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Abstract 21 

While simulation environments for the study of community resilience are rapidly advancing, 22 

they remain constrained by the completeness of inventory data. This paper presents an 23 

augmented-parcel approach leveraging various sources of open data, machine learning modules 24 

and time-evolving rulesets to support Hazus-compatible risk assessments on a wide class of 25 

buildings under hurricane wind and flood hazards. These techniques are implemented within the 26 

open-source regional hurricane loss assessment workflow of the NHERI SimCenter. Illustrative 27 

examples demonstrate building inventory generation in both data-rich and data-scarce 28 
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environments. The study’s validations of computer vision-based modules underscore the 29 

importance of training on “in the wild” images labeled with explicit knowledge of the region and 30 

representative of architectural nuances such as carports. Validations further reveal the challenges 31 

of simplifying complex contemporary roof geometries to the simplified shapes adopted in Hazus 32 

and the criticality of accurate year built data, given the augmented parcel approach’s reliance on 33 

time-evolving code-based rulesets. Published field observations collected in Lake Charles, LA 34 

following the landfall of Hurricane Laura demonstrate that the use of an augmented-parcel 35 

inventory within the SimCenter’s workflow for Hazus-compatible loss assessments yields 36 

damage states consistent with ground-truth observations for minor to moderate damage states. 37 

Simulations of extreme damage states (characterized by fewer ground-truth observations) bias 38 

toward minor damage for undamaged structures and plateau at moderate damage even for 39 

severely damaged and collapsed buildings. This trend persists when considering uncertainty in 40 

hazard intensity, as well as the low rates of shutter compliance. Root causes of inconsistencies 41 

revealed in this validation exercise will require further processing of street-level panoramic 42 

images to generate more samples of severely damaged and collapsed buildings as well as post-43 

2007 construction.  44 

1.0 Introduction   45 

Communities are routinely faced with the challenge of describing their inventories of buildings 46 

and other infrastructure assets. Ultimately the way in which inventories are described, and the 47 

fidelity and frequency with which those descriptions are updated, depends entirely on the end use 48 

of that data, creating challenges when that data is then leveraged for engineering analyses 49 

(Zsarnóczay et al. 2022). Some of the earliest forms of inventorying were driven by the need to 50 
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assess value for the purposes of taxation, e.g., (Department of the Treasury 2018); it was only 51 

fitting that these same inventories were mobilized by the need to assess losses for the purposes of 52 

catastrophe. Soon the assessment of losses under different disaster scenarios, as either part of 53 

planning and preparedness or during response and recovery, e.g., (New Jersey Office of 54 

Emergency Management 2014), became a routine exercise in hazard-exposed communities, 55 

creating a new valuable end use for inventory data, e.g., (New Jersey Department of 56 

Environmental Protection 2019).  57 

The generation of such inventories can be conceptualized as a classification exercise, 58 

where the degree of nuance required in the data model, and thus the number of fields, is dictated 59 

by the fidelity of the loss estimation approach adopted. While the Hazus general building stock 60 

has been engaged by scholars, practitioners and policymakers, it has inherent limitations with 61 

respect to the granularity and accuracy it affords (Shultz 2017). Developing a context-specific 62 

inventory capable of overcoming these limitations requires parsing data, often from a number of 63 

sources, to construct the inventory. Unfortunately, the completeness and reliability of the data 64 

exposed by local authorities varies widely, especially where governments have limited capacity 65 

to generate, maintain and expose even the most basic inventory data, challenging the notion of 66 

standardizing inventory generation using data sources that are relevant, consistent, and useful 67 

(Jaiswal and Wald 2008). Still, the efforts to create a global earthquake model have made 68 

important strides in cataloging the distribution of buildings in such environments based on 69 

material, lateral force resisting system, and occupancy type (Jaiswal et al. 2010), and the use of 70 

Bayesian updating based on open-source data has continued to evolve the capacity to classify 71 

occupancies (Stewart et al. 2016). For hurricanes, efforts like the Florida Public Loss Model 72 
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have made important strides to both highlight the challenges of integrating diverse sources of 73 

data for catastrophe models and offer multi-faceted strategies to address the associated 74 

uncertainties (Pinelli et al. 2020). Other states like New Jersey have made similar strides in 75 

assembling critical data needed to assess risks due to hurricanes, with efforts centered on 76 

federating a large number of hazard and inventory data sources into singular geospatial 77 

environments (Kijewski-Correa et al. 2020). The Center for Risk-Based Community Resilience 78 

Planning has also worked on develop building inventories for testbeds exposed to different 79 

hazards, which include applications to tornadoes (Joplin, MO), hurricanes/coastal flooding 80 

(Lumberton, NC and Galveston, TX), and tsunamis (Seaside, OR), accessible through their IN-81 

CORE platform (Center for Risk-Based Community Resilience Planning 2022), using a variety 82 

of methodologies developed by the Center (Rosenheim et al. 2021). Their efforts have 83 

highlighted the need for more precise building descriptions and potentially the purchase of 84 

inventories from third-party providers or the creation of inventories using tax appraiser data, 85 

which inevitably requires additional enrichment with structural data in order to be used for 86 

hazard risk assessment (Roohi et al. 2021). Tax appraiser data also inevitably has gaps in its 87 

reported fields, which may be addressed by manually interrogating Google Street View and 88 

satellite imagery or conducting a rapid visual screening in the field (Park et al. 2017), and further 89 

automated using deep learning approaches (Aravena Pelizari et al. 2021). Access to other data 90 

sources and models can further enrich the economic and demographic information associated 91 

with each parcel (Waddell 2002).  92 

The issues surrounding the completeness and accuracy of available inventory data are 93 

only compounded by the fact that high-performance computing has now enabled the theoretical 94 



5 

frontiers of loss estimation to move away from their origins as an aggregated measure of impacts 95 

to portfolios of buildings described by fragilities and toward the description of specific assets by 96 

physics-based models (Deierlein and Adam Zsarnóczay 2021). The exciting potential for 97 

increasing granularity and fidelity of loss estimation that can bring assessments down to the scale 98 

at which individual mitigation decisions are made will unfortunately outpace the existing 99 

inventory-generation mechanisms in municipalities, requiring new venues to characterize the 100 

growing list of required geometries, dimensions and components across thousands of buildings. 101 

  Fortunately, technological advancements are poised to address these challenges both by 102 

aiding municipalities in more efficiently generating and exposing valuable digital information 103 

and also maximizing the discovery potential from existing data sources. For example, fusions of 104 

blockchain technology (BCT) and building information modeling (BIM) are now streamlining 105 

post-disaster permitting (Nawari and Ravindran 2019) and thereby digitizing data critical to loss 106 

modeling. Meanwhile, innovations in computer vision and machine learning have helped to 107 

automate the digitization of inventories from aerial and surface imagery at various scales, from 108 

coarse spatial and fine temporal scales necessary to characterize the evolution of cities in data-109 

scarce settings (Jaiswal et al. 2010) to finer spatial scales necessary to resolve features like soft-110 

stories (Yu et al. 2019). As the lack of high-quality, parcel-level descriptions of building 111 

inventories could potentially stymie the rapid advances in computational simulation capabilities 112 

for high-fidelity loss assessment, continuing to advance the ability to automate the mining, 113 

enrichment and augmentation of existing data sources is vital to inventory development. 114 

In response this paper offers the following contributions: (1) the introduction of an 115 

augmented-parcel approach, defined as a set of operations that enrich the information normally 116 
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exposed for parcels within municipal databases. Augmented-parcel approach leverages existing 117 

open data, machine-enabled techniques, and heuristic rulesets grounded in local codes/standards 118 

and normative construction practices to automatically generate a suite of hazard and structural 119 

attributes necessary to conduct loss assessments and in a manner that is replicable and tractable 120 

over large-scale inventories. Illustrative examples in Atlantic County, NJ and Lake Charles, LA 121 

(2) demonstrate the real-world application of the augmented-parcel approach to generate large-122 

scale inventories for Hazus-compatible loss assesssment, overcoming data deficits in settings 123 

with limited data availability. Finally, (3) validations throughout the paper demonstrate the 124 

performance of various parcel augmentation strategies using ground truth data and offer a 125 

validation of Hazus-compatible loss assessments using field observations gathered in Lake 126 

Charles, LA following Hurricane Laura. While the emphasis of this paper is regional hurricane 127 

loss estimation within a Hazus-compatible framework, given the opportunity to validate 128 

computer vision estimates of geometric features required for wind loss estimation, the 129 

methodologies and overall workflow are generalizable to other hazards and loss estimation 130 

approaches, as demonstrated by complementary efforts directed toward detecting features such 131 

as soft stories (Yu et al. 2020) and enabling component-based loss estimation in accordance with 132 

