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Abstract 9 

Gaussian processes (GPs) are a popular technique for global metamodeling applications. Their objective in 10 

such settings is to establish an efficient and globally accurate approximation of the response surface of 11 

computationally expensive simulation models. When developing such GPs, the design of (simulation) 12 

experiments (DoE) plays an important role in reducing the required number of model runs for obtaining 13 

accurate approximations. Sequential (adaptive) selection of experiments can provide significant advantages, 14 

especially when the response surface is characterized by localized nonlinearities. Such adaptive DoE strategies 15 

for global metamodeling applications typically focus on minimizing the predictive GP variance, representing 16 

an exploration strategy, while recent developments have additionally considered the reduction of the GP bias 17 

obtained through cross validation, representing an exploitation strategy. While significant focus has been 18 

placed on the definition of appropriate adaptive DoE criteria, computational challenges still exist that limit the 19 

widespread adoption of adaptive DoE techniques, for example, related to the additional computational demand 20 

for identifying the optimal new experiment(s), or the necessity to establish proper schemes to combine 21 

exploration and exploitation strategies. To address these specific challenges, this research investigates two new 22 

adaptive DoE formulations. The first one focuses on the approximation of the popular integrated mean square 23 

error (IMSE) DoE criterion. The computationally demanding GP predictive variance update (after addition of 24 

each candidate experiment), required in the original IMSE formulation, is replaced by an approximation based 25 

on the current predictive variance and the domain of influence that surrounds each new experiment. The 26 

approximation is established through a parametric formulation that leverages the GP kernel to describe the 27 



 

 2 

aforementioned domain, with characteristics that are progressively calibrated across the GP training stages, to 28 

minimize the discrepancy between the actual and the approximated IMSE. The second formulation establishes 29 

a multi-criteria search for simultaneously identifying multiple Pareto optimal experiments that balance 30 

exploration and exploitation objectives, replacing conventional strategies that establish a weighted 31 

combination of these objectives to promote a single DoE selection criterion.  32 

Keywords: Adaptive design of experiments (DoE), Global Gaussian process, Multi-objective optimization, 33 

Leave-one-out cross-validation weights, Integrated mean square error (IMSE) 34 

Introduction 35 
The growing complexity of computational simulation models in the various engineering fields has 36 

increased the need for efficient surrogate modeling techniques (Razavi et al. 2012, McBride and Sundmacher 37 

2019, Forrester and Keane 2009). These models, also referenced as metamodels, can offer an efficient data 38 

driven mapping between the input-output relationship of high-fidelity simulation models, formulated based on 39 

an observation set, frequently referenced as experiments or training points. Different data-driven surrogate 40 

modeling approaches exist, such as artificial neural networks (Jain et al. 1996), polynomial chaos expansion 41 

(Blatman and Sudret 2010), and Bayesian networks (Byun and Song 2021), and among them, Gaussian process 42 

(GP) metamodels, also referred to as Kriging in geostatistical contexts, have gained wide popularity for their 43 

flexibility arising from their interpolative property as well as the ability to quantify the predictive variance of 44 

the function estimates associated with the lack/abundance of training data (Rasmussen and Nickisch 2010, 45 

Gramacy 2020, Sacks, Welch et al. 1989, Kleijnen 2017). Furthermore, past research efforts have shown that 46 

GPs are relatively reliable compered to alternative formulations for a small to moderate size of training 47 

samples, i.e., up to a few thousand, (Deisenroth and Ng 2015, Forrester and Keane 2009), while recent 48 

advances in GP approaches, such as sparse training methods, are further pushing this limit to larger datasets 49 

(Csató and Opper 2002, Liu et al. 2020). 50 

It is widely acknowledged that one of the most critical aspects in the GP development (and for many other 51 

surrogate modeling techniques) is the selection of the set of simulation experiments that serve as training 52 
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points, a process formally known as design of experiments (DoE). More efficient DoE strategies can 53 

accommodate development of accurate GPs using smaller number of training points, reducing the 54 

computational burden for performing simulations of the high-fidelity model. Space-filling DoE strategies 55 

perform well for many practical applications (McKay et al. 2000) by uniformly populating the domain of 56 

interest. However, to further improve efficiency, the experiments can be selected progressively in stages, 57 

leveraging in each new stage information provided by a GP metamodel that is developed using the experiments 58 

selected from previous stages (Provost et al. 1999). Such an adaptive, or active learning, strategy involves 59 

extra computations to find the optimal experiments as well as to perform the repeated GP parameter 60 

calibrations (across the different stages), but can eventually lead to large reductions of the number of high-61 

fidelity model evaluations to achieve the same prediction accuracy, by adaptively identifying potential low 62 

accuracy domains where addition of new experiments can maximize their utility (value). Depending on the 63 

purpose for which the GP is trained, adaptive DoE strategies can be distinguished to application-oriented 64 

(Kleijnen and Beers 2004, Moustapha et al. 2022, Zhang and Taflanidis 2018, Kim, J. and Song 2020), when 65 

metamodel is intended to establish a specific task that indirectly defines a region of interest, or general-66 

purposed, when metamodel is intended to serve as a universal approximation of the original high-fidelity 67 

model. The latter, which the focus of this paper lies on, is often referred to as global surrogate modeling and 68 

the DoE for this class aims to identify experiments that most effectively minimize the average error across the 69 

entire input-domain, without distinguishing any sub-domains of specialized interest (Liu et al. 2018, Kleijnen 70 

2009, Pandita et al. 2021). 71 

Most adaptive DoE approaches for global surrogate modeling applications focus on the GP prediction 72 

variance, assuming that locating an experiment at the domain of high variance will accommodate better 73 

exploration of the input domain, and ultimately reduce the variability of the metamodel estimates. Such 74 

variance-based adaptive DoE strategies share similar objectives to non-adaptive, space-filling  approaches, in 75 

a way that they identify the experiment(s) that has furthest distance from the previously training points, 76 

however, the measure of distance is defined differently to account for the length of correlation in each input 77 

dimension (Picheny et al. 2010, Sacks, Welch et al. 1989, Welch 1983), leveraging the characteristics of the 78 
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GP kernel in this definition. Furthermore, more advanced formulations, such as the integrated mean square 79 

error (IMSE), discount the importance of experiments near the boundary of the input domain by considering 80 

their influence only within the specific input domain of interest. IMSE is often preferable to alternative 81 

variance-based DoE criteria, such as maximum mean squared error (MMSE) and mean squared error (MSE), 82 

in terms of numerical stability, optimality and the way it tackles near-boundary experiments (Beck and Guillas 83 

2016, Krause et al. 2008). However, its implementation is computationally demanding because it requires 84 

integration over the domain of interest of the updated predictive variance, obtained by considering the addition 85 

of each candidate new experiment (and involving inversion of the updated GP covariance matrix), whereas 86 

simplified measures such as MSE (Jin et al. 2002) directly utilize the pre-update predictive variance without 87 

involving any significant computations.  88 

To supplement the exploration established through variance-based DoE approaches, strategies that enforce 89 

exploitation principles in global surrogate modeling context can be additionally considered, which has shown 90 

to be particularly beneficial for approximating functions with localized nonlinearities. A common approach 91 

for achieving this objective is to define a bias measure by interpolating the GP cross-validation error (Liu et 92 

al. 2016, Kyprioti et al. 2020, Jin et al. 2002), and incorporate this measure in the DoE through combination 93 

with a variance-based exploration strategy, e.g., by weighted summation (Fuhg et al. 2021) or multiplication 94 

(Kyprioti et al. 2020). Furthermore, recent research efforts have shown that, like many other adaptive search 95 

algorithms, adaptive DoE strategies for global surrogate modeling can perform substantially better when the 96 

tradeoff between the two aforementioned search objectives, exploration and exploitation, is carefully 97 

considered (Garud et al. 2017, Liu et al. 2018, Fuhg et al. 2021). Unfortunately, existing efforts to accomplish 98 

the latter typically rely on user-selected weighting coefficients and tuning parameters. Furthermore, the 99 

computational challenges associated with variance-based exploration strategies (like IMSE) directly extend for 100 

such implementations, creating additional limitations for their use in practice.   101 

To address these challenges, this paper develops two new adaptive DoE strategies. The primary 102 

contribution examines the approximation of the IMSE measure [or the weighted IMSE that extends IMSE to 103 

consider bias measure-based exploitation (Kyprioti et al. 2020)], focusing on reduction of the computational 104 
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burden for the IMSE estimation without lowering the quality of the identified experiments. The 105 

computationally demanding updating of the variance field given new candidate experiments requiring, as 106 

discussed above, inversion of the updated covariance matrices, is replaced by an approximation for the amount 107 

of variance reduction around each candidate new experiments through the introduction of a decaying shape 108 

function that describes its domain of influence. This approximation accommodates estimation of the reduction 109 

of the (weighted) IMSE with very small computational effort, by integrating the (weighted) shape function. 110 

The shape function approximation is established through the GP kernel and the introduction of an additional 111 

adjustment parameter. Proper selection of this parameter is critical for the approximation accuracy, and a 112 

progressive learning scheme is introduced to accommodate the selection, calculating the actual IMSE and 113 

comparing it to the approximated one to choose the optimal adjustment parameter value. To achieve the desired 114 

computational benefits, the implementation gradually switches to sole use of the IMSE approximation once 115 

sufficient confidence for it is achieved.  116 

The secondary contribution examines the adaptive DoE selection as a multi-objective optimization 117 

problem, considering the variance (exploration) and bias (exploitation) criteria as separate objectives, and 118 

identifying Pareto optimal experiments that establish a balance between them. The sorted solutions (Pareto 119 

front) provide the batch selection of experiments, and are further truncated at a desired batch limit, for example 120 

related to computational resources within a parallel computing environment.  The desired final batch of 121 

experiments is chosen based on the distance from the utopia point of the Pareto front, while also adopting an 122 

updating of the Pareto front GP variance to avoid selecting experiments in close proximity to one another. 123 

Through this implementation the two objectives are examined with no need to establish a preselected weighting 124 

scheme between them, naturally balancing the exploitation and exploration without introducing additional 125 

tuning parameters. Furthermore, the proposed method enables us to batch-select multiple experiments without 126 

additional effort, accommodating a formulation that is naturally aligned with modern parallel simulation 127 

computational environments. 128 

The remaining of the paper is organized as follows. The next section provides a brief overview of GP 129 

models with discussions focusing on computational complexity of the variance and bias estimation, while the 130 
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section after that reviews adaptive DoE criteria. The following section introduces the approximation for the 131 

variance update after addition of each new experiment, accommodating a computationally efficient IMSE 132 

implementation, while in the section after that, the multi-criteria DoE scheme, that naturally balances between 133 

exploration and exploitation objectives, is presented. Finally, the following section presents illustrative 134 

examples to showcase the proposed methods, considering both benchmark functions as well as practical 135 

problems from the domain of natural hazards engineering, for which there has been a renewed interest in global 136 

surrogate modeling applications (Deierlein and Zsarnóczay 2019).  137 

Overview of Gaussian Process (GP) regression 138 

Let ( )z  x  represent the high-fidelity (computationally expensive) simulator that is approximated through 139 

the surrogate model, with xnx   representing the nx-dimensional input and z   the scalar response output. 140 

The Gaussian process (GP) regression approximates ( )x , as a GP realization utilizing a training set of 141 

simulations from the high-fidelity model. Different GP variants exist (Rasmussen and Nickisch 2010), but 142 

perhaps the most popular (Gramacy 2020, Kleijnen 2017), and the one adopted here, uses: (i) a mean function 143 

corresponding to a linear regression, )( Tf x β , where )( bnf x   represents the nb-dimensional vector of basis 144 

functions (for example, low order polynomials) and bnβ   the vector of regression coefficients; and  (ii) a 145 

stationary covariance function  2 |c ( ', ,'ov ) σ Rx x x x θ  where 2σ  is a constant representing the process 146 

variance, and  ' |,R x x θ  is the autocorrelation function between inputs x  and 'x , having  hyper-parameters 147 

θnθ  , and frequently also referenced as GP correlation kernel. Examples of popular correlation functions 148 

include radial basis, Matérn, or exponential functions (Rasmussen and Nickisch 2010), with hyper-parameters 149 

representing the characteristic correlation length for each input dimension (dictating rate of correlation decay), 150 

and    | ), ' | ',(dR Rx x θ x x θ  expressed as function of the normalized distance  151 

 '( , ' | )d 


x xx x θ
θ

  (1) 152 
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where .  is some chosen vector norm, and vector division is defined elementwise herein.  153 

The GP model has three sets of unknown parameters 2}Θ { , ,σ β θ  that need to be identified using the 154 

available training set. To formalize implementation, and all subsequent DoE discussions, assume that the 155 

training set corresponds to the input-output pair of n simulations (also referenced as observations or training 156 

points), { , ; 1,..., }i iz i nx , and let us denote by  xn nX  and nZ   the corresponding input matrix and 157 

output vector, with ith row associated with the ith simulation. Also let { , }D X Z  denote the input-output 158 

observation set, and define the matrix of basis functions ( ) bn nF X  , whose ith row corresponds to )( T
if x , 159 

the correlation matrix for the database ( | ) n nR X θ   whose { , }i j  element corresponds to ( )|,i jR x x θ .  160 

