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ABSTRACT19

With the aim of fostering the development of robust tools to simulate the impact of natu-20

ral hazards on structures, lifelines, and communities, the Natural Hazards Engineering Research21

Infrastructure Computational Modeling and Simulation Center gathered sixty researchers, develop-22

ers, and practitioners working in Natural Hazards Engineering (NHE) for a workshop to prioritize23
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research questions and identify community needs for data and computational simulation capabili-24

ties. Participants used their wide-ranging expertise in earthquake, coastal, and wind hazards from25

engineering, planning, data sciences, and social sciences perspectives to identify five major thrusts26

of recommended future work, including detailed suggestions for each : 1) development of hous-27

ing and household recovery models; 2) integration of existing models into flexible computational28

workflows; 3) investment in the collection of high-value open data; 4) commitment to sharing and29

utilizing high-value data; 5) development of versatile, multidisciplinary testbed studies. Participant30

responses and workshop data were analyzed with the help of an ontology that the authors designed31

to support data classification in a broad range of NHE applications. The paper also includes32

observations and suggestions for planning and conducting interactive workshops of this type.33

INTRODUCTION34

Regional risk assessment models for various natural hazards have advanced dramatically in35

recent years, but models for different types of hazards have largely been developed independently36

of each other. The 1971 San Fernando earthquake catalyzed substantial US investment in earthquake37

engineering and led to the development of methods and tools for some of the first regional seismic38

risk assessments (FEMA, 2011a) and performance-based earthquake engineering studies (Council,39

2018). The development of risk assessment tools for other types of hazards initially lagged but40

has improved rapidly in recent years. For example, regional risk assessment methods have been41

released by FEMA for hurricane (FEMA, 2011c), flood (FEMA, 2011b), and tsunami (FEMA,42

2017) hazards, in addition to the Florida Public Loss Model (Chen et al., 2009) for hurricanes.43

Performance-based engineering methods for wind (ASCE, 2019; Barbato et al., 2013) and tsunami44

(Attary et al., 2017) hazards are currently under development. The traditional reliance on empirical45

models to estimate response and damage to the built environment within FEMA’s Hazus Earthquake46

Methodology and other initiatives has now been complemented by more sophisticated approaches47

that take advantage of new data sources to support higher-resolution simulations that can incorporate48

interdependencies between natural, built, and human systems to reveal multi-faceted consequences49

and a richer description of recovery processes [e.g., SimCenter’s rWHALE (Deierlein et al., 2020)50
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and NIST CoE’s IN-CORE (Gardoni et al., 2018) tools]. High-resolution regional and city-level51

damage and loss simulations, coupled with advanced computational and information technologies52

to manage and process high-resolution data, are enabling the development of advanced simulation53

models that consider the disaster recovery process.54

Emerging research holds the promise of creating digital representations of cities through the55

compilation of high-resolution building inventories, demographic information, and economic data56

sourced from a combination of conventional data sources (e.g., U.S. Census Bureau, U.S. Bureau57

of Economic Analysis, U.S. Bureau of Labor Statistics) and more novel data harvesting techniques58

(e.g., satellite image recognition, assessor databases) (Wang et al., 2021; Fan et al., 2021; Shahat59

et al., 2021; Ford and Wolf, 2020). Digital representations of cities provide a baseline for natural60

hazards engineering (NHE) researchers to perform city-level assessments that aim to estimate not61

only the physical damage to the built environment, but also the associated socioeconomic conse-62

quences following the natural hazard event. As an extension, these city-level models could support63

complex, multi-disciplinary studies of questions related to post-disaster recovery, such as behavioral64

patterns of people and household decisions (Nejat and Ghosh, 2016), compression of redevelop-65

ment and decision-making processes (Olshansky et al., 2012), temporary population displacement66

and permanent relocation (Esnard et al., 2011; Costa et al., 2020), and socioeconomic disparities67

(Zhang and Peacock, 2009; Peacock et al., 2014; Hamideh et al., 2018; Wyczalkowski et al., 2019).68

These studies explore disaster impacts for specific neighborhoods, populations, business sectors,69

and services at a high-resolution and provide outputs that support more sophisticated evaluation of70

disaster recovery planning alternatives and risk mitigation strategies.71

While such simulations offer opportunities for NHE research and practice, it is important to72

keep in mind that the reliability, reproducibility, and replicability (National Academies of Sciences,73

Engineering, and Medicine, 2019) of these complex regional simulations heavily depends on the74

modeling methodologies that are used along with the associated input data, which is often of75

variable quality (Roohi et al., 2021). This barrier can, to some extent, be overcome through76

closer collaboration across the related disciplines, including engineering, computer/data science,77
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and social sciences, capitalizing on synergies and leveraging the advances by each to elevate the78

collective capacity for large-scale computational simulation and robust data management. Given79

the nature of this input data, success will require partnerships between academic researchers,80

practitioners, and the public sector, as well as greater investments in federal, state, and municipal81

data management, standardization, and open exchange of data.82

One nexus for such partnerships is available through the Computational Modeling and Simula-83

tion Center (SimCenter). The SimCenter is supported by the National Science Foundation under the84

Natural Hazards Engineering Research Infrastructure (NHERI) to develop computational software85

tools for the NHE researcher community (Deierlein et al., 2020). The SimCenter’s underlying strat-86

egy is to leverage past research and development by integrating models and data from the physical87

sciences, engineering, and social sciences to help advance new lines of research and educational88

opportunities in NHE. As such, the SimCenter has focused on building collective capacity within89

the research community, while engaging other public and private sector stakeholders who are sim-90

ilarly committed to the study of hazard impacts on communities. The computational workflows91

developed by the SimCenter support high-resolution, multi-fidelity simulation of hazard impacts92

from individual buildings to the regional scale. While there are research gaps remaining in faith-93

fully simulating the damage to the built environment under natural hazards, modeling post-disaster94

recovery from this damaged state presents a challenge of a different magnitude. It necessitates a95

multi-disciplinary approach to both (1) compile and standardize large quantities of diverse data,96

and (2) develop models that can handle the highly complex, nonlinear, and interdependent natural,97

physical, and societal systems that shape communities and their recovery processes (Miles et al.,98

2019; Miles, 2018; Deierlein and Zsarnóczay, 2021). The SimCenter is building the foundational99

computational infrastructure to characterize natural hazards and their effect on the built environ-100

ment, along with interfaces to demographic and socio-economic data to enable the integration of101

recovery models into regional simulation workflows.102

While the computational infrastructure being developed by the SimCenter and other groups103

holds great potential, its development requires the engagement of both the NHE researcher com-104
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munity as well as practitioners and policymakers to understand their perspectives and needs. The105

aspirations of academic researchers need to be weighed against the practical expectations of in-106

dustry and public-sector practitioners, as evidenced by their reliance on trusted methods and tools,107

such as the Hazus-MH software (FEMA, 2018), or FEMA’s published data products, such as flood108

insurance rate maps (FEMA, 2021). Thus, it is critical to understand the limits of simulation tools109

developed for research to address the practical constraints of real-life implementation. Building on110

past examples of successful research-to-practice collaborations [e.g., Kĳewski-Correa et al. (2020);111

