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Tessellations of the hyperbolic spaces by regular polygons support discrete quantum and classical
models with unique spectral and topological characteristics. Resolving the true bulk spectra and the
thermodynamic response functions of these models requires converging periodic boundary conditions and
our Letter delivers a practical and rigorous solution for this open problem on generic { p, ¢ }-tessellations.
This enables us to identify the true spectral gaps of bulk Hamiltonians and construct all but one topological
models that deliver the topological gaps predicted by the K theory of the lattices. We demonstrate the
emergence of the expected topological spectral flows whenever two such bulk models are deformed into
each other and prove the emergence of topological channels whenever a soft physical interface is created
between different topological classes of Hamiltonians.
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The investigation of synthetic materials is an active area
of research. In particular, crystals generated from tessella-
tions of hyperbolic spaces have been proposed and some
even realized with quantum, photonic, electromagnetic, and
mechanical degrees of freedom [1-6]. This is part of a new
trend in materials science where the focus is shifted from
making a material stronger, lighter, more durable, etc., to
making it different or to behave differently. The new
paradigm is geared toward creating new opportunities in
materials science, which can come in the form of unique
spectral characteristics or stabilization of fundamentally
distinct topological phases, and the hyperbolic crystals
have been a source of both [4-12]. In fact, the band
topology of the hyperbolic crystals was exhaustively
characterized quite a while ago [13-16].

In these endeavors, scientists are facing challenges that
require entirely new tools of analysis, both theoretical and
computational, and lack of such tools can hold a field
hostage for years. The lack of a systematic way to impose
periodic boundary conditions (PBC) on hyperbolic lattices
prevents us from resolving the true bulk spectra of the
Hamiltonians, computing correlations functions, bulk topo-
logical invariants, and identifying topological gaps. Since
the ratio between the numbers of boundary and bulk sites
converges to a strictly positive value for hyperbolic lattices,
suppressing the boundary states in finite-size samples is
necessary but not sufficient, because convergence with the
sample size cannot be taken for granted. Indeed, there are
many ways to fold a non-Euclidean lattice into itself and
produce PBCs, but most of them do not reproduce the
Green’s function of the infinite lattice Hamiltonian (see
Ref. [17] Sec. 5.1 and [18]).

If one is interested only in the bulk spectra, then a
universal solution could be to evaluate the local density of
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states at or near the center of the finite-size crystal with
open boundary conditions [5], but, even in the Euclidean
case, this method converges only as an inverse power with
the crystal size [19] and its reliability when it comes to
computing thermodynamic coefficients or topological
invariants is yet to be demonstrated. On the other hand,
when PBCs can be systematically defined, they supply
extremely fast convergences (typically exponential) with
the size of the crystals, for both spectra and thermodynamic
coefficients [17,20]. Partial progress on resolving the bulk
characteristics of hyperbolic lattices has been achieved via
generalizations of Bloch-Floquet calculus [21,22], which is
intimately related to the problem of PBCs [23]. So far, these
techniques can resolve the bulk spectra covered by one and
two dimensional representations of the hyperbolic space
groups and sometimes this seems to be just enough [5].
In our recent work [17], however, we introduced a
general systematic method to impose PBCs on increasingly
larger finite hyperbolic and other more general Cayley
crystals, together with rigorous proofs and numerical
confirmations of fast convergences to the thermodynamic
limit. The folding of the infinite lattice into a finite regular
graph without boundary can be achieved by taking the
quotient of the hyperbolic space group with one of its finite-
index normal subgroups [23-26]. To converge to the
thermodynamic limit, one needs a whole coherent sequence
of such normal subgroups, whose total intersection reduces
to just the neutral element [24,25]. Note that, while a
generic group can have a plethora of normal subgroups,
only a coherent sequence can guarantee a systematic
improvement of the results with system size. This is a
trivial task for regular lattices in the Euclidean space,
because all Euclidean space groups contain the subgroup
Z? of pure translations. Its normal subgroups are all
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FIG. 1. (a) The {5,4} tilling and the reflections generating the group of symmetries Ay, ;. (b) High symmetry points of the tilling
and the fundamental domain of the proper space group A?p.q}. (c) The Cayley diagraph of A?M}, showing a generic symmetric lattice

and the flow of the points under the right action of the generators x; (blue), x, (orange), and x3 (red). (d) Couplings needed to

implement 7glh;(4)] from Eq. (6), where blue = 2|g-x7"){g| +A7"|g){g- x]

orange = |g-x5')(g| + |g){g - x3'|. The latter is only needed for the structure’s integrity.

multiples of Z? and quotients by these subgroups produce
finite-size approximations with PBCs that all look the
same. This is not the case in the hyperbolic spaces, yet the
algorithm devised in [17] does just that. To work, it requires
at the input a faithful representation of the hyperbolic space
group as a subgroup of GL(n, R) [27], where R is a ring
extension of Z. Then the quotients that supply the finite-
size approximations are generated by applying ordinary
mod functions on the matrix entries. Such a faithful
representation was provided in [17] for the simplest hyper-
bolic space group. Here, we supply this input together with
computer algorithms that completely solve the problem of
converging PBCs on generic regular hyperbolic {p, ¢}
tessellations.

