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Tessellations of the hyperbolic spaces by regular polygons support discrete quantum and classical

models with unique spectral and topological characteristics. Resolving the true bulk spectra and the

thermodynamic response functions of these models requires converging periodic boundary conditions and

our Letter delivers a practical and rigorous solution for this open problem on generic fp; qg-tessellations.

This enables us to identify the true spectral gaps of bulk Hamiltonians and construct all but one topological

models that deliver the topological gaps predicted by the K theory of the lattices. We demonstrate the

emergence of the expected topological spectral flows whenever two such bulk models are deformed into

each other and prove the emergence of topological channels whenever a soft physical interface is created

between different topological classes of Hamiltonians.
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The investigation of synthetic materials is an active area
of research. In particular, crystals generated from tessella-

tions of hyperbolic spaces have been proposed and some
even realized with quantum, photonic, electromagnetic, and
mechanical degrees of freedom [1–6]. This is part of a new

trend in materials science where the focus is shifted from
making a material stronger, lighter, more durable, etc., to

making it different or to behave differently. The new
paradigm is geared toward creating new opportunities in

materials science, which can come in the form of unique
spectral characteristics or stabilization of fundamentally
distinct topological phases, and the hyperbolic crystals

have been a source of both [4–12]. In fact, the band
topology of the hyperbolic crystals was exhaustively

characterized quite a while ago [13–16].

In these endeavors, scientists are facing challenges that

require entirely new tools of analysis, both theoretical and

computational, and lack of such tools can hold a field

hostage for years. The lack of a systematic way to impose

periodic boundary conditions (PBC) on hyperbolic lattices

prevents us from resolving the true bulk spectra of the

Hamiltonians, computing correlations functions, bulk topo-

logical invariants, and identifying topological gaps. Since

the ratio between the numbers of boundary and bulk sites

converges to a strictly positive value for hyperbolic lattices,

suppressing the boundary states in finite-size samples is

necessary but not sufficient, because convergence with the

sample size cannot be taken for granted. Indeed, there are

many ways to fold a non-Euclidean lattice into itself and

produce PBCs, but most of them do not reproduce the

Green’s function of the infinite lattice Hamiltonian (see

Ref. [17] Sec. 5.1 and [18]).

If one is interested only in the bulk spectra, then a

universal solution could be to evaluate the local density of

states at or near the center of the finite-size crystal with
open boundary conditions [5], but, even in the Euclidean
case, this method converges only as an inverse power with
the crystal size [19] and its reliability when it comes to
computing thermodynamic coefficients or topological
invariants is yet to be demonstrated. On the other hand,
when PBCs can be systematically defined, they supply

extremely fast convergences (typically exponential) with
the size of the crystals, for both spectra and thermodynamic
coefficients [17,20]. Partial progress on resolving the bulk
characteristics of hyperbolic lattices has been achieved via
generalizations of Bloch-Floquet calculus [21,22], which is
intimately related to the problem of PBCs [23]. So far, these
techniques can resolve the bulk spectra covered by one and
two dimensional representations of the hyperbolic space
groups and sometimes this seems to be just enough [5].

In our recent work [17], however, we introduced a

general systematic method to impose PBCs on increasingly

larger finite hyperbolic and other more general Cayley

crystals, together with rigorous proofs and numerical

confirmations of fast convergences to the thermodynamic

limit. The folding of the infinite lattice into a finite regular

graph without boundary can be achieved by taking the

quotient of the hyperbolic space group with one of its finite-

index normal subgroups [23–26]. To converge to the

thermodynamic limit, one needs a whole coherent sequence

of such normal subgroups, whose total intersection reduces

to just the neutral element [24,25]. Note that, while a

generic group can have a plethora of normal subgroups,

only a coherent sequence can guarantee a systematic

improvement of the results with system size. This is a

trivial task for regular lattices in the Euclidean space,

because all Euclidean space groups contain the subgroup

Z
2 of pure translations. Its normal subgroups are all
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multiples of Z2 and quotients by these subgroups produce