FEMA P-58 (Zsarnóczay and Deierlein 2020).  133 

2.0 Overview of Augmented Parcel Approach 134 

The transition from census-block-level loss projections to parcel-level projections of damage to 135 

individual buildings under hazard events demands a wider range of inventory data, though the 136 

specific building and hazard attributes required depend upon the hazards included in the analysis 137 

as well as the adopted loss modeling approach. The adoption of the Hazus loss modeling 138 
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framework in this study demonstrates specifically how machine learning and computer vision 139 

techniques can be coupled with time-evolving heuristic rulesets grounded in local 140 

codes/standards and normative practice to generate the building information necessary to widen 141 

access to asset-level implementations of this de-facto loss modeling approach, regardless of a 142 

community’s level of data readiness. Following the overall computational workflow in Wang et 143 

al. (2021a), this section describes the process of assigning attributes to a large-scale inventory of 144 

building footprints defined over a specific geographic region. The flow chart in Figure 1 145 

illustrates the various phases of the augmented parcel approach described herein. Illustrative 146 

examples in the subsequent section will then introduce a pair of real-world inventories generated 147 

using this methodology. 148 

2.1 Phase I: Attribute Definition 149 

A generalized data model is first developed to organize the universe of attributes necessary to 150 

describe each of the building footprints. Attributes include all building, hazard and site features 151 

necessary to select the appropriate fragility curve in the Hazus wind and flood loss models, as 152 

well as any secondary variables that may be necessary to assign that attribute based on the data 153 

commonly reported in municipal building inventories used in tax assessment and permitting; 154 

these are organized under the building classes defined by Hazus. See the Supplemental Materials 155 

for a complete listing of the residential, commercial, industrial, agricultural, religious, 156 

government, education and essential facilities building classes defined for hurricane wind (Table 157 

A.1a), inundation (Table A.1b) and wave-induced (Table A.1c) hazards. The structural and 158 

hazard attributes required to assign fragility functions in Hazus wind and flood loss models for 159 

each supporting building class were subsequently inventoried and potential data sources and 160 
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augmentation strategies were mapped to each attribute. While hazard attributes are often 161 

available from third party data (3PD), a review of inventories compiled in the data-rich NJcoast 162 

project (Kijewski-Correa et al. 2020) highlighted a number of structural attributes that were 163 

unlikely to be available in municipal data (MD); evaluation of data scarce communities in 164 

Louisiana suggested that even some basic property data may additionally need to be addressed 165 

through an augmentation strategy. Strategies to address these gaps were identified, including 166 

machine-enabled (ME) techniques and rule-defined (RD) assignments based on legacy building 167 

codes, local construction practices/norms, and human subjects data. By working backwards to 168 

map the finest level of data required to complete a Hazus loss assessment on a specific building 169 

footprint, secondary data required for rules-based assignments were also identified and included 170 

in a comprehensive data model. Supplemental Materials Table A.2 reports the resulting data 171 

model with fields grouped by category: Building Information for basic property data, 172 

Construction Features for largely geometric and dimensional data, Hazard Attributes for wind 173 

and flood-related hazard and site data, Structural Attributes for the data needed by Hazus wind 174 

and flood loss models (FEMA 2018a; b) to select appropriate fragility descriptions, and 175 

Simulation Parameters for regional simulation settings. The method(s) that can be used to 176 

populate each field are also mapped in Table A.2 and detailed in the following subsections, in 177 

some cases providing multiple potential approaches, with some values either default assigned 178 

(A) or derived (D) from other fields.  179 

2.2 Phase II: Initial Population 180 

The data model developed in Phase I is then initially populated by web scraping available open-181 

data sources to populate as many fields as possible (refer back to Table A.2 for list of fields 182 
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associated with MD and/or 3PD designations). Available municipal data such as tax appraiser 183 

and permit databases may contain most Building Information data fields, as well as some 184 

Construction Features, however, there are considerable challenges in accessing the data required 185 

for loss estimation (Zsarnóczay et al. 2022). As the data are generated and maintained in a 186 

fragmented manner, possibly without the enforcement of county/parish or statewide data 187 

standards, there is wide variation in the fields reported, their completeness, and accuracy. As the 188 

case studies later in this paper demonstrate, some states have invested in expanding the data 189 

reported for the purposes of hurricane loss estimation and floodplain management (what we term 190 

data rich environs), whereas other states may be in their infancy in exposing even the most basic 191 

building information (what we term data scarce environs). More standardized data is available 192 

nationwide to support hazard/exposure descriptions, e.g., FEMA Flood Insurance Rate Maps 193 

(FIRMs), Land Use Land Cover (LULC) databases, and the Applied Technology Council 194 

(ATC)’s Hazards by Location Application Programming Interface (API) (Applied Technology 195 

Council n.d.), which can be used to populate many Hazard Attributes.  196 

2.3 Phase III: Machine-Enabled Attribute Assignment 197 

A range of machine-enabled techniques were then developed to populate missing Building 198 

Information and Construction Features. These modules are available through the NHERI 199 

SimCenter as part of CityBuilder, a python application that incorporates different artificial 200 

intelligence (AI)/machine learning (ML) modules from the center’s backend tool BRAILS  201 

(Wang et al. 2021b). Each module’s subsequent presentation includes a description of the 202 

methodology and associated validation process. 203 
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2.3.1 Roof Shape 204 

The roof shape (Attribute: RoofShape) is considered a high-priority attribute both for importance 205 

in assessing wind vulnerability but also its limited reporting in standard open municipal data. 206 

Thus an image classifier operating on available satellite imagery (e.g., Google Maps) was 207 

developed using the convolutional neural network (CNN) ResNet50 (He et al. 2016). The 208 

classifier was trained to assign roof images for each building footprint to one of three categories 209 

used in Hazus: gable, hip, or flat. The original training of the AI model utilized 6,000 images 210 

obtained from Google satellite imagery in conjunction with roof labels obtained from 211 

OpenStreetMap (OSM). The training set was distributed equally across the three roof types, i.e., 212 

2,000 images labeled as ‘flat’, ‘gabled’, and ‘hipped’, respectively. During the development of 213 

the model, 80% data was used for training and 20% was used for testing. As many roofs have 214 

more complex shapes, a similitude measure is used to determine which of these roof geometries 215 

is the best match to a given roof, with full details and the trained model released as part of the 216 

BRAILS backend component (SimCenter 2022). The classifier was then validated using a 217 

cleaned dataset of 125 unobstructed satellite images sampled nationwide from OpenStreet Maps. 218 

The selected roof images were screened to match the idealized gable, hip and flat geometries 219 

adopted by Hazus in order to establish the efficacy with which these three fundamental roof 220 

shapes could be identified from publicly available satellite imagery, achieving a detection rate of 221 

93.15% across all three roof classes Wang (2021a). However, it is important to note that over 222 

time, roof geometries have become increasingly more complex, blending traditional hip and 223 

gable forms that deviate significantly from the idealized shapes adopted by Hazus. While the 224 

classifier’s similitude measure negotiates this reality by forcing these complex roofs into one of 225 
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these simple geometries, performance of a Hazus-consistent roof classifier will inevitably see a 226 

degradation in performance when applied to inventories with more complex roof geometry, as 227 

discussed further in StEER Validation Exercise for Lake Charles, LA following Hurricane Laura. 228 

 2.3.2 Building Dimensional Data 229 

The roof dimensions (Attributes: MeanRoofHt, RoofSlope) and other building elevation data 230 

(Attributes: ElevationR0, ElevationR1, FirstFloorHt, FirstFloorHt1, NumberOfStories) are also 231 

considered high-priority attributes not reported by most open municipal data but critical to 232 

classifying hurricane-vulnerable buildings. Generating such critical dimensional data requires 233 

identification of the building stories and their relative elevations.  234 

A detection model that can automatically detect rows of building windows was 235 

established to generate the image-based detections of visible floor locations from street-level 236 

images. The model was trained on the EfficientDet-D7 architecture (Tan et al. 2020) with a 237 

dataset of 60,000 images, using 80% for training, 15% for validation, and 5% testing of the 238 

model. In order to ensure faster model convergence, initial weights of the model were set to 239 

model weights of the (pretrained) object detection model that, at the time, achieved state-of-the-240 

art performance on the 2017 COCO Detection set (Lin et al. 2014). For this specific 241 

implementation, the peak model performance was achieved using the Adam optimizer (Kingma 242 

and Lei Ba 2014) at a learning rate of 0.0001 (batch size: 2), after 50 epochs.  243 

For a given Google Street View image of a building in the inventory, the floor detection 244 

model generates a bounding box output for its detections and calculates the confidence level 245 

associated with each detection (see Fig. 2). A post-processor that converts stacks of neighboring 246 
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bounding boxes into floor counts was developed to convert this output into an estimate of the 247 

number of stories. An image may contain multiple buildings; therefore, this post-processor was 248 

designed to perform counts for each building in an image by clustering the bounding box 249 

detections for every building. When multiple buildings are encountered in an image, the post-250 

processor yields multiple floor counts in the order the buildings are detected from left-to-right. 251 

To validate performance, a test set was established by randomly selecting 3,000 parcels 252 

for which the number of floors was reported from the New Jersey Property Tax System Database 253 

