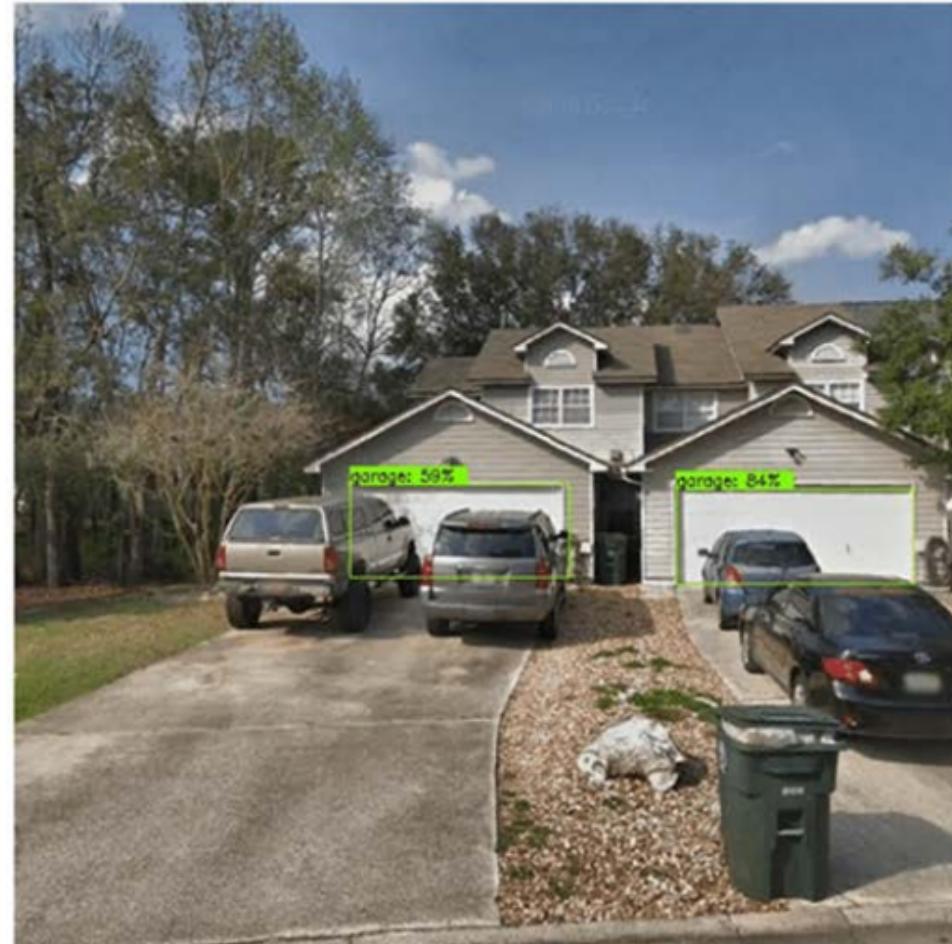
(a)