As an application, we show that a hyperbolic model
Hamiltonian that was assumed in the literature to be
spectrally gapped is actually ungapped. We also resolve
all topological bands supported by a {p, g} tessellation,
except one [28], in the sense that we build gapped model
Hamiltonians that display these bands at the bottom of the
spectrum. Given that our numerically computed spectra are
clean of boundary spectrum, we can demonstrate the main
topological feature of these models, namely, the emergence
of a topological spectral flow whenever a distinct pair of
topological Hamiltonians are continuously deformed into
each other. The topological bands are listed by the K, group
of the space group’s C* algebra and we simply took this
information from [14,16].

Let D be the open disk model of the hyperbolic two-
dimensional space. Topologically, it is identical with the
Euclidean disk, but D carries the metric ds?> = [dzdZ/
(1 = |z|?)?]. The homeorphisms of the disk preserving this
metric form the continuous group Iso(D) of hyperbolic
isometries. Its discrete subgroups of orientation preserving
disk transformations with compact fundamental domains
are called Fuchsian groups of first kind. Up to isometries,
they are classified by their signatures (g; vy, ..., v,) and can
be presented via 2g + r generators and relations as

', green = 2%[g- x7%)(g| + A72|g) (g - x7?|, and
fg,l/ = <a1,b1,...,ag,bgyxlv-”’xm|
ﬂ‘,---,xzyﬁ",m"'Xm[ahbﬂ"'[ag’bg]% (1)

where [a, b] := aba='b~! denotes the commutator of two
elements [ [29], Ch. 2]. The tessellations of D by regular
{P., q} polygons are always possible if 1/p +1/qg < 1/2.
We will use the {5,4} tessellation shown in Fig. 1(a) for
our exemplifications. The full group of hyperbolic iso-
metries preserving this tilling is the triangle group Ays 4
generated by the three reflections x, y, z against the sides of
the triangle shown in Fig. 1(a). It has a maximal subgroup
of proper transformations, which is the Fuchsian group
A?p,q} =(0; p,q,2) with x; = xy, x, = yz, x3 = zx and
the fundamental domain indicated in Fig. 1(b).

Tillings do not automatically come with vertices. The
points that are fixed by an element of A} . are shown in
Fig. 1(b) and a generic symmetric lattice can be generated
by acting on any point of the disk that is distinct from those
points of high symmetry, e.g., as shown in Fig. 1(c). Such
procedure actually produces the standard Cayley diagraph

of A?p’q}, which encodes the entire group-algebraic infor-

mation in a geometric fashion [30]. Our tight-binding
Hamiltonians are defined on the lattice £ from Fig. 1(c),

whose points are labeled by the elements of A?p,q}. All
symmetric Hamiltonians are generated from the group
algebra CA{*p’q} [31]. Concretely, Afp,q} acts via the left-
regular representation 7;(g)|g) = |gg’) on the Hilbert
space £%(L) spanned by the vectors |g), g€ A ., while

{p.a}’
the Hamiltonians

h=) w,-g€ECA[, \. w,=w' €C (2)
9

act via the right-regular representation of CA{Z a
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H=np(h). Hlg)=> wyldg™). (3)

Then [z;(g), zz(h)] = 0 can be manually checked.

We now explain Liick’s work [24,25] on formulating
PBCs in algebraic fashion. Any finite-index normal sub-
group N; of A?p,q} sets a canonical projection onto the
finite quotient subgroup, p;: A?p.q} - Gy = AErM}/Nk,
which can be lifted to the level of group algebras:

h— pi(h) = ng -pi(9) €CGy. (4)

As before, the right-regular representation 7 of CGy acts
on the Hilbert space £?(G,) spanned by |g;), gx € Gy. This
is a finite Hilbert space of dimension |G| (= the order of
Gy) and, as such, py(H) = mglpi(h)] is a finite-size
approximation of H. According to Liick [24,25], to achieve
the thermodynamic limit, one needs a whole coherent
sequence of normal subgroups A?p.q} = No>N >N, -,

such that N N, = {1}, in which case the Green’s functions
can be recovered with arbitrary precision from the so-
constructed finite-size approximations

(9l(H = 2)7'l¢') = lim (p(9)l (e (H) = 2) 7 |pa(9))-

This in turn assures that the spectrum, thermodynamic
coefficients, correlation functions, topological invariants,
etc., can be computed with arbitrary precision from the so-
constructed finite-size approximations.

