

Computationally efficient adaptive design of experiments for global metamodelling through integrated error approximation and multi-criteria search strategies

Sang-ri Yi^{1*} and Alexandros A. Taflanidis², A.M.ASCE

¹*Department of Civil & Environmental Engineering,*

University of California, Berkeley, CA 94720, USA

²*Department of Civil & Environmental Engineering & Earth Sciences*

University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

Gaussian processes (GPs) are a popular technique for global metamodeling applications. Their objective in such settings is to establish an efficient and globally accurate approximation of the response surface of computationally expensive simulation models. When developing such GPs, the design of (simulation) experiments (DoE) plays an important role in reducing the required number of model runs for obtaining accurate approximations. Sequential (adaptive) selection of experiments can provide significant advantages, especially when the response surface is characterized by localized nonlinearities. Such adaptive DoE strategies for global metamodeling applications typically focus on minimizing the predictive GP variance, representing an exploration strategy, while recent developments have additionally considered the reduction of the GP bias obtained through cross validation, representing an exploitation strategy. While significant focus has been placed on the definition of appropriate adaptive DoE criteria, computational challenges still exist that limit the widespread adoption of adaptive DoE techniques, for example, related to the additional computational demand for identifying the optimal new experiment(s), or the necessity to establish proper schemes to combine exploration and exploitation strategies. To address these specific challenges, this research investigates two new adaptive DoE formulations. The first one focuses on the approximation of the popular integrated mean square error (IMSE) DoE criterion. The computationally demanding GP predictive variance update (after addition of each candidate experiment), required in the original IMSE formulation, is replaced by an approximation based on the current predictive variance and the domain of influence that surrounds each new experiment. The approximation is established through a parametric formulation that leverages the GP kernel to describe the

* Corresponding author. Department of Civil Engineering and Environmental Engineering, University of California, Berkeley. Email: yisangri@berkeley.edu

28 aforementioned domain, with characteristics that are progressively calibrated across the GP training stages, to
29 minimize the discrepancy between the actual and the approximated IMSE. The second formulation establishes
30 a multi-criteria search for simultaneously identifying multiple Pareto optimal experiments that balance
31 exploration and exploitation objectives, replacing conventional strategies that establish a weighted
32 combination of these objectives to promote a single DoE selection criterion.

33 **Keywords:** Adaptive design of experiments (DoE), Global Gaussian process, Multi-objective optimization,
34 Leave-one-out cross-validation weights, Integrated mean square error (IMSE)

35 **Introduction**

36 The growing complexity of computational simulation models in the various engineering fields has
37 increased the need for efficient surrogate modeling techniques (Razavi et al. 2012, McBride and Sundmacher
38 2019, Forrester and Keane 2009). These models, also referenced as metamodels, can offer an efficient data
39 driven mapping between the input-output relationship of high-fidelity simulation models, formulated based on
40 an observation set, frequently referenced as experiments or training points. Different data-driven surrogate
41 modeling approaches exist, such as artificial neural networks (Jain et al. 1996), polynomial chaos expansion
42 (Blatman and Sudret 2010), and Bayesian networks (Byun and Song 2021), and among them, Gaussian process
43 (GP) metamodels, also referred to as Kriging in geostatistical contexts, have gained wide popularity for their
44 flexibility arising from their interpolative property as well as the ability to quantify the predictive variance of
45 the function estimates associated with the lack/abundance of training data (Rasmussen and Nickisch 2010,
46 Gramacy 2020, Sacks, Welch et al. 1989, Kleijnen 2017). Furthermore, past research efforts have shown that
47 GPs are relatively reliable compared to alternative formulations for a small to moderate size of training
48 samples, i.e., up to a few thousand, (Deisenroth and Ng 2015, Forrester and Keane 2009), while recent
49 advances in GP approaches, such as sparse training methods, are further pushing this limit to larger datasets
50 (Csató and Opper 2002, Liu et al. 2020).

51 It is widely acknowledged that one of the most critical aspects in the GP development (and for many other
52 surrogate modeling techniques) is the selection of the set of simulation experiments that serve as training

53 points, a process formally known as design of experiments (DoE). More efficient DoE strategies can
54 accommodate development of accurate GPs using smaller number of training points, reducing the
55 computational burden for performing simulations of the high-fidelity model. Space-filling DoE strategies
56 perform well for many practical applications (McKay et al. 2000) by uniformly populating the domain of
57 interest. However, to further improve efficiency, the experiments can be selected progressively in stages,
58 leveraging in each new stage information provided by a GP metamodel that is developed using the experiments
59 selected from previous stages (Provost et al. 1999). Such an adaptive, or *active learning*, strategy involves
60 extra computations to find the optimal experiments as well as to perform the repeated GP parameter
61 calibrations (across the different stages), but can eventually lead to large reductions of the number of high-
62 fidelity model evaluations to achieve the same prediction accuracy, by adaptively identifying potential low
63 accuracy domains where addition of new experiments can maximize their utility (value). Depending on the
64 purpose for which the GP is trained, adaptive DoE strategies can be distinguished to application-oriented
65 (Kleijnen and Beers 2004, Moustapha et al. 2022, Zhang and Taflanidis 2018, Kim, J. and Song 2020), when
66 metamodel is intended to establish a specific task that indirectly defines a region of interest, or general-
67 purposed, when metamodel is intended to serve as a universal approximation of the original high-fidelity
68 model. The latter, which the focus of this paper lies on, is often referred to as *global* surrogate modeling and
69 the DoE for this class aims to identify experiments that most effectively minimize the average error across the
70 entire input-domain, without distinguishing any sub-domains of specialized interest (Liu et al. 2018, Kleijnen
71 2009, Pandita et al. 2021).

72 Most adaptive DoE approaches for global surrogate modeling applications focus on the GP prediction
73 variance, assuming that locating an experiment at the domain of high variance will accommodate better
74 exploration of the input domain, and ultimately reduce the variability of the metamodel estimates. Such
75 variance-based adaptive DoE strategies share similar objectives to non-adaptive, space-filling approaches, in
76 a way that they identify the experiment(s) that has furthest distance from the previously training points,
77 however, the measure of distance is defined differently to account for the length of correlation in each input
78 dimension (Picheny et al. 2010, Sacks, Welch et al. 1989, Welch 1983), leveraging the characteristics of the

79 GP kernel in this definition. Furthermore, more advanced formulations, such as the integrated mean square
80 error (IMSE), discount the importance of experiments near the boundary of the input domain by considering
81 their influence only *within* the specific input domain of interest. IMSE is often preferable to alternative
82 variance-based DoE criteria, such as maximum mean squared error (MMSE) and mean squared error (MSE),
83 in terms of numerical stability, optimality and the way it tackles near-boundary experiments (Beck and Guillas
84 2016, Krause et al. 2008). However, its implementation is computationally demanding because it requires
85 integration over the domain of interest of the updated predictive variance, obtained by considering the addition
86 of each candidate new experiment (and involving inversion of the updated GP covariance matrix), whereas
87 simplified measures such as MSE (Jin et al. 2002) directly utilize the pre-update predictive variance without
88 involving any significant computations.

89 To supplement the exploration established through variance-based DoE approaches, strategies that enforce
90 exploitation principles in global surrogate modeling context can be additionally considered, which has shown
91 to be particularly beneficial for approximating functions with localized nonlinearities. A common approach
92 for achieving this objective is to define a bias measure by interpolating the GP cross-validation error (Liu et
93 al. 2016, Kyprioti et al. 2020, Jin et al. 2002), and incorporate this measure in the DoE through combination
94 with a variance-based exploration strategy, e.g., by weighted summation (Fuhg et al. 2021) or multiplication
95 (Kyprioti et al. 2020). Furthermore, recent research efforts have shown that, like many other adaptive search
96 algorithms, adaptive DoE strategies for global surrogate modeling can perform substantially better when the
97 tradeoff between the two aforementioned search objectives, exploration and exploitation, is carefully
98 considered (Garud et al. 2017, Liu et al. 2018, Fuhg et al. 2021). Unfortunately, existing efforts to accomplish
99 the latter typically rely on user-selected weighting coefficients and tuning parameters. Furthermore, the
100 computational challenges associated with variance-based exploration strategies (like IMSE) directly extend for
101 such implementations, creating additional limitations for their use in practice.

102 To address these challenges, this paper develops two new adaptive DoE strategies. The primary
103 contribution examines the approximation of the IMSE measure [or the weighted IMSE that extends IMSE to
104 consider bias measure-based exploitation (Kyprioti et al. 2020)], focusing on reduction of the computational

105 burden for the IMSE estimation without lowering the quality of the identified experiments. The
106 computationally demanding updating of the variance field given new candidate experiments requiring, as
107 discussed above, inversion of the updated covariance matrices, is replaced by an approximation for the amount
108 of variance reduction around each candidate new experiments through the introduction of a decaying shape
109 function that describes its domain of influence. This approximation accommodates estimation of the reduction
110 of the (weighted) IMSE with very small computational effort, by integrating the (weighted) shape function.
111 The shape function approximation is established through the GP kernel and the introduction of an additional
112 adjustment parameter. Proper selection of this parameter is critical for the approximation accuracy, and a
113 progressive learning scheme is introduced to accommodate the selection, calculating the actual IMSE and
114 comparing it to the approximated one to choose the optimal adjustment parameter value. To achieve the desired
115 computational benefits, the implementation gradually switches to sole use of the IMSE approximation once
116 sufficient confidence for it is achieved.

117 The secondary contribution examines the adaptive DoE selection as a multi-objective optimization
118 problem, considering the variance (exploration) and bias (exploitation) criteria as separate objectives, and
119 identifying Pareto optimal experiments that establish a balance between them. The sorted solutions (Pareto
120 front) provide the batch selection of experiments, and are further truncated at a desired batch limit, for example
121 related to computational resources within a parallel computing environment. The desired final batch of
122 experiments is chosen based on the distance from the utopia point of the Pareto front, while also adopting an
123 updating of the Pareto front GP variance to avoid selecting experiments in close proximity to one another.
124 Through this implementation the two objectives are examined with no need to establish a preselected weighting
125 scheme between them, naturally balancing the exploitation and exploration without introducing additional
126 tuning parameters. Furthermore, the proposed method enables us to batch-select multiple experiments without
127 additional effort, accommodating a formulation that is naturally aligned with modern parallel simulation
128 computational environments.

129 The remaining of the paper is organized as follows. The next section provides a brief overview of GP
130 models with discussions focusing on computational complexity of the variance and bias estimation, while the

131 section after that reviews adaptive DoE criteria. The following section introduces the approximation for the
 132 variance update after addition of each new experiment, accommodating a computationally efficient IMSE
 133 implementation, while in the section after that, the multi-criteria DoE scheme, that naturally balances between
 134 exploration and exploitation objectives, is presented. Finally, the following section presents illustrative
 135 examples to showcase the proposed methods, considering both benchmark functions as well as practical
 136 problems from the domain of natural hazards engineering, for which there has been a renewed interest in global
 137 surrogate modeling applications (Deierlein and Zsarnóczay 2019).

138 **Overview of Gaussian Process (GP) regression**

139 Let $z = \mathbb{F}(\mathbf{x})$ represent the high-fidelity (computationally expensive) simulator that is approximated through
 140 the surrogate model, with $\mathbf{x} \in \mathbb{R}^{n_x}$ representing the n_x -dimensional input and $z \in \mathbb{R}$ the scalar response output.
 141 The Gaussian process (GP) regression approximates $\mathbb{F}(\mathbf{x})$, as a GP realization utilizing a training set of
 142 simulations from the high-fidelity model. Different GP variants exist (Rasmussen and Nickisch 2010), but
 143 perhaps the most popular (Gramacy 2020, Kleijnen 2017), and the one adopted here, uses: (i) a mean function
 144 corresponding to a linear regression, $\mathbf{f}(\mathbf{x})^T \boldsymbol{\beta}$, where $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^{n_b}$ represents the n_b -dimensional vector of basis
 145 functions (for example, low order polynomials) and $\boldsymbol{\beta} \in \mathbb{R}^{n_b}$ the vector of regression coefficients; and (ii) a
 146 stationary covariance function $\text{cov}(\mathbf{x}, \mathbf{x}') = \tilde{\sigma}^2 R(\mathbf{x}, \mathbf{x}' | \boldsymbol{\theta})$ where $\tilde{\sigma}^2$ is a constant representing the process
 147 variance, and $R(\mathbf{x}, \mathbf{x}' | \boldsymbol{\theta})$ is the autocorrelation function between inputs \mathbf{x} and \mathbf{x}' , having hyper-parameters
 148 $\boldsymbol{\theta} \in \mathbb{R}^{n_\theta}$, and frequently also referenced as GP correlation kernel. Examples of popular correlation functions
 149 include radial basis, Matérn, or exponential functions (Rasmussen and Nickisch 2010), with hyper-parameters
 150 representing the characteristic correlation length for each input dimension (dictating rate of correlation decay),
 151 and $R(\mathbf{x}, \mathbf{x}' | \boldsymbol{\theta}) = R(d(\mathbf{x}, \mathbf{x}' | \boldsymbol{\theta}))$ expressed as function of the normalized distance

$$152 \quad d(\mathbf{x}, \mathbf{x}' | \boldsymbol{\theta}) = \left\| \frac{\mathbf{x} - \mathbf{x}'}{\boldsymbol{\theta}} \right\| \quad (1)$$

153 where $\|\cdot\|$ is some chosen vector norm, and vector division is defined elementwise herein.

154 The GP model has three sets of unknown parameters $\Theta = \{\beta, \theta, \sigma^2\}$ that need to be identified using the
155 available training set. To formalize implementation, and all subsequent DoE discussions, assume that the
156 training set corresponds to the input-output pair of n simulations (also referenced as observations or training
157 points), $\{\mathbf{x}_i, z_i; i = 1, \dots, n\}$, and let us denote by $\mathbf{X} \in \mathbb{R}^{n \times n_x}$ and $\mathbf{Z} \in \mathbb{R}^n$ the corresponding input matrix and
158 output vector, with i th row associated with the i th simulation. Also let $\mathbf{D} = \{\mathbf{X}, \mathbf{Z}\}$ denote the input-output
159 observation set, and define the matrix of basis functions $\mathbf{F}(\mathbf{X}) \in \mathbb{R}^{n \times n_b}$, whose i th row corresponds to $\mathbf{f}(\mathbf{x}_i)^T$,
160 the correlation matrix for the database $\mathbf{R}(\mathbf{X} | \theta) \in \mathbb{R}^{n \times n}$ whose $\{i, j\}$ element corresponds to $R(\mathbf{x}_i, \mathbf{x}_j | \theta)$.
161 Note that the chosen notation emphasizes the dependence of all quantities on \mathbf{X} [or \mathbf{D} and θ] to better frame
162 the adaptive DoE schemes. Finally, let $\mathbf{r}(\mathbf{x} | \mathbf{X}, \theta) \in \mathbb{R}^n$ define the correlation vector between an input \mathbf{x} and
163 each training set component, with i th element of the vector corresponding to $R(\mathbf{x}, \mathbf{x}_i | \theta)$. The optimum values
164 of θ are commonly established using maximum likelihood estimation (MLE), a process detailed in Appendix
165 A. These values will be denoted as β^* , $\theta^*(\mathbf{D})$, and $(\tilde{\sigma}^*(\mathbf{D}, \theta))^2$, with dependencies on \mathbf{D} and θ explicitly noted
166 for the latter two quantities (omitted for β^* for brevity).

167 Given the observations \mathbf{D} and the calibrated parameters θ , the GP approximates the response at an
168 arbitrary point \mathbf{x} as Gaussian with mean and variance given, respectively, by (Sacks, Welch et al. 1989):

$$169 \quad \tilde{z}(\mathbf{x} | \mathbf{D}, \theta) = \mathbf{f}(\mathbf{x})^T \beta^* + \mathbf{r}(\mathbf{x} | \mathbf{X}, \theta)^T \mathbf{R}(\mathbf{X} | \theta)^{-1} (\mathbf{Z} - \mathbf{F}(\mathbf{X}) \beta^*) \quad (2)$$

$$170 \quad \sigma^2(\mathbf{x} | \mathbf{D}, \theta) = (\tilde{\sigma}^*(\mathbf{D}, \theta))^2 \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \theta) \quad (3)$$

171 where the normalized variance has been defined as:

$$172 \quad \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \theta) = 1 - \mathbf{r}(\mathbf{x} | \mathbf{X}, \theta)^T \mathbf{R}(\mathbf{X} | \theta)^{-1} \mathbf{r}(\mathbf{x} | \mathbf{X}, \theta) + \mathbf{u}(\mathbf{x} | \mathbf{X}, \theta)^T (\mathbf{F}(\mathbf{X})^T \mathbf{R}(\mathbf{X} | \theta)^{-1} \mathbf{F}(\mathbf{X}))^{-1} \mathbf{u}(\mathbf{x} | \mathbf{X}, \theta) \quad (4)$$

173 with $\mathbf{u}(\mathbf{x} | \mathbf{X}, \theta) = \mathbf{F}(\mathbf{X})^T \mathbf{R}(\mathbf{X} | \theta)^{-1} \mathbf{r}(\mathbf{x} | \mathbf{X}, \theta) - \mathbf{f}(\mathbf{x})$. Eqs. (2) and (3) are also frequently referred to as
174 predictive mean and predictive variance, respectively. When purpose of the surrogate modeling is to establish
175 deterministic predictions, then the predictive mean of Eq. (2) is adopted as the response approximation [e.g.