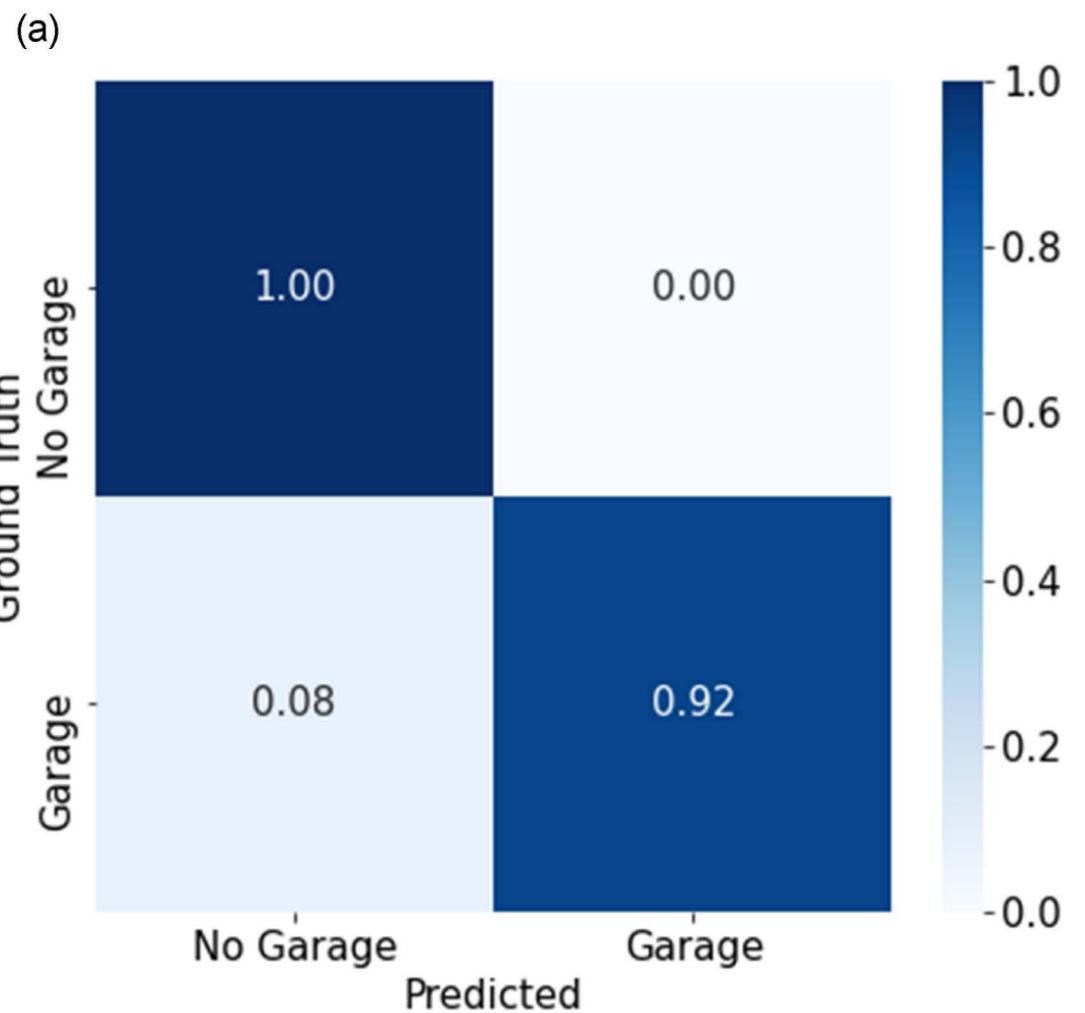
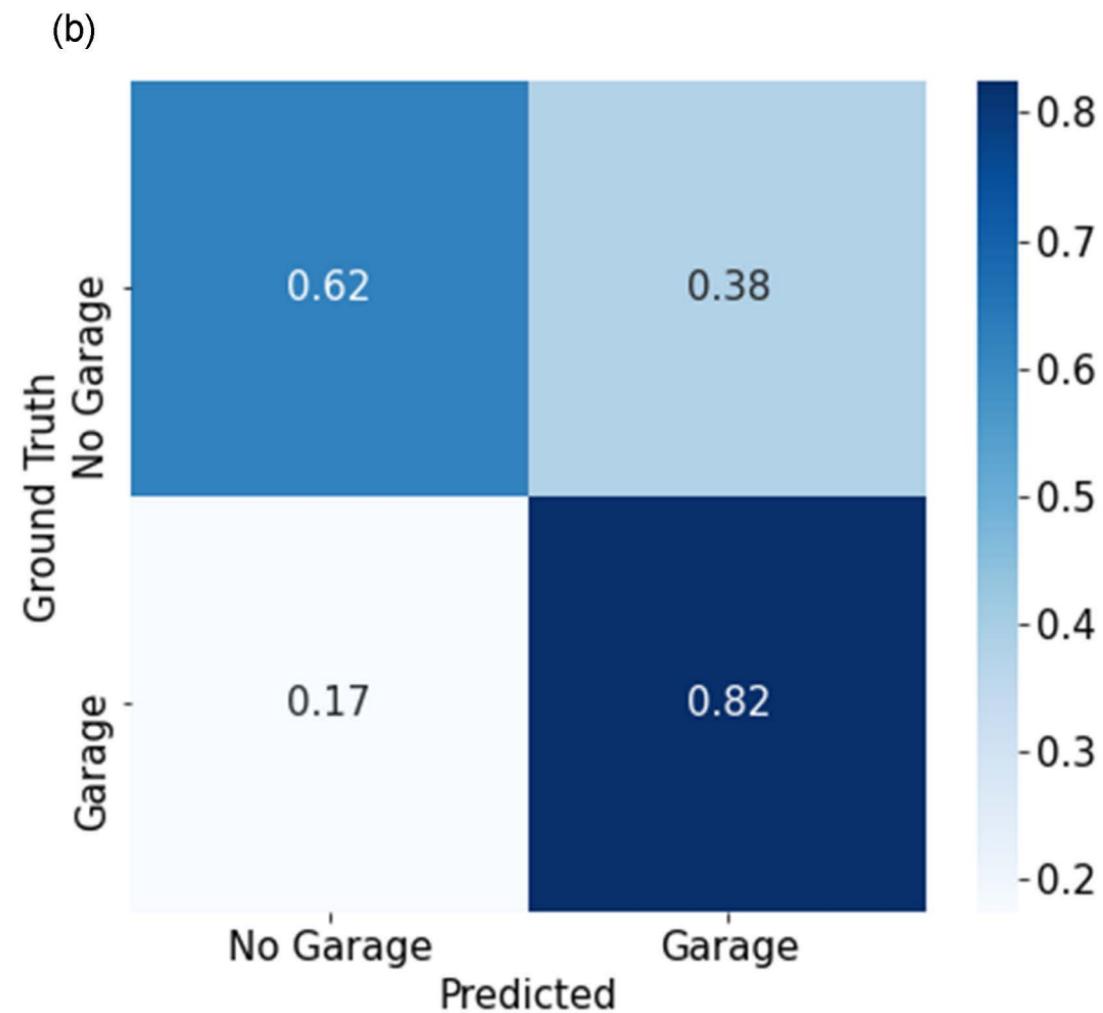


(b)