(Department of Treasury 2018), called MODIV. These samples were drawn randomly from all 254 

counties of New Jersey, except Atlantic County, as this county is the site of one of the illustrative 255 

examples discussed later in this paper. Figure 3 provides the confusion matrix of model 256 

classifications, where a diagonal value of 1.0 indicates perfect classification. Validation against 257 

images with arbitrary camera orientations (termed “in the wild” images) results in 86% accuracy 258 

in classifying the number of stories (Fig. 3a). Validation using only “cleaned” images, where the 259 

building of interest is captured with minimal obstructions from trees or cars, is at the center of 260 

the image, and perspective distortions are limited, results in a detection accuracy of 94.7% (Fig. 261 

3b). 262 

Once the floors of a building are detected, the elevation of the bottom plane of the roof 263 

(lowest edge of roof line) and elevation of the roof (peak of gable or apex of hip) must be 264 

estimated with respect to grade (in feet) from street-level imagery (e.g., Google Street View), in 265 

order to estimate the roof height and mean roof height by respectively taking the difference or 266 

average of these elevations.  267 
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As in any single-image metrology application, extracting the building elevations from 268 

imagery requires: (1) rectifying image perspective distortions, typically introduced during image 269 

capture; (2) determining the pixel counts representing the distances between ends of the objects 270 

or surfaces of interest (e.g., for first floor height, the orthogonal distance between the ground and 271 

first-floor levels); (3) converting these pixel counts to real-world dimensions by matching a 272 

reference measurement with the corresponding pixel count. 273 

Given that the number of street-level images available for a building can be limited and 274 

sparsely spaced, a single image rectification approach was deemed most applicable for regional-275 

scale inventory development. The first step in image rectification requires detecting line 276 

segments on the front face of the building. This is performed by using the L-CNN end-to-end 277 

wireframe parsing method (Zhou et al. 2019). Once the segments are detected, vertical and 278 

horizontal lines on the front face of the building are automatically detected using RANSAC line 279 

fitting (Fischler and Bolles 1981), based on the assumptions that line segments on this face are 280 

the predominant source of line segments in the image and the orientation of these line segments 281 

change linearly with their horizontal or vertical position depending on their predominant 282 

orientation. The other support vector model implemented for image rectification focuses on the 283 

street-facing plane of the building in an image, and, based on the Manhattan World assumption 284 

(i.e., all surfaces in the world are aligned with two horizontal and one vertical dominant 285 

directions), iteratively transforms the image such that horizontal edges on the facade plain lie 286 

parallel to each other, and its vertical edges are orthogonal to the horizontal edges. 287 

In order to automate the process of obtaining the pixel counts to then determine the 288 

elevation of identified stores, a facade segmentation model was trained to automatically label 289 
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ground, facade, door, window, and roof pixels in an image. The segmentation model was trained 290 

using DeepLabV3 architecture on a ResNet-101 backbone (Chen et al. 2017), pretrained on 291 

PASCAL VOC 2012 segmentation dataset (Everingham et al. 2012), using a facade 292 

segmentation dataset of 30,000 images supplemented with relevant portions of ADE20K 293 

segmentation dataset. The peak model performance was attained using the Adam optimizer 294 

(Kingma and Lei Ba 2014) at a learning rate of 0.001 (batch size: 4), after 40 epochs. The 295 

conversion between pixel dimensions and real-world dimensions were attained by use of field of 296 

view and camera distance information collected for each street-level imagery. The identification 297 

of these elevations then enables the derivation of other attributes such as the RoofSlope, 298 

calculated as the ratio between the roof height and the roof run (defined as half of the smallest 299 

plan dimension of the building footprint).  300 

2.3.3 Occupancy Class 301 

In some data-scarce environments, occupancy data (Attribute: OccupancyClass) essential to 302 

assigning standard Hazus Building Classes may be unavailable or missing for a number of 303 

parcels in tax assessor data, prompting the development of an occupancy classifier. While the 304 

classifier can be expanded to encompass the full suite of Hazus Building Classes, it was initially 305 

developed to separate residential buildings: RES1 (single-family residence) and RES3 (multi-306 

family residence), and general COM (commercial) buildings that encompass all defined 307 

commercial classes in Hazus (COM1-COM10). The occupancy classifier employs a 308 

convolutional neural network, trained using 15,743 Google Street View images with labels 309 

derived from OpenStreetMaps and an enriched inventory created by the New Jersey Department 310 
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of Environmental Protection (NJDEP), discussed later as one of the paper’s illustrative examples. 311 

The distribution of occupancies and sources of labels are summarized in Table 1.  312 

The performance of the classifier was first validated against a ground truth dataset that 313 

contains 293 Google Street View images from the United States with labels from 314 

OpenStreetMap (98 RES1, 97 RES3 and 98 COM1 buildings) with unobstructed views of the 315 

buildings (cleaned data), which one can consider as examples of these occupancy classes that are 316 

easily identifiable by non-expert human agents. The confusion matrix, which presents visually 317 

the predictions versus actual data with ideal classification as 1.0 on the diagonal, is as shown in 318 

Figure 4a. A second validation is conducted using 3000 randomly sampled RES1, RES3 and 319 

COM buildings in the NJDEP dataset (1000 for each class). Google Street View images are 320 

downloaded for each sampled building. While classifying with accuracies as high as 99% for the 321 

OpenStreetMap testing dataset, classification accuracy diminishes for the NJDEP validation (Fig. 322 

4b) due to two likely causes. First OSM validation data is cleaned whereas NJDEP is validating 323 

against a more realistic condition of “in the wild” images permitting obstructions, which will 324 

understandably reduce classification accuracy across all occupancies. Second, OSM labels were 325 

assigned semantically, without direct knowledge of the building, and thus the model is trained on 326 

commercial construction that was easy to visually identify by human agents. NJDEP data is 327 

locally-generated by officials whose classifications include non-semantic knowledge, based not 328 

upon appearance, but zoning, tax and other property information. This underscores the value of 329 

having access to reliable regional data labeled with direct knowledge of building 330 

function/occupancy when training image classifiers for this task. Further, the classifier was 331 

trained on images of common commercial buildings, and similar to the roof classifier, would 332 
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necessarily assign each one of three classes (RES1, RES3, or generic COM) to every building it 333 

encounters. The generalization of occupancy to three classes in order to separate residential from 334 

non-residential construction should expect to see degraded performance when encountering 335 

buildings outside of traditional commercial construction. Though not explored herein, in 336 

municipalities where at least some building attributes are reported, multi-modal learning 337 

approaches fusing computer-vision and available building attributes may prove fruitful in 338 

classifying occupancy as well as assigning other missing attributes. Further, training a model to 339 

classify non-residential occupancy with greater nuance based on imagery alone presents practical 340 

challenges considering the diverse non-residential occupancies formalized in Hazus (see 341 

Supplemental Materials Table A.1a). Since these diverse classes of non-residential construction 342 

make up a small fraction of building inventories, there are inevitable limits on the amount of 343 

reliable training data available.      344 

2.3.4 Year Built 345 

One of the most critical features for the augmented parcel approach is the year built (Attribute: 346 

YearBuilt), given its essential role in the heuristic rulesets that assign many construction details 347 

necessary for loss estimation. Unfortunately, this attribute is not always reported in data-scarce 348 

communities. In such situations, third-party data sources like the National Structure Inventory 349 

(NSI) can be mined to extract this field for geocoded addresses across the United States. 350 

However, it should be noted that not all buildings are included in the NSI dataset, and the 351 

geocodes of the addresses may not align with building locations defined by available footprint 352 

data. As theorized in Wang et al. (2021a), a neural network can be used to predict the year built 353 

information for each building based on the spatial patterns learned from the NSI dataset. The 354 
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SimCenter’s SURF application (Wang, 2019) is therefore employed to construct and train a 355 

neural network on the available NSI year built information within the inventory’s geographic 356 

boundaries, allowing a YearBuilt assignment to be made at each footprint within that domain. In 357 

an effort to validate this approach, the authors used real estate websites (Zillow) to identify 358 

YearBuilt information for buildings listed on the market within the inventory domain. It is 359 

assumed that real estate listings, which require legally binding disclosures of building 360 

information, can be treated as “ground truth” in instances where tax assessor data is not 361 

available. This validation exercise was conducted in Lake Charles, LA, resulting in 1182 listings 362 

that were then used to train a neural network to generate YearBuilt values at all footprints for 363 

which a companion NSI-trained model had already predicted values. Figure 5a shows a scatter 364 

plot of the NSI-predicted year built against the Zillow-scraped results; while perfect agreement 365 

would cluster along the solid diagonal, the predicted year built data have a R2 value of 0.60 with 366 

respect to the Zillow data. The dashed lines in the figure define the 10-year boundaries about the 367 

perfect agreement line. As Phase IV will use time-evolving rulesets largely driven by code eras, 368 

YearBuilt must be estimated more accurately in the modern code era, which is post-2006 in 369 

Louisiana, and with a precision less than 10 years (depending on the frequency of code 370 

adoption/amendment cycles in a state/municipality and how much structural requirements 371 

change in each cycle). Note that the SURF-predictions trained on NSI data bias toward newer 372 

YearBuilt, which may result in predictions of less vulnerability using rulesets grounded in model 373 

building codes. These implications will be discussed further in Hurricane Laura Verification & 374 

