11
12

13
14

15
16

17
18

19
20

21

22

23

24

25

26

27

28

Validation of an Augmented Parcel Approach for Hurricane Regional Loss Assessments
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Abstract

While simulation environments for the study of community resilience are rapidly advancing,
they remain constrained by the completeness of inventory data. This paper presents an
augmented-parcel approach leveraging various sources of open data, machine learning modules
and time-evolving rulesets to support Hazus-compatible risk assessments on a wide class of
buildings under hurricane wind and flood hazards. These techniques are implemented within the
open-source regional hurricane loss assessment workflow of the NHERI SimCenter. Illustrative

examples demonstrate building inventory generation in both data-rich and data-scarce
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environments. The study’s validations of computer vision-based modules underscore the
importance of training on “in the wild” images labeled with explicit knowledge of the region and
representative of architectural nuances such as carports. Validations further reveal the challenges
of simplifying complex contemporary roof geometries to the simplified shapes adopted in Hazus
and the criticality of accurate year built data, given the augmented parcel approach’s reliance on
time-evolving code-based rulesets. Published field observations collected in Lake Charles, LA
following the landfall of Hurricane Laura demonstrate that the use of an augmented-parcel
inventory within the SimCenter’s workflow for Hazus-compatible loss assessments yields
damage states consistent with ground-truth observations for minor to moderate damage states.
Simulations of extreme damage states (characterized by fewer ground-truth observations) bias
toward minor damage for undamaged structures and plateau at moderate damage even for
severely damaged and collapsed buildings. This trend persists when considering uncertainty in
hazard intensity, as well as the low rates of shutter compliance. Root causes of inconsistencies
revealed in this validation exercise will require further processing of street-level panoramic
images to generate more samples of severely damaged and collapsed buildings as well as post-

2007 construction.

1.0 Introduction

Communities are routinely faced with the challenge of describing their inventories of buildings
and other infrastructure assets. Ultimately the way in which inventories are described, and the
fidelity and frequency with which those descriptions are updated, depends entirely on the end use
of that data, creating challenges when that data is then leveraged for engineering analyses

(Zsarnoczay et al. 2022). Some of the earliest forms of inventorying were driven by the need to
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assess value for the purposes of taxation, e.g., (Department of the Treasury 2018); it was only
fitting that these same inventories were mobilized by the need to assess losses for the purposes of
catastrophe. Soon the assessment of losses under different disaster scenarios, as either part of
planning and preparedness or during response and recovery, e.g., (New Jersey Office of
Emergency Management 2014), became a routine exercise in hazard-exposed communities,
creating a new valuable end use for inventory data, e.g., (New Jersey Department of

Environmental Protection 2019).

The generation of such inventories can be conceptualized as a classification exercise,
where the degree of nuance required in the data model, and thus the number of fields, is dictated
by the fidelity of the loss estimation approach adopted. While the Hazus general building stock
has been engaged by scholars, practitioners and policymakers, it has inherent limitations with
respect to the granularity and accuracy it affords (Shultz 2017). Developing a context-specific
inventory capable of overcoming these limitations requires parsing data, often from a number of
sources, to construct the inventory. Unfortunately, the completeness and reliability of the data
exposed by local authorities varies widely, especially where governments have limited capacity
to generate, maintain and expose even the most basic inventory data, challenging the notion of
standardizing inventory generation using data sources that are relevant, consistent, and useful
(Jaiswal and Wald 2008). Still, the efforts to create a global earthquake model have made
important strides in cataloging the distribution of buildings in such environments based on
material, lateral force resisting system, and occupancy type (Jaiswal et al. 2010), and the use of
Bayesian updating based on open-source data has continued to evolve the capacity to classify

occupancies (Stewart et al. 2016). For hurricanes, efforts like the Florida Public Loss Model
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have made important strides to both highlight the challenges of integrating diverse sources of
data for catastrophe models and offer multi-faceted strategies to address the associated
uncertainties (Pinelli et al. 2020). Other states like New Jersey have made similar strides in
assembling critical data needed to assess risks due to hurricanes, with efforts centered on
federating a large number of hazard and inventory data sources into singular geospatial
environments (Kijewski-Correa et al. 2020). The Center for Risk-Based Community Resilience
Planning has also worked on develop building inventories for testbeds exposed to different
hazards, which include applications to tornadoes (Joplin, MO), hurricanes/coastal flooding
(Lumberton, NC and Galveston, TX), and tsunamis (Seaside, OR), accessible through their IN-
CORE platform (Center for Risk-Based Community Resilience Planning 2022), using a variety
of methodologies developed by the Center (Rosenheim et al. 2021). Their efforts have
highlighted the need for more precise building descriptions and potentially the purchase of
inventories from third-party providers or the creation of inventories using tax appraiser data,
which inevitably requires additional enrichment with structural data in order to be used for
hazard risk assessment (Roohi et al. 2021). Tax appraiser data also inevitably has gaps in its
reported fields, which may be addressed by manually interrogating Google Street View and
satellite imagery or conducting a rapid visual screening in the field (Park et al. 2017), and further
automated using deep learning approaches (Aravena Pelizari et al. 2021). Access to other data
sources and models can further enrich the economic and demographic information associated

with each parcel (Waddell 2002).

The issues surrounding the completeness and accuracy of available inventory data are

only compounded by the fact that high-performance computing has now enabled the theoretical
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frontiers of loss estimation to move away from their origins as an aggregated measure of impacts
to portfolios of buildings described by fragilities and toward the description of specific assets by
physics-based models (Deierlein and Adam Zsarnoczay 2021). The exciting potential for
increasing granularity and fidelity of loss estimation that can bring assessments down to the scale
at which individual mitigation decisions are made will unfortunately outpace the existing
inventory-generation mechanisms in municipalities, requiring new venues to characterize the

growing list of required geometries, dimensions and components across thousands of buildings.

Fortunately, technological advancements are poised to address these challenges both by
aiding municipalities in more efficiently generating and exposing valuable digital information
and also maximizing the discovery potential from existing data sources. For example, fusions of
blockchain technology (BCT) and building information modeling (BIM) are now streamlining
post-disaster permitting (Nawari and Ravindran 2019) and thereby digitizing data critical to loss
modeling. Meanwhile, innovations in computer vision and machine learning have helped to
automate the digitization of inventories from aerial and surface imagery at various scales, from
coarse spatial and fine temporal scales necessary to characterize the evolution of cities in data-
scarce settings (Jaiswal et al. 2010) to finer spatial scales necessary to resolve features like soft-
stories (Yu et al. 2019). As the lack of high-quality, parcel-level descriptions of building
inventories could potentially stymie the rapid advances in computational simulation capabilities
for high-fidelity loss assessment, continuing to advance the ability to automate the mining,

enrichment and augmentation of existing data sources is vital to inventory development.

In response this paper offers the following contributions: (1) the introduction of an

augmented-parcel approach, defined as a set of operations that enrich the information normally
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exposed for parcels within municipal databases. Augmented-parcel approach leverages existing
open data, machine-enabled techniques, and heuristic rulesets grounded in local codes/standards
and normative construction practices to automatically generate a suite of hazard and structural
attributes necessary to conduct loss assessments and in a manner that is replicable and tractable
over large-scale inventories. Illustrative examples in Atlantic County, NJ and Lake Charles, LA
(2) demonstrate the real-world application of the augmented-parcel approach to generate large-
scale inventories for Hazus-compatible loss assesssment, overcoming data deficits in settings
with limited data availability. Finally, (3) validations throughout the paper demonstrate the
performance of various parcel augmentation strategies using ground truth data and offer a
validation of Hazus-compatible loss assessments using field observations gathered in Lake
Charles, LA following Hurricane Laura. While the emphasis of this paper is regional hurricane
loss estimation within a Hazus-compatible framework, given the opportunity to validate
computer vision estimates of geometric features required for wind loss estimation, the
methodologies and overall workflow are generalizable to other hazards and loss estimation
approaches, as demonstrated by complementary efforts directed toward detecting features such
as soft stories (Yu et al. 2020) and enabling component-based loss estimation in accordance with

FEMA P-58 (Zsarnoczay and Deierlein 2020).

2.0 Overview of Augmented Parcel Approach

The transition from census-block-level loss projections to parcel-level projections of damage to
individual buildings under hazard events demands a wider range of inventory data, though the
specific building and hazard attributes required depend upon the hazards included in the analysis

as well as the adopted loss modeling approach. The adoption of the Hazus loss modeling
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framework in this study demonstrates specifically how machine learning and computer vision
techniques can be coupled with time-evolving heuristic rulesets grounded in local
codes/standards and normative practice to generate the building information necessary to widen
access to asset-level implementations of this de-facto loss modeling approach, regardless of a
community’s level of data readiness. Following the overall computational workflow in Wang et
al. (2021a), this section describes the process of assigning attributes to a large-scale inventory of
building footprints defined over a specific geographic region. The flow chart in Figure 1
illustrates the various phases of the augmented parcel approach described herein. Illustrative
examples in the subsequent section will then introduce a pair of real-world inventories generated

using this methodology.