176 (Prebeg et al. 2014, Kyprioti et al. 2021, Contreras et al. 2020)], whereas when probabilistic predictions are
177 preferred, the full Gaussian distribution of the GP, combining Eqs. (2) and (3), is utilized [e.g. (Kim, J. and
178 Song 2020, Bodenmann et al. 2021, Jia and Taflanidis 2013)]. Note that the normalized variance in Eq. (4)
179 does not depend on the response \mathbf{Z} . This property motivates the introduction of adaptive design of experiments
180 because it allows us to foresee how much variance can be reduced by adding a new experiment \mathbf{x}_{new} into the
181 existing training set.

182 With respect to computational complexity, the numerically intensive component in Eqs. (2) and (3) is the
183 inversion of the correlation matrix, $\mathbf{R}(\mathbf{X}|\boldsymbol{\theta})$ which has complexity $O(n^3)$ but needs to be performed only once,
184 as it is independent of input \mathbf{x} . Therefore, once $\mathbf{R}(\mathbf{X}|\boldsymbol{\theta})$ is inverted for a calibrated GP, predictions for a new
185 input \mathbf{x} can be established with negligible computational cost, providing an efficient surrogate model. For
186 numerical stability, the inversion of $\mathbf{R}(\mathbf{X}|\boldsymbol{\theta})$ within the GP formulation is typically replaced by forward or
187 backward substitution operations utilizing its Cholesky factorization (Roustant et al. 2012, Lophaven et al.
188 2002). Appendix B discusses specifics in the context of estimation of the predictive variance, which is the task
189 that is required within the DoE formulation discussed in the next section.

190 Finally, the predictive capabilities of the calibrated GP can be quantified using cross validation statistics.
191 Typically, this is accomplished using leave-one-out cross validation (LOOCV) (Kyprioti et al. 2020, Fuhg et
192 al. 2021, Kleijnen 2009), with details provided in Appendix A. This entails estimation for each training point
193 of the leave-one-out (LOO) error e_i^{cv} , corresponding to the predictions established for this specific point using
194 the remaining observations, excluding this specific point from the database. Once this error is estimated, any
195 desired validation metric can be utilized to assess the global metamodel accuracy. In this study, the normalized
196 root mean square error (NRMSE), denoted $NRMSE_{cv}$ and reviewed in Appendix A will be used as such metric.

197 **Adaptive design of experiments (DoE) for global surrogate modeling**

198 The sequential (adaptive) design of experiments (DoE) obtains the training points iteratively in stages: the
199 new experiment(s) are determined as a function of the previous experiments and the GP that is calibrated using
200 these experiments, with an objective to maximize the expected utility of the new experiment(s). Let $X^d \subset \mathbb{R}^{n_x}$

201 represent the domain set of interest for the metamodel development, and denote by \mathbf{x}_{new} each examined new
202 simulation input (feasible experiment). The adaptive DoE is formulated as an optimization for the selection of
203 the experiment that maximize a measure of information acquisition:

204
$$\mathbf{x}_{new}^* = \arg \max_{\mathbf{x}_{new} \in X^d} \bar{\Phi}(\mathbf{x}_{new}) \quad (5)$$

205 where $\bar{\Phi}(\bullet)$ is called acquisition or merit function (Koehler and Owen 1996, Johnson et al. 1990). Eq. (5) can
206 be alternatively formulated using an equivalent minimization criterion

207
$$\mathbf{x}_{new}^* = \arg \min_{\mathbf{x}_{new} \in X^d} \Phi(\mathbf{x}_{new}) \quad (6)$$

208 where $\Phi(\bullet)$ is a measure that quantifies the remaining uncertainty (variance) after adding the new experiment
209 \mathbf{x}_{new} (Sacks, Welch et al. 1989). Throughout this paper, DoE objective functions without the bar notation (Φ
210) represent those for the minimization problem whereas those with the bar ($\bar{\Phi}$) are for maximization problems.
211 The adaptive DoE requires, furthermore, convergence criteria to terminate iterations when the metamodel
212 performance, quantified for example using LOOCV statistics, improves beyond a desired threshold, or when
213 the available computational budget is exceeded.

214 Figure 1 demonstrates this adaptive DoE procedure, examining also the formulation of batch selection of
215 experiments, discussed later. The computationally intensive steps within each iteration are: (i) the high-fidelity
216 simulation(s); (ii) the GP parameters calibration; and (iii) the adaptive DoE selection requiring an optimization
217 problem [Eq. (5) or (6)]. It is important to note that if the evaluation of the DoE objective function requires
218 involved computations, the selection of the next experiment itself becomes a non-trivial task in terms of total
219 computation demand. Of course, in most applications of interest, the computational burden associated with the
220 high-fidelity simulation model is substantially larger than the cost of the adaptive DoE selection, providing
221 value for implementation of advanced DoE schemes that can accommodate a reduction of high-fidelity
222 simulations to achieve the same level of metamodel accuracy. Still, reduction of the computational burden of
223 these DoE schemes is an important secondary objective, as long as the quality of the identified experiments is
224 not compromised (primary objective).

225 A final remark is warranted about batch selection of experiments, something that can be particularly useful
 226 when parallel computing environments are utilized for the high-fidelity simulations. Most of the existing DoE
 227 methods, including those discussed in this paper, can accommodate a batch selection of multiple experiments
 228 through appropriate small modifications. This is commonly done by selecting one experiments at a time using
 229 the merit functions defined in Eqs. (5) or (6), until a predetermined batch number of experiments is acquired
 230 as shown in Figure 1. This one-at-a-time selection of experiments is suboptimal when compared to the
 231 alternative of simultaneous selection of the entire batch, since the latter better incorporates the correlations
 232 between the candidate experiments in assessing their expected total utility, but nevertheless, is very practical
 233 and widely advocated (Ginsbourger 2014, Vazquez and Bect 2011). To assess the information infused in the
 234 training set by each individual experiment, and ultimately avoid choosing close proximity experiments, the
 235 merit function(s) should be approximately updated after each selection. As illustrated in Figure 1, since the
 236 response at the location of the new experiment is not yet known, this is done without performing GP
 237 recalibration. For example, the predictive variance, which is ingredient of most merit functions, depends only
 238 on the training sample locations at each experiments [\mathbf{X} in Eq.(4)] and not on the response [\mathbf{Z}] as long as $\boldsymbol{\theta}$
 239 is known. Therefore, after adding a new experiment, this variance and the corresponding merit function can be
 240 updated without evaluation of the high-fidelity model. In contrast, in a purely sequential approach, $\boldsymbol{\theta}$ needs
 241 to be updated each time before selecting a new experiment.

242 ***Variance-based adaptive DoE***

243 One of the widely used merit functions of adaptive DoE in global GP metamodeling is the integrated mean
 244 squared error (IMSE), which seeks the experiment that minimizes the average updated variance within the
 245 domain of interest (Sacks, Welch et al. 1989, Asher et al. 2015). The corresponding DoE objective function is:

246
$$\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta}) = \int_{\mathbf{x} \in X^d} w(\mathbf{x}) \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{\text{new}}, \boldsymbol{\theta}) d\mathbf{x} \quad (7)$$

247 where $w(\mathbf{x})$ is a weight function to prioritize any desired sub-domain within X^d , and $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{\text{new}}, \boldsymbol{\theta})$ is the
 248 updated normalized predictive variance after addition of \mathbf{x}_{new} , which is estimated as follows. Obtain first the
 249 updated correlation vector $\mathbf{r}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{\text{new}}, \boldsymbol{\theta})$, basis function matrix $\mathbf{F}(\mathbf{X}, \mathbf{x}_{\text{new}})$ and correlation matrix

250 $\mathbf{R}(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta})$, by adding a row and, when needed, a column into $\mathbf{r}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$, $\mathbf{F}(\mathbf{X})$ and $\mathbf{R}(\mathbf{X} | \boldsymbol{\theta})$, respectively,
 251 as:

$$252 \quad \mathbf{r}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) = \begin{bmatrix} \mathbf{r}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) \\ R(\mathbf{x}_{new}, \mathbf{x} | \boldsymbol{\theta}) \end{bmatrix} \quad (8)$$

$$253 \quad \mathbf{F}(\mathbf{X}, \mathbf{x}_{new}) = \begin{bmatrix} \mathbf{F}(\mathbf{X}) \\ \mathbf{f}(\mathbf{x}_{new})^T \end{bmatrix} \quad (9)$$

$$254 \quad \mathbf{R}(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta}) = \begin{bmatrix} \mathbf{R}(\mathbf{X} | \boldsymbol{\theta}) & \mathbf{r}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) \\ \mathbf{r}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})^T & R(\mathbf{x}_{new}, \mathbf{x}_{new} | \boldsymbol{\theta}) \end{bmatrix} \quad (10)$$

255 Then $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$ is given by:

$$256 \quad \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) = 1 - \mathbf{r}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})^T \mathbf{R}(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta})^{-1} \mathbf{r}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) + \\ \mathbf{u}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})^T (\mathbf{F}(\mathbf{X}, \mathbf{x}_{new})^T \mathbf{R}(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta})^{-1} \mathbf{F}(\mathbf{X}, \mathbf{x}_{new}))^{-1} \mathbf{u}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \quad (11)$$

257 with $\mathbf{u}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) = \mathbf{F}(\mathbf{X}, \mathbf{x}_{new})^T \mathbf{R}(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta})^{-1} \mathbf{r}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) - \mathbf{f}(\mathbf{x})$. The efficient estimation of this
 258 updated variance is discussed in Appendix B. Note that the IMSE criterion is commonly expressed with respect
 259 to the variance of Eq. (3), which includes the process variance, but for illustration clarity the normalized
 260 variance is used herein, since the process variance is independent of \mathbf{x} . Also the weight function $w(\mathbf{x})$ is
 261 typically ignored in the IMSE formulation, with $w(\mathbf{x})=1$, though the representation of Eq. (7) is preferred here
 262 as it accommodates a unified description with the formulation incorporating GP bias as weights, discussed in
 263 the next section. For estimating the IMSE integral, efficient approximate formulations can be found in the
 264 literature under some regularity conditions for the GP and the X^d domain boundary (Ankenman et al. 2008,
 265 Cole et al. 2021). In this study, Monte Carlo Integration (MCI) is preferred, since it can accommodate arbitrary
 266 weight functions, correlation kernel shapes, and domains. Alternatively, Quasi-Monte Carlo could have been
 267 used. Using n_q samples $\{\mathbf{x}^{(q)}\}_{q=1, \dots, n_q}$ following uniform distribution in X^d , MCI establishes the following
 268 approximation for the objective function:

$$269 \quad \Phi_{\text{IMSE}}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \approx \frac{1}{n_q} \sum_{q=1}^{n_q} w(\mathbf{x}^{(q)}) \underline{\sigma}^2(\mathbf{x}^{(q)} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \quad (12)$$

270 Based on the computational details presented in Appendix B, the computational cost for estimating
 271 $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta})$ for each \mathbf{x}_{new} is $O(n^2)$ for updating quantities that are common across all MCI samples and
 272 then additional $O(n^2)$ for each of the n_q integration points, though parallel computations can reduce the burden
 273 of the latter estimation. The computational workflow to identify the optimal \mathbf{x}_{new} will be discussed later on.

274 Beyond IMSE, other criteria can be established that involve some form of integration or maximization of
 275 the updated variance within X^d (Picheny et al. 2010, Sacks, Schiller et al. 1989). All these formulations
 276 correspond to one-step-lookahead approaches, requiring the evaluation of the updated predictive variance
 277 $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{\text{new}}, \boldsymbol{\theta})$ and estimation of some function involving it to express the metamodel accuracy. As shown
 278 above, the computational cost of these approaches is significant for each candidate experiments \mathbf{x}_{new} that is
 279 examined within the DoE optimization. To reduce this computational complexity, alternative formulations
 280 have been examined (Ginsbourger 2014, Jin et al. 2002), with the most popular one adopting as merit function
 281 the mean squared error (MSE) at the current training stage, leading to:

$$282 \quad \overline{\Phi}_{\text{MSE}}(\mathbf{x}_{\text{new}}) = w(\mathbf{x}_{\text{new}}) \underline{\sigma}^2(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta}) \quad (13)$$

283 This objective represents a special case of maximum entropy criterion (Jin et al. 2002, Liu et al. 2017). The
 284 MSE measure in Eq. (13) approximates the expected reduction of the error, corresponding, therefore, to an
 285 objective function targeted for maximization. MSE simply involves estimation of the variance at \mathbf{x}_{new} ,
 286 establishing significant computational savings compared to IMSE. At the same time, it has two important
 287 shortcomings: (i) it cannot guarantee optimality after adding each experiment [no variance updating]; (ii) it
 288 does not consider a domain of influence of each experiment [no integration part]. The latter is manifested as
 289 a tendency to place experiments around boundary region, something frequently argued (Beck and Guillas 2016,
 290 Krause et al. 2008) to represent an inefficient DoE scheme, especially if n_x is large (relative proportion of
 291 domain representing boundary increases). Therefore, in terms of the quality of the identified experiments, the
 292 IMSE criterion is preferable to the MSE criterion for global metamodeling applications, despite its larger
 293 computational burden. These characteristics motivate the developments established later in this manuscript,

294 aiming to reduce the computational burden to levels similar to MSE while keeping the quality of new
 295 experiments of IMSE.

296 ***Adaptive DoE with bias measure***

297 Recent efforts have examined adaptive strategies that exploit the surrogate model response predictions to
 298 self-identify important regions in the DoE, something expressed in global metamodeling applications by
 299 utilizing the prediction bias (Xu et al. 2014, Le Gratiet and Cannamela 2015). The LOO error can be used to
 300 quantify this bias and be leveraged to guide the selection of $w(\mathbf{x})$, promoting exploitation strategies within the
 301 global metamodeling DoE. Since the LOO error is only known for the discrete locations corresponding to the
 302 training set, some form of interpolation (or kernel smoothing) needs to be introduced (Jin et al. 2002, Kypri
 303 et al. 2020), providing a continuous approximation of the error as a function of \mathbf{x} . Establishing such an
 304 approximation for the squared error leads to:

$$305 \quad (\tilde{e}^{cv}(\mathbf{x}))^2 = \frac{\sum_{i=1}^n \gamma(\mathbf{x}, \mathbf{x}_i) (e_i^{cv})^2}{\sum_{i=1}^n \gamma(\mathbf{x}, \mathbf{x}_i)} \quad (14)$$

306 where $\tilde{e}^{cv}(\mathbf{x})$ is the LOO error approximation and $\gamma(\mathbf{x}, \mathbf{x}_i)$ is the interpolation/smoothing function, expressing
 307 proximity between the error values at \mathbf{x} and \mathbf{x}_i . In (Kypri et al. 2020) different such functions were explored
 308 and the one promoted was the nearest neighbor (NN) interpolation

$$309 \quad \gamma(\mathbf{x}, \mathbf{x}_i) = \begin{cases} 1 & \text{if } \mathbf{x} \in V_i \\ 0 & \text{else} \end{cases} \quad (15)$$

310 where V_i represents a Voronoi cell associated with each training point \mathbf{x}_i and defined using the normalized
 311 distance of Eq. (1), so that $V_i = \{ \mathbf{x} \mid d(\mathbf{x}, \mathbf{x}_i \mid \boldsymbol{\theta}) \leq d(\mathbf{x}, \mathbf{x}_j \mid \boldsymbol{\theta}), \forall j \neq i, (i, j = 1, \dots, n) \}$. An alternative choice
 312 will be examined here, adopting an exponentially decaying smoothing function

$$313 \quad \gamma(\mathbf{x}, \mathbf{x}_i) = \exp(-d(\mathbf{x}, \mathbf{x}_i \mid \boldsymbol{\theta})^2) \quad (16)$$

314 Consideration of the LOO error leads to the weighted IMSE and MSE criteria, denoted as IMSE_w and
 315 MSE_w herein. Adopting the formulation in (Kypri et al. 2020) this is established by choosing weight function
 316 $w(\mathbf{x})$ as

317

$$w(\mathbf{x}) = [(\tilde{e}^{cv}(\mathbf{x}))^2]^\rho \quad (17)$$

318 in the formulations of Eq. (7) (for $IMSE_w$) and Eq. (13) (for MSE_w), where $\rho \in [0, \infty)$ is a tuning parameter
 319 that is used to control the balance between the bias and variance indicators (Kyprioti et al. 2020). Note that for
 320 $\rho \rightarrow 0$, the aforementioned measures reduce to the classical IMSE and MSE measures, respectively.
 321 Ultimately, these classical measures have only exploration attributes, whereas their weighted counterparts
 322 combine both exploration and exploitation features. The balancing between these two features is established
 323 through ρ whose selection is non-trivial (Kyprioti et al. 2020), something that motivates the multi-objective
 324 DoE discussed later in this manuscript. Figure 2 illustrates some of the aforementioned concepts related to the
 325 bias and variance adaptive DoE components using a two-dimensional cosine weighted Gaussian mixture
 326 function. More details about this function are included in the illustrative examples section. Specifically, this
 327 figure includes the original function [part (a)], as well as GP-based predictions established utilizing 21 training
 328 points (depicted with red circles in some of the subplots): the predictive mean of Eq. (2) [part(b)]; the LOO
 329 error shown in Eq. (45) (red circles in parts [c] and [d]) as well as the corresponding weight function $w(\mathbf{x})$
 330 obtained using either the NN interpolation of Eq. (15) [part (c)] or the exponentially decaying smoothing
 331 function of Eq. (16) [part (d)]; the predictive variance of Eq. (4) [part (e)], as well as its counterpart using the
 332 bias weights [part (f)]. Comparison of parts (c) and (d) depicts the difference of the alternative approaches for
 333 choosing bias weights: the NN interpolation provides a discontinuous (at the Voronoi cell boundaries)
 334 weighting function, whereas the exponential decaying kernel smoothing accommodates a smoother function,
 335 that, though, no longer interpolates the available LOO estimates. Comparison of parts (e) and (f) shows clearly
 336 how the suggested weights incorporate in the DoE bias information about the GP predictions, altering the
 337 domains of importance within X^d . Use of the predictive variance [part (e)] instead of its weighted counterpart
 338 [part (f)] naively places importance in domains in which the established GP already has high accuracy (small
 339 bias).