Note that the chosen notation emphasizes the dependence of all quantities on X [or D and θ] to better frame 161 

the adaptive DoE schemes. Finally, let ( | , ) nr x Χ θ   define the correlation vector between an input x and 162 

each training set component, with ith element of the vector corresponding to ( )|, iR x x θ .  The optimum values 163 

of Θ  are commonly established using maximum likelihood estimation (MLE), a process detailed in Appendix 164 

A. These values will be denoted as *β , * ( )θ D , and * 2( ( , ))σ D θ , with dependencies on D and θ explicitly noted 165 

for the latter two quantities (omitted for *β  for brevity).  166 

Given the observations D  and the calibrated parameters Θ , the GP approximates the response at an 167 

arbitrary point x  as Gaussian with mean and variance given, respectively, by (Sacks, Welch et al. 1989): 168 

 * 1 *( | ,Θ) ( ) ( | , ) ( | ) ( ( ) )T Tz   x D f x β r x X θ R Χ θ Ζ F Χ β  (2) 169 

   22*2 | ,Θ) ( , ) ( | , )(σ σσx D D θ x X θ  (3) 170 

where the normalized variance has been defined as:   171 

 12 1 1| , ) 1 ( | , ) ( | ) ( | , ) ( | , ) ( ( ) ( | ) ( )) ( | , )( T T Tσ     x X θ r x X θ R Χ θ r x X θ u x X θ F Χ R Χ θ F Χ u x X θ   (4) 172 

with 1( | , ) ( ) ( | ) ( | , ) ( )T  u x X θ F Χ R Χ θ r x X θ f x . Eqs. (2) and (3) are also frequently referred to as 173 

predictive mean and predictive variance, respectively. When purpose of the surrogate modeling is to establish 174 

deterministic predictions, then the predictive mean of Eq. (2) is adopted as the response approximation [e.g. 175 
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(Prebeg et al. 2014, Kyprioti et al. 2021, Contreras et al. 2020)], whereas when probabilistic predictions are 176 

preferred, the full Gaussian distribution of the GP, combining Eqs. (2) and (3), is utilized [e.g. (Kim, J. and 177 

Song 2020, Bodenmann et al. 2021, Jia and Taflanidis 2013)]. Note that the normalized variance in Eq. (4) 178 

does not depend on the response Z. This property motivates the introduction of adaptive design of experiments 179 

because it allows us to foresee how much variance can be reduced by adding a new experiment xnew into the 180 

existing training set.  181 

With respect to computational complexity, the numerically intensive component in Eqs. (2) and (3) is the 182 

inversion of the correlation matrix, ( | )R Χ θ  which has complexity O(n3) but needs to be performed only once, 183 

as it is independent of input x. Therefore, once ( | )R Χ θ  is inverted for a calibrated GP, predictions for a new 184 

input x  can be established with negligible computational cost, providing an efficient surrogate model. For 185 

numerical stability, the inversion of ( | )R Χ θ  within the GP formulation is typically replaced by forward or 186 

backward substitution operations utilizing its Cholesky factorization (Roustant et al. 2012, Lophaven et al. 187 

2002). Appendix B discusses specifics in the context of estimation of the predictive variance, which is the task 188 

that is required within the DoE formulation discussed in the next section.   189 

    Finally, the predictive capabilities of the calibrated GP can be quantified using cross validation statistics. 190 

Typically, this is accomplished using leave-one-out cross validation (LOOCV) (Kyprioti et al. 2020, Fuhg et 191 

al. 2021, Kleijnen 2009), with details provided in Appendix A. This entails estimation for each training point 192 

of the leave-one-out (LOO) error cv
ie , corresponding to the predictions established for this specific point using 193 

the remaining observations, excluding this specific point from the database. Once this error is estimated, any 194 

desired validation metric can be utilized to assess the global metamodel accuracy. In this study, the normalized 195 

root mean square error (NRMSE), denoted cvNRMSE  and reviewed in Appendix A will be used as such metric.  196 

Adaptive design of experiments (DoE) for global surrogate modeling 197 
The sequential (adaptive) design of experiments (DoE) obtains the training points iteratively in stages: the 198 

new experiment(s) are determined as a function of the previous experiments and the GP that is calibrated using 199 

these experiments, with an objective to maximize the expected utility of the new experiment(s). Let xd nX   200 
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represent the domain set of interest for the metamodel development, and denote by newx  each examined new 201 

simulation input (feasible experiment).  The adaptive DoE is formulated as an optimization for the selection of 202 

the experiment that maximize a measure of information acquisition: 203 

 * arg max Φ( )
n

d
ew

new n
X

ew



x

x x  (5) 204 

where Φ(•)  is called acquisition or merit function (Koehler and Owen 1996, Johnson et al. 1990).  Eq. (5) can 205 

be alternatively formulated using an equivalent minimization criterion  206 

 * arg min Φ( )
n

d
ew

new n
X

ew



x

x x  (6) 207 

where Φ(•) is a measure that quantifies the remaining uncertainty (variance) after adding the new experiment208 

newx  (Sacks, Welch et al. 1989). Throughout this paper, DoE objective functions without the bar notation ( Φ209 

) represent those for the minimization problem whereas those with the bar ( Φ ) are for maximization problems. 210 

The adaptive DoE requires, furthermore, convergence criteria to terminate iterations when the metamodel 211 

performance, quantified for example using LOOCV statistics, improves beyond a desired threshold, or when 212 

the available computational budget is exceeded.  213 

Figure 1 demonstrates this adaptive DoE procedure, examining also the formulation of batch selection of 214 

experiments, discussed later. The computationally intensive steps within each iteration are: (i) the high-fidelity 215 

simulation(s); (ii) the GP parameters calibration; and  (iii) the adaptive DoE selection requiring an optimization 216 

problem [Eq. (5) or (6)]. It is important to note that if the evaluation of the DoE objective function requires 217 

involved computations, the selection of the next experiment itself becomes a non-trivial task in terms of total 218 

computation demand. Of course, in most applications of interest, the computational burden associated with the 219 

high-fidelity simulation model is substantially larger than the cost of the adaptive DoE selection, providing 220 

value for implementation of advanced DoE schemes that can accommodate a reduction of high-fidelity 221 

simulations to achieve the same level of metamodel accuracy. Still, reduction of the computational burden of 222 

these DoE schemes is an important secondary objective, as long as the quality of the identified experiments is 223 

not compromised (primary objective).   224 
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A final remark is warranted about batch selection of experiments, something that can be particularly useful 225 

when parallel computing environments are utilized for the high-fidelity simulations. Most of the existing DoE 226 

methods, including those discussed in this paper, can accommodate a batch selection of multiple experiments 227 

through appropriate small modifications. This is commonly done by selecting one experiments at a time using 228 

the merit functions defined in Eqs. (5) or (6), until a predetermined batch number of experiments is acquired 229 

as shown in Figure 1. This one-at-a-time selection of experiments is suboptimal when compared to the 230 

alternative of simultaneous selection of the entire batch, since the latter better incorporates the correlations 231 

between the candidate experiments in assessing their expected total utility, but nevertheless, is very practical 232 

and widely advocated (Ginsbourger 2014, Vazquez and Bect 2011). To assess the information infused in the 233 

training set by each individual experiment, and ultimately avoid choosing close proximity experiments, the 234 

merit function(s) should be approximately updated after each selection. As illustrated in Figure 1, since the 235 

response at the location of the new experiment is not yet known, this is done without performing GP 236 

recalibration. For example, the predictive variance, which is ingredient of most merit functions, depends only 237 

on the training sample locations at each experiments [ X  in Eq.(4)] and not on the response [ Z ] as long as θ238 

is known. Therefore, after adding a new experiment, this variance and the corresponding merit function can be 239 

updated without evaluation of the high-fidelity model.  In contrast, in a purely sequential approach, θ  needs 240 

to be updated each time before selecting a new experiment. 241 

Variance-based adaptive DoE  242 
One of the widely used merit functions of adaptive DoE in global GP metamodeling is the integrated mean 243 

squared error (IMSE), which seeks the experiment that minimizes the average updated variance within the 244 

domain of interest (Sacks, Welch et al. 1989, Asher et al. 2015). The corresponding DoE objective function is:  245 

 2
IMSE | , ( | , , )Φ ( ) ( )

dnew newX
w σ d


 x

x x x xΧ θ X θx   (7) 246 

where w(x) is a weight function to prioritize any desired sub-domain within Xd , and 2 ( | , , )newσ Xx θx  is the 247 

updated normalized predictive variance after addition of newx , which is estimated as follows. Obtain first the 248 

updated correlation vector ( | , , )newr x X x θ , basis function matrix ( , )newF Χ x  and correlation matrix 249 
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( , | )newR X x θ , by adding a row and, when needed, a column into ( | , )r x X θ , ( )F Χ  and ( | )R X θ , respectively, 250 

as:  251 

 
( | , )

( | , , )
( , | )new

new R
 
    

r x X θ
r x X x θ

x x θ
 (8) 252 

 
( )

( , )
( )ew

w
n

ne
T

 
    

F Χ
F Χ x

f x
 (9) 253 

 T

( | ) ( | , )
( , | )

( | , ) ( , | )e
ne

n
w

n w ewR
 
    

R X θ r x X θ
R X x θ

r x X θ x x θ
 (10) 254 

Then 2 ( | , , )newσ Xx θx  is given by:   255 

 
2

new new new new

new ne n

1

1 1
w ew new new

, 1 ( | , ) ( | ) ( | , )

         ( | , ) ( ( ) ( | ) ( )) ( | , )

( | , ) , , ,

, , , , ,

T

T T

σ 

 

  θ r x θ R θ r x θ

u x θ F xR θ F u x

x X x X x X x X x

X x X x X X X x θx
  (11) 256 

with 1( | , , ) ( , ) ( , | ) ( | , , ) ( )new new new new
T  u rx xx X θ F θxX R X θxx X f x . The efficient estimation of this 257 

updated variance is discussed in Appendix B. Note that the IMSE criterion is commonly expressed with respect 258 

to the variance of Eq. (3), which includes the process variance, but for illustration clarity the normalized 259 

variance is used herein, since the process variance is independent of x. Also the weight function w(x) is 260 

typically ignored in the IMSE formulation, with w(x)=1, though the representation of Eq. (7) is preferred here 261 

as it accommodates a unified description with the formulation incorporating GP bias as weights, discussed in 262 

the next section. For estimating the IMSE integral, efficient approximate formulations can be found in the 263 

literature under some regularity conditions for the GP and the Xd domain boundary (Ankenman et al. 2008, 264 

Cole et al. 2021). In this study, Monte Carlo Integration (MCI) is preferred, since it can accommodate arbitrary 265 

weight functions, correlation kernel shapes, and domains. Alternatively, Quasi-Monte Carlo could had been 266 

used. Using nq samples ( )
1,...,{ }

q

q
q nx  following uniform distribution in Xd, MCI establishes the following 267 

approximation for the objective function:  268 

 ( ) ( )

1

2
IMSEΦ )1| , ( | , )( ) ( ,

q

n
q

ew

n
q q

q
neww σ

n 

  θxXx Χ θ x x   (12) 269 
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Based on the computational details presented in Appendix B, the computational cost for estimating 270 

IMSEΦ ( )| ,newx Χ θ  for each xnew is Ο(n2) for updating quantities that are common across all MCI samples and 271 

then additional Ο(n2) for each of the nq integration points, though parallel computations can reduce the burden 272 

of the latter estimation. The computational workflow to identify the optimal newx  will be discussed later on.  273 

Beyond IMSE, other criteria can be established that involve some form of integration or maximization of 274 

the updated variance within Xd (Picheny et al. 2010, Sacks, Schiller et al. 1989). All these formulations 275 

correspond to one-step-lookahead approaches, requiring the evaluation of the updated predictive variance 276 

2 ( | , , )newσ Xx x θ  and estimation of some function involving it to express the metamodel accuracy.  As shown 277 

above, the computational cost of these approaches is significant for each candidate experiments newx that is 278 

examined within the DoE optimization. To reduce this computational complexity, alternative formulations 279 

have been examined (Ginsbourger 2014, Jin et al. 2002), with the most popular one adopting as merit function 280 

the mean squared error (MSE) at the current training stage, leading to:  281 

 2
MSE )Φ ( ) () | ,( new new neww σx x x X θ   (13) 282 

This objective represents a special case of maximum entropy criterion (Jin et al. 2002, Liu et al. 2017). The 283 

MSE measure in Eq. (13) approximates the expected reduction of the error, corresponding, therefore, to an 284 

objective function targeted for maximization. MSE simply involves estimation of the variance at newx , 285 

establishing significant computational savings compared to IMSE. At the same time, it has two important 286 

shortcomings: (i) it cannot guarantee optimality after adding each experiment [no variance updating]; (ii) it 287 

does not consider a domain of influence of each experiment [no integration part]. The latter is manifested as 288 

tendency to place experiments around boundary region, something frequently argued (Beck and Guillas 2016, 289 