Chen et al. (2009)], there is an opportunity to facilitate further engagement through the develop-112

ment and adoption of common templates founded on open-source principles with standardized data113

schema to facilitate more collaborative development, deployment, and maintenance of software and114

supporting data.115

To encourage such collaborations and understanding of user needs, several workshops have been116

organized in the last decade by projects sponsored by NSF, NIST, FEMA, and other organizations117

to engage diverse experts in natural hazard risk mitigation [e.g, McAllister et al. (2019); Poland118

(2009); Kwasinski et al. (2016); Slotter et al. (2021)]. These workshops were typically focused119

on particular research products or mitigation programs, which to some extent limited the scope120

in terms of hazard, geospatial scale of analysis, and component of disaster risk management. In121

contrast, for the workshop described herein, the SimCenter aspired to collect qualitative data and122

actionable information on computational and data needs through a broadly-defined sampling of the123

NHE community, cross-cutting hazards, expertise, and roles.124

WORKSHOP OVERVIEW125

The workshop on simulation and data needs was held at the University of California, Berkeley,126

in January 2020 and designed to (1) engage the community of disaster risk and recovery experts127

and stakeholders and (2) identify how computational tools can support fundamental and applied128

research to promote resilience to natural hazards. The workshop agenda was designed to foster129

knowledge exchange and collect observations and information from participants across multiple130

hazards (earthquakes, tsunamis, hurricanes, and storms), between disciplines (engineering, plan-131
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ning, and social-science), and among various roles in the community (policy makers, researchers,132

practitioners, and software developers). The specific goals of the workshop were as follows:133

• Identify the approaches and tools used to evaluate natural hazard impacts and inform risk134

management strategies.135

• Collect and prioritize questions and concerns about mitigating the devastating effects of136

earthquakes, storms, and other extreme events that have a potential to be evaluated through137

scenario studies and advanced simulations.138

• Identify and prioritize the needs for improved models and supporting data required for139

computational workflows for advanced simulation of natural hazard impacts.140

• Brainstorm strategies to facilitate the development and adoption of multi-disciplinary141

testbeds and other simulation technologies in research and practice.142

Participants143

The workshop organizing committee was assembled from SimCenter affiliates with a diverse set144

of expertise. The number of participants was limited to 60 to foster active discussion, where about145

70% of the participants were invited, 20% were selected from respondents to an open invitation,146

and 10% were graduate students. Invited participants included researchers, developers of natural147

hazards risk simulation tools, and end-users of regional risk assessment frameworks (see Table S1148

for the complete list of participants).149

In preparation for theworkshop, participantswere asked to self-assesswhere theywould position150

themselves along a spectrum of hazards (multi-hazard, wind, earthquake, or coastal/flood), roles151

(policy maker, simulation framework specialist, or software developer), and the scales at which they152

model or analyze data (local, state, or national). As shown in Fig. 1, the distribution of participant153

responses indicates a reasonable balance across hazards (Fig. 1a), participant roles (Fig. 1b),154

and scales of engagement (Fig. 1c). About two-thirds of attendees were affiliated with academic155

institutions (Fig. 1d), and one-third were from public/non-profit (state, federal, and international156

agencies/foundations) and private/for-profit sectors. Participants were also asked to characterize157
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themselves as data producers and/or consumers, where about ninety percent indicated that they158

both produce and consume data, with the remainder equally divided between solely producers or159

consumers of data.160

Methods for data collection161

The two days were divided into four sessions, each starting with a short plenary that provided162

an overview of the session theme, followed by a breakout phase. The four sessions focused on (1)163

connecting to stakeholders, (2) connecting across hazards, (3) data sources, and (4) interdisciplinary164

engagement (see Fig. S1 for a detailed agenda). During the breakout sessions, participants were165

divided into three subgroups, based on the backgrounds of participants and focus area of each166

breakout. Outcomes of the breakout exercises were documented and collected through individual167

worksheets and group-based easel pads, with pre-defined labels. Artifacts from the breakout168

sessions were subsequently collected, digitized, processed, and made available to the participants.169

The discussions in each breakout session were guided by a facilitator, who was briefed on the plan170

before the workshop and shared highlights and main takeaways of the breakout discussion with the171

entire workshop group following each breakout.172

As an example of how the breakout sessionswere organized, theData Sources session focused on173

the data needs among disaster researchers and practitioners to improve disaster recovery planning.174

Following a plenary session discussion on the challenges surrounding open data for disaster research175

and advances in data science that could overcome these challenges, the breakout session participants176

examined the gaps in open data practices within the natural hazards community. The first activity in177

the breakout was a Data Mapping activity to (1) prepare a short list of the data that the participant’s178

organization regularly consumes and produces, (2) identify the source or distribution method used179

to share that data, (3) quantitatively rate the trustworthiness/reliability and usability/accessibility180

of that data, and (4) assemble a wish list of data that they would like to have available. Shown181

in Fig. 2 is an example of the Data Map artifacts collected from the respondents, where they182

identified and ranked quality and accessibility of the datasets (5 indicating a high/favorable score183

and 1 indicating a low/unfavorable score). The second activity used a Data Scorecard to (1) identify184
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the five questions participants hope to “ask” of the resilience/risk assessment data they engage, (2)185

indicate which questions they can answer today with the data available to them, (3) assess which186

data would be most critical to answering these questions in the future, and (4) specify if this data187

is accessible today. The Data Sources session concluded with a report out from each group and188

discussion. The participant artifacts from the Data Sources session were transcribed for subsequent189

analysis.190

REVEALED DATA CHARACTERISTICS191

The transition toward standardized workflows and data that enable multi-disciplinary, multi-192

hazard regional recoverymodeling requires a concerted effort to holistically organize high-resolution193

data so that it is searchable and easily accessible by users. Existing classification systems in the dis-194

aster science literature [e.g., IRDR (2014); McAllister et al. (2019); UNDRR (2019)] do not capture195

details that are important for computational simulations of hazard events or describe information196

that is relevant to different time scales in the risk management cycle of prevention, protection,197

mitigation, response, and recovery (DHS, 2016). Existing classifiers tend to narrowly categorize198

data by the type of natural hazard (Coburn et al., 2014), which while an obvious and important199

characteristic, may miss opportunities to examine aspects that could unify the hazard engineering200

community.201

To address the shortcomings in existing classifications, a new ontology is proposed in Table 1202

that builds upon the concepts in existing classification systems, but aims to better describe features203

that are important for computational simulation of natural hazard events. The ontology identifies204

the important features of the data and provides a classification that defines the independent features205

for characterizing the data. The ontological information provides the basis for creating application-206

specific taxonomies (with specific hierarchies among the features) or, as in this study, to tag data207

from several perspectives. For example, the type of natural hazard, the context, and the origin are208

three independent features in Table 1 that were used to characterize features of the data identified209

by workshop participants.210

The ontology was informed by the range of data types that workshop participants identified in211
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the Data Map worksheets during the Data Sources breakout session. Additional categories, such as212

the geographical scale of the data, were considered, but excluded because either the classification213

within the category was ambiguous or the information provided by the category was redundant.214

