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Abstract

Gaussian processes (GPs) are a popular technique for global metamodeling applications. Their objective in
such settings is to establish an efficient and globally accurate approximation of the response surface of
computationally expensive simulation models. When developing such GPs, the design of (simulation)
experiments (DoE) plays an important role in reducing the required number of model runs for obtaining
accurate approximations. Sequential (adaptive) selection of experiments can provide significant advantages,
especially when the response surface is characterized by localized nonlinearities. Such adaptive DoE strategies
for global metamodeling applications typically focus on minimizing the predictive GP variance, representing
an exploration strategy, while recent developments have additionally considered the reduction of the GP bias
obtained through cross validation, representing an exploitation strategy. While significant focus has been
placed on the definition of appropriate adaptive DoE criteria, computational challenges still exist that limit the
widespread adoption of adaptive DoE techniques, for example, related to the additional computational demand
for identifying the optimal new experiment(s), or the necessity to establish proper schemes to combine
exploration and exploitation strategies. To address these specific challenges, this research investigates two new
adaptive DoE formulations. The first one focuses on the approximation of the popular integrated mean square
error (IMSE) DoE criterion. The computationally demanding GP predictive variance update (after addition of
each candidate experiment), required in the original IMSE formulation, is replaced by an approximation based
on the current predictive variance and the domain of influence that surrounds each new experiment. The

approximation is established through a parametric formulation that leverages the GP kernel to describe the
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aforementioned domain, with characteristics that are progressively calibrated across the GP training stages, to
minimize the discrepancy between the actual and the approximated IMSE. The second formulation establishes
a multi-criteria search for simultaneously identifying multiple Pareto optimal experiments that balance
exploration and exploitation objectives, replacing conventional strategies that establish a weighted

combination of these objectives to promote a single DoE selection criterion.

Keywords: Adaptive design of experiments (DoE), Global Gaussian process, Multi-objective optimization,

Leave-one-out cross-validation weights, Integrated mean square error (IMSE)

Introduction

The growing complexity of computational simulation models in the various engineering fields has
increased the need for efficient surrogate modeling techniques (Razavi et al. 2012, McBride and Sundmacher
2019, Forrester and Keane 2009). These models, also referenced as metamodels, can offer an efficient data
driven mapping between the input-output relationship of high-fidelity simulation models, formulated based on
an observation set, frequently referenced as experiments or training points. Different data-driven surrogate
modeling approaches exist, such as artificial neural networks (Jain et al. 1996), polynomial chaos expansion
(Blatman and Sudret 2010), and Bayesian networks (Byun and Song 2021), and among them, Gaussian process
(GP) metamodels, also referred to as Kriging in geostatistical contexts, have gained wide popularity for their
flexibility arising from their interpolative property as well as the ability to quantify the predictive variance of
the function estimates associated with the lack/abundance of training data (Rasmussen and Nickisch 2010,
Gramacy 2020, Sacks, Welch et al. 1989, Kleijnen 2017). Furthermore, past research efforts have shown that
GPs are relatively reliable compered to alternative formulations for a small to moderate size of training
samples, i.e., up to a few thousand, (Deisenroth and Ng 2015, Forrester and Keane 2009), while recent
advances in GP approaches, such as sparse training methods, are further pushing this limit to larger datasets
(Csato6 and Opper 2002, Liu et al. 2020).

It is widely acknowledged that one of the most critical aspects in the GP development (and for many other

surrogate modeling techniques) is the selection of the set of simulation experiments that serve as training
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points, a process formally known as design of experiments (DoE). More efficient DoE strategies can
accommodate development of accurate GPs using smaller number of training points, reducing the
computational burden for performing simulations of the high-fidelity model. Space-filling DoE strategies
perform well for many practical applications (McKay et al. 2000) by uniformly populating the domain of
interest. However, to further improve efficiency, the experiments can be selected progressively in stages,
leveraging in each new stage information provided by a GP metamodel that is developed using the experiments
selected from previous stages (Provost et al. 1999). Such an adaptive, or active learning, strategy involves
extra computations to find the optimal experiments as well as to perform the repeated GP parameter
calibrations (across the different stages), but can eventually lead to large reductions of the number of high-
fidelity model evaluations to achieve the same prediction accuracy, by adaptively identifying potential low
accuracy domains where addition of new experiments can maximize their utility (value). Depending on the
purpose for which the GP is trained, adaptive DoE strategies can be distinguished to application-oriented
(Kleijnen and Beers 2004, Moustapha et al. 2022, Zhang and Taflanidis 2018, Kim, J. and Song 2020), when
metamodel is intended to establish a specific task that indirectly defines a region of interest, or general-
purposed, when metamodel is intended to serve as a universal approximation of the original high-fidelity
model. The latter, which the focus of this paper lies on, is often referred to as global surrogate modeling and
the DoE for this class aims to identify experiments that most effectively minimize the average error across the
entire input-domain, without distinguishing any sub-domains of specialized interest (Liu et al. 2018, Kleijnen
2009, Pandita et al. 2021).

Most adaptive DoE approaches for global surrogate modeling applications focus on the GP prediction
variance, assuming that locating an experiment at the domain of high variance will accommodate better
exploration of the input domain, and ultimately reduce the variability of the metamodel estimates. Such
variance-based adaptive DoE strategies share similar objectives to non-adaptive, space-filling approaches, in
a way that they identify the experiment(s) that has furthest distance from the previously training points,
however, the measure of distance is defined differently to account for the length of correlation in each input

dimension (Picheny et al. 2010, Sacks, Welch et al. 1989, Welch 1983), leveraging the characteristics of the
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GP kernel in this definition. Furthermore, more advanced formulations, such as the integrated mean square
error (IMSE), discount the importance of experiments near the boundary of the input domain by considering
their influence only within the specific input domain of interest. IMSE is often preferable to alternative
variance-based DoE criteria, such as maximum mean squared error (MMSE) and mean squared error (MSE),
in terms of numerical stability, optimality and the way it tackles near-boundary experiments (Beck and Guillas
2016, Krause et al. 2008). However, its implementation is computationally demanding because it requires
integration over the domain of interest of the updated predictive variance, obtained by considering the addition
of each candidate new experiment (and involving inversion of the updated GP covariance matrix), whereas
simplified measures such as MSE (Jin et al. 2002) directly utilize the pre-update predictive variance without
involving any significant computations.

To supplement the exploration established through variance-based DoE approaches, strategies that enforce
exploitation principles in global surrogate modeling context can be additionally considered, which has shown
to be particularly beneficial for approximating functions with localized nonlinearities. A common approach
for achieving this objective is to define a bias measure by interpolating the GP cross-validation error (Liu et
al. 2016, Kyprioti et al. 2020, Jin et al. 2002), and incorporate this measure in the DoE through combination
with a variance-based exploration strategy, e.g., by weighted summation (Fuhg et al. 2021) or multiplication
(Kyprioti et al. 2020). Furthermore, recent research efforts have shown that, like many other adaptive search
algorithms, adaptive DoE strategies for global surrogate modeling can perform substantially better when the
tradeoff between the two aforementioned search objectives, exploration and exploitation, is carefully
considered (Garud et al. 2017, Liu et al. 2018, Fuhg et al. 2021). Unfortunately, existing efforts to accomplish
the latter typically rely on user-selected weighting coefficients and tuning parameters. Furthermore, the
computational challenges associated with variance-based exploration strategies (like IMSE) directly extend for
such implementations, creating additional limitations for their use in practice.

To address these challenges, this paper develops two new adaptive DoE strategies. The primary
contribution examines the approximation of the IMSE measure [or the weighted IMSE that extends IMSE to

consider bias measure-based exploitation (Kyprioti et al. 2020)], focusing on reduction of the computational
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burden for the IMSE estimation without lowering the quality of the identified experiments. The
computationally demanding updating of the variance field given new candidate experiments requiring, as
discussed above, inversion of the updated covariance matrices, is replaced by an approximation for the amount
of variance reduction around each candidate new experiments through the introduction of a decaying shape
function that describes its domain of influence. This approximation accommodates estimation of the reduction
of the (weighted) IMSE with very small computational effort, by integrating the (weighted) shape function.
The shape function approximation is established through the GP kernel and the introduction of an additional
adjustment parameter. Proper selection of this parameter is critical for the approximation accuracy, and a
progressive learning scheme is introduced to accommodate the selection, calculating the actual IMSE and
comparing it to the approximated one to choose the optimal adjustment parameter value. To achieve the desired
computational benefits, the implementation gradually switches to sole use of the IMSE approximation once
sufficient confidence for it is achieved.

The secondary contribution examines the adaptive DoE selection as a multi-objective optimization
problem, considering the variance (exploration) and bias (exploitation) criteria as separate objectives, and
identifying Pareto optimal experiments that establish a balance between them. The sorted solutions (Pareto
front) provide the batch selection of experiments, and are further truncated at a desired batch limit, for example
related to computational resources within a parallel computing environment. The desired final batch of
experiments is chosen based on the distance from the utopia point of the Pareto front, while also adopting an
updating of the Pareto front GP variance to avoid selecting experiments in close proximity to one another.
Through this implementation the two objectives are examined with no need to establish a preselected weighting
scheme between them, naturally balancing the exploitation and exploration without introducing additional
tuning parameters. Furthermore, the proposed method enables us to batch-select multiple experiments without
additional effort, accommodating a formulation that is naturally aligned with modern parallel simulation
computational environments.

The remaining of the paper is organized as follows. The next section provides a brief overview of GP

models with discussions focusing on computational complexity of the variance and bias estimation, while the
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section after that reviews adaptive DoE criteria. The following section introduces the approximation for the
variance update after addition of each new experiment, accommodating a computationally efficient IMSE
implementation, while in the section after that, the multi-criteria DoE scheme, that naturally balances between
exploration and exploitation objectives, is presented. Finally, the following section presents illustrative
examples to showcase the proposed methods, considering both benchmark functions as well as practical
problems from the domain of natural hazards engineering, for which there has been a renewed interest in global

surrogate modeling applications (Deierlein and Zsarnoczay 2019).

Overview of Gaussian Process (GP) regression

Let z=T(x) represent the high-fidelity (computationally expensive) simulator that is approximated through
the surrogate model, with x € R™ representing the n,-dimensional input and z € R the scalar response output.
The Gaussian process (GP) regression approximates F(x), as a GP realization utilizing a training set of
simulations from the high-fidelity model. Different GP variants exist (Rasmussen and Nickisch 2010), but
perhaps the most popular (Gramacy 2020, Kleijnen 2017), and the one adopted here, uses: (i) a mean function

corresponding to a linear regression, f(x)"p, where f(x) € R™ represents the n,-dimensional vector of basis
functions (for example, low order polynomials) and € R"™ the vector of regression coefficients; and (ii) a
stationary covariance function cov(x,x')= 62R(x,x’ | 9) where 67 is a constant representing the process
variance, and R(x,x' | 9) is the autocorrelation function between inputs x and x', having hyper-parameters

0 cR™, and frequently also referenced as GP correlation kernel. Examples of popular correlation functions
include radial basis, Matérn, or exponential functions (Rasmussen and Nickisch 2010), with hyper-parameters
representing the characteristic correlation length for each input dimension (dictating rate of correlation decay),
and R (x,x’ | 0) =R (d (x,x'| 9)) expressed as function of the normalized distance

X—x'

d(x,x'|0)= 0

(1)
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where |||| 1s some chosen vector norm, and vector division is defined elementwise herein.