Krause et al. 2008) to represent an inefficient DoE scheme, especially if nx is large (relative proportion of 290 

domain representing boundary increases). Therefore, in terms of the quality of the identified experiments, the 291 

IMSE criterion is preferable to the MSE criterion for global metamodeling applications, despite its larger 292 

computational burden. These characteristics motivate the developments established later in this manuscript, 293 
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aiming to reduce the computational burden to levels similar to MSE while keeping the quality of new 294 

experiments of IMSE.  295 

Adaptive DoE with bias measure 296 
Recent efforts have examined adaptive strategies that exploit the surrogate model response predictions to 297 

self-identify important regions in the DoE, something expressed in global metamodeling applications by 298 

utilizing the prediction bias (Xu et al. 2014, Le Gratiet and Cannamela 2015). The LOO error can be used to 299 

quantify this bias and be leveraged to guide the selection of w(x), promoting exploitation strategies within the 300 

global metamodeling DoE. Since the LOO error is only known for the discrete locations corresponding to the 301 

training set, some form of interpolation (or kernel smoothing) needs to be introduced (Jin et al. 2002, Kyprioti 302 

et al. 2020), providing a continuous approximation of the error as a function of x. Establishing such an 303 

approximation for the squared error leads to:  304 

  
2

2 1

1

( , )( )
( ( ))

( , )

cv
i icv

i

n

i
n

i

γ e
e

γ








x x
x

x x
   (14) 305 

where ( )cve x  is the LOO error approximation and ( , )iγ x x  is the interpolation/smoothing function, expressing 306 

proximity between the error values at x and ix . In (Kyprioti et al. 2020) different such functions were explored 307 

and the one promoted was the nearest neighbor (NN) interpolation   308 

 
1 if   

( , )     
0 else

i
i

V
γ

 

x
x x   (15) 309 

where iV  represents a Voronoi cell associated with each training point ix and defined using the normalized 310 

distance of Eq. (1), so that   )| | 1( , ) .( , , ,, ,.. , i i jV nd jd j i i  x θ x θx x x . An alternative choice 311 

will be examined here, adopting an exponentially decaying smoothing function 312 

 2( , ) exp( , | )  ( )ii dγ   x x θx x  (16) 313 

Consideration of the LOO error leads to the weighted IMSE and MSE criteria, denoted as IMSEw and 314 

MSEw herein. Adopting the formulation in (Kyprioti et al. 2020) this is established by choosing weight function 315 

w(x) as  316 
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 2[( () ]( ))cv ρw e xx    (17) 317 

in the formulations of Eq. (7) (for IMSEw) and Eq. (13) (for MSEw), where [0, )ρ   is a tuning parameter 318 

that is used to control the balance between the bias and variance indicators (Kyprioti et al. 2020). Note that for 319 

0ρ  , the aforementioned measures reduce to the classical IMSE and MSE measures, respectively. 320 

Ultimately, these classical measures have only exploration attributes, whereas their weighted counterparts 321 

combine both exploration and exploitation features. The balancing between these two features is established 322 

through ρ  whose selection is non-trivial (Kyprioti et al. 2020), something that motivates the multi-objective 323 

DoE discussed later in this manuscript. Figure 2 illustrates some of the aforementioned concepts related to the 324 

bias and variance adaptive DoE components using a two-dimensional cosine weighted Gaussian mixture 325 

function. More details about this function are included in the illustrative examples section. Specifically, this 326 

figure includes the original function [part (a)], as well as GP-based predictions established utilizing 21 training 327 

points (depicted with red circles in some of the subplots): the predictive mean of Eq. (2) [part(b)]; the LOO 328 

error shown in Eq. (45) (red circles in parts [c] and [d]) as well as the corresponding weight function w(x) 329 

obtained using either the NN interpolation of Eq. (15) [part (c)]  or the exponentially decaying smoothing 330 

function of Eq. (16) [part (d)]; the predictive variance of Eq. (4) [part (e)], as well as its counterpart using the 331 

bias weights [part (f)]. Comparison of parts (c) and (d) depicts the difference of the alternative approaches for 332 

choosing bias weights: the NN interpolation provides a discontinuous (at the Voronoi cell boundaries) 333 

weighting function, whereas the exponential decaying kernel smoothing accommodates a smoother function, 334 

that, though, no longer interpolates the available LOO estimates. Comparison of parts (e) and (f) shows clearly 335 

how the suggested weights incorporate in the DoE bias information about the GP predictions, altering the 336 

domains of importance within Xd. Use of the predictive variance [part (e)] instead of its weighted counterpart 337 

[part (f)] naively places importance in domains in which the established GP already has high accuracy (small 338 

bias). 339 

Optimization scheme for identification of new experiments 340 
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Optimization of Eq. (5) [or (6)] is known to have multiple local minima and for this reason a random search 341 

approach is recommended for its solution (Kyprioti et al. 2020). For the IMSEw this combines the following 342 

steps for identification of each *
newx , denoted herein as IMSEw-SE (Sequential Exact) algorithm.  343 

Step 0 [Initialization]: Given the GP training set X, correlation Kernel,  )( |, 'R x x θ , basis vector, ( )f x , 344 

and hyper-parameters, θ , calculate correlation matrix, |( )R X θ , and basic function matrix, )(F X ,  as well 345 

as the lower Cholesky factorization of the former |( )L X θ  and matrix ( | )RM Χ θ  related to the QR 346 

decomposition of 1 ))( (| θL X F X  [see Appendix B for details]. If DoE incorporates bias information, 347 

estimate the LOO error through Eq. (45)  using, additionally, the response output Z  and the MLE 348 

regression vector *β  of Eq. (41). Note that many (perhaps all) of these quantities will be available from 349 

the GP calibration stage. Choose interpolation function ( , )iγ x x for the weight estimation and, if needed, 350 

ρ.  351 

Step 1 [Candidate experiments]:  Generate cn  candidate experiments 1,...
(

,
){ }

c

candi c
n cew n xX following a 352 

uniform distribution in dX .  353 

Step 2 [(Optional) Preliminary screening of candidate experiments using MSEw]: For all candiX  354 

evaluate (2 )( | , )c
newσ x X θ  utilizing Eq. (47) and ( )( )c

neww x  combining Eqs. (17) and (14). Retain only the 355 

r r cn a n  candidate experiments that correspond to the highest values of MSEw, 356 

2( )
MSE

( )( )Φ | , ( ) ( | , )( ) c c
n e

c
ne e ww w nw σΧ θ x x X θx , with ar being the desired percentage of candidate experiments, 357 

e.g. 10%,  that have larger weighted-variance values and so are more likely to correspond to the final 358 

optimal solution.  359 

Step 3 [Integration points]:  Generate qn  samples ( )
1,...,{ }

q

q
q nx  following a uniform distribution in dX  360 

to be used for the MCI.  Estimate ( )( )qw x  for all these samples combining Eqs. (17) and (14).  361 

Step 4 [Calculation of objective function]: For each candidate  (or retained from Step 2) experiment, 362 

define the updated basis function matrix ( ) )( , c
newF X x as in Eq. (9) , and then estimate the updated Cholesky 363 
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matrix ( )( , | )c
newL X x θ  using Eq. (49) and then the updated matrix  ( )( , | )c

R newM Χ x θ [see Appendix B for 364 

details]. Then for each of the integration points, calculate ( ) ( )2 ( | , , )q c
newσ x X x θ  using Eq. (48). Finally obtain 365 

the IMSEw objective function ( )
IMSE )Φ |( ,c

new Χx θ through MCI using Eq. (12). 366 

Step 5 [Final selection]: Select as new experiment *
newx  the one that provides the minimum value for 367 

( )
IMSE )Φ |( ,c

new Χx θ  among the cn (or rn if Step 2 was performed) candidate experiments evaluated in Step 368 

4.  369 

Based on the previous discussions on computational complexity, the most computationally demanding step 370 

of this process is Step 4, which requires updating of the variance and conducting MCI for each of the candidate 371 

experiments considered. The prescreening of experiments in Step 2 accommodates a reduction of this burden, 372 

as it removes candidate experiments that are not expected to correspond to the optimum, ignoring experiments 373 

in sub-domains of dX  with low current prediction variability (Kyprioti et al. 2020). Since Step 2 utilized an 374 

MSE-based objective function, its computational cost is minor. Of course the desire is to avoid impacting the 375 

final solution, i.e. experiment identified being same as if Step 2 were not utilized, something that evidently 376 

depends on the value of ra . In this paper ra =0.1 is used, as this value was shown to establish a reasonable 377 

compromise between two conflicting objectives: efficiency (smaller ra  desired) and robustness (larger ra  378 

desired) (Zhang et al. 2018). For the MSEw, the above optimization procedure is drastically simplified: only 379 

Steps 1 and 2 need to be implemented, with a single experiment, 1rn  , identified at Step 2.  380 

For identifying batch experiments, after Step 5, the identified *
newx  is augmented in X , the updated 381 

correlation vector *( | , , )newxr x X θ , basis function matrix  *( , )newxF Χ  and correlation matrix *( , | )newxR X θ  are 382 

estimated [according to Eqs. (8)-(10)], then the * )( |, newxX θL  is updated according to Eq. (49), and the matrix 383 

*( , | )nR ewxM Χ θ  related to the QR decomposition of * *1 )( , ( ,| )new new
 x θ xL X F X  is estimated. After these 384 

calculations, Steps 1-5 of the IMSEw-SE algorithm are repeated to obtain the next experiment within the batch 385 

selection. 386 
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Approximation of integrated mean square error measure 387 
Approximation of updated variance 388 

This section proposes an approximation of the updated predictive variance 2 ( | , , )newσ Xx θx . Objective is 389 

to approximate  2 ( | , , )newσ Xx θx  using information about the original variance 2 ( | , )σ Xx θ , avoiding therefore 390 

the requirement to update the GP characteristics for each newx  examined. Though this approximation is 391 

couched here within the IMSE/IMSEw adaptive DoE formulation, it can be utilized within any setting that 392 

requires use of  2 ( | , , )newσ Xx θx . Foundation of the approximation (Le Gratiet and Cannamela 2015) is the 393 

concept that when adding a new experient newx , there is a volume of influence where the prediction variance 394 

is reduced, i.e. the reduction is a concentrated around the location of the point newx , and it decays as the distance 395 

from newx  increases. To formalize this concept, define the variance reduction as:  396 

 2 2| , , ) ( | , ) ( | , , )(d new newV σ σ Xx x x xθ X θ X θx  (18) 397 

Le Gratiet & Cannamela (2015) proposed the proportionality approximation: 398 

 2

1

| , , ) ( )( | ,
x

d

n

d new new jX j

V d σ θ
 

 x
x x xX θ X θx  (19) 399 

where jθ  is the hyper-paremeter in the covariance kernel associated with the correlation length of j-th input 400 

dimension, 
1

xn

j
j

θ

  corresponds to the volume of influence of the new experiment, and 2 ( | , )newσ Xx θ represents 401 

the scale of variance reduction. Equivalently Eq. (19) may be viewed to represent an approximation of 402 

, )( | ,d newV Xx θx  that corresponds to a uniform reduction (no dependance on x) within a domaim of influence 403 

defined through representative lengths jθ  in each input dimension and centered around newx  for which the 404 

variance reduction is 2 ( | , )newσ Xx θ  [i.e. the previous variance] after the addition of the new experiment. It 405 

should be noted that the developments in Le Gratiet & Cannamela (2015) were couched within a multi-fidelity 406 

modeling context, while the presentation of Eq. (19) is simplified to an equivalent single-fidelity 407 

impementaiton. If used to approximate the IMSE criteria, the approximation of Eq.  (19) drastically reduces 408 
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the computaitonal burden, making it comparable to the computaitonal burden of the MSE DoE formulation 409 

(only evaluation of 2 ( | , )newσ Xx θ  needed). It has, though, two signifciant shortcomings: (i) since the volume 410 

of influence is constant across the domain, it becomes exactly equivalent to the MSE measure unless some 411 

boundary correction is employed; (ii) for better accomodating extension to the weighted measures (for example 412 

IMSEw), an approximation of  , )( | ,d newV Xx θx  is needed, instead of its integral, and in this case, a non-uniform 413 

expression (as function of x) seems more appropriate (may accommodate higher accuracy), since the actual  414 

, )( | ,d newV Xx θx  has a strong dependance on x. 415 

   To address these shortocomings, the variance reduction around the new experiment newx  is approximated to 416 

be proportional to the original variance for each point x, 2 ( | , )σ x X θ , and to a shape function that incorporates 417 

the influence of  newx  on x, i.e. 418 

 2| , , ) ( | , ) ( , | )(d new newV Aσ λX θx xx xx X θ  (20) 419 

where new( , | )A λx x  a distance-decaying shape function centered at newx  with hyper-parameter λ . The rate of 420 

reduction is assumed be proportational to the that of the correlation kernel with λ   representing a flexible 421 

exponent (selection discussed next), leading to 422 

 ( , | ) ( , | )λ
new newA λ R xxx θx  (21) 423 

Approximation of Eq. (20) using a shape function like the one in Eq. (21) greatly simplifies calculations since 424 

the only computationally complex component is 2 ( | , )σ x X θ , which, once calculated, can be reused for all 425 

newx  examined. Using in the DoE formulation the approximation of the updated variance :  426 