2.1 Phase I: Attribute Definition

A generalized data model is first developed to organize the universe of attributes necessary to
describe each of the building footprints. Attributes include all building, hazard and site features
necessary to select the appropriate fragility curve in the Hazus wind and flood loss models, as
well as any secondary variables that may be necessary to assign that attribute based on the data
commonly reported in municipal building inventories used in tax assessment and permitting;
these are organized under the building classes defined by Hazus. See the Supplemental Materials
for a complete listing of the residential, commercial, industrial, agricultural, religious,
government, education and essential facilities building classes defined for hurricane wind (Table
A.la), inundation (Table A.l1b) and wave-induced (Table A.lc) hazards. The structural and
hazard attributes required to assign fragility functions in Hazus wind and flood loss models for

each supporting building class were subsequently inventoried and potential data sources and
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augmentation strategies were mapped to each attribute. While hazard attributes are often
available from third party data (3PD), a review of inventories compiled in the data-rich NJcoast
project (Kijewski-Correa et al. 2020) highlighted a number of structural attributes that were
unlikely to be available in municipal data (MD); evaluation of data scarce communities in
Louisiana suggested that even some basic property data may additionally need to be addressed
through an augmentation strategy. Strategies to address these gaps were identified, including
machine-enabled (ME) techniques and rule-defined (RD) assignments based on legacy building
codes, local construction practices/norms, and human subjects data. By working backwards to
map the finest level of data required to complete a Hazus loss assessment on a specific building
footprint, secondary data required for rules-based assignments were also identified and included
in a comprehensive data model. Supplemental Materials Table A.2 reports the resulting data
model with fields grouped by category: Building Information for basic property data,
Construction Features for largely geometric and dimensional data, Hazard Attributes for wind
and flood-related hazard and site data, Structural Attributes for the data needed by Hazus wind
and flood loss models (FEMA 2018a; b) to select appropriate fragility descriptions, and
Simulation Parameters for regional simulation settings. The method(s) that can be used to
populate each field are also mapped in Table A.2 and detailed in the following subsections, in
some cases providing multiple potential approaches, with some values either default assigned

(A) or derived (D) from other fields.

2.2 Phase II: Initial Population

The data model developed in Phase I is then initially populated by web scraping available open-

data sources to populate as many fields as possible (refer back to Table A.2 for list of fields
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associated with MD and/or 3PD designations). Available municipal data such as tax appraiser
and permit databases may contain most Building Information data fields, as well as some
Construction Features, however, there are considerable challenges in accessing the data required
for loss estimation (Zsarndczay et al. 2022). As the data are generated and maintained in a
fragmented manner, possibly without the enforcement of county/parish or statewide data
standards, there is wide variation in the fields reported, their completeness, and accuracy. As the
case studies later in this paper demonstrate, some states have invested in expanding the data
reported for the purposes of hurricane loss estimation and floodplain management (what we term
data rich environs), whereas other states may be in their infancy in exposing even the most basic
building information (what we term data scarce environs). More standardized data is available
nationwide to support hazard/exposure descriptions, e.g., FEMA Flood Insurance Rate Maps
(FIRMs), Land Use Land Cover (LULC) databases, and the Applied Technology Council
(ATC)’s Hazards by Location Application Programming Interface (API) (Applied Technology

Council n.d.), which can be used to populate many Hazard Attributes.

2.3 Phase III: Machine-Enabled Attribute Assignment

A range of machine-enabled techniques were then developed to populate missing Building
Information and Construction Features. These modules are available through the NHERI
SimCenter as part of CityBuilder, a python application that incorporates different artificial
intelligence (Al)/machine learning (ML) modules from the center’s backend tool BRAILS
(Wang et al. 2021b). Each module’s subsequent presentation includes a description of the

methodology and associated validation process.
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2.3.1 Roof Shape

The roof shape (Attribute: RoofShape) is considered a high-priority attribute both for importance
in assessing wind vulnerability but also its limited reporting in standard open municipal data.
Thus an image classifier operating on available satellite imagery (e.g., Google Maps) was
developed using the convolutional neural network (CNN) ResNet50 (He et al. 2016). The
classifier was trained to assign roof images for each building footprint to one of three categories
used in Hazus: gable, hip, or flat. The original training of the Al model utilized 6,000 images
obtained from Google satellite imagery in conjunction with roof labels obtained from
OpenStreetMap (OSM). The training set was distributed equally across the three roof types, i.e.,
2,000 images labeled as ‘flat’, ‘gabled’, and ‘hipped’, respectively. During the development of
the model, 80% data was used for training and 20% was used for testing. As many roofs have
more complex shapes, a similitude measure is used to determine which of these roof geometries
is the best match to a given roof, with full details and the trained model released as part of the
BRAILS backend component (SimCenter 2022). The classifier was then validated using a
cleaned dataset of 125 unobstructed satellite images sampled nationwide from OpenStreet Maps.
The selected roof images were screened to match the idealized gable, hip and flat geometries
adopted by Hazus in order to establish the efficacy with which these three fundamental roof
shapes could be identified from publicly available satellite imagery, achieving a detection rate of
93.15% across all three roof classes Wang (2021a). However, it is important to note that over
time, roof geometries have become increasingly more complex, blending traditional hip and
gable forms that deviate significantly from the idealized shapes adopted by Hazus. While the

classifier’s similitude measure negotiates this reality by forcing these complex roofs into one of

10



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

these simple geometries, performance of a Hazus-consistent roof classifier will inevitably see a
degradation in performance when applied to inventories with more complex roof geometry, as

discussed further in StEER Validation Exercise for Lake Charles, LA following Hurricane Laura.

2.3.2 Building Dimensional Data

The roof dimensions (Attributes: MeanRoofHt, RoofSlope) and other building elevation data
(Attributes: ElevationR0, ElevationR1, FirstFloorHt, FirstFloorHtl, NumberOfStories) are also
considered high-priority attributes not reported by most open municipal data but critical to
classifying hurricane-vulnerable buildings. Generating such critical dimensional data requires

identification of the building stories and their relative elevations.

A detection model that can automatically detect rows of building windows was
established to generate the image-based detections of visible floor locations from street-level
images. The model was trained on the EfficientDet-D7 architecture (Tan et al. 2020) with a
dataset of 60,000 images, using 80% for training, 15% for validation, and 5% testing of the
model. In order to ensure faster model convergence, initial weights of the model were set to
model weights of the (pretrained) object detection model that, at the time, achieved state-of-the-
art performance on the 2017 COCO Detection set (Lin et al. 2014). For this specific
implementation, the peak model performance was achieved using the Adam optimizer (Kingma

and Lei Ba 2014) at a learning rate of 0.0001 (batch size: 2), after 50 epochs.

For a given Google Street View image of a building in the inventory, the floor detection
model generates a bounding box output for its detections and calculates the confidence level

associated with each detection (see Fig. 2). A post-processor that converts stacks of neighboring
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bounding boxes into floor counts was developed to convert this output into an estimate of the
number of stories. An image may contain multiple buildings; therefore, this post-processor was
designed to perform counts for each building in an image by clustering the bounding box
detections for every building. When multiple buildings are encountered in an image, the post-

processor yields multiple floor counts in the order the buildings are detected from left-to-right.

To validate performance, a test set was established by randomly selecting 3,000 parcels
for which the number of floors was reported from the New Jersey Property Tax System Database
(Department of Treasury 2018), called MODIV. These samples were drawn randomly from all
counties of New Jersey, except Atlantic County, as this county is the site of one of the illustrative
examples discussed later in this paper. Figure 3 provides the confusion matrix of model
classifications, where a diagonal value of 1.0 indicates perfect classification. Validation against
images with arbitrary camera orientations (termed “in the wild” images) results in 86% accuracy
in classifying the number of stories (Fig. 3a). Validation using only “cleaned” images, where the
building of interest is captured with minimal obstructions from trees or cars, is at the center of
the image, and perspective distortions are limited, results in a detection accuracy of 94.7% (Fig.

3b).

Once the floors of a building are detected, the elevation of the bottom plane of the roof
(lowest edge of roof line) and elevation of the roof (peak of gable or apex of hip) must be
estimated with respect to grade (in feet) from street-level imagery (e.g., Google Street View), in
order to estimate the roof height and mean roof height by respectively taking the difference or

average of these elevations.

12
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As in any single-image metrology application, extracting the building elevations from
imagery requires: (1) rectifying image perspective distortions, typically introduced during image
capture; (2) determining the pixel counts representing the distances between ends of the objects
or surfaces of interest (e.g., for first floor height, the orthogonal distance between the ground and
first-floor levels); (3) converting these pixel counts to real-world dimensions by matching a

reference measurement with the corresponding pixel count.

Given that the number of street-level images available for a building can be limited and
sparsely spaced, a single image rectification approach was deemed most applicable for regional-
scale inventory development. The first step in image rectification requires detecting line
segments on the front face of the building. This is performed by using the L-CNN end-to-end
wireframe parsing method (Zhou et al. 2019). Once the segments are detected, vertical and
horizontal lines on the front face of the building are automatically detected using RANSAC line
fitting (Fischler and Bolles 1981), based on the assumptions that line segments on this face are
the predominant source of line segments in the image and the orientation of these line segments
change linearly with their horizontal or vertical position depending on their predominant
orientation. The other support vector model implemented for image rectification focuses on the
street-facing plane of the building in an image, and, based on the Manhattan World assumption
(i.e., all surfaces in the world are aligned with two horizontal and one vertical dominant
directions), iteratively transforms the image such that horizontal edges on the facade plain lie

parallel to each other, and its vertical edges are orthogonal to the horizontal edges.