The GP model has three sets of unknown parameters @ = {B,0,5°} that need to be identified using the

available training set. To formalize implementation, and all subsequent DoE discussions, assume that the

training set corresponds to the input-output pair of » simulations (also referenced as observations or training

points), {X,,z;;i=1,...,n}, and let us denote by X & R"" and Z € R" the corresponding input matrix and
output vector, with ith row associated with the ith simulation. Also let D= {X,Z} denote the input-output
observation set, and define the matrix of basis functions F(X) € R, whose ith row corresponds to f(x,)",
the correlation matrix for the database R(X|0) € R™" whose {i,j} element corresponds to R(x;,X;|0).

Note that the chosen notation emphasizes the dependence of all quantities on X [or D and 0] to better frame
the adaptive DoE schemes. Finally, let r(x|X,0) € R" define the correlation vector between an input x and
each training set component, with ith element of the vector corresponding to R(X,X, |0). The optimum values
of ® are commonly established using maximum likelihood estimation (MLE), a process detailed in Appendix
A. These values will be denoted as B, 0" (D), and (5 (D,0))*, with dependencies on D and 0 explicitly noted
for the latter two quantities (omitted for p* for brevity).
Given the observations D and the calibrated parameters ® , the GP approximates the response at an
arbitrary point x as Gaussian with mean and variance given, respectively, by (Sacks, Welch et al. 1989):
Z2(x|D,@) =f(x)' B’ +r(x| X,0) R(X|8) (Z—-F(X)B) )
o*(x|D,0) = (5"(D,0)) o* (x| X,0) 3)
where the normalized variance has been defined as:
o’ (x| X,0)=1-r(x|X,0)' R(X|0) 'r(x| X,0) +u(x| X,0)" (F(X)"R(X|0) 'F(X)) 'u(x|X,0) )
with u(x|X,0)=F(X)"R(X|0) 'r(x|X,0)—f(x) . Egs. (2) and (3) are also frequently referred to as

predictive mean and predictive variance, respectively. When purpose of the surrogate modeling is to establish

deterministic predictions, then the predictive mean of Eq. (2) is adopted as the response approximation [e.g.
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(Prebeg et al. 2014, Kyprioti et al. 2021, Contreras et al. 2020)], whereas when probabilistic predictions are
preferred, the full Gaussian distribution of the GP, combining Egs. (2) and (3), is utilized [e.g. (Kim, J. and
Song 2020, Bodenmann et al. 2021, Jia and Taflanidis 2013)]. Note that the normalized variance in Eq. (4)
does not depend on the response Z. This property motivates the introduction of adaptive design of experiments
because it allows us to foresee how much variance can be reduced by adding a new experiment X, into the
existing training set.

With respect to computational complexity, the numerically intensive component in Egs. (2) and (3) is the

inversion of the correlation matrix, R(X|0) which has complexity O(n*) but needs to be performed only once,
as it is independent of input x. Therefore, once R(X|0) is inverted for a calibrated GP, predictions for a new

input x can be established with negligible computational cost, providing an efficient surrogate model. For

numerical stability, the inversion of R(X|0) within the GP formulation is typically replaced by forward or

backward substitution operations utilizing its Cholesky factorization (Roustant et al. 2012, Lophaven et al.
2002). Appendix B discusses specifics in the context of estimation of the predictive variance, which is the task
that is required within the DoE formulation discussed in the next section.

Finally, the predictive capabilities of the calibrated GP can be quantified using cross validation statistics.
Typically, this is accomplished using leave-one-out cross validation (LOOCV) (Kyprioti et al. 2020, Fuhg et
al. 2021, Kleijnen 2009), with details provided in Appendix A. This entails estimation for each training point

of the leave-one-out (LOO) error ¢, corresponding to the predictions established for this specific point using

the remaining observations, excluding this specific point from the database. Once this error is estimated, any
desired validation metric can be utilized to assess the global metamodel accuracy. In this study, the normalized

root mean square error (NRMSE), denoted NRMSE_ and reviewed in Appendix A will be used as such metric.

Adaptive design of experiments (DoE) for global surrogate modeling

The sequential (adaptive) design of experiments (DoE) obtains the training points iteratively in stages: the

new experiment(s) are determined as a function of the previous experiments and the GP that is calibrated using

these experiments, with an objective to maximize the expected utility of the new experiment(s). Let X¢ C R™
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represent the domain set of interest for the metamodel development, and denote by x , each examined new

simulation input (feasible experiment). The adaptive DoE is formulated as an optimization for the selection of

the experiment that maximize a measure of information acquisition:

x*ew = arg max a(xm,) ®)

" XM,EX"
where 6(-) is called acquisition or merit function (Koehler and Owen 1996, Johnson et al. 1990). Eq. (5) can

be alternatively formulated using an equivalent minimization criterion

X =argmin®(x,, ) (6)

new d new
Xy €X

where ®@(*) is a measure that quantifies the remaining uncertainty (variance) after adding the new experiment

x, .. (Sacks, Welch et al. 1989). Throughout this paper, DoE objective functions without the bar notation ( ®

new

) represent those for the minimization problem whereas those with the bar (6 ) are for maximization problems.
The adaptive DoE requires, furthermore, convergence criteria to terminate iterations when the metamodel
performance, quantified for example using LOOCYV statistics, improves beyond a desired threshold, or when
the available computational budget is exceeded.

Figure 1 demonstrates this adaptive DoE procedure, examining also the formulation of batch selection of
experiments, discussed later. The computationally intensive steps within each iteration are: (i) the high-fidelity
simulation(s); (ii) the GP parameters calibration; and (iii) the adaptive DoE selection requiring an optimization
problem [Eq. (5) or (6)]. It is important to note that if the evaluation of the DoE objective function requires
involved computations, the selection of the next experiment itself becomes a non-trivial task in terms of total
computation demand. Of course, in most applications of interest, the computational burden associated with the
high-fidelity simulation model is substantially larger than the cost of the adaptive DoE selection, providing
value for implementation of advanced DoE schemes that can accommodate a reduction of high-fidelity
simulations to achieve the same level of metamodel accuracy. Still, reduction of the computational burden of
these DoE schemes is an important secondary objective, as long as the quality of the identified experiments is

not compromised (primary objective).
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A final remark is warranted about batch selection of experiments, something that can be particularly useful
when parallel computing environments are utilized for the high-fidelity simulations. Most of the existing DoE
methods, including those discussed in this paper, can accommodate a batch selection of multiple experiments
through appropriate small modifications. This is commonly done by selecting one experiments at a time using
the merit functions defined in Egs. (5) or (6), until a predetermined batch number of experiments is acquired
as shown in Figure 1. This one-at-a-time selection of experiments is suboptimal when compared to the
alternative of simultaneous selection of the entire batch, since the latter better incorporates the correlations
between the candidate experiments in assessing their expected total utility, but nevertheless, is very practical
and widely advocated (Ginsbourger 2014, Vazquez and Bect 2011). To assess the information infused in the
training set by each individual experiment, and ultimately avoid choosing close proximity experiments, the
merit function(s) should be approximately updated after each selection. As illustrated in Figure 1, since the
response at the location of the new experiment is not yet known, this is done without performing GP
recalibration. For example, the predictive variance, which is ingredient of most merit functions, depends only

on the training sample locations at each experiments [ X in Eq.(4)] and not on the response [ Z ] as long as 0

is known. Therefore, after adding a new experiment, this variance and the corresponding merit function can be

updated without evaluation of the high-fidelity model. In contrast, in a purely sequential approach, 0 needs

to be updated each time before selecting a new experiment.
Variance-based adaptive DoE

One of the widely used merit functions of adaptive DoE in global GP metamodeling is the integrated mean
squared error (IMSE), which seeks the experiment that minimizes the average updated variance within the

domain of interest (Sacks, Welch et al. 1989, Asher et al. 2015). The corresponding DoE objective function is:
Pyse (%0, | X.0) = [ w(0)0* (x| X,x,,.,0)dx ()

where w(x) is a weight function to prioritize any desired sub-domain within X* , and ¢ (x| X,x,_ ,0) is the

new?

updated normalized predictive variance after addition of x _, which is estimated as follows. Obtain first the

new ?

0) , basis function matrix F(X,x ) and correlation matrix

new? new

updated correlation vector r(x|X,x

10
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R(X,x,, |0),byadding arow and, when needed, a column into r(x|X,0), F(X) and R(X|0), respectively,
as:
r(x| X,0)
rx|X,x,, ,0)= ®)
R(Xnew’x | e)
F(X,x,.,)= ) ©)
el e,
R(X16) r(x|X,0)
RX)x,,, |0)= T (10)
r(x | X’ e) R(Xnew’xnew | 6)
Then ¢°(x|X,Xx,,,,0) is given by:
gz (X ‘ X’ XHEW ’6) = 1 - r(X ‘ X’ XHEW ’B)T R(X’ Xnew | e)_l r(x | X’ Xnew ,e) + (1 1)
u(X | X’ XHCW > e)T (F(X7 XHCW )T R(X7 XHEW | e)_l F(X’ XHCW ))_lu(x | X’ XHCW ’9)
with u(x|X,x,,,.0)=F(X,x,,, ) R(Xx,, |0) 'r(x|X,x,,,0)—f(x) . The efficient estimation of this

updated variance is discussed in Appendix B. Note that the IMSE criterion is commonly expressed with respect
to the variance of Eq. (3), which includes the process variance, but for illustration clarity the normalized
variance is used herein, since the process variance is independent of x. Also the weight function w(x) is
typically ignored in the IMSE formulation, with w(x)=1, though the representation of Eq. (7) is preferred here
as it accommodates a unified description with the formulation incorporating GP bias as weights, discussed in
the next section. For estimating the IMSE integral, efficient approximate formulations can be found in the
literature under some regularity conditions for the GP and the X* domain boundary (Ankenman et al. 2008,
Cole et al. 2021). In this study, Monte Carlo Integration (MCI) is preferred, since it can accommodate arbitrary

weight functions, correlation kernel shapes, and domains. Alternatively, Quasi-Monte Carlo could had been

=l,...,

approximation for the objective function:

q)lMSE (Xnew | X’ 0) ~ i Z W(X(q) )gz (X(q) | X’ Xm:w s 9) (12)

q q=I

11
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Based on the computational details presented in Appendix B, the computational cost for estimating

D 6x (X, | X,0) for each X, is O(n?) for updating quantities that are common across all MCI samples and

then additional O(n?) for each of the n, integration points, though parallel computations can reduce the burden

of the latter estimation. The computational workflow to identify the optimal x , will be discussed later on.