This ontology was used to tag data that was identified during the Data Sources breakout session,215

thereby enabling a cross-sectional analysis of the data to identify (1) which data was of most value216

to the participants and (2) potential synergies between categories. This ontology is proposed for217

review by the NHE community as a first step towards a formal ontology to collect and organize218

data for simulating natural hazard effects on communities.219

When identifying the data that participants produced or consumed, each participant named up220

to five data sets that were later tagged using the ontology terms. Where the data sets identified221

by the participants described a wide range of data, multiple tags from each category in Table 1222

were applied. Tags were assigned based only on the available information, and when the tag in a223

certain category was ambiguous, an unknown tag was assigned rather than resorting to a default or224

assumed value. For example, when a participant specified that they use "hazard data" for their work,225

an unknown tag was assigned for the type of natural hazard category. The Table 1 ontology and226

tagging process was only applied to artifacts from the Data Sources session. Artifacts from other227

sessions, e.g., the Regional Simulations session, where participants identified specific software228

tools to perform simulations of natural hazard effects, were simply reported and collected in lists.229

The datasets from other sessions were not tagged with the proposed ontology because participants230

were not instructed to classify responses in a structured way. The artifact data sets are publicly231

available (Zsarnóczay et al., 2021) and they served as the basis for figures and recommendations232

summarized later in this paper and the accompanying Supplemental Materials.233

IDENTIFIED OPPORTUNITIES TO ENHANCE DISASTER SIMULATION TOOLS AND DATA234

During the workshop, participants prioritized questions related to post-disaster recovery that235

could potentially be answered using advanced computational simulation tools and data, and they236

identified potential areas where improved simulation capabilities are needed. Examples of the237

questions raised include: “How does damage to lifelines impact a community’s recovery?”, “How238
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can a community quickly and effectively restore livelihoods after a disaster?”, and “What is the239

best way to characterize and estimate damage states in structures following a disaster event?”.240

When asked to identify the five most important questions in their work, participants focused241

most prominently on themes related to the following: recovery of households (17%), damage in242

the built environment (15%), evaluation of mitigation policies (11%), evacuation and population243

displacement (9%), and recovery of utilities and other critical services (9%), where N=150. A list244

with additional themes identified is included in Table S2, along with a database of the questions245

participants prioritized. Participants indicated that over two-thirds of these questions cannot be246

answered today, and approximately three-quarters of the participants indicated that they are currently247

unable to answer the majority of their own most pressing questions.248

Based on the workshop discussions, combined with the insights generated through processing249

of the collected data and artifacts, the following five opportunity areas for computational simulation250

of natural hazard effects were identified:251

1. development of housing and household recovery models;252

2. integration of existing models into flexible computational workflows;253

3. investment in the collection of high-value open data;254

4. commitment to sharing and utilizing high-value data;255

5. development of versatile, multidisciplinary testbed studies.256

Focusing on these areas has the potential to strengthen connections between segments of the257

NHE community across various hazard types and between disciplines to address the most pressing258

questions that were raised during the workshop. The following subsections elaborate on the five259

areas and how they emerged as opportunities identified in the workshop.260

1. Development of housing and household recovery models261

Housing was singled out by participants as a key entry point to engage in recovery modeling,262

particularly if linked to the broader context of recovery of neighborhoods, communities, and lifeline263

infrastructure. Table 2 provides a summary of the housing-related applications and related data264
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needs as identified by the workshop participants. Information on households and their recovery265

was a prominent theme in the top five questions that workshop participants ask of their data266

(Table S2), and it was frequently mentioned among the aspirational data they identified (Fig. 5).267

Many workshop participants emphasized that the understanding and modeling of housing recovery268

needs to go beyond building damage and population counts to consider socioeconomic aspects of269

households and communities [e.g., Comerio (1998)].270

The following are some of the key priorities that can help advance housing recovery modeling271

frameworks, computational simulation tools, and workflows.272

• Account for neighborhood conditions and community context: The ability to char-273

acterize and model community and neighborhood facets, such as businesses and lifeline274

infrastructure, will help quantify the spatial distribution of demands on local and regional275

systems and institutions after disaster events. This is particularly important to account for276

in- and out-migration and population displacement and relocation. The long-term recovery277

and post-disaster redevelopment processes in Christchurch, NewZealand, and NewOrleans,278

Louisiana, provide good examples of how displacement and migration of people can shape279

the recovery of communities and residential housing.280

• Develop comprehensive and linkable building-level housing inventories to facilitate281

coupling of engineering and social science data and models: Data integration and simu-282

lation workflows of residential housing damage, restoration, and recovery are predominantly283

static, often not to the individual parcel or household level, and lacking in demographic284

and socio-economic characteristics of residents. As tools and computational platforms are285

developed to perform higher-resolution simulations, semi-heuristic models can be used to286

generate high-resolution data from census block-level inputs. Methodologies developed287

by researchers affiliated with the NIST-funded Center of Excellence for Risk-based Com-288

munity Resilience Planning provide opportunities to link high-resolution spatial data on289

households and housing units to single and multi-family residential buildings and to critical290

infrastructure (Rosenheim et al., 2019). Increasing the granularity of such data is critical,291
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as noted during the workshop, to reveal the benefit of specific planning and policy actions,292

though with the important caveat that privacy and ethical concerns of collecting input data293

and reporting risks and vulnerability of residents must be carefully managed.294

• Capture non-engineered residential buildings as part of housing inventory: Basic295

building information is available for most areas in the United States at a census block-level296

resolution. Non-engineered buildings present unique challenges. These typically wooden297

or unreinforced masonry buildings are designed based on empirical rules in building codes298

and they often include several undocumented modifications that can have a considerable299

impact on structural performance (Sparks and Saffir, 1990). Several publications in the300

literature highlight the disproportionate contribution of these buildings to the damage and301

losses in recent disasters (Sparks, 1986; Morse-Fortier, 2015; Sandink et al., 2019; Amini302

and Memari, 2020). Since these buildings are a substantial part of the residential housing303

inventory and they are key contributors to losses in natural hazard events, it is important to304

identify and collect additional information on the attributes driving their performance.305

These opportunities will require sustained interdisciplinary expertise and contributions. As306

discussed shortly, empirical studies and testbeds will be particularly critical to the design and307

development of computational workflows that account for multi-faceted aspects of post-disaster308

household and community recovery.309

2. Integration of existing models into flexible computational workflows310

Sessions I and II of the workshop were organized to identify: (1) simulation tools that are311

currently used by NHE researchers and practitioners to evaluate natural hazard effects on buildings,312

lifeline infrastructure systems, and other community assets, (2) simulation needs that are not being313

addressed by current simulation technologies, and (3) factors that impede the use of computational314

simulations by NHE researchers and practitioners. During the breakout sessions, the 60 workshop315

participants identified 237 unique analysis tools and software applications for NHE simulations.316