In order to automate the process of obtaining the pixel counts to then determine the

elevation of identified stores, a facade segmentation model was trained to automatically label
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ground, facade, door, window, and roof pixels in an image. The segmentation model was trained
using DeepLabV3 architecture on a ResNet-101 backbone (Chen et al. 2017), pretrained on
PASCAL VOC 2012 segmentation dataset (Everingham et al. 2012), using a facade
segmentation dataset of 30,000 images supplemented with relevant portions of ADE20K
segmentation dataset. The peak model performance was attained using the Adam optimizer
(Kingma and Lei Ba 2014) at a learning rate of 0.001 (batch size: 4), after 40 epochs. The
conversion between pixel dimensions and real-world dimensions were attained by use of field of
view and camera distance information collected for each street-level imagery. The identification
of these elevations then enables the derivation of other attributes such as the RoofSlope,
calculated as the ratio between the roof height and the roof run (defined as half of the smallest

plan dimension of the building footprint).

2.3.3 Occupancy Class

In some data-scarce environments, occupancy data (Attribute: OccupancyClass) essential to
assigning standard Hazus Building Classes may be unavailable or missing for a number of
parcels in tax assessor data, prompting the development of an occupancy classifier. While the
classifier can be expanded to encompass the full suite of Hazus Building Classes, it was initially
developed to separate residential buildings: RES1 (single-family residence) and RES3 (multi-
family residence), and general COM (commercial) buildings that encompass all defined
commercial classes in Hazus (COMI-COMI10). The occupancy classifier employs a
convolutional neural network, trained using 15,743 Google Street View images with labels

derived from OpenStreetMaps and an enriched inventory created by the New Jersey Department

14
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of Environmental Protection (NJDEP), discussed later as one of the paper’s illustrative examples.

The distribution of occupancies and sources of labels are summarized in Table 1.

The performance of the classifier was first validated against a ground truth dataset that
contains 293 Google Street View images from the United States with labels from
OpenStreetMap (98 RES1, 97 RES3 and 98 COMI1 buildings) with unobstructed views of the
buildings (cleaned data), which one can consider as examples of these occupancy classes that are
easily identifiable by non-expert human agents. The confusion matrix, which presents visually
the predictions versus actual data with ideal classification as 1.0 on the diagonal, is as shown in
Figure 4a. A second validation is conducted using 3000 randomly sampled RES1, RES3 and
COM buildings in the NJDEP dataset (1000 for each class). Google Street View images are
downloaded for each sampled building. While classifying with accuracies as high as 99% for the
OpenStreetMap testing dataset, classification accuracy diminishes for the NJDEP validation (Fig.
4b) due to two likely causes. First OSM validation data is cleaned whereas NJDEP is validating
against a more realistic condition of “in the wild” images permitting obstructions, which will
understandably reduce classification accuracy across all occupancies. Second, OSM labels were
assigned semantically, without direct knowledge of the building, and thus the model is trained on
commercial construction that was easy to visually identify by human agents. NJDEP data is
locally-generated by officials whose classifications include non-semantic knowledge, based not
upon appearance, but zoning, tax and other property information. This underscores the value of
having access to reliable regional data labeled with direct knowledge of building
function/occupancy when training image classifiers for this task. Further, the classifier was

trained on images of common commercial buildings, and similar to the roof classifier, would
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necessarily assign each one of three classes (RES1, RES3, or generic COM) to every building it
encounters. The generalization of occupancy to three classes in order to separate residential from
non-residential construction should expect to see degraded performance when encountering
buildings outside of traditional commercial construction. Though not explored herein, in
municipalities where at least some building attributes are reported, multi-modal learning
approaches fusing computer-vision and available building attributes may prove fruitful in
classifying occupancy as well as assigning other missing attributes. Further, training a model to
classify non-residential occupancy with greater nuance based on imagery alone presents practical
challenges considering the diverse non-residential occupancies formalized in Hazus (see
Supplemental Materials Table A.1a). Since these diverse classes of non-residential construction
make up a small fraction of building inventories, there are inevitable limits on the amount of

reliable training data available.

2.3.4 Year Built

One of the most critical features for the augmented parcel approach is the year built (Attribute:
YearBuilt), given its essential role in the heuristic rulesets that assign many construction details
necessary for loss estimation. Unfortunately, this attribute is not always reported in data-scarce
communities. In such situations, third-party data sources like the National Structure Inventory
(NSI) can be mined to extract this field for geocoded addresses across the United States.
However, it should be noted that not all buildings are included in the NSI dataset, and the
geocodes of the addresses may not align with building locations defined by available footprint
data. As theorized in Wang et al. (2021a), a neural network can be used to predict the year built

information for each building based on the spatial patterns learned from the NSI dataset. The
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SimCenter’s SURF application (Wang, 2019) is therefore employed to construct and train a
neural network on the available NSI year built information within the inventory’s geographic
boundaries, allowing a YearBuilt assignment to be made at each footprint within that domain. In
an effort to validate this approach, the authors used real estate websites (Zillow) to identify
YearBuilt information for buildings listed on the market within the inventory domain. It is
assumed that real estate listings, which require legally binding disclosures of building
information, can be treated as “ground truth” in instances where tax assessor data is not
available. This validation exercise was conducted in Lake Charles, LA, resulting in 1182 listings
that were then used to train a neural network to generate YearBuilt values at all footprints for
which a companion NSI-trained model had already predicted values. Figure 5a shows a scatter
plot of the NSI-predicted year built against the Zillow-scraped results; while perfect agreement
would cluster along the solid diagonal, the predicted year built data have a R2 value of 0.60 with
respect to the Zillow data. The dashed lines in the figure define the 10-year boundaries about the
perfect agreement line. As Phase IV will use time-evolving rulesets largely driven by code eras,
YearBuilt must be estimated more accurately in the modern code era, which is post-2006 in
Louisiana, and with a precision less than 10 years (depending on the frequency of code
adoption/amendment cycles in a state/municipality and how much structural requirements
change in each cycle). Note that the SURF-predictions trained on NSI data bias toward newer
YearBuilt, which may result in predictions of less vulnerability using rulesets grounded in model
building codes. These implications will be discussed further in Hurricane Laura Verification &

Validation Exercise.
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2.3.5 Attached Garage

As failures of attached garages can propagate damage into the primary structure, the presence of
garages (Attribute: Garage) is critical to accurate loss assessments in residential construction,
though not commonly reported in open-city data. A garage detector was trained to conduct a
binary classification based on the presence of an attached garage in Google Street View imagery
(which includes both detached garages and homes with no garage). The model was trained on the
EfficientDet-D4 object detection architecture (Tan et al. 2020) using a subset of the SimCenter
Labeled Building Facades dataset (Wang et al. 2021a). This subset comprises 1,887 Google
Street View images from California, New Jersey, and Louisiana, sites of the SimCenter’s
regional simulation testbeds, and was utilized such that 80% of the images were marked for
training, 10% for validation, and 10% for testing of the model. All of these images were pre-
screened before model training to ensure that the buildings in the images are minimally occluded
and are not heavily distorted. Similar to the number of stories detector, initial weights were set to
model weights of the (pretrained) object detection model that, at the time, achieved state-of-the-
art performance on the 2017 COCO Detection set (Lin et al. 2014). For this task, the peak
detector performance was attained using the Adam optimizer (Kingma and Lei Ba 2014) at a
learning rate of 0.0001 (batch size: 2) after 25 epochs. The classification includes a bounding
box that expresses the confidence associated with the detection. A post-processor converts
bounding box detections into garage existence information, with the ability to parse garages for
multiple building instances in a single input image, as demonstrated by Figure 6, which also
highlights the variation in confidence resulting from the presence of obstructions like vehicles

and garbage cans. The model was validated on two datasets. The first used the validation subset
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reserved during initial training (N=189), which yielded the confusion matrix in Figure 7a
showing 92% accuracy in detecting attached garages. A second validation was conducted using
300 randomly selected and manually labeled Google Street View images from Lake Charles, LA
(Fig. 7b), the site of one of the illustrative examples later in this paper. In this region, attached

garage detection drops to 82%, with “no garage” scenarios detected with 62% accuracy.

A deeper look at the differences between the training data used to generate the garage
detection model and Lake Charles building inventory provides explanations for the discrepancy
between the accuracies observed for the two validations. First, compared to denser urban
environments, Lake Charles has a higher density of carports that may share the home’s primary
roof line, but are not fully enclosed with a door. The lower garage detection rates are likely due
to the fact that this regional garage type was underrepresented in the training dataset. Moreover,
most suburban homes in Lake Charles are architecturally unique in comparison to those in the
initial training data, which may have affected “no garage” detection accuracy. Although a
detection model can typically compensate for such differences, since the training data was drawn
from three different states, the model understandably was unable to extrapolate well to the
different building appearances in the Lake Charles building stock. It is important to note that
none of the issues discussed above point to deficiencies in deep learning models but rather the
need for representative training data in each region to recalibrate models to the architectural

nuances in a given community.

2.4 Phase IV: Augmentation by Heuristic Rulesets

Basic building information scraped from municipal inventories in Phase II or mined from
imagery in Phase III offer basic descriptions of a building and even geometric/dimensional data,
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e.g., single family home, made of wood, 1-story, but these are not the attributes the adopted loss
model (Hazus) ultimately requires to determine damage and loss, e.g., secondary water resistance
or roof-deck attachment. Thus the challenge lies in inferring these more granular attributes
associated with the primary load path or water-resistant envelope from the data available in
Phases II and III. The specific attributes required by Hazus also vary based on the building class,
e.g., a wood single family home is described by five such attributes while a masonry version of
the same home requires the assignment of up to three additional attributes. This thus requires a
first step of assigning each footprint to a relevant Hazus building class based on the data
generated in Phases II and III, followed by the assignment of required attributes for that footprint
based on its building class. Thus three families of rulesets were developed to infer the Hazus
building class and class-specific attributes for Hazus wind and flood loss models from data
generated in Phases II and III. Rulesets include two aspects: the formal logic that evaluates
various combinations of data from Phase II and IIl to determine the appropriate attribute
assignment (including provenance metadata for any references used to justify the assignment),
and then its implementation in Python for execution in the loss estimation workflow. The former
is published on DesignSafe (Kijewski-Correa et al. 2022) and the latter in GitHub (Angeles et al.