Beyond IMSE, other criteria can be established that involve some form of integration or maximization of
the updated variance within X? (Picheny et al. 2010, Sacks, Schiller et al. 1989). All these formulations
correspond to one-step-lookahead approaches, requiring the evaluation of the updated predictive variance
o’ (x| X,x

0) and estimation of some function involving it to express the metamodel accuracy. As shown

new?

above, the computational cost of these approaches is significant for each candidate experiments x_ that is

examined within the DoE optimization. To reduce this computational complexity, alternative formulations
have been examined (Ginsbourger 2014, Jin et al. 2002), with the most popular one adopting as merit function

the mean squared error (MSE) at the current training stage, leading to:

Ouse (X ) =w(x,, )o?(x

new new new | X’ 9) (13)
This objective represents a special case of maximum entropy criterion (Jin et al. 2002, Liu et al. 2017). The

MSE measure in Eq. (13) approximates the expected reduction of the error, corresponding, therefore, to an

objective function targeted for maximization. MSE simply involves estimation of the variance at x

establishing significant computational savings compared to IMSE. At the same time, it has two important
shortcomings: (i) it cannot guarantee optimality after adding each experiment [no variance updating]; (ii) it
does not consider a domain of influence of each experiment [no integration part]. The latter is manifested as
tendency to place experiments around boundary region, something frequently argued (Beck and Guillas 2016,
Krause et al. 2008) to represent an inefficient DoE scheme, especially if n, is large (relative proportion of
domain representing boundary increases). Therefore, in terms of the quality of the identified experiments, the
IMSE criterion is preferable to the MSE criterion for global metamodeling applications, despite its larger

computational burden. These characteristics motivate the developments established later in this manuscript,

12
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aiming to reduce the computational burden to levels similar to MSE while keeping the quality of new
experiments of IMSE.
Adaptive DoE with bias measure

Recent efforts have examined adaptive strategies that exploit the surrogate model response predictions to
self-identify important regions in the DoE, something expressed in global metamodeling applications by
utilizing the prediction bias (Xu et al. 2014, Le Gratiet and Cannamela 2015). The LOO error can be used to
quantify this bias and be leveraged to guide the selection of w(x), promoting exploitation strategies within the
global metamodeling DoE. Since the LOO error is only known for the discrete locations corresponding to the
training set, some form of interpolation (or kernel smoothing) needs to be introduced (Jin et al. 2002, Kyprioti
et al. 2020), providing a continuous approximation of the error as a function of x. Establishing such an
approximation for the squared error leads to:

" xx)(E")

> p(xx,)

where ¢ (x) is the LOO error approximation and y(X,X;) is the interpolation/smoothing function, expressing

@) = (14)

proximity between the error values at x and x, . In (Kyprioti et al. 2020) different such functions were explored

and the one promoted was the nearest neighbor (NN) interpolation

1 if xeV,

0 else

V(X,X,»)Z{ (15)

where V, represents a Voronoi cell associated with each training point x; and defined using the normalized
distance of Eq. (1), so thatV; :{x| d(x,x,[0)<d(x,x,]0),V j=i, (i,j: 1,...,n)} . An alternative choice
will be examined here, adopting an exponentially decaying smoothing function
y(x,%,) = exp(~d(x,x,0)*) (16)
Consideration of the LOO error leads to the weighted IMSE and MSE criteria, denoted as IMSE,, and

MSE,, herein. Adopting the formulation in (Kyprioti et al. 2020) this is established by choosing weight function

w(x) as

13
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w(x) =[(&" (%))’ 17)
in the formulations of Eq. (7) (for IMSE,) and Eq. (13) (for MSE,,), where p €[0,00) is a tuning parameter

that is used to control the balance between the bias and variance indicators (Kyprioti et al. 2020). Note that for

p— 0 , the aforementioned measures reduce to the classical IMSE and MSE measures, respectively.

Ultimately, these classical measures have only exploration attributes, whereas their weighted counterparts
combine both exploration and exploitation features. The balancing between these two features is established

through p whose selection is non-trivial (Kyprioti et al. 2020), something that motivates the multi-objective

DokE discussed later in this manuscript. Figure 2 illustrates some of the aforementioned concepts related to the
bias and variance adaptive DoE components using a two-dimensional cosine weighted Gaussian mixture
function. More details about this function are included in the illustrative examples section. Specifically, this
figure includes the original function [part (a)], as well as GP-based predictions established utilizing 21 training
points (depicted with red circles in some of the subplots): the predictive mean of Eq. (2) [part(b)]; the LOO
error shown in Eq. (45) (red circles in parts [c] and [d]) as well as the corresponding weight function w(x)
obtained using either the NN interpolation of Eq. (15) [part (¢)] or the exponentially decaying smoothing
function of Eq. (16) [part (d)]; the predictive variance of Eq. (4) [part (¢)], as well as its counterpart using the
bias weights [part (f)]. Comparison of parts (c) and (d) depicts the difference of the alternative approaches for
choosing bias weights: the NN interpolation provides a discontinuous (at the Voronoi cell boundaries)
weighting function, whereas the exponential decaying kernel smoothing accommodates a smoother function,
that, though, no longer interpolates the available LOO estimates. Comparison of parts (¢) and (f) shows clearly
how the suggested weights incorporate in the DoE bias information about the GP predictions, altering the
domains of importance within X”. Use of the predictive variance [part (e)] instead of its weighted counterpart
[part (f)] naively places importance in domains in which the established GP already has high accuracy (small

bias).

Optimization scheme for identification of new experiments
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steps for identification of each x

Optimization of Eq. (5) [or (6)] is known to have multiple local minima and for this reason a random search

approach is recommended for its solution (Kyprioti et al. 2020). For the IMSE,, this combines the following

s

denoted herein as IMSE,-SE (Sequential Exact) algorithm.

Step 0 [Initialization]: Given the GP training set X, correlation Kernel, R(x,x'|0), basis vector, f(x),
and hyper-parameters, 0, calculate correlation matrix, R(X|0), and basic function matrix, F(X), as well
as the lower Cholesky factorization of the former L(X|0) and matrix M,(X|0) related to the QR
decomposition of L™'(X|0)F(X) [see Appendix B for details]. If DoE incorporates bias information,

estimate the LOO error through Eq. (45) wusing, additionally, the response output Z and the MLE

regression vector B~ of Eq. (41). Note that many (perhaps all) of these quantities will be available from
the GP calibration stage. Choose interpolation function y(x,x;) for the weight estimation and, if needed,

P

Step 1 [Candidate experiments]: Generate n, candidate experiments X“"* = {x'? } following a

c=l,...,n,
uniform distribution in X .

Step 2 [(Optional) Preliminary screening of candidate experiments using MSE,]: For all X“"
evaluate ¢°(x') |X,0) utilizing Eq. (47) and w(x')) combining Eqs. (17) and (14). Retain only the

new new

n.=an, candidate experiments that correspond to the highest values of MSE,,

r r

Ouise (x| X,0) = w(x© )o’(x) |X,0), with a, being the desired percentage of candidate experiments,

new new new

e.g. 10%, that have larger weighted-variance values and so are more likely to correspond to the final

optimal solution.

Step 3 [Integration points]: Generate 7, samples {x'"'} 4-1..,, Tollowing a uniform distribution in X ¢
to be used for the MCIL. Estimate w(x'?’) for all these samples combining Egs. (17) and (14).

Step 4 [Calculation of objective function]|: For each candidate (or retained from Step 2) experiment,

define the updated basis function matrix F(X,x'?) ) as in Eq. (9) , and then estimate the updated Cholesky

new
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matrix L(X,x'" |0) using Eq. (49) and then the updated matrix M, (X,x'" |0) [see Appendix B for

new new

details]. Then for each of the integration points, calculate ¢*(x'? | X,x'?) @) using Eq. (48). Finally obtain

new?

the IMSE,, objective function @, (x| X,0)through MCI using Eq. (12).

new

Step 5 [Final selection]: Select as new experiment x, the one that provides the minimum value for

D, (x'9 | X,0) among the n, (or n,if Step 2 was performed) candidate experiments evaluated in Step

4.

Based on the previous discussions on computational complexity, the most computationally demanding step
of this process is Step 4, which requires updating of the variance and conducting MCI for each of the candidate
experiments considered. The prescreening of experiments in Step 2 accommodates a reduction of this burden,
as it removes candidate experiments that are not expected to correspond to the optimum, ignoring experiments
in sub-domains of X with low current prediction variability (Kyprioti et al. 2020). Since Step 2 utilized an
MSE-based objective function, its computational cost is minor. Of course the desire is to avoid impacting the
final solution, i.e. experiment identified being same as if Step 2 were not utilized, something that evidently

depends on the value of a, . In this paper a,=0.1 is used, as this value was shown to establish a reasonable
compromise between two conflicting objectives: efficiency (smaller a, desired) and robustness (larger a,

desired) (Zhang et al. 2018). For the MSE,,, the above optimization procedure is drastically simplified: only

Steps 1 and 2 need to be implemented, with a single experiment, n, =1, identified at Step 2.

For identifying batch experiments, after Step 5, the identified x  is augmented in X , the updated

new

5

0), basis function matrix F(X,x ) and correlation matrix R(X,x,

new? new new

correlation vector r(x| X, x |0) are

estimated [according to Egs. (8)-(10)], then the L(X,x__ |0) is updated according to Eq. (49), and the matrix

new

%

M,(X,x, |0) related to the QR decomposition of L™'(X,x, |0)F(X,x,, ) is estimated. After these

calculations, Steps 1-5 of the IMSE,,-SE algorithm are repeated to obtain the next experiment within the batch

selection.
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Approximation of integrated mean square error measure
Approximation of updated variance

This section proposes an approximation of the updated predictive variance ¢° (x| X,x ,0). Objective is

new?

to approximate ¢ (x|X,x,,,0) using information about the original variance ¢°(x | X,0) , avoiding therefore

new?

the requirement to update the GP characteristics for each x,,, examined. Though this approximation is

couched here within the IMSE/IMSE,, adaptive DoE formulation, it can be utilized within any setting that

requires use of ¢”(x|X,x_,0). Foundation of the approximation (Le Gratiet and Cannamela 2015) is the

new?

concept that when adding a new experient x _, there is a volume of influence where the prediction variance

new 2

is reduced, i.e. the reduction is a concentrated around the location of the point x _, and it decays as the distance

new

from x , increases. To formalize this concept, define the variance reduction as:

new

V,(x|X.x,,,.0) =0’ (x| X,0)— ¢’ (x| X.X,,.0) (18)

new?

Le Gratiet & Cannamela (2015) proposed the proportionality approximation:
2 =
fx L VaxIXox,,, 0)dx o’ (x,,, | X, e)gej (19)

where 6, is the hyper-paremeter in the covariance kernel associated with the correlation length of j-th input

| X,0) represents

new

7y
dimension, HH . corresponds to the volume of influence of the new experiment, and a’(x
j=1

the scale of variance reduction. Equivalently Eq. (19) may be viewed to represent an approximation of
Vd (X ‘ X7 X

0) that corresponds to a uniform reduction (no dependance on x) within a domaim of influence

new?

defined through representative lengths 6, in each input dimension and centered around x,,, for which the

variance reduction is ¢ (x| X,0) [i.e. the previous variance] after the addition of the new experiment. It

should be noted that the developments in Le Gratiet & Cannamela (2015) were couched within a multi-fidelity
modeling context, while the presentation of Eq. (19) is simplified to an equivalent single-fidelity

impementaiton. If used to approximate the IMSE criteria, the approximation of Eq. (19) drastically reduces

17



409

410

411
412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

the computaitonal burden, making it comparable to the computaitonal burden of the MSE DoE formulation

(only evaluation of ¢°(x, | X,0) needed). It has, though, two signifciant shortcomings: (i) since the volume

of influence is constant across the domain, it becomes exactly equivalent to the MSE measure unless some
boundary correction is employed; (ii) for better accomodating extension to the weighted measures (for example

IMSE,), an approximation of V,(x|X.,x,,,.0) is needed, instead of'its integral, and in this case, a non-uniform

new?
expression (as function of x) seems more appropriate (may accommodate higher accuracy), since the actual

V,(x1X,x,,,,0) has a strong dependance on x.

new?