Validation Exercise.  375 



18 

 2.3.5 Attached Garage  376 

As failures of attached garages can propagate damage into the primary structure, the presence of 377 

garages (Attribute: Garage) is critical to accurate loss assessments in residential construction, 378 

though not commonly reported in open-city data. A garage detector was trained to conduct a 379 

binary classification based on the presence of an attached garage in Google Street View imagery 380 

(which includes both detached garages and homes with no garage). The model was trained on the 381 

EfficientDet-D4 object detection architecture (Tan et al. 2020) using a subset of the SimCenter 382 

Labeled Building Facades dataset (Wang et al. 2021a). This subset comprises 1,887 Google 383 

Street View images from California, New Jersey, and Louisiana, sites of the SimCenter’s 384 

regional simulation testbeds, and was utilized such that 80% of the images were marked for 385 

training, 10% for validation, and 10% for testing of the model. All of these images were pre-386 

screened before model training to ensure that the buildings in the images are minimally occluded 387 

and are not heavily distorted. Similar to the number of stories detector, initial weights were set to 388 

model weights of the (pretrained) object detection model that, at the time, achieved state-of-the-389 

art performance on the 2017 COCO Detection set (Lin et al. 2014). For this task, the peak 390 

detector performance was attained using the Adam optimizer (Kingma and Lei Ba 2014) at a 391 

learning rate of 0.0001 (batch size: 2) after 25 epochs. The classification includes a bounding 392 

box that expresses the confidence associated with the detection. A post-processor converts 393 

bounding box detections into garage existence information, with the ability to parse garages for 394 

multiple building instances in a single input image, as demonstrated by Figure 6, which also 395 

highlights the variation in confidence resulting from the presence of obstructions like vehicles 396 

and garbage cans. The model was validated on two datasets. The first used the validation subset 397 
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reserved during initial training (N=189), which yielded the confusion matrix in Figure 7a 398 

showing 92% accuracy in detecting attached garages. A second validation was conducted using 399 

300 randomly selected and manually labeled Google Street View images from Lake Charles, LA 400 

(Fig. 7b), the site of one of the illustrative examples later in this paper. In this region, attached 401 

garage detection drops to 82%, with “no garage” scenarios detected with 62% accuracy.  402 

A deeper look at the differences between the training data used to generate the garage 403 

detection model and Lake Charles building inventory provides explanations for the discrepancy 404 

between the accuracies observed for the two validations. First, compared to denser urban 405 

environments, Lake Charles has a higher density of carports that may share the home’s primary 406 

roof line, but are not fully enclosed with a door. The lower garage detection rates are likely due 407 

to the fact that this regional garage type was underrepresented in the training dataset. Moreover, 408 

most suburban homes in Lake Charles are architecturally unique in comparison to those in the 409 

initial training data, which may have affected “no garage” detection accuracy. Although a 410 

detection model can typically compensate for such differences, since the training data was drawn 411 

from three different states, the model understandably was unable to extrapolate well to the 412 

different building appearances in the Lake Charles building stock. It is important to note that 413 

none of the issues discussed above point to deficiencies in deep learning models but rather the 414 

need for representative training data in each region to recalibrate models to the architectural 415 

nuances in a given community.   416 

2.4 Phase IV: Augmentation by Heuristic Rulesets 417 

Basic building information scraped from municipal inventories in Phase II or mined from 418 

imagery in Phase III offer basic descriptions of a building and even geometric/dimensional data, 419 
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e.g., single family home, made of wood, 1-story, but these are not the attributes the adopted loss 420 

model (Hazus) ultimately requires to determine damage and loss, e.g., secondary water resistance 421 

or roof-deck attachment. Thus the challenge lies in inferring these more granular attributes 422 

associated with the primary load path or water-resistant envelope from the data available in 423 

Phases II and III. The specific attributes required by Hazus also vary based on the building class, 424 

e.g., a wood single family home is described by five such attributes while a masonry version of 425 

the same home requires the assignment of up to three additional attributes. This thus requires a 426 

first step of assigning each footprint to a relevant Hazus building class based on the data 427 

generated in Phases II and III, followed by the assignment of required attributes for that footprint 428 

based on its building class. Thus three families of rulesets were developed to infer the Hazus 429 

building class and class-specific attributes for Hazus wind and flood loss models from data 430 

generated in Phases II and III. Rulesets include two aspects: the formal logic that evaluates 431 

various combinations of data from Phase II and III to determine the appropriate attribute 432 

assignment (including provenance metadata for any references used to justify the assignment), 433 

and then its implementation in Python for execution in the loss estimation workflow. The former 434 

is published on DesignSafe (Kijewski-Correa et al. 2022) and the latter in GitHub (Angeles et al. 435 

2021).  436 

The first family of rulesets is used to assign each footprint to a corresponding Hazus 437 

building class. For wind losses, buildings are grouped by primary building material (wood, 438 

masonry, concrete, steel, manufactured home) and then subclassified into one of fifty-five 439 

corresponding Hazus building classes (Table A.1a) and rulesets make this determination based 440 

on the occupancy, number of stories and plan area. For flood losses, rulesets assign one of thirty-441 
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two building classes based on the occupancy, number of stories and foundation type (Table 442 

A.1b). For wave-induced losses, footprints are assigned to one of ten classifications by rulesets 443 

that consider building use, construction material and number of stories (Table A.1c). The rulesets 444 

include a default building class for each hazard if footprints are lacking one or more fields 445 

required to make the assignment. The defaults and formal logic are published for the 97 Hazus 446 

building classes on DesignSafe (Kijewski-Correa et al. 2022); the Supplemental Material Tables 447 

A.1a-c include an example of these rules to illustrate the process. 448 

Next, rulesets were developed for each building class in the Hazus wind, flood and wave 449 

loss model to infer the required features, like roof to wall connection, from building and site 450 

information generated in Phase II and III. Whenever possible, the formal logic for these 451 

assignments derived from a review of the legacy building codes/standards (CS), creating rules 452 

that were time varying based on the requirements of different code eras in that regions. For 453 

attributes not specified by code, online research was conducted to determine likely construction 454 

practices/norms (PN) used in these code eras. As some attributes like use of window shutters 455 

requires agency on the part of homeowners, rates of compliance in existing human-subjects 456 

surveys (HS) where used to assign these attributes (Javeline and Kijewski-Correa 2019). When 457 

the attribute was expected to change over time, either based on changes in codes/standards for 458 

industry practices/norms, the rules are written as a function of YearBuilt, assigning attributes 459 

based on the governing code edition or availability of specific mitigation measures in the market 460 

at the time of construction. In cases where engineering judgment was required, rules were 461 

assigned based on the authors’ understanding of the most common construction practices in a 462 

given region or conservative adoption of the most vulnerable configuration. In cases where 463 
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variability is expected, attributes may be assigned as random variables (RV). Table 2 lists the 464 

methodological basis for the attributes used in Hazus wind and flood loss assessments, with 465 

some Direct Assignment (DA) of attributes based on attributes determined in Phases II and III. 466 

Note that some attributes may be assigned by multiple techniques based on the Year Built and 467 

eras when norms shifted or code requirements took effect, e.g., CS methods may apply in the 468 

modern code era, whereas PN or HS methods may govern in the era predating modern codes. 469 

Rulesets for each of the attributes in Table 2 again include default assignments in instances 470 

where one or more fields required by the ruleset are missing for that footprint, in which case 471 

attributes associated with an archetype building for that building class are assigned. The defaults 472 

and formal logic are published for the Hazus building classes on DesignSafe (Kijewski-Correa et 473 

al. 2022); the Supplemental Material Table A.2 includes an example of these rules to illustrate 474 

the process. 475 

3.0 Illustrative Examples 476 

Two illustrative examples are now presented to demonstrate the application of the above 477 

inventory generation processes at the municipal- and county-level. In either case, the process 478 

initiates with identification of building footprints, which should be preferably sourced from open 479 

governmental data generated with human oversight. Third-party footprint data may be necessary 480 

(Microsoft 2021), though hand-digitized footprints, e.g., 2017 Microsoft footprints, are 481 

preferable over computer-generated footprints, e.g., 2018 Microsoft footprints, that may fail to 482 

discern individual buildings in multi-building complexes/parcels. All data is ultimately 483 

georeferenced to the coordinates at the centroid of these footprints. BRAILS CityBuider 484 

application was used to develop the building inventories and assemble accompanying satellite 485 
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and Street View imagery associated with each footprint for use in subsequent computer vision 486 

tasks (Wang et al. 2021b). Note that tax assessor data, one of the most valuable municipal data 487 

sources used in Phase II of inventory generation, is specified at the parcel level; parcels may 488 

contain multiple footprints and/or a footprint may cross multiple parcels, in which case rules 489 

used by the NJDEP were used to assign parcel attributes to those footprints (New Jersey 490 

Department of Environmental Protection 2019).  491 

3.1 Scenario 1: Data Rich Environments 492 

Many coastal communities have made substantive investments in open data that benefit a 493 

number of planning, emergency response and service delivery functions at the state and local 494 

level; among these is the State of New Jersey. Notably the New Jersey Geographic Information 495 

Network (NJGIN) has open access to federated data from different state agencies and counties to 496 

centralize base/hazard maps and datasets supporting emergency response, transportation, hazard 497 

assessments, and public works (Kijewski-Correa et al. 2020). Grant programs following 498 