2021).

The first family of rulesets is used to assign each footprint to a corresponding Hazus
building class. For wind losses, buildings are grouped by primary building material (wood,
masonry, concrete, steel, manufactured home) and then subclassified into one of fifty-five
corresponding Hazus building classes (Table A.la) and rulesets make this determination based

on the occupancy, number of stories and plan area. For flood losses, rulesets assign one of thirty-
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two building classes based on the occupancy, number of stories and foundation type (Table
A.1b). For wave-induced losses, footprints are assigned to one of ten classifications by rulesets
that consider building use, construction material and number of stories (Table A.1c). The rulesets
include a default building class for each hazard if footprints are lacking one or more fields
required to make the assignment. The defaults and formal logic are published for the 97 Hazus
building classes on DesignSafe (Kijewski-Correa et al. 2022); the Supplemental Material Tables

A.la-c include an example of these rules to illustrate the process.

Next, rulesets were developed for each building class in the Hazus wind, flood and wave
loss model to infer the required features, like roof to wall connection, from building and site
information generated in Phase II and III. Whenever possible, the formal logic for these
assignments derived from a review of the legacy building codes/standards (CS), creating rules
that were time varying based on the requirements of different code eras in that regions. For
attributes not specified by code, online research was conducted to determine likely construction
practices/norms (PN) used in these code eras. As some attributes like use of window shutters
requires agency on the part of homeowners, rates of compliance in existing human-subjects
surveys (HS) where used to assign these attributes (Javeline and Kijewski-Correa 2019). When
the attribute was expected to change over time, either based on changes in codes/standards for
industry practices/norms, the rules are written as a function of YearBuilt, assigning attributes
based on the governing code edition or availability of specific mitigation measures in the market
at the time of construction. In cases where engineering judgment was required, rules were
assigned based on the authors’ understanding of the most common construction practices in a

given region or conservative adoption of the most vulnerable configuration. In cases where
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variability is expected, attributes may be assigned as random variables (RV). Table 2 lists the
methodological basis for the attributes used in Hazus wind and flood loss assessments, with
some Direct Assignment (DA) of attributes based on attributes determined in Phases II and III.
Note that some attributes may be assigned by multiple techniques based on the Year Built and
eras when norms shifted or code requirements took effect, e.g., CS methods may apply in the
modern code era, whereas PN or HS methods may govern in the era predating modern codes.
Rulesets for each of the attributes in Table 2 again include default assignments in instances
where one or more fields required by the ruleset are missing for that footprint, in which case
attributes associated with an archetype building for that building class are assigned. The defaults
and formal logic are published for the Hazus building classes on DesignSafe (Kijewski-Correa et
al. 2022); the Supplemental Material Table A.2 includes an example of these rules to illustrate

the process.

3.0 Illustrative Examples

Two illustrative examples are now presented to demonstrate the application of the above
inventory generation processes at the municipal- and county-level. In either case, the process
initiates with identification of building footprints, which should be preferably sourced from open
governmental data generated with human oversight. Third-party footprint data may be necessary
(Microsoft 2021), though hand-digitized footprints, e.g., 2017 Microsoft footprints, are
preferable over computer-generated footprints, e.g., 2018 Microsoft footprints, that may fail to
discern individual buildings in multi-building complexes/parcels. All data is ultimately
georeferenced to the coordinates at the centroid of these footprints. BRAILS CityBuider

application was used to develop the building inventories and assemble accompanying satellite
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and Street View imagery associated with each footprint for use in subsequent computer vision
tasks (Wang et al. 2021b). Note that tax assessor data, one of the most valuable municipal data
sources used in Phase II of inventory generation, is specified at the parcel level; parcels may
contain multiple footprints and/or a footprint may cross multiple parcels, in which case rules
used by the NJDEP were used to assign parcel attributes to those footprints (New Jersey

Department of Environmental Protection 2019).

3.1 Scenario 1: Data Rich Environments

Many coastal communities have made substantive investments in open data that benefit a
number of planning, emergency response and service delivery functions at the state and local
level; among these is the State of New Jersey. Notably the New Jersey Geographic Information
Network (NJGIN) has open access to federated data from different state agencies and counties to
centralize base/hazard maps and datasets supporting emergency response, transportation, hazard
assessments, and public works (Kijewski-Correa et al. 2020). Grant programs following
Superstorm Sandy have helped many municipalities contract local firms to create GIS endpoints
with local versions of these and other datasets describing their properties/parcels, infrastructure
assets, planning/zoning polygons, and flood-vulnerability, e.g., repetitive loss structures and
elevation certificates. The substantive investment in open data following a major damaging
storm made this an ideal data-rich scenario for inventory development. Ultimately, Atlantic
County, NJ and specifically Atlantic City and its surrounding municipalities were adopted as a
case study, noting that this region is under active redevelopment with questions of resilience to
climate-driven hazards of particular concern. The built environment in this region is quite diverse

with a blend of low-rise commercial (1-3 stories), industrial, high-rise hotels/casinos (over 20
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stories), and single/multi-family residences in a fairly compact geography. Thus this inventory
can encompass both extremes in building typologies vulnerable to wind: wood frame single-
family homes and tall flexible structures. From the perspective of hazard exposure, this region is
also characterized by beachfront communities exposed to storm surge and breaking waves on the

ocean-facing coastline coupled with back bay and riverine flooding.

A pair of inventories was developed in this region to allow the targeted investigation of
flood-exposed properties as well as a wider study inclusive of properties outside the floodplain.
Inventory development initiated with NJDEP Footprint Data, which includes flood-exposed
properties cataloged in two geodatabases encompassing approximately 453,000 footprints across
the entire state inclusive of all building footprints within the 1% annual chance (AC) floodplain,
as defined by FEMA FIRMs as well as footprints that fall within a 200-ft buffer of the 1% AC
floodplain boundary. These databases were combined and then clipped to retain only those
within the limits of Atlantic County to form the Flood-Exposed Inventory. Half of this
inventory’s 32,828 buildings is derived from the three most populated municipalities in Atlantic
County: Atlantic City, Margate City, and Ventor City, with 30,827 residential buildings and the
remainder dominated by other occupancies such as commercial (N=1496) and governmental
(N=7338) buildings. The majority are two-story (60%) or single-story (25%) construction, with
wood as the dominant construction material (94%), with some masonry (3%) and concrete (3%)
typologies. This inventory was then extended to include the remaining footprints within Atlantic
County, with the Microsoft Footprint Database (Microsoft 2021) as the primary source of non-
NJDEP footprint polygons. A separate roof segmentation algorithm (Durnov 2020) was applied

to Google satellite images to parse multiple footprints out of errant singular footprints for multi-
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building parcels. This resulted in the full Atlantic County Inventory. This larger inventory is
comprised of 100,721 buildings across the 23 municipalities of Atlantic County, with 90,017
residential buildings and the remainder dominated by other occupancies such as governmental
(N=7338) and commercial (N=2366) buildings. With some tall buildings in Atlantic City, the
vast majority are single story (91%) or two-story (6%) construction, with wood as the primary
construction material (88%), followed by concrete (11%). This inventory pair is shown in Figure

8.

NJDEP also enriched its floodplain footprints with various attributes necessary to
conduct standard FEMA risk assessments. All footprints included a set of Basic Attributes
inclusive of parcel and site data and then Advanced Attributes required by Hazus User Defined
Facilities (UDF) Module, which includes material, occupancy, replacement value, year built,
area, number of stories, first floor height, and foundation type (New Jersey Department of
Environmental Protection 2019). The augmentation also included data required by the FEMA
Substantial Damage Estimator (SDE) Tool classifying residential superstructure, foundation,
roof cover and exterior finishes. Thus the initial population of the data model for these two
inventories exploited this augmented data to assign relevant fields to all properties in the
floodplain (100% of buildings in the Flood-Exposed Inventory and that same subset within the
Atlantic County Inventory, which was approximately one third of that larger inventory). For
footprints not included in the NJDEP augmented datasets, these fields were assigned by parsing
MODIV data, which is the New Jersey Tax Assessor Data (New Jersey Geographic Information
Network 2021) with reference to the MODIV User Manual (Department of the Treasury 2018).

Specifically, OccupancyClass, BuildingType (construction material) and FoundationType were
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parsed from MODIV data using the aforementioned heuristic rulesets (Angeles et al. 2021), with
default values for any footprints where the required MODIV fields were lacking. Inclusion of a
wide range of occupancies (see Supplemental Materials Table A.la-c) required additional third
party data from NJGIN Open Data portal to establish locations of essential facilities (using
critical facilities layers) and define terrain characteristics using basic transformations of Land
Use Land Cover data. Machine-enabled techniques introduced in Section 2.3.2 were then
leveraged to estimate NumberofStories for all Atlantic County Inventory footprints not
previously augmented by NJDEP, noting that this attribute tends to be under-reported in the
MODIV database. Meanwhile RoofShape, assorted building elevation fields (as well as all
derived roof dimensions), and WindowArea (assuming the proportion of windows on the front
face is representative of the proportion on all faces) were respectively augmented by the
machine-enabled techniques in Sections 2.3.1 and Section 2.3.2 for both the Flood-Exposed
Inventory and the Atlantic County Inventory. Full details of the resulting data model and
rulesets, with full provenance information, have been released on DesignSafe (Kijewski-Correa
et al. 2022). The diversity of occupancy, number of stories and year of construction encompassed

by this pair of inventories is affirmed by the statistical summaries in Figure 8.