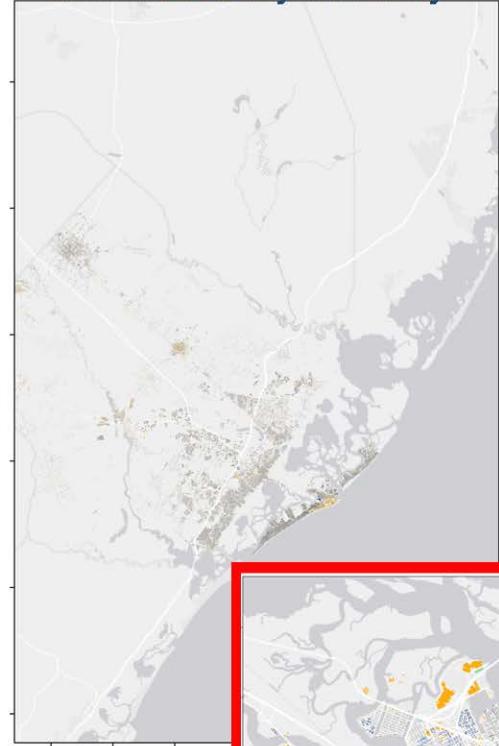








Atlantic County Inventory



Flood-Exposed Inventory

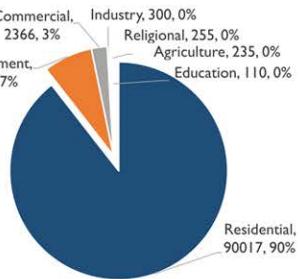
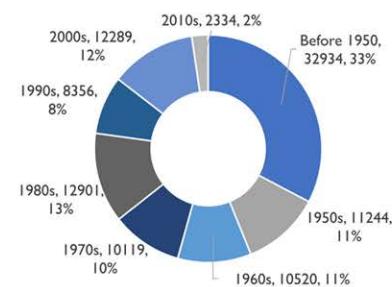
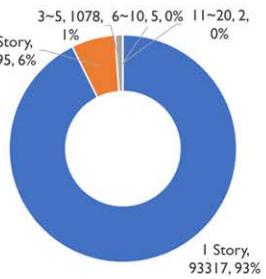


Occupancy

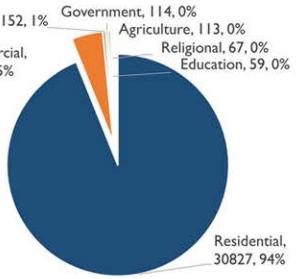
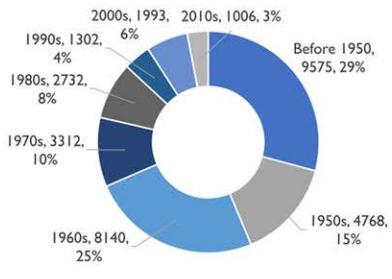
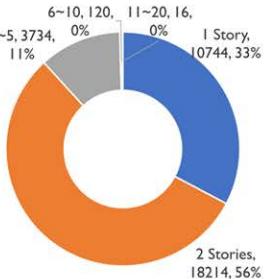
Year Built