As shown in Fig. 3, simulation tools are distributed across the risk assessment workflow (Fig. 4),317
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from characterization of assets and hazards to estimation of damage and consequences, along with318

planning tools. Among the six categories shown in Fig. 3, the one with the fewest tools available319

is simulation of indirect consequences (e.g., the USGS PAGER software, which provides rapid320

fatality and economic loss estimates following significant earthquakes worldwide). When asked to321

identify the challenges associated with simulation to support risk assessment and mitigation, the322

overwhelming response was that there is a lack of standardization and interoperability between the323

various software applications. Participants noted that many of the software systems are configured324

in a stand-alone fashion, such that output from one application requires substantial manipulation325

before it can be used as input to the next.326

Among the 369 non-unique software names recorded by participants, the Hazus (27 mentions)327

and IN-CORE (18mentions) software applications stand out by far as the most commonly identified328

software. These applications 1) span the entire workflow, and thus are identified by participants329

active in only a particular phase as well as those with activities spanning all phases, 2) are products330

of two recognized federal agencies (FEMA and NIST, respectively), and 3) are publicly available331

free of charge. While IN-CORE is Python-based and open source, which facilitates customization332

by users to meet their specific needs, Hazus is a closed-source system with a fixed set of modules,333

which has limited flexibility. Hazus offers comprehensive features to estimate losses to a wide334

variety of assets (buildings, bridges, highways, and lifeline infrastructure) under multiple hazards,335

which makes it attractive for use by practitioners in the public and private sectors.336

Beyond the significant challenges associated with manipulating data and linking software to337

create integrated multi-phase workflows, workshop participants identified features that would make338

a substantial improvement to currently available software:339

• Usability: Software documentation, training resources, and intuitive user interfaces are340

important to make software easy to use. Documentation of the underlying methods and341

models is important for users to understand and have confidence in the simulation results.342

• Flexibility: Software that is open-source and designed with a modular architecture is343

important to allow users to modify software to their specific needs.344
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• Reliability: Ideally, software components and systems should be verified and validated to345

ensure that they run correctly and provide accurate results. Verification procedures and346

practices vary greatly, while rigorous validation is less common because of the inherent347

uncertainties in the problem, the sparsity of comprehensive damage and loss data, and the348

lack of standard protocols for validation.349

• Multiple scales: Few software tools exist to support multi-scale simulation, which could350

take the form of variable levels of spatial and temporal resolution.351

• Cascading events: Few software tools are capable of simulating cascading events.352

• Quantified uncertainty: Characterization and propagation of various sources of uncer-353

tainty in a disaster simulation would allow quantification of the uncertainty in the simulation354

results. Currently available tools do not provide comprehensive uncertainty quantification.355

• Consequences and recovery: Only a small number of software tools are available for the356

simulation of consequences and recovery after a disaster. Understanding this stage of the357

natural hazard cycle is critical to assessing the impact of events and shaping mitigation358

policy. A large amount of data has been collected after recent disasters (Kĳewski-Correa359

et al., 2021; Wartman et al., 2020; van de Lindt et al., 2018; Sutley et al., 2021; Peek et al.,360

2020), which should help with the development of newmodels and tools if there is sufficient361

interest from the community.362

• High-performance computing (HPC): Few software tools can take advantage of access363

to cloud computing or open HPC clusters, such as NHERI DesignSafe (Rathje et al., 2020),364

and local clusters at universities. Several legacy tools have deprecated dependencies that365

are not compatible with modern HPC environments and recent data formats.366

It is notable that the scientific application framework developed at the SimCenter in part responds367

to a number of these identified challenges by supporting the integration of existing models into368

natural hazard risk assessment workflows (Deierlein et al., 2020). Such a workflow is an assembly369

of software modules (Fig. 4) and interfaces that allow the combination of various methods while370

maintaining a seamless end-to-end data transfer. The workflow begins on the left with modules that371
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characterize the assets (e.g., buildings and infrastructure) and the hazard (e.g., earthquake ground372

shaking, wind speed or pressure, etc.). This information provides input to structural analyses to373

assess the response and damage to the assets. Finally, on the right, the asset performance data374

is used as input to simulate repairs and the recovery of communities. The application framework375

provides outputs in a standardized format to facilitate interfacing with tools that support planning376

and policy-making. Theworkflowmodules are designed to utilize supporting databases and perform377

simulations with state-of-the-art uncertainty quantification approaches including surrogate models378

and efficient forward propagation methods. Thus, the outcomes of the workshop and the challenges379

listed above are guiding the future development of the application framework.380

3. Investment in the collection of high-value open data381

One of the major barriers to the enhancement and integration of software is the lack of access to382

critical datasets, particularly those with greater granularity and spatial extent than what is available383

today. When asked to identify aspirational data sources, the majority of responses (54%, N=183)384

expressed the need for additional high-value and higher-resolution data that is not available today385

(see Fig. 5 for details). Among the additional data needed, information on buildings (14%,386

N=183), households, businesses, and services (13%), recovery processes (12%), and hazards (5%)387

were frequently mentioned. Examples of high-value data under these sub-themes are reported in388

Table 3.389

Participants also recognized the opportunities generated by improving the accessibility and390

trustworthiness of existing datasets (23%, N=183, Fig. 5), especially when it comes to information391

about lifelines; and the need for more data to calibrate and validate numerical models of hazards,392

damage, consequences, and recovery (17%). These themes are discussed in more detail in the393

following subsection.394

Participants speculated they would produce only about 22% of the listed aspirational datasets,395

and more than half of the data they rely upon would be from databases that cover the entire396

nation and often provided by federal agencies (e.g., probabilistic hazard maps, building inventories,397

demographic data). Some of the identified needs require new workflows to generate the data, but398
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often it would be sufficient to enhance existing data collection approaches so that they capture399

additional high-value data and maintain it in desirable formats for computational modeling and400

simulation. The following should guide such future investments in high-value data:401

• Refine 4D resolution: The high-fidelity models that guide targeted mitigation decisions402

must be calibrated and validated against site-specific, parcel-level hazard and exposure403

data. Achieving the required level of granularity and specificity in building characteristics,404

behavior, and performance requires navigation of new sets of privacy issues and proprietary405

restrictions. Furthermore, hazard and exposure characteristics often evolve at a faster rate406

than the release cycle of the corresponding data, for example, census data is released407

in decadal cycles. The temporal resolution of datasets needs to be better aligned with the408

underlying systemdynamics to assure availability ofmore accurate pre-disaster benchmarks.409

