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ABSTRACT

With the aim of fostering the development of robust tools to simulate the impact of natu-
ral hazards on structures, lifelines, and communities, the Natural Hazards Engineering Research
Infrastructure Computational Modeling and Simulation Center gathered sixty researchers, develop-

ers, and practitioners working in Natural Hazards Engineering (NHE) for a workshop to prioritize
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research questions and identify community needs for data and computational simulation capabili-
ties. Participants used their wide-ranging expertise in earthquake, coastal, and wind hazards from
engineering, planning, data sciences, and social sciences perspectives to identify five major thrusts
of recommended future work, including detailed suggestions for each : 1) development of hous-
ing and household recovery models; 2) integration of existing models into flexible computational
workflows; 3) investment in the collection of high-value open data; 4) commitment to sharing and
utilizing high-value data; 5) development of versatile, multidisciplinary testbed studies. Participant
responses and workshop data were analyzed with the help of an ontology that the authors designed
to support data classification in a broad range of NHE applications. The paper also includes

observations and suggestions for planning and conducting interactive workshops of this type.

INTRODUCTION

Regional risk assessment models for various natural hazards have advanced dramatically in
recent years, but models for different types of hazards have largely been developed independently
of each other. The 1971 San Fernando earthquake catalyzed substantial US investment in earthquake
engineering and led to the development of methods and tools for some of the first regional seismic
risk assessments (FEMA, 2011a) and performance-based earthquake engineering studies (Council,
2018). The development of risk assessment tools for other types of hazards initially lagged but
has improved rapidly in recent years. For example, regional risk assessment methods have been
released by FEMA for hurricane (FEMA, 2011c), flood (FEMA, 2011b), and tsunami (FEMA,
2017) hazards, in addition to the Florida Public Loss Model (Chen et al., 2009) for hurricanes.
Performance-based engineering methods for wind (ASCE, 2019; Barbato et al., 2013) and tsunami
(Attary et al., 2017) hazards are currently under development. The traditional reliance on empirical
models to estimate response and damage to the built environment within FEMA’s Hazus Earthquake
Methodology and other initiatives has now been complemented by more sophisticated approaches
that take advantage of new data sources to support higher-resolution simulations that can incorporate
interdependencies between natural, built, and human systems to reveal multi-faceted consequences

and a richer description of recovery processes [e.g., SimCenter’s ’WHALE (Deierlein et al., 2020)
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and NIST CoE’s IN-CORE (Gardoni et al., 2018) tools]. High-resolution regional and city-level
damage and loss simulations, coupled with advanced computational and information technologies
to manage and process high-resolution data, are enabling the development of advanced simulation
models that consider the disaster recovery process.

Emerging research holds the promise of creating digital representations of cities through the
compilation of high-resolution building inventories, demographic information, and economic data
sourced from a combination of conventional data sources (e.g., U.S. Census Bureau, U.S. Bureau
of Economic Analysis, U.S. Bureau of Labor Statistics) and more novel data harvesting techniques
(e.g., satellite image recognition, assessor databases) (Wang et al., 2021; Fan et al., 2021; Shahat
et al., 2021; Ford and Wolf, 2020). Digital representations of cities provide a baseline for natural
hazards engineering (NHE) researchers to perform city-level assessments that aim to estimate not
only the physical damage to the built environment, but also the associated socioeconomic conse-
quences following the natural hazard event. As an extension, these city-level models could support
complex, multi-disciplinary studies of questions related to post-disaster recovery, such as behavioral
patterns of people and household decisions (Nejat and Ghosh, 2016), compression of redevelop-
ment and decision-making processes (Olshansky et al., 2012), temporary population displacement
and permanent relocation (Esnard et al., 2011; Costa et al., 2020), and socioeconomic disparities
(Zhang and Peacock, 2009; Peacock et al., 2014; Hamideh et al., 2018; Wyczalkowski et al., 2019).
These studies explore disaster impacts for specific neighborhoods, populations, business sectors,
and services at a high-resolution and provide outputs that support more sophisticated evaluation of
disaster recovery planning alternatives and risk mitigation strategies.

While such simulations offer opportunities for NHE research and practice, it is important to
keep in mind that the reliability, reproducibility, and replicability (National Academies of Sciences,
Engineering, and Medicine, 2019) of these complex regional simulations heavily depends on the
modeling methodologies that are used along with the associated input data, which is often of
variable quality (Roohi et al., 2021). This barrier can, to some extent, be overcome through

closer collaboration across the related disciplines, including engineering, computer/data science,
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and social sciences, capitalizing on synergies and leveraging the advances by each to elevate the
collective capacity for large-scale computational simulation and robust data management. Given
the nature of this input data, success will require partnerships between academic researchers,
practitioners, and the public sector, as well as greater investments in federal, state, and municipal
data management, standardization, and open exchange of data.