Superstorm Sandy have helped many municipalities contract local firms to create GIS endpoints 499 

with local versions of these and other datasets describing their properties/parcels, infrastructure 500 

assets, planning/zoning polygons, and flood-vulnerability, e.g., repetitive loss structures and 501 

elevation certificates. The substantive investment in open data following a major damaging 502 

storm made this an ideal data-rich scenario for inventory development. Ultimately, Atlantic 503 

County, NJ and specifically Atlantic City and its surrounding municipalities were adopted as a 504 

case study, noting that this region is under active redevelopment with questions of resilience to 505 

climate-driven hazards of particular concern. The built environment in this region is quite diverse 506 

with a blend of low-rise commercial (1-3 stories), industrial, high-rise hotels/casinos (over 20 507 
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stories), and single/multi-family residences in a fairly compact geography. Thus this inventory 508 

can encompass both extremes in building typologies vulnerable to wind: wood frame single-509 

family homes and tall flexible structures. From the perspective of hazard exposure, this region is 510 

also characterized by beachfront communities exposed to storm surge and breaking waves on the 511 

ocean-facing coastline coupled with back bay and riverine flooding.  512 

A pair of inventories was developed in this region to allow the targeted investigation of 513 

flood-exposed properties as well as a wider study inclusive of properties outside the floodplain. 514 

Inventory development initiated with NJDEP Footprint Data, which includes flood-exposed 515 

properties cataloged in two geodatabases encompassing approximately 453,000 footprints across 516 

the entire state inclusive of all building footprints within the 1% annual chance (AC) floodplain, 517 

as defined by FEMA FIRMs as well as footprints that fall within a 200-ft buffer of the 1% AC 518 

floodplain boundary. These databases were combined and then clipped to retain only those 519 

within the limits of Atlantic County to form the Flood-Exposed Inventory. Half of this 520 

inventory’s 32,828 buildings is derived from the three most populated municipalities in Atlantic 521 

County: Atlantic City, Margate City, and Ventor City, with 30,827 residential buildings and the 522 

remainder dominated by other occupancies such as commercial (N=1496) and governmental 523 

(N=7338) buildings. The majority are two-story (60%) or single-story (25%) construction, with 524 

wood as the dominant construction material (94%), with some masonry (3%) and concrete (3%) 525 

typologies. This inventory was then extended to include the remaining footprints within Atlantic 526 

County, with the Microsoft Footprint Database (Microsoft 2021) as the primary source of non-527 

NJDEP footprint polygons. A separate roof segmentation algorithm (Durnov 2020) was applied 528 

to Google satellite images to parse multiple footprints out of errant singular footprints for multi-529 
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building parcels. This resulted in the full Atlantic County Inventory. This larger inventory is 530 

comprised of 100,721 buildings across the 23 municipalities of Atlantic County, with 90,017 531 

residential buildings and the remainder dominated by other occupancies such as governmental 532 

(N=7338) and commercial (N=2366) buildings. With some tall buildings in Atlantic City, the 533 

vast majority are single story (91%) or two-story (6%) construction, with wood as the primary 534 

construction material (88%), followed by concrete (11%). This inventory pair is shown in Figure 535 

8.  536 

NJDEP also enriched its floodplain footprints with various attributes necessary to 537 

conduct standard FEMA risk assessments. All footprints included a set of Basic Attributes 538 

inclusive of parcel and site data and then Advanced Attributes required by Hazus User Defined 539 

Facilities (UDF) Module, which includes material, occupancy, replacement value, year built, 540 

area, number of stories, first floor height, and foundation type (New Jersey Department of 541 

Environmental Protection 2019). The augmentation also included data required by the FEMA 542 

Substantial Damage Estimator (SDE) Tool classifying residential superstructure, foundation, 543 

roof cover and exterior finishes. Thus the initial population of the data model for these two 544 

inventories exploited this augmented data to assign relevant fields to all properties in the 545 

floodplain (100% of buildings in the Flood-Exposed Inventory and that same subset within the 546 

Atlantic County Inventory, which was approximately one third of that larger inventory). For 547 

footprints not included in the NJDEP augmented datasets, these fields were assigned by parsing 548 

MODIV data, which is the New Jersey Tax Assessor Data (New Jersey Geographic Information 549 

Network 2021) with reference to the MODIV User Manual (Department of the Treasury 2018). 550 

Specifically, OccupancyClass, BuildingType (construction material) and FoundationType were 551 



26 

parsed from MODIV data using the aforementioned heuristic rulesets (Angeles et al. 2021), with 552 

default values for any footprints where the required MODIV fields were lacking. Inclusion of a 553 

wide range of occupancies (see Supplemental Materials Table A.1a-c) required additional third 554 

party data from NJGIN Open Data portal to establish locations of essential facilities (using 555 

critical facilities layers) and define terrain characteristics using basic transformations of Land 556 

Use Land Cover data. Machine-enabled techniques introduced in Section 2.3.2 were then 557 

leveraged to estimate NumberofStories for all Atlantic County Inventory footprints not 558 

previously augmented by NJDEP, noting that this attribute tends to be under-reported in the 559 

MODIV database. Meanwhile RoofShape, assorted building elevation fields (as well as all 560 

derived roof dimensions), and WindowArea (assuming the proportion of windows on the front 561 

face is representative of the proportion on all faces) were respectively augmented by the 562 

machine-enabled techniques in Sections 2.3.1 and Section 2.3.2 for both the Flood-Exposed 563 

Inventory and the Atlantic County Inventory. Full details of the resulting data model and 564 

rulesets, with full provenance information, have been released on DesignSafe (Kijewski-Correa 565 

et al. 2022). The diversity of occupancy, number of stories and year of construction encompassed 566 

by this pair of inventories is affirmed by the statistical summaries in Figure 8.  567 

3.2 Scenario 2: Data Scarce Environments 568 

The process used in New Jersey was repeated in Lake Charles, LA to demonstrate how to 569 

efficiently generate inventories for the study of impacts and recovery following Hurricane Laura. 570 

Emphasis was placed on wind damage to residential construction, given the potential for 571 

validation exercises discussed in the next section. The attributes required for this class of 572 

construction were downsampled from the full data model presented previously in Supplemental 573 
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Materials A.2a and source data was identified. Unfortunately, there was a scarcity of open data in 574 

Lake Charles and Calcasieu Parish, requiring the use of machine-enabled approaches to assign 575 

the YearBuilt and OccupancyClass. While Louisiana has different code eras and code 576 

amendments that would require adaptation of the initial rulesets developed for Scenario 1, the 577 

rulesets from New Jersey were directly applied since both states employ IBC for contemporary 578 

construction. Beyond differences in the effective dates for specific years when code revisions 579 

became effective, Louisiana had no statewide code prior to 2006 and currently enforces 2015 580 

IBC, with critical amendments related to wind speed caps in 2014, 2015, and 2017, and a 581 

freeboard cap in 2018, based upon the state’s numerous hurricane recovery experiences; whereas 582 

New Jersey adopted statewide codes much earlier (1975), including IBC since 2003 and 583 

currently enforces 2018 IBC. With losses from Superstorm Sandy dominated by storm surge, 584 

New Jersey did not have the same intense periods of amendments to design wind speeds, making 585 

it well-suited to serve as the model for ruleset development with codes following the typical 3-586 

year adoption cycle. While direct translation of the New Jersey rulesets without modification 587 

may result in predictions of better performance in Louisiana buildings constructed before 2006, 588 

extending effort to revise the New Jersey rulesets for this example was not warranted given the 589 

lack of reliable data on YearBuilt and OccupancyClass required for ruleset execution.  The 590 

inventory and associated rulesets were further constrained to wood residential properties within 591 

the city limits of Lake Charles, LA (keeping 26,516 of the total 30,072 properties) and 592 

supporting only Hazus Building Classes WSF1-2 and WMUH 1-3 (see asterisks in Table A.1a 593 

indicating the retained classes). Figure 9 visualizes the geospatial distribution of YearBuilt in the 594 

resulting residential inventory with inset statistical distributions of key attributes. An additional 595 

cluster of homes south of Lake Charles was also included in the inventory to support subsequent 596 
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validation exercises (this cluster and another within the city limits are shown in the inset in Fig. 597 

9). Notably, this residential inventory is typified by older vintages of construction (pre-1980) 598 

(85%), with a dominance (98%) of low-rise (1-2 story) buildings and single-family (81%) 599 

residences. See asterisks in Table A.2 for fields retained in the downsized data model; details of 600 

the resulting data model and rulesets, with full provenance information, have been released on 601 

DesignSafe (Wang et al. 2021c).  602 

4.0 Hurricane Laura Verification & Validation Exercise 603 

Validation of the augmented parcel approach to generate inventories in support of hurricane loss 604 

assessment leverages the Lake Charles, LA inventory introduced under Scenario 2 to study the 605 

impacts of Hurricane Laura. As detailed in Roueche et al. (Roueche et al. 2020), the storm made 606 

landfall as a strong Category 4 hurricane near Cameron, LA in the early hours of 27 August 607 