340 ***Optimization scheme for identification of new experiments***

341 Optimization of Eq. (5) [or (6)] is known to have multiple local minima and for this reason a random search
 342 approach is recommended for its solution (Kyprioti et al. 2020). For the IMSE_w this combines the following
 343 steps for identification of each \mathbf{x}_{new}^* , denoted herein as $\text{IMSE}_w\text{-SE}$ (Sequential Exact) algorithm.

344 **Step 0 [Initialization]:** Given the GP training set \mathbf{X} , correlation Kernel, $R(\mathbf{x}, \mathbf{x}' | \boldsymbol{\theta})$, basis vector, $\mathbf{f}(\mathbf{x})$,
 345 and hyper-parameters, $\boldsymbol{\theta}$, calculate correlation matrix, $\mathbf{R}(\mathbf{X} | \boldsymbol{\theta})$, and basic function matrix, $\mathbf{F}(\mathbf{X})$, as well
 346 as the lower Cholesky factorization of the former $\mathbf{L}(\mathbf{X} | \boldsymbol{\theta})$ and matrix $\mathbf{M}_R(\mathbf{X} | \boldsymbol{\theta})$ related to the QR
 347 decomposition of $\mathbf{L}^{-1}(\mathbf{X} | \boldsymbol{\theta})\mathbf{F}(\mathbf{X})$ [see Appendix B for details]. If DoE incorporates bias information,
 348 estimate the LOO error through Eq. (45) using, additionally, the response output \mathbf{Z} and the MLE
 349 regression vector $\boldsymbol{\beta}^*$ of Eq. (41). Note that many (perhaps all) of these quantities will be available from
 350 the GP calibration stage. Choose interpolation function $\gamma(\mathbf{x}, \mathbf{x}_i)$ for the weight estimation and, if needed,
 351 ρ .

352 **Step 1 [Candidate experiments]:** Generate n_c candidate experiments $\mathbf{X}^{candi} = \{\mathbf{x}_{new}^{(c)}\}_{c=1, \dots, n_c}$ following a
 353 uniform distribution in X^d .

354 **Step 2 [(Optional) Preliminary screening of candidate experiments using MSE_w]:** For all \mathbf{X}^{candi}
 355 evaluate $\underline{\sigma}^2(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta})$ utilizing Eq. (47) and $w(\mathbf{x}_{new}^{(c)})$ combining Eqs. (17) and (14). Retain only the
 356 $n_r = a_r n_c$ candidate experiments that correspond to the highest values of MSE_w ,
 357 $\overline{\Phi}_{\text{MSE}}(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta}) = w(\mathbf{x}_{new}^{(c)})\underline{\sigma}^2(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta})$, with a_r being the desired percentage of candidate experiments,
 358 e.g. 10%, that have larger weighted-variance values and so are more likely to correspond to the final
 359 optimal solution.

360 **Step 3 [Integration points]:** Generate n_q samples $\{\mathbf{x}^{(q)}\}_{q=1, \dots, n_q}$ following a uniform distribution in X^d
 361 to be used for the MCI. Estimate $w(\mathbf{x}^{(q)})$ for all these samples combining Eqs. (17) and (14).

362 **Step 4 [Calculation of objective function]:** For each candidate (or retained from Step 2) experiment,
 363 define the updated basis function matrix $\mathbf{F}(\mathbf{X}, \mathbf{x}_{new}^{(c)})$ as in Eq. (9), and then estimate the updated Cholesky

364 matrix $L(\mathbf{X}, \mathbf{x}_{new}^{(c)} | \boldsymbol{\theta})$ using Eq. (49) and then the updated matrix $\mathbf{M}_R(\mathbf{X}, \mathbf{x}_{new}^{(c)} | \boldsymbol{\theta})$ [see Appendix B for
 365 details]. Then for each of the integration points, calculate $\underline{\sigma}^2(\mathbf{x}^{(q)} | \mathbf{X}, \mathbf{x}_{new}^{(c)}, \boldsymbol{\theta})$ using Eq. (48). Finally obtain
 366 the IMSE_w objective function $\Phi_{IMSE}(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta})$ through MCI using Eq. (12).

367 **Step 5 [Final selection]:** Select as new experiment \mathbf{x}_{new}^* the one that provides the minimum value for
 368 $\Phi_{IMSE}(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta})$ among the n_c (or n_r if Step 2 was performed) candidate experiments evaluated in Step
 369 4.

370 Based on the previous discussions on computational complexity, the most computationally demanding step
 371 of this process is Step 4, which requires updating of the variance and conducting MCI for each of the candidate
 372 experiments considered. The prescreening of experiments in Step 2 accommodates a reduction of this burden,
 373 as it removes candidate experiments that are not expected to correspond to the optimum, ignoring experiments
 374 in sub-domains of X^d with low current prediction variability (Kyprioti et al. 2020). Since Step 2 utilized an
 375 MSE-based objective function, its computational cost is minor. Of course the desire is to avoid impacting the
 376 final solution, i.e. experiment identified being same as if Step 2 were not utilized, something that evidently
 377 depends on the value of a_r . In this paper $a_r=0.1$ is used, as this value was shown to establish a reasonable
 378 compromise between two conflicting objectives: efficiency (smaller a_r desired) and robustness (larger a_r
 379 desired) (Zhang et al. 2018). For the MSE_w, the above optimization procedure is drastically simplified: only
 380 Steps 1 and 2 need to be implemented, with a single experiment, $n_r=1$, identified at Step 2.

381 For identifying batch experiments, after Step 5, the identified \mathbf{x}_{new}^* is augmented in \mathbf{X} , the updated
 382 correlation vector $\mathbf{r}(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}^*, \boldsymbol{\theta})$, basis function matrix $\mathbf{F}(\mathbf{X}, \mathbf{x}_{new}^*)$ and correlation matrix $\mathbf{R}(\mathbf{X}, \mathbf{x}_{new}^* | \boldsymbol{\theta})$ are
 383 estimated [according to Eqs. (8)-(10)], then the $\mathbf{L}(\mathbf{X}, \mathbf{x}_{new}^* | \boldsymbol{\theta})$ is updated according to Eq. (49), and the matrix
 384 $\mathbf{M}_R(\mathbf{X}, \mathbf{x}_{new}^* | \boldsymbol{\theta})$ related to the QR decomposition of $\mathbf{L}^{-1}(\mathbf{X}, \mathbf{x}_{new}^* | \boldsymbol{\theta})\mathbf{F}(\mathbf{X}, \mathbf{x}_{new}^*)$ is estimated. After these
 385 calculations, Steps 1-5 of the IMSE_w-SE algorithm are repeated to obtain the next experiment within the batch
 386 selection.

387 **Approximation of integrated mean square error measure**

388 *Approximation of updated variance*

389 This section proposes an approximation of the updated predictive variance $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$. Objective is
 390 to approximate $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$ using information about the original variance $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$, avoiding therefore
 391 the requirement to update the GP characteristics for each \mathbf{x}_{new} examined. Though this approximation is
 392 couched here within the IMSE/IMSE_w adaptive DoE formulation, it can be utilized within any setting that
 393 requires use of $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$. Foundation of the approximation (Le Gratiet and Cannamela 2015) is the
 394 concept that when adding a new experient \mathbf{x}_{new} , there is a volume of influence where the prediction variance
 395 is reduced, i.e. the reduction is a concentrated around the location of the point \mathbf{x}_{new} , and it decays as the distance
 396 from \mathbf{x}_{new} increases. To formalize this concept, define the variance reduction as:

397
$$V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) = \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) - \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \quad (18)$$

398 Le Gratiet & Cannamela (2015) proposed the proportionality approximation:

399
$$\int_{\mathbf{x} \in X^d} V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) d\mathbf{x} \propto \underline{\sigma}^2(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \prod_{j=1}^{n_x} \theta_j \quad (19)$$

400 where θ_j is the hyper-parameter in the covariance kernel associated with the correlation length of j -th input

401 dimension, $\prod_{j=1}^{n_x} \theta_j$ corresponds to the volume of influence of the new experiment, and $\underline{\sigma}^2(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ represents

402 the scale of variance reduction. Equivalently Eq. (19) may be viewed to represent an approximation of

403 $V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$ that corresponds to a uniform reduction (no dependance on \mathbf{x}) within a domain of influence

404 defined through representative lengths θ_j in each input dimension and centered around \mathbf{x}_{new} for which the

405 variance reduction is $\underline{\sigma}^2(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ [i.e. the previous variance] after the addition of the new experiment. It

406 should be noted that the developments in Le Gratiet & Cannamela (2015) were couched within a multi-fidelity

407 modeling context, while the presentation of Eq. (19) is simplified to an equivalent single-fidelity

408 implemantaiton. If used to approximate the IMSE criteria, the approximation of Eq. (19) drastically reduces

409 the computaitonal burden, making it comparable to the computaitonal burden of the MSE DoE formulation
 410 (only evaluation of $\underline{\sigma}^2(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ needed). It has, though, two signifcant shortcomings: (i) since the volume
 411 of influence is constant across the domain, it becomes exactly equivalent to the MSE measure unless some
 412 boundary correction is employed; (ii) for better accomodating extension to the weighted measures (for example
 413 IMSE_w), an approximation of $V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$ is needed, instead of its integral, and in this case, a non-uniform
 414 expression (as function of \mathbf{x}) seems more appropriate (may accommodate higher accuracy), since the actual
 415 $V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$ has a strong dependance on \mathbf{x} .

416 To address these shortocomings, the variance reduction around the new experiment \mathbf{x}_{new} is approximated to
 417 be proportional to the original variance for each point \mathbf{x} , $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$, and to a shape function that incorporates
 418 the influence of \mathbf{x}_{new} on \mathbf{x} , i.e.

$$419 \quad V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \simeq \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) A(\mathbf{x}, \mathbf{x}_{new} | \lambda) \quad (20)$$

420 where $A(\mathbf{x}, \mathbf{x}_{new} | \lambda)$ a distance-decaying shape function centered at \mathbf{x}_{new} with hyper-parameter λ . The rate of
 421 reduction is assumed be proportional to the that of the correlation kernel with λ representing a flexible
 422 exponent (selection discussed next), leading to

$$423 \quad A(\mathbf{x}, \mathbf{x}_{new} | \lambda) = R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})^\lambda \quad (21)$$

424 Approximation of Eq. (20) using a shape function like the one in Eq. (21) greatly simplifies calculations since
 425 the only computationally complex component is $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$, which, once calculated, can be reused for all
 426 \mathbf{x}_{new} examined. Using in the DoE formulation the approximation of the updated variance :

$$427 \quad \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \simeq \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) [1 - A(\mathbf{x}, \mathbf{x}_{new} | \lambda)] = \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) [1 - R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})^\lambda] \quad (22)$$

428 provides an easily computable approximate merit function. For example, for the IMSE, this provides the
 429 approximation

$$430 \quad \Phi_{IMSE}^\lambda(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) = \int_{\mathbf{x} \in X^d} w(\mathbf{x}) \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) [1 - R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})^\lambda] d\mathbf{x} \quad (23)$$

431 which using the MCI setting examined previously in Eq. (12), can be estimated as

432

$$\Phi_{\text{IMSE}}^{\lambda}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta}) \approx \frac{1}{n_q} \sum_{q=1}^{n_q} w(\mathbf{x}^{(q)}) \underline{\sigma}^2(\mathbf{x}^{(q)} | \mathbf{X}, \boldsymbol{\theta}) [1 - R(\mathbf{x}^{(q)}, \mathbf{x}_{\text{new}} | \boldsymbol{\theta})^{\lambda}] \quad (24)$$

433 Since the computaitonally expensive component of $\Phi_{\text{IMSE}}^{\lambda}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta})$ in Eq. (24) [the $\underline{\sigma}^2(\mathbf{x}^{(q)} | \mathbf{X}, \boldsymbol{\theta})$ contribution] is same for all candidate experiments examined, use of this approximaiton reduces the 434 IMSE_w/IMSE burden to levels similar to those of MSE_w/MSE, which was the intended target. The 435 corresponding DoE formulations will be distinguished by a superscript λ .

437 The remaining question is, how good is the established approximation and if it can create significant
 438 vulnerabilities in erroneously identifying suboptimal new experiments? To provide an answer to this question,
 439 let's consider first the asymptotic case of $\lambda \rightarrow \infty$, where $A(\mathbf{x}, \mathbf{x}_{\text{new}} | \lambda)$ becomes a Dirac delta function
 440 $\delta(\mathbf{x} - \mathbf{x}_{\text{new}})$. The approximated volume of influence is then equivalent to $\underline{\sigma}^2(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta})$ which makes the
 441 approximated IMSE measure to be equivalent to the MSE. On the other hand, when λ is zero, $A(\mathbf{x}, \mathbf{x}_{\text{new}} | \lambda) = 1$
 442 and the approximated volume of influence is $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$, therefore, is independent to \mathbf{x}_{new} . Performing IMSE
 443 DoE using zero λ becomes equivalent to a pure random sampling. Meanwhile, when $\lambda = 2$, the proposed
 444 approximation of Eq. (22) is exact under the assumption that no other training point exists in close proximity
 445 to \mathbf{x} and \mathbf{x}_{new} (correlation between \mathbf{X} and either of these two points is numerically zero). A proof of this is
 446 included in Appendix C, where it is additionally shown that values of $\lambda \geq 2$ are guaranteed to provide higher
 447 accuracy approximations, and that as the number of experiments increases, larger values of λ are expected to
 448 yield higher accuracy. This discussion shows that, depending on the value of λ , the quality of the
 449 approximation of Eq. (22) will change, and that the appropriate value is impacted by the characteristics of the
 450 problem, such as (as discussed in Appendix C) relative proximity to other training points, GP hyper-
 451 parameters, and dimensionality of input. For this reason, rather than an a-priori selection, an adaptive selection
 452 of λ is proposed here and integrated within the adaptive DoE process, while $\lambda \geq 2$ is established as a lower
 453 bound constraint. This adaptive selection, detailed in the next section, incorporates different mitigate strategies,
 454 to avoid adoption of λ values that might lead to identification of lower quality experiments.

455 Figure 3 revisits the example shown in Figure 2 to illustrate some concepts related to the variance
 456 approximation discussed here. In all subplots of this figure, contours of different functions are presented and,
 457 across these subplots, the addition of two different experiments (i.e., two selections for \mathbf{x}_{new} , denoted as Points
 458 A or B) are examined to illustrate their respective impact on the variance reduction $V_d(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta})$. Part (a)
 459 of the figure presents contours for the weighted predictive variance [equivalent to part (f) in Figure 2]; part (b)
 460 shows the shape function $A(\mathbf{x}, \mathbf{x}_{new} | \lambda)$ (using $\lambda=2$) for each of the candidate points; parts (c) and (d) show,
 461 respectively, the exact and approximate variance reductions after adding point A, whereas parts (e) and (f)
 462 replicate the presentation for point B. Comparing the quality of the approximation across the different
 463 candidate points, is it evident that when the new experiment is located close to multiple of existing experiments
 464 (Point B), the quality of the approximation is reduced. The contours for the actual variance reduction around
 465 Point B show greater concentration around it, indicating that $\lambda>2$ would have been a better option for the
 466 approximation. These trends verify the previous discussions, illustrating that the optimal selection of λ depends
 467 on the distribution of the existing experiments, stressing the importance of an adaptive selection for it. It is
 468 important to note, nevertheless, that the approximation in both instances (both points) examined in Figure 3
 469 seems to be qualitatively consistent in terms of variation patterns, demonstrating the potential accuracy of the
 470 variance approximation for guiding the DoE.

471 ***Adaptive selection of λ***

472 The adaptive selection of λ is accommodated by comparing the actual $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ and approximate
 473 $\Phi_{IMSE}^{\lambda}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ merit functions for some initial DoE iterations, till confidence on the chosen λ value is
 474 ascertained. Inevitably, this requires calculation of the exact $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ for these initial iterations. The
 475 adaptive selection is couched within the IMSE_w-SE algorithm, and involves consideration of the following
 476 issues/criteria:

477 (i) **[Optimization]** The optimization of λ is repeated at each DoE iteration step when a *credible* value
 478 has not yet been identified, or when a critical deviation in the λ value is expected due to the increased
 479 sample size.