One nexus for such partnerships is available through the Computational Modeling and Simula-
tion Center (SimCenter). The SimCenter is supported by the National Science Foundation under the
Natural Hazards Engineering Research Infrastructure (NHERI) to develop computational software
tools for the NHE researcher community (Deierlein et al., 2020). The SimCenter’s underlying strat-
egy is to leverage past research and development by integrating models and data from the physical
sciences, engineering, and social sciences to help advance new lines of research and educational
opportunities in NHE. As such, the SimCenter has focused on building collective capacity within
the research community, while engaging other public and private sector stakeholders who are sim-
ilarly committed to the study of hazard impacts on communities. The computational workflows
developed by the SimCenter support high-resolution, multi-fidelity simulation of hazard impacts
from individual buildings to the regional scale. While there are research gaps remaining in faith-
fully simulating the damage to the built environment under natural hazards, modeling post-disaster
recovery from this damaged state presents a challenge of a different magnitude. It necessitates a
multi-disciplinary approach to both (1) compile and standardize large quantities of diverse data,
and (2) develop models that can handle the highly complex, nonlinear, and interdependent natural,
physical, and societal systems that shape communities and their recovery processes (Miles et al.,
2019; Miles, 2018; Deierlein and Zsarnoczay, 2021). The SimCenter is building the foundational
computational infrastructure to characterize natural hazards and their effect on the built environ-
ment, along with interfaces to demographic and socio-economic data to enable the integration of
recovery models into regional simulation workflows.

While the computational infrastructure being developed by the SimCenter and other groups

holds great potential, its development requires the engagement of both the NHE researcher com-
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munity as well as practitioners and policymakers to understand their perspectives and needs. The
aspirations of academic researchers need to be weighed against the practical expectations of in-
dustry and public-sector practitioners, as evidenced by their reliance on trusted methods and tools,
such as the Hazus-MH software (FEMA, 2018), or FEMA’s published data products, such as flood
insurance rate maps (FEMA, 2021). Thus, it is critical to understand the limits of simulation tools
developed for research to address the practical constraints of real-life implementation. Building on
past examples of successful research-to-practice collaborations [e.g., Kijewski-Correa et al. (2020);
Chen et al. (2009)], there is an opportunity to facilitate further engagement through the develop-
ment and adoption of common templates founded on open-source principles with standardized data
schema to facilitate more collaborative development, deployment, and maintenance of software and
supporting data.

To encourage such collaborations and understanding of user needs, several workshops have been
organized in the last decade by projects sponsored by NSF, NIST, FEMA, and other organizations
to engage diverse experts in natural hazard risk mitigation [e.g, McAllister et al. (2019); Poland
(2009); Kwasinski et al. (2016); Slotter et al. (2021)]. These workshops were typically focused
on particular research products or mitigation programs, which to some extent limited the scope
in terms of hazard, geospatial scale of analysis, and component of disaster risk management. In
contrast, for the workshop described herein, the SimCenter aspired to collect qualitative data and
actionable information on computational and data needs through a broadly-defined sampling of the

NHE community, cross-cutting hazards, expertise, and roles.

WORKSHOP OVERVIEW

The workshop on simulation and data needs was held at the University of California, Berkeley,
in January 2020 and designed to (1) engage the community of disaster risk and recovery experts
and stakeholders and (2) identify how computational tools can support fundamental and applied
research to promote resilience to natural hazards. The workshop agenda was designed to foster
knowledge exchange and collect observations and information from participants across multiple

hazards (earthquakes, tsunamis, hurricanes, and storms), between disciplines (engineering, plan-
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ning, and social-science), and among various roles in the community (policy makers, researchers,

practitioners, and software developers). The specific goals of the workshop were as follows:

* Identify the approaches and tools used to evaluate natural hazard impacts and inform risk
management strategies.

* Collect and prioritize questions and concerns about mitigating the devastating effects of
earthquakes, storms, and other extreme events that have a potential to be evaluated through
scenario studies and advanced simulations.

* Identify and prioritize the needs for improved models and supporting data required for
computational workflows for advanced simulation of natural hazard impacts.

* Brainstorm strategies to facilitate the development and adoption of multi-disciplinary

testbeds and other simulation technologies in research and practice.

Participants

The workshop organizing committee was assembled from SimCenter affiliates with a diverse set
of expertise. The number of participants was limited to 60 to foster active discussion, where about
70% of the participants were invited, 20% were selected from respondents to an open invitation,
and 10% were graduate students. Invited participants included researchers, developers of natural
hazards risk simulation tools, and end-users of regional risk assessment frameworks (see Table S1
for the complete list of participants).

In preparation for the workshop, participants were asked to self-assess where they would position
themselves along a spectrum of hazards (multi-hazard, wind, earthquake, or coastal/flood), roles
(policy maker, simulation framework specialist, or software developer), and the scales at which they
model or analyze data (local, state, or national). As shown in Fig. 1, the distribution of participant
responses indicates a reasonable balance across hazards (Fig. 1a), participant roles (Fig. 1b),
and scales of engagement (Fig. 1c). About two-thirds of attendees were affiliated with academic
institutions (Fig. 1d), and one-third were from public/non-profit (state, federal, and international

agencies/foundations) and private/for-profit sectors. Participants were also asked to characterize
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themselves as data producers and/or consumers, where about ninety percent indicated that they
both produce and consume data, with the remainder equally divided between solely producers or

consumers of data.