To address these shortocomings, the variance reduction around the new experiment X is approximated to
be proportional to the original variance for each point x, (x| X,0) , and to a shape function that incorporates

the influence of x  onx, i.e.

new

V,(x]X,x 6)=g2(x|X,0)A(x,x | 1) (20)

new? new

where A(X,X,,, |4) a distance-decaying shape function centered at x , with hyper-parameter 4. The rate of

new
reduction is assumed be proportational to the that of the correlation kernel with 4 representing a flexible
exponent (selection discussed next), leading to

Ax,x | ) =R(x,x  |0) (21)

new new

Approximation of Eq. (20) using a shape function like the one in Eq. (21) greatly simplifies calculations since

the only computationally complex component is ¢”(x | X,0), which, once calculated, can be reused for all

x, _ examined. Using in the DoE formulation the approximation of the updated variance :

new

o’ (x1X,X,,,,0) = 0" (x| X,0)[1 - A(x,X,,, | )] =0 (x| X,0)[1 - R(X.x,,, 0)'] (22)

new? new

provides an easily computable approximate merit function. For example, for the IMSE, this provides the
approximation

Pl (%, | X,0) = [ w00 (x| X,0)[1 = R(X,X,,,, |0) Tdx (23)

new

which using the MCI setting examined previously in Eq. (12), can be estimated as
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450

451

452

453

454

D (X, | X,0) ~ iz w(x')e? (x| X,0)[1- R(x'",x,,,]0)"] (24)

q 9=1

Since the computaitonally expensive component of @} (x,. |X,0) in Eq. (24) [the ¢’ (x'”|X,0)

contribution] is same for all candidate experimente examined, use of this approximaiton reduces the
IMSE,/IMSE burden to levels similar to those of MSE,/MSE, which was the intended target. The
corresponding DoE formulations will be distinguished by a superscript *.

The remaining question is, how good is the established approximation and if it can create significant
vulnerabilities in erroneously identifying suboptimal new experiments? To provide an answer to this question,

let’s consider first the asymptotic case of A — oo, where A(x,x,  |A) becomes a Dirac delta function

new

d6(x—x,,,). The approximated volume of influence is then equivalent to o”(x

new new

| X,0) which makes the

approximated IMSE measure to be equivalent to the MSE. On the other hand, when 4 is zero, A(x,x,,, |4)=1

new

and the approximated volume of influence is ¢° (x| X,0) , therefore, is independent to x,,, . Performing IMSE

DoE using zero 4 becomes equivalent to a pure random sampling. Meanwhile, when 1= 2, the proposed
approximation of Eq. (22) is exact under the assumption that no other training point exists in close proximity

to x and x,  (correlation between X and either of these two points is numerically zero). A proof of this is

included in Appendix C, where it is additionally shown that values of A>2 are guaranteed to provide higher
accuracy approximations, and that as the number of experiments increases, larger values of 4 are expected to
yield higher accuracy. This discussion shows that, depending on the value of A, the quality of the

approximation of Eq. (22) will change, and that the appropriate value is impacted by the characteristics of the
problem, such as (as discussed in Appendix C) relative proximity to other training points, GP hyper-
parameters, and dimensionality of input. For this reason, rather than an a-priori selection, an adaptive selection

of Ais proposed here and integrated within the adaptive DoE process, while A > 2 is established as a lower

bound constraint. This adaptive selection, detailed in the next section, incorporates different mitigate strategies,

to avoid adoption of A values that might lead to identification of lower quality experiments.
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Figure 3 revisits the example shown in Figure 2 to illustrate some concepts related to the variance
approximation discussed here. In all subplots of this figure, contours of different functions are presented and,

across these subplots, the addition of two different experiments (i.e., two selections for x__ , denoted as Points

new ?

A or B) are examined to illustrate their respective impact on the variance reduction V,(x|X,x,,, ,0). Part (a)

of the figure presents contours for the weighted predictive variance [equivalent to part (f) in Figure 2]; part (b)

shows the shape function A(x,x, |4) (using A=2) for each of the candidate points; parts (c) and (d) show,

respectively, the exact and approximate variance reductions after adding point A, whereas parts € and (f)
replicate the presentation for point B. Comparing the quality of the approximation across the different
candidate points, is it evident that when the new experiment is located close to multiple of existing experiments
(Point B), the quality of the approximation is reduced. The contours for the actual variance reduction around
Point B show greater concentration around it, indicating that A>2 would have been a better option for the
approximation. These trends verify the previous discussions, illustrating that the optimal selection of A depends
on the distribution of the existing experiments, stressing the importance of an adaptive selection for it. It is
important to note, nevertheless, that the approximation in both instances (both points) examined in Figure 3
seems to be qualitatively consistent in terms of variation patterns, demonstrating the potential accuracy of the
variance approximation for guiding the DoE.

Adaptive selection of A

The adaptive selection of A is accommodated by comparing the actual @, (x,,, | X,0)and approximate

new

@} i (X,.,,, | X,0) merit functions for some initial DoE iterations, till confidence on the chosen 1 value is

ascertained. Inevitably, this requires calculation of the exact @, (x,,, | X,0) for these initial iterations. The

adaptive selection is couched within the IMSE,,-SE algorithm, and involves consideration of the following

issues/criteria:
(i) [Optimization] The optimization of A is repeated at each DoE iteration step when a credible value
has not yet been identified, or when a critical deviation in the A value is expected due to the increased

sample size.
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(i) [Sampling variability and running average| Differences of 1 across the iterations of the DoE need
to be considered, originating from the fact that the number of training points for defining X changes
or that a stochastic search is utilized in the experiment identification. Some weighted averaging across
the iterations should be established for the promoted A to address the stochastic search features,
whereas this averaging should give higher priority to recent iterations, to accommodate the natural
variation of A as more experiments are added.

(iii) [Objective function] Selection of an appropriate A at each iteration requires definition of an

|X,0) and @}, (x

appropriate objective function based on comparisons between @, (x [X,0)

. Target here is to promote the same optimal experiment within the DoE, and not necessarily match
the two merit functions. As such, the selection needs to focus on top rank candidate experiments. To
accommodate (ii), the focus cannot be solely on the best experiment — setting as objective to facilitate

only the same optimal x,,, using @}, (X,., | X,0) - since such an approach will lead to a lack of

robustness, with A optimally chosen only for the specific candidate samples utilized within the
stochastic search.

(iv) [Credibility check] Convergence to assess credibility of A requires criteria that examine both the
variability of the promoted A and, more importantly, the performance of the established
approximation. For the latter, similar issues as identified in (iii) need to be considered for enhanced
robustness.

(v) [Re-optimization] Even after convergence is achieved, the credibility of 4 needs to be re-evaluated
at some point, to account for the fact that the appropriate value of 1 is dependent, as explained earlier,
on the training point distribution and the GP characteristics. If reduced performance is identified, then

calibration needs to be repeated.

Note that topics (ii) and (v) are the primary measures protecting against the use of a A value that leads to
suboptimal experiments. All these topics are discussed next, before a comprehensive algorithm is presented in

the next section.
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Initially, the objective function for the selection of A at each iteration is discussed. For guiding this
selection we focus on some subset of the best performing experiments within candidate set

X(‘andi — <{X(c) }

newJ c=l,...,n,

of the IMSE,,-SE algorithm. Note that if Step 2 of the algorithm is implemented then the

subset is selected within the candidate set of the retained experiments with 7. replaced by #, in all subsequent
discussions. For the reasons explained in topic (iii) above, we are interested in not only matching the optimal

solution, but in obtaining a consistent correspondence between the actual @ . (x,,, | X,0) or approximate

D7 (X,.,, | X,0) criteria through a larger subset of them. This subset corresponds to the lowest p-percentile
values of each of the objective functions and includes a total of n, top-ranking candidate experiments, with

n, :[nc pJ and H representing the floor function. Let min™[.] denote the myth smallest value of the set

included within the brackets. Then, the subsets that includes the lowest p-percentile value of candidate

experiments according to @, (X, | X,0) corresponds to:

new

candi
X, =1{x,, €X | @y (X

P

new | X’ 9) S min”p [{(DIMSE (nge)w | X’e)}c:l,...,n(. }] (25)

The respective subset utilizing approximate objective function for a given A value is:
Xi ={X,n € b G | q)?MSE (X, | X,0) < min"’ [{q)fMSE (X(C) | X’O)}czl,m,n{, 11} (26)

new new

If the approximation @, (X,,,|X,0) yields consistent ranking of experiments as @, (X,,, |X,0),

new

which is the ideal scenario, then X and Xj} include identical experiments for any p value. The discrepancy

between the two sets needs to be quantified with respect to their performance for the actual objective function

D, (X,,, 1 X,0) , whereas to establish a comparison across the entire set, the corresponding empirical
cumulative distribution function (CDF) is utilized. For each of the sets, X, and Xj; , this CDF describes the

distribution of the actual objective function value @, (x,,, | X,0) within the set and is given, respectively,

new

by:

F@)=—t 3 1[0y (5,0, | X.0) <] @7)

n P Xuew€X,
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szu (p)= = Z Dy (X, [ X,0) < 9] (28)

)
P X €X),

where 1[.] is the indicator function, which is 1 if the quantity inside the brackets holds, else it is zero. Note

that F;' (¢) may be viewed as projection of the Xi set performance on the space of @, (x,,, |X,0),

new

whereas F, (¢) > Fp” (p) always holds since set X, by design includes the lowest possible objective function

values. The selection of 4 can be based on the minimization of the gap between the two CDFs:
* . Pmax
7 =argmin [ (F, ()~ F; (¢) o (29)

where ¢ . corresponds to the smallest @, (X,,, |X,0) value within set X, and ¢, to the largest

Do (X, | X,0) value within set Xi . Figure 4 illustrates these concepts. Note that optimization of Eq. (29)

can be performed by a discrete search, as will be detailed later.

As discussed in topic (ii) above, the optimal A values identified through Eq. (29) will have variability
across the DoE iterations, and some averaging needs to be performed to address the influence of the stochastic
search features, while also incorporating weights to give higher priority to recent estimates, to better capture
the underlying trends as the number of experiments increases. Let /. denote the optimal 4 value obtained at
i-th iteration, then using linearly decreasing weights within a window of L iterations, the weighted average

value of /A at k-th iteration is:

Ik — i:k—£+1 (30)
>
i=k—L+1
with weights given by:
i—(k—=1L)
= 31
7 7 (31

The A given by Eq. (30) represents the estimate for the variance approximation exponent at the current

DoE iteration. The quality of this approximation, to assess convergence according to topic (iv) above, is
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expressed through two different credibility criteria. The first one examines the coefficient of variation of /Tk

within the window L, given by:

(32)

If this coefficient of variation is below some target threshold ¢, then the estimate of 4 may be considered

conv

stable, indicating convergence. Convergence of 4 is not assessed till at least L estimates of it are available to

accommodate the weighting average calculation. The second credibility criterion focuses on the performance

of the approximated IMSE,, offered through /Tk Similarly to the definition of the objective function for
selection of A, the comparison is established across some subset of top-ranked candidate experiments. If the
top s-percentile experiments are utilized, corresponding to total of n, = [nch experiments, then the subsets of
interest X and Xf" are given by Egs. (25) and (26), respectively, using n, instead of n,. The performance of
Ik for assessing convergence examines how suboptimal the solutions within set Xf“ are compared to the
solutions in set X . The worst performance within each set is considered. The gap between the two sets, since

values in X are guaranteed to outperform values in Xff , is normalized by the average performance in set X

, leading to convergence criterion:

_ mea))(%\ [q)IMSE (Xnew | X’ 0)] - max[q)IMSE (Xnew | X’ 0)]
gO) == (33)
o Z (I)IMSE (Xnew |X’9)
ns X0 EX

When the performance criterion is below some target threshold ¢, then the estimate of 4 may be considered

to provide an accurate approximation of the actual objective function.

Once the criteria related to the quantities in Eqs. (32) and (33) are satisfied, convergence has been

established and the Ik value may be considered to provide a credible approximation to the IMSE,, estimation.
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As discussed in topic (v) above, the most appropriate value of 4 is expected to change across the DoE
iterations, and for this reason, the identification of an optimal A according to Eq. (29) and the estimation of

performance according to Eq. (33) for assessing convergence should be repeated after N, iterations. If 4 is no

longer assessed as credible, then calibration of 4 is repeated in each iteration till convergence is re-established.