3.2 Scenario 2: Data Scarce Environments

The process used in New Jersey was repeated in Lake Charles, LA to demonstrate how to
efficiently generate inventories for the study of impacts and recovery following Hurricane Laura.
Emphasis was placed on wind damage to residential construction, given the potential for
validation exercises discussed in the next section. The attributes required for this class of

construction were downsampled from the full data model presented previously in Supplemental
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Materials A.2a and source data was identified. Unfortunately, there was a scarcity of open data in
Lake Charles and Calcasieu Parish, requiring the use of machine-enabled approaches to assign
the YearBuilt and OccupancyClass. While Louisiana has different code eras and code
amendments that would require adaptation of the initial rulesets developed for Scenario 1, the
rulesets from New Jersey were directly applied since both states employ IBC for contemporary
construction. Beyond differences in the effective dates for specific years when code revisions
became effective, Louisiana had no statewide code prior to 2006 and currently enforces 2015
IBC, with critical amendments related to wind speed caps in 2014, 2015, and 2017, and a
freeboard cap in 2018, based upon the state’s numerous hurricane recovery experiences; whereas
New Jersey adopted statewide codes much earlier (1975), including IBC since 2003 and
currently enforces 2018 IBC. With losses from Superstorm Sandy dominated by storm surge,
New Jersey did not have the same intense periods of amendments to design wind speeds, making
it well-suited to serve as the model for ruleset development with codes following the typical 3-
year adoption cycle. While direct translation of the New Jersey rulesets without modification
may result in predictions of better performance in Louisiana buildings constructed before 2006,
extending effort to revise the New Jersey rulesets for this example was not warranted given the
lack of reliable data on YearBuilt and OccupancyClass required for ruleset execution. The
inventory and associated rulesets were further constrained to wood residential properties within
the city limits of Lake Charles, LA (keeping 26,516 of the total 30,072 properties) and
supporting only Hazus Building Classes WSF1-2 and WMUH 1-3 (see asterisks in Table A.la
indicating the retained classes). Figure 9 visualizes the geospatial distribution of YearBuilt in the
resulting residential inventory with inset statistical distributions of key attributes. An additional

cluster of homes south of Lake Charles was also included in the inventory to support subsequent

27



597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

validation exercises (this cluster and another within the city limits are shown in the inset in Fig.
9). Notably, this residential inventory is typified by older vintages of construction (pre-1980)
(85%), with a dominance (98%) of low-rise (1-2 story) buildings and single-family (81%)
residences. See asterisks in Table A.2 for fields retained in the downsized data model; details of
the resulting data model and rulesets, with full provenance information, have been released on

DesignSafe (Wang et al. 2021¢).

4.0 Hurricane Laura Verification & Validation Exercise

Validation of the augmented parcel approach to generate inventories in support of hurricane loss
assessment leverages the Lake Charles, LA inventory introduced under Scenario 2 to study the
impacts of Hurricane Laura. As detailed in Roueche et al. (Roueche et al. 2020), the storm made
landfall as a strong Category 4 hurricane near Cameron, LA in the early hours of 27 August
2020, tying the Last Island Hurricane of 1856 as the strongest landfalling hurricane in Louisiana
history. Wind speeds are estimated to have reached or exceeded the design wind speed for Risk
Category II buildings and other structures, as defined in ASCE 7-16 (American Society of Civil
Engineers 2017) and the 2018 International Building Code (MRI = 700 years) (International
Building Code 2018), by as much as 8 km/h (5 mph) near Lake Charles, LA (specifically,
northeastern Calcasieu Parish and the eastern half of Beauregard Parish) (Applied Research
Associates 2020). As the storm’s well-predicted track facilitated coordinated, multi-entity
surface measurements of wind fields and storm surge, Laura is one of the best documented storm
events and thus provides novel opportunities to understand the vulnerabilities underpinning

losses and robustly verify and validate workflows intended to predict ensuing losses.
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The Structural Extreme Events Reconnaissance (StEER) Network building performance
assessments captured between 27 August and 12 September 2020 will serve as the ground truth
observations for this validation exercise. Notably, the areas impacted by Laura were previously
impacted by Hurricane Rita (2005), resulting in a sizable population of modern (post-IBC/IRC)
single-family homes exposed to design-level winds. As such, the validation exercise focuses on
wood 1-2 story single-family (WSFI1-2) and 1-3 story multi-unit residential (WMUHI-3)
construction subjected to wind hazards. In accordance with the regional simulation workflow
introduced in Deierlein et al. (Deierlein et al. 2020), the augmented parcels of the Lake Charles,
LA Inventory were assigned appropriate damage and loss functions from the Hazus Hurricane
Damage and Loss Model (FEMA 2018b, 2021), implemented in the SimCenter’s PELICUN
application (Zsarnoczay 2019). For wind damage assessment, the HAZUS damage functions
consist of tabular data for multiple damage states to describe their fragilities as functions of 3-
second peak wind speed (PWS) at reference height (10 m) in open terrain. These tabular data are
parsed in PELICUN to fit a continuous normal or lognormal cumulative density function for
each fragility. For wind loss assessment, the HAZUS loss functions consist of tabular data
mapping the peak wind speed to expected loss ratio. These tabular data are used by PELICUN to
calibrate the expected loss ratio of individual damage states so that the damage and loss models

are coupled for more realistic outcomes (Zsarnoczay and Deierlein 2020).

The regional simulation used in the following verification and validation exercises is
orchestrated using the NHERI SimCenter’s Regional Resilience Determination (R2D)
Application (McKenna et al. 2021), driven by a surface-level wind field produced on 4

September 2020 by Applied Research Associates (ARA) and made available by National
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Institute of Standards and Technology (NIST) on DesignSafe (Applied Research Associates
2020). The wind field incorporates storm track and central pressure data from the National
Hurricane Center (NHC) through Forecast Advisory Number 33 and observations through 1200
UTC on 28 August 2020. The ARA windfield is first mapped to a rectangular grid with 0.01 to
0.02 degree intervals; the peak wind speed at the centroid of each building footprint is estimated
by randomly sampling the PWS from its nearest four neighboring grid points. The hazard

intensities defined by the PWS are then related to probabilities of damage and loss.

The geospatial distribution of estimated wind damage states and losses under Hurricane
Laura are shown in Figure 10a,b, with Figure 10c plotting the cumulative distribution function
(CDF) of the damage states. Hazus Damage States (DS) are defined as DS-0: no/very minor
damage, DS-1: minor damage, DS-2: moderate damage, DS-3: severe damage and DS-4:
destroyed (Vickery et al., 2006). Most residential buildings (75%) in the Lake Charles inventory
were projected to have relatively minor to moderate wind damage (expected Damage State no
greater than 2). Few residences are predicted to be in the extremes of the distribution: about 5%
with damage no greater than DS-1 and another approximately 5% exceeding DS-3. The
corresponding CDF of projected loss ratios is shown in Figure 10d, illustrating that about 20% of
residences would expect a loss of no more than 10% of the total reconstruction cost, with about
10% of residences seeing a loss of half or more of the total reconstruction cost. All estimates are

based on a YearBuilt predicted using NSI-trained machine-enabled techniques.

4.1 Verification Process
A two-step process was used for verification, with hand calculations of estimated losses for a

subset of 98 randomly-sampled buildings in the inventory, followed by a parametric
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investigation. These hand calculation involve the manual assignment of the appropriate HAZUS
building class based on the building attributes, followed by the manual selection of the
corresponding damage fragilities and loss ratios from the HAZUS database that were described
by best-fit curves in the SimCenter’s Pelicun application (Zsarndczay and Deierlein 2020). Peak
wind speeds are determined using geolocation data from the ARA wind field contours. These
peak wind speeds can then be substituted into the fitted damage and loss functions, for an overall
verification that the loss estimatinon workflow is properly implemented. Hand-calculations
simulated expected loss ratios for the sampled buildings showed excellent correlation with the
simulated values, achieving a correlation coefficient of 0.9996. As a second verification step,
parametric investigations on select case study buildings are used to heuristically examine the
ruleset logic founded upon YearBuilt. Herein we present the parametric case study for a single-
family house (1-story wood structure with a gable roof). The original building record is
expanded to 51 different buildings by varying the YearBuilt between 1970 and 2020. For each
building, the expected loss ratio is estimated using 50 realizations to consider the uncertainty
from the rulesets assigning some attributes as random variables (e.g., the ruleset assigns use of
secondary water resistance to buildings built after 2000 according to a 60% probability). The
black curves in Figure 11 plot the individual realizations of expected loss ratio against different
YearBuilt values. The red curve shows the mean value of 50 realizations for each YearBuilt. As
expected, building performance generally improves following major code revisions. For
example, as labeled by the yellow dashed line at 2000, the IRC 2000-2009 requires 8d nails (with
spacing 6°/6” or 15.2 cm mm/15.2 cm) for sheathing thickness of 1”7 (25.4 mm) for basic wind
speeds greater than 160 km/h (100 mph), which enhances the building performance (reducing the

expected loss ratio). When this ultimate wind speed is increased to 130 mph (215 km/h) (just
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above the design wind speed) in a 2016 revision accepting the use of 6/12” (15.2 cm/30.5 cm)
spacing, a corresponding slight degradation in building performance is observed. This
observation highlights the particular importance of nail spacing requirements for sheathing in

reducing wind-induced losses for this class of construction.