Methods for data collection

The two days were divided into four sessions, each starting with a short plenary that provided
an overview of the session theme, followed by a breakout phase. The four sessions focused on (1)
connecting to stakeholders, (2) connecting across hazards, (3) data sources, and (4) interdisciplinary
engagement (see Fig. S1 for a detailed agenda). During the breakout sessions, participants were
divided into three subgroups, based on the backgrounds of participants and focus area of each
breakout. Outcomes of the breakout exercises were documented and collected through individual
worksheets and group-based easel pads, with pre-defined labels. Artifacts from the breakout
sessions were subsequently collected, digitized, processed, and made available to the participants.
The discussions in each breakout session were guided by a facilitator, who was briefed on the plan
before the workshop and shared highlights and main takeaways of the breakout discussion with the
entire workshop group following each breakout.

As an example of how the breakout sessions were organized, the Data Sources session focused on
the data needs among disaster researchers and practitioners to improve disaster recovery planning.
Following a plenary session discussion on the challenges surrounding open data for disaster research
and advances in data science that could overcome these challenges, the breakout session participants
examined the gaps in open data practices within the natural hazards community. The first activity in
the breakout was a Data Mapping activity to (1) prepare a short list of the data that the participant’s
organization regularly consumes and produces, (2) identify the source or distribution method used
to share that data, (3) quantitatively rate the trustworthiness/reliability and usability/accessibility
of that data, and (4) assemble a wish list of data that they would like to have available. Shown
in Fig. 2 is an example of the Data Map artifacts collected from the respondents, where they
identified and ranked quality and accessibility of the datasets (5 indicating a high/favorable score

and 1 indicating a low/unfavorable score). The second activity used a Data Scorecard to (1) identify

7 Zsarndczay et al., August 30, 2022



185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

the five questions participants hope to “ask” of the resilience/risk assessment data they engage, (2)
indicate which questions they can answer today with the data available to them, (3) assess which
data would be most critical to answering these questions in the future, and (4) specify if this data
is accessible today. The Data Sources session concluded with a report out from each group and
discussion. The participant artifacts from the Data Sources session were transcribed for subsequent

analysis.

REVEALED DATA CHARACTERISTICS

The transition toward standardized workflows and data that enable multi-disciplinary, multi-
hazard regional recovery modeling requires a concerted effort to holistically organize high-resolution
data so that it is searchable and easily accessible by users. Existing classification systems in the dis-
aster science literature [e.g., IRDR (2014); McAllister et al. (2019); UNDRR (2019)] do not capture
details that are important for computational simulations of hazard events or describe information
that is relevant to different time scales in the risk management cycle of prevention, protection,
mitigation, response, and recovery (DHS, 2016). Existing classifiers tend to narrowly categorize
data by the type of natural hazard (Coburn et al., 2014), which while an obvious and important
characteristic, may miss opportunities to examine aspects that could unify the hazard engineering
community.

To address the shortcomings in existing classifications, a new ontology is proposed in Table 1
that builds upon the concepts in existing classification systems, but aims to better describe features
that are important for computational simulation of natural hazard events. The ontology identifies
the important features of the data and provides a classification that defines the independent features
for characterizing the data. The ontological information provides the basis for creating application-
specific taxonomies (with specific hierarchies among the features) or, as in this study, to tag data
from several perspectives. For example, the type of natural hazard, the context, and the origin are
three independent features in Table 1 that were used to characterize features of the data identified
by workshop participants.

The ontology was informed by the range of data types that workshop participants identified in
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the Data Map worksheets during the Data Sources breakout session. Additional categories, such as
the geographical scale of the data, were considered, but excluded because either the classification
within the category was ambiguous or the information provided by the category was redundant.
This ontology was used to tag data that was identified during the Data Sources breakout session,
thereby enabling a cross-sectional analysis of the data to identify (1) which data was of most value
to the participants and (2) potential synergies between categories. This ontology is proposed for
review by the NHE community as a first step towards a formal ontology to collect and organize
data for simulating natural hazard effects on communities.

When identifying the data that participants produced or consumed, each participant named up
to five data sets that were later tagged using the ontology terms. Where the data sets identified
by the participants described a wide range of data, multiple tags from each category in Table 1
were applied. Tags were assigned based only on the available information, and when the tag in a
certain category was ambiguous, an unknown tag was assigned rather than resorting to a default or
assumed value. For example, when a participant specified that they use "hazard data" for their work,
an unknown tag was assigned for the type of natural hazard category. The Table 1 ontology and
tagging process was only applied to artifacts from the Data Sources session. Artifacts from other
sessions, e.g., the Regional Simulations session, where participants identified specific software
tools to perform simulations of natural hazard effects, were simply reported and collected in lists.
The datasets from other sessions were not tagged with the proposed ontology because participants
were not instructed to classify responses in a structured way. The artifact data sets are publicly
available (Zsarn6czay et al., 2021) and they served as the basis for figures and recommendations

summarized later in this paper and the accompanying Supplemental Materials.