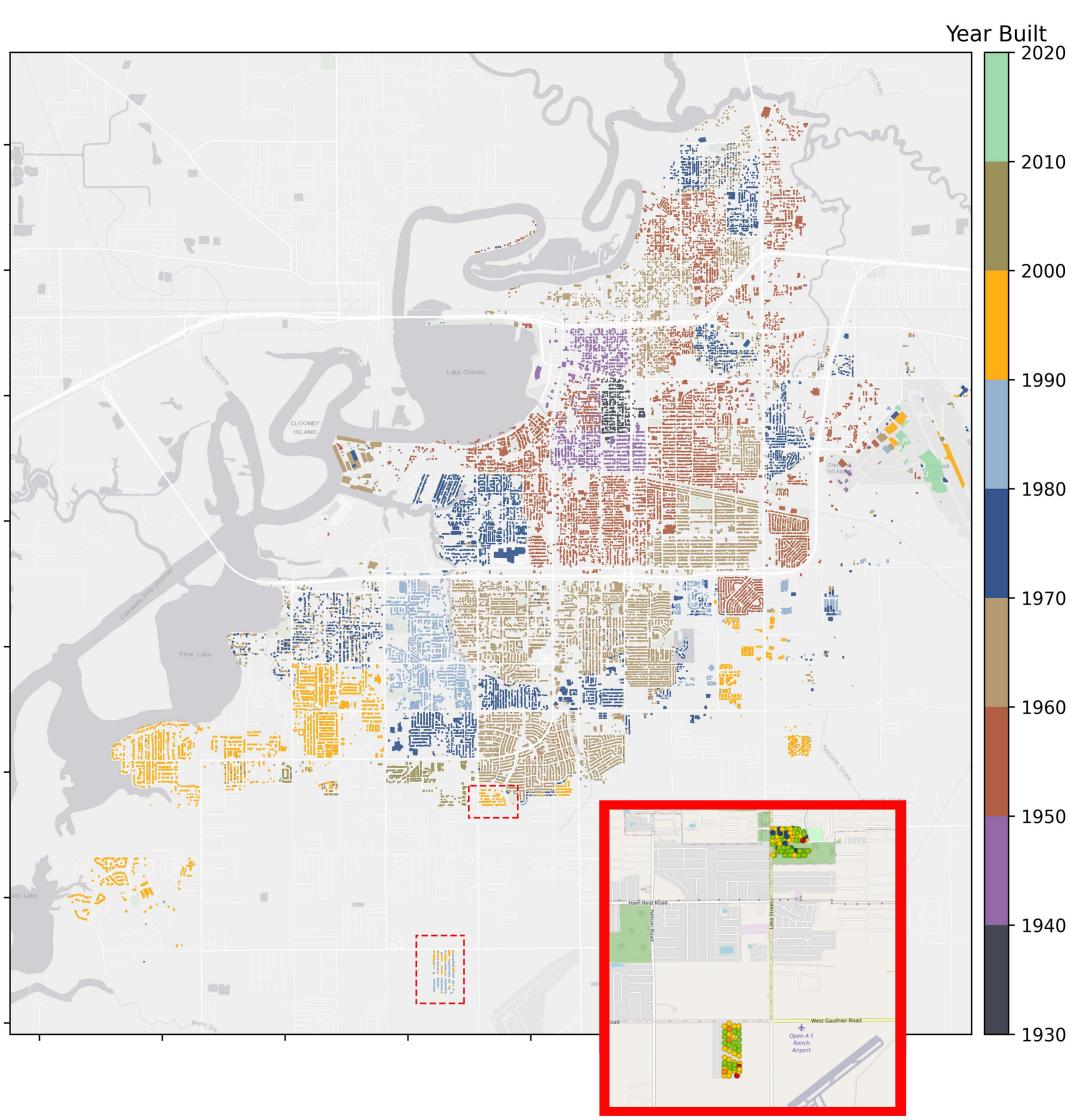
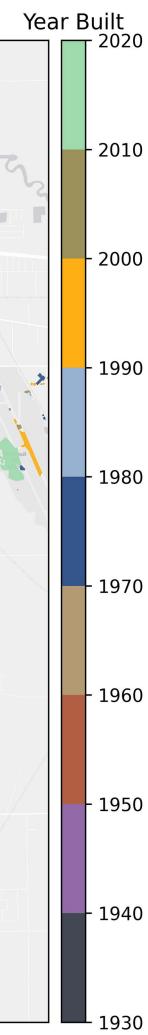
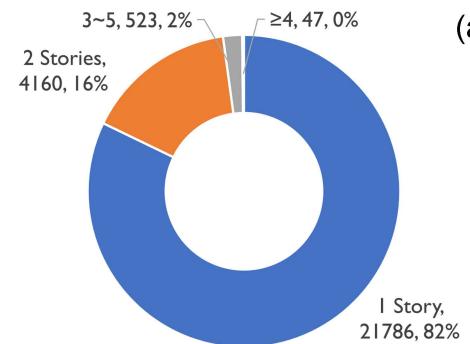
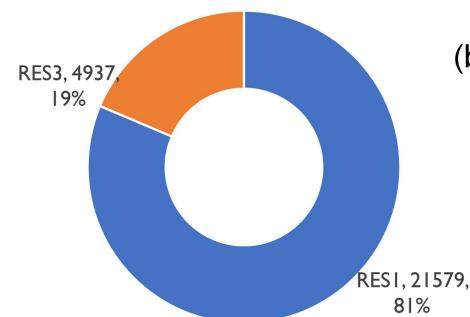
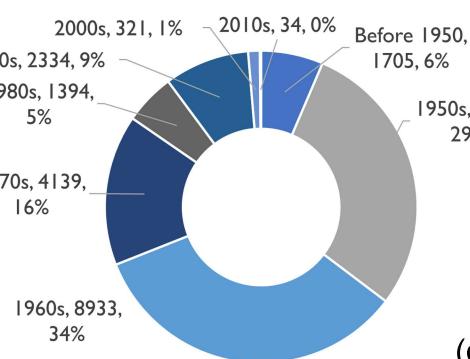
Number of Stories