Algorithm for adaptive selection of 1
Combining the concepts discussed in the previous section the DoE algorithm utilizing an adaptive
approximation for IMSE, is established. This algorithm will be denoted IMSE,-S4 (Sequential

Approximation) herein, and is summarized in Figure 5. A flag/counter iris used to assess convergence for the

value of 4, with initial value set equal to 0. Algorithm also requires selection of tuning parameters ¢

cony

8pef.'f

,L, N, ,s (or equivalently ny), p (or equivalently #,) for the adaptive 4 selection. Steps 0-2 of the algorithm are

identical to IMSE,,-SE presented earlier, while the remaining are modified as follows:

(q)}

Step 3.1 [MCI integration]: Generate n, samples {x following a uniform distribution in X

q=l,.m,
to be used for the MCI. Estimate w(x'?’) for all these samples combining Eqs. (17) and (14), and
calculate variance o’ (x'? | X,0) using Eq.(47).

Step 3.2 [Correlation function for candidate experiments and integration points]: For each candidate

(or retained from Step 2) experiment, estimate the correlation between it and each of the integration points,

R(x'”,x') | @), for the chosen GP kernel.

> T new

Step 4.1 [Calibrate 2]: If i, €[1,N,] then proceed to Step 4.5. Else if i, =0, perform Step 4 of the

original IMSE,-SE algorithm to estimate @, (x')) for each x'?’ , and then update the promoted value

of 1 as follows. Establish a range of candidate A values (with 2>2 as discussed earlier) and estimate

D7, (x)) for each x')

new new

of the candidate (or retained experiments) using Eq. (24). Note that the only

component impacted by 4 in this equation is R(x'’,x'?) |8)* , and so calculation even for large number
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of candidates 1 values can be efficiently performed. Use @, (x'")) and @}, (x'¢

new new

) to define sets X,

[Eq. (25)] and Xf) [Eq. (26)] (for each 1) and CDF approximations F,(¢) [Eq. (27)] and Fp)‘(go) [Eq.

(28)] (for each 1), and perform optimization of Eq. (29). The latter is established using a discrete search,

selecting the candidate /1 value that yields the smallest gap between F,(¢) and F[f (¢) . Denote the

identified / value as /, .
Step 4.2 [Moving average 4 estimate]: Calculate the moving average value of Ik using Eq. (30)
Step 4.3 [Assessing stability of 4 estimate]: Estimate the coefficient of variation cvf using Eq. (32). If

cvl >¢  then the estimate of / is not yet stable. Proceed to Step 5.

conv

Step 4.4 [Assessing quality of IMSE,, approximation]: Estimate @&SE (x')) for each x' of the

new new

candidate (or retained experiments) using Eq. (24). Use @, (x'?) (from Step 4.1) and (I)I%ASE (x'9) to

define the sets X [modified Eq. (25) for n,=n; ] and Xf* [Eq. (26) for n,=n,]. Estimate the indicator of

the quality of the IMSE,, approximation, g(/Tk) , using Eq. (33). If g(/T,() >¢ . then estimate of 1 is not

perf

credible; set i, =0. If g(/Tk) <e, . convergence to a credible /Tk has been established; set i, =1 and

perf
utilize Ik for the IMSE,, approximation that will be used in the next NV, DoE iterations. Proceed to Step
5.

Step 4.4 [IMSE,, approximation]: Using the /Tk identified as credible in the previous DoE iteration in
b

which the 1 calibration was updated, estimate @7 (x'")) for each x! of the candidate (or retained

new new

experiments) using Eq. (24). Set i, =i, +1 to keep track of the number of iterations since the previous

A calibration.
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Step S [Final selection] If Step 4.1 was performed, select as new experiment the one that provides the

minimum value for @, (x') ). Else, select as new experiment the one that provides the minimum value

new

A
for cI)IMSE (X(njv) °

Note that dependence on X,0 were omitted in the notations of @ ., and (DIIIQSE within the

IMSE 2
algorithm description for brevity. As also shown in Figure 5, the updated Step 4 has two alternative paths. If
convergence to a credible 4 value has not yet been established, or if the maximum number of steps Ny for the
use of convergent values are exceeded, then Steps 4.1-4.4 are performed, with Step 4.1 representing the only
computational demanding one within the IMSE,,-SA4 algorithm, since it requires the calculation of the exact
IMSE,,. Alternatively, the IMSE,, approximation is directly used in Step 4.5, adopting the previously converged
A value, providing a dramatic computational reduction, as discussed earlier, for the DoE. Note that if 1 is chosen
a priori, rather than being estimated adaptively, then Step 4 of the IMSE,-S4 algorithm would always

correspond to Step 4.5. The algorithm involves the following tuning parameters as summarized earlier: ¢

cony 2

=10%, ¢, =1%, L=10,

€,ur» Ly N, 5, p. The values used in the case studies discussed in this paper are ¢ erf

conv

N;=25, s=10% and p=5%, with additional constraints that value of 7, and n, correspond to at least 10 samples.
Only small sensitivity was identified to these parameter values in terms of performance, though, as will be
discussed in the illustrative examples section these parameters have an effect on convergence to a credible 1

and therefore on computational efficiency.

Adaptive DoE using multi-criteria search

The second advancement established in this paper for the adaptive DoE is multi-criteria search strategy
that established an alternative balance between the variance (exploration) and bias (exploitation) selection
criteria while simultaneously promoting a seamless identification of batch experiments. Foundation of the
strategy is to consider the bias and variance criteria as separate objectives and formulate a bi-objective DoE.
This problem does not necessarily have a single solution, and so the identification provides the Pareto optimal

experiments. Let @ (x, ) denote the merit function related to the GP variance and @, (x ) the merit

var new bias new
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function related to the GP bias and assume without a loss of generality that optimality is expressed with respect
to minimization. Note that both these functions have dependence on X and 0 but for notational simplicity this

dependence will not be explicitly denoted. The set of Pareto optimal experiments, denoted herein as X, is

obtained though the multi-objective optimization problem:

XPF = arg min{q)var (Xnew )’ q)bias (Xnew)} (34)

x,,(,wEXd
A candidate experiment is termed dominant and belongs in Pareto set X, if there is no experiment that
simultaneously improves both objectives. The representation of the set X, in the merit function space

{D,,.(x,,,),D,..(X,,)} corresponds to the Pareto front. An illustration is shown in Figure 6(b), The numerical

new bias new
details and computational complexity for the identification of the Pareto set through Eq. (34) will be discussed
later, when the overall multi-objective algorithm is discussed.

Though any bias and variance—based functions can be used in the bi-objective identification, the
discussions here are couched to utilizing the IMSE, given by Eq. (7), and LOOCYV squared error, given by Eq.
(14), leading to:

q) (X ) :cDIMSE (Xm:w | X’ 0) (35)

(Dbias (Xnew) = _(é"v (Xm»,w ))2 (36)
where, note, that for the IMSE function the weights w(x) do not incorporate any information for the metamodel

bias since this is explicitly considered in the ®_ (X, ) objective.

bias new

The set X, identified through Eq. (34) represents the candidate set for a batch selection of the next
experiments. The direct use of this entire set as new experiments is not recommended, though, for two reasons:

(1) first because the number of experiments in this set, denoted by N, herein, might be larger than the number

(x,,,) has not considered the

var new

of batch experiments desired, denoted N, herein; (ii) second because the @

simultaneous addition of all the new experiments, since it separately examined the impact on the GP variance
of each experiment. Issue (ii) is especially important. It means that Pareto set may contain experiments in

close-proximity to one another, each substantially benefiting the other(s) if/when added in the pool of available
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experiments, and making the addition of all of them potentially redundant. To address this vulnerability, while
also accommodating topic (i) above, a sequential search within the Pareto set is promoted: a single experiment
is chosen from this set, the GP variance is updated considering the addition of the new experiment, the variance-
based merit function for all remaining experiments in the Pareto set is adjusted based on this update, and then
the next experiment is identified. Unfortunately, a similar update cannot be established for the bias merit

function. To mathematically describe this recursive addition of experiments, we will herein denote by x/) the
experiment (member of X, ) identified in the jth iteration, by X/ the remaining Pareto set excluding all

experiments identified up to the jth iteration, by X’ the set of available experiments obtained by adding to X

the selected experiments up to the jth iteration, and by @'/ the updated variance-based objective using X’ .

For selecting the single experiment that best balances the two objectives at each iteration alternative criteria
exist (Kim, I. Y. and De Weck 2005, Gunantara 2018), with one of the most popular ones, and the one chosen
here, being the selection of the point with minimum distance to the Utopia point in the Pareto front. The latter
corresponds to the unattainable point beyond the Pareto front that yields the minimum of both objective
functions, as also shown in Figure 6(b). Establishing an appropriate normalization for each merit function with
respect to its scale within the Pareto front, the objective function for selecting the single Pareto optimal design
at the j+1 iteration is:

. . 2
) mi ) mi
che]xr (Xnew ) - lnx;’;: {chz/)r (Xnew )} cDbias (Xnew ) - lnx;; {cDbias (Xnew )}

: . : + .
maxx;;_ {(I)Eliu? (Xnew )} - mlnx;;‘_ {(Di;: (Xnew )} maxx;;_ {(Dbias (Xnew )} - mlnx;;_ {(Dbias (Xnew )}

where max, {.} and min_, {.} correspond to the maximum and minimum, respectively, of the quantity in
PF Pl

F

the brackets across the remaining Pareto set X, . The next experiment is identified by:

x() = argmin £ (x,,,) (38)

new
~j
Xnew EXpr

Once this experiment is identified, the updated GP variance o¢°(x|X’,x\/*" @) by the addition of this single

new experiment can be obtained by Eq. (11) and the efficient procedure discussed in Appendix B. Use of

o’ (x| X/,x*V @) then leads to the updated estimate of ®Y"’(x, ) for the next iteration.

new 2
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To accommodate the recursive identification, if the number of Pareto points is smaller than the target (

N,. < N,) then the Pareto set can be expanded by considering dominant designs of higher rank (Deb et al.

2002). This is established by identifying dominant designs among the remaining candidate experiments,
removing the ones already identified as belonging to the Pareto set.

Figure 7 revisits the example used previously in Figure 2 and illustrates aspects of the multi-objective
DoE for selection of a batch of 5 experiments, focusing on how the specifics of the bias interpolation approach
affect the formulation. The two different options for defining w(x) discussed previously are examined, the NN
interpolation given by Eq. (15) and the exponential decay kernel smoothing given by Eq. (16), abbreviated as
E in this figure. The dominated solutions, the identified Pareto front and the batch of 5 experiments are shown
in the objective function space in parts (a) and (b) of this figure for the NN and E implementations, respectively.

Part (¢) and (d) show the contours of ®@,. (x) as well as the Pareto solutions and chosen batch of experiments,

bias
for the same cases. Note that for NN interpolation, these contours represent, equivalently, the Voronoi cells
for the training points. The NN interpolation leads to identification of a single dominant solution in each of the
Voronoi cells, leading to a sparsely populated Pareto front and, ultimately, to a final batch of experiments that
is more scattered across the entire domain, and is not concentrated in regions with higher bias (compare to the
accuracy of the GP predictions depicted in Figure 2 earlier). Equivalently, this means that the DoE will place
greater emphasis on exploration rather than exploitation. In contrast, the kernel smoothing using the
exponential decay function identifies a larger number of dominant solutions, clustered at high bias and/or
variance locations, as evident in part (d) of Figure 7. The final batch of experiments are located close to
domains with higher bias, depicting a stronger exploitation tendency.