 2 2 2( | , , ) ( | , )[1 ( , | ])] ( | , )[1 ( , | )λ
new new newσ σA Rσ λ  X θ x X θ xx x X θ xx x x θ  (22) 427 

provides an easily computable approximate merit function. For example, for the IMSE, this provides the 428 

approximation   429 

 2
IMSE )Φ () ]( | , | , )[ |( 1 ( ),

d

λ λ
new newX

w Rσ d


 x
Xx x xΧ θ x θ x θ x   (23) 430 

which using the MCI setting examined previously in Eq. (12), can be estimated as 431 
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 ( ) ( ) ( )

1

2
IMSE

1| , ( |Φ ( ) ) , )[1 ( , |( ) ]
qn

q q

q

λ λ
new w

q

q
neR

n
w σ



 x x θΧ θ x x X θ x   (24) 432 

Since the computaitonally expensive component of IMSEΦ ( )| ,λ
new Χ θx  in Eq. (24) [the )2 (( | , )qσ x X θ  433 

contribution] is same for all candidate experimente examined, use of this approximaiton reduces the 434 

IMSEw/IMSE burden to levels similar to those of MSEw/MSE, which was the intended target. The 435 

corresponding DoE formulations will be distinguished by a superscript λ.   436 

The remaining question is, how good is the established approximation and if it can create significant 437 

vulnerabilities in erroneously identifying suboptimal new experiments? To provide an answer to this question, 438 

let’s consider first the asymptotic case of λ  , where ( , | )new λA xx  becomes a Dirac delta function 439 

)( newδ x x . The approximated volume of influence is then equivalent to 2 ( | , )newσ x X θ  which makes the 440 

approximated IMSE measure to be equivalent to the MSE. On the other hand, when λ  is zero, ( , | ) 1newA λ xx  441 

and the approximated volume of influence is 2 ( | , )σ x X θ , therefore, is independent to newx . Performing IMSE 442 

DoE using zero λ  becomes equivalent to a pure random sampling. Meanwhile, when 2λ  , the proposed 443 

approximation of Eq. (22) is exact under the assumption that no other training point exists in close proximity 444 

to x  and newx  (correlation between X and either of these two points is numerically zero). A proof of this is 445 

included in Appendix C, where it is additionally shown that values of 2λ  are guaranteed to provide higher 446 

accuracy approximations, and that as the number of experiments increases, larger values of λ  are expected to 447 

yield higher accuracy. This discussion shows that, depending on the value of λ , the quality of the 448 

approximation of Eq. (22) will change, and that the appropriate value is impacted by the characteristics of the 449 

problem, such as (as discussed in Appendix C) relative proximity to other training points, GP hyper-450 

parameters, and dimensionality of input. For this reason, rather than an a-priori selection, an adaptive selection 451 

of λ is proposed here and integrated within the adaptive DoE process, while 2λ is established as a lower 452 

bound constraint. This adaptive selection, detailed in the next section, incorporates different mitigate strategies, 453 

to avoid adoption of λ values that might lead to identification of lower quality experiments. 454 
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    Figure 3 revisits the example shown in Figure 2 to illustrate some concepts related to the variance 455 

approximation discussed here. In all subplots of this figure, contours of different functions are presented and, 456 

across these subplots, the addition of two different experiments (i.e., two selections for newx , denoted as Points 457 

A or B) are examined to illustrate their respective impact on the variance reduction , )( | ,d newV Xx θx . Part (a) 458 

of the figure presents contours for the weighted predictive variance [equivalent to part (f) in Figure 2]; part (b) 459 

shows the shape function ( , | )new λA xx  (using λ=2) for each of the candidate points; parts (c) and (d) show, 460 

respectively, the exact and approximate variance reductions after adding point A, whereas parts € and (f) 461 

replicate the presentation for point B. Comparing the quality of the approximation across the different 462 

candidate points, is it evident that when the new experiment is located close to multiple of existing experiments 463 

(Point B), the quality of the approximation is reduced. The contours for the actual variance reduction around 464 

Point B show greater concentration around it, indicating that λ>2 would have been a better option for the 465 

approximation. These trends verify the previous discussions, illustrating that the optimal selection of λ depends 466 

on the distribution of the existing experiments, stressing the importance of an adaptive selection for it. It is 467 

important to note, nevertheless, that the approximation in both instances (both points) examined in Figure 3 468 

seems to be qualitatively consistent in terms of variation patterns, demonstrating the potential accuracy of the 469 

variance approximation for guiding the DoE.   470 

Adaptive selection of λ 471 

The adaptive selection of λ  is accommodated by comparing the actual IMSEΦ )( | ,new Χ θx and approximate 472 

IMSEΦ )( | ,λ
newx Χ θ  merit functions for some initial DoE iterations, till confidence on the chosen λ  value is 473 

ascertained. Inevitably, this requires calculation of the exact IMSEΦ )( | ,new Χ θx  for these initial iterations. The 474 

adaptive selection is couched within the IMSEw-SE algorithm, and involves consideration of the following 475 

issues/criteria: 476 

(i) [Optimization] The optimization of λ  is repeated at each DoE iteration step when a credible value 477 

has not yet been identified, or when a critical deviation in the λ  value is expected due to the increased 478 

sample size. 479 
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(ii) [Sampling variability and running average] Differences of λ  across the iterations of the DoE need 480 

to be considered, originating from the fact that the number of training points for defining X changes 481 

or that a stochastic search is utilized in the experiment identification. Some weighted averaging across 482 

the iterations should be established for the promoted λ  to address the stochastic search features, 483 

whereas this averaging should give higher priority to recent iterations, to accommodate the natural 484 

variation of λ  as more experiments are added.  485 

(iii) [Objective function] Selection of an appropriate λ at each iteration requires definition of an 486 

appropriate objective function based on comparisons between IMSEΦ )( | ,new Χ θx  and IMSEΦ )( | ,λ
newx Χ θ487 

. Target here is to promote the same optimal experiment within the DoE, and not necessarily match 488 

the two merit functions. As such, the selection needs to focus on top rank candidate experiments. To 489 

accommodate (ii), the focus cannot be solely on the best experiment – setting as objective to facilitate 490 

only the same optimal newx  using IMSEΦ )( | ,λ
newx Χ θ - since such an approach will lead to a lack of 491 

robustness, with λ  optimally chosen only for the specific candidate samples utilized within the 492 

stochastic search.   493 

(iv)  [Credibility check] Convergence to assess credibility of λ  requires criteria that examine both the 494 

variability of the promoted λ  and, more importantly, the performance of the established 495 

approximation. For the latter, similar issues as identified in (iii) need to be considered for enhanced 496 

robustness.  497 

(v) [Re-optimization] Even after convergence is achieved, the credibility of λ  needs to be re-evaluated 498 

at some point, to account for the fact that the appropriate value of λ  is dependent, as explained earlier, 499 

on the training point distribution and the GP characteristics. If reduced performance is identified, then 500 

calibration needs to be repeated.   501 

Note that topics (ii) and (v) are the primary measures protecting against the use of a λ value that leads to 502 

suboptimal experiments. All these topics are discussed next, before a comprehensive algorithm is presented in 503 

the next section.  504 
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Initially, the objective function for the selection of λ  at each iteration is discussed. For guiding this 505 

selection we focus on some subset of the best performing experiments within candidate set 506 

1,...
(

,
){ }

c

candi c
n cew n xX  of the IMSEw-SE algorithm. Note that if Step 2 of the algorithm is implemented then the 507 

subset is selected within the candidate set of the retained experiments with nc replaced by nr in all subsequent 508 

discussions. For the reasons explained in topic (iii) above, we are interested in not only matching the optimal 509 

solution, but in obtaining a consistent correspondence between the actual IMSEΦ )( | ,new Χ θx  or approximate 510 

IMSE )Φ ( | ,λ
newx Χ θ  criteria through a larger subset of them. This subset corresponds to the lowest p-percentile 511 

values of each of the objective functions and includes a total of np top-ranking candidate experiments, with512 

p cn n p     and .   representing the floor function. Let min [.]pn  denote the npth smallest value of the set 513 

included within the brackets. Then, the subsets that includes the lowest p-percentile value of candidate 514 

experiments according to IMSEΦ )( | ,new Χ θx  corresponds to:  515 

 ,
( )

I S 1 ..E .,M{ Φ ) min ]| | [( , { ( | ,Φ }})p

c

n
c

candi c
new new IMSE newp n X Χ θ xx x ΧX θ  (25) 516 

The respective subset utilizing approximate objective function for a given λ value is: 517 

 ( )
IMS S 1,...,E IM E{ Φ ) min [ Φ ) }]}| ( | , { ( | , }

c

pncandi c
new new new

λ λ λ
p c n X x x Χx Χ θ θX  (26) 518 

If the approximation IMSE )Φ ( | ,λ
newx Χ θ  yields consistent ranking of experiments as IMSEΦ )( | ,new Χ θx , 519 

which is the ideal scenario, then pX  and λ
pX  include identical experiments for any p value. The discrepancy 520 

between the two sets needs to be quantified with respect to their performance for the actual objective function 521 

IMSEΦ )( | ,new Χ θx , whereas to establish a comparison across the entire set, the corresponding empirical 522 

cumulative distribution function (CDF) is utilized. For each of the sets, pX  and λ
pX , this CDF describes the 523 

distribution of the actual objective function value IMSEΦ )( | ,new Χ θx  within the set and is given, respectively, 524 

by:   525 

 IMSE[ ( | ,1( ) Φ ) ]
new p

p new
p

F φ φ
n 

 
x X

1 x Χ θ  (27) 526 
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 IMSE
1( ) Φ )[ ( | , ]

λ
new p

λ
p new

p

F φ φ
n 

 
x X

1 x Χ θ  (28) 527 

where ][.1  is the indicator function, which is 1 if the quantity inside the brackets holds, else it is zero. Note 528 

that ( )λ
pF φ  may be viewed as projection of the λ

pX  set performance on the space of  IMSEΦ )( | ,new Χ θx , 529 

whereas  ( ) ( )λ
p pF φ F φ  always holds since set pX  by design includes the lowest possible objective function 530 

values.  The selection of λ can be based on the minimization of the gap between the two CDFs:    531 

  max

min

* (arg min ) ( )λ
p p

φ

λ φ
λ F φ F φ φd   (29) 532 

where minφ  corresponds to the smallest IMSEΦ )( | ,new Χ θx  value within set pX  and maxφ  to the largest 533 

IMSEΦ )( | ,new Χ θx  value within set λ
pX . Figure 4 illustrates these concepts.  Note that optimization of Eq. (29) 534 

can be performed by a discrete search, as will be detailed later.  535 

As discussed in topic (ii) above, the optimal λ  values identified through Eq. (29) will have variability 536 

across the DoE iterations, and some averaging needs to be performed to address the influence of the stochastic 537 

search features, while also incorporating weights to give higher priority to recent estimates, to better capture 538 

the underlying trends as the number of experiments increases. Let *
iλ .  denote the optimal λ  value obtained at 539 

i-th iteration, then using linearly decreasing weights within a window of L iterations, the weighted average 540 

value of λ  at k-th iteration is:  541 

 

*

1

1

k

i
i k L

k

i k L

i

k

i

λγ
λ

γ

  

  





 (30) 542 

with weights given by:   543 

 ( )
i

i k Lγ
L

 
  (31) 544 

The λ  given by Eq. (30) represents the estimate for the variance approximation exponent at the current 545 

DoE iteration. The quality of this approximation, to assess convergence according to topic (iv) above, is 546 
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expressed through two different credibility criteria. The first one examines the coefficient of variation of kλ  547 

within the window L, given by:   548 

 

2

1 1

1

1 1

1

k k

i k L j k L

i

k
λ k

i k L

i j

cv
λ λ

L L

λ
L

     

  

   


  
 


 (32) 549 

If this coefficient of variation is below some target threshold convε  then the estimate of λ  may be considered 550 

stable, indicating convergence. Convergence of λ is not assessed till at least L estimates of it are available to 551 

accommodate the weighting average calculation. The second credibility criterion focuses on the performance 552 

of the approximated IMSEw offered through kλ . Similarly to the definition of the objective function for 553 

selection of λ , the comparison is established across some subset of top-ranked candidate experiments. If the 554 

top s-percentile experiments are utilized, corresponding to total of s cn n s    experiments, then the subsets of 555 

interest sX  and kλ
sX  are given by Eqs. (25) and (26), respectively, using ns instead of np. The performance of 556 

kλ  for assessing convergence examines how suboptimal the solutions within set kλ
sX are compared to the 557 

solutions in set sX .  The worst performance within each set is considered. The gap between the two sets, since 558 

values in sX  are guaranteed to outperform values in kλ
sX , is normalized by the average performance in set sX559 

, leading to convergence criterion:  560 
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 (33) 561 