IDENTIFIED OPPORTUNITIES TO ENHANCE DISASTER SIMULATION TOOLS AND DATA
During the workshop, participants prioritized questions related to post-disaster recovery that

could potentially be answered using advanced computational simulation tools and data, and they

identified potential areas where improved simulation capabilities are needed. Examples of the

questions raised include: “How does damage to lifelines impact a community’s recovery?”, “How
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can a community quickly and effectively restore livelihoods after a disaster?”, and “What is the
best way to characterize and estimate damage states in structures following a disaster event?”.
When asked to identify the five most important questions in their work, participants focused
most prominently on themes related to the following: recovery of households (17%), damage in
the built environment (15%), evaluation of mitigation policies (11%), evacuation and population
displacement (9%), and recovery of utilities and other critical services (9%), where N=150. A list
with additional themes identified is included in Table S2, along with a database of the questions
participants prioritized. Participants indicated that over two-thirds of these questions cannot be
answered today, and approximately three-quarters of the participants indicated that they are currently
unable to answer the majority of their own most pressing questions.

Based on the workshop discussions, combined with the insights generated through processing
of the collected data and artifacts, the following five opportunity areas for computational simulation

of natural hazard effects were identified:

1. development of housing and household recovery models;

2. integration of existing models into flexible computational workflows;

»

investment in the collection of high-value open data;
4. commitment to sharing and utilizing high-value data;

5. development of versatile, multidisciplinary testbed studies.

Focusing on these areas has the potential to strengthen connections between segments of the
NHE community across various hazard types and between disciplines to address the most pressing
questions that were raised during the workshop. The following subsections elaborate on the five

areas and how they emerged as opportunities identified in the workshop.

1. Development of housing and household recovery models

Housing was singled out by participants as a key entry point to engage in recovery modeling,
particularly if linked to the broader context of recovery of neighborhoods, communities, and lifeline

infrastructure. Table 2 provides a summary of the housing-related applications and related data
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needs as identified by the workshop participants. Information on households and their recovery
was a prominent theme in the top five questions that workshop participants ask of their data
(Table S2), and it was frequently mentioned among the aspirational data they identified (Fig. 5).
Many workshop participants emphasized that the understanding and modeling of housing recovery
needs to go beyond building damage and population counts to consider socioeconomic aspects of
households and communities [e.g., Comerio (1998)].

The following are some of the key priorities that can help advance housing recovery modeling

frameworks, computational simulation tools, and workflows.

* Account for neighborhood conditions and community context: The ability to char-
acterize and model community and neighborhood facets, such as businesses and lifeline
infrastructure, will help quantify the spatial distribution of demands on local and regional
systems and institutions after disaster events. This is particularly important to account for
in- and out-migration and population displacement and relocation. The long-term recovery
and post-disaster redevelopment processes in Christchurch, New Zealand, and New Orleans,
Louisiana, provide good examples of how displacement and migration of people can shape
the recovery of communities and residential housing.

* Develop comprehensive and linkable building-level housing inventories to facilitate
coupling of engineering and social science data and models: Data integration and simu-
lation workflows of residential housing damage, restoration, and recovery are predominantly
static, often not to the individual parcel or household level, and lacking in demographic
and socio-economic characteristics of residents. As tools and computational platforms are
developed to perform higher-resolution simulations, semi-heuristic models can be used to
generate high-resolution data from census block-level inputs. Methodologies developed
by researchers affiliated with the NIST-funded Center of Excellence for Risk-based Com-
munity Resilience Planning provide opportunities to link high-resolution spatial data on
households and housing units to single and multi-family residential buildings and to critical

infrastructure (Rosenheim et al., 2019). Increasing the granularity of such data is critical,
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as noted during the workshop, to reveal the benefit of specific planning and policy actions,
though with the important caveat that privacy and ethical concerns of collecting input data
and reporting risks and vulnerability of residents must be carefully managed.

* Capture non-engineered residential buildings as part of housing inventory: Basic
building information is available for most areas in the United States at a census block-level
resolution. Non-engineered buildings present unique challenges. These typically wooden
or unreinforced masonry buildings are designed based on empirical rules in building codes
and they often include several undocumented modifications that can have a considerable
impact on structural performance (Sparks and Saffir, 1990). Several publications in the
literature highlight the disproportionate contribution of these buildings to the damage and
losses in recent disasters (Sparks, 1986; Morse-Fortier, 2015; Sandink et al., 2019; Amini
and Memari, 2020). Since these buildings are a substantial part of the residential housing
inventory and they are key contributors to losses in natural hazard events, it is important to

identify and collect additional information on the attributes driving their performance.

These opportunities will require sustained interdisciplinary expertise and contributions. As
discussed shortly, empirical studies and testbeds will be particularly critical to the design and
development of computational workflows that account for multi-faceted aspects of post-disaster

household and community recovery.

2. Integration of existing models into flexible computational workflows

Sessions I and II of the workshop were organized to identify: (1) simulation tools that are
currently used by NHE researchers and practitioners to evaluate natural hazard effects on buildings,
lifeline infrastructure systems, and other community assets, (2) simulation needs that are not being
addressed by current simulation technologies, and (3) factors that impede the use of computational
simulations by NHE researchers and practitioners. During the breakout sessions, the 60 workshop
participants identified 237 unique analysis tools and software applications for NHE simulations.