4.2 Influence of Competing Data Sources

As demonstrated by the above verification process, YearBuilt is critical to assigning attributes
within an Augmented Parcel approach reliant on time-evolving rulesets. Herein we examine the
implications of assigning YearBuilt in data scarce environments using machine-enabled
techniques trained against NSI and the commercial real estate platform, Zillow. Figure 12a
illustrates the difference in estimated YearBuilt as predicted by Zillow- and NSI-trained models.
The ensuing implications of using different sources of YearBuilt information to predict damage
are visualized in Figure 12b. Note that differences in YearBuilt matter only when those
differences shift the structure into not only a different code era in the ruleset logic, but to one
with substantive changes either to the hazard description or the building’s load path or affected
components, thus making the implications of errors in YearBuilt on the final loss estimation
context dependent. Those types of substantive amendments can be on the scale of decades in less
frequently-exposed locales like New Jersey, or even annually in more frequently-exposed locales
like Louisiana. Figure 13a illustrates the subtle differences in the CDF for DS-2 and DS-3
between NSI- and Zillow-trained models, with Zillow tending to predict slightly higher damage
states outside of the tails of the distribution where the transition to the modern code era takes
place. The impact on damage ratings is not prominent in some of the areas with the largest

differences in year built predictions, such as downtown Lake Charles (shown by dashed box in

32



707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Fig. 12b) or areas to the east to either side of I-10, where the construction is older and pre-dates
the modern code era. However, some of the newer developments at the southernmost boundary
of the municipality are in the modern code era, where differences in YearBuilt may translated
into marked differences in ruleset-assigned attributes. This is illustrated by the previous
validation case study and reinforced by Figure 13b, which shows the probability of a residence
achieving the expected DS for four different YearBuilt ranges: Pre-1960, 1960-1979, 1980-1999,
Post-2000. This underscores the challenges created both by the underreporting of YearBuilt
values in this area, as well as the fact that the attributes necessary for loss estimation by Hazus
are not routinely reported in inventory data nationwide. Finally, since the Zillow data used in this
study was taken from Zillow Transaction and Assessment Database (ZTRAX), which has
proprietary restrictions, the NSI-predicted YearBuilt is used for the loss assessments in the next

section as this data is available to all readers without restriction.

4.3 StEER Validation Exercise

StEER used human visual inspections to rate damage on the Hazus-defined wind loss scale for a
sampling of buildings in Lake Charles and surrounding areas (Roueche et al. 2021), referred to
herein as StEER Buildings. Ninety-nine of these buildings correspond to footprints in the Lake
Charles inventory, which offers an opportunity to validate the end result of this loss assessment
workflow built upon augmented-parcel inventories. It is important to note that these damage
assessments were not conducted according to StEER’s standard protocols due to COVID-19
restrictions on travel. Instead, assessments were conducted virtually by humans remotely
interrogating street-level panoramic images collected from car-mounted platforms (Roueche et

al. 2021). Thus, StEER buildings offer a “ground truth” that is potentially less reliable in
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discerning some aspects of the damage than a traditional StEER mission with in-person, up-close
forensic assessments. Also note that since rulesets from New Jersey are applied to assign
attributes and are not consistent with the historical regulatory environment in Louisiana, the
predicted damage states are also likely to be slightly lower, particularly for construction older
than 2006 (the year Louisiana first adopted ICC model codes statewide). Finally, as also
discussed in StEER’s report (Roueche et al. 2020), there were low rates of compliance with
shuttering requirements in the affected area. Thus it is likely that shutter use would be assigned
by rulesets at a rate higher than actually observed in this hurricane, leading to lower levels of

predicted damage than those observed in the field, as discussed shortly.

4.3.1 Roof Classifier

Since StEER data undergoes a data enrichment and quality control process that generates over
100 fields of component, material and geometric information, its records can be used to validate
various aspects of the augmented parcel approach. For example, in order to further validate the
roof classifier used to populate RoofShape attributes in the Lake Charles inventory, StEER
Buildings were pre-processed to retain only those single-family homes tagged with roof shapes
consistent with the three Hazus classes (N=56), discarding records labeled as ‘“complex”
according to StEER’s more robust roof classification standards. The confusion matrix in Figure
14 affirms the effectiveness of the roof shape classifier in this validation exercise, recalling that
perfect classification would have 1.0 scores along the diagonal. Comparison of this validation
result (with 70% accuracy for hip and gable roofs) against the over 90% accuracy reported in
Wang et al. (2021) underscores that contemporary roof shapes are far more complex than the

three simplified geometries adopted by Hazus and even idealized in the initial training sets used
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to develop the SimCenter’s roof classifier module. The limitations of simplifying roofs into one
of three shapes not as common in contemporary construction forces humans classifying roofs,
including StEER assessors, to attempt to subjectively force every roof into one of these
categories, begging the larger question regarding the ability of our loss modeling capabilities to
keep pace with modern construction trends. The adopted approach of using similitude measures
to more objectively force classifications to the nearest simplified roof shape (gable, hip, flat)
remains the most viable means to negotiate the very real disconnects between the simplified

shapes adopted in conventional loss models and contemporary geometries in practice.

4.3.2 Damage Rating

Uncertainties inherent the hazard, building inventory and vulnerability models will affect the
predicted level of damage. Unfortunately, the ground truth observations available from StEER do
not include on-site wind speeds or reporting of all the building attributes employed by the
adopted vulnerability model to allow isolation of the potential effects of these uncertainties on
the overall damage rating. However, the implication of such uncertainties is explored herein for
both hazard inensity and the building attribute most critical to the use of heuristic rulesets:
YearBuilt. Assuming this building attribute follows a normal distribution with mean at the value
assigned by machine-enabled techniques and standard deviation of 10 years, a sample of 100
YearBuilt values is generated for each of the 99 StEER buildings. This results in a distribution of
simulated Damage States for that building (see example in Figure 15a). Figure 15b compares the
resulting mean and 95th-percentile of these distributions of the simulated damage states to the
StEER-observed damage state, where perfect agreement would cluster about the dashed diagonal

line. Note that the simulated damage states are the result of three WSF1-2 attributes being
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assigned as random variables (see Table 2), which in addition to YearBuilt uncertainties, results
in the scatter across simulated damage states. To aid in interpretation, an overall trend is
visualized by the red points that define the bin average across the values at each damage state.
The results suggest that while minor and moderate damage states are on average consistent with
ground-truth observations, which is where the most observations cluster, the extremes
characterized by fewer ground-truth observations suggest a bias toward minor damage for
undamaged structures, with simulated damage rates plateauing around the moderate damage state
even for severely damaged and collapsed buildings. The same type of uncertainty analysis is
conducted for the peak wind speed, randomly sampling 100 PWS values from a normal
distribution with mean set to the PWS specified by ARA for that building’s location and a
standard deviation of 20 mph. Analysis of the resulting mean and 95th-percentile of the
distribution of these simulated damage states compared to the StEER-observed damage state in
Figure 15c reiterates the same trend. Further note that changing the wind speed to explore the
effect of uncertainties in the hazard intensity at a given site does not account for site-specific
variations in the wind field itself, e.g., localized flow effects, which can have considerable

impacts on the level of damage observed.

In an effort to understand potential sources of the simulation’s unconservative bias for
buildings with observed severe damage (DS-3) and destruction (DS-4), the rulesets used to
generate the Lake Charles inventory were overridden to apply window protection as a random
variable with compliance rates of 20% for all YearBuilt values, approximately half that observed
in other coastal communities (Javeline and Kijewski-Correa 2019) and more consistent with

StEER’s anecdotal observations (Roueche et al. 2020). While this does slightly elevate the
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simulated damage values across all damage states, DS3 and DS4 are still underestimated (Fig.
15d). As damage states are driven by a number of attributes and site factors, including
construction errors and material defects, the limited number of observations in DS-3 and DS-4
limits the ability to draw further conclusions. Still, access to StEER’s field observations under
design-level winds, acquired using component-level quantifications of damage that map to Hazus
damage states, provides invaluable opportunities to validate and further improve loss modeling

frameworks.

5.0 Conclusions

While computational simulation tools and high performance computing are rapidly advancing
the collective potential to study the impact of hurricanes on communities and entire regions at
unprecedented fidelity and granularity, their use in the study of real-world scenarios remains
constrained by the availability and completeness of reliable parcel data. Even in the most data
rich communities, exposed municipal data lacks a number of structural attributes necessary to
predict damage and ensuing losses at the level of individual building footprints. This paper
presents an augmented-parcel approach that defines a comprehensive data model inclusive of
hazard and structural attributes necessary for Hazus-compatible risk assessments on a wide class
of buildings under hurricane wind and flood hazards. The study further demonstrates how
existing open municipal and third party data can be scraped to initially populate the required
fields across a large-scale building inventory, assigning the remaining attributes using a series of
machine learning modules and time-evolving rulesets grounded in local codes/standards,
regional construction practices/norms, and human subjects data. These techniques are

implemented within the regional hurricane loss assessment workflow of the NHERI SimCenter
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and available to the community as open software. Illustrative examples in a data-rich setting
(Atlantic County, NJ) and a data-scarce municipality (Lake Charles, LA) demonstrate the
workflow’s replicability in digitizing large-scale building inventories, both of which are curated

on DesignSafe.