2020, tying the Last Island Hurricane of 1856 as the strongest landfalling hurricane in Louisiana 608 

history. Wind speeds are estimated to have reached or exceeded the design wind speed for Risk 609 

Category II buildings and other structures, as defined in ASCE 7-16 (American Society of Civil 610 

Engineers 2017) and the 2018 International Building Code (MRI = 700 years) (International 611 

Building Code 2018), by as much as 8 km/h (5 mph) near Lake Charles, LA (specifically, 612 

northeastern Calcasieu Parish and the eastern half of Beauregard Parish) (Applied Research 613 

Associates 2020). As the storm’s well-predicted track facilitated coordinated, multi-entity 614 

surface measurements of wind fields and storm surge, Laura is one of the best documented storm 615 

events and thus provides novel opportunities to understand the vulnerabilities underpinning 616 

losses and robustly verify and validate workflows intended to predict ensuing losses.  617 
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The Structural Extreme Events Reconnaissance (StEER) Network building performance 618 

assessments captured between 27 August and 12 September 2020 will serve as the ground truth 619 

observations for this validation exercise. Notably, the areas impacted by Laura were previously 620 

impacted by Hurricane Rita (2005), resulting in a sizable population of modern (post-IBC/IRC) 621 

single-family homes exposed to design-level winds. As such, the validation exercise focuses on 622 

wood 1-2 story single-family (WSF1-2) and 1-3 story multi-unit residential (WMUH1-3) 623 

construction subjected to wind hazards. In accordance with the regional simulation workflow 624 

introduced in Deierlein et al. (Deierlein et al. 2020), the augmented parcels of the Lake Charles, 625 

LA Inventory were assigned appropriate damage and loss functions from the Hazus Hurricane 626 

Damage and Loss Model (FEMA 2018b, 2021), implemented in the SimCenter’s PELICUN 627 

application (Zsarnoczay 2019). For wind damage assessment, the HAZUS damage functions 628 

consist of tabular data for multiple damage states to describe their fragilities as functions of 3-629 

second peak wind speed (PWS) at reference height (10 m) in open terrain. These tabular data are 630 

parsed in PELICUN to fit a continuous normal or lognormal cumulative density function for 631 

each fragility. For wind loss assessment, the HAZUS loss functions consist of tabular data 632 

mapping the peak wind speed to expected loss ratio. These tabular data are used by PELICUN to 633 

calibrate the expected loss ratio of individual damage states so that the damage and loss models 634 

are coupled for more realistic outcomes (Zsarnóczay and Deierlein 2020).  635 

The regional simulation used in the following verification and validation exercises is 636 

orchestrated using the NHERI SimCenter’s Regional Resilience Determination (R2D) 637 

Application (McKenna et al. 2021), driven by a surface-level wind field produced on 4 638 

September 2020 by Applied Research Associates (ARA) and made available by National 639 
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Institute of Standards and Technology (NIST) on DesignSafe (Applied Research Associates 640 

2020). The wind field incorporates storm track and central pressure data from the National 641 

Hurricane Center (NHC) through Forecast Advisory Number 33 and observations through 1200 642 

UTC on 28 August 2020. The ARA windfield is first mapped to a rectangular grid with 0.01 to 643 

0.02 degree intervals; the peak wind speed at the centroid of each building footprint is estimated 644 

by randomly sampling the PWS from its nearest four neighboring grid points. The hazard 645 

intensities defined by the PWS are then related to probabilities of damage and loss.  646 

The geospatial distribution of estimated wind damage states and losses under Hurricane 647 

Laura are shown in Figure 10a,b, with Figure 10c plotting the cumulative distribution function 648 

(CDF) of the damage states. Hazus Damage States (DS) are defined as DS-0: no/very minor 649 

damage, DS-1: minor damage, DS-2: moderate damage, DS-3: severe damage and DS-4: 650 

destroyed (Vickery et al., 2006). Most residential buildings (75%) in the Lake Charles inventory 651 

were projected to have relatively minor to moderate wind damage (expected Damage State no 652 

greater than 2). Few residences are predicted to be in the extremes of the distribution: about 5% 653 

with damage no greater than DS-1 and another approximately 5% exceeding DS-3. The 654 

corresponding CDF of projected loss ratios is shown in Figure 10d, illustrating that about 20% of 655 

residences would expect a loss of no more than 10% of the total reconstruction cost, with about 656 

10% of residences seeing a loss of half or more of the total reconstruction cost. All estimates are 657 

based on a YearBuilt predicted using NSI-trained machine-enabled techniques. 658 

4.1 Verification Process 659 

A two-step process was used for verification, with hand calculations of estimated losses for a 660 

subset of 98 randomly-sampled buildings in the inventory, followed by a parametric 661 
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investigation. These hand calculation involve the manual assignment of the appropriate HAZUS 662 

building class based on the building attributes, followed by the manual selection of the 663 

corresponding damage fragilities and loss ratios from the HAZUS database that were described 664 

by best-fit curves in the SimCenter’s Pelicun application (Zsarnóczay and Deierlein 2020). Peak 665 

wind speeds are determined using geolocation data from the ARA wind field contours. These 666 

peak wind speeds can then be substituted into the fitted damage and loss functions, for an overall 667 

verification that the loss estimatinon workflow is properly implemented. Hand-calculations 668 

simulated expected loss ratios for the sampled buildings showed excellent correlation with the 669 

simulated values, achieving a correlation coefficient of 0.9996. As a second verification step, 670 

parametric investigations on select case study buildings are used to heuristically examine the 671 

ruleset logic founded upon YearBuilt. Herein we present the parametric case study for a single-672 

family house (1-story wood structure with a gable roof). The original building record is 673 

expanded to 51 different buildings by varying the YearBuilt between 1970 and 2020. For each 674 

building, the expected loss ratio is estimated using 50 realizations to consider the uncertainty 675 

from the rulesets assigning some attributes as random variables (e.g., the ruleset assigns use of 676 

secondary water resistance to buildings built after 2000 according to a 60% probability). The 677 

black curves in Figure 11 plot the individual realizations of expected loss ratio against different 678 

YearBuilt values. The red curve shows the mean value of 50 realizations for each YearBuilt. As 679 

expected, building performance generally improves following major code revisions. For 680 

example, as labeled by the yellow dashed line at 2000, the IRC 2000-2009 requires 8d nails (with 681 

spacing 6”/6” or 15.2 cm mm/15.2 cm) for sheathing thickness of 1” (25.4 mm) for basic wind 682 

speeds greater than 160 km/h (100 mph), which enhances the building performance (reducing the 683 

expected loss ratio). When this ultimate wind speed is increased to 130 mph (215 km/h) (just 684 
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above the design wind speed) in a 2016 revision accepting the use of 6”/12” (15.2 cm/30.5 cm) 685 

spacing, a corresponding slight degradation in building performance is observed. This 686 

observation highlights the particular importance of nail spacing requirements for sheathing in 687 

reducing wind-induced losses for this class of construction.  688 

4.2 Influence of Competing Data Sources  689 

As demonstrated by the above verification process, YearBuilt is critical to assigning attributes 690 

within an Augmented Parcel approach reliant on time-evolving rulesets. Herein we examine the 691 

implications of assigning YearBuilt in data scarce environments using machine-enabled 692 

techniques trained against NSI and the commercial real estate platform, Zillow. Figure 12a 693 

illustrates the difference in estimated YearBuilt as predicted by Zillow- and NSI-trained models. 694 

The ensuing implications of using different sources of YearBuilt information to predict damage 695 

are visualized in Figure 12b. Note that differences in YearBuilt matter only when those 696 

differences shift the structure into not only a different code era in the ruleset logic, but to one 697 

with substantive changes either to the hazard description or the building’s load path or affected 698 

components, thus making the implications of errors in YearBuilt on the final loss estimation 699 

context dependent. Those types of substantive amendments can be on the scale of decades in less 700 

frequently-exposed locales like New Jersey, or even annually in more frequently-exposed locales 701 

like Louisiana. Figure 13a illustrates the subtle differences in the CDF for DS-2 and DS-3 702 

between NSI- and Zillow-trained models, with Zillow tending to predict slightly higher damage 703 

states outside of the tails of the distribution where the transition to the modern code era takes 704 

place. The impact on damage ratings is not prominent in some of the areas with the largest 705 

differences in year built predictions, such as downtown Lake Charles (shown by dashed box in 706 
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Fig. 12b) or areas to the east to either side of I-10, where the construction is older and pre-dates 707 

the modern code era. However, some of the newer developments at the southernmost boundary 708 

of the municipality are in the modern code era, where differences in YearBuilt may translated 709 

into marked differences in ruleset-assigned attributes. This is illustrated by the previous 710 

validation case study and reinforced by Figure 13b, which shows the probability of a residence 711 

achieving the expected DS for four different YearBuilt ranges: Pre-1960, 1960-1979, 1980-1999, 712 