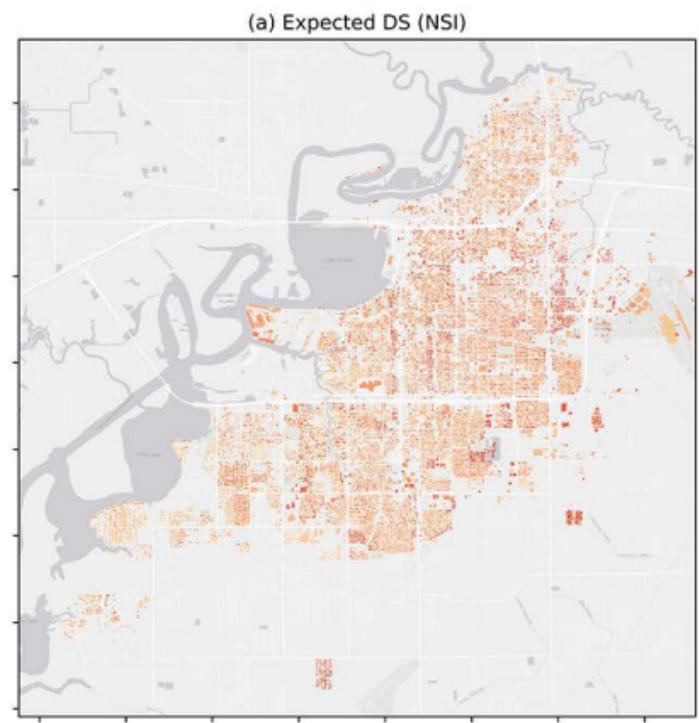
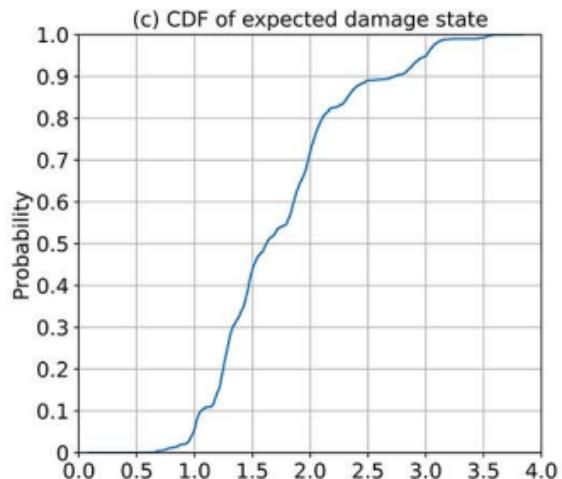
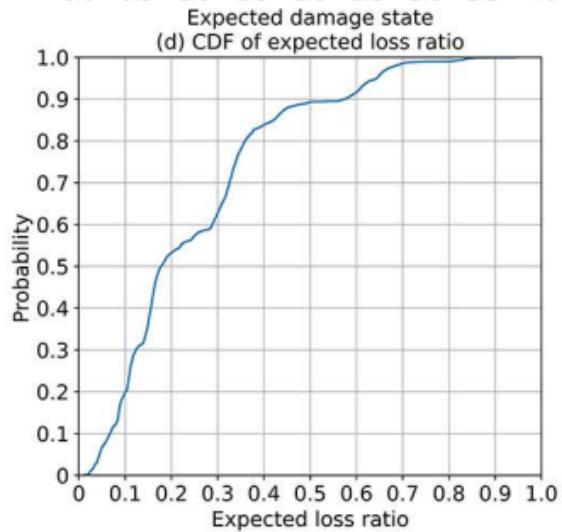
Atlantic County Inventory