The study’s validations of computer vision-based modules to generate underreported
building attributes underscores the importance of algorithms that are robust enough to reliably
classify “in the wild” images scraped from platforms like Google Street View. Among these, the
validation of an occupancy classifier further reiterated the need to go beyond semantically-
inferred image labels for training data, ideally drawing data from local agencies where the
targeted attribute is the focus of ongoing data gathering and quality assurance efforts. Improving
performance further will require enabling nuanced classifications of the wide diversity of non-
commercial construction, which can be challenging given the limited amounts of training data
for occupancies that comprise a small fraction of the overall inventory. Validations of attached
garage detectors similarly reinforced the need for representative local training data to recalibrate
models to the architectural nuances in a given community, such as the carports. This reiterates

that reliable regional inventory data is critical to the continued refinement of these classifiers.

The phased approach of augmenting available parcel data is in theory region-, hazard-
and even loss model-agnostic, meaning that the same steps would be executed and tools engaged
to mine required hazard, site and building attributes. Extensions outside of hurricane wind/flood
within a Hazus framework would however require the development of a data model in Phase I
that defines the relevant attributes for that hazard and/or adopted loss model. The population of

that data model in Phase II would need to be accordingly adapted based on the data sources
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available in that region or for that hazard, as the case studies in New Jersey and Louisiana
demonstrate. The techniques developed to efficiently scrape and parse such data are themselves
universal. Developing the augmented parcel approach for a data scarce environ like Louisiana at
minimum ensures Phase III is supported by a robust collection of available tools that can be
deployed to assign under-reported data essential to the loss estimation in future applications.
These tools may require recalibration in regions where construction practices, particularly
aesthetic features, are dramatically different from those used in the development or the extension
of these tools to new classes of features, e.g., vulnerabilities like soft stories (Yu et al. 2020).
Finally, Phase IV would require some adjustment if translated to a new region with different
code eras, design wind speeds, or load path requirements, as the discourse herein on New Jersey
vs. Louisiana underscored. The availability of the rulesets used here in GitHub is intended to aid
such adaptations. However, entirely new rulesets would be required for any changes in the
hazard or loss estimation framework — though the adoption of Hazus herein addresses the most
universal model in US practice. The SimCenter’s released testbeds for earthquakes
(https://simcenter.designsafe-ci.org/testbeds/) demonstrate such extensions of the methodology
for other hazards, with its Pelicun application supporting loss assessments using Hazus and

FEMA P-58 (Zsarnoczay and Deierlein 2020).

The study further underscored the criticality of accurate year built data for post-IBC/IRC
construction eras, given the augmented parcel approach’s reliance on time-evolving rulesets, in
this case exploring the use of spatial inference to assign this critical field from limited
observations in the National Structure Inventory and commercial real estate platforms like

Zillow. Finally, a verification and validation exercise is conducted using StEER field
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observations collected in Lake Charles following the landfall of Hurricane Laura. The
validations highlighted the incompatibilities between Hazus-simplified roof shapes and
contemporary roof geometries, and the challenges it creates for classification by both human and
machine agents. The SimCenter’s workflow applying Hazus-based fragilities to the augmented-
parcel inventories generated in this study were found to be consistent, on average, with ground-
truth observations for the minor to moderate damage states that comprised the majority of field
observations. Extreme damage states were characterized by fewer ground-truth observations,
with simulations biasing toward minor damage for undamaged structures and plateauing at
moderate damage even for severely damaged and collapsed buildings. This trend was maintained
when investigating the uncertainty in hazard intensity, as well as the low rates of shutter
compliance. This exercise in particular reiterates the importance of collecting rich post-disaster
field observations to validate established loss-estimation frameworks and demonstrates the reuse
potential of component-level quantifications of damage that map readily to damage states used
by Hazus. Though beyond the scope of this study, root causes of inconsistencies revealed in this
validation exercise will require further processing of street-level panoramic images captured by
StEER. Such efforts should focus on expanding the limited number of structural assessments
released in DesignSafe to increase the sample of severely damaged and collapsed buildings, as
well as revisiting the forced classification of roofs into Hazus classes by using the classifier’s
similitude measures to establish thresholds defining roofs that are not accessible due to
significant incompatibilities with basic roof geometries. Such efforts should leverage the
inventory generated in this study and published on DesignSafe to identify regions reconstructed
after Hurricane Rita to determine if damage states are more reliably estimated by an augmented

parcel approach when minimum construction practices are enforced.
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Data Availability Statement

Some or all data, models, or code generated or used during the study are available in a repository
online in accordance with funder data retention policies. Specifically, inputs (inventories,
rulesets, and hazard data), outputs (results), and supporting documentation for Lake Charles, LA

are available in DesignSafe (https://doi.org/10.17603/ds2-83ca-r890). The pair of inventories and

rulesets for Atlantic County, NJ are also available in DesignSafe (https://doi.org/10.17603/ds2-

]pj2-zx14). See http://doi.org/10.5281/zenodo.5033626 to download the R2D application used to

execute the regional simulations described herein. Full documentation for each of the inventories

and R2D is available at https://nheri-simcenter.github.io/R2D-Documentation/index.html.
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Figure Captions

Figure 1. Flow chart depicting the four sequential phases of the augmented parcel approach.

Figure 2. Sample images of the floor detection model (each detection is indicated by a green
bounding box). The percentage value shown on the top right corner of a bounding box indicates

model confidence level associated with that prediction.

Figure 3. Confusion matrices for the NumberOfStories predictor for (a) in the wild and (b)

cleaned images.

Figure 4. Validation of predicted OccupancyClass using (a) OpenStreetMap and (b)

NJDEP.

Figure 5. SURF-predicted YearBuilt based on NSI data compared to “ground truth” scraped from
Zillow real estate listings in Lake Charles, LA displayed as (a) scatter plot and (b) histogram.

Dashed lines denote +/- 10-years.

Figure 6. Examples of garage detection model showing successful identification of attached

garages.

Figure 7. Confusion matrices for the garage predictor for validation sets from (a) New Jersey and

California and (b) Lake Charles, LA.

Figure 8. Geospatial visualization of occupancy for New Jersey inventories with summaries of:
occupancy class, year built and number of stories. Inset maps show progressive zoom-in on

Atlantic City and surrounding municipalities.



Figure 9. Geospatial visualization of year built for the Lake Charles, LA building inventory with
summaries of: (a) number of stories, (b) occupancy class, and (¢) year built. Inset box identifies

two clusters of buildings used in subsequent validations.

Figure 10. Geospatial distribution of (a) damage states and (b) loss ratios for Lake Charles
inventory with cumulative distribution functions for (c¢) damage state and (d) expected loss

ratio for Hurricane Laura Validation Exercise.

Figure 11. Parametric verification of expected loss ratio as a function of YearBuilt for case

study single family home in Lake Charles inventory.

Figure 12. Difference between Zillow and NSI predicted (a) YearBuilt and (b) Damage State for

Lake Charles inventory.

Figure 13. (a) Probability of meeting or exceeding DS-2 and DS-3 and (b) probability of meeting
or exceeding the expected damage state using NSI-trained results based on YearBuilt for Lake

Charles inventory.

Figure 14. Validation of BRAILS-predicted roof shapes to roof shapes labeled by StEER

assessors in Lake Charles metro area.

Figure 15. (a) Damage State distribution compared to median damage state of StEER
Buildings, (b) influence of uncertainty in YearBuilt on simulated Damage States, (c)
influence of uncertainty in Peak Wind Speed on simulated Damage States, (d) influence of
uncertainty in YearBuilt on simulated Damage States for low shuttering compliance. Red

trend line shows the average of the displayed bins.



Table 1. Distribution of occupancies and label sources for occupancy classifier (N=15,743)

RES 1 RES3 COM
OpenStreetMap 2,868 2,207 2,418
NIJDEP 4,999 2,867 386

Total 7,868 5,074 2,804




Table 2. Methodology adopted for ruleset development

Attribute

Description CS

Structural Attributes: Wind

RoofSystem

SecondaryWaterResistance

Underlying roof structure

Secondary Water Resistance (SWR) X

RoofCover Roof cover material
RoofQuality Roof cover quality
RoofDeckAttachmentW Wood Roof Deck Attachment (RDA) X
RDA-OWSIJ OWSJ Roof Deck Attachment (RDA) X
RoofToWallConnection Roof to Wall Connection (R2ZWC) X
Shutters Window opening protection X
AttachedGarage Presence of attached garage
MasonryReinforcing Presence of reinforcement in masonry X
walls
OWSJ-r Property of open web steel joist (OWSJ)
RoofDeckAttachmentM Defines metal roof deck attachment
(RDA)
RoofDeckAge roof deck age
UnitClass number of units in strip mall
JoistSpace joist spacing for multi-unit strip malls
WindDebris likely sources of wind debris
WindowAreaRatio window to wall ratio (WWR)
TieDowns Foundation attachment (mobile homes) X
Structural Attributes: Flood
FloodType Flood zone type
FirstFloorElev First floor elevation, defined by Hazus
PostFIRM FIRM applicability X
NumberofStoriesH Hazus-defined number of stores
BasementType Hazus basement classification
OccupancyType Hazus occupancy type

Notes: Assigned by CS: codes/standards, PN: local construction practices/norms, HS: human-subjects surveys,




RV: random variable, DA: direct assignment on other fields.