finite-size approximations with PBCs that all look the

same. This is not the case in the hyperbolic spaces, yet the

algorithm devised in [17] does just that. To work, it requires

at the input a faithful representation of the hyperbolic space

group as a subgroup of GLðn; RÞ [27], where R is a ring

extension of Z. Then the quotients that supply the finite-

size approximations are generated by applying ordinary

mod functions on the matrix entries. Such a faithful

representation was provided in [17] for the simplest hyper-

bolic space group. Here, we supply this input together with

computer algorithms that completely solve the problem of

converging PBCs on generic regular hyperbolic fp; qg
tessellations.

As an application, we show that a hyperbolic model

Hamiltonian that was assumed in the literature to be

spectrally gapped is actually ungapped. We also resolve

all topological bands supported by a fp; qg tessellation,

except one [28], in the sense that we build gapped model

Hamiltonians that display these bands at the bottom of the

spectrum. Given that our numerically computed spectra are

clean of boundary spectrum, we can demonstrate the main

topological feature of these models, namely, the emergence

of a topological spectral flow whenever a distinct pair of

topological Hamiltonians are continuously deformed into

each other. The topological bands are listed by theK0 group

of the space group’s C� algebra and we simply took this

information from [14,16].

Let D be the open disk model of the hyperbolic two-

dimensional space. Topologically, it is identical with the

Euclidean disk, but D carries the metric ds2 ¼ ½dzdz̄=
ð1 − jzj2Þ2�. The homeorphisms of the disk preserving this

metric form the continuous group IsoðDÞ of hyperbolic

isometries. Its discrete subgroups of orientation preserving

disk transformations with compact fundamental domains

are called Fuchsian groups of first kind. Up to isometries,

they are classified by their signatures hg; ν1;…; νri and can
be presented via 2gþ r generators and relations as

F g;ν ¼ ha1; b1;…; ag; bg; x1;…; xmj

x
ν1
1 ;…; x

νm
m ; x1 � � � xm½a1; b1� � � � ½ag; bg�i; ð1Þ

where ½a; b� ≔ aba−1b−1 denotes the commutator of two

elements [ [29], Ch. 2]. The tessellations of D by regular

fp; qg polygons are always possible if 1=pþ 1=q < 1=2.
We will use the f5; 4g tessellation shown in Fig. 1(a) for

our exemplifications. The full group of hyperbolic iso-

metries preserving this tilling is the triangle group Δf5;4g

generated by the three reflections x, y, z against the sides of
the triangle shown in Fig. 1(a). It has a maximal subgroup

of proper transformations, which is the Fuchsian group

Δ
þ
fp;qg ¼ h0;p; q; 2i with x1 ¼ xy, x2 ¼ yz, x3 ¼ zx and

the fundamental domain indicated in Fig. 1(b).

Tillings do not automatically come with vertices. The

points that are fixed by an element of Δþ
fp;qg are shown in

Fig. 1(b) and a generic symmetric lattice can be generated

by acting on any point of the disk that is distinct from those

points of high symmetry, e.g., as shown in Fig. 1(c). Such

procedure actually produces the standard Cayley diagraph

of Δþ
fp;qg, which encodes the entire group-algebraic infor-

mation in a geometric fashion [30]. Our tight-binding

Hamiltonians are defined on the lattice L from Fig. 1(c),

whose points are labeled by the elements of Δ
þ
fp;qg. All

symmetric Hamiltonians are generated from the group

algebra CΔ
þ
fp;qg [31]. Concretely, Δþ

fp;qg acts via the left-

regular representation πLðgÞjg
0i ¼ jgg0i on the Hilbert

space l2ðLÞ spanned by the vectors jgi, g∈Δ
þ
fp;qg, while

the Hamiltonians

h¼
X

g

wg ·g∈CΔ
þ
fp;qg; wg¼w�

g−1
∈C ð2Þ

act via the right-regular representation of CΔþ
fp;qg,

FIG. 1. (a) The f5; 4g tilling and the reflections generating the group of symmetries Δfp;qg. (b) High symmetry points of the tilling

and the fundamental domain of the proper space group Δþ
fp;qg. (c) The Cayley diagraph of Δ