The updating rate may even be adapted when these dynamics change, such as releasingmore410

frequent updates following a disaster to better capture recovery characteristics. In a post-411

disaster context, longitudinal studies and more granular information about the impact on412

communities is required to support the development of quantitative models of the recovery413

process. The NSF, NIST, and other entities are investing in vital disaster recovery research414

and empirical studies. Such studies, including those that are region- and hazard-specific,415

can offer a rich source of baseline data for individual sectors (e.g., housing, business,416

critical infrastructure, civil infrastructure), as well as community systems (e.g., system417

interdependence, neighborhood decline/stability).418

• Anticipate diverse use cases: Data collection for a specific purpose is often performed419

by persons with limited understanding of the potential uses of the data for other purposes.420

For example, a tax assessor or National Flood Insurance Program (NFIP) claims adjuster421

has a specific data schema and conducts subjective assessments and classifications of422

building components. The labels assigned in this process might not be accurate from a423

structural engineering perspective. Engineers often find it challenging to use such data424

to infer structural vulnerabilities in a natural hazard risk assessment. To maximize the425
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likelihood of meeting diverse user needs, the approach to data generation shall be informed426

by interdisciplinary perspectives when the underlying schema is designed and the data427

classification within that schema is defined.428

• Promote standards across data providers: The data needed to explore questions of429

community resilience is generally fragmented because each producer (e.g., municipal de-430

partments, insurers, and federal agencies) uses its own schema and methodology. This leads431

to diverse standards for collecting, tagging, and vetting this data. The quality and complete-432

ness of the produced data and metadata would greatly benefit from enforcing consistency433

and ideally centralizing the production efforts. At a minimum, producers should be aligned434

under consensus standards that are communicated and promoted by designated persons [see435

concept of ‘Data Evangelists’ Andrei Lyskov (2019)].436

• Value the entire data life cycle: Producing data that has high value and potential for re-use437

requires considerable time and effort. Data producers often find this work a heavy burden438

and they may lack the incentives, expertise, capacity, and resources to follow through. The439

emphasis is often placed on data collection while the “dirty work” of quality assurance,440

metadata association, documentation of the methodology, and long-term curation is often441

not resourced and recognized at the level it deserves.442

It is worth noting that the data relevant to community resilience is increasingly being generated443

and managed through digital workflows, and the cost of collecting several important data types444

is already low and continues to decrease rapidly. These factors enable the generation of robust445

repositories of images, documents, and other relevant data. New modalities such as crowdsourcing446

and citizen science further expand the venues for data generation. Thus, taking the suggested steps447

toward generating high-value data does not necessarily demand a significant increase in investment.448

Resourcing seems secondary to the more critical need to redesign policies and practices for data449

collection and generation.450
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4. Commitment to sharing and utilizing high-value data451

While participants routinely consume open data in their analyses and simulations, the lack of452

access to high-value data often forces them to limit the scope of their work to problems that can453

be solved with the data available. During the breakout session on data sources, participants were454

asked to list up to five data products they consume and produce in their work. This information was455

processed using the ontology presented earlier by assigning labels to each participant based on the 5456

pieces of data they listed. Fig. 6 shows the number of participants assigned to each label—note that457

each participant could get multiple labels assigned both within a category and across categories.458

Almost all participants consume data that is publicly available (96%), largely from government459

providers (96%), and the result of direct observations (98%). Respondents had heavy reliance460

on data describing the built environment (91%), the natural environment (68%), and households461

(64%). Table 4 lists examples of consumed data under these themes. Almost every participant462

needed exposure (98%) data, and a strong majority also used information that characterizes the463

hazard (70%). The majority (66%) focused on earthquake and geohazards, a direct consequence464

of the participant demographics (Fig. 1a). Significantly fewer participants mentioned data sources465

that provide information about direct damages, their consequences, and activities surrounding466

preparedness and recovery. This lack of utilization is likely due to the scarcity of such data because467

a large number of participants expressed interest in these themes when listing aspirational data (Fig.468

5).469

As visualized in Fig. 7, the data consumed by participants in their analyses and simulations470

had moderate levels of trustworthiness (mean=3.72/5.00, where 5 is highly trustworthy), with only471

62.4% scoring 4 or above. Even though these datasets were regularly engaged, participants assessed472

them as only moderately accessible (mean=3.53/5.00, with 5 indicating highly accessible). In fact,473

only 56.4% of the data consumed by participants was perceived as easy to access (i.e., receiving a474

score of 4 or above).475

Participants tended to produce data similar to what they consumed (Fig. 6), predominantly fo-476

cused on the built environment (74%, e.g., city-level building inventories, responses from structural477
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analysis models) and the natural environment (35%, e.g., ground motion datasets, hurricane wind478

speed projections). The number of responses for consumed datasets was in some cases significantly479

larger than the number for produced datasets due to a larger proportion of “consumers” among par-480

ticipants (see response totals for consumed and produced datasets in Fig. 6). More respondents481

produced data through computer simulation than the number of those who consumed such data (19482

vs. 12 out of 47 responses). While consumed data was primarily from the earlier phases of the483

natural hazard risk assessment workflow, the produced data is more evenly distributed across the484

workflow phases.485

As detailed in Fig. 7, the data participants produced is comparable to the data they consumed486

in terms of perceived trustworthiness (mean=3.65/5.00). Even though participants have greater487

control over the trustworthiness of their data products, only 57% (N=112) of them scored 4 or488

higher. Participants further admitted they were not good “data citizens”, producing data perceived489

as markedly less accessible than the data they consume from others (mean=2.79/5.00). Only 32%490

(N=112) of the data they generate is actually accessible to others (i.e., rated 4 or higher), with only491

40% (N=35, see Fig. 6) of them sharing at least some of their produced data publicly. Fig. 6492

also visualizes the disproportionate consumption of public data that results in highly private data493

products—63% (N=35) of participants store some of their produced data privately and 46% (N=35)494

of participants have none of their produced data published or publicly available.495

These observations on data management are not uncommon and stem from the challenges sur-496

rounding the adoption of FAIR (Findable, Accessible, Interoperable, Reproducible) data standards497

(Wilkinson et al., 2016). While frameworks stand ready to guide research communities toward498

adopting FAIR principles (GoFAIR.org, 2021), it must be acknowledged that FAIR demands more499

of the data producer than just making the data accessible. Appropriate documentation of the500

methodology applied to collect and process the data is also an important part of the principles.501

The benefits of doing so are considerable as other producers within a community also adopt this502

philosophy when they share their high-value data. More importantly, as noted by Wilkinson et al.503

(2016), "The primary limitation of humans, however, is that we are unable to operate at the scope,504
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scale, and speed necessitated by the scale of contemporary scientific data and the complexity of505

e-Science." By embracing FAIR data standards and encouraging data producers to provide sufficient506

context for their data research, communities will be able to leverage the power of automation and507

machine learning and can work with data at the scale demanded by current problems.508