@ Attribute Definition
Initial Population

Data Model
@ Heuristic Augmentation | Municipal Data
»-Building Information :

Rulesets .J-»' Tax Assessor
Construction Features

Building Classes Permit

| Hazard Attributes

Hazus Wind Attributes Floodplain Inventories
Structura Attributes .

Hazus Flood Attributes : _—
Simulation Parameters <-r. TG Eaety Bats

Hazus Wave Attributes FIRM

LULC

S:‘:S?:Ets 0 Machine Enabled ATC Hazards Data
) Attribute Assignment

Year Built || Attached

Predictor Garage
Detector

"H—.___,_.—F"'-Fr'-'-'_'-'_'_._

Roof Shape || Windows &

MS Footprints Detactor Elevations
Open Street Maps

Google StreetView

Google Maps (Aerial)







1.0

(@)

0.8

0.6

-0.4

Ground truth

-0.2

- 0.0

Predicted

(b)

Ground truth

1.0

0.8

0.6

- 0.4

- 0.2

- 0.0

Predicted



(a) (b)
RES1 RES1 0.8
0.8
0.6
= =
8 RES3 8 RES3 -
L 0.4 0.4
L 0.2 0.2
COM A COM -
T T — 00 T T —
RES1 RES3 COM RES1 RES3 COoM

BRAILS BRAILS



2020

2010 -

2000 -

1990 -

1980 -

Predicted year built

1970 -

1960 7

(a)

o=
" R
e f
o @ &+
A
&)
2 9% g
, =
=/ B
e (=]

@

950 - - . ; ; :
1950 1960 1970 1980 1990 2000 2010 2020

Zillow-scraped year built

200

(b)

175 1

150 1

0
-50 -40 -30 -20 -10 O 10 20 30
Prediction Error (SURF - Zillow)

40

50






(b)

(@)

abeieo oN
yinil punouis

-0.4

abelieo oN
yinil punols

m.onmo

-0.2

0.08

_..u,oEmo

Garage

No Gérage

-0.0

Garage

No Gérage

Predicted

Predicted



Atlantic County Inventory Flood-Exposed Inventory

1

@ High-Rise Non-Res. Bldg. (10+ stories)

| ¢ Low-Rise Non-Res. Bldg. (1-5 stories)
Mid-Rise Non-Res. Bldg. (6-10 stories)

@ Multi-Unit Res. Bldg.

@ Single Family Home

A
B A ET
b S,

. A '
<
. \
X, rey .
e ‘.J

Occupancy Year Built Number of Stories
e | b ot 20105,2334,2% FEATR AR5 OR VAL,
. eligional, 255, 2000s, 12289, Before 1950, 2
Agriculture, 235, 0% 1% ey o
Government, ) \ s 6295,6%
3‘ 7338, 7% Education, 110, 0%
c ' 1990s, 8356,
3 o 8%
v
g2
= 1980s, 12901}
2 o 3% 1950s, 11244,
Residential, 1%
90017.90% 1970s, 10119, I Story,
17,93%
1% 1960s, 10520, 11% 93317,93%
Government, | 14,0% 2000s, 1993, 2010s, 1006, 3% 6~10,120, 11-20, 16,
Industry, 152, 1% Agriculture, 113, 0% o ; e a3 0% % s
\ S5 1990s, 1302, 5% 3~5,3734, tory,
Commercial, Religional, 67, 0% 4 || Before 1950, 1% 0744, 33%
o 1496, 5% Education, 39, 0% ° 9575,29%
] ' 1980s, 2732, ‘
2> (#
a0
= 19705, 3312,
- ¢ 10%
o E
8=
w 1950s, 4768,
Residential, 1960s, 8140, 15%
30827, 94% 25% 2 Stories,

18214, 56%



Year Built - %
5020 3~5,523,2%

-

e,

- 24,47,0% (a)

2 Stories,

4160, 16%
2010
2000
| Story,
21786, 82%
1990

; RES3, 4937, (b)
. 1980 19%
1970
ESI, 21579,
1960 81%

2000s, 321, 1%
1990s,2334,9% —

1980s, 1394, 8
5% g

1940 1970s,4139,
16%

Before 1950,
1705, 6%

1950s, 7656,
29%

(c)

2010s, 34,0%

1950

1930 1960s, 8933,

34%



(a) Expected DS (NSI)

(b) Expected loss ratio (%) (NSI)

0

10 (c) CDF of expected damage state

0.9
0.8
0.7

206

go.s

o4
03
02
01

0]

00 05 1.0 15 20 25 3.0 35 4.0
Expected damage state
10 (d) CDF of expected loss ratio

0.9

0.8

0.7
206
205
Q

04

0.3
0.2
0.1

0
0 0.1 0.2 0.3 04 0.5 06 0.7 08 0.9 1.0
Expected loss ratio



1)

WSF1 building (Gable Roof, Roof Slope = 0.2

0.200 :
— Inv. Realization : g
0.175 + —— Mean I =
: ; | =
——~- Roof-Wall Connection (Toe-nail | Straps) I e
: 1 @
o 0.150 A Second Water Resistance (No | Yes) I 8
i 1 ] 1 1 I ©
= —== Roof Deck Attachment (8d 6"/6" | 8d 6"/12") I 3
'—
o 0.125 A i i
) | 1
3 : SWR = No i
0.100 A I
5 ] ! I
& SWR = No : :
o 0.075 A 1 i
Q 1 1
% I I
- I I =}
0850 1 ! SWR = No >
©
0.025 ! lw}ﬂ“ S
. . l B
! B!!\r"mum [
1 i | ©
0.000 - — T [ - . ©
1970 1980 1990 2000 2010 2020 :
Year Built oo [
Peak Gust Wind Speed (mph)
SWR =No SWR = No SWR = Yes
10 1.0 : 08
094 9 074
5 08 5 08 ®
S > o I
3 ] = >
E 0% '_‘5' 05 £ 1-Open
o 5 = axd Ly 2 - Light Suburban
3 3 2 3 - Suburban
— 044 — 044 - 03] .
g g = 4 - Light Trees
= %2 = © o2 5-Trees
024 0.24
0.1+ 0.14 7
0.0 = e | I e ! f T
€0.0 solo 10:30 1200 !4!10 |e::a m!m 200.0 0.0 %0 1000 o ol
Peak Gust Wind Speed (mph) Peak Gust Wind Speed (mph) Peak Gust Wind Speed (mph)




(b)

2.0

o)
—

DamagesState_Zillow - DamageState_NSI (unitless)
n

o

n

e
o

o
|
"

e
—
|

0
—
|

=
~N
|

Lake Charles
Municipal Boundary

2

80

60

- 40

YearBuilt_Zillow - YearBuilt_NSI (in Years)

o
o~
!

o

o
o~
|
1

Lake Charles
Municipal Boundary




(@) ro =
.s""
0.9 "‘5.-_-'
08 ot
¥
0.7 ,":"
0.6
Zz ,',"f
® 05 4
2 P
[ il
%04 4
i
0.3 e
0.2 ,.;t -=- NSIP(DS=2)
] ~=- Zillow P(DS = 2)
01 g — NSIP(DS = 3)
J— —— Zillow P(DS = 3)
0 it - - .
0.0 0.2 0.4 0.6 0.8 10

Probability of exceeding DS

Pre 1960
1960~1979
1980~1999
Post 2000

1.5 2.0 2.5 3.0 3.5

Expected DS

4.0



flat

StEER

gabled

hipped -

Confusion matrix

R

flat hipped gabled
BRAILS

10

0.8

0.6

- 0.2

0.0



~
Q
~—

Probability density
= o O = = =
Huy (o)} oo o N IS

=
N
1

=
o

---- StEER damage state
---- Estimated median damage state

Estimated damage state
(w/ Udearbui!t)

. S D S S S S S S

(b)

H

(99)
1

Simulated damage state (W/ UQyearbuirt)
- N

--e-- Bin Average

T I 1 I

1 2 3 4

Damage state

4 - 1 4
— s //
2 -
Qo 7’
o * L
D | = = " _
~ 3 | @
& s
// A
L. /’ T
o s T
® 2- / . 1
& 25 Snhniahs SR
= ra
© "7
/7
© -9,
T 1- il
g1 p
O ’
= /’
£ i~
@ 5. ’ --o-- Bin Average
¢ Mean & 95-precentile
1 2 3 4

StEER damage state

O N
& Mean & 95-precentile
0 1 2 3 4
StEER damage state
(d)

~ 41 . /
3 T s
3 K3

> S // ]
g 34 — 2= |
B 1
-9 /,// ¥ —
©
® 2 e R

(D) -1 ’/’ // _:_
o -~ r — —
© " ¥

- 7 —@—
= . == — 1

1- == 1
i = T 1 T
o ==
g 1
P Q- ~  -#- Bin Average
& Mean & 95-precentile

T I I I

1 2 3 4
StEER damage state




	V&V Issue Manuscript_R1
	Figure Captions_R1
	Table 1
	Table 2-REV
	figures
	Figure 1-NEW
	Figure 2-REV
	Figure 3-REV
	Figure 4-REV
	Figure 5-REV
	Figure 6-REV
	Figure 7-REV
	Figure 8-REV
	Figure 9-REV
	Figure 10-REV
	Figure 11-REV
	Figure 12-REV
	Figure 13-REV
	Figure 14-REV
	Figure 15-REV