Finally, the multi-objective DoE using IMSE as variance measure, is implemented through the following
algorithm denoted herein as IMSE-MB (Multi-objective Batch). To circumvent the well-known higher
computational burden associated with solving multi-objective optimization problems, algorithm adopts a

random search approach, similar to the one established for IMSE,,-SE. Specifically, Steps 0-1 and 3 of the
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algorithm are identical to IMSE,,-SE, while Step 2 is removed since the behavior across the entire Pareto set is

warranted. The remaining steps are modified as follows:

Step 4.1 [Calculation of variance-based merit function]: For each candidate experiment perform Step

4 of the original IMSE,-SE utilizing w(x) =1 to obtain @, (x' |X,0). Set this equal to variance

new

objective ®° (x°)) and set experiment counter j=0.

var new

Step 4.2 [Calculation of bias objective function]: For each candidate estimate (¢ (x))* using Eq.

(x')) as in Eq. (36).

bias new

(14) to obtain corresponding bias objective @
Step 4.3 [Pareto set selection]: Identify the Pareto set X,, of dominant designs within X“"* using

merit functions from Steps 4.1. and 4.2 . If number of experiments in this set Npr is not sufficient (does

not exceed target Ns) expand selection to consider higher rank dominance till X, includes a sufficient
number of experiments. This defined ultimately set X

Step 5.1 [Selection of next experiment]: For all points x,, inset X,/ estimate distance from utopia

W

(x,,) and ®/ (x'9) . Select the next

bias new var new

point F{”(x,.) using Eq. (37) and merit functions @

experiment x/'" though Eq. (38).

Step 5.2 [Stopping criteria for batch selection]: If j+1=Nj stop, else proceed to Step 5.3.

Step 5.3 [Updating of sets and matrices]: Remove x'/*" from X/ to obtain X,/ and add it to X’

new

to obtain X’ .Use X=X'" and x __ =xY"" in Egs. (8)-(10) and Eq. (49) to obtain, respectively, the

updated correlation vector r(x|X’"",0), basis function matrix F(X’*"), correlation matrix R(X’""|0)
and Cholesky factorization L(X’"'|0) and estimate matrix M, (X’""|0) related to the QR
decomposition of L™ (X" |9)F(X/™").

Step 5.4 [Updating of variance based merit function]: Use the updated quantities from Step 5.3 to

calculate o° (x| X’*',x') ,0) using Eq. (48) for each of the integration points and each x© in X/

> Tnew? new
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. Using this variance obtain the IMSE objective function @ (x| X’*',0) through MCI using Eq.

(12) with . Set this equal to variance objective and set experiment counter j=j+1. Proceed to Step 5.1.
The algorithm is summarized in Figure 8. Note that since the updating and search in Step 5 is constrained
always within the previously retained Pareto set , the computational demanding step of this algorithm is the
original estimation of IMSE for candidate experiments (Step 4.1). This reduces the overall computational

burden to be similar to the single-objective optimization implementations discussed earlier.

Hlustrative examples
Case study examples description

The proposed DoE advancements from the previous two sections are showcased using four numerical
examples. The input dimension in these examples ranges from n,=2 to n,=9, and each example poses different
challenges with respect to the nonlinearity of the input-to-output mapping. Three of the examples are taken
directly from (Kyprioti et al. 2020), while the other one is first introduced here. The first two examples
correspond to analytic benchmark functions: the two-dimensional cosine weighted Gaussian mixture function
(n,=2) inspired by (Jiang et al. 2015), referenced herein as ‘“WtGMix’, and the six-dimensional Harman
function (n,=6) proposed by (Dixon and Szegd 1978), referenced herein as ‘Hartman 6’. Details for these
examples and for the input domain considered X” are included in (Kyprioti et al. 2020). Note that the WtGMix
corresponds to the function that was used earlier (Figures 2, 3, and 7), to illustrate some of the DoE concepts.
The remaining two examples represent practical applications from the earthquake engineering field. The first
one is four-dimensional function (n,=4) corresponding to the standard deviation of the normalized base shear
of a single degree-of-freedom (SDoF) oscillator exposed to stationary stochastic seismic excitation modeled
by the Kanai-Tajimi power spectrum (Kanai 1957, Tajimi 1960). The output function in this case is expressed

as (Lutes and Sarkani 2004):

do (39)

N

cmals, [ 1480/ o,) (/)
Yl @lo)) 4 0l o,) (1-(@/0,)) 402 0 0)
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where the four input parameters represent the frequency (w;) and damping ({s) of the SDoF oscillator, and the
frequency (w,) and damping ({;) of the Kanai-Tajimi spectrum used to describe the earthquake acceleration

input. The range examined for these values, defining XY, is o, €[2,6]r rad/sec , ¢, €[0.1,0.6] ,

o, €[1,13.5]r rad/sec and {, €[0.02,0.06] . This example will be referenced herein as ‘SDoF-KT’. The last

example, termed ‘Isolation’, corresponds to the displacement of the base of a three-story base isolated structure
exposed to non-stationary near-fault seismic excitation (Kyprioti et al. 2020). Numerical details for the isolated
structure and the excitation are included in (Jia and Taflanidis 2014). This case corresponds to a to nine-
dimensional example (7,=9) with inputs including five structural and isolation parameters and four additional
parameters related to the earthquake excitation. Details for the definition of the input, including ranges
considered, are included in (Kyprioti et al. 2020).
Surrogate modeling and DoFE details

For the GP, a constant basis function f{x)=[1] and a generalized exponential correlation function (Kyprioti
et al. 2020, Rasmussen and Nickisch 2010) are chosen, while hyper-parameter optimization is performed using
maximum likelihood estimation. The metamodel accuracy is evaluated using a test-sample validation. This is
preferred to the cross-validation setting discussed earlier, as it avoids dependence of the DoE validation on the
specific set of simulation experiments chosen (Kleijnen and Van Beers 2022, Zhang and Taflanidis 2018).
Since objective of the validation is to compare across the different DoE strategies, the test-sample
implementation is necessary for accommodating consistency. Using a set of &, points uniformly distributed in

X, the normalized root mean squared error validation metric in this case is given by:

) D i LR

test

40
max, {z*’} —min, {z*} “0)

where {x*),z";k =1,...,N,} represents the input-output test-sample set, max, {z*’} and min, {z'} denote

the maximum and minimum values of the response test samples, and the value of V; is chosen here as 5000.
All examined DoE strategies start with #;.; experiments, obtained through Latin Hypercube space-filing

sampling in X“, and sequentially add experiments, either one at-a-time or in batches of 1, experiments, till the
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desired number of experiments 7y, is reached. Following the recommendations in (Kyprioti et al. 2020), the
initial n;,;; and final ng, experiment sizes are chosen so that the metamodel starts with low accuracy and becomes
highly accurate at the end. The details for each example are: WtGMix ny= 15 and = 125, SDoF-KT #ini—=
30 and ns= 220, Hartman6 n;,;= 30 and ns,= 200, Isolation 7= 25 and np= 250. Detailed rational for these
choices is included in (Kyprioti et al. 2020).

The N, for the MCI is selected to establish a small coefficient of variation for each example examined,
chosen as N,=5000 for all problems, while the number of candidate experiments 7. is chosen proportional to
the dimensionality of each example, with goal to balance between computational efficiency and adequate
exploration of the X* domain. The details for each example are: WtMixG n.~= 1000, SDoF-KT 1.=3000,
Hartman6 n.= 5000, and Isolation n.~= 7000. The DoE implementation is repeated 30 times for each case, using
different samples for the initialization and the DoE identification. Results will be reported typically for the
average DoE accuracy across these trials, though some variability trends will be also briefly discussed. For
each trial, the same samples have been utilized across all DoE strategies to facilitate a consistent comparison.

The DoE variants examined are reviewed in Table 1. These correspond to: (i) the standard IMSE and MSE
implementations; (ii) previous formulations to incorporate bias weights (Kyprioti et al. 2020) that serve as the
foundation of the proposed here advances,; (iii) as well as the advanced implementations established in this
manuscript. For accommodating the incorporation of the bias two different interpolation functions are
considered, the NN interpolation given by Eq. (15) and the exponential decay kernel smoothing given by Eq.
(16). These will be distinguished, respectively, by abbreviation NN and E, and will be denoted in parenthesis
after the name of the DoE variant, when needed. For example, IMSE,-(V) denotes the IMSE,, implementation
with bias estimated using NN interpolation (i.e., Voronoi tessellation) and IMSE,~(E) denotes the alternative
implementation using exponential decay smoothing. For IMSE,, implementation for batch selection of
experiments is also considered. In this case the adjustment using different p values to balance between
exploration and exploitation is also examined, to accommodate a comparison to the multi-criteria DoE
implementation. Following the recommendations in (Kyprioti et al. 2020) the value of p is modified across

each batch of 5 experiments, with the first three corresponding to p=1 (combination of exploration and
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exploitation) and the remaining two to p=0 (pure exploration). The DoE variants corresponding to batch IMSE,,
will be denoted as B-IMSE,, and B’-IMSE,, for the implementation without or with the p adjustments,
respectively. For the IMSE, approximation employed through the IMSE,-S4 algorithm, two different
formulations are examined, corresponding to the adaptive selection of 4 or the use of a default value of /= 2n,.
This default value for A has been chosen after examining performance for multiple case studies, including the
ones presented in this manuscript. These variants will be denoted as A4, IMSE,, and 4.-IMSE,, for the
implementations with and without adaptive selection of A, respectively. Finally, the multi-objective IMSE,,
implementation, employed through the IMSE,,-MB algorithm, will be denoted as MB-IMSE,.

Note that variants (MSE,,, IMSE,, B-IMSE,, and B’-IMSE,) represent the aforementioned previously
established formulations (Kyprioti et al. 2020), and should serve as the baseline reference against which the
efficiency of the proposed here advances should be compared to. Within this context, the non-weighted variants
(MSE, IMSE) represent classical baseline approaches for assessing the benefits of incorporating the bias
weights.

Results and discussion

Results are separately presented for the DoE variants corresponding to sequential experiment selection and
batch experiment selection. These two sets of results accommodate, respectively, evaluation of the proposed
advancements related to the IMSE,, approximation and the multi-criteria DoE formulation. Results are
primarily presented through the variation of the metamodel accuracy with respect to the number of experiments
n. Emphasis is placed on the average performance across the 30 trials.

Figures 9 and 10 present results for the variants corresponding to sequential experiment selection for the
two different choices for the bias interpolation function, (NN) in Figure 9 and (E) in Figure 10. Figure 11
presents details for the computational savings established through the 4,-IMSE,, formulation, defined as the
average (across the 30 trials) acceptance ratio of the A approximation, i.e. the frequency of omitting the exact
IMSE,, evaluation in the IMSE,,-S4 algorithm (omitting Step 4.1). This is presented as function of the DoE
iteration, which is equal to n-n,; (total experiments minus initial experiments). The overall efficiency,

corresponding to the mean value of the efficiency across the DoE iterations is also reported in this figure. The
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first 10 iterations are omitted in estimating the overall efficiency, since convergence to a credible 4 is not
possible before that point based on the tuning parameter selections presented previously. Figure 12 investigates

further the impact of tuning parameters for the for A,-IMSE,, performance, Figure 13 shows the variation of
the average (over the 30 trials) value of J« for the SDOF-KT example. Figure 14 presents results for the DoE

variants corresponding to batch-selection of experiments. Figure 15 facilitates a comparison of the different
interpolation functions, gathering some of the results presented earlier (in Figures 9, 10 and 14) in one figure.
Finally, the variability of the DoE performance across the 30 trials is investigated in Figure 16, showing
boxplots of the metamodel accuracy when 7z, has been reached, for specific DoE variants of interest.