When the performance criterion is below some target threshold perfε  then the estimate of λ  may be considered 562 

to provide an accurate approximation of the actual objective function. 563 

Once the criteria related to the quantities in Eqs. (32) and (33) are satisfied, convergence has been 564 

established and the kλ  value may be considered to provide a credible approximation to the IMSEw estimation. 565 
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As discussed in topic (v) above, the most appropriate value of λ  is expected to change across the DoE 566 

iterations, and for this reason, the identification of an optimal λ  according to Eq. (29) and the estimation of 567 

performance according to Eq. (33) for assessing convergence should be repeated after λN iterations. If λ  is no 568 

longer assessed as credible, then calibration of λ  is repeated in each iteration till convergence is re-established.  569 

Algorithm for adaptive selection of λ 570 

  Combining the concepts discussed in the previous section the DoE algorithm utilizing an adaptive 571 

approximation for IMSEw is established. This algorithm will be denoted IMSEw-SA (Sequential 572 

Approximation) herein, and is summarized in Figure 5. A flag/counter if is used to assess convergence for the 573 

value of λ, with initial value set equal to 0. Algorithm also requires selection of tuning parameters convε , perfε574 

, L, λN , s (or equivalently ns), p (or equivalently np) for the adaptive λ selection. Steps 0-2 of the algorithm are 575 

identical to IMSEw-SE presented earlier, while the remaining are modified as follows:   576 

Step 3.1 [MCI integration]: Generate qn  samples ( )
1,...,{ }

q

q
q nx  following a uniform distribution in dX  577 

to be used for the MCI.  Estimate ( )( )qw x  for all these samples combining Eqs. (17) and (14), and 578 

calculate variance  )2 (( | , )qσ x X θ  using Eq.(47).  579 

Step 3.2 [Correlation function for candidate experiments and integration points]: For each candidate 580 

(or retained from Step 2) experiment, estimate the correlation between it and each of the integration points,581 

( ) ( ) | )( ,q c
newR x x θ , for the chosen GP kernel.  582 

Step 4.1 [Calibrate λ]: If [1, ]λfi N  then proceed to Step 4.5. Else if 0fi  , perform Step 4 of the 583 

original IMSEw-SE algorithm to estimate ( )
IMSEΦ ( )c

newx  for each ( )c
newx , and then update the promoted value 584 

of λ as follows. Establish a range of candidate  λ values (with λ>2 as discussed earlier) and estimate 585 

( )
IMSEΦ ( )λ c

newx   for each ( )c
newx  of the candidate (or retained experiments) using Eq. (24). Note that the only 586 

component impacted by λ in this equation is () )(( , | )c λ
new

qR x θx  , and so calculation even for large number 587 
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of candidates λ values can be efficiently performed. Use ( )
IMSEΦ ( )c

newx  and ( )
IMSEΦ ( )λ c

newx  to define sets pX  588 

[Eq. (25)] and λ
pX  [Eq. (26)] (for each λ) and CDF approximations ( )pF φ  [Eq. (27)]  and ( )λ

pF φ  [Eq. 589 

(28)] (for each λ), and perform optimization of Eq. (29). The latter is established using a discrete search, 590 

selecting the candidate λ value that yields the smallest gap between  ( )pF φ  and ( )λ
pF φ . Denote the 591 

identified λ value as *
kλ . 592 

Step 4.2 [Moving average λ estimate]: Calculate the moving average value of kλ  using Eq. (30)  593 

Step 4.3 [Assessing stability of λ estimate]: Estimate the coefficient of variation k
λcv  using Eq. (32). If  594 

k
λ convcv ε then the estimate of λ is not yet stable. Proceed to Step 5.  595 

Step 4.4 [Assessing quality of IMSEw approximation]: Estimate ( )
IMSEΦ ( )k c

new
λ x  for each ( )c

newx  of the 596 

candidate (or retained experiments) using Eq. (24). Use ( )
IMSEΦ ( )c

newx  (from Step 4.1) and ( )
IMSEΦ ( )k c

new
λ x  to 597 

define the sets sX  [modified Eq. (25) for np=ns ] and kλ
sX  [Eq. (26) for np=ns]. Estimate the indicator of 598 

the quality of the IMSEw approximation, )( kg λ , using Eq. (33). If )( k perfg ελ   then estimate of λ is not 599 

credible; set 0fi  . If )( k perfg ελ   convergence to a credible kλ  has been established; set 1fi   and 600 

utilize kλ  for the IMSEw approximation that will be used in the next Nλ DoE iterations. Proceed to Step 601 

5. 602 

Step 4.4 [IMSEw approximation]: Using the kλ  identified as credible in the previous DoE iteration in 603 

which the λ calibration was updated, estimate ( )
IMSEΦ ( )k c

new
λ x  for each ( )c

newx  of the candidate (or retained 604 

experiments) using  Eq. (24). Set 1f fi i   to keep track of the number of iterations since the previous 605 

λ calibration.  606 
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Step 5 [Final selection] If Step 4.1 was performed, select as new experiment the one that provides the 607 

minimum value for ( )
IMSEΦ ( )c

newx . Else, select as new experiment the one that provides the minimum value 608 

for λ ( )
IMSEΦ )( c

newx . 609 

Note that dependence on ,Χ θ  were omitted in the notations of IMSEΦ  ,  λ
IMSEΦ  and IMSEΦ kλ  within the 610 

algorithm description for brevity. As also shown in Figure 5, the updated Step 4 has two alternative paths. If 611 

convergence to a credible λ value has not yet been established, or if the maximum number of steps Nλ for the 612 

use of convergent values are exceeded, then Steps 4.1-4.4 are performed, with Step 4.1 representing the only 613 

computational demanding one within the IMSEw-SA algorithm, since it requires the calculation of the exact 614 

IMSEw. Alternatively, the IMSEw approximation is directly used in Step 4.5, adopting the previously converged 615 

λ value, providing a dramatic computational reduction, as discussed earlier, for the DoE. Note that if λ is chosen 616 

a priori, rather than being estimated adaptively, then Step 4 of the IMSEw-SA algorithm would always 617 

correspond to Step 4.5. The algorithm involves the following tuning parameters as summarized earlier: convε , 618 

perfε , L, λN , s, p. The values used in the case studies discussed in this paper are convε =10%, perfε =1%, L=10, 619 

Nλ=25, s=10% and p=5%, with additional constraints that value of np and ns correspond to at least 10 samples. 620 

Only small sensitivity was identified to these parameter values in terms of performance, though, as will be 621 

discussed in the illustrative examples section these parameters have an effect on convergence to a credible λ 622 

and therefore on computational efficiency. 623 

Adaptive DoE using multi-criteria search  624 
The second advancement established in this paper for the adaptive DoE is multi-criteria search strategy 625 

that established an alternative balance between the variance (exploration) and bias (exploitation) selection 626 

criteria while simultaneously promoting a seamless identification of batch experiments. Foundation of the 627 

strategy is to consider the bias and variance criteria as separate objectives and formulate a bi-objective DoE. 628 

This problem does not necessarily have a single solution, and so the identification provides the Pareto optimal 629 

experiments. Let varΦ )( newx  denote the merit function related to the GP variance and bias )(Φ newx  the merit 630 
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function related to the GP bias and assume without a loss of generality that optimality is expressed with respect 631 

to minimization. Note that both these functions have dependence on X and θ but for notational simplicity this 632 

dependence will not be explicitly denoted. The set of Pareto optimal experiments, denoted herein as PFX , is 633 

obtained though the multi-objective optimization problem: 634 

 var biasΦ ),Φ )}arg min{ ( (
d

new

F new ew
X

P n



x

X x x   (34) 635 

A candidate experiment is termed dominant and belongs in Pareto set PFX  if there is no experiment that 636 

simultaneously improves both objectives. The representation of the set PFX in the merit function space 637 

var biasΦ ),Φ )}{ ( (new newx x  corresponds to the Pareto front. An illustration is shown in Figure 6(b), The numerical 638 

details and computational complexity for the identification of the Pareto set through Eq. (34) will be discussed 639 

later, when the overall multi-objective algorithm is discussed.  640 

Though any bias and variance–based functions can be used in the bi-objective identification, the 641 

discussions here are couched to utilizing the IMSE, given by Eq. (7), and LOOCV squared error, given by  Eq. 642 

(14), leading to:    643 

 var IMSEΦ |( ) Φ ) ( ,new new Χx θx   (35) 644 

 2
bias ( (Φ ))) (c

new w
v

neex x   (36) 645 

where, note, that for the IMSE function the weights w(x) do not incorporate any information for the metamodel 646 

bias since this is explicitly considered in the  bias )(Φ newx  objective.  647 

The set PFX  identified through Eq. (34) represents the candidate set for a batch selection of the next 648 

experiments. The direct use of this entire set as new experiments is not recommended, though, for two reasons: 649 

(i) first because the number of experiments in this set, denoted by PFN  herein, might be larger than the number 650 

of batch experiments desired, denoted BN  herein; (ii) second because the varΦ )( newx  has not considered the 651 

simultaneous addition of all the new experiments, since it separately examined the impact on the GP variance 652 

of each experiment. Issue (ii) is especially important. It means that Pareto set may contain experiments in 653 

close-proximity to one another, each substantially benefiting the other(s) if/when added in the pool of available 654 



 

 29 

experiments, and making the addition of all of them potentially redundant. To address this vulnerability, while 655 

also accommodating topic (i) above, a sequential search within the Pareto set is promoted: a single experiment 656 

is chosen from this set, the GP variance is updated considering the addition of the new experiment, the variance-657 

based merit function for all remaining experiments in the Pareto set is adjusted based on this update, and then 658 

the next experiment is identified. Unfortunately, a similar update cannot be established for the bias merit 659 

function. To mathematically describe this recursive addition of experiments, we will herein denote by ( )j
newx   the 660 

experiment (member of PFX ) identified in the jth iteration, by ~ j
PFX  the remaining Pareto set excluding all 661 

experiments identified up to the jth iteration,  by jX  the set of available experiments obtained by adding to X 662 

the selected experiments up to the jth iteration, and by ( )
varΦ j  the updated variance-based objective using  jX . 663 

For selecting the single experiment that best balances the two objectives at each iteration alternative criteria 664 

exist (Kim, I. Y. and De Weck 2005, Gunantara 2018), with one of the most popular ones, and the one chosen 665 

here, being the selection of the point with minimum distance to the Utopia point in the Pareto front. The latter 666 

corresponds to the unattainable point beyond the Pareto front that yields the minimum of both objective 667 

functions, as also shown in Figure 6(b). Establishing an appropriate normalization for each merit function with 668 

respect to its scale within the Pareto front, the objective function for selecting the single Pareto optimal design 669 

at the j+1 iteration is:   670 

~ ~

~ ~ ~ ~

( ) ( )
var new var new bias new bias new

new ( ) ( )
var new var new bias new bias new

2 2

( )
Φ Φ Φ

Φ

( ) min { ( )} ( ) min { ( )}
( )

max { ( )} min { ( )} max { ( )Φ Φ} min { ( )}

Φ

Φ
j j

PF PF

j j j j
PF PF PF PF

j j

j
j

jPFF
                  

X X

X X X X

x x x x
x

x x x x
  (37) 671 

where ~max {.}j
PFX

 and ~min {.}j
PFX

 correspond to the maximum and minimum, respectively, of the quantity in 672 

the brackets across the remaining Pareto set ~ j
PFX . The next experiment is identified by: 673 

 
new

~

(
n

1) )
e

(
warg min ( )

j
PF

j j
new PFF



 
Xx

x x  (38) 674 

Once this experiment is identified, the updated GP variance ( 1)2 ( | , , )j
new

jσ xx X θ  by the addition of this single 675 

new experiment can be obtained by Eq. (11) and the efficient procedure discussed in Appendix B. Use of 676 

( 1)2 ( | , , )j
new

jσ xx X θ  then leads to the updated estimate of  ( 1)
var new( )Φ j x  for the next iteration.  677 
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To accommodate the recursive identification, if the number of Pareto points is smaller than the target (678 

BPFN N ) then the Pareto set can be expanded by considering dominant designs of higher rank (Deb et al. 679 

2002). This is established by identifying dominant designs among the remaining candidate experiments, 680 

removing the ones already identified as belonging to the Pareto set.   681 

Figure 7 revisits the example used previously in Figure 2 and illustrates aspects of the multi-objective 682 

DoE for selection of a batch of 5 experiments, focusing on how the specifics of the bias interpolation approach 683 

affect the formulation. The two different options for defining w(x) discussed previously are examined, the NN 684 

interpolation given by Eq. (15) and the exponential decay kernel smoothing given by Eq. (16), abbreviated as 685 

E in this figure. The dominated solutions, the identified Pareto front and the batch of 5 experiments are shown 686 

in the objective function space in parts (a) and (b) of this figure for the NN and E implementations, respectively. 687 

Part (c) and (d) show the contours of biasΦ ( )x  as well as the Pareto solutions and chosen batch of experiments, 688 

for the same cases. Note that for NN interpolation, these contours represent, equivalently, the Voronoi cells 689 

for the training points. The NN interpolation leads to identification of a single dominant solution in each of the 690 