þ
fp;qg, showing a generic symmetric lattice

and the flow of the points under the right action of the generators x1 (blue), x2 (orange), and x3 (red). (d) Couplings needed to

implement πR½h1ðλÞ� from Eq. (6), where blue ¼ λjg · x−11 ihgj þ λ−1jgihg · x−11 j, green ¼ λ2jg · x−21 ihgj þ λ−2jgihg · x−21 j, and

orange ¼ jg · x−12 ihgj þ jgihg · x−12 j. The latter is only needed for the structure’s integrity.
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H¼ πRðhÞ; Hjg0i ¼
X

g

wgjg
0g−1i: ð3Þ

Then ½πLðgÞ; πRðhÞ� ¼ 0 can be manually checked.

We now explain Lück’s work [24,25] on formulating

PBCs in algebraic fashion. Any finite-index normal sub-

group Nk of Δ
þ
fp;qg sets a canonical projection onto the

finite quotient subgroup, ρk∶ Δ
þ
fp;qg → Gk ¼ Δ

þ
fp;qg=Nk,

which can be lifted to the level of group algebras:

h ↦ ρkðhÞ ¼
X

g

wg · ρkðgÞ∈CGk: ð4Þ

As before, the right-regular representation πR of CGk acts

on the Hilbert space l2ðGkÞ spanned by jgki, gk ∈Gk. This

is a finite Hilbert space of dimension jGkj (¼ the order of

Gk) and, as such, ρkðHÞ ¼ πR½ρkðhÞ� is a finite-size

approximation ofH. According to Lück [24,25], to achieve

the thermodynamic limit, one needs a whole coherent

sequence of normal subgroups Δþ
fp;qg ¼ N0⊳N1⊳N2 � � �,

such that ∩ Nk ¼ f1g, in which case the Green’s functions

can be recovered with arbitrary precision from the so-

constructed finite-size approximations

hgjðH − zÞ−1jg0i ¼ lim
k→∞

hρkðgÞjðρkðHÞ − zÞ−1jρkðg
0Þi:

This in turn assures that the spectrum, thermodynamic

coefficients, correlation functions, topological invariants,

etc., can be computed with arbitrary precision from the so-

constructed finite-size approximations.

Reference [17] observed that the maps ρk can be as

straightforward as applying the modulo arithmetic operator

on certain coefficients, if Nk’s are generated in a specific

way. Following the same strategy and by referring to

Coxeter group theory [32–35], we found systematic rep-

resentations of Δ
þ
fp;qg in SLð3;Z½ξ�Þ, the special linear

group of 3 × 3matrices with entries from the ring extension

Z½ξ�, where ξ ¼ 2 cosðπ=pqÞ (see Eqs. (13)–(15) in [18]).

The coherent sequence of subgroups can then be simply

taken asNk ¼Δ
þ
fp;qg ∩SLð3;skZ½ξ�Þ, s; k∈N. The quotient

groups Gk by these Nk’s can be computed as follows. First,

ξ is a root of a minimal irreducible polynomial of degree

φð2pqÞ=2, where φ is Euler’s totient function [36,37].

Thus, every entry in the matrix representations of Δþ
fp;qg

can be written as
Pφ=2−1

r¼0 crξ
r, with cr ∈Z [38]. Ordinary

multiplication of such series followed by the algebraic

reduction leads to a specific multiplication of the coef-

ficients c ¼ fcrg, which we denote by c⋆c
0 (see Ref. [18]

for full details). Then Gk is the image in the finite group

SLð3;Zsk ½ξ�Þ of the elements of Δþ
fp;qg under taking the

mod sk operation on the coefficients cr. Thus, every entry

of these matrices can be written as
Pφ=2−1

r¼0 c̃rξ
r, with

c̃r ∈Zsk . As for the multiplication in Gk ⊂ SLð3;Zsk ½ξ�Þ,
it is the usual matrix multiplication but with the multipli-

cation of the entries replaced by

�

X

φ=2−1

r¼0

c̃rξ
r

�

·

�

X

φ=2−1

r¼0

c̃0rξ
r

�

¼
X

φ=2−1

r¼0

ðc̃⋆c̃
0Þr mod skξr:

With these in place, the ρkðgÞ’s seen in Eq. (4) are

calculated by applying mod sk on the matrix representa-

tions of g’s. The approximated Hamiltonian ρkðHÞ acts on
l
2ðGkÞ via the right-regular representation, which works as

in Eq. (3) with Δ
þ
fp;qg replaced by Gk. Numerically, this

requires an indexing of the elements of Gk and the

computation of its multiplication table, which are both

straightforward tasks at this point.

A full working code implementing all the above can be

downloaded from [39]. It can be seen in action in Fig. 2(a),

where the bulk spectrum of the adjacency operator Δ ¼
1
4
ðx1 þ x−11 þ x2 þ x−12 Þ is resolved and the exponentially

fast convergence to the thermodynamic limit is demon-

strated. In Fig. 2(b), we show the integrated density of

states (IDS) computed with open boundary conditions for

FIG. 2. (a) Integrated density of states (IDS) of the adjacency operator Δ as function of energy and finite sizes. The inset shows the

mean squared error with the largest system as reference. (b) IDS of Δ with open boundary condition for various system sizes, compared

to periodic boundary conditions (black curve). (c) IDS of the Hamiltonian considered in Ref. [6] for different system sizes with PBCs,

showing the topological gap predicted by the Uð1Þ-hyperbolic Bloch band theory (gray zone) filling in with non-Abelian states in the

thermodynamic limit.
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increasing lattice sizes. A comparison with the “exact” IDS

from panel (a) reveals convergence to an incorrect thermo-

dynamic limit. Lastly, in Fig. 2(c), we report a computation

for the model on the f8; 8g tessellation considered in [6],

which is mapped into the strong A-class topological

insulator on Z
4 lattice [40] [p. 31] by the hyperbolic

Uð1Þ-band theory (see Ref. [18] for full details). It is

tempting to infer that this hyperbolic model has a topo-

logical gap that carries a second Chern number. However,

while this model displays a gap for small lattice sizes, the

exact thermodynamic limit of the IDS is gapless. Also, the

known K-theoretic groups (see below) do not afford a

second Chern number [13–16]. As observed in [6], the

assumptions behind hyperbolic Uð1Þ-band theory are not

generally met and now we can confirm that this is the case

for the Hamiltonian simulated in Fig. 2(c).

We now resolve the topological bands supported by the

fp; qg tessellations. As we have already seen, the sym-

metric Hamiltonians live inside the C� algebra of the space

group. For a generic F g;μ as in Eq. (1), the K0 group of this

algebra is isomorphic to Z
2þ
P

m

α¼1
ðνα−1Þ [41]. It is freely

generated by the identity, a projection p0 that carries the

hyperbolic 1st-Chern number [13–15] and by the spectral

projections of the cyclic elements xα,

pαðλkÞ¼
1

να

X

να−1

j¼0

λ
j
kx

j
α; λk ¼ e

2π{k
να ; k¼ 1;να: ð5Þ

This assures us that any band projection of a symmetric

Hamiltonian can be continuously deformed into a stacking

of these fundamental projections p
n0
0 ⊕ p1ðλ1Þ

n1ðλ1Þ ⊕

� � � ⊕ pmðλνmÞ
nmðλνm Þ without closing the flanking spectral

gaps [42]. The integer numbers fn0; n1ðλ1Þ…; nmðλνmÞg
represent a complete set of independent topological invar-

iants of a band [40].