From a technological perspective, the formula for exposing open data is clear: ensuring pub-509

lished data have appropriate schema, are exposed using open data standards, and take advantage of510

the interfaces that have been developed to bring it seamlessly into workflows. However, the ability511

to act upon this formula is considerably hindered in the fields studying disasters and community512

resilience because the required data is generated in a highly distributed fashion across numerous513

agencies, municipalities, and institutions. Inevitably, these entities have divergent data sharing514

policies and practices and often lack expertise in, and capacity for, sound data management. In515

some cases, local government data providers have partnered with the private sector to manage and516

share their data [e.g., Socrata (2021); Tyler Technologies (2021)], though not all municipalities517

have the resources or inclination to do so. These challenges are only compounded by additional518

barriers erected by the unique cultures, policies, and regulations within these entities. For example,519

restrictions may limit access to private or sensitive data, possibly regulated by an Institutional520

Review Board (IRB) protocol or privacy laws. Data producers may further be averse to the risk of521

liability due to data misuse or misinterpretation. In other cases, business interests (e.g., services522

that would be obsolete if the data were open) or other concerns over competitive advantage (e.g.,523

desire to maintain exclusive publishing rights) prevail. Thus, while the technical formula is clear,524

the formula to change human and organizational behavior is yet to be discovered.525

Nevertheless, the participants identified several priority areas to increase the amount of high-526

value data exposed in our community:527

• Enhance discoverability: While data may be available online, it is not always easy to528

find. Users struggle to stay abreast of all the new data initiatives, services, and providers.529

Clearinghouses and centralized data initiatives such asDHSExchangeCore andOpenFEMA530

are especially valuable in this rapidly evolving landscape. More fundamentally, semantic531
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incompatibilities can inhibit the identification of relevant data through automated queries.532

Such incompatibilities arise because each data producer uses their own disciplinary views533

to design a schema for their data. Fortunately, advances in the semantic web can bridge the534

potentially disparate views of data consumers and producers to makemore data discoverable535

[see Schema.org Publishing Guidelines for the Geosciences v1.1 Shepherd et al. (2020)].536

• Enhance integration: Disaster simulations require continuously evolving data from diverse537

sources. Even open data is often difficult to retrieve and consume. Onerous access restric-538

tions and cumbersome formats may require users to manually download and pre-process539

the data. Large-scale, automated disaster assessments will require federated databases540

that allow producers to maintain and update the data while providing seamless integration541

with consumers’ computational workflows. Data producers should publish Application Pro-542

gramming Interfaces (APIs) and expose their descriptions in a machine-consumable manner543

(e.g., OpenAPI). Shakemap from USGS is a good example. Although several producers544

share geospatial data through ArcGIS Online, this data would have even greater value when545

exposed through Web Map Service (WMS) or Web Feature Service (WFS) endpoints using546

non-proprietary Open Geospatial Consortium (OGC) standards (see the emerging OGC547

Web API Guidelines: Open Geospatial Consortium (2019)). Updated versions of OGC548

standards are adopting semantic principles to improve discoverability and foster seamless549

integration within workflows. These are currently being integrated into open-source tools550

like GeoServer (GeoServer, 2021) and QGIS (QGIS, 2021).551

• Expose more than data: As reliability and trustworthiness of data is as critical as access552

itself, the adoption of data standards and establishment of consistent data processingmethods553

is critical. Ideally, these standards and methods are coupled with quality control processes554

that include quantifiable confidence measures [see StEERQC codes as an example Roueche555

et al. (2019)]. Standardized data must be exposed with well-structured metadata and556

appropriate documentation of associated data collection, processing, and quality assurance557

methodologies. Standard data schema can be shared at schema.org to encourage adoption.558
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To further support robust verification and reproducibility of results, producers should expose559

not only derived data (e.g., statistics and calibrated models), but also the raw data itself.560

Data producers should strive to leverage platforms that provide tools for automated testing561

and versioning such as GitHub (GitHub Inc., 2021) and GitLab (GitLab Inc., 2021).562

• Promote community validation. As more high-value data—including models—is ex-563

posed, its wider use will foster the discovery of errors and omissions. Data producers564

can improve the trustworthiness of their data by supporting cross-validation studies and565

establishing a mechanism for user feedback, rating, and issue reporting.566

• Convert legacy data. There is valuable legacy data that has yet to be brought into reposi-567

tories, and in some cases, will require digitization from archival files. Data from landmark568

disaster events is particularly valuable and an initiative to compile, digitize, process and569

expose these legacy datasets would be highly beneficial for the disaster science community.570

Ultimately, the true potential of open data is only realized when enough of us—and ideally571

all of us—commit to the above initiatives. This level of adoption necessitates a substantial shift572

in the politics and culture surrounding data. Such a shift can be facilitated by the alignment of573

corresponding incentives (possibly by creating higher consequences for non-compliance through574

data publishing requirements of sponsors and journals) and by lowering the barriers to publishing575

data openly considering the limited capacity and experience of most data producers. Given the576

considerable reliance on external data providers, particularly at all levels of government, the577

suggested efforts must be coupled with their sustained advocacy on the importance of reliable and578

accessible data.579

5. Development of versatile, multidisciplinary testbed studies580

In addition to diverse data needs, diverse disciplinary expertise is required to simulate and study581

the recovery of communities after a disaster. The opportunities listed above outline initiatives that582

would facilitate data access, enable the exploration of impactful questions, and promote sharing583

these results with others. In spite of those improvements, entering this spacewill remain challenging584
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and will still require a substantial time investment. Participants agreed that testbeds provide helpful585

and much-needed examples that can encourage interested newcomers, such as graduate students586

and non-academic professionals, to invest in recovery simulation. Testbeds can be designed around587

the opportunities revealed in this paper and become vehicles of change while serving their main588

purpose as illustrative examples. A modular testbed that integrates various tools and corresponding589

data could serve multiple functions:590

• Benchmark models: Testbed exercises can become benchmarks to evaluate and period-591

ically assess the performance of various natural hazard risk assessment workflows. Such592

evaluations could inform the community about the expected benefits of choosing a particular593

workflow or, within a workflow, making different choices regarding the level of fidelity, the594

specific input data, the hazard scenario, or a subclass of models. Reporting results from595

alternative solutions of the same problem would also facilitate verification and measuring596

the robustness of various workflows. If the testbed location is chosen to coincide with a597

historical event site, it can also be used for hindcasting exercises and validation purposes.598

• Serve as a template: As long as both the simulation platform and the input data are publicly599

available, testbeds are large example problems that can be used as a template to develop600

new workflows or initiate new studies. This promotes technology transfer from academia601

to the private sector and can encourage large government organizations to update their tools602

more frequently. Reproducing results is easier if a large part of a community works from603

the same template and builds credibility and trust in both the models and their outputs.604