Voronoi cells, leading to a sparsely populated Pareto front and, ultimately, to a final batch of experiments that 691 

is more scattered across the entire domain, and is not concentrated in regions with higher bias (compare to the 692 

accuracy of the GP predictions depicted in Figure 2 earlier). Equivalently, this means that the DoE will place 693 

greater emphasis on exploration rather than exploitation. In contrast, the kernel smoothing using the 694 

exponential decay function identifies a larger number of dominant solutions, clustered at high bias and/or 695 

variance locations, as evident in part (d) of Figure 7. The final batch of experiments are located close to 696 

domains with higher bias, depicting a stronger exploitation tendency. 697 

Finally, the multi-objective DoE using IMSE as variance measure, is implemented through the following 698 

algorithm denoted herein as IMSE-MB (Multi-objective Batch). To circumvent the well-known higher 699 

computational burden associated with solving multi-objective optimization problems, algorithm adopts a 700 

random search approach, similar to the one established for IMSEw-SE. Specifically, Steps 0-1 and 3 of the 701 
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algorithm are identical to IMSEw-SE, while Step 2 is removed since the behavior across the entire Pareto set is 702 

warranted. The remaining steps are modified as follows:   703 

Step 4.1 [Calculation of variance-based merit function]: For each candidate experiment perform Step 704 

4 of the original IMSEw-SE utilizing ( ) 1w x  to obtain ( )
IMSE )Φ |( ,c

new Χx θ . Set this equal to variance 705 

objective 0 ( )
var )Φ ( c

newx  and set experiment counter j=0.  706 

Step 4.2 [Calculation of bias objective function]: For each candidate  estimate 2( ( ))cve x  using Eq. 707 

(14) to obtain corresponding bias objective ( )
biasΦ )( c

newx  as in Eq.  (36).   708 

Step 4.3 [Pareto set selection]: Identify the Pareto set PFX  of dominant designs within  candiX  using 709 

merit functions from Steps 4.1. and 4.2 . If number of experiments in this set NPF is not sufficient (does 710 

not exceed target NB) expand selection to consider higher rank dominance till PFX includes a sufficient 711 

number of experiments. This defined ultimately set ~0
PFX  712 

Step 5.1 [Selection of next experiment]:  For all points newx  in set ~ j
PFX  estimate distance from utopia 713 

point )
ew

(
n( )j

PFF x  using Eq. (37) and merit functions bias )(Φ newx  and ( )
var )Φ (j c

newx . Select the next 714 

experiment ( 1)j
new
x  though Eq. (38).  715 

Step 5.2 [Stopping criteria for batch selection]: If j+1=NB stop, else proceed to Step 5.3.  716 

Step 5.3 [Updating of sets and matrices]:  Remove ( 1)j
new
x  from ~ j

PFX  to obtain ~ 1j
PF

X and add it to jX  717 

to obtain 1jX .Use 1jX X  and ( 1)j
new new

x x  in Eqs. (8)-(10) and Eq. (49) to obtain, respectively, the 718 

updated correlation vector 1( | , )jr x X θ , basis function matrix  1( )jF X , correlation matrix 1( | )jR X θ  719 

and Cholesky factorization 1( | )jL X θ  and estimate matrix 1( | )j
R

M X θ  related to the QR 720 

decomposition of 1 1 1( ( )| )j j  θL X F X .  721 

Step 5.4 [Updating of variance based merit function]:  Use the updated quantities from Step 5.3 to 722 

calculate ( ) 1 ( )2 ( | , , )q j c
newσ x X x θ   using Eq. (48) for each of the integration points and each ( )c

newx  in ~ 1j
PF

X723 
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. Using this variance obtain the IMSE objective function ( )
IMSE

1( )Φ | ,jc
new

Xx θ through MCI using Eq. 724 

(12) with . Set this equal to variance objective  and set experiment counter j=j+1. Proceed to Step 5.1.  725 

The algorithm is summarized in Figure 8. Note that since the updating and search in Step 5 is constrained 726 

always within the previously retained Pareto set , the computational demanding step of this algorithm is the 727 

original estimation of IMSE for  candidate experiments (Step 4.1). This reduces the overall computational 728 

burden to be similar to the single-objective optimization implementations discussed earlier.  729 

Illustrative examples 730 
Case study examples description  731 

The proposed DoE advancements from the previous two sections are showcased using four numerical 732 

examples. The input dimension in these examples ranges from nx=2 to nx=9, and each example poses different 733 

challenges with respect to the nonlinearity of the input-to-output mapping. Three of the examples are taken 734 

directly from (Kyprioti et al. 2020), while the other one is first introduced here. The first two examples 735 

correspond to analytic benchmark functions: the two-dimensional cosine weighted Gaussian mixture function 736 

(nx=2) inspired by (Jiang et al. 2015), referenced herein as ‘WtGMix’, and the six-dimensional Harman 737 

function (nx=6) proposed by (Dixon and Szegö 1978), referenced herein as ‘Hartman 6’. Details for these 738 

examples and for the input domain considered Xd are included in (Kyprioti et al. 2020). Note that the WtGMix 739 

corresponds to the function that was used earlier (Figures 2, 3, and 7), to illustrate some of the DoE concepts. 740 

The remaining two examples represent practical applications from the earthquake engineering field. The first 741 

one is four-dimensional function (nx=4) corresponding to the standard deviation of the normalized base shear 742 

of a single degree-of-freedom (SDoF) oscillator exposed to stationary stochastic seismic excitation modeled 743 

by the Kanai-Tajimi power spectrum (Kanai 1957, Tajimi 1960). The output function in this case is expressed 744 

as  (Lutes and Sarkani 2004): 745 
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where the four input parameters represent the frequency (ωs) and damping (ζs) of the SDoF oscillator, and the 747 

frequency (ωg) and damping (ζg) of the Kanai-Tajimi spectrum used to describe the earthquake acceleration 748 

input. The range examined for these values, defining Xd, is [2,6]  rad/secgω π , [0.1,0.6]gζ   , 749 

[1,13.5]  rad/secsω π  and [0.02,0.06]sζ  . This example will be referenced herein as ‘SDoF-KT’. The last 750 

example, termed ‘Isolation’, corresponds to the displacement of the base of a three-story base isolated structure 751 

exposed to non-stationary near-fault seismic excitation (Kyprioti et al. 2020). Numerical details for the isolated 752 

structure and the excitation are included in (Jia and Taflanidis 2014). This case corresponds to a to nine-753 

dimensional example (nx=9) with inputs including five structural and isolation parameters and four additional 754 

parameters related to the earthquake excitation. Details for the definition of the input, including ranges 755 

considered, are included in (Kyprioti et al. 2020).  756 

Surrogate modeling and DoE details  757 
For the GP, a constant basis function f(x)=[1] and a generalized exponential correlation function (Kyprioti 758 

et al. 2020, Rasmussen and Nickisch 2010) are chosen, while hyper-parameter optimization is performed using 759 

maximum likelihood estimation. The metamodel accuracy is evaluated using a test-sample validation. This is 760 

preferred to the cross-validation setting discussed earlier, as it avoids dependence of the DoE validation on the 761 

specific set of simulation experiments chosen (Kleijnen and Van Beers 2022, Zhang and Taflanidis 2018). 762 

Since objective of the validation is to compare across the different DoE strategies, the test-sample 763 

implementation is necessary for accommodating consistency. Using a set of Nt points uniformly distributed in 764 

Xd, the normalized root mean squared error validation metric in this case is given by: 765 

 1
( )

( ) )

) 2

(
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 (40) 766 

where ( )( ){ , ; 1,..., }t
kk z k Nx  represents the input-output test-sample set, ( )max { }k

k z  and ( )min { }k
k z  denote 767 

the maximum and minimum values of the response test samples, and the value of Nt is chosen here as 5000.  768 

All examined DoE strategies start with ninit experiments, obtained through Latin Hypercube space-filing 769 

sampling in Xd, and sequentially add experiments, either one at-a-time or in batches of nb experiments, till the 770 
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desired number of experiments nfin is reached. Following the recommendations in (Kyprioti et al. 2020), the 771 

initial ninit and final nfin experiment sizes are chosen so that the metamodel starts with low accuracy and becomes 772 

highly accurate at the end. The details for each example are: WtGMix ninit= 15 and nfin= 125, SDoF-KT  ninit= 773 

30 and nfin= 220, Hartman6 ninit= 30 and nfin= 200, Isolation ninit= 25 and nfin= 250. Detailed rational for these 774 

choices is included in (Kyprioti et al. 2020).  775 

The Nq for the MCI is selected to establish a small coefficient of variation for each example examined, 776 

chosen as Nq=5000 for all problems, while the number of candidate experiments nc is chosen proportional to 777 

the dimensionality of each example, with goal to balance between computational efficiency and adequate 778 

exploration of the Xd domain. The details for each example are: WtMixG nc= 1000, SDoF-KT nc=3000, 779 

Hartman6 nc= 5000, and Isolation nc= 7000. The DoE implementation is repeated 30 times for each case, using 780 

different samples for the initialization and the DoE identification. Results will be reported typically for the 781 

average DoE accuracy across these trials, though some variability trends will be also briefly discussed. For 782 

each trial, the same samples have been utilized across all DoE strategies to facilitate a consistent comparison.   783 

The DoE variants examined are reviewed in Table 1. These correspond to: (i) the standard IMSE and MSE 784 

implementations;  (ii) previous formulations to incorporate bias weights (Kyprioti et al. 2020) that serve as the 785 

foundation of the proposed here advances,; (iii) as well as the advanced implementations established in this 786 

manuscript. For accommodating the incorporation of the bias two different interpolation functions are 787 

considered, the NN interpolation given by Eq. (15) and the exponential decay kernel smoothing given by Eq. 788 

(16). These will be distinguished, respectively, by abbreviation NN and E, and will be denoted in parenthesis 789 

after the name of the DoE variant, when needed. For example, IMSEw-(V) denotes the IMSEw implementation 790 

with bias estimated using NN interpolation (i.e., Voronoi tessellation) and IMSEw-(E) denotes the alternative 791 

implementation using exponential decay smoothing. For IMSEw, implementation for batch selection of 792 

experiments is also considered. In this case the adjustment using different ρ values to balance between 793 

exploration and exploitation is also examined, to accommodate a comparison to the multi-criteria DoE 794 

implementation. Following the recommendations in (Kyprioti et al. 2020) the value of ρ is modified across 795 

each batch of 5 experiments, with the first three corresponding to ρ=1 (combination of exploration and 796 
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exploitation) and the remaining two to ρ=0 (pure exploration). The DoE variants corresponding to batch IMSEw 797 

will be denoted as B-IMSEw  and Bρ-IMSEw for the implementation without or with the ρ adjustments, 798 

respectively. For the IMSEw approximation employed through the IMSEw-SA algorithm, two different 799 

formulations are examined, corresponding to the adaptive selection of λ or the use of a default value of λ= 2nx. 800 

This default value for λ has been chosen after examining performance for multiple case studies, including the 801 

ones presented in this manuscript. These variants will be denoted as Ad-IMSEw and Ac-IMSEw for the 802 

implementations with and without adaptive selection of λ, respectively. Finally, the multi-objective IMSEw 803 

implementation, employed through the IMSEw-MB algorithm, will be denoted as MB-IMSEw.  804 

Note that variants (MSEw, IMSEw, B-IMSEw and Bρ-IMSEw) represent the aforementioned previously 805 

established formulations (Kyprioti et al. 2020), and should serve as the baseline reference against which the 806 

efficiency of the proposed here advances should be compared to. Within this context, the non-weighted variants 807 

(MSE, IMSE) represent classical baseline approaches for assessing the benefits of incorporating the bias 808 

weights. 809 

Results and discussion 810 
Results are separately presented for the DoE variants corresponding to sequential experiment selection and 811 

batch experiment selection. These two sets of results accommodate, respectively, evaluation of the proposed 812 

advancements related to the IMSEw approximation and the multi-criteria DoE formulation. Results are 813 

primarily presented through the variation of the metamodel accuracy with respect to the number of experiments 814 

n. Emphasis is placed on the average performance across the 30 trials. 815 

Figures 9 and 10 present results for the variants corresponding to sequential experiment selection for the 816 

two different choices for the bias interpolation function, (NN) in Figure 9 and (E) in Figure 10. Figure 11 817 

presents details for the computational savings established through the Ad-IMSEw formulation, defined as the 818 

average (across the 30 trials) acceptance ratio of the λ approximation, i.e. the frequency of omitting the exact 819 

IMSEw evaluation in the IMSEw-SA algorithm (omitting Step 4.1). This is presented as function of the DoE 820 

iteration, which is equal to n-ninit (total experiments minus initial experiments). The overall efficiency, 821 

corresponding to the mean value of the efficiency across the DoE iterations is also reported in this figure. The 822 
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first 10 iterations are omitted in estimating the overall efficiency, since convergence to a credible λ is not 823 

possible before that point based on the tuning parameter selections presented previously. Figure 12 investigates 824 

further the impact of tuning parameters for the for Ad-IMSEw performance,  Figure 13 shows the variation of 825 

the average (over the 30 trials) value of kλ  for the SDoF-KT example. Figure 14 presents results for the DoE 826 

variants corresponding to batch-selection of experiments. Figure 15 facilitates a comparison of the different 827 

interpolation functions, gathering some of the results presented earlier (in Figures 9, 10 and 14) in one figure. 828 