Comparing first the standard implementations of MSE, MSE,, IMSE, and IMSE,, in Figure 9 and Figure
10, earlier discussions and past literature results are easily verified: IMSE outperforms MSE, in some
applications by a very large margin, whereas inclusion of bias weight can improve performance. The benefit
of introducing the bias weight is more evident in the examples with significant localized nonlinearities
(WtGMix and Hartman6) (Kyprioti et al. 2020). One exception is Figure 9(c) for which IMSE,, and IMSE have
similar performance. This is possibly due to the mild local nonlinearity of the SDoF-KT application.

The comparisons across Figures 9 and 10 showcase clearly the preference of IMSE-based DoE schemes
over the MSE-based ones. As also discussed earlier, this performance improvement comes at the expense of a
larger computational burden. The approximations for IMSE establish a balance between the DoE quality of
IMSE-based schemes (Figures 9 and 10) and the computational efficiency of MSE-based schemes (Figure 11).
Both A+~IMSE,, and 4.-IMSE,, outperform the baseline MSE,, by a significant margin and provide similar DoE
quality as IMSE. Identical patterns hold for the implementations without the bias weight, i.e. comparing A44-
IMSE and A IMSE to MSE in these figures, though the emphasis in the discussions herein is on the bias-
weighted schemes since they represent the preferred adaptive DoE formulation.

Especially the improvement of A.IMSE, over MSE, is very noteworthy since, recall, these DoE
formulations have practically identical computational burden. This clearly showcases the advantages the
proposed 4.-IMSE,, scheme can offer over existing alternative formulations. As expected, the adaptive 4

selection (44,-IMSE,) outperforms the formulation with a prescribed A (4.-IMSE,), in some instances with a
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noticeable margin. This comes of course at the expense of a larger computational burden, as shown in Figure
11. Results in this figure show that in earlier DoE iterations the value of A is not deemed credible (acceptance
ratio of the A approximation has lower values) whereas even in later iterations re-evaluation of the
approximation quality or divergence from a credible 4 are observed (acceptance ratio of the A approximation
lower than 1). Recall in all such instances estimation of the exact IMSE,, estimation is warranted. Details are,
as expected, different across the case study examples, with computational savings in range of 0.45~0.90. This
corresponds to a significant improvement (10~55% of the original computations needed only) when compared
to the IMSE,, formulation, but do represent an additional computational burden when compared against the 4.-
IMSE,, formulation which tends to give, as mentioned earlier, similar performance. Note than in some (few)
instances A IMSE,, even outperforms A;,-IMSE,,. Though this is not expected behavior, it may occur due to
overfitting, since the adaptive selection for 4 is the optimal for the current DoE iteration but is implemented
for future iterations, and is not guaranteed to be necessarily optimal for those.

Of course, it needs to be emphasized that 4,-IMSE,, enjoys significant robustness over A.-IMSE,,, since,
as discussed earlier, the promoted choice of 4=2#, is not guaranteed to be near-optimal for every application,
and can potentially lead to vulnerabilities within the DoE by promoting low quality experiments. Though to
the experience of the authors, this selection has performed very well in all examples we have tested so far, it
might be a poor choice for some other applications. This robustness advantage that 4,-IMSE, offers is
significant. This discussion shows that, despite the similar performance of 4;-IMSE,, and 4.-IMSE,, and the
higher computational burden of the former, the 4,-IMSE,, is the recommended choice, with a modification,
though, of its tuning parameters to promote higher computational efficiency (reduce tolerances for
convergence). This is further investigated in Figure 12 which shows results for three different target threshold

€,,s for the convergence criterion of Eq. (33), which represents the most influential parameter impacting the

A4 IMSE,, convergence. The resultant accuracy is only marginally impacted by the selection of ¢ but the

perf ?

impact on computational efficiency is significant: the mean efficiency for ¢ . threshold values of 5% and

perf

10% are increased, respectively, to 0.87 and 0.91 for WtGMizx, 0.95 and 0.95 for Hartman 6, 0.45 and 0.92 for
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SDoF-KT, and 0.67 and 0.94 for Isolation examples. For complementing these comparisons note that the mean
efficiency for the 1% threshold values was already presented in Figure 11. Similarly, no significant impact on
accuracy is observed in the case of exponential decay bias interpolation (not reported here due to space

limitation), while the mean efficiency, similarly, increased for the ¢, threshold values of 5% and 10%,

respectively, to 0.92 and 0.94 for WtGMix, and 0.96 for all other cases. Note that computational efficiency of
0.96 is the theoretical upper bound for the implementation considered here due to the selection to examine the
quality of the approximation every N,=25 iterations.

Comparing across the two bias-interpolation function results in Figure 9, Figure 10, and Figure 15, show
that the NN implementation outperforms the exponentially decaying function for the MSE,, criteria, while the
exponentially decaying function performs equal or better for the IMSE,, criteria. This is explained by the
relatively heavier exploitive tendency of the NN interpolation function, as shown earlier in Figure 2
(prioritizing disproportionally domains with large bias). This tendency informs better the selection of the next
experiment using a MSE metric - that focuses on the worst-case scenario performance- but does not have the
same impact on the IMSE metric -that investigates average performance. Less sensitivity is observed for the
performance of the IMSE approximation formulations, with both 44-IMSE,, and 4.-IMSE,, showing a good
agreement with the respective IMSE,, implementation. It is important to note, though, that for the adaptive
case, the trends of the acceptance ratio of A, significantly differ (Figure 11) with the exponentially decaying

function accommodating a much faster convergence to a credible /value and overall to significant higher
computational efficiency. This should be attributed to the discontinuous behavior, and therefore objectives in
the X optimization, introduced by the NN interpolation, which impacts the stability of the stochastic search-
based identification of the optimal 4 across the DoE iterations. This is clearly shown in Figure 13 with behavior
of A significantly affected by the choice of bias interpolation function in terms of both the mean underlying

trend (convergence to different values) as well as the variability around this trend (greater shifts for the NN
selection of interpolation function). Results for the mean trend in this figure also show that as the training

sample size increases, the optimal value of 4 may also increase, verifying arguments made earlier and also
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showcasing the importance of re-evaluating appropriateness of the converged value for 4. The differences

between the optimal 4 values across the two interpolating functions showcase the importance of an adaptive
selection (44,-IMSE,, formulation) since recommendation of an appropriate value for any desired application
(as needed in the 4.-IMSE,, formulation) seems to be impossible.

Next, the discussions move to the comparisons for the batch DoE selection. Results in Figure 14 and Figure
15 verify first the trends reported in (Kyprioti et al. 2020): though balancing between exploration and
exploitation might provide some utility in earlier DoE iterations, especially when the metamodel accuracy is
poor depending on the original DoE selection (Kyprioti et al. 2020), as this accuracy improves no such utility
can be identified. This is evident in the results presented here by the fact that B-IMSE,, outperforms all other
variant implementations. Comparing across the different formulations that attempt to balance between
exploration and exploitation, B’-IMSE,,and MB-IMSE,,, the multi-objective formulation proposed in this study
(MB-IMSE,) suffers from reduced performance compared to the baseline alternative (B°-IMSE,,). Though
trends are heavily dependent on the type of bias interpolation function used (topic discussed later), there is an
undeniable performance reduction when the MB-IMSE,, formulation is utilized. This reduction might be
attributed to the choice for the promoted solution across the Pareto front, but alternative approaches that the
authors examined have not yielded better results. Despite its more natural exploration and exploitation balance
(no need to select a-priori an p) the reduction of performance for MB-IMSE,, is an important constraint for its
promotion as definite preferred solution over B’-IMSE,,.

Comparing across the multi-objective DoE implementations for different bias interpolation functions [MB-
IMSE,~(NN) and MB-IMSE,-(E)], significant sensitivity is observed for the MB-IMSE,, formulation, much

higher to sensitivity observed for any other variant. As demonstrated earlier in Figure 7 the NN

implementation restricts the identification of a single candidate experiment within each Voronoi cell for the

batch selection which can be very restrictive choice. This is the reason the exponentially decaying interpolation

tends to outperform the NN interpolation by a significant margin in the majority of the case study examples.
Finally, the performance variability across the 30 trials, showcased through the boxplots in Figure 16,

allows us to investigate some additional trends. As also reported in (Kyprioti et al. 2020) the implementations
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without the bias weight (IMSE and MSE) demonstrate significant variability in the results, clearly showcasing,
once more, the importance of introducing the bias weights in the DoE formulation. By comparison, the
variability of the performance across all other variants is small. Examining the trends for the advancements
introduced in this manuscript, we can observe a larger variability of 4,-IMSE,, when compared to A.-IMSE,,,
as expected due to the addition of the adaptive 4 selection within the DoE stochastic search implementation.
The exponential decay interpolation function leads to reduced variability over its Voronoi counterpart, again
as expected due to the discontinuous interpolation features of the latter, while the multi-objective
implementation shows similar performance as the other batch selection DoE variants, with the exception of
some outliers. This undesirable feature creates additional concerns for the promotion, at least at the current
stage, of this DoE formulation.
Conclusions

This paper investigated the adaptive design of experiments for Gaussian Process (GP) global
metamodeling applications. Formulation considered both the minimization of the predictive GP variance,
representing an exploration strategy, and the reduction of the GP bias obtained through cross validation,
representing an exploitation strategy. With respect to the GP variance, two alternative, popular
implementations were discussed, the integrated mean square error (IMSE,) criterion, and the simplified
maximum square error without variance updating criterion (MSE,)). Two different advances were examined.
The primary one considered an IMSE approximation, reducing the computational burden to levels comparable
to MSE but offering the same DoE quality. This was accommodated through introduction of a decaying shape
function that describes the reduction of GP variance within a domain of influence for each new candidate
experiment. Two different variants were examined corresponding to an adaptive selection of the exponent
involved in the shape function definition (4+IMSE,) or an a-priori selection (4.-IMSE,). The adaptive
selection is formulated by developing a framework for identification of a credible value of this exponent by
judicial comparisons between the exact and approximate IMSE,, results across the DoE iterations. The
secondary advancement introduced a multi-objective DoE selection (MB-IMSE,,) for identifying multiple

Pareto optimal experiments that balance exploration and exploitation objectives, replacing conventional
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strategies that weight these objectives to promote a single DoE selection criterion. This formulation was
promoted for batch-selection of simulation experiments. After the initial Pareto-front identification, candidate
experiments within this front are chosen based on some desired optimality criterion, while an updating of the
GP variance after identification of each such experiment is suggested, to avoid the identification of close-
proximity experiments within the promoted batch.

The performance of the proposed DoE variants was illustrated across four case study examples, including
both analytic benchmark functions and earthquake engineering applications. Across all DoE variants, two
interpolation (smoothing) approaches were examined for accommodating the incorporation of bias weights:
nearest neighbor (NN) interpolation that has been promoted in past studies and an exponential decay kernel
smoothing introduced first here. The exponential decay provided more consistent performance, addressing
challenges associated with the discontinuities introduced through the NN implementation, though it did not
necessarily outperform it. For this reason, both remain appropriate candidate choices for future applications.
Considering the DoE variants, results showed clearly the benefits of the proposed IMSE approximation, with
both A4+IMSE,, and A-IMSE, outperforming MSE,, and providing similar accuracy as the IMSE,, at
substantially reduced computational burden. Though A.-IMSE, was not substantially outperformed by A4
IMSE,, the additional robustness offered by the latter and the dependence of an appropriate value for the
exponent involved in the shape function on the details of the application considered, promote the A4,-IMSE,,
implementation as the recommended variant, despite its higher computational cost. Similar benefits were not
illustrated for the secondary proposed advancement, with the multi-objective implementation showing reduced
performance and greater variability of the results compared to alternative variants for batch selection of
experiments. Despite its more natural exploration and exploitation balance, these characteristics mean that
further advancements are needed for this formulation to be promoted over the alternative ones.