Reference [17] observed that the maps p, can be as
straightforward as applying the modulo arithmetic operator
on certain coefficients, if N,’s are generated in a specific
way. Following the same strategy and by referring to
Coxeter group theory [32-35], we found systematic rep-
resentations of Afp,q} in SL(3,Z[£]), the special linear

group of 3 x 3 matrices with entries from the ring extension
Z[&], where £ = 2cos(n/pq) (see Egs. (13)—(15) in [18]).

(a) (b)

Periodic boundary condition

Open boundary condition

The coherent sequence of subgroups can then be simply

taken as N, = A?p‘q} NSL(3,5%Z[¢]), s, k €N. The quotient

groups Gy by these N;’s can be computed as follows. First,
£ is a root of a minimal irreducible polynomial of degree
»(2pq)/2, where ¢ is Euler’s totient function [36,37].

Thus, every entry in the matrix representations of A?p )

can be written as Z(fi %)_1 ¢, &, with ¢, € Z [38]. Ordinary
multiplication of such series followed by the algebraic
reduction leads to a specific multiplication of the coef-
ficients ¢ = {c¢, }, which we denote by c¢*¢’ (see Ref. [18]
for full details). Then Gy, is the image in the finite group

SL(3,Z[£]) of the elements of A?p’q} under taking the

mod s* operation on the coefficients c,. Thus, every entry
of these matrices can be written as Z‘fi %)_1 ¢,.&", with
¢, €Zy. As for the multiplication in G, C SL(3, Z[¢]),
it is the usual matrix multiplication but with the multipli-
cation of the entries replaced by

@/2—-1 @/2—-1 /21
(Z ag*) : (Z 5,3) = > (@x&), mod st&".

r=0 r=0 r=0

With these in place, the p;(g)’s seen in Eq. (4) are
calculated by applying mod s* on the matrix representa-
tions of ¢’s. The approximated Hamiltonian p,(H) acts on
£?(G,) via the right-regular representation, which works as
in Eq. (3) with A?p,q} replaced by G;. Numerically, this
requires an indexing of the elements of G, and the
computation of its multiplication table, which are both
straightforward tasks at this point.

A full working code implementing all the above can be
downloaded from [39]. It can be seen in action in Fig. 2(a),
where the bulk spectrum of the adjacency operator A =
T (x1 +x7" + xp +x3") is resolved and the exponentially
fast convergence to the thermodynamic limit is demon-
strated. In Fig. 2(b), we show the integrated density of
states (IDS) computed with open boundary conditions for

(©)
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FIG. 2. (a) Integrated density of states (IDS) of the adjacency operator A as function of energy and finite sizes. The inset shows the

mean squared error with the largest system as reference. (b) IDS of A with open boundary condition for various system sizes, compared
to periodic boundary conditions (black curve). (c) IDS of the Hamiltonian considered in Ref. [6] for different system sizes with PBCs,
showing the topological gap predicted by the U(1)-hyperbolic Bloch band theory (gray zone) filling in with non-Abelian states in the

thermodynamic limit.
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increasing lattice sizes. A comparison with the “exact” IDS
from panel (a) reveals convergence to an incorrect thermo-
dynamic limit. Lastly, in Fig. 2(c), we report a computation
for the model on the {8, 8} tessellation considered in [6],
which is mapped into the strong A-class topological
insulator on Z* lattice [40] [p. 31] by the hyperbolic
U(1)-band theory (see Ref. [18] for full details). It is
tempting to infer that this hyperbolic model has a topo-
logical gap that carries a second Chern number. However,
while this model displays a gap for small lattice sizes, the
exact thermodynamic limit of the IDS is gapless. Also, the
known K-theoretic groups (see below) do not afford a
second Chern number [13-16]. As observed in [6], the
assumptions behind hyperbolic U(1)-band theory are not
generally met and now we can confirm that this is the case
for the Hamiltonian simulated in Fig. 2(c).

We now resolve the topological bands supported by the
{p, q} tessellations. As we have already seen, the sym-
metric Hamiltonians live inside the C* algebra of the space
group. For a generic F, as in Eq. (1), the K, group of this

algebra is isomorphic to VDI [41]. Tt is freely
generated by the identity, a projection p, that carries the
hyperbolic 1st-Chern number [13—15] and by the spectral
projections of the cyclic elements x,,,

1 Ve—1

Pa(A) lezﬂ{(xé, =€,

a’j=0

This assures us that any band projection of a symmetric
Hamiltonian can be continuously deformed into a stacking
of these fundamental projections py’ @ p;(4,)"*) @

- ® pp (/lym)”m('{»m) without closing the flanking spectral
gaps [42]. The integer numbers {ng,n;(4;)....n,(4, )}
represent a complete set of independent topological invar-
iants of a band [40].