Finally, the variability of the DoE performance across the 30 trials is investigated in Figure 16, showing 829 

boxplots of the metamodel accuracy when nfin has been reached, for specific DoE variants of interest.  830 

Comparing first the standard implementations of MSE, MSEw, IMSE, and IMSEw in Figure 9 and Figure 831 

10, earlier discussions and past literature results are easily verified: IMSE outperforms MSE, in some 832 

applications by a very large margin, whereas inclusion of bias weight can improve performance. The benefit 833 

of introducing the bias weight is more evident in the examples with significant localized nonlinearities 834 

(WtGMix and Hartman6) (Kyprioti et al. 2020). One exception is Figure 9(c) for which IMSEw and IMSE have 835 

similar performance. This is possibly due to the mild local nonlinearity of the SDoF-KT application. 836 

The comparisons across Figures 9 and 10 showcase clearly the preference of IMSE-based DoE schemes 837 

over the MSE-based ones. As also discussed earlier, this performance improvement comes at the expense of a 838 

larger computational burden. The approximations for IMSE establish a balance between the DoE quality of 839 

IMSE-based schemes (Figures 9 and 10) and the computational efficiency of MSE-based schemes (Figure 11). 840 

Both Ad-IMSEw and Ac-IMSEw outperform the baseline MSEw by a significant margin and provide similar DoE 841 

quality as IMSE. Identical patterns hold for the implementations without the bias weight, i.e. comparing Ad-842 

IMSE and  Ac-IMSE to MSE in these figures, though the emphasis in the discussions herein is on the bias-843 

weighted schemes since they represent the preferred adaptive DoE formulation. 844 

Especially the improvement of Ac-IMSEw over MSEw is very noteworthy since, recall, these DoE 845 

formulations have practically identical computational burden. This clearly showcases the advantages the 846 

proposed Ac-IMSEw scheme can offer over existing alternative formulations. As expected, the adaptive λ 847 

selection (Ad-IMSEw) outperforms the formulation with a prescribed λ (Ac-IMSEw), in some instances with a 848 
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noticeable margin. This comes of course at the expense of a larger computational burden, as shown in Figure 849 

11. Results in this figure show that in earlier DoE iterations the value of λ is not deemed credible (acceptance 850 

ratio of the λ approximation has lower values) whereas even in later iterations re-evaluation of the 851 

approximation quality or divergence from a credible λ are observed (acceptance ratio of the λ approximation 852 

lower than 1). Recall in all such instances estimation of the exact IMSEw estimation is warranted. Details are, 853 

as expected, different across the case study examples, with computational savings in range of 0.45~0.90. This 854 

corresponds to a significant improvement (10~55% of the original computations needed only) when compared 855 

to the IMSEw formulation, but do represent an additional computational burden when compared against the Ac-856 

IMSEw formulation which tends to give, as mentioned earlier, similar performance. Note than in some (few) 857 

instances Ac-IMSEw even outperforms Ad-IMSEw. Though this is not expected behavior, it may occur due to 858 

overfitting, since the adaptive selection for λ is the optimal for the current DoE iteration but is implemented 859 

for future iterations, and is not guaranteed to be necessarily optimal for those.   860 

Of course, it needs to be emphasized that Ad-IMSEw enjoys significant robustness over Ac-IMSEw, since, 861 

as discussed earlier, the promoted choice of λ=2nx is not guaranteed to be near-optimal for every application, 862 

and can potentially lead to vulnerabilities within the DoE by promoting low quality experiments. Though to 863 

the experience of the authors, this selection has performed very well in all examples we have tested so far, it 864 

might be a poor choice for some other applications. This robustness advantage that Ad-IMSEw offers is 865 

significant. This discussion shows that, despite the similar performance of Ad-IMSEw and Ac-IMSEw and the 866 

higher computational burden of the former, the Ad-IMSEw is the recommended choice, with a modification, 867 

though, of its tuning parameters to promote higher computational efficiency (reduce tolerances for 868 

convergence). This is further investigated in Figure 12 which shows results for three different target threshold 869 

perfε  for the convergence criterion of Eq. (33), which represents the most influential parameter impacting the 870 

Ad-IMSEw convergence. The resultant accuracy is only marginally impacted by the selection of perfε , but the 871 

impact on computational efficiency is significant: the mean efficiency for perfε  threshold values of 5% and 872 

10% are increased, respectively, to 0.87 and 0.91 for WtGMix, 0.95 and 0.95 for Hartman 6, 0.45 and 0.92 for 873 
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SDoF-KT, and 0.67 and 0.94 for Isolation examples. For complementing these comparisons note that the mean 874 

efficiency for the 1% threshold values was already presented in Figure 11. Similarly, no significant impact on 875 

accuracy is observed in the case of exponential decay bias interpolation (not reported here due to space 876 

limitation), while the mean efficiency, similarly, increased for the perfε  threshold values of 5% and 10%, 877 

respectively, to 0.92 and 0.94 for WtGMix, and 0.96 for all other cases.  Note that computational efficiency of 878 

0.96 is the theoretical upper bound for the implementation considered here due to the selection to examine the 879 

quality of the approximation every Nλ=25 iterations.  880 

Comparing across the two bias-interpolation function results in Figure 9, Figure 10, and Figure 15, show 881 

that the NN implementation outperforms the exponentially decaying function for the MSEw criteria, while the 882 

exponentially decaying function performs equal or better for the IMSEw criteria. This is explained by the 883 

relatively heavier exploitive tendency of the NN interpolation function, as shown earlier in Figure 2 884 

(prioritizing disproportionally domains with large bias). This tendency informs better the selection of the next 885 

experiment using a MSE metric - that focuses on the worst-case scenario performance- but does not have the 886 

same impact on the IMSE metric -that investigates average performance.  Less sensitivity is observed for the 887 

performance of the IMSE approximation formulations, with both Ad-IMSEw and Ac-IMSEw showing a good 888 

agreement with the respective IMSEw implementation. It is important to note, though, that for the adaptive 889 

case, the trends of the  acceptance ratio of λ, significantly differ (Figure 11) with the exponentially decaying 890 

function accommodating a much faster convergence to a credible λ value and overall to significant higher 891 

computational efficiency. This should be attributed to the discontinuous behavior, and therefore objectives in 892 

the *λ  optimization, introduced by the NN interpolation, which impacts the stability of the stochastic search-893 

based identification of the optimal λ across the DoE iterations. This is clearly shown in Figure 13 with behavior 894 

of kλ  significantly affected by the choice of bias interpolation function in terms of both the mean underlying 895 

trend (convergence to different values) as well as the variability around this trend (greater shifts for the NN 896 

selection of interpolation function). Results for the mean trend in this figure also show that as the training 897 

sample size increases, the optimal value of λ  may also increase, verifying arguments made earlier and also 898 
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showcasing the importance of re-evaluating appropriateness of the converged value for λ . The differences 899 

between the optimal λ values across the two interpolating functions showcase the importance of an adaptive 900 

selection (Ad-IMSEw formulation) since recommendation of an appropriate value for any desired application 901 

(as needed in the Ac-IMSEw formulation) seems to be impossible.  902 

Next, the discussions move to the comparisons for the batch DoE selection. Results in Figure 14 and Figure 903 

15 verify first the trends reported in (Kyprioti et al. 2020): though balancing between exploration and 904 

exploitation might provide some utility in earlier DoE iterations, especially when the metamodel accuracy is 905 

poor depending on the original DoE selection (Kyprioti et al. 2020), as this accuracy improves no such utility 906 

can be identified. This is evident in the results presented here by the fact that B-IMSEw outperforms all other 907 

variant implementations. Comparing across the different formulations that attempt to balance between 908 

exploration and exploitation, Bρ-IMSEw and MB-IMSEw, the multi-objective formulation proposed in this study 909 

(MB-IMSEw) suffers from reduced performance compared to the baseline alternative (Bρ-IMSEw). Though 910 

trends are heavily dependent on the type of bias interpolation function used (topic discussed later), there is an 911 

undeniable performance reduction when the MB-IMSEw formulation is utilized. This reduction might be 912 

attributed to the choice for the promoted solution across the Pareto front, but alternative approaches that the 913 

authors examined have not yielded better results. Despite its more natural exploration and exploitation balance 914 

(no need to select a-priori an ρ) the reduction of performance for MB-IMSEw is an important constraint for its 915 

promotion as definite preferred solution over Bρ-IMSEw.  916 

Comparing across the multi-objective DoE implementations for different bias interpolation functions [MB-917 

IMSEw-(NN) and MB-IMSEw-(E)], significant sensitivity is observed for the MB-IMSEw formulation, much 918 

higher to sensitivity observed for any other variant. As demonstrated earlier in Figure 7 the NN 919 

implementation restricts the identification of a single candidate experiment within each Voronoi cell for the 920 

batch selection which can be very restrictive choice. This is the reason the exponentially decaying interpolation 921 

tends to outperform the NN interpolation by a significant margin in the majority of the case study examples.  922 

Finally, the performance variability across the 30 trials, showcased through the boxplots in Figure 16, 923 

allows us to investigate some additional trends. As also reported in (Kyprioti et al. 2020) the implementations 924 
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without the bias weight (IMSE and MSE) demonstrate significant variability in the results, clearly showcasing, 925 

once more, the importance of introducing the bias weights in the DoE formulation. By comparison, the 926 

variability of the performance across all other variants is small. Examining the trends for the advancements 927 

introduced in this manuscript, we can observe a larger variability of Ad-IMSEw when compared to Ac-IMSEw, 928 

as expected due to the addition of the adaptive λ selection within the DoE stochastic search implementation.  929 

The exponential decay interpolation function leads to reduced variability over its Voronoi counterpart, again 930 

as expected due to the discontinuous interpolation features of the latter, while the multi-objective 931 

implementation shows similar performance as the other batch selection DoE variants, with the exception of 932 

some outliers. This undesirable feature creates additional concerns for the promotion, at least at the current 933 

stage, of this DoE formulation.  934 

Conclusions 935 
This paper investigated the adaptive design of experiments for Gaussian Process (GP) global 936 

metamodeling applications. Formulation considered both the minimization of the predictive GP variance, 937 

representing an exploration strategy, and the reduction of the GP bias obtained through cross validation, 938 

representing an exploitation strategy. With respect to the GP variance, two alternative, popular 939 

implementations were discussed, the integrated mean square error (IMSEw) criterion, and the simplified 940 

maximum square error without variance updating criterion (MSEw). Two different advances were examined. 941 

The primary one considered an IMSE approximation, reducing the computational burden to levels comparable 942 

to MSE but offering the same DoE quality. This was accommodated through introduction of a decaying shape 943 

function that describes the reduction of GP variance within a domain of influence for each new candidate 944 

experiment. Two different variants were examined corresponding to an adaptive selection of the exponent 945 

involved in the shape function definition (Ad-IMSEw) or an a-priori selection (Ac-IMSEw).  The adaptive 946 

selection is formulated by developing a framework for identification of a credible value of this exponent by 947 

judicial comparisons between the exact and approximate IMSEw results across the DoE iterations. The 948 

secondary advancement introduced a multi-objective DoE selection (MB-IMSEw) for identifying multiple 949 

Pareto optimal experiments that balance exploration and exploitation objectives, replacing conventional 950 
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strategies that weight these objectives to promote a single DoE selection criterion. This formulation was 951 

promoted for batch-selection of simulation experiments. After the initial Pareto-front identification, candidate 952 

experiments within this front are chosen based on some desired optimality criterion, while an updating of the 953 

GP variance after identification of each such experiment is suggested, to avoid the identification of close-954 

proximity experiments within the promoted batch.  955 

     The performance of the proposed DoE variants was illustrated across four case study examples, including 956 

both analytic benchmark functions and earthquake engineering applications. Across all DoE variants, two 957 

interpolation (smoothing) approaches were examined for accommodating the incorporation of bias weights: 958 

nearest neighbor (NN) interpolation that has been promoted in past studies and an exponential decay kernel 959 

smoothing introduced first here. The exponential decay provided more consistent performance, addressing 960 

challenges associated with the discontinuities introduced through the NN implementation, though it did not 961 

necessarily outperform it. For this reason, both remain appropriate candidate choices for future applications. 962 

Considering the DoE variants, results showed clearly the benefits of the proposed IMSE approximation, with 963 

both Ad-IMSEw and Ac-IMSEw outperforming MSEw and providing similar accuracy as the IMSEw, at 964 

substantially reduced computational burden. Though Ac-IMSEw was not substantially outperformed by Ad-965 