In the case of Δþ
fp;qg ¼ h0;p; q; 2i, we have a total of

eight pαðλÞ projections and, for example,

hαðλ; ϵÞ ¼ ϵ
�

1 − 2pαðλÞ
�

þ ð1 − ϵÞΔ ð6Þ

are model Hamiltonians displaying topological bulk gaps

and bottom spectral bands carrying the K-theoretic labels

nαðλÞ ¼ 1 [43]. The openings of these topological spectral

gap are shown in Fig. 3 and the physical couplings needed

to implement h1ðλÞ are shown in Fig. 1(d). Figure 4(a)

demonstrates the distinct topological characters of the

models (6), by sampling the energy spectra resulted from

pairwise interpolations. The seen topological spectral

flows, which actually occur for any possible pair, demon-

strate that two such models cannot be adiabatically con-

nected. Since these topological spectral flows are stable

against turning on or off degrees of freedom, they can

be used in applications that require robust spectral

engineering. Witnessing these topological spectral flows

would have been impossible without PBCs.

Another application is engineering soft topological

interface channels, which can be achieved by rendering

the smooth interpolations from Fig. 4(a) in space. Because

of the large number of available topological phases, we can

engineer complex interfaces such as the Y junction shown

in Figs. 4(b)–4(d). There, we use the smooth partition of the

hyperbolic unit disk
P

3
i¼1 χiðzÞ ¼ 1 shown in Fig. 4(b),

and generate a Hamiltonian H with matrix elements

hzjHjz0i ¼
X

3

i¼1

χiðμz;z0ÞhzjHijz
0i; z; z0 ∈L; ð7Þ

where μz;z0 is the mid geodesic point of z and z0 [44]. It

smoothly interpolates in space between the Hamiltonians

H1, H2, H3 showcased in Figs. 3(a),3(e), and 3(h),

respectively. Figure 4(c) shows renderings of the local

density of states

LDOSðE; zÞ ¼
X

n

e−jEn−Ej
2=ð2ΔE2ÞjψnðzÞj

2; ð8Þ

for several values of ΔE, where the sum is over the

eigenstates Hjψni ¼ Enjψni. The energy E is pinned at

(a)

(e)

(b) (c)

(f) (g)

(d)

(h)

FIG. 3. Opening available topological gaps using the model

Hamiltonians (6). The topological classes of the lower bands are

specified in each panel, where λj ¼ eð{2πj=ναÞ. The calculations are
performed with PBC generated by ðs; kÞ ¼ ð2; 3Þ.

(b)

(c)

(a)

FIG. 4. (a) Energy spectrum of the Hamiltonian λ1H1 þ
λ2H2 þ λ3H3 along the path shown in the inset, as computed

with the PBC ðs; kÞ ¼ ð2; 3Þ and with Hi as in Fig. 3 panels (a),

(e), (h), respectively, and ϵ ¼ 0.8. (b) Our smooth partition

system for the hyperbolic disk. (c) Local density of states (LDOS)

(8) of Hamiltonian (7), as computed with open boundary

conditions on a crystal with 14 255 sites.
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E ¼ 0 in the middle of the common bulk gap of the

HamiltoniansHi’s, and where Fig. 4(a) shows a crossing of

topological modes. The plots in Fig. 4(c), generated with

the kernel polynomial method [45], confirm the expected

soft topological interface modes between the distinct

topological phase.

In conclusion, we derived an algorithmic procedure to

impose PBCs on finite hyperbolic crystals of increasing

sizes and demonstrated the exponentially fast convergence

of the bulk properties to the thermodynamic limit when

computed with our algorithms. Our Letter enables now the

identification of the gapped topological phases supported

by generic fp; qg tessellations of the hyperbolic spaces and
simulations of various topological dynamical effects. Work

is in progress on how to extend these results in the presence

of a magnetic field.

Note added.—After submission of this Letter, we became

aware of the works [46,47] on the same subject. The

method developed in [46] covers only tight-binding

Hamiltonians with uniform hopping coefficients, which

can be attacked by combinatorial methods, and has nothing

to say about the general models treated in our Letter. The

one developed in [47] seems to be inspired by the principles

stated in our Letter, but the folding of the lattices uses a

different algorithm that produces nicer supercells. Our

method is more analytical and does not require external

resources, such as the GAP package.
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