Post-2000. This underscores the challenges created both by the underreporting of YearBuilt 713 

values in this area, as well as the fact that the attributes necessary for loss estimation by Hazus 714 

are not routinely reported in inventory data nationwide. Finally, since the Zillow data used in this 715 

study was taken from Zillow Transaction and Assessment Database (ZTRAX), which has 716 

proprietary restrictions, the NSI-predicted YearBuilt is used for the loss assessments in the next 717 

section as this data is available to all readers without restriction.  718 

4.3 StEER Validation Exercise  719 

StEER used human visual inspections to rate damage on the Hazus-defined wind loss scale for a 720 

sampling of buildings in Lake Charles and surrounding areas (Roueche et al. 2021), referred to 721 

herein as StEER Buildings. Ninety-nine of these buildings correspond to footprints in the Lake 722 

Charles inventory, which offers an opportunity to validate the end result of this loss assessment 723 

workflow built upon augmented-parcel inventories. It is important to note that these damage 724 

assessments were not conducted according to StEER’s standard protocols due to COVID-19 725 

restrictions on travel. Instead, assessments were conducted virtually by humans remotely 726 

interrogating street-level panoramic images collected from car-mounted platforms (Roueche et 727 

al. 2021). Thus, StEER buildings offer a “ground truth” that is potentially less reliable in 728 
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discerning some aspects of the damage than a traditional StEER mission with in-person, up-close 729 

forensic assessments. Also note that since rulesets from New Jersey are applied to assign 730 

attributes and are not consistent with the historical regulatory environment in Louisiana, the 731 

predicted damage states are also likely to be slightly lower, particularly for construction older 732 

than 2006 (the year Louisiana first adopted ICC model codes statewide). Finally, as also 733 

discussed in StEER’s report (Roueche et al. 2020), there were low rates of compliance with 734 

shuttering requirements in the affected area. Thus it is likely that shutter use would be assigned 735 

by rulesets at a rate higher than actually observed in this hurricane, leading to lower levels of 736 

predicted damage than those observed in the field, as discussed shortly. 737 

4.3.1 Roof Classifier  738 

Since StEER data undergoes a data enrichment and quality control process that generates over 739 

100 fields of component, material and geometric information, its records can be used to validate 740 

various aspects of the augmented parcel approach. For example, in order to further validate the 741 

roof classifier used to populate RoofShape attributes in the Lake Charles inventory, StEER 742 

Buildings were pre-processed to retain only those single-family homes tagged with roof shapes 743 

consistent with the three Hazus classes (N=56), discarding records labeled as “complex” 744 

according to StEER’s more robust roof classification standards. The confusion matrix in Figure 745 

14 affirms the effectiveness of the roof shape classifier in this validation exercise, recalling that 746 

perfect classification would have 1.0 scores along the diagonal. Comparison of this validation 747 

result (with 70% accuracy for hip and gable roofs) against the over 90% accuracy reported in 748 

Wang et al. (2021) underscores that contemporary roof shapes are far more complex than the 749 

three simplified geometries adopted by Hazus and even idealized in the initial training sets used 750 
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to develop the SimCenter’s roof classifier module. The limitations of simplifying roofs into one 751 

of three shapes not as common in contemporary construction forces humans classifying roofs, 752 

including StEER assessors, to attempt to subjectively force every roof into one of these 753 

categories, begging the larger question regarding the ability of our loss modeling capabilities to 754 

keep pace with modern construction trends. The adopted approach of using similitude measures 755 

to more objectively force classifications to the nearest simplified roof shape (gable, hip, flat) 756 

remains the most viable means to negotiate the very real disconnects between the simplified 757 

shapes adopted in conventional loss models and contemporary geometries in practice.   758 

4.3.2 Damage Rating 759 

Uncertainties inherent the hazard, building inventory and vulnerability models will affect the 760 

predicted level of damage. Unfortunately, the ground truth observations available from StEER do 761 

not include on-site wind speeds or reporting of all the building attributes employed by the 762 

adopted vulnerability model to allow isolation of the potential effects of these uncertainties on 763 

the overall damage rating. However, the implication of such uncertainties is explored herein for 764 

both hazard inensity and the building attribute most critical to the use of heuristic rulesets: 765 

YearBuilt. Assuming this building attribute follows a normal distribution with mean at the value 766 

assigned by machine-enabled techniques and standard deviation of 10 years, a sample of 100 767 

YearBuilt values is generated for each of the 99 StEER buildings. This results in a distribution of 768 

simulated Damage States for that building (see example in Figure 15a). Figure 15b compares the 769 

resulting mean and 95th-percentile of these distributions of the simulated damage states to the 770 

StEER-observed damage state, where perfect agreement would cluster about the dashed diagonal 771 

line. Note that the simulated damage states are the result of three WSF1-2 attributes being 772 
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assigned as random variables (see Table 2), which in addition to YearBuilt uncertainties, results 773 

in the scatter across simulated damage states. To aid in interpretation, an overall trend is 774 

visualized by the red points that define the bin average across the values at each damage state. 775 

The results suggest that while minor and moderate damage states are on average consistent with 776 

ground-truth observations, which is where the most observations cluster, the extremes 777 

characterized by fewer ground-truth observations suggest a bias toward minor damage for 778 

undamaged structures, with simulated damage rates plateauing around the moderate damage state 779 

even for severely damaged and collapsed buildings. The same type of uncertainty analysis is 780 

conducted for the peak wind speed, randomly sampling 100 PWS values from a normal 781 

distribution with mean set to the PWS specified by ARA for that building’s location and a 782 

standard deviation of 20 mph. Analysis of the resulting mean and 95th-percentile of the 783 

distribution of these simulated damage states compared to the StEER-observed damage state in 784 

Figure 15c reiterates the same trend.  Further note that changing the wind speed to explore the 785 

effect of uncertainties in the hazard intensity at a given site does not account for site-specific 786 

variations in the wind field itself, e.g., localized flow effects, which can have considerable 787 

impacts on the level of damage observed.  788 

In an effort to understand potential sources of the simulation’s unconservative bias for 789 

buildings with observed severe damage (DS-3) and destruction (DS-4), the rulesets used to 790 

generate the Lake Charles inventory were overridden to apply window protection as a random 791 

variable with compliance rates of 20% for all YearBuilt values, approximately half that observed 792 

in other coastal communities (Javeline and Kijewski-Correa 2019) and more consistent with 793 

StEER’s anecdotal observations (Roueche et al. 2020). While this does slightly elevate the 794 
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simulated damage values across all damage states, DS3 and DS4 are still underestimated (Fig. 795 

15d). As damage states are driven by a number of attributes and site factors, including 796 

construction errors and material defects, the limited number of observations in DS-3 and DS-4 797 

limits the ability to draw further conclusions. Still, access to StEER’s field observations under 798 

design-level winds, acquired using component-level quantifications of damage that map to Hazus 799 

damage states, provides invaluable opportunities to validate and further improve loss modeling 800 

frameworks.   801 

5.0 Conclusions 802 

While computational simulation tools and high performance computing are rapidly advancing 803 

the collective potential to study the impact of hurricanes on communities and entire regions at 804 

unprecedented fidelity and granularity, their use in the study of real-world scenarios remains 805 

constrained by the availability and completeness of reliable parcel data. Even in the most data 806 

rich communities, exposed municipal data lacks a number of structural attributes necessary to 807 

predict damage and ensuing losses at the level of individual building footprints. This paper 808 

presents an augmented-parcel approach that defines a comprehensive data model inclusive of 809 

hazard and structural attributes necessary for Hazus-compatible risk assessments on a wide class 810 

of buildings under hurricane wind and flood hazards. The study further demonstrates how 811 

existing open municipal and third party data can be scraped to initially populate the required 812 

fields across a large-scale building inventory, assigning the remaining attributes using a series of 813 

machine learning modules and time-evolving rulesets grounded in local codes/standards, 814 

regional construction practices/norms, and human subjects data. These techniques are 815 

implemented within the regional hurricane loss assessment workflow of the NHERI SimCenter 816 



38 

and available to the community as open software. Illustrative examples in a data-rich setting 817 

(Atlantic County, NJ) and a data-scarce municipality (Lake Charles, LA) demonstrate the 818 

workflow’s replicability in digitizing large-scale building inventories, both of which are curated 819 

on DesignSafe.  820 

The study’s validations of computer vision-based modules to generate underreported 821 

building attributes underscores the importance of algorithms that are robust enough to reliably 822 

classify “in the wild” images scraped from platforms like Google Street View. Among these, the 823 

validation of an occupancy classifier further reiterated the need to go beyond semantically-824 

inferred image labels for training data, ideally drawing data from local agencies where the 825 

targeted attribute is the focus of ongoing data gathering and quality assurance efforts. Improving 826 

performance further will require enabling nuanced classifications of the wide diversity of non-827 

commercial construction, which can be challenging given the limited amounts of training data 828 

for occupancies that comprise a small fraction of the overall inventory. Validations of attached 829 

garage detectors similarly reinforced the need for representative local training data to recalibrate 830 

models to the architectural nuances in a given community, such as the carports. This reiterates 831 

that reliable regional inventory data is critical to the continued refinement of these classifiers.  832 