480 (ii) **[Sampling variability and running average]** Differences of λ across the iterations of the DoE need
481 to be considered, originating from the fact that the number of training points for defining \mathbf{X} changes
482 or that a stochastic search is utilized in the experiment identification. Some weighted averaging across
483 the iterations should be established for the promoted λ to address the stochastic search features,
484 whereas this averaging should give higher priority to recent iterations, to accommodate the natural
485 variation of λ as more experiments are added.

486 (iii) **[Objective function]** Selection of an appropriate λ at each iteration requires definition of an
487 appropriate objective function based on comparisons between $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta})$ and $\Phi_{\text{IMSE}}^{\lambda}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta})$
488 . Target here is to promote the same optimal experiment within the DoE, and not necessarily match
489 the two merit functions. As such, the selection needs to focus on top rank candidate experiments. To
490 accommodate (ii), the focus cannot be solely on the best experiment – setting as objective to facilitate
491 only the same optimal \mathbf{x}_{new} using $\Phi_{\text{IMSE}}^{\lambda}(\mathbf{x}_{\text{new}} | \mathbf{X}, \boldsymbol{\theta})$ - since such an approach will lead to a lack of
492 robustness, with λ optimally chosen only for the specific candidate samples utilized within the
493 stochastic search.

494 (iv) **[Credibility check]** Convergence to assess credibility of λ requires criteria that examine both the
495 variability of the promoted λ and, more importantly, the performance of the established
496 approximation. For the latter, similar issues as identified in (iii) need to be considered for enhanced
497 robustness.

498 (v) **[Re-optimization]** Even after convergence is achieved, the credibility of λ needs to be re-evaluated
499 at some point, to account for the fact that the appropriate value of λ is dependent, as explained earlier,
500 on the training point distribution and the GP characteristics. If reduced performance is identified, then
501 calibration needs to be repeated.

502 Note that topics (ii) and (v) are the primary measures protecting against the use of a λ value that leads to
503 suboptimal experiments. All these topics are discussed next, before a comprehensive algorithm is presented in
504 the next section.

505 Initially, the objective function for the selection of λ at each iteration is discussed. For guiding this
 506 selection we focus on some subset of the best performing experiments within candidate set
 507 $\mathbf{X}^{candi} = \{\mathbf{x}_{new}^{(c)}\}_{c=1,\dots,n_c}$ of the $IMSE_w$ -SE algorithm. Note that if Step 2 of the algorithm is implemented then the
 508 subset is selected within the candidate set of the retained experiments with n_c replaced by n_r in all subsequent
 509 discussions. For the reasons explained in topic (iii) above, we are interested in not only matching the optimal
 510 solution, but in obtaining a consistent correspondence between the actual $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ or approximate
 511 $\Phi_{IMSE}^\lambda(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ criteria through a larger subset of them. This subset corresponds to the lowest p -percentile
 512 values of each of the objective functions and includes a total of n_p top-ranking candidate experiments, with
 513 $n_p = \lfloor n_c p \rfloor$ and $\lfloor \cdot \rfloor$ representing the floor function. Let $\min^{n_p}[\cdot]$ denote the n_p th smallest value of the set
 514 included within the brackets. Then, the subsets that includes the lowest p -percentile value of candidate
 515 experiments according to $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ corresponds to:

$$516 \quad \mathbf{X}_p = \{\mathbf{x}_{new} \in \mathbf{X}^{candi} \mid \Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \leq \min^{n_p}[\{\Phi_{IMSE}(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta})\}_{c=1,\dots,n_c}]\} \quad (25)$$

517 The respective subset utilizing approximate objective function for a given λ value is:

$$518 \quad \mathbf{X}_p^\lambda = \{\mathbf{x}_{new} \in \mathbf{X}^{candi} \mid \Phi_{IMSE}^\lambda(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \leq \min^{n_p}[\{\Phi_{IMSE}^\lambda(\mathbf{x}_{new}^{(c)} | \mathbf{X}, \boldsymbol{\theta})\}_{c=1,\dots,n_c}]\} \quad (26)$$

519 If the approximation $\Phi_{IMSE}^\lambda(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ yields consistent ranking of experiments as $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$,
 520 which is the ideal scenario, then \mathbf{X}_p and \mathbf{X}_p^λ include identical experiments for any p value. The discrepancy
 521 between the two sets needs to be quantified with respect to their performance for the actual objective function
 522 $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$, whereas to establish a comparison across the entire set, the corresponding empirical
 523 cumulative distribution function (CDF) is utilized. For each of the sets, \mathbf{X}_p and \mathbf{X}_p^λ , this CDF describes the
 524 distribution of the actual objective function value $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ within the set and is given, respectively,
 525 by:

$$526 \quad F_p(\varphi) = \frac{1}{n_p} \sum_{\mathbf{x}_{new} \in \mathbf{X}_p} \mathbf{1}[\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) < \varphi] \quad (27)$$

527
$$F_p^\lambda(\varphi) = \frac{1}{n_p} \sum_{\mathbf{x}_{new} \in \mathbf{X}_p^\lambda} \mathbf{1}[\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) < \varphi] \quad (28)$$

528 where $\mathbf{1}[\cdot]$ is the indicator function, which is 1 if the quantity inside the brackets holds, else it is zero. Note
 529 that $F_p^\lambda(\varphi)$ may be viewed as projection of the \mathbf{X}_p^λ set performance on the space of $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$,
 530 whereas $F_p(\varphi) \geq F_p^\lambda(\varphi)$ always holds since set \mathbf{X}_p by design includes the lowest possible objective function
 531 values. The selection of λ can be based on the minimization of the gap between the two CDFs:

532
$$\lambda^* = \arg \min_{\lambda} \int_{\varphi_{min}}^{\varphi_{max}} (F_p(\varphi) - F_p^\lambda(\varphi)) d\varphi \quad (29)$$

533 where φ_{min} corresponds to the smallest $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ value within set \mathbf{X}_p and φ_{max} to the largest
 534 $\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ value within set \mathbf{X}_p^λ . Figure 4 illustrates these concepts. Note that optimization of Eq. (29)
 535 can be performed by a discrete search, as will be detailed later.

536 As discussed in topic (ii) above, the optimal λ values identified through Eq. (29) will have variability
 537 across the DoE iterations, and some averaging needs to be performed to address the influence of the stochastic
 538 search features, while also incorporating weights to give higher priority to recent estimates, to better capture
 539 the underlying trends as the number of experiments increases. Let λ_i^* denote the optimal λ value obtained at
 540 i -th iteration, then using linearly decreasing weights within a window of L iterations, the weighted average
 541 value of λ at k -th iteration is:

542
$$\bar{\lambda}_k = \frac{\sum_{i=k-L+1}^k \gamma_i \lambda_i^*}{\sum_{i=k-L+1}^k \gamma_i} \quad (30)$$

543 with weights given by:

544
$$\gamma_i = \frac{i - (k - L)}{L} \quad (31)$$

545 The λ given by Eq. (30) represents the estimate for the variance approximation exponent at the current
 546 DoE iteration. The quality of this approximation, to assess convergence according to topic (iv) above, is

547 expressed through two different *credibility* criteria. The first one examines the coefficient of variation of $\bar{\lambda}_k$
 548 within the window L , given by:

$$549 \quad cv_{\lambda}^k = \frac{\sqrt{\frac{1}{L} \sum_{i=k-L+1}^k \left(\bar{\lambda}_i - \frac{1}{L} \sum_{j=k-L+1}^k \bar{\lambda}_j \right)^2}}{\frac{1}{L} \sum_{i=k-L+1}^k \bar{\lambda}_i} \quad (32)$$

550 If this coefficient of variation is below some target threshold ε_{conv} then the estimate of λ may be considered
 551 stable, indicating convergence. Convergence of λ is not assessed till at least L estimates of it are available to
 552 accommodate the weighting average calculation. The second credibility criterion focuses on the performance
 553 of the approximated $IMSE_w$ offered through $\bar{\lambda}_k$. Similarly to the definition of the objective function for
 554 selection of λ , the comparison is established across some subset of top-ranked candidate experiments. If the
 555 top s -percentile experiments are utilized, corresponding to total of $n_s = \lfloor n_c s \rfloor$ experiments, then the subsets of
 556 interest \mathbf{X}_s and $\mathbf{X}_s^{\bar{\lambda}_k}$ are given by Eqs. (25) and (26), respectively, using n_s instead of n_p . The performance of
 557 $\bar{\lambda}_k$ for assessing convergence examines how suboptimal the solutions within set $\mathbf{X}_s^{\bar{\lambda}_k}$ are compared to the
 558 solutions in set \mathbf{X}_s . The worst performance within each set is considered. The gap between the two sets, since
 559 values in \mathbf{X}_s are guaranteed to outperform values in $\mathbf{X}_s^{\bar{\lambda}_k}$, is normalized by the average performance in set \mathbf{X}_s
 560 , leading to convergence criterion:

$$561 \quad g(\bar{\lambda}_k) = \frac{\max_{\mathbf{x}_{new} \in \mathbf{X}_s^{\bar{\lambda}_k}} [\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})] - \max_{\mathbf{x}_{new} \in \mathbf{X}_s} [\Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})]}{\frac{1}{n_s} \sum_{\mathbf{x}_{new} \in \mathbf{X}_s} \Phi_{IMSE}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})} \quad (33)$$

562 When the performance criterion is below some target threshold ε_{perf} then the estimate of λ may be considered
 563 to provide an accurate approximation of the actual objective function.
 564 Once the criteria related to the quantities in Eqs. (32) and (33) are satisfied, convergence has been
 565 established and the $\bar{\lambda}_k$ value may be considered to provide a credible approximation to the $IMSE_w$ estimation.

566 As discussed in topic (v) above, the most appropriate value of λ is expected to change across the DoE
 567 iterations, and for this reason, the identification of an optimal λ according to Eq. (29) and the estimation of
 568 performance according to Eq. (33) for assessing convergence should be repeated after N_λ iterations. If λ is no
 569 longer assessed as credible, then calibration of λ is repeated in each iteration till convergence is re-established.

570 ***Algorithm for adaptive selection of λ***

571 Combining the concepts discussed in the previous section the DoE algorithm utilizing an adaptive
 572 approximation for IMSE_w is established. This algorithm will be denoted $\text{IMSE}_w\text{-SA}$ (Sequential
 573 Approximation) herein, and is summarized in Figure 5. A flag/counter i_f is used to assess convergence for the
 574 value of λ , with initial value set equal to 0. Algorithm also requires selection of tuning parameters ε_{conv} , ε_{perf}
 575 , L , N_λ , s (or equivalently n_s), p (or equivalently n_p) for the adaptive λ selection. Steps 0-2 of the algorithm are
 576 identical to $\text{IMSE}_w\text{-SE}$ presented earlier, while the remaining are modified as follows:

577 **Step 3.1 [MCI integration]:** Generate n_q samples $\{\mathbf{x}^{(q)}\}_{q=1,\dots,n_q}$ following a uniform distribution in X^d
 578 to be used for the MCI. Estimate $w(\mathbf{x}^{(q)})$ for all these samples combining Eqs. (17) and (14), and
 579 calculate variance $\underline{\sigma}^2(\mathbf{x}^{(q)} | \mathbf{X}, \boldsymbol{\theta})$ using Eq.(47).

580 **Step 3.2 [Correlation function for candidate experiments and integration points]:** For each candidate
 581 (or retained from Step 2) experiment, estimate the correlation between it and each of the integration points,
 582 $R(\mathbf{x}^{(q)}, \mathbf{x}_{new}^{(c)} | \boldsymbol{\theta})$, for the chosen GP kernel.

583 **Step 4.1 [Calibrate λ]:** If $i_f \in [1, N_\lambda]$ then proceed to Step 4.5. Else if $i_f = 0$, perform Step 4 of the
 584 original $\text{IMSE}_w\text{-SE}$ algorithm to estimate $\Phi_{\text{IMSE}}(\mathbf{x}_{new}^{(c)})$ for each $\mathbf{x}_{new}^{(c)}$, and then update the promoted value
 585 of λ as follows. Establish a range of candidate λ values (with $\lambda > 2$ as discussed earlier) and estimate
 586 $\Phi_{\text{IMSE}}^\lambda(\mathbf{x}_{new}^{(c)})$ for each $\mathbf{x}_{new}^{(c)}$ of the candidate (or retained experiments) using Eq. (24). Note that the only
 587 component impacted by λ in this equation is $R(\mathbf{x}^{(q)}, \mathbf{x}_{new}^{(c)} | \boldsymbol{\theta})^\lambda$, and so calculation even for large number

588 of candidates λ values can be efficiently performed. Use $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}}^{(c)})$ and $\Phi_{\text{IMSE}}^{\lambda}(\mathbf{x}_{\text{new}}^{(c)})$ to define sets \mathbf{X}_p
 589 [Eq. (25)] and \mathbf{X}_p^{λ} [Eq. (26)] (for each λ) and CDF approximations $F_p(\varphi)$ [Eq. (27)] and $F_p^{\lambda}(\varphi)$ [Eq.
 590 (28)] (for each λ), and perform optimization of Eq. (29). The latter is established using a discrete search,
 591 selecting the candidate λ value that yields the smallest gap between $F_p(\varphi)$ and $F_p^{\lambda}(\varphi)$. Denote the
 592 identified λ value as λ_k^* .

593 **Step 4.2 [Moving average λ estimate]:** Calculate the moving average value of $\bar{\lambda}_k$ using Eq. (30)

594 **Step 4.3 [Assessing stability of λ estimate]:** Estimate the coefficient of variation cv_{λ}^k using Eq. (32). If
 595 $cv_{\lambda}^k > \varepsilon_{\text{conv}}$ then the estimate of λ is not yet stable. Proceed to Step 5.

596 **Step 4.4 [Assessing quality of IMSE_w approximation]:** Estimate $\Phi_{\text{IMSE}}^{\bar{\lambda}_k}(\mathbf{x}_{\text{new}}^{(c)})$ for each $\mathbf{x}_{\text{new}}^{(c)}$ of the
 597 candidate (or retained experiments) using Eq. (24). Use $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}}^{(c)})$ (from Step 4.1) and $\Phi_{\text{IMSE}}^{\bar{\lambda}_k}(\mathbf{x}_{\text{new}}^{(c)})$ to
 598 define the sets \mathbf{X}_s [modified Eq. (25) for $n_p=n_s$] and $\mathbf{X}_s^{\bar{\lambda}_k}$ [Eq. (26) for $n_p=n_s$]. Estimate the indicator of
 599 the quality of the IMSE_w approximation, $g(\bar{\lambda}_k)$, using Eq. (33). If $g(\bar{\lambda}_k) > \varepsilon_{\text{perf}}$ then estimate of λ is not
 600 credible; set $i_f = 0$. If $g(\bar{\lambda}_k) \leq \varepsilon_{\text{perf}}$ convergence to a credible $\bar{\lambda}_k$ has been established; set $i_f = 1$ and
 601 utilize $\bar{\lambda}_k$ for the IMSE_w approximation that will be used in the next N_{λ} DoE iterations. Proceed to Step
 602 5.

603 **Step 4.4 [IMSE_w approximation]:** Using the $\bar{\lambda}_k$ identified as credible in the previous DoE iteration in
 604 which the λ calibration was updated, estimate $\Phi_{\text{IMSE}}^{\bar{\lambda}_k}(\mathbf{x}_{\text{new}}^{(c)})$ for each $\mathbf{x}_{\text{new}}^{(c)}$ of the candidate (or retained
 605 experiments) using Eq. (24). Set $i_f = i_f + 1$ to keep track of the number of iterations since the previous
 606 λ calibration.

607 **Step 5 [Final selection]** If Step 4.1 was performed, select as new experiment the one that provides the
608 minimum value for $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}}^{(c)})$. Else, select as new experiment the one that provides the minimum value
609 for $\Phi_{\text{IMSE}}^{\lambda}(\mathbf{x}_{\text{new}}^{(c)})$.

610 Note that dependence on $\mathbf{X}, \boldsymbol{\theta}$ were omitted in the notations of Φ_{IMSE} , $\Phi_{\text{IMSE}}^{\lambda}$ and $\Phi_{\text{IMSE}}^{\bar{\lambda}_k}$ within the
611 algorithm description for brevity. As also shown in Figure 5, the updated Step 4 has two alternative paths. If
612 convergence to a credible λ value has not yet been established, or if the maximum number of steps N_{λ} for the
613 use of convergent values are exceeded, then Steps 4.1-4.4 are performed, with Step 4.1 representing the only
614 computational demanding one within the IMSE_w -SA algorithm, since it requires the calculation of the exact
615 IMSE_w . Alternatively, the IMSE_w approximation is directly used in Step 4.5, adopting the previously converged
616 λ value, providing a dramatic computational reduction, as discussed earlier, for the DoE. Note that if λ is chosen
617 a priori, rather than being estimated adaptively, then Step 4 of the IMSE_w -SA algorithm would always
618 correspond to Step 4.5. The algorithm involves the following tuning parameters as summarized earlier: $\varepsilon_{\text{conv}}$,
619 $\varepsilon_{\text{perf}}$, L , N_{λ} , s , p . The values used in the case studies discussed in this paper are $\varepsilon_{\text{conv}} = 10\%$, $\varepsilon_{\text{perf}} = 1\%$, $L = 10$,
620 $N_{\lambda} = 25$, $s = 10\%$ and $p = 5\%$, with additional constraints that value of n_p and n_s correspond to at least 10 samples.
621 Only small sensitivity was identified to these parameter values in terms of performance, though, as will be
622 discussed in the illustrative examples section these parameters have an effect on convergence to a credible λ
623 and therefore on computational efficiency.