• Demonstrate best practices and serve as a proof-of-concept: Testbeds can demonstrate605

best practices in workflow design, present caveats, and illustrate how lack of data or low-606

fidelity models in one phase can compromise the entire simulation. These illustrations can607

also promote robust data management—i.e., data standardization and documentation of all608

models and data used for a simulation, including appropriate citations to their DOIs. When609

it comes to sensitive demographic data, testbeds can present best practices to work with the610

typically lower-resolution available information and still provide meaningful insights.611
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• Promote tools and datasets: Althoughmanywell-known proprietary tools have free, open-612

source alternatives, these are less promoted and the majority of the community is often not613

aware of them (e.g., ArcGIS and QGIS). A comprehensive collection of data and software614

resources in testbed examples facilitates the discovery of open-source tools and public615

data. Additionally, testbeds can expose gaps in workflows (i.e., desirable functionality not616

supported by any open software) and provide a platform to curate and explore new methods617

and models to fill those gaps.618

• Promote interdisciplinary collaboration and engage stakeholders: Testbeds designed619

around a tangible narrative about important problems (e.g., disproportionate impact of620

disasters on vulnerable populations) can raise awareness and solicit feedback from disaster621

recovery researchers, affected community members (residents, leaders, and policymakers),622

and other stakeholders. Observing how data and models from one domain affect the623

simulations in another can also generate feedback and collaboration across disciplines.624

The location or geographic focus of a testbed can have a large impact on its utility in serving625

the above functions. A good location has substantial data available to characterize the hazard, the626

built and natural environments, and the socioeconomic attributes of the population. It also helps if627

the local government is interested, supports these simulations with data, and brings forward local628

policy-related questions that can be informed by simulation results.629

Groups of participants reviewed existing studies during breakout sessions and suggested eight630

potential testbed locations thatwe grouped into four geographical areas. Table 5 provides a summary631

of the opportunities in each area (a detailed description of the desirable features is available in Table632

S3). The suggested locations reinforce that natural hazard risk is governed by different hazards in633

the West and East Coasts of the United States. While Christchurch in New Zealand and Kathmandu634

in Nepal were suggested as good examples that were recently impacted by severe earthquakes and635

have both valuable data and support from the local government, participants (primarily from a636

North American context) were generally concerned about data availability and lack of familiarity637

with the local environment in non-US regions.638
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Within the United States, regional studies on the West Coast often focus on the San Francisco639

Bay Area (Deierlein et al., 2020; ATC, 2018; Detweiler and Wein, 2018b), but there are recent640

examples from Los Angeles (Kang et al., 2019; Cook et al., 2021) and Seattle (Marafi et al., 2020)641

as well. In California, wildfires (Lautenberger, 2017), fires following earthquakes (Detweiler and642

Wein, 2018a), and flooding due to atmospheric rivers (USGS, 2011) present additional hazards on643

top of the earthquake risk. In the Northwest, subduction earthquakes and potential tsunamis can644

represent a markedly different environment. The East Coast has several large metropolitan areas645

that are affected by various wind and water-borne hazards. The consequences of hurricanes in646

the coastal regions of Texas (Hamideh and Rongerude, 2018), North Carolina (Wang et al., 2019),647

and New Jersey (Deierlein et al., 2020; Kĳewski-Correa et al., 2020) have been studied recently.648

The longitudinal study in Lumberton, NC (Sutley et al., 2021) already offers valuable data and the649

city is expected to become a prime location for hindcasting and recovery model calibration. Three650

groups of workshop participants independently suggested South Florida for consideration because651

a large population is frequently exposed to severe storms, in addition to threats from sea level rise652

and other climate change effects. Miami-Dade County was specifically mentioned because there653

is a large number of industrial facilities in the region as well as because Miami is a major city and654

tourist destination with considerable high-rise residential development.655

Besides large regional studies with millions of households, recently created smaller testbeds656

[e.g., Seaside, OR in Park et al. (2019)] demonstrate that by focusing on a few thousand buildings,657

researchers can develop high quality exposure and household data. These smaller testbeds can also658

be computationally more affordable to run large sensitivity studies that might not be feasible for659

large regions. Such smaller studies can serve as proofs-of-concept and benchmarks for new models660

and methodologies.661

CONCLUDING REMARKS662

The workshop organized by the NHERI SimCenter in early 2020 to review and discuss sim-663

ulation and data needs to support disaster recovery planning provided important insights into the664

prerequisites for the next generation of studies on the regional impact of disasters and post-disaster665
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recovery of communities. The investigation of households and their homes emerged from discus-666

sions as an area with abundant opportunities for collaboration between various disciplines in natural667

hazards engineering. Participants identified a large number of existing tools and recognized the668

need to better integrate these into computational workflows to facilitate sharing and re-usingmodels669

and results. The high-fidelity simulations that can support more nuanced risk mitigation policies670

and recovery planning will require additional building and demographic information. Investments671

in robust and trustworthy methods to collect such information and make it publicly accessible in672

a standardized format is necessary for our community to be able to tackle large-scale problems at673

high fidelity. In this paper, and in the supporting digital data, the authors share specific examples674

of high-value data that participants frequently mentioned as critical information for their work. Fi-675

nally, testbeds were highlighted as multi-purpose tools for sharing, benchmarking, and promoting676

data, models, and workflows in the NHE community and beyond.677

In addition to the opportunity areas that are the main focus of this paper, a few remarks about678

workshop design are shared below to support future organizers:679

• Breakout sessions with structured exercises rather than only discussions allow organizers680

to collect rich insights and evidence from participants. This increases the likelihood of681

identifying pathways for meaningful advancements in the NHE field. We hope that the682

collected data—published at DesignSafe (Zsarnóczay et al., 2021)—provides a helpful683

reference.684

• Designing workshop exercises around the data that we intended to collect worked well685

for this workshop, although further improvements might have been possible if the post-686

processing methodology and ontology had been conceived beforehand.687

• The choice between labeling artifacts ourselves or asking participants to assign their own688

labels is not trivial. The former requires more work after the workshop and leaves more to689

interpretation when confronted with ambiguous answers. The latter requires more time in690

each breakout during the workshop to ensure participants understand the ontology and are691

not overwhelmed by the task. We advise against asking participants to choose from pre-692
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defined labels without first providing specific and detailed descriptions of each label to avoid693

them inadvertently biasing the labeling process. Even then, participant-assigned labels694

are subject to greater inconsistencies due to variances in interpretation and participants’695

perceptions of themselves and their responses. Alternatively, labels can be more consistent696

when assigned after the event by a limited number of persons with a common frame of697

reference.698

• Successful workshops organized since the one in this paper, with a similar approach to bring-699

ing several projects together and focus on overarching issues and synergies [e.g., Rosinski700

et al. (2021); NIST Center for Risk-Based Community Resilience Modeling (2021)], af-701

firm that the NHE community continues to benefit from this type of interaction. Future702

workshops could expand to international events. Such a broad audience would provide op-703

portunities to recognize diverse NHE contexts and to promote changes that support greater704

collaboration and reproducible research at a global scale.705
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TABLE 1. Proposed ontology for natural hazard engineering data.

Category Description
Natural Hazard Which type of natural hazard does the data describe?