The phased approach of augmenting available parcel data is in theory region-, hazard- 833 

and even loss model-agnostic, meaning that the same steps would be executed and tools engaged 834 

to mine required hazard, site and building attributes. Extensions outside of hurricane wind/flood 835 

within a Hazus framework would however require the development of a data model in Phase I 836 

that defines the relevant attributes for that hazard and/or adopted loss model. The population of 837 

that data model in Phase II would need to be accordingly adapted based on the data sources 838 
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available in that region or for that hazard, as the case studies in New Jersey and Louisiana 839 

demonstrate. The techniques developed to efficiently scrape and parse such data are themselves 840 

universal. Developing the augmented parcel approach for a data scarce environ like Louisiana at 841 

minimum ensures Phase III is supported by a robust collection of available tools that can be 842 

deployed to assign under-reported data essential to the loss estimation in future applications. 843 

These tools may require recalibration in regions where construction practices, particularly 844 

aesthetic features, are dramatically different from those used in the development or the extension 845 

of these tools to new classes of features, e.g., vulnerabilities like soft stories (Yu et al. 2020). 846 

Finally, Phase IV would require some adjustment if translated to a new region with different 847 

code eras, design wind speeds, or load path requirements, as the discourse herein on New Jersey 848 

vs. Louisiana underscored. The availability of the rulesets used here in GitHub is intended to aid 849 

such adaptations. However, entirely new rulesets would be required for any changes in the 850 

hazard or loss estimation framework – though the adoption of Hazus herein addresses the most 851 

universal model in US practice. The SimCenter’s released testbeds for earthquakes 852 

(https://simcenter.designsafe-ci.org/testbeds/) demonstrate such extensions of the methodology 853 

for other hazards, with its Pelicun application supporting loss assessments using Hazus and 854 

FEMA P-58 (Zsarnóczay and Deierlein 2020).  855 

The study further underscored the criticality of accurate year built data for post-IBC/IRC 856 

construction eras, given the augmented parcel approach’s reliance on time-evolving rulesets, in 857 

this case exploring the use of spatial inference to assign this critical field from limited 858 

observations in the National Structure Inventory and commercial real estate platforms like 859 

Zillow. Finally, a verification and validation exercise is conducted using StEER field 860 
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observations collected in Lake Charles following the landfall of Hurricane Laura. The 861 

validations highlighted the incompatibilities between Hazus-simplified roof shapes and 862 

contemporary roof geometries, and the challenges it creates for classification by both human and 863 

machine agents. The SimCenter’s workflow applying Hazus-based fragilities to the augmented-864 

parcel inventories generated in this study were found to be consistent, on average, with ground-865 

truth observations for the minor to moderate damage states that comprised the majority of field 866 

observations. Extreme damage states were characterized by fewer ground-truth observations, 867 

with simulations biasing toward minor damage for undamaged structures and plateauing at 868 

moderate damage even for severely damaged and collapsed buildings. This trend was maintained 869 

when investigating the uncertainty in hazard intensity, as well as the low rates of shutter 870 

compliance. This exercise in particular reiterates the importance of collecting rich post-disaster 871 

field observations to validate established loss-estimation frameworks and demonstrates the reuse 872 

potential of component-level quantifications of damage that map readily to damage states used 873 

by Hazus.  Though beyond the scope of this study, root causes of inconsistencies revealed in this 874 

validation exercise will require further processing of street-level panoramic images captured by 875 

StEER. Such efforts should focus on expanding the limited number of structural assessments 876 

released in DesignSafe to increase the sample of severely damaged and collapsed buildings, as 877 

well as revisiting the forced classification of roofs into Hazus classes by using the classifier’s 878 

similitude measures to establish thresholds defining roofs that are not accessible due to 879 

significant incompatibilities with basic roof geometries. Such efforts should leverage the 880 

inventory generated in this study and published on DesignSafe to identify regions reconstructed 881 

after Hurricane Rita to determine if damage states are more reliably estimated by an augmented 882 

parcel approach when minimum construction practices are enforced. 883 
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Data Availability Statement 884 

Some or all data, models, or code generated or used during the study are available in a repository 885 

online in accordance with funder data retention policies. Specifically, inputs (inventories, 886 

rulesets, and hazard data), outputs (results), and supporting documentation for Lake Charles, LA 887 

are available in DesignSafe (https://doi.org/10.17603/ds2-83ca-r890). The pair of inventories and 888 

rulesets for Atlantic County, NJ are also available in DesignSafe (https://doi.org/10.17603/ds2-889 

jpj2-zx14). See http://doi.org/10.5281/zenodo.5033626 to download the R2D application used to 890 

execute the regional simulations described herein. Full documentation for each of the inventories 891 

and R2D is available at https://nheri-simcenter.github.io/R2D-Documentation/index.html. 892 
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Figure Captions 

Figure 1. Flow chart depicting the four sequential phases of the augmented parcel approach. 

Figure 2. Sample images of the floor detection model (each detection is indicated by a green 

bounding box). The percentage value shown on the top right corner of a bounding box indicates 

model confidence level associated with that prediction. 

Figure 3. Confusion matrices for the NumberOfStories predictor for (a) in the wild and (b) 

cleaned images. 

Figure 4. Validation of predicted OccupancyClass using (a) OpenStreetMap and (b) 

NJDEP. 

Figure 5. SURF-predicted YearBuilt based on NSI data compared to “ground truth” scraped from 

Zillow real estate listings in Lake Charles, LA displayed as (a) scatter plot and (b) histogram. 

Dashed lines denote +/- 10-years. 

Figure 6. Examples of garage detection model showing successful identification of attached 

garages. 

Figure 7. Confusion matrices for the garage predictor for validation sets from (a) New Jersey and 

California and (b) Lake Charles, LA. 

Figure 8. Geospatial visualization of occupancy for New Jersey inventories with summaries of: 

occupancy class, year built and number of stories. Inset maps show progressive zoom-in on 

Atlantic City and surrounding municipalities.  
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Figure 9. Geospatial visualization of year built for the Lake Charles, LA building inventory with 

summaries of: (a) number of stories, (b) occupancy class, and (c) year built. Inset box identifies 

two clusters of buildings used in subsequent validations. 

Figure 10. Geospatial distribution of (a) damage states and (b) loss ratios for Lake Charles 

inventory with cumulative distribution functions for (c) damage state and (d) expected loss 

ratio for Hurricane Laura Validation Exercise. 

Figure 11. Parametric verification of expected loss ratio as a function of YearBuilt for case 

study single family home in Lake Charles inventory. 

Figure 12. Difference between Zillow and NSI predicted (a) YearBuilt and (b) Damage State for 

Lake Charles inventory. 

Figure 13. (a) Probability of meeting or exceeding DS-2 and DS-3 and (b) probability of meeting 

or exceeding the expected damage state using NSI-trained results based on YearBuilt for Lake 

Charles inventory. 

Figure 14. Validation of BRAILS-predicted roof shapes to roof shapes labeled by StEER 

assessors in Lake Charles metro area. 

Figure 15. (a) Damage State distribution compared to median damage state of StEER 

Buildings, (b) influence of uncertainty in YearBuilt on simulated Damage States, (c) 

influence of uncertainty in Peak Wind Speed on simulated Damage States, (d) influence of 

uncertainty in YearBuilt on simulated Damage States for low shuttering compliance. Red 

trend line shows the average of the displayed bins.  



Table 1. Distribution of occupancies and label sources for occupancy classifier (N=15,743)  

 RES 1 RES3  COM 

OpenStreetMap 2,868 2,207   2,418 

NJDEP 4,999 2,867  386 

Total 7,868 5,074  2,804 

 

 



Table 2. Methodology adopted for ruleset development  
Attribute Description CS PN HS RV DA 

Structural Attributes: Wind 

RoofSystem Underlying roof structure  X    

SecondaryWaterResistance Secondary Water Resistance (SWR)  X  X X  

RoofCover Roof cover material  X    

RoofQuality Roof cover quality  X    

RoofDeckAttachmentW Wood Roof Deck Attachment (RDA)  X   X  

RDA-OWSJ OWSJ Roof Deck Attachment (RDA)  X     

RoofToWallConnection Roof to Wall Connection (R2WC) X     

Shutters Window opening protection X  X X  

AttachedGarage Presence of attached garage     X 

MasonryReinforcing Presence of reinforcement in masonry 
walls 

X     

OWSJ-r Property of open web steel joist (OWSJ)    X  

RoofDeckAttachmentM Defines metal roof deck attachment 
(RDA) 

 X    

RoofDeckAge roof deck age  X    

UnitClass number of units in strip mall      X 

JoistSpace joist spacing for multi-unit strip malls  X    

WindDebris likely sources of wind debris  X    

WindowAreaRatio window to wall ratio (WWR)  X   X 

TieDowns Foundation attachment (mobile homes) X   X  

Structural Attributes: Flood 

FloodType Flood zone type     X 

FirstFloorElev First floor elevation, defined by Hazus     X 

PostFIRM FIRM applicability X     

NumberofStoriesH Hazus-defined number of stores     X 

BasementType Hazus basement classification     X 

OccupancyType Hazus occupancy type     X 

Notes: Assigned by CS: codes/standards, PN: local construction practices/norms, HS: human-subjects surveys, 



RV: random variable, DA: direct assignment on other fields.  
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