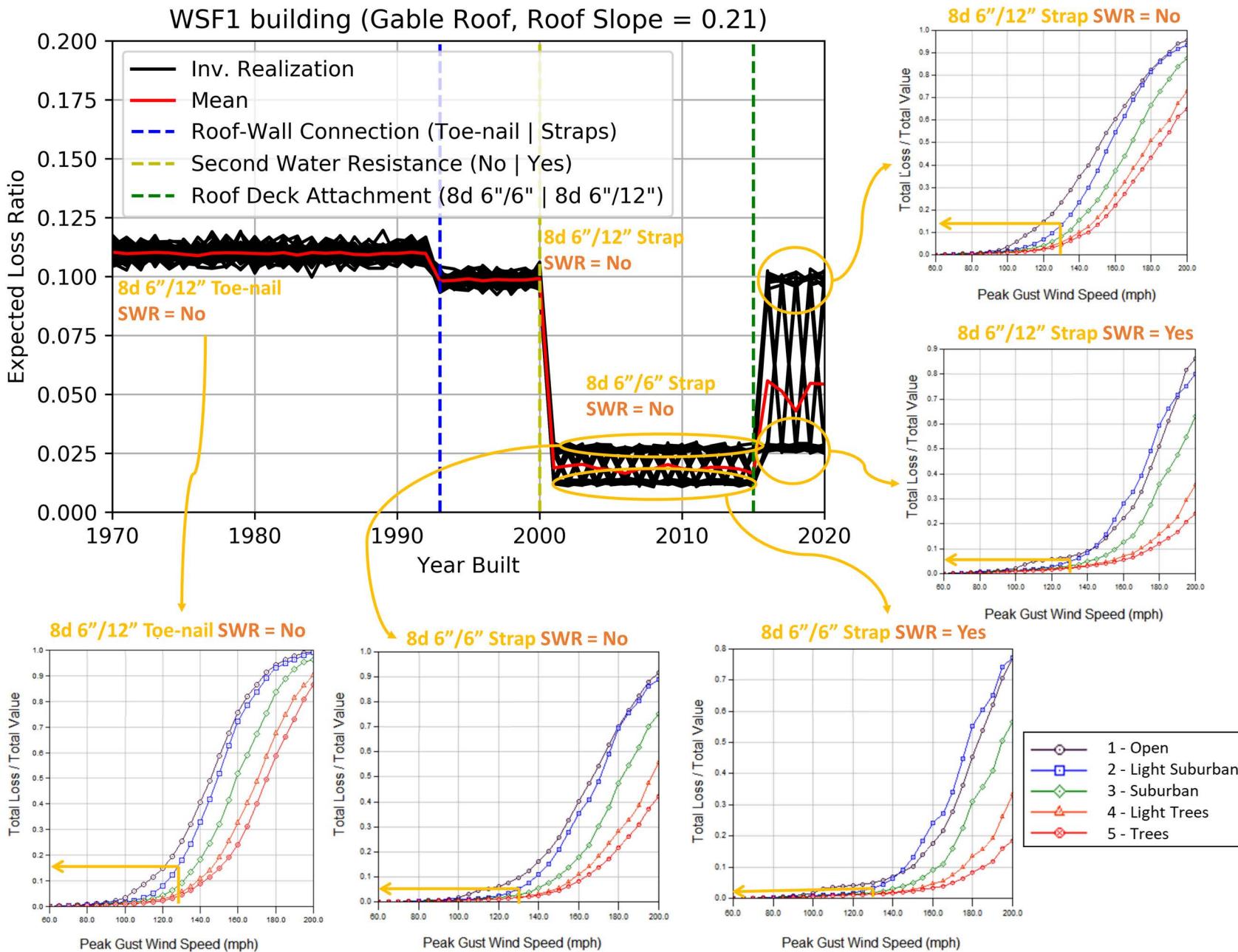


Flood-Exposed Inventory

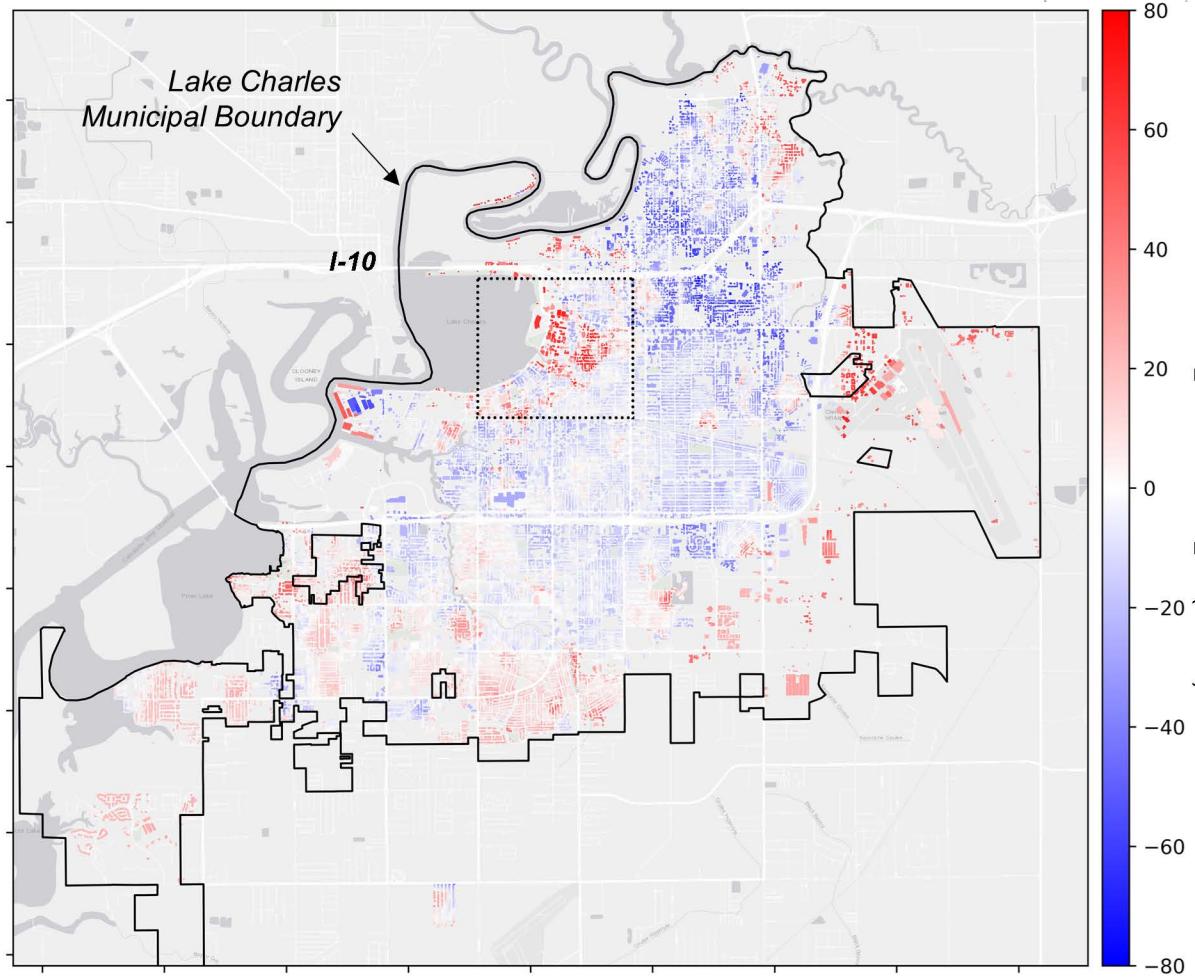