As shown in Fig. 3, simulation tools are distributed across the risk assessment workflow (Fig. 4),
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from characterization of assets and hazards to estimation of damage and consequences, along with
planning tools. Among the six categories shown in Fig. 3, the one with the fewest tools available
is simulation of indirect consequences (e.g., the USGS PAGER software, which provides rapid
fatality and economic loss estimates following significant earthquakes worldwide). When asked to
identify the challenges associated with simulation to support risk assessment and mitigation, the
overwhelming response was that there is a lack of standardization and interoperability between the
various software applications. Participants noted that many of the software systems are configured
in a stand-alone fashion, such that output from one application requires substantial manipulation
before it can be used as input to the next.

Among the 369 non-unique software names recorded by participants, the Hazus (27 mentions)
and IN-CORE (18 mentions) software applications stand out by far as the most commonly identified
software. These applications 1) span the entire workflow, and thus are identified by participants
active in only a particular phase as well as those with activities spanning all phases, 2) are products
of two recognized federal agencies (FEMA and NIST, respectively), and 3) are publicly available
free of charge. While IN-CORE is Python-based and open source, which facilitates customization
by users to meet their specific needs, Hazus is a closed-source system with a fixed set of modules,
which has limited flexibility. Hazus offers comprehensive features to estimate losses to a wide
variety of assets (buildings, bridges, highways, and lifeline infrastructure) under multiple hazards,
which makes it attractive for use by practitioners in the public and private sectors.

Beyond the significant challenges associated with manipulating data and linking software to
create integrated multi-phase workflows, workshop participants identified features that would make

a substantial improvement to currently available software:

* Usability: Software documentation, training resources, and intuitive user interfaces are
important to make software easy to use. Documentation of the underlying methods and
models is important for users to understand and have confidence in the simulation results.

* Flexibility: Software that is open-source and designed with a modular architecture is

important to allow users to modify software to their specific needs.
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* Reliability: Ideally, software components and systems should be verified and validated to
ensure that they run correctly and provide accurate results. Verification procedures and
practices vary greatly, while rigorous validation is less common because of the inherent
uncertainties in the problem, the sparsity of comprehensive damage and loss data, and the
lack of standard protocols for validation.

* Multiple scales: Few software tools exist to support multi-scale simulation, which could
take the form of variable levels of spatial and temporal resolution.

» Cascading events: Few software tools are capable of simulating cascading events.

* Quantified uncertainty: Characterization and propagation of various sources of uncer-
tainty in a disaster simulation would allow quantification of the uncertainty in the simulation
results. Currently available tools do not provide comprehensive uncertainty quantification.

* Consequences and recovery: Only a small number of software tools are available for the
simulation of consequences and recovery after a disaster. Understanding this stage of the
natural hazard cycle is critical to assessing the impact of events and shaping mitigation
policy. A large amount of data has been collected after recent disasters (Kijewski-Correa
et al., 2021; Wartman et al., 2020; van de Lindt et al., 2018; Sutley et al., 2021; Peek et al.,
2020), which should help with the development of new models and tools if there is sufficient
interest from the community.

* High-performance computing (HPC): Few software tools can take advantage of access
to cloud computing or open HPC clusters, such as NHERI DesignSafe (Rathje et al., 2020),
and local clusters at universities. Several legacy tools have deprecated dependencies that

are not compatible with modern HPC environments and recent data formats.

Itis notable that the scientific application framework developed at the SimCenter in part responds
to a number of these identified challenges by supporting the integration of existing models into
natural hazard risk assessment workflows (Deierlein et al., 2020). Such a workflow is an assembly
of software modules (Fig. 4) and interfaces that allow the combination of various methods while

maintaining a seamless end-to-end data transfer. The workflow begins on the left with modules that
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characterize the assets (e.g., buildings and infrastructure) and the hazard (e.g., earthquake ground
shaking, wind speed or pressure, etc.). This information provides input to structural analyses to
assess the response and damage to the assets. Finally, on the right, the asset performance data
is used as input to simulate repairs and the recovery of communities. The application framework
provides outputs in a standardized format to facilitate interfacing with tools that support planning
and policy-making. The workflow modules are designed to utilize supporting databases and perform
simulations with state-of-the-art uncertainty quantification approaches including surrogate models
and efficient forward propagation methods. Thus, the outcomes of the workshop and the challenges

listed above are guiding the future development of the application framework.

3. Investment in the collection of high-value open data

One of the major barriers to the enhancement and integration of software is the lack of access to
critical datasets, particularly those with greater granularity and spatial extent than what is available
today. When asked to identify aspirational data sources, the majority of responses (54%, N=183)
expressed the need for additional high-value and higher-resolution data that is not available today
(see Fig. 5 for details). Among the additional data needed, information on buildings (14%,
N=183), households, businesses, and services (13%), recovery processes (12%), and hazards (5%)
were frequently mentioned. Examples of high-value data under these sub-themes are reported in
Table 3.

Participants also recognized the opportunities generated by improving the accessibility and
trustworthiness of existing datasets (23%, N=183, Fig. 5), especially when it comes to information
about lifelines; and the need for more data to calibrate and validate numerical models of hazards,
damage, consequences, and recovery (17%). These themes are discussed in more detail in the
following subsection.