Though, as discussed above, a range of options remain attractive candidates for future applications, the

recommended implementation is 4,-IMSE,, with an exponential decay kernel smoothing.
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Data Availability Statement

The DoE formulations discussed in this paper can be implemented through quoFEM, an open-source research
software for uncertainty quantification (UQ) in natural hazard engineering, developed by NHERI SimCenter:

https://simcenter.designsafe-ci.org/research-tools/quofem-application/. Numerical codes for the DoE

optimization can be obtained from the corresponding author upon reasonable request.
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The three sets of unknown GP parameters ® = {B,0,0°} can be selected using maximum likelihood

estimation (MLE). The MLE solution for the basis coefficients and process variance is provided, respectively,

by the closed-form solution (Lophaven et al. 2002, Sacks, Welch et al. 1989):

B"=p"(D.0) = (F(X)' R(X|8) 'F(X)) 'F(X)'R(X[0)"'Z (41)
() =& F(X)TB*)TRoi 10)Z—FX)'B) @)

whereas for the hyper-parameters, the MLE selection corresponds to optimization:
0’ (D) =arg min[lnq R(X|0)])+nln((&"(D,0))’ )] (43)

which can be numerically performed (Lophaven et al. 2002, Rasmussen and Nickisch 2010). Note that for
notational simplicity, p*(D,0) is replaced by B in the remaining discussions. .

The predictive capabilities of the calibrated GP can be quantified using cross leave-one-out cross validation
(LOOCYV) (Kyprioti et al. 2020, Fuhg et al. 2021, Kleijnen 2009), established by removing the ith simulation
from the training set, using the remaining set to estimate predictions for that specific simulation, and then
defining the leave-one-out (LOO) error as the difference between the exact and prediction response:

e’ =2(x,|D_,0)—z (44)
where D_, ={X

Z .} represents the training data without the ith simulation [remove the ith row from

matrices {X,Z}]. If the LOO predictions are established, as is customary, without re-calibration of the GP

parameters, closed-form solutions are readily available for ¢”, given by (Sundararajan and Keerthi 2001,
Dubrule 1983, Rasmussen and Nickisch 2010):

R0z -FX0)]
e = : (45)
’ [R(X[0) ']

where [+] denotes ith diagonal component in a matrix, and [+] denotes ith element of a vector. These closed-

form solutions greatly simplify LOOCYV, avoiding the repeated matrix inversion operation to compute each

Z(x, |D_,,®), reducing the computational cost of the error evaluation to be O(n*) for a given R(X|0) . Once

~i
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the LOOCYV error is estimated, any desired validation metric can be utilized to assess the global metamodel

accuracy. In this study, the normalized root mean square error (NRMSE) is used, given by:

O (€ n
NRMSE,, = = (46)

max,;{z,} —min, {z,}

where max,{z,} and min,{z,} denote the maximum and minimum values of the response dataset. When the

NRMSE is smaller than a desired tolerance level, the GP may be considered as well-constructed for global

metamodeling purposes.

Appendix B: Computational details for variance estimation

This Appendix discusses computational details for the variance estimation, including its updating when
new experiments are added. Specifically the focus is on the estimation of the normalized variance given by Eq.
(4), the only component of the variance that depends on x, and therefore needs to be repeatedly estimated for
each examined input. Also in all discussions on numerical complexity the assumption that n>>n; is made,
expressing this complexity primarily as function of #.

Starting with the variance estimation, the computationally intensive part, as discussed previously, is the

inversion of the correlation matrix R(X|0), which has burden O(n*) (Strang 2016). Typically, this inversion

is replaced with operations that utilize the Cholesky decomposition for better numerical accuracy and stability.

To formalize these operations, let L(X|0) € R™ be the lower triangular matrix satisfying the Cholesky
factorization R(X|0)=L(X|0)L(X|0)". Note that performing inversion or Cholesky decomposition have
the same computational burden O(n’) , and the operations based on the Cholesky decomposition are
introduced primarily for numerical stability. Using L(X|0), Eq. (4), is expressed as (Roustant et al. 2012):
o (x| X,0) =1—[v(x| X,0)[; +[M,(X|0)\ (M(X|0)" v(x| X,0) - f(x))”z (47)
where ||||2 is the vector two-norm, vector v(x|X,0)cR" and matrix M(X|0)c R"™ are given by
v(x| X,0)=L(X]|0)\r(x| X,0) and M(X|0)=L(X]|0)\F(X), respectively, with “\” denoting inversion by

forward or backward substitution, and M ,(X|0) € R is the upper triangular matrix originating from the
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economy size orthogonal triangular decomposition (also known as QR decomposition) of M(X|0) [so that
M(X|0) =M, (X|0)M,(X|0) with M,(X|0) € R"™ and M,(X|0) having the characteristics described

above]. The computational intensive components of the estimate in Eq. (47), corresponding to the

decompositions for estimation of primarily L(X|0) [complexity O(n’) ] and secondarily M, (X|0)
[complexity O(n,n)], are independent of x and therefore need to be performed only once. Actually, both

quantities are readily available from the GP calibration (Roustant et al. 2012). Therefore, the estimation of Eq.

(47) for each new x has small computational burden, as it only involves calculation of vector v(x|X,0) and
expression M ,(X|0)\(M(X|0)" v(x|X,,0) —f(x)), and the estimation of the two vector norms. This burden

is O(n?) overall for each examined x (Roustant et al. 2012).

0) after the addition of x,_ in

new? new

Moving, further, to the calculation of the updated variance ¢*(x | X, x
the existing training set given by Eq. (11), the estimate of Eq. (47) is updated to be:

7’ (x|X,X,,,.0) =1 —|v(x| X,x,,,.0)[; + HMR (X,x,., |0\(M(X,x,, [0) v(x|X,x,,0)— f(x))”z (48)

where v(x|X,x  .0)=L(Xx,, [0)\r(x|X,x, ,0) and M(X)x,, [0)=L(Xx,, |0)\F(Xx,,) , with

L(X,x |0) to the

|@) corresponding to the lower Cholesky factorization of R(X,x, , |0) and M, (X,x

new new new

upper triangular matrix from the orthogonal triangular decomposition of M(X,x,  |0), and the updated

new

correlation vector r(x| X,x,, ,0), basis function matrix F(X,x,, ) and correlation matrix R(X,x,, |0) are

new? new new

given, respectively, by Egs. (8), (9) and (10). The computationally intensive component of this estimation is

the calculation of the Cholesky decomposition of R(X,x |0) which has complexity O(n*). This can be

new

simplified utilizing the readily available decomposition of R(X|0) to be (Parlett 1981, Stewart 1998):

L(X|0) 0

L(X,x . |0)= (49)

new

VX X%, 0" R(K,0x, 10) — V(x| X,x,,, 0

which has computational complexity O(n?). This reduces the computational burden for estimation of the

updated predictive variance when a single experiment is added in the training set, to be O(n?) and O(n, n) for
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estimating the independent from x matrices, L(X,x, [0) and M,(X,x, |0) , respectively, and then

new new

additional O(n?), as discussed earlier, for each input x for which this variance needs to be estimated.

Appendix C: Examining limiting cases for 4

This section further discusses some limiting cases for the behavior of the variance reduction approximation
prescribed by Egs. (20) and (21). First, consider the case where all the previous selected experiments X are in

a far distance from x and x__ , so that following condition is satisfied:

new ?

new

[x-x

< ||x-x,.|| ,forV i=0,...,n (50)

We can then approximate ¢ (x|X,x, ,0)=0"(x|x,, ,0) , indicating that as soon as x  is added it

new? new? new

dominates the variance estimation for x. Since x and x_, are jointly Gaussian with correlation coefficient

new

R(x,x _|0) the conditional variance is further calculated as:

new

o’ (x| X.x,,,.0) ~ o’ (x]x,,.0)=c’(x|0)(1- R(x.x,,, |0)) (51)

where ¢°(x|0) represents the prior variance at x when x,, is removed, i.e. ultimately corresponds to

o’ (x| X,0) within the GP formulation. Comparing Egs. (51) and (22), we obtain A(x,x,,, | 4) = R(x,X,,, | 4)’

, which reduces to Eq. (21) with 4 =2.

However, the condition in Eq. (50) is easily violated when the number of training samples increases. More
importantly, this condition is easily violated in higher dimensions for the input, since, as n. increases, the

mutual distances between any pairs of the training data points X, the candidate points x  , and examined x

rapidly becomes indiscernible to each other (Beyer et al. 1999). Moreover, it can be easily shown that Eq. (51)

is an upper bound. If R(x,x,,, |0) isreplaced with R(x,x, , | X,0) in this equation, then formulation becomes

exact. But since x, x,,, and X are jointly Gaussian, it can be proven that R(x,x, , | X,0) <R(x,x,,, |0)

(Page 1984), implying that the relative impact of x , on x will be reduced under presence of other close-

proximity training points, making Eq. (51) an upper bound. Note that R(x,x, |1)’ < A(x,x |A) for A <2

new new
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1213
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1215

, indicating that in order to avoid further increasing the gap to R(x,x,,, | X,0) the exponent for A(x,x,  |4)

new new

should be greater than 2. Additionally, this is showcasing that a variation of 4 is expected as more experiments

are added and the condition R(Xx,X,,, |X,0)<R(x,Xx,, |0) holds with larger margins, indicating a trend

new new

towards use of larger values of 4 in such conditions. Note that an explicit dependence on the hyper-parameters

exists in these arguments (defining correlation length scales), indicating an even more complex relationship to

not only the training points X, but also the GP features.
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Figure Captions

Figure 1 Adaptive design of experiments workflow. Note that implementation also considers batch selection of
experiments.

Figure 2 Illustration of components for variance and bias functions for a two-dimensional example.

Figure 3 Illustration of variance reduction approximation

Figure 4 Illustration of selection of objective function for calibration of 1

Figure 5 Workflow for the approximated IMSE algorithm (IMSE,-SA)

Figure 6 Illustration of multi-objective DoE. Identification of Pareto-front and selection

Figure 7 Illustration of multi-objective DoE aspects for two different interpolation functions (NN: natural neighbor, E:

exponential decay).

Figure 8 Workflow for the multi-objective DoE algorithm (IMSE-MB)

Figure 9 Comparison of metamodel accuracy (average over 30 trials) for different values of # for DoE variants
corresponding to sequential experiment selection using NN for bias interpolation function.

Figure 10 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants
corresponding to sequential experiment selection using exponentially decaying bias interpolation function.

Figure 11 Acceptance rate of 1 and overall efficiency of A4-IMSE,,

Figure 12 Comparison of metamodel accuracy (average over 30 trials) for different values of n for 4.-IMSE,, and 44-

IMSE,, with different minimum performance thresholds using NN for bias interpolation function.

50



1245
1246

1247

1248
1249

1250

1251
1252

1253
1254

1255

Figure 13 The averaged A for A+-IMSE,, (SDoF-KT example)

Figure 14 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants
corresponding to batch (size of 5) experiment selection

Figure 15 Comparison of metamodel accuracy (average over 30 trials) for different values of n for selective DoE
variants, emphasizing comparisons across the different bias interpolation functions.

Figure 16 Variability in the accuracy of the illustrated DoE methods across 30 independent trials.
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