624 **Adaptive DoE using multi-criteria search**

625 The second advancement established in this paper for the adaptive DoE is multi-criteria search strategy
626 that established an alternative balance between the variance (exploration) and bias (exploitation) selection
627 criteria while simultaneously promoting a seamless identification of batch experiments. Foundation of the
628 strategy is to consider the bias and variance criteria as separate objectives and formulate a bi-objective DoE.
629 This problem does not necessarily have a single solution, and so the identification provides the Pareto optimal
630 experiments. Let $\Phi_{\text{var}}(\mathbf{x}_{\text{new}})$ denote the merit function related to the GP variance and $\Phi_{\text{bias}}(\mathbf{x}_{\text{new}})$ the merit

631 function related to the GP bias and assume without a loss of generality that optimality is expressed with respect
 632 to minimization. Note that both these functions have dependence on \mathbf{X} and $\boldsymbol{\theta}$ but for notational simplicity this
 633 dependence will not be explicitly denoted. The set of Pareto optimal experiments, denoted herein as \mathbf{X}_{PF} , is
 634 obtained through the multi-objective optimization problem:

635
$$\mathbf{X}_{PF} = \arg \min_{\mathbf{x}_{new} \in \mathcal{X}^d} \{\Phi_{\text{var}}(\mathbf{x}_{new}), \Phi_{\text{bias}}(\mathbf{x}_{new})\} \quad (34)$$

636 A candidate experiment is termed dominant and belongs in Pareto set \mathbf{X}_{PF} if there is no experiment that
 637 simultaneously improves both objectives. The representation of the set \mathbf{X}_{PF} in the merit function space
 638 $\{\Phi_{\text{var}}(\mathbf{x}_{new}), \Phi_{\text{bias}}(\mathbf{x}_{new})\}$ corresponds to the Pareto front. An illustration is shown in Figure 6(b), The numerical
 639 details and computational complexity for the identification of the Pareto set through Eq. (34) will be discussed
 640 later, when the overall multi-objective algorithm is discussed.

641 Though any bias and variance-based functions can be used in the bi-objective identification, the
 642 discussions here are couched to utilizing the IMSE, given by Eq. (7), and LOOCV squared error, given by Eq.
 643 (14), leading to:

644
$$\Phi_{\text{var}}(\mathbf{x}_{new}) = \Phi_{\text{IMSE}}(\mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \quad (35)$$

645
$$\Phi_{\text{bias}}(\mathbf{x}_{new}) = -(\tilde{e}^{\text{cv}}(\mathbf{x}_{new}))^2 \quad (36)$$

646 where, note, that for the IMSE function the weights $w(\mathbf{x})$ do not incorporate any information for the metamodel
 647 bias since this is explicitly considered in the $\Phi_{\text{bias}}(\mathbf{x}_{new})$ objective.

648 The set \mathbf{X}_{PF} identified through Eq. (34) represents the candidate set for a batch selection of the next
 649 experiments. The direct use of this entire set as new experiments is not recommended, though, for two reasons:
 650 (i) first because the number of experiments in this set, denoted by N_{PF} herein, might be larger than the number
 651 of batch experiments desired, denoted N_B herein; (ii) second because the $\Phi_{\text{var}}(\mathbf{x}_{new})$ has not considered the
 652 simultaneous addition of all the new experiments, since it separately examined the impact on the GP variance
 653 of each experiment. Issue (ii) is especially important. It means that Pareto set may contain experiments in
 654 close-proximity to one another, each substantially benefiting the other(s) if/when added in the pool of available

655 experiments, and making the addition of all of them potentially redundant. To address this vulnerability, while
 656 also accommodating topic (i) above, a sequential search within the Pareto set is promoted: a single experiment
 657 is chosen from this set, the GP variance is updated considering the addition of the new experiment, the variance-
 658 based merit function for all remaining experiments in the Pareto set is adjusted based on this update, and then
 659 the next experiment is identified. Unfortunately, a similar update cannot be established for the bias merit
 660 function. To mathematically describe this recursive addition of experiments, we will herein denote by $\mathbf{x}_{\text{new}}^{(j)}$ the
 661 experiment (member of \mathbf{X}_{PF}) identified in the j th iteration, by $\mathbf{X}_{PF}^{(j)}$ the remaining Pareto set excluding all
 662 experiments identified up to the j th iteration, by \mathbf{X}^j the set of available experiments obtained by adding to \mathbf{X}
 663 the selected experiments up to the j th iteration, and by $\Phi_{\text{var}}^{(j)}$ the updated variance-based objective using \mathbf{X}^j .

664 For selecting the single experiment that best balances the two objectives at each iteration alternative criteria
 665 exist (Kim, I. Y. and De Weck 2005, Gunantara 2018), with one of the most popular ones, and the one chosen
 666 here, being the selection of the point with minimum distance to the Utopia point in the Pareto front. The latter
 667 corresponds to the unattainable point beyond the Pareto front that yields the minimum of both objective
 668 functions, as also shown in Figure 6(b). Establishing an appropriate normalization for each merit function with
 669 respect to its scale within the Pareto front, the objective function for selecting the single Pareto optimal design
 670 at the $j+1$ iteration is:

$$671 F_{PF}^{(j)}(\mathbf{x}_{\text{new}}) = \left[\frac{\Phi_{\text{var}}^{(j)}(\mathbf{x}_{\text{new}}) - \min_{\mathbf{X}_{PF}^{(j)}} \{\Phi_{\text{var}}^{(j)}(\mathbf{x}_{\text{new}})\}}{\max_{\mathbf{X}_{PF}^{(j)}} \{\Phi_{\text{var}}^{(j)}(\mathbf{x}_{\text{new}})\} - \min_{\mathbf{X}_{PF}^{(j)}} \{\Phi_{\text{var}}^{(j)}(\mathbf{x}_{\text{new}})\}} \right]^2 + \left[\frac{\Phi_{\text{bias}}(\mathbf{x}_{\text{new}}) - \min_{\mathbf{X}_{PF}^{(j)}} \{\Phi_{\text{bias}}(\mathbf{x}_{\text{new}})\}}{\max_{\mathbf{X}_{PF}^{(j)}} \{\Phi_{\text{bias}}(\mathbf{x}_{\text{new}})\} - \min_{\mathbf{X}_{PF}^{(j)}} \{\Phi_{\text{bias}}(\mathbf{x}_{\text{new}})\}} \right]^2 \quad (37)$$

672 where $\max_{\mathbf{X}_{PF}^{(j)}} \{\cdot\}$ and $\min_{\mathbf{X}_{PF}^{(j)}} \{\cdot\}$ correspond to the maximum and minimum, respectively, of the quantity in
 673 the brackets across the remaining Pareto set $\mathbf{X}_{PF}^{(j)}$. The next experiment is identified by:

$$674 \mathbf{x}_{\text{new}}^{(j+1)} = \arg \min_{\mathbf{x}_{\text{new}} \in \mathbf{X}_{PF}^{(j)}} F_{PF}^{(j)}(\mathbf{x}_{\text{new}}) \quad (38)$$

675 Once this experiment is identified, the updated GP variance $\sigma^2(\mathbf{x} | \mathbf{X}^j, \mathbf{x}_{\text{new}}^{(j+1)}, \boldsymbol{\theta})$ by the addition of this single
 676 new experiment can be obtained by Eq. (11) and the efficient procedure discussed in Appendix B. Use of
 677 $\sigma^2(\mathbf{x} | \mathbf{X}^j, \mathbf{x}_{\text{new}}^{(j+1)}, \boldsymbol{\theta})$ then leads to the updated estimate of $\Phi_{\text{var}}^{(j+1)}(\mathbf{x}_{\text{new}})$ for the next iteration.

678 To accommodate the recursive identification, if the number of Pareto points is smaller than the target (679 $N_{PF} < N_B$) then the Pareto set can be expanded by considering dominant designs of higher rank (Deb et al. 680 2002). This is established by identifying dominant designs among the remaining candidate experiments, 681 removing the ones already identified as belonging to the Pareto set.

682 Figure 7 revisits the example used previously in Figure 2 and illustrates aspects of the multi-objective 683 DoE for selection of a batch of 5 experiments, focusing on how the specifics of the bias interpolation approach 684 affect the formulation. The two different options for defining $w(\mathbf{x})$ discussed previously are examined, the NN 685 interpolation given by Eq. (15) and the exponential decay kernel smoothing given by Eq. (16), abbreviated as 686 E in this figure. The dominated solutions, the identified Pareto front and the batch of 5 experiments are shown 687 in the objective function space in parts (a) and (b) of this figure for the NN and E implementations, respectively. 688 Part (c) and (d) show the contours of $\Phi_{bias}(\mathbf{x})$ as well as the Pareto solutions and chosen batch of experiments, 689 for the same cases. Note that for NN interpolation, these contours represent, equivalently, the Voronoi cells 690 for the training points. The NN interpolation leads to identification of a single dominant solution in each of the 691 Voronoi cells, leading to a sparsely populated Pareto front and, ultimately, to a final batch of experiments that 692 is more scattered across the entire domain, and is not concentrated in regions with higher bias (compare to the 693 accuracy of the GP predictions depicted in Figure 2 earlier). Equivalently, this means that the DoE will place 694 greater emphasis on exploration rather than exploitation. In contrast, the kernel smoothing using the 695 exponential decay function identifies a larger number of dominant solutions, clustered at high bias and/or 696 variance locations, as evident in part (d) of Figure 7. The final batch of experiments are located close to 697 domains with higher bias, depicting a stronger exploitation tendency.

698 Finally, the multi-objective DoE using IMSE as variance measure, is implemented through the following 699 algorithm denoted herein as IMSE-*MB* (*Multi-objective Batch*). To circumvent the well-known higher 700 computational burden associated with solving multi-objective optimization problems, algorithm adopts a 701 random search approach, similar to the one established for IMSE_w-SE. Specifically, Steps 0-1 and 3 of the

702 algorithm are identical to IMSE_w-SE, while Step 2 is removed since the behavior across the entire Pareto set is
 703 warranted. The remaining steps are modified as follows:

704 **Step 4.1 [Calculation of variance-based merit function]:** For each candidate experiment perform Step
 705 4 of the original IMSE_w-SE utilizing $w(\mathbf{x})=1$ to obtain $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}}^{(c)} | \mathbf{X}, \boldsymbol{\theta})$. Set this equal to variance
 706 objective $\Phi_{\text{var}}^0(\mathbf{x}_{\text{new}}^{(c)})$ and set experiment counter $j=0$.

707 **Step 4.2 [Calculation of bias objective function]:** For each candidate estimate $(\tilde{e}^{cv}(\mathbf{x}))^2$ using Eq.
 708 (14) to obtain corresponding bias objective $\Phi_{\text{bias}}(\mathbf{x}_{\text{new}}^{(c)})$ as in Eq. (36).

709 **Step 4.3 [Pareto set selection]:** Identify the Pareto set \mathbf{X}_{PF} of dominant designs within \mathbf{X}^{candi} using
 710 merit functions from Steps 4.1. and 4.2 . If number of experiments in this set N_{PF} is not sufficient (does
 711 not exceed target N_B) expand selection to consider higher rank dominance till \mathbf{X}_{PF} includes a sufficient
 712 number of experiments. This defined ultimately set $\mathbf{X}_{PF}^{\sim 0}$

713 **Step 5.1 [Selection of next experiment]:** For all points \mathbf{x}_{new} in set $\mathbf{X}_{PF}^{\sim j}$ estimate distance from utopia
 714 point $F_{PF}^{(j)}(\mathbf{x}_{\text{new}})$ using Eq. (37) and merit functions $\Phi_{\text{bias}}(\mathbf{x}_{\text{new}})$ and $\Phi_{\text{var}}^j(\mathbf{x}_{\text{new}}^{(c)})$. Select the next
 715 experiment $\mathbf{x}_{\text{new}}^{(j+1)}$ though Eq. (38).

716 **Step 5.2 [Stopping criteria for batch selection]:** If $j+1=N_B$ stop, else proceed to Step 5.3.

717 **Step 5.3 [Updating of sets and matrices]:** Remove $\mathbf{x}_{\text{new}}^{(j+1)}$ from $\mathbf{X}_{PF}^{\sim j}$ to obtain $\mathbf{X}_{PF}^{\sim j+1}$ and add it to \mathbf{X}^j
 718 to obtain \mathbf{X}^{j+1} . Use $\mathbf{X}=\mathbf{X}^{j+1}$ and $\mathbf{x}_{\text{new}}=\mathbf{x}_{\text{new}}^{(j+1)}$ in Eqs. (8)-(10) and Eq. (49) to obtain, respectively, the
 719 updated correlation vector $\mathbf{r}(\mathbf{x} | \mathbf{X}^{j+1}, \boldsymbol{\theta})$, basis function matrix $\mathbf{F}(\mathbf{X}^{j+1})$, correlation matrix $\mathbf{R}(\mathbf{X}^{j+1} | \boldsymbol{\theta})$
 720 and Cholesky factorization $\mathbf{L}(\mathbf{X}^{j+1} | \boldsymbol{\theta})$ and estimate matrix $\mathbf{M}_R(\mathbf{X}^{j+1} | \boldsymbol{\theta})$ related to the QR
 721 decomposition of $\mathbf{L}^{-1}(\mathbf{X}^{j+1} | \boldsymbol{\theta})\mathbf{F}(\mathbf{X}^{j+1})$.

722 **Step 5.4 [Updating of variance based merit function]:** Use the updated quantities from Step 5.3 to
 723 calculate $\underline{\sigma}^2(\mathbf{x}^{(q)} | \mathbf{X}^{j+1}, \mathbf{x}_{\text{new}}^{(c)}, \boldsymbol{\theta})$ using Eq. (48) for each of the integration points and each $\mathbf{x}_{\text{new}}^{(c)}$ in $\mathbf{X}_{PF}^{\sim j+1}$

724 . Using this variance obtain the IMSE objective function $\Phi_{\text{IMSE}}(\mathbf{x}_{\text{new}}^{(c)} | \mathbf{X}^{j+1}, \boldsymbol{\theta})$ through MCI using Eq.

725 (12) with . Set this equal to variance objective and set experiment counter $j=j+1$. Proceed to Step 5.1.

726 The algorithm is summarized in Figure 8. Note that since the updating and search in Step 5 is constrained

727 always within the previously retained Pareto set , the computational demanding step of this algorithm is the

728 original estimation of IMSE for candidate experiments (Step 4.1). This reduces the overall computational

729 burden to be similar to the single-objective optimization implementations discussed earlier.

730 **Illustrative examples**

731 ***Case study examples description***

732 The proposed DoE advancements from the previous two sections are showcased using four numerical

733 examples. The input dimension in these examples ranges from $n_x=2$ to $n_x=9$, and each example poses different

734 challenges with respect to the nonlinearity of the input-to-output mapping. Three of the examples are taken

735 directly from (Kyprioti et al. 2020), while the other one is first introduced here. The first two examples

736 correspond to analytic benchmark functions: the two-dimensional cosine weighted Gaussian mixture function

737 ($n_x=2$) inspired by (Jiang et al. 2015), referenced herein as ‘WtGMix’, and the six-dimensional Harman

738 function ($n_x=6$) proposed by (Dixon and Szegö 1978), referenced herein as ‘Hartman 6’. Details for these

739 examples and for the input domain considered X^d are included in (Kyprioti et al. 2020). Note that the WtGMix

740 corresponds to the function that was used earlier (Figures 2, 3, and 7), to illustrate some of the DoE concepts.

741 The remaining two examples represent practical applications from the earthquake engineering field. The first

742 one is four-dimensional function ($n_x=4$) corresponding to the standard deviation of the normalized base shear

743 of a single degree-of-freedom (SDoF) oscillator exposed to stationary stochastic seismic excitation modeled

744 by the Kanai-Tajimi power spectrum (Kanai 1957, Tajimi 1960). The output function in this case is expressed

745 as (Lutes and Sarkani 2004):

$$746 z = \omega_s^2 \left(S_o \int_{-\infty}^{\infty} \frac{1 + 4\zeta_g^2 (\omega / \omega_g)^2}{\left(1 - (\omega / \omega_g)^2\right)^2 + 4\zeta_g^2 (\omega / \omega_g)^2} \frac{(1 / \omega_s)^4}{\left(1 - (\omega / \omega_g)^2\right)^2 + 4\zeta_s^2 (\omega / \omega_s)^2} d\omega \right)^{1/2} \quad (39)$$

747 where the four input parameters represent the frequency (ω_s) and damping (ζ_s) of the SDof oscillator, and the
 748 frequency (ω_g) and damping (ζ_g) of the Kanai-Tajimi spectrum used to describe the earthquake acceleration
 749 input. The range examined for these values, defining X^d , is $\omega_g \in [2,6]\pi$ rad/sec , $\zeta_g \in [0.1,0.6]$,
 750 $\omega_s \in [1,13.5]\pi$ rad/sec and $\zeta_s \in [0.02,0.06]$. This example will be referenced herein as ‘SDof-KT’. The last
 751 example, termed ‘Isolation’, corresponds to the displacement of the base of a three-story base isolated structure
 752 exposed to non-stationary near-fault seismic excitation (Kyprioti et al. 2020). Numerical details for the isolated
 753 structure and the excitation are included in (Jia and Taflanidis 2014). This case corresponds to a to nine-
 754 dimensional example ($n_x=9$) with inputs including five structural and isolation parameters and four additional
 755 parameters related to the earthquake excitation. Details for the definition of the input, including ranges
 756 considered, are included in (Kyprioti et al. 2020).