Participants speculated they would produce only about 22% of the listed aspirational datasets,
and more than half of the data they rely upon would be from databases that cover the entire
nation and often provided by federal agencies (e.g., probabilistic hazard maps, building inventories,

demographic data). Some of the identified needs require new workflows to generate the data, but
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often it would be sufficient to enhance existing data collection approaches so that they capture
additional high-value data and maintain it in desirable formats for computational modeling and

simulation. The following should guide such future investments in high-value data:

* Refine 4D resolution: The high-fidelity models that guide targeted mitigation decisions

must be calibrated and validated against site-specific, parcel-level hazard and exposure
data. Achieving the required level of granularity and specificity in building characteristics,
behavior, and performance requires navigation of new sets of privacy issues and proprietary
restrictions. Furthermore, hazard and exposure characteristics often evolve at a faster rate
than the release cycle of the corresponding data, for example, census data is released
in decadal cycles. The temporal resolution of datasets needs to be better aligned with the
underlying system dynamics to assure availability of more accurate pre-disaster benchmarks.
The updating rate may even be adapted when these dynamics change, such as releasing more
frequent updates following a disaster to better capture recovery characteristics. In a post-
disaster context, longitudinal studies and more granular information about the impact on
communities is required to support the development of quantitative models of the recovery
process. The NSF, NIST, and other entities are investing in vital disaster recovery research
and empirical studies. Such studies, including those that are region- and hazard-specific,
can offer a rich source of baseline data for individual sectors (e.g., housing, business,
critical infrastructure, civil infrastructure), as well as community systems (e.g., system
interdependence, neighborhood decline/stability).

Anticipate diverse use cases: Data collection for a specific purpose is often performed
by persons with limited understanding of the potential uses of the data for other purposes.
For example, a tax assessor or National Flood Insurance Program (NFIP) claims adjuster
has a specific data schema and conducts subjective assessments and classifications of
building components. The labels assigned in this process might not be accurate from a
structural engineering perspective. Engineers often find it challenging to use such data

to infer structural vulnerabilities in a natural hazard risk assessment. To maximize the
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likelihood of meeting diverse user needs, the approach to data generation shall be informed
by interdisciplinary perspectives when the underlying schema is designed and the data
classification within that schema is defined.

* Promote standards across data providers: The data needed to explore questions of
community resilience is generally fragmented because each producer (e.g., municipal de-
partments, insurers, and federal agencies) uses its own schema and methodology. This leads
to diverse standards for collecting, tagging, and vetting this data. The quality and complete-
ness of the produced data and metadata would greatly benefit from enforcing consistency
and ideally centralizing the production efforts. Ata minimum, producers should be aligned
under consensus standards that are communicated and promoted by designated persons [see
concept of ‘Data Evangelists’ Andrei Lyskov (2019)].

* Value the entire data life cycle: Producing data that has high value and potential for re-use
requires considerable time and effort. Data producers often find this work a heavy burden
and they may lack the incentives, expertise, capacity, and resources to follow through. The
emphasis is often placed on data collection while the “dirty work™ of quality assurance,
metadata association, documentation of the methodology, and long-term curation is often

not resourced and recognized at the level it deserves.

It is worth noting that the data relevant to community resilience is increasingly being generated
and managed through digital workflows, and the cost of collecting several important data types
is already low and continues to decrease rapidly. These factors enable the generation of robust
repositories of images, documents, and other relevant data. New modalities such as crowdsourcing
and citizen science further expand the venues for data generation. Thus, taking the suggested steps
toward generating high-value data does not necessarily demand a significant increase in investment.
Resourcing seems secondary to the more critical need to redesign policies and practices for data

collection and generation.
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4. Commitment to sharing and utilizing high-value data

While participants routinely consume open data in their analyses and simulations, the lack of
access to high-value data often forces them to limit the scope of their work to problems that can
be solved with the data available. During the breakout session on data sources, participants were
asked to list up to five data products they consume and produce in their work. This information was
processed using the ontology presented earlier by assigning labels to each participant based on the 5
pieces of data they listed. Fig. 6 shows the number of participants assigned to each label—note that
each participant could get multiple labels assigned both within a category and across categories.
Almost all participants consume data that is publicly available (96%), largely from government
providers (96%), and the result of direct observations (98%). Respondents had heavy reliance
on data describing the built environment (91%), the natural environment (68%), and households
(64%). Table 4 lists examples of consumed data under these themes. Almost every participant
needed exposure (98%) data, and a strong majority also used information that characterizes the
hazard (70%). The majority (66%) focused on earthquake and geohazards, a direct consequence
of the participant demographics (Fig. 1a). Significantly fewer participants mentioned data sources
that provide information about direct damages, their consequences, and activities surrounding
preparedness and recovery. This lack of utilization is likely due to the scarcity of such data because
a large number of participants expressed interest in these themes when listing aspirational data (Fig.
5).

As visualized in Fig. 7, the data consumed by participants in their analyses and simulations
had moderate levels of trustworthiness (mean=3.72/5.00, where 5 is highly trustworthy), with only
62.4% scoring 4 or above. Even though these datasets were regularly engaged, participants assessed
them as only moderately accessible (mean=3.53/5.00, with 5 indicating highly accessible). In fact,
only 56.4% of the data consumed by participants was perceived as easy to access (i.e., receiving a
score of 4 or above).