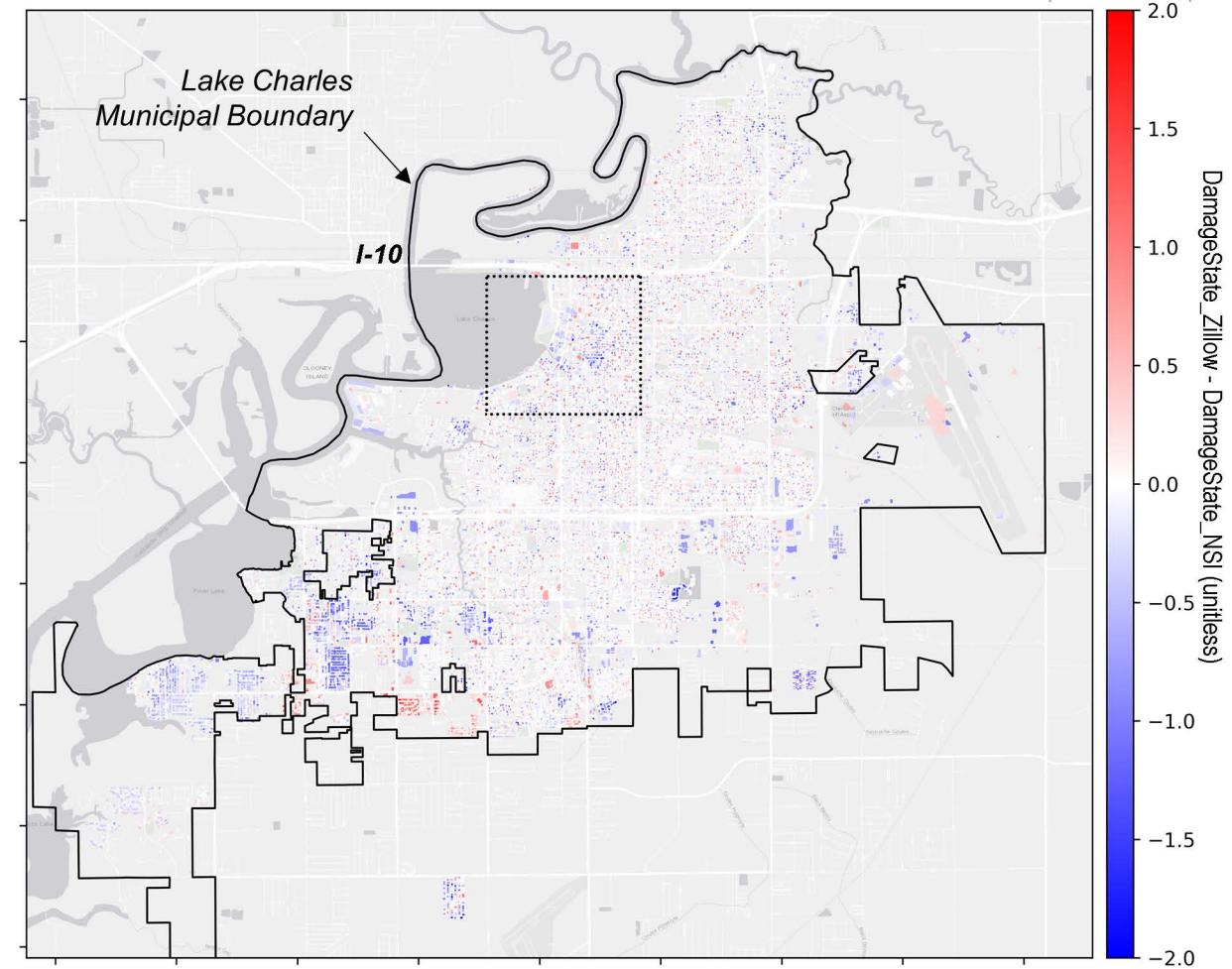


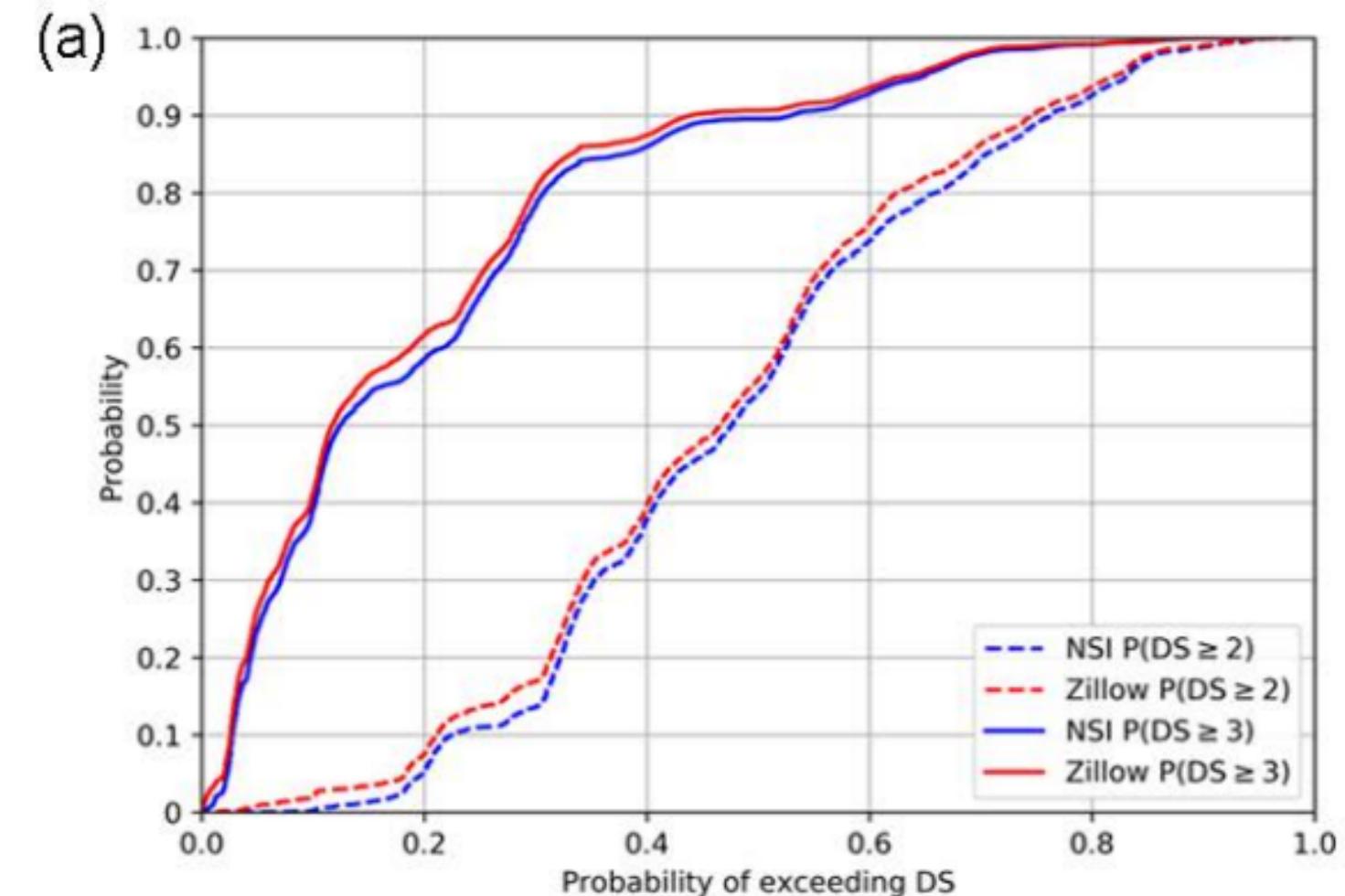