757 ***Surrogate modeling and DoE details***

758 For the GP, a constant basis function $f(\mathbf{x})=[1]$ and a generalized exponential correlation function (Kyprioti
 759 et al. 2020, Rasmussen and Nickisch 2010) are chosen, while hyper-parameter optimization is performed using
 760 maximum likelihood estimation. The metamodel accuracy is evaluated using a test-sample validation. This is
 761 preferred to the cross-validation setting discussed earlier, as it avoids dependence of the DoE validation on the
 762 specific set of simulation experiments chosen (Kleijnen and Van Beers 2022, Zhang and Taflanidis 2018).
 763 Since objective of the validation is to compare across the different DoE strategies, the test-sample
 764 implementation is necessary for accommodating consistency. Using a set of N_t points uniformly distributed in
 765 X^d , the normalized root mean squared error validation metric in this case is given by:

$$766 \quad NRMSE_{test} = \frac{\sqrt{\sum_{k=1}^{N_t} (z^{(k)} - \tilde{z}(\mathbf{x}^{(k)} | \mathbf{D}, \Theta))^2 / N_t}}{\max_k \{z^{(k)}\} - \min_k \{z^{(k)}\}} \quad (40)$$

767 where $\{\mathbf{x}^{(k)}, z^{(k)}; k = 1, \dots, N_t\}$ represents the input-output test-sample set, $\max_k \{z^{(k)}\}$ and $\min_k \{z^{(k)}\}$ denote
 768 the maximum and minimum values of the response test samples, and the value of N_t is chosen here as 5000.

769 All examined DoE strategies start with n_{init} experiments, obtained through Latin Hypercube space-filing
 770 sampling in X^d , and sequentially add experiments, either one at-a-time or in batches of n_b experiments, till the

771 desired number of experiments n_{fin} is reached. Following the recommendations in (Kyprioti et al. 2020), the
772 initial n_{init} and final n_{fin} experiment sizes are chosen so that the metamodel starts with low accuracy and becomes
773 highly accurate at the end. The details for each example are: WtGMix $n_{init}= 15$ and $n_{fin}= 125$, SDof-KT $n_{init}=$
774 30 and $n_{fin}= 220$, Hartman6 $n_{init}= 30$ and $n_{fin}= 200$, Isolation $n_{init}= 25$ and $n_{fin}= 250$. Detailed rational for these
775 choices is included in (Kyprioti et al. 2020).

776 The N_q for the MCI is selected to establish a small coefficient of variation for each example examined,
777 chosen as $N_q=5000$ for all problems, while the number of candidate experiments n_c is chosen proportional to
778 the dimensionality of each example, with goal to balance between computational efficiency and adequate
779 exploration of the X^d domain. The details for each example are: WtMixG $n_c= 1000$, SDof-KT $n_c=3000$,
780 Hartman6 $n_c= 5000$, and Isolation $n_c= 7000$. The DoE implementation is repeated 30 times for each case, using
781 different samples for the initialization and the DoE identification. Results will be reported typically for the
782 average DoE accuracy across these trials, though some variability trends will be also briefly discussed. For
783 each trial, the same samples have been utilized across all DoE strategies to facilitate a consistent comparison.

784 The DoE variants examined are reviewed in Table 1. These correspond to: (i) the standard IMSE and MSE
785 implementations; (ii) previous formulations to incorporate bias weights (Kyprioti et al. 2020) that serve as the
786 foundation of the proposed here advances; (iii) as well as the advanced implementations established in this
787 manuscript. For accommodating the incorporation of the bias two different interpolation functions are
788 considered, the NN interpolation given by Eq. (15) and the exponential decay kernel smoothing given by Eq.
789 (16). These will be distinguished, respectively, by abbreviation NN and E, and will be denoted in parenthesis
790 after the name of the DoE variant, when needed. For example, $IMSE_w$ -(V) denotes the $IMSE_w$ implementation
791 with bias estimated using NN interpolation (i.e., Voronoi tessellation) and $IMSE_w$ -(E) denotes the alternative
792 implementation using exponential decay smoothing. For $IMSE_w$, implementation for batch selection of
793 experiments is also considered. In this case the adjustment using different ρ values to balance between
794 exploration and exploitation is also examined, to accommodate a comparison to the multi-criteria DoE
795 implementation. Following the recommendations in (Kyprioti et al. 2020) the value of ρ is modified across
796 each batch of 5 experiments, with the first three corresponding to $\rho=1$ (combination of exploration and

797 exploitation) and the remaining two to $\rho=0$ (pure exploration). The DoE variants corresponding to batch IMSE_w
798 will be denoted as $B\text{-IMSE}_w$ and $B^\rho\text{-IMSE}_w$ for the implementation without or with the ρ adjustments,
799 respectively. For the IMSE_w approximation employed through the $\text{IMSE}_w\text{-SA}$ algorithm, two different
800 formulations are examined, corresponding to the adaptive selection of λ or the use of a default value of $\lambda=2n_x$.
801 This default value for λ has been chosen after examining performance for multiple case studies, including the
802 ones presented in this manuscript. These variants will be denoted as $A_d\text{-IMSE}_w$ and $A_c\text{-IMSE}_w$ for the
803 implementations with and without adaptive selection of λ , respectively. Finally, the multi-objective IMSE_w
804 implementation, employed through the $\text{IMSE}_w\text{-MB}$ algorithm, will be denoted as $MB\text{-IMSE}_w$.

805 Note that variants (MSE_w , IMSE_w , $B\text{-IMSE}_w$ and $B^\rho\text{-IMSE}_w$) represent the aforementioned previously
806 established formulations (Kyprioti et al. 2020), and should serve as the baseline reference against which the
807 efficiency of the proposed here advances should be compared to. Within this context, the non-weighted variants
808 (MSE , IMSE) represent classical baseline approaches for assessing the benefits of incorporating the bias
809 weights.

810 **Results and discussion**

811 Results are separately presented for the DoE variants corresponding to sequential experiment selection and
812 batch experiment selection. These two sets of results accommodate, respectively, evaluation of the proposed
813 advancements related to the IMSE_w approximation and the multi-criteria DoE formulation. Results are
814 primarily presented through the variation of the metamodel accuracy with respect to the number of experiments
815 n . Emphasis is placed on the average performance across the 30 trials.

816 Figures 9 and 10 present results for the variants corresponding to sequential experiment selection for the
817 two different choices for the bias interpolation function, (NN) in Figure 9 and (E) in Figure 10. Figure 11
818 presents details for the computational savings established through the $A_d\text{-IMSE}_w$ formulation, defined as the
819 average (across the 30 trials) acceptance ratio of the λ approximation, i.e. the frequency of omitting the exact
820 IMSE_w evaluation in the $\text{IMSE}_w\text{-SA}$ algorithm (omitting Step 4.1). This is presented as function of the DoE
821 iteration, which is equal to $n-n_{init}$ (total experiments minus initial experiments). The overall efficiency,
822 corresponding to the mean value of the efficiency across the DoE iterations is also reported in this figure. The

823 first 10 iterations are omitted in estimating the overall efficiency, since convergence to a credible λ is not
824 possible before that point based on the tuning parameter selections presented previously. Figure 12 investigates
825 further the impact of tuning parameters for the for A_d -IMSE_w performance, Figure 13 shows the variation of
826 the average (over the 30 trials) value of $\bar{\lambda}_k$ for the SDoF-KT example. Figure 14 presents results for the DoE
827 variants corresponding to batch-selection of experiments. Figure 15 facilitates a comparison of the different
828 interpolation functions, gathering some of the results presented earlier (in Figures 9, 10 and 14) in one figure.
829 Finally, the variability of the DoE performance across the 30 trials is investigated in Figure 16, showing
830 boxplots of the metamodel accuracy when n_{fin} has been reached, for specific DoE variants of interest.

831 Comparing first the standard implementations of MSE, MSE_w, IMSE, and IMSE_w in Figure 9 and Figure
832 10, earlier discussions and past literature results are easily verified: IMSE outperforms MSE, in some
833 applications by a very large margin, whereas inclusion of bias weight can improve performance. The benefit
834 of introducing the bias weight is more evident in the examples with significant localized nonlinearities
835 (WtGMix and Hartman6) (Kyprioti et al. 2020). One exception is Figure 9(c) for which IMSE_w and IMSE have
836 similar performance. This is possibly due to the mild local nonlinearity of the SDoF-KT application.

837 The comparisons across Figures 9 and 10 showcase clearly the preference of IMSE-based DoE schemes
838 over the MSE-based ones. As also discussed earlier, this performance improvement comes at the expense of a
839 larger computational burden. The approximations for IMSE establish a balance between the DoE quality of
840 IMSE-based schemes (Figures 9 and 10) and the computational efficiency of MSE-based schemes (Figure 11).
841 Both A_d -IMSE_w and A_c -IMSE_w outperform the baseline MSE_w by a significant margin and provide similar DoE
842 quality as IMSE. Identical patterns hold for the implementations without the bias weight, i.e. comparing A_d -
843 IMSE and A_c -IMSE to MSE in these figures, though the emphasis in the discussions herein is on the bias-
844 weighted schemes since they represent the preferred adaptive DoE formulation.

845 Especially the improvement of A_c -IMSE_w over MSE_w is very noteworthy since, recall, these DoE
846 formulations have practically identical computational burden. This clearly showcases the advantages the
847 proposed A_c -IMSE_w scheme can offer over existing alternative formulations. As expected, the adaptive λ
848 selection (A_d -IMSE_w) outperforms the formulation with a prescribed λ (A_c -IMSE_w), in some instances with a

849 noticeable margin. This comes of course at the expense of a larger computational burden, as shown in Figure
850 11. Results in this figure show that in earlier DoE iterations the value of λ is not deemed credible (acceptance
851 ratio of the λ approximation has lower values) whereas even in later iterations re-evaluation of the
852 approximation quality or divergence from a credible λ are observed (acceptance ratio of the λ approximation
853 lower than 1). Recall in all such instances estimation of the exact $IMSE_w$ estimation is warranted. Details are,
854 as expected, different across the case study examples, with computational savings in range of 0.45~0.90. This
855 corresponds to a significant improvement (10~55% of the original computations needed only) when compared
856 to the $IMSE_w$ formulation, but do represent an additional computational burden when compared against the A_c -
857 $IMSE_w$ formulation which tends to give, as mentioned earlier, similar performance. Note than in some (few)
858 instances A_c - $IMSE_w$ even outperforms A_d - $IMSE_w$. Though this is not expected behavior, it may occur due to
859 overfitting, since the adaptive selection for λ is the optimal for the current DoE iteration but is implemented
860 for future iterations, and is not guaranteed to be necessarily optimal for those.

861 Of course, it needs to be emphasized that A_d - $IMSE_w$ enjoys significant robustness over A_c - $IMSE_w$, since,
862 as discussed earlier, the promoted choice of $\lambda=2n_x$ is not guaranteed to be near-optimal for every application,
863 and can potentially lead to vulnerabilities within the DoE by promoting low quality experiments. Though to
864 the experience of the authors, this selection has performed very well in all examples we have tested so far, it
865 might be a poor choice for some other applications. This robustness advantage that A_d - $IMSE_w$ offers is
866 significant. This discussion shows that, despite the similar performance of A_d - $IMSE_w$ and A_c - $IMSE_w$ and the
867 higher computational burden of the former, the A_d - $IMSE_w$ is the recommended choice, with a modification,
868 though, of its tuning parameters to promote higher computational efficiency (reduce tolerances for
869 convergence). This is further investigated in Figure 12 which shows results for three different target threshold
870 ε_{perf} for the convergence criterion of Eq. (33), which represents the most influential parameter impacting the
871 A_d - $IMSE_w$ convergence. The resultant accuracy is only marginally impacted by the selection of ε_{perf} , but the
872 impact on computational efficiency is significant: the mean efficiency for ε_{perf} threshold values of 5% and
873 10% are increased, respectively, to 0.87 and 0.91 for WtGMix, 0.95 and 0.95 for Hartman 6, 0.45 and 0.92 for

874 SDoF-KT, and 0.67 and 0.94 for Isolation examples. For complementing these comparisons note that the mean
875 efficiency for the 1% threshold values was already presented in Figure 11. Similarly, no significant impact on
876 accuracy is observed in the case of exponential decay bias interpolation (not reported here due to space
877 limitation), while the mean efficiency, similarly, increased for the ε_{perf} threshold values of 5% and 10%,
878 respectively, to 0.92 and 0.94 for WtGMix, and 0.96 for all other cases. Note that computational efficiency of
879 0.96 is the theoretical upper bound for the implementation considered here due to the selection to examine the
880 quality of the approximation every $N_\lambda=25$ iterations.

881 Comparing across the two bias-interpolation function results in Figure 9, Figure 10, and Figure 15, show
882 that the NN implementation outperforms the exponentially decaying function for the MSE_w criteria, while the
883 exponentially decaying function performs equal or better for the $IMSE_w$ criteria. This is explained by the
884 relatively heavier exploitative tendency of the NN interpolation function, as shown earlier in Figure 2
885 (prioritizing disproportionately domains with large bias). This tendency informs better the selection of the next
886 experiment using a MSE metric - that focuses on the worst-case scenario performance- but does not have the
887 same impact on the IMSE metric -that investigates average performance. Less sensitivity is observed for the
888 performance of the IMSE approximation formulations, with both A_d - $IMSE_w$ and A_c - $IMSE_w$ showing a good
889 agreement with the respective $IMSE_w$ implementation. It is important to note, though, that for the adaptive
890 case, the trends of the acceptance ratio of λ , significantly differ (Figure 11) with the exponentially decaying
891 function accommodating a much faster convergence to a credible λ value and overall to significant higher
892 computational efficiency. This should be attributed to the discontinuous behavior, and therefore objectives in
893 the λ^* optimization, introduced by the NN interpolation, which impacts the stability of the stochastic search-
894 based identification of the optimal λ across the DoE iterations. This is clearly shown in Figure 13 with behavior
895 of $\bar{\lambda}_k$ significantly affected by the choice of bias interpolation function in terms of both the mean underlying
896 trend (convergence to different values) as well as the variability around this trend (greater shifts for the NN
897 selection of interpolation function). Results for the mean trend in this figure also show that as the training
898 sample size increases, the optimal value of λ may also increase, verifying arguments made earlier and also

899 showcasing the importance of re-evaluating appropriateness of the converged value for λ . The differences
900 between the optimal λ values across the two interpolating functions showcase the importance of an adaptive
901 selection (A_d -IMSE_w formulation) since recommendation of an appropriate value for any desired application
902 (as needed in the A_c -IMSE_w formulation) seems to be impossible.

903 Next, the discussions move to the comparisons for the batch DoE selection. Results in Figure 14 and Figure
904 15 verify first the trends reported in (Kyprioti et al. 2020): though balancing between exploration and
905 exploitation might provide some utility in earlier DoE iterations, especially when the metamodel accuracy is
906 poor depending on the original DoE selection (Kyprioti et al. 2020), as this accuracy improves no such utility
907 can be identified. This is evident in the results presented here by the fact that B -IMSE_w outperforms all other
908 variant implementations. Comparing across the different formulations that attempt to balance between
909 exploration and exploitation, B^ρ -IMSE_w and MB -IMSE_w, the multi-objective formulation proposed in this study
910 (MB -IMSE_w) suffers from reduced performance compared to the baseline alternative (B^ρ -IMSE_w). Though
911 trends are heavily dependent on the type of bias interpolation function used (topic discussed later), there is an
912 undeniable performance reduction when the MB -IMSE_w formulation is utilized. This reduction might be
913 attributed to the choice for the promoted solution across the Pareto front, but alternative approaches that the
914 authors examined have not yielded better results. Despite its more natural exploration and exploitation balance
915 (no need to select a-priori an ρ) the reduction of performance for MB -IMSE_w is an important constraint for its
916 promotion as definite preferred solution over B^ρ -IMSE_w.

917 Comparing across the multi-objective DoE implementations for different bias interpolation functions [MB -
918 IMSE_w-(NN) and MB -IMSE_w-(E)], significant sensitivity is observed for the MB -IMSE_w formulation, much
919 higher to sensitivity observed for any other variant. As demonstrated earlier in Figure 7 the NN
920 implementation restricts the identification of a single candidate experiment within each Voronoi cell for the
921 batch selection which can be very restrictive choice. This is the reason the exponentially decaying interpolation
922 tends to outperform the NN interpolation by a significant margin in the majority of the case study examples.