Participants tended to produce data similar to what they consumed (Fig. 6), predominantly fo-

cused on the built environment (74%, e.g., city-level building inventories, responses from structural
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analysis models) and the natural environment (35%, e.g., ground motion datasets, hurricane wind
speed projections). The number of responses for consumed datasets was in some cases significantly
larger than the number for produced datasets due to a larger proportion of “consumers” among par-
ticipants (see response totals for consumed and produced datasets in Fig. 6). More respondents
produced data through computer simulation than the number of those who consumed such data (19
vs. 12 out of 47 responses). While consumed data was primarily from the earlier phases of the
natural hazard risk assessment workflow, the produced data is more evenly distributed across the
workflow phases.

As detailed in Fig. 7, the data participants produced is comparable to the data they consumed
in terms of perceived trustworthiness (mean=3.65/5.00). Even though participants have greater
control over the trustworthiness of their data products, only 57% (N=112) of them scored 4 or
higher. Participants further admitted they were not good “data citizens”, producing data perceived
as markedly less accessible than the data they consume from others (mean=2.79/5.00). Only 32%
(N=112) of the data they generate is actually accessible to others (i.e., rated 4 or higher), with only
40% (N=35, see Fig. 6) of them sharing at least some of their produced data publicly. Fig. 6
also visualizes the disproportionate consumption of public data that results in highly private data
products—63% (N=35) of participants store some of their produced data privately and 46% (N=35)
of participants have none of their produced data published or publicly available.

These observations on data management are not uncommon and stem from the challenges sur-
rounding the adoption of FAIR (Findable, Accessible, Interoperable, Reproducible) data standards
(Wilkinson et al., 2016). While frameworks stand ready to guide research communities toward
adopting FAIR principles (GoFAIR.org, 2021), it must be acknowledged that FAIR demands more
of the data producer than just making the data accessible. Appropriate documentation of the
methodology applied to collect and process the data is also an important part of the principles.
The benefits of doing so are considerable as other producers within a community also adopt this
philosophy when they share their high-value data. More importantly, as noted by Wilkinson et al.

(2016), "The primary limitation of humans, however, is that we are unable to operate at the scope,
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scale, and speed necessitated by the scale of contemporary scientific data and the complexity of
e-Science." By embracing FAIR data standards and encouraging data producers to provide sufficient
context for their data research, communities will be able to leverage the power of automation and
machine learning and can work with data at the scale demanded by current problems.

From a technological perspective, the formula for exposing open data is clear: ensuring pub-
lished data have appropriate schema, are exposed using open data standards, and take advantage of
the interfaces that have been developed to bring it seamlessly into workflows. However, the ability
to act upon this formula is considerably hindered in the fields studying disasters and community
resilience because the required data is generated in a highly distributed fashion across numerous
agencies, municipalities, and institutions. Inevitably, these entities have divergent data sharing
policies and practices and often lack expertise in, and capacity for, sound data management. In
some cases, local government data providers have partnered with the private sector to manage and
share their data [e.g., Socrata (2021); Tyler Technologies (2021)], though not all municipalities
have the resources or inclination to do so. These challenges are only compounded by additional
barriers erected by the unique cultures, policies, and regulations within these entities. For example,
restrictions may limit access to private or sensitive data, possibly regulated by an Institutional
Review Board (IRB) protocol or privacy laws. Data producers may further be averse to the risk of
liability due to data misuse or misinterpretation. In other cases, business interests (e.g., services
that would be obsolete if the data were open) or other concerns over competitive advantage (e.g.,
desire to maintain exclusive publishing rights) prevail. Thus, while the technical formula is clear,
the formula to change human and organizational behavior is yet to be discovered.

Nevertheless, the participants identified several priority areas to increase the amount of high-

value data exposed in our community:

* Enhance discoverability: While data may be available online, it is not always easy to
find. Users struggle to stay abreast of all the new data initiatives, services, and providers.
Clearinghouses and centralized data initiatives such as DHS Exchange Core and OpenFEMA

are especially valuable in this rapidly evolving landscape. More fundamentally, semantic
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incompatibilities can inhibit the identification of relevant data through automated queries.
Such incompatibilities arise because each data producer uses their own disciplinary views
to design a schema for their data. Fortunately, advances in the semantic web can bridge the
potentially disparate views of data consumers and producers to make more data discoverable
[see Schema.org Publishing Guidelines for the Geosciences v1.1 Shepherd et al. (2020)].
Enhance integration: Disaster simulations require continuously evolving data from diverse
sources. Even open data is often difficult to retrieve and consume. Onerous access restric-
tions and cumbersome formats may require users to manually download and pre-process
the data. Large-scale, automated disaster assessments will require federated databases
that allow producers to maintain and update the data while providing seamless integration
with consumers’ computational workflows. Data producers should publish Application Pro-
gramming Interfaces (APIs) and expose their descriptions in a machine-consumable manner
(e.g., OpenAPI). Shakemap from USGS is a good example. Although several producers
share geospatial data through ArcGIS Online, this data would have even greater value when
exposed through Web Map Service (WMS) or Web Feature Service (WFS) endpoints using
non-proprietary Open Geospatial Consortium (OGC) standards (see the emerging OGC
Web API Guidelines: Open Geospatial Consortium (2019)). Updated versions of OGC
standards are adopting semantic principles to improve discoverability and foster seamless
integration within workflows. These are currently being integrated into open-source tools
like GeoServer (GeoServer, 2021) and QGIS (QGIS, 2021).