In the case of AT |, = (0; p,q,2), we have a total of

. . Apd}
eight p,(4) projections and, for example,

ha(A€) = €(1=2p,(2)) + (1 —€)A (6)

are model Hamiltonians displaying topological bulk gaps
and bottom spectral bands carrying the K-theoretic labels
n.(A) = 1 [43]. The openings of these topological spectral
gap are shown in Fig. 3 and the physical couplings needed
to implement /(1) are shown in Fig. 1(d). Figure 4(a)
demonstrates the distinct topological characters of the
models (6), by sampling the energy spectra resulted from
pairwise interpolations. The seen topological spectral
flows, which actually occur for any possible pair, demon-
strate that two such models cannot be adiabatically con-
nected. Since these topological spectral flows are stable
against turning on or off degrees of freedom, they can
be used in applications that require robust spectral

p1(42) p1(43) N (44)

1.0 1.0 1.0
- ~ 10t
05 - 05 05 %
o0 0.0f 0ok 100
— 4 P2(%2) P2(43) p3(1)
-0.5 e |-os o |-0s o o
_1of (F) e 01 (Q) -10{ (h)

000 025 050 075 10 000 025 050 075 1.0 0.00 025 050 075 10 000 025 050 075 1.00
€ € €

FIG. 3. Opening available topological gaps using the model
Hamiltonians (6). The topological classes of the lower bands are
specified in each panel, where 1; = e(27i/v) The calculations are
performed with PBC generated by (s, k) = (2, 3).

engineering. Witnessing these topological spectral flows
would have been impossible without PBCs.

Another application is engineering soft topological
interface channels, which can be achieved by rendering
the smooth interpolations from Fig. 4(a) in space. Because
of the large number of available topological phases, we can
engineer complex interfaces such as the Y junction shown
in Figs. 4(b)—4(d). There, we use the smooth partition of the
hyperbolic unit disk >3 , ;(z) = 1 shown in Fig. 4(b),
and generate a Hamiltonian H with matrix elements

(z|H|Z")

le pEHL), el (7

where y,  is the mid geodesic point of z and 7’ [44]. It
smoothly interpolates in space between the Hamiltonians
H,, H,, H; showcased in Figs. 3(a),3(e), and 3(h),
respectively. Figure 4(c) shows renderings of the local
density of states

LDOS(E, 7) Ze-\ﬂf “EPICAE) |y ()2 (8)

for several values of AE, where the sum is over the
eigenstates H|y,) = E,|w,). The energy E is pinned at

(b) x(2) x2(2) x3(2)
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FIG. 4. (a) Energy spectrum of the Hamiltonian A;H; +

A H, + A3H5 along the path shown in the inset, as computed
with the PBC (s, k) = (2,3) and with H; as in Fig. 3 panels (a),
(e), (h), respectively, and € = 0.8. (b) Our smooth partition
system for the hyperbolic disk. (c) Local density of states (LDOS)
(8) of Hamiltonian (7), as computed with open boundary
conditions on a crystal with 14 255 sites.
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E =0 in the middle of the common bulk gap of the
Hamiltonians H;’s, and where Fig. 4(a) shows a crossing of
topological modes. The plots in Fig. 4(c), generated with
the kernel polynomial method [45], confirm the expected
soft topological interface modes between the distinct
topological phase.

In conclusion, we derived an algorithmic procedure to
impose PBCs on finite hyperbolic crystals of increasing
sizes and demonstrated the exponentially fast convergence
of the bulk properties to the thermodynamic limit when
computed with our algorithms. Our Letter enables now the
identification of the gapped topological phases supported
by generic { p, ¢} tessellations of the hyperbolic spaces and
simulations of various topological dynamical effects. Work
is in progress on how to extend these results in the presence
of a magnetic field.

Note added—After submission of this Letter, we became
aware of the works [46,47] on the same subject. The
method developed in [46] covers only tight-binding
Hamiltonians with uniform hopping coefficients, which
can be attacked by combinatorial methods, and has nothing
to say about the general models treated in our Letter. The
one developed in [47] seems to be inspired by the principles
stated in our Letter, but the folding of the lattices uses a
different algorithm that produces nicer supercells. Our
method is more analytical and does not require external
resources, such as the GAP package.
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