923 Finally, the performance variability across the 30 trials, showcased through the boxplots in Figure 16,
924 allows us to investigate some additional trends. As also reported in (Kyprioti et al. 2020) the implementations

925 without the bias weight (IMSE and MSE) demonstrate significant variability in the results, clearly showcasing,
926 once more, the importance of introducing the bias weights in the DoE formulation. By comparison, the
927 variability of the performance across all other variants is small. Examining the trends for the advancements
928 introduced in this manuscript, we can observe a larger variability of A_d -IMSE_w when compared to A_c -IMSE_w,
929 as expected due to the addition of the adaptive λ selection within the DoE stochastic search implementation.
930 The exponential decay interpolation function leads to reduced variability over its Voronoi counterpart, again
931 as expected due to the discontinuous interpolation features of the latter, while the multi-objective
932 implementation shows similar performance as the other batch selection DoE variants, with the exception of
933 some outliers. This undesirable feature creates additional concerns for the promotion, at least at the current
934 stage, of this DoE formulation.

935 **Conclusions**

936 This paper investigated the adaptive design of experiments for Gaussian Process (GP) global
937 metamodeling applications. Formulation considered both the minimization of the predictive GP variance,
938 representing an exploration strategy, and the reduction of the GP bias obtained through cross validation,
939 representing an exploitation strategy. With respect to the GP variance, two alternative, popular
940 implementations were discussed, the integrated mean square error (IMSE_w) criterion, and the simplified
941 maximum square error without variance updating criterion (MSE_w). Two different advances were examined.
942 The primary one considered an IMSE approximation, reducing the computational burden to levels comparable
943 to MSE but offering the same DoE quality. This was accommodated through introduction of a decaying shape
944 function that describes the reduction of GP variance within a domain of influence for each new candidate
945 experiment. Two different variants were examined corresponding to an adaptive selection of the exponent
946 involved in the shape function definition (A_d -IMSE_w) or an a-priori selection (A_c -IMSE_w). The adaptive
947 selection is formulated by developing a framework for identification of a credible value of this exponent by
948 judicial comparisons between the exact and approximate IMSE_w results across the DoE iterations. The
949 secondary advancement introduced a multi-objective DoE selection (MB -IMSE_w) for identifying multiple
950 Pareto optimal experiments that balance exploration and exploitation objectives, replacing conventional

951 strategies that weight these objectives to promote a single DoE selection criterion. This formulation was
952 promoted for batch-selection of simulation experiments. After the initial Pareto-front identification, candidate
953 experiments within this front are chosen based on some desired optimality criterion, while an updating of the
954 GP variance after identification of each such experiment is suggested, to avoid the identification of close-
955 proximity experiments within the promoted batch.

956 The performance of the proposed DoE variants was illustrated across four case study examples, including
957 both analytic benchmark functions and earthquake engineering applications. Across all DoE variants, two
958 interpolation (smoothing) approaches were examined for accommodating the incorporation of bias weights:
959 nearest neighbor (NN) interpolation that has been promoted in past studies and an exponential decay kernel
960 smoothing introduced first here. The exponential decay provided more consistent performance, addressing
961 challenges associated with the discontinuities introduced through the NN implementation, though it did not
962 necessarily outperform it. For this reason, both remain appropriate candidate choices for future applications.
963 Considering the DoE variants, results showed clearly the benefits of the proposed IMSE approximation, with
964 both A_d -IMSE_w and A_c -IMSE_w outperforming MSE_w and providing similar accuracy as the IMSE_w, at
965 substantially reduced computational burden. Though A_c -IMSE_w was not substantially outperformed by A_d -
966 IMSE_w, the additional robustness offered by the latter and the dependence of an appropriate value for the
967 exponent involved in the shape function on the details of the application considered, promote the A_d -IMSE_w
968 implementation as the recommended variant, despite its higher computational cost. Similar benefits were not
969 illustrated for the secondary proposed advancement, with the multi-objective implementation showing reduced
970 performance and greater variability of the results compared to alternative variants for batch selection of
971 experiments. Despite its more natural exploration and exploitation balance, these characteristics mean that
972 further advancements are needed for this formulation to be promoted over the alternative ones.

973 Though, as discussed above, a range of options remain attractive candidates for future applications, the
974 recommended implementation is A_d -IMSE_w with an exponential decay kernel smoothing.

975

976 **Data Availability Statement**
977 The DoE formulations discussed in this paper can be implemented through quoFEM, an open-source research
978 software for uncertainty quantification (UQ) in natural hazard engineering, developed by NHERI SimCenter:
979 <https://simcenter.designsafe-ci.org/research-tools/quofem-application/>. Numerical codes for the DoE
980 optimization can be obtained from the corresponding author upon reasonable request.

981 **Acknowledgments**
982 This research was financially supported by the National Science Foundation under Grant CMMI- 2131111.
983 This support is gratefully acknowledged. Any opinions, findings, and conclusions or recommendations
984 expressed in this material are those of the authors and do not necessarily reflect the views of the National
985 Science Foundation.

986 **Conflict of Interest**
987 The authors declare that they have no conflict of interest.

988 **References**
989 Ankenman B, Nelson BL, Staum J (2008) Stochastic kriging for simulation metamodeling. 2008 Winter Simulation
990 Conference, Miami, FL, December 7-10, IEEE, p 362-370.
991 Asher MJ, Croke BF, Jakeman AJ, Peeters LJ (2015) A review of surrogate models and their application to groundwater
992 modeling. *Water Resour Res* 51(8):5957-5973.
993 Beck J, Guillas S (2016) Sequential design with mutual information for computer experiments (MICE): Emulation of a
994 tsunami model. *SIAM/ASA Journal on Uncertainty Quantification* 4(1):739-766.
995 Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is nearest neighbor meaningful?. International conference
996 on database theory, Berlin, Germany, Springer, p 217-235.
997 Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite
998 element analysis. *Prob Eng Mech* 25(2):183-197.
999 Bodenmann L, Reuland Y, Stojadinovic B (2021) Dynamic Updating of Building Loss Predictions Using Regional Risk
1000 Models and Conventional Post-Earthquake Data Sources. *Proceedings of the 31st European Safety and Reliability*
1001 Conference (ESREL 2021), Angers, France, September 19-23, Research Publishing Services.
1002 Byun J, Song J (2021) Generalized matrix-based Bayesian network for multi-state systems. *Reliab Eng Syst Saf*
1003 211:107468.
1004 Cole DA, Christianson RB, Gramacy RB (2021) Locally induced Gaussian processes for large-scale simulation
1005 experiments. *Statistics and Computing* 31(3):1-21.
1006 Contreras MT, Gironás J, Escauriaza C (2020) Forecasting flood hazards in real time: a surrogate model for
1007 hydrometeorological events in an Andean watershed. *Natural Hazards and Earth System Sciences* 20(12):3261-
1008 3277.
1009 Csató L, Opper M (2002) Sparse on-line Gaussian processes. *Neural Comput* 14(3):641-668.
1010 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE*
1011 *transactions on evolutionary computation* 6(2):182-197.
1012 Deierlein GG, Zsarnóczay A (2019) State-of-Art in Computational Simulation for Natural Hazards Engineering.
1013 doi:10.5281/zenodo.2579582.

1014 Deisenroth M, Ng JW (2015) Distributed gaussian processes. Proceedings of the 32nd International Conference on
 1015 Machine Learning, vol 37. , PMLR, p 1481-1490.

1016 Dixon L, Szegö GP (1978) Towards global optimisation, V2 edn. North-Holland, Amsterdam.

1017 Dubrule O (1983) Cross validation of kriging in a unique neighborhood. Journal of the International Association for
 1018 Mathematical Geology 15(6):687-699.

1019 Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. *Prog Aerospace Sci* 45(1-3):50-79.

1020 Fuhg JN, Fau A, Nackenhorst U (2021) State-of-the-art and comparative review of adaptive sampling methods for
 1021 kriging. *Archives of Computational Methods in Engineering* 28(4):2689-2747.

1022 Garud SS, Karimi IA, Kraft M (2017) Design of computer experiments: A review. *Comput Chem Eng* 106:71-95.

1023 Ginsbourger D (2014) Sequential design of computer experiments. Wiley StatsRef: Statistics Reference Online:1-9.

1024 Gramacy RB (2020) Surrogates: Gaussian process modeling, design, and optimization for the applied sciences, 1st
 1025 Edition edn. Chapman and Hall/CRC, New York.

1026 Gunantara N (2018) A review of multi-objective optimization: Methods and its applications. *Cogent Engineering*
 1027 5(1):1502242.

1028 Jain AK, Jianchang Mao, Mohiuddin KM (1996) Artificial neural networks: a tutorial. *MC* 29(3):31-44.
 doi:10.1109/2.485891.

1029 Jia G, Taflanidis AA (2013) Kriging metamodeling for approximation of high-dimensional wave and surge responses in
 1030 real-time storm/hurricane risk assessment. *Comput Methods Appl Mech Eng* 261:24-38.

1031 Jia G, Taflanidis AA (2014) Sample-based evaluation of global probabilistic sensitivity measures. *Comput Struct*
 1032 144:103-118.

1033 Jiang P, Shu L, Zhou Q, Zhou H, Shao X, Xu J (2015) A novel sequential exploration-exploitation sampling strategy for
 1034 global metamodeling. *IFAC-PapersOnLine* 48(28):532-537.

1035 Jin R, Chen W, Sudjianto A (2002) On sequential sampling for global metamodeling in engineering design. *Proceedings*
 1036 of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in
 1037 Engineering Conference. Volume 2: 28th Design Automation Conference, Montreal, Quebec, Canada., September
 1038 29–October 2, vol 36223., p 539-548.

1039 Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. *Journal of statistical planning
 1040 and inference* 26(2):131-148.

1041 Kanai K (1957) Semi-empirical formula for the seismic characteristics of the ground. 東京大學地震研究所彙報
 1042 (Bulletin of the Earthquake Research Institute, University of Tokyo) 35(2):309-325.

1043 Kim IY, De Weck OL (2005) Adaptive weighted-sum method for bi-objective optimization: Pareto front generation.
 1044 Structural and multidisciplinary optimization 29(2):149-158.

1045 Kim J, Song J (2020) Probability-Adaptive Kriging in n-Ball (PAK-Bn) for reliability analysis. *Struct Saf* 85:101924.

1046 Kleijnen JP (2009) Kriging metamodeling in simulation: A review. *Eur J Oper Res* 192(3):707-716.

1047 Kleijnen JP (2017) Regression and Kriging metamodels with their experimental designs in simulation: a review. *Eur J
 1048 Oper Res* 256(1):1-16.

1049 Kleijnen JP, Beers WV (2004) Application-driven sequential designs for simulation experiments: Kriging
 1050 metamodeling. *J Oper Res Soc* 55(8):876-883.

1051 Kleijnen JP, Van Beers WC (2022) Statistical tests for cross-validation of Kriging models. *INFORMS Journal on
 1052 Computing* 34(1):607-621.

1053 Koehler JR, Owen AB (1996) 9 Computer experiments. In: Ghosh S, Rao CR (eds) *Handbook of Statistics*, vol 13.
 1054 ,Elsevier Science & Technology, p 261-308.

1055 Krause A, Singh A, Guestrin C (2008) Near-optimal sensor placements in Gaussian processes: Theory, efficient
 1056 algorithms and empirical studies. *Journal of Machine Learning Research* 9(2):235-284.

1057 Kyprioti AP, Taflanidis AA, Nadal-Caraballo NC, Campbell M (2021) Storm hazard analysis over extended geospatial
 1058 grids utilizing surrogate models. *Coast Eng* 168:103855.

1059 Kyprioti AP, Zhang J, Taflanidis AA (2020) Adaptive design of experiments for global Kriging metamodeling through
 1060 cross-validation information. *Structural and Multidisciplinary Optimization* 62(3):1135-1157.

1061 Le Gratiet L, Cannamela C (2015) Cokriging-based sequential design strategies using fast cross-validation techniques
 1062 for multi-fidelity computer codes. *Technometrics* 57(3):418-427.

1063 Liu H, Cai J, Ong Y (2017) An adaptive sampling approach for Kriging metamodeling by maximizing expected
 1064 prediction error. *Comput Chem Eng* 106:171-182.

1065 Liu H, Ong Y, Cai J (2018) A survey of adaptive sampling for global metamodeling in support of simulation-based
 1066 complex engineering design. *Structural and Multidisciplinary Optimization* 57(1):393-416.

1067 Liu H, Ong Y, Shen X, Cai J (2020) When Gaussian process meets big data: A review of scalable GPs. *IEEE
 1068 transactions on neural networks and learning systems* 31(11):4405-4423.

1069

1070 Liu H, Xu S, Ma Y, Chen X, Wang X (2016) An adaptive Bayesian sequential sampling approach for global
 1071 metamodeling. *Journal of Mechanical Design* 138(1):011404.

1072 Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE - A Matlab Kriging Toolbox, Version
 1073 2.0 <http://www.imm.dtu.dk/pubdb/p.php?3213>.

1074 Lutes LD, Sarkani S (2004) Random Vibrations. Elsevier Science & Technology, Oxford.

1075 McBride K, Sundmacher K (2019) Overview of surrogate modeling in chemical process engineering. *Chemie Ingenieur
 1076 Technik* 91(3):228-239.

1077 McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in
 1078 the analysis of output from a computer code. *Technometrics* 42(1):55-61.

1079 Moustapha M, Marelli S, Sudret B (2022) Active learning for structural reliability: Survey, general framework and
 1080 benchmark. *Structural safety* 96(2):102174. doi:10.1016/j.strusafe.2021.102174.

1081 Page TJ (1984) Multivariate Statistics: A Vector Space Approach. *Journal of Marketing Research* 21(2):236.

1082 Pandita P, Tsilifis P, Awalgaoonkar NM, Bilonis I, Panchal J (2021) Surrogate-based sequential Bayesian experimental
 1083 design using non-stationary Gaussian Processes. *Comput Methods Appl Mech Eng* 385:114007.

1084 Parlett BN (1981) LINPACK Users' Guide. SIAM Review 23(1):126-128.

1085 Picheny V, Ginsbourger D, Roustant O, Haftka RT, Kim N (2010) Adaptive Designs of Experiments for Accurate
 1086 Approximation of a Target Region. *J Mech Des* 132(7). doi:10.1115/1.4001873.

1087 Prebeg P, Zanic V, Vazic B (2014) Application of a surrogate modeling to the ship structural design. *Ocean Eng*
 1088 84:259-272. doi:<https://doi.org/10.1016/j.oceaneng.2014.03.032>.

1089 Provost F, Jensen D, Oates T (1999) Efficient progressive sampling. *Conference on Knowledge Discovery in Data:
 1090 Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining*; 15-18
 1091 Aug. 1999 , ACM, p 23-32.

1092 Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. *The Journal of Machine
 1093 Learning Research* 11:3011-3015.

1094 Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. *Water Resour Res* 48(7).

1095 Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOptim: two R packages for the analysis of computer
 1096 experiments by kriging-based metamodeling and optimization. *Journal of statistical software* 51(1).
 doi:10.18637/jss.v051.i01.

1097 Sacks J, Schiller SB, Welch WJ (1989) Designs for computer experiments. *Technometrics* 31(1):41-47.

1098 Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. *Statistical science*
 1099 4(4):409-423.

1100 Stewart GW (1998) Matrix algorithms. SIAM, Philadelphia, PA.

1101 Strang G (2016) Introduction to linear algebra, Fifth edition edn. Wellesley-Cambridge Press, Wellesley, MA.

1102 Sundararajan S, Keerthi SS (2001) Predictive Approaches for Choosing Hyperparameters in Gaussian Processes. *Neural
 1103 Comput* 13(5):1103-1118.

1104 Tajimi H (1960) Statistical method of determining the maximum response of building structure during an earthquake.
 1105 Proc.of the 2nd WCEE 2:781-798.

1106 Vazquez E, Bect J (2011) Sequential search based on kriging: convergence analysis of some algorithms. *arXiv preprint
 1107 arXiv:1111.3866*.

1108 Welch WJ (1983) A mean squared error criterion for the design of experiments. *Biometrika* 70(1):205-213.

1109 Xu S, Liu H, Wang X, Jiang X (2014) A robust error-pursuing sequential sampling approach for global metamodeling
 1110 based on voronoi diagram and cross validation. *Journal of Mechanical Design* 136(7):071009.

1111 Zhang J, Taflanidis AA (2018) Adaptive kriging stochastic sampling and density approximation and its application to
 1112 rare-event estimation. *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
 1113 Engineering* 4(3):04018021.

1114 Zhang J, Taflanidis AA, Nadal-Caraballo NC, Melby JA, Diop F (2018) Advances in surrogate modeling for storm
 1115 surge prediction: storm selection and addressing characteristics related to climate change. *Nat Hazards*
 1116 94(3):1225-1253.