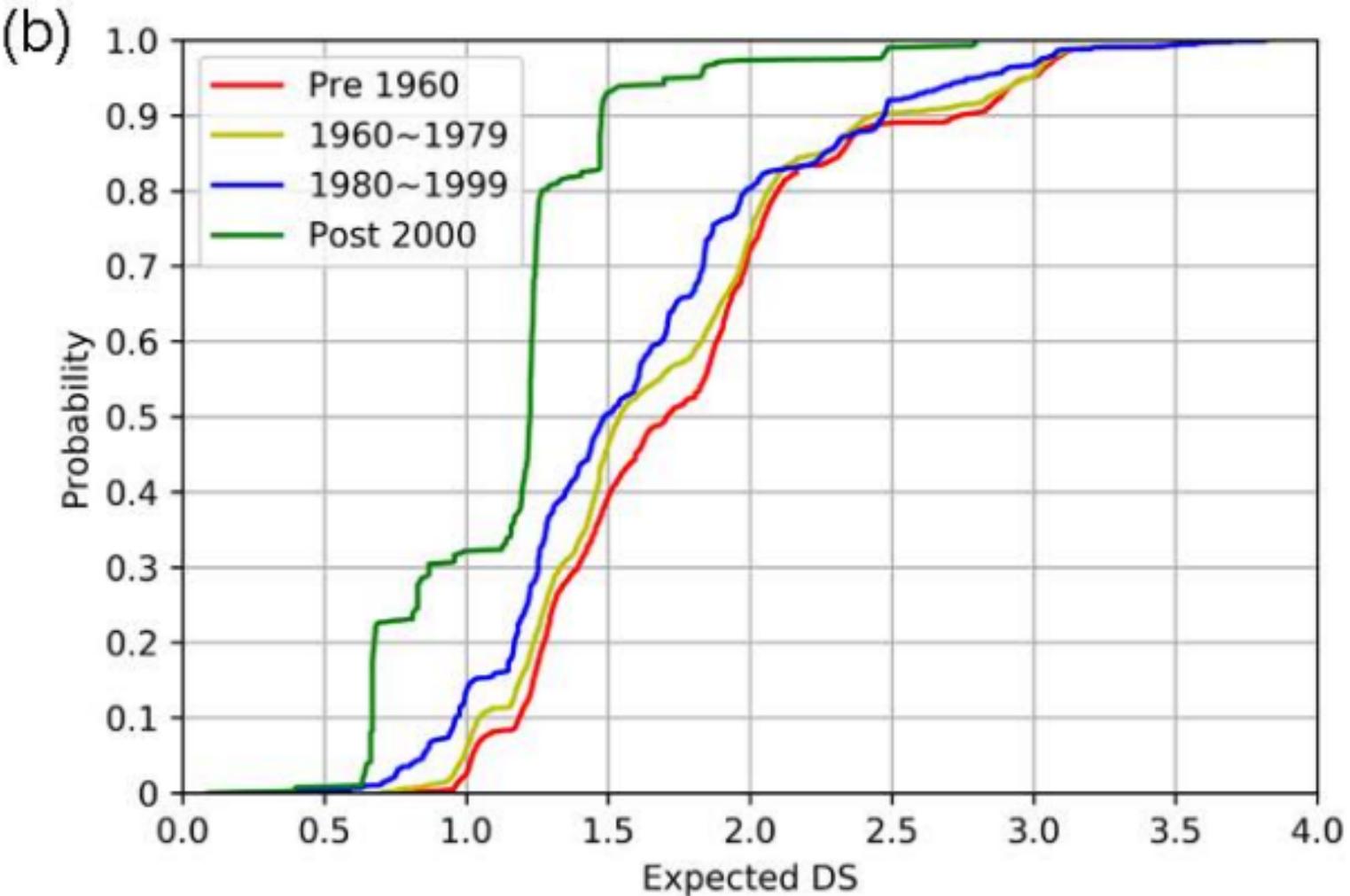


(a)



(b)





Confusion matrix