IMSEw, the additional robustness offered by the latter and the dependence of an appropriate value for the 966 

exponent involved in the shape function on the details of the application considered, promote the Ad-IMSEw 967 

implementation as the recommended variant, despite its higher computational cost. Similar benefits were not 968 

illustrated for the secondary proposed advancement, with the multi-objective implementation showing reduced 969 

performance and greater variability of the results compared to alternative variants for batch selection of 970 

experiments.  Despite its more natural exploration and exploitation balance, these characteristics mean that 971 

further advancements are needed for this formulation to be promoted over the alternative ones.  972 

Though, as discussed above, a range of options remain attractive candidates for future applications, the 973 

recommended implementation is Ad-IMSEw with an exponential decay kernel smoothing. 974 

 975 



 

 42 

Data Availability Statement 976 
The DoE formulations discussed in this paper can be implemented through quoFEM, an open-source research 977 

software for uncertainty quantification (UQ) in natural hazard engineering, developed by NHERI SimCenter: 978 

https://simcenter.designsafe-ci.org/research-tools/quofem-application/. Numerical codes for the DoE 979 

optimization can be obtained from the corresponding author upon reasonable request. 980 
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The three sets of unknown GP parameters 2}Θ { , ,σ β θ  can be selected using maximum likelihood 1121 

estimation (MLE). The MLE solution for the basis coefficients and process variance is provided, respectively, 1122 

by the closed-form solution (Lophaven et al. 2002, Sacks, Welch et al. 1989):  1123 

 * * 1 1 1( , ) ( ( ) ( | ) ( )) ( ) ( | )T T   β β D θ F X R X θ F X F X R X θ Ζ  (41) 1124 
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whereas for the hyper-parameters, the MLE selection corresponds to optimization:  1126 

  * * 2( ) arg min ln(| ( | ) |) ln ( ( , ))n σ    θ D R X θ D θ   (43) 1127 

which can be numerically performed (Lophaven et al. 2002, Rasmussen and Nickisch 2010). Note that for 1128 

notational simplicity, * ( , )β D θ  is replaced by *β  in the remaining discussions. .  1129 

The predictive capabilities of the calibrated GP can be quantified using cross leave-one-out cross validation 1130 

(LOOCV) (Kyprioti et al. 2020, Fuhg et al. 2021, Kleijnen 2009), established by removing the ith simulation 1131 

from the training set, using the remaining set to estimate predictions for that specific simulation, and then 1132 

defining the leave-one-out (LOO) error as the difference between the exact and prediction response: 1133 

  ~( | ,Θ) zi i
cv
i ie z x D   (44) 1134 

where ~ ~ ~{ , }i i iD X Z  represents the training data without the ith simulation [remove the ith row from 1135 

matrices { , }X Z ]. If the LOO predictions are established, as is customary, without re-calibration of the GP 1136 

parameters, closed-form solutions are readily available for cv
ιe , given by (Sundararajan and Keerthi 2001, 1137 

Dubrule 1983, Rasmussen and Nickisch 2010):  1138 
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where  • ii denotes ith diagonal component in a matrix, and  • i  denotes ith element of a vector. These closed-1140 

form solutions greatly simplify LOOCV, avoiding the repeated matrix inversion operation to compute each 1141 

~( | ,Θ)i iz x D , reducing the computational cost of the error evaluation to be 2( )O n  for a given ( | )R Χ θ . Once 1142 
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the LOOCV error is estimated, any desired validation metric can be utilized to assess the global metamodel 1143 

accuracy. In this study, the normalized root mean square error (NRMSE) is used, given by: 1144 
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 (46) 1145 

where max { }i iz  and min { }i iz  denote the maximum and minimum values of the response dataset. When the 1146 

NRMSE is smaller than a desired tolerance level, the GP may be considered as well-constructed for global 1147 

metamodeling purposes. 1148 

Appendix B: Computational details for variance estimation   1149 

This Appendix discusses computational details for the variance estimation, including its updating when 1150 

new experiments are added. Specifically the focus is on the estimation of the normalized variance given by Eq. 1151 

(4), the only component of the variance that depends on x, and therefore needs to be repeatedly estimated for 1152 

each examined input. Also in all discussions on numerical complexity the assumption that n>>nb is made, 1153 

expressing this complexity primarily as function of n.  1154 

Starting with the variance estimation, the computationally intensive part, as discussed previously, is the 1155 

inversion of the correlation matrix ( | )R Χ θ , which has burden 3( )O n (Strang 2016). Typically, this inversion 1156 

is replaced with operations that utilize the Cholesky decomposition for better numerical accuracy and stability. 1157 

To formalize these operations, let ( | ) n nL Χ θ   be the lower triangular matrix satisfying the Cholesky 1158 

factorization ( | ) ( | ) ( | )TR Χ θ L Χ θ L Χ θ . Note that performing inversion or Cholesky decomposition have 1159 

the same computational burden 3( )O n , and the operations based on the Cholesky decomposition are 1160 

introduced primarily for numerical stability. Using ( | )L Χ θ , Eq. (4), is expressed as (Roustant et al. 2012): 1161 
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2 2

2 | , ) 1 ( | , ) ( | ) \ ( ( | ) ( | , ) )( ( )T
Rσ    x X θ v x X θ M X θ M X θ v x X θ f x  (47) 1162 

where 
2

. is the vector two-norm, vector  ( | , ) nv x X θ   and matrix ( | ) bn nM Χ θ  are given by 1163 

( | , ) ( | ) \ ( | , )v x X θ L Χ θ r x X θ  and ( | ) ( | ) \ ( )M Χ θ L Χ θ F Χ , respectively,  with “\” denoting inversion by 1164 

forward or backward substitution, and ( | ) b bn n
R

M Χ θ   is the upper triangular matrix originating from the 1165 
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economy size orthogonal triangular decomposition (also known as QR decomposition) of ( | )M Χ θ  [so that 1166 

( | ) ( | ) ( | )Q RM Χ θ M Χ θ M Χ θ  with ( | ) bn n
Q

M Χ θ   and  ( | )RM Χ θ  having the characteristics described 1167 

above]. The computational intensive components of the estimate in Eq. (47), corresponding to the 1168 

decompositions for estimation of primarily ( | )L Χ θ  [complexity 3( )O n ] and secondarily ( | )RM Χ θ  1169 

[complexity 2( )bO n n ], are independent of x and therefore need to be performed only once. Actually, both 1170 

quantities are readily available from the GP calibration (Roustant et al. 2012). Therefore, the estimation of Eq. 1171 

(47) for each new x has small computational burden, as it only involves calculation of vector ( | , )v x X θ  and 1172 

expression ( | ) \ ( ( | ) ( | , , ) ( ))T
R M X θ M X θ v x X θ f x , and the estimation of the two vector norms.  This burden 1173 

is O(n2) overall for each examined x (Roustant et al. 2012).  1174 

Moving, further, to the calculation of  the updated variance 2 )( | , ,newσ x X x θ  after the addition of newx in 1175 

the existing training set given by Eq. (11), the estimate of  Eq. (47) is updated to be:  1176 
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2 2
| , , ) 1 ( | , , ) ( , | ) \ ( ( , | ) ( | , , ) ))( (new new R ne n

T
w ew newσ    x X x θ v x X x θ M X x θ M X x θ v x X x θ f x  (48) 1177 

where ( | , , ) ( , | ) \ ( | , , )new new newv x X x θ L Χ x θ r x X x θ  and ( , | ) ( , | ) \ ( , )new new newM Χ x θ L Χ x θ F Χ x , with 1178 

( , | )newL Χ x θ  corresponding to the lower Cholesky factorization of ( , | )newR Χ x θ  and ( , | )R newM X x θ  to the  1179 

upper triangular matrix from the orthogonal triangular decomposition of  ( , | )newM Χ x θ , and the updated 1180 

correlation vector ( | , , )newr x X x θ , basis function matrix  ( , )newF Χ x  and correlation matrix ( , | )newR X x θ  are 1181 

given, respectively, by Eqs. (8), (9) and (10). The computationally intensive component of this estimation is 1182 

the calculation of the Cholesky decomposition of ( , | )newR X x θ  which has complexity O(n3). This can be 1183 

simplified utilizing the readily available decomposition of  ( | )R X θ  to be (Parlett 1981, Stewart 1998):  1184 
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which has computational complexity O(n2). This reduces the computational burden for estimation of the 1186 

updated predictive variance when a single experiment is added in the training set, to be O(n2) and 2( )bO n n  for 1187 
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estimating the independent from x matrices, ( , | )newL Χ x θ  and ( , | )R newM X x θ , respectively, and then 1188 

additional O(n2), as discussed earlier, for each input x for which this variance needs to be estimated. 1189 

Appendix C: Examining limiting cases for λ  1190 
This section further discusses some limiting cases for the behavior of the variance reduction approximation 1191 

prescribed by Eqs. (20) and (21). First, consider the case where all the previous selected experiments X  are in 1192 

a far distance from x  and newx , so that following condition is satisfied:  1193 

 new , for 0,...,i i n x - x x - x  (50) 1194 

We can then approximate 2 2( | , , ) ( | , )new newσ σXx xx θ x θ , indicating that as soon as newx  is added it 1195 

dominates the variance estimation for x. Since x and newx  are jointly Gaussian with correlation coefficient 1196 

)( , |newR x x θ  the conditional variance is further calculated as:  1197 

  2 2 2 2( | , , ) ( | , ) ( | ) 1 ( , | )new new newσ Rσ σ  X x θx x xx θ θ θx x  (51) 1198 

where 2 ( | )σ x θ   represents the prior variance at x when newx  is removed, i.e. ultimately corresponds to  1199 

2 ( | , )σ Xx θ  within the GP formulation. Comparing Eqs. (51) and (22), we obtain 2( , | ) ( , | )new newA Rλ λx x x x1200 

, which reduces to Eq. (21) with 2λ  . 1201 

However, the condition in Eq. (50) is easily violated when the number of training samples increases. More 1202 

importantly, this condition is easily violated in higher dimensions for the input, since, as nx increases, the 1203 

mutual distances between any pairs of the training data points X , the candidate points newx , and examined x  1204 

rapidly becomes indiscernible to each other (Beyer et al. 1999). Moreover, it can be easily shown that Eq. (51) 1205 

is an upper bound. If )( , |newR x x θ  is replaced with )( , | ,newR x x X θ  in this equation, then formulation becomes 1206 

exact. But since x , newx  and X  are jointly Gaussian, it can be proven that ) )( , | , ( , |new newR R x xθx X θx1207 

(Page 1984),  implying that the relative impact of newx  on x  will be reduced under presence of other close-1208 

proximity training points, making Eq. (51) an upper bound. Note that  2( , | ( , | ))new newR λ λAx x x x  for 2λ  1209 
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, indicating that in order to avoid further increasing the gap to )( , | ,newR x x X θ  the exponent  for ( , | )newA λx x  1210 

should be greater than 2.  Additionally, this is showcasing that a variation of λ  is expected as more experiments 1211 

are added  and the condition ) )( , | , ( , |new newR R x xθx X θx  holds with larger margins, indicating a trend 1212 

towards use of larger values of λ  in such conditions. Note that an explicit dependence on the hyper-parameters 1213 

exists in these arguments (defining correlation length scales), indicating an even more complex relationship to 1214 

not only the training points X, but also the GP features.   1215 
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Figure Captions 1216 

Figure 1 Adaptive design of experiments workflow. Note that implementation also considers batch selection of 1217 
experiments. 1218 

 1219 
Figure 2 Illustration of components for variance and bias functions for a two-dimensional example.   1220 

 1221 
Figure 3 Illustration of variance reduction approximation  1222 

 1223 
Figure 4 Illustration of selection of objective function for calibration of λ  1224 

 1225 
Figure 5 Workflow for the approximated IMSE algorithm (IMSEw-SA) 1226 

 1227 

Figure 6 Illustration of multi-objective DoE. Identification of Pareto-front and selection   1228 

 1229 

Figure 7 Illustration of multi-objective DoE aspects for two different interpolation functions (NN: natural neighbor, E: 1230 
exponential decay). 1231 

 1232 
Figure 8 Workflow for the multi-objective DoE algorithm (IMSE-MB)  1233 

 1234 
Figure 9 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants 1235 

corresponding to sequential experiment selection using NN for bias interpolation function. 1236 

 1237 
Figure 10 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants 1238 

corresponding to sequential experiment selection using exponentially decaying bias interpolation function. 1239 

 1240 
Figure 11 Acceptance rate of λ and overall efficiency of Ad-IMSEw 1241 

 1242 
Figure 12 Comparison of metamodel accuracy (average over 30 trials) for different values of n for Ac-IMSEw and Ad-1243 

IMSEw with different minimum performance thresholds using NN for bias interpolation function. 1244 
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 1245 

Figure 13 The averaged for Ad-IMSEw (SDoF-KT example)  1246 

 1247 
Figure 14 Comparison of metamodel accuracy (average over 30 trials) for different values of n for DoE variants 1248 

corresponding to batch (size of 5) experiment selection 1249 

 1250 
Figure 15 Comparison of metamodel accuracy (average over 30 trials) for different values of n for selective DoE 1251 

variants, emphasizing comparisons across the different bias interpolation functions. 1252 
 1253 

Figure 16 Variability in the accuracy of the illustrated DoE methods across 30 independent trials. 1254 

 1255 
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