Earthquake & Geo Ground motion, Liquefaction, Landslide, Sinkhole
Wind Hurricane, Tropical storm, Nor’easter, Tornado
Water Flood, Storm surge, Tsunami, Sea level rise

Climate Extreme temperature, Drought
Fire Wildfire, Fire following earthquake

Phase Which phase of the simulation workflow does the data belong to?
Exposure Characterize the built and social environment and how it changes over time before

or between disasters.
Hazard Characterize historical hazard events or parametrize models to simulate the fre-

quency and intensity of synthetic scenarios.
Damage Describe the damage after past events or parametrize models to simulate the damage

in synthetic scenarios.
Consequences Describe the consequences (e.g., losses, injuries, disruption) after past events or

parametrize models to simulate consequences in synthetic scenarios.
Recovery Describe the recovery process after past events or parametrize models to simulate

recovery after synthetic scenarios.
Context Which part of the local environment does the data belong to?

Natural env. Topography, bathymetry, soil conditions, etc.
Built env. Structures and infrastructure components in the area

Households Individual members or households in the population
Businesses Individual businesses in the economy at-large
Services Education, insurance industry, medical infrastructure, etc.
Origin How was the data generated?

Simulation Computer simulation using numerical models to produce synthetic data
Experiment Controlled experimental tests (both engineering and social sciences)
Observation Field data, including satellite, street-view, and reconnaissance images, surveys,

polls, data from social media, and data from monitoring systems and sensors.
Provider Who provides the data?

Public sector Government agencies
Private sector For-profit and non-governmental organizations

Academic entity Universities
Access Where is the data stored?
Private Available only to the producer and is difficult or impossible to share; for example,

results stored in a non-standard format on a local hard drive.
Shared Available upon request or subscription to a service run by the producer; data is

stored in a format that is readable at least by expert users.
Published Available upon subscription to a journal or a service independent from the data

producer; for example, data archived or published by journals.
Public Open access
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TABLE 2. Examples of housing-related applications and related data needs for planning and
policy-making (source: Workshop participants)

Context Examples

Session I
Connecting to Stakeholders

Simulation of cascading effects.
Modeling of post-disaster recovery to anticipate potential long-term
effects of different disaster scenarios, and to be applicable to a range of
temporal and spatial scales.

Session II
Connecting Across Experts

Simulation of re-occupancy and functional (physical) recovery of
homes.
Comparison of various policies and strategies for funding and prioriti-
zation of building retrofits.
Ability to prioritize among multiple housing restoration or recovery
options.

Session III
Data Sources

Most household data consumed is sourced from the US Census Bureau,
specifically the American Community Survey (ACS); few researchers
are producing household-level data.
Data relating to structural features of houses, damages to homes, and
socio-economic characteristics of households.

Session IV
Interdisciplinary Engagement

Longitudinal studies and investigations ofmultiple facets of community
recovery.
Testbeds that explore various scenarios and plausible futures to enhance
our understanding of myriad impacts, consequences, and patterns of
recovery spatially and temporally.
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TABLE 3. Examples of additional high-value data listed among aspirational data needs (source:
Workshop participants)

Theme Recurring Examples

Buildings
Information on the structural system in tax assessor databases;
Information on structural retrofits and modifications;
Inventories with building-specific information for entire cities.

Households, Businesses,
and Services

High-resolution insurance penetration data;
Information on supply chains for local businesses;
High-resolution information about workplaces of each household (both lo-
cation and industry)

Recovery
Longitudinal data about household decisions after a disaster;
Population displacement and its effect on neighborhood recovery;
Availability and timeline of various funding sources

Hazard
Real-time, high-resolution inundation hazard data (flood, storm surge,
tsunami);
High-resolution (parcel-level) hurricane wind data
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TABLE 4. Examples of Consumed Data by Dominant Theme (source: Workshop participants)

Dominant Themes Recurring Examples

Built Environment

Tax assessors;
FEMA (Hazus exposure data and performance models);
Microsoft (building footprints);
Homeland Infrastructure Foundation-Level Data (HIFLD);
Zillow

Households US Census Bureau (specifically the American Community Survey);
Bureau of Labor Statistics

Natural Environment
US Geological Survey (USGS);
National Oceanic and Atmospheric Administration (NOAA);
Pacific Earthquake Engineering Research Center (PEER)

Structural damage Damage assessments sourced from images;
Component-level damage data (e.g., walls, roof, interior contents)
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TABLE 5. Recommended testbed locations and corresponding research opportunities (source:
Workshop participants).

Location Opportunities

State of Florida /
Southern Florida /
Miami-Dade County

Topology, bathymetry, land use and land cover data available.
Detailed information available about historical storms.
Exposure data available about buildings and transportation infrastructure.
First-floor elevation information needed—machine learning opportunity.
Several industrial facilities aremajor contributors to local employment while
contributing to the risk of environmental damage.
High insurance penetration and information about insurance is available.

Pacific Northwest /
San Francisco Bay Area /
Los Angeles Metro Area

Local governments have a history of collaboration with experts from
academia and industry.
Post-disaster damage and consequence data available for recent earthquakes
and some of the recent wildfire events.
Maps of historical event intensities and probabilistic forecasts of future
events are available for earthquakes and tsunamis.
Tall building inventory available in San Francisco and water network infor-
mation available in Los Angeles.
First-floor elevation information needed—machine learning opportunity.
High-resolution geographical information about known structural vulnera-
bilities (e.g., cripple walls, soft-stories) is needed.
Tech companies are major employers in the LA, SF, and Seattle metro areas.
Investigation of the displacement of their workforce presents an opportunity
for collaboration.
Existing benefit-cost analysis (BCA) models by FEMA could be bench-
marked and enhanced.
Investigation of the impact of disasters on the wine industry is another
opportunity for collaboration.

Christchurch,
New Zealand

Rich data available on the impact of the earthquakes in 2011; including data
on cordons and their effects on local businesses.
Liquefaction-prone area with detailed information available about soil char-
acteristics.

Kathmandu,
Nepal

Rich data available on the impact of the earthquake in 2015; including
shaking intensities, damage, and aggregate casualty information
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Fig. 1. Distribution of participants’ self-reported (a) hazard expertise, (b) role, (c) scale in their
work on disaster risk and resilience, and (d) affiliation. N in the middle of the charts shows the
number of responses received from participants for each question.
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Fig. 2. Data map example.
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Fig. 3. Relative number of available software tools in each phase of the natural hazard risk
assessment workflow. (source: N=369 responses from Workshop participants).
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Fig. 4. Conceptualization of the SimCenter’s natural hazard risk assessment workflow.

48 Zsarnóczay et al., August 30, 2022



Fig. 5. Popular themes in aspirational data sources (source: Workshop participants, N=183)
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Fig. 6. Distribution of consumed and produced data across key attributes. The provider class
for produced data could not be reported to protect respondent anonymity. (source: Workshop
participants)
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Fig. 7. Distribution characterizing the accessibility and reliability of consumed and produced data
(source: Workshop participants).
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