1117

1118

1119

1120 **Appendix A: Calibration and validation of Gaussian process**

1121 The three sets of unknown GP parameters $\Theta = \{\beta, \theta, \sigma^2\}$ can be selected using maximum likelihood
 1122 estimation (MLE). The MLE solution for the basis coefficients and process variance is provided, respectively,
 1123 by the closed-form solution (Lophaven et al. 2002, Sacks, Welch et al. 1989):

$$1124 \quad \beta^* = \beta^*(\mathbf{D}, \theta) = (\mathbf{F}(\mathbf{X})^T \mathbf{R}(\mathbf{X} | \theta)^{-1} \mathbf{F}(\mathbf{X}))^{-1} \mathbf{F}(\mathbf{X})^T \mathbf{R}(\mathbf{X} | \theta)^{-1} \mathbf{Z} \quad (41)$$

$$1125 \quad (\tilde{\sigma}^*(\mathbf{D}, \theta))^2 = \frac{(\mathbf{Z} - \mathbf{F}(\mathbf{X})^T \beta^*)^T \mathbf{R}(\mathbf{X} | \theta)^{-1} (\mathbf{Z} - \mathbf{F}(\mathbf{X})^T \beta^*)}{n} \quad (42)$$

1126 whereas for the hyper-parameters, the MLE selection corresponds to optimization:

$$1127 \quad \theta^*(\mathbf{D}) = \arg \min \left[\ln(|\mathbf{R}(\mathbf{X} | \theta)|) + n \ln((\tilde{\sigma}^*(\mathbf{D}, \theta))^2) \right] \quad (43)$$

1128 which can be numerically performed (Lophaven et al. 2002, Rasmussen and Nickisch 2010). Note that for
 1129 notational simplicity, $\beta^*(\mathbf{D}, \theta)$ is replaced by β^* in the remaining discussions..

1130 The predictive capabilities of the calibrated GP can be quantified using cross leave-one-out cross validation
 1131 (LOOCV) (Kyprioti et al. 2020, Fuhr et al. 2021, Kleijnen 2009), established by removing the i th simulation
 1132 from the training set, using the remaining set to estimate predictions for that specific simulation, and then
 1133 defining the leave-one-out (LOO) error as the difference between the exact and prediction response:

$$1134 \quad e_i^{cv} = \tilde{z}(\mathbf{x}_i | \mathbf{D}_{\sim i}, \theta) - z_i \quad (44)$$

1135 where $\mathbf{D}_{\sim i} = \{\mathbf{X}_{\sim i}, \mathbf{Z}_{\sim i}\}$ represents the training data without the i th simulation [remove the i th row from
 1136 matrices $\{\mathbf{X}, \mathbf{Z}\}$]. If the LOO predictions are established, as is customary, without re-calibration of the GP
 1137 parameters, closed-form solutions are readily available for e_i^{cv} , given by (Sundararajan and Keerthi 2001,
 1138 Dubrule 1983, Rasmussen and Nickisch 2010):

$$1139 \quad e_i^{cv} = \frac{[\mathbf{R}(\mathbf{X} | \theta)^{-1} (\mathbf{Z} - \mathbf{F}(\mathbf{X}) \beta^*)]_i}{[\mathbf{R}(\mathbf{X} | \theta)^{-1}]_{ii}} \quad (45)$$

1140 where $[\cdot]_{ii}$ denotes i th diagonal component in a matrix, and $[\cdot]_i$ denotes i th element of a vector. These closed-
 1141 form solutions greatly simplify LOOCV, avoiding the repeated matrix inversion operation to compute each
 1142 $\tilde{z}(\mathbf{x}_i | \mathbf{D}_{\sim i}, \theta)$, reducing the computational cost of the error evaluation to be $O(n^2)$ for a given $\mathbf{R}(\mathbf{X} | \theta)$. Once

1143 the LOOCV error is estimated, any desired validation metric can be utilized to assess the global metamodel
 1144 accuracy. In this study, the normalized root mean square error (NRMSE) is used, given by:

$$1145 \quad NRMSE_{cv} = \frac{\sqrt{\sum_{i=1}^n (e_i^{cv})^2 / n}}{\max_i \{z_i\} - \min_i \{z_i\}} \quad (46)$$

1146 where $\max_i \{z_i\}$ and $\min_i \{z_i\}$ denote the maximum and minimum values of the response dataset. When the
 1147 NRMSE is smaller than a desired tolerance level, the GP may be considered as well-constructed for global
 1148 metamodeling purposes.

1149 Appendix B: Computational details for variance estimation

1150 This Appendix discusses computational details for the variance estimation, including its updating when
 1151 new experiments are added. Specifically the focus is on the estimation of the normalized variance given by Eq.
 1152 (4), the only component of the variance that depends on \mathbf{x} , and therefore needs to be repeatedly estimated for
 1153 each examined input. Also in all discussions on numerical complexity the assumption that $n >> n_b$ is made,
 1154 expressing this complexity primarily as function of n .

1155 Starting with the variance estimation, the computationally intensive part, as discussed previously, is the
 1156 inversion of the correlation matrix $\mathbf{R}(\mathbf{X} | \boldsymbol{\theta})$, which has burden $O(n^3)$ (Strang 2016). Typically, this inversion
 1157 is replaced with operations that utilize the Cholesky decomposition for better numerical accuracy and stability.
 1158 To formalize these operations, let $\mathbf{L}(\mathbf{X} | \boldsymbol{\theta}) \in \mathbb{R}^{n \times n}$ be the lower triangular matrix satisfying the Cholesky
 1159 factorization $\mathbf{R}(\mathbf{X} | \boldsymbol{\theta}) = \mathbf{L}(\mathbf{X} | \boldsymbol{\theta})\mathbf{L}(\mathbf{X} | \boldsymbol{\theta})^T$. Note that performing inversion or Cholesky decomposition have
 1160 the same computational burden $O(n^3)$, and the operations based on the Cholesky decomposition are
 1161 introduced primarily for numerical stability. Using $\mathbf{L}(\mathbf{X} | \boldsymbol{\theta})$, Eq. (4), is expressed as (Roustant et al. 2012):

$$1162 \quad \underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) = 1 - \|\mathbf{v}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})\|_2^2 + \|\mathbf{M}_R(\mathbf{X} | \boldsymbol{\theta}) \setminus (\mathbf{M}(\mathbf{X} | \boldsymbol{\theta})^T \mathbf{v}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) - \mathbf{f}(\mathbf{x}))\|_2^2 \quad (47)$$

1163 where $\|\cdot\|_2$ is the vector two-norm, vector $\mathbf{v}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) \in \mathbb{R}^n$ and matrix $\mathbf{M}(\mathbf{X} | \boldsymbol{\theta}) \in \mathbb{R}^{n \times n_b}$ are given by
 1164 $\mathbf{v}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta}) = \mathbf{L}(\mathbf{X} | \boldsymbol{\theta}) \setminus \mathbf{r}(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$ and $\mathbf{M}(\mathbf{X} | \boldsymbol{\theta}) = \mathbf{L}(\mathbf{X} | \boldsymbol{\theta}) \setminus \mathbf{F}(\mathbf{X})$, respectively, with “ \setminus ” denoting inversion by
 1165 forward or backward substitution, and $\mathbf{M}_R(\mathbf{X} | \boldsymbol{\theta}) \in \mathbb{R}^{n_b \times n_b}$ is the upper triangular matrix originating from the

1166 economy size orthogonal triangular decomposition (also known as QR decomposition) of $\mathbf{M}(\mathbf{X}|\boldsymbol{\theta})$ [so that
 1167 $\mathbf{M}(\mathbf{X}|\boldsymbol{\theta}) = \mathbf{M}_Q(\mathbf{X}|\boldsymbol{\theta})\mathbf{M}_R(\mathbf{X}|\boldsymbol{\theta})$ with $\mathbf{M}_Q(\mathbf{X}|\boldsymbol{\theta}) \in \mathbb{R}^{n \times n_b}$ and $\mathbf{M}_R(\mathbf{X}|\boldsymbol{\theta})$ having the characteristics described
 1168 above]. The computational intensive components of the estimate in Eq. (47), corresponding to the
 1169 decompositions for estimation of primarily $\mathbf{L}(\mathbf{X}|\boldsymbol{\theta})$ [complexity $O(n^3)$] and secondarily $\mathbf{M}_R(\mathbf{X}|\boldsymbol{\theta})$
 1170 [complexity $O(n_b^2 n)$], are independent of \mathbf{x} and therefore need to be performed only once. Actually, both
 1171 quantities are readily available from the GP calibration (Roustant et al. 2012). Therefore, the estimation of Eq.
 1172 (47) for each new \mathbf{x} has small computational burden, as it only involves calculation of vector $\mathbf{v}(\mathbf{x}|\mathbf{X},\boldsymbol{\theta})$ and
 1173 expression $\mathbf{M}_R(\mathbf{X}|\boldsymbol{\theta}) \setminus (\mathbf{M}(\mathbf{X}|\boldsymbol{\theta})^T \mathbf{v}(\mathbf{x}|\mathbf{X},\boldsymbol{\theta}) - \mathbf{f}(\mathbf{x}))$, and the estimation of the two vector norms. This burden
 1174 is $O(n^2)$ overall for each examined \mathbf{x} (Roustant et al. 2012).

1175 Moving, further, to the calculation of the updated variance $\underline{\sigma}^2(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta})$ after the addition of \mathbf{x}_{new} in
 1176 the existing training set given by Eq. (11), the estimate of Eq. (47) is updated to be:

$$1177 \underline{\sigma}^2(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta}) = 1 - \|\mathbf{v}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta})\|_2^2 + \|\mathbf{M}_R(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta}) \setminus (\mathbf{M}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})^T \mathbf{v}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta}) - \mathbf{f}(\mathbf{x}))\|_2^2 \quad (48)$$

1178 where $\mathbf{v}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta}) = \mathbf{L}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta}) \setminus \mathbf{r}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta})$ and $\mathbf{M}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta}) = \mathbf{L}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta}) \setminus \mathbf{F}(\mathbf{X},\mathbf{x}_{new})$, with
 1179 $\mathbf{L}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})$ corresponding to the lower Cholesky factorization of $\mathbf{R}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})$ and $\mathbf{M}_R(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})$ to the
 1180 upper triangular matrix from the orthogonal triangular decomposition of $\mathbf{M}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})$, and the updated
 1181 correlation vector $\mathbf{r}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta})$, basis function matrix $\mathbf{F}(\mathbf{X},\mathbf{x}_{new})$ and correlation matrix $\mathbf{R}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})$ are
 1182 given, respectively, by Eqs. (8), (9) and (10). The computationally intensive component of this estimation is
 1183 the calculation of the Cholesky decomposition of $\mathbf{R}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta})$ which has complexity $O(n^3)$. This can be
 1184 simplified utilizing the readily available decomposition of $\mathbf{R}(\mathbf{X}|\boldsymbol{\theta})$ to be (Parlett 1981, Stewart 1998):

$$1185 \mathbf{L}(\mathbf{X},\mathbf{x}_{new}|\boldsymbol{\theta}) = \begin{bmatrix} \mathbf{L}(\mathbf{X}|\boldsymbol{\theta}) & \mathbf{0} \\ \mathbf{v}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta})^T & \sqrt{R(\mathbf{x}_{new},\mathbf{x}_{new}|\boldsymbol{\theta}) - \|\mathbf{v}(\mathbf{x}|\mathbf{X},\mathbf{x}_{new},\boldsymbol{\theta})\|_2^2} \end{bmatrix} \quad (49)$$

1186 which has computational complexity $O(n^2)$. This reduces the computational burden for estimation of the
 1187 updated predictive variance when a single experiment is added in the training set, to be $O(n^2)$ and $O(n_b^2 n)$ for

1188 estimating the independent from \mathbf{x} matrices, $\mathbf{L}(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta})$ and $\mathbf{M}_R(\mathbf{X}, \mathbf{x}_{new} | \boldsymbol{\theta})$, respectively, and then
 1189 additional $O(n^2)$, as discussed earlier, for each input \mathbf{x} for which this variance needs to be estimated.

1190 **Appendix C: Examining limiting cases for λ**

1191 This section further discusses some limiting cases for the behavior of the variance reduction approximation
 1192 prescribed by Eqs. (20) and (21). First, consider the case where all the previous selected experiments \mathbf{X} are in
 1193 a far distance from \mathbf{x} and \mathbf{x}_{new} , so that following condition is satisfied:

1194
$$\|\mathbf{x} - \mathbf{x}_{new}\| \ll \|\mathbf{x} - \mathbf{x}_i\|, \text{ for } \forall i = 0, \dots, n \quad (50)$$

1195 We can then approximate $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \approx \underline{\sigma}^2(\mathbf{x} | \mathbf{x}_{new}, \boldsymbol{\theta})$, indicating that as soon as \mathbf{x}_{new} is added it
 1196 dominates the variance estimation for \mathbf{x} . Since \mathbf{x} and \mathbf{x}_{new} are jointly Gaussian with correlation coefficient
 1197 $R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})$ the conditional variance is further calculated as:

1198
$$\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \mathbf{x}_{new}, \boldsymbol{\theta}) \approx \underline{\sigma}^2(\mathbf{x} | \mathbf{x}_{new}, \boldsymbol{\theta}) = \underline{\sigma}^2(\mathbf{x} | \boldsymbol{\theta}) (1 - R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})^2) \quad (51)$$

1199 where $\underline{\sigma}^2(\mathbf{x} | \boldsymbol{\theta})$ represents the prior variance at \mathbf{x} when \mathbf{x}_{new} is removed, i.e. ultimately corresponds to
 1200 $\underline{\sigma}^2(\mathbf{x} | \mathbf{X}, \boldsymbol{\theta})$ within the GP formulation. Comparing Eqs. (51) and (22), we obtain $A(\mathbf{x}, \mathbf{x}_{new} | \lambda) = R(\mathbf{x}, \mathbf{x}_{new} | \lambda)^2$
 1201 , which reduces to Eq. (21) with $\lambda = 2$.

1202 However, the condition in Eq. (50) is easily violated when the number of training samples increases. More
 1203 importantly, this condition is easily violated in higher dimensions for the input, since, as n_x increases, the
 1204 mutual distances between any pairs of the training data points \mathbf{X} , the candidate points \mathbf{x}_{new} , and examined \mathbf{x}
 1205 rapidly becomes indiscernible to each other (Beyer et al. 1999). Moreover, it can be easily shown that Eq. (51)
 1206 is an upper bound. If $R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})$ is replaced with $R(\mathbf{x}, \mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ in this equation, then formulation becomes
 1207 exact. But since \mathbf{x} , \mathbf{x}_{new} and \mathbf{X} are jointly Gaussian, it can be proven that $R(\mathbf{x}, \mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \leq R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})$
 1208 (Page 1984), implying that the relative impact of \mathbf{x}_{new} on \mathbf{x} will be reduced under presence of other close-
 1209 proximity training points, making Eq. (51) an upper bound. Note that $R(\mathbf{x}, \mathbf{x}_{new} | \lambda)^2 < A(\mathbf{x}, \mathbf{x}_{new} | \lambda)$ for $\lambda < 2$

1210 , indicating that in order to avoid further increasing the gap to $R(\mathbf{x}, \mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta})$ the exponent for $A(\mathbf{x}, \mathbf{x}_{new} | \lambda)$
1211 should be greater than 2. Additionally, this is showcasing that a variation of λ is expected as more experiments
1212 are added and the condition $R(\mathbf{x}, \mathbf{x}_{new} | \mathbf{X}, \boldsymbol{\theta}) \leq R(\mathbf{x}, \mathbf{x}_{new} | \boldsymbol{\theta})$ holds with larger margins, indicating a trend
1213 towards use of larger values of λ in such conditions. Note that an explicit dependence on the hyper-parameters
1214 exists in these arguments (defining correlation length scales), indicating an even more complex relationship to
1215 not only the training points \mathbf{X} , but also the GP features.

1216 **Figure Captions**

1217 Figure 1 Adaptive design of experiments workflow. Note that implementation also considers batch selection of
1218 experiments.

1219
1220 Figure 2 Illustration of components for variance and bias functions for a two-dimensional example.

1221
1222 Figure 3 Illustration of variance reduction approximation

1223
1224 Figure 4 Illustration of selection of objective function for calibration of λ

1225
1226 Figure 5 Workflow for the approximated IMSE algorithm (IMSE_w-SA)

1227
1228 Figure 6 Illustration of multi-objective DoE. Identification of Pareto-front and selection

1229
1230 Figure 7 Illustration of multi-objective DoE aspects for two different interpolation functions (NN: natural neighbor, E:
1231 exponential decay).

1232
1233 Figure 8 Workflow for the multi-objective DoE algorithm (IMSE-MB)

1234
1235 Figure 9 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants
1236 corresponding to sequential experiment selection using NN for bias interpolation function.

1237
1238 Figure 10 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants
1239 corresponding to sequential experiment selection using exponentially decaying bias interpolation function.

1240
1241 Figure 11 Acceptance rate of λ and overall efficiency of A_d -IMSE_w

1242
1243 Figure 12 Comparison of metamodel accuracy (average over 30 trials) for different values of n for A_c -IMSE_w and A_d -
1244 IMSE_w with different minimum performance thresholds using NN for bias interpolation function.

1245

1246

Figure 13 The averaged λ for A_d -IMSE_w (SDoF-KT example)

1247

1248

Figure 14 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants
1249 corresponding to batch (size of 5) experiment selection

1250

1251

Figure 15 Comparison of metamodel accuracy (average over 30 trials) for different values of n for selective DoE
1252 variants, emphasizing comparisons across the different bias interpolation functions.

1253

1254

Figure 16 Variability in the accuracy of the illustrated DoE methods across 30 independent trials.

1255