Expose more than data: As reliability and trustworthiness of data is as critical as access
itself, the adoption of data standards and establishment of consistent data processing methods
is critical. Ideally, these standards and methods are coupled with quality control processes
that include quantifiable confidence measures [see StEER QC codes as an example Roueche
et al. (2019)]. Standardized data must be exposed with well-structured metadata and
appropriate documentation of associated data collection, processing, and quality assurance

methodologies. Standard data schema can be shared at schema.org to encourage adoption.
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To further support robust verification and reproducibility of results, producers should expose
not only derived data (e.g., statistics and calibrated models), but also the raw data itself.
Data producers should strive to leverage platforms that provide tools for automated testing
and versioning such as GitHub (GitHub Inc., 2021) and GitLab (GitLab Inc., 2021).

* Promote community validation. As more high-value data—including models—is ex-
posed, its wider use will foster the discovery of errors and omissions. Data producers
can improve the trustworthiness of their data by supporting cross-validation studies and
establishing a mechanism for user feedback, rating, and issue reporting.

* Convert legacy data. There is valuable legacy data that has yet to be brought into reposi-
tories, and in some cases, will require digitization from archival files. Data from landmark
disaster events is particularly valuable and an initiative to compile, digitize, process and

expose these legacy datasets would be highly beneficial for the disaster science community.

Ultimately, the true potential of open data is only realized when enough of us—and ideally
all of us—commit to the above initiatives. This level of adoption necessitates a substantial shift
in the politics and culture surrounding data. Such a shift can be facilitated by the alignment of
corresponding incentives (possibly by creating higher consequences for non-compliance through
data publishing requirements of sponsors and journals) and by lowering the barriers to publishing
data openly considering the limited capacity and experience of most data producers. Given the
considerable reliance on external data providers, particularly at all levels of government, the
suggested efforts must be coupled with their sustained advocacy on the importance of reliable and

accessible data.

5. Development of versatile, multidisciplinary testbed studies

In addition to diverse data needs, diverse disciplinary expertise is required to simulate and study
the recovery of communities after a disaster. The opportunities listed above outline initiatives that
would facilitate data access, enable the exploration of impactful questions, and promote sharing

these results with others. In spite of those improvements, entering this space will remain challenging
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and will still require a substantial time investment. Participants agreed that testbeds provide helpful
and much-needed examples that can encourage interested newcomers, such as graduate students
and non-academic professionals, to invest in recovery simulation. Testbeds can be designed around
the opportunities revealed in this paper and become vehicles of change while serving their main
purpose as illustrative examples. A modular testbed that integrates various tools and corresponding

data could serve multiple functions:

* Benchmark models: Testbed exercises can become benchmarks to evaluate and period-
ically assess the performance of various natural hazard risk assessment workflows. Such
evaluations could inform the community about the expected benefits of choosing a particular
workflow or, within a workflow, making different choices regarding the level of fidelity, the
specific input data, the hazard scenario, or a subclass of models. Reporting results from
alternative solutions of the same problem would also facilitate verification and measuring
the robustness of various workflows. If the testbed location is chosen to coincide with a
historical event site, it can also be used for hindcasting exercises and validation purposes.

* Serve as a template: As long as both the simulation platform and the input data are publicly
available, testbeds are large example problems that can be used as a template to develop
new workflows or initiate new studies. This promotes technology transfer from academia
to the private sector and can encourage large government organizations to update their tools
more frequently. Reproducing results is easier if a large part of a community works from
the same template and builds credibility and trust in both the models and their outputs.

* Demonstrate best practices and serve as a proof-of-concept: Testbeds can demonstrate
best practices in workflow design, present caveats, and illustrate how lack of data or low-
fidelity models in one phase can compromise the entire simulation. These illustrations can
also promote robust data management—i.e., data standardization and documentation of all
models and data used for a simulation, including appropriate citations to their DOIs. When
it comes to sensitive demographic data, testbeds can present best practices to work with the

typically lower-resolution available information and still provide meaningful insights.
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* Promote tools and datasets: Although many well-known proprietary tools have free, open-
source alternatives, these are less promoted and the majority of the community is often not
aware of them (e.g., ArcGIS and QGIS). A comprehensive collection of data and software
resources in testbed examples facilitates the discovery of open-source tools and public
data. Additionally, testbeds can expose gaps in workflows (i.e., desirable functionality not
supported by any open software) and provide a platform to curate and explore new methods
and models to fill those gaps.

* Promote interdisciplinary collaboration and engage stakeholders: Testbeds designed
around a tangible narrative about important problems (e.g., disproportionate impact of
disasters on vulnerable populations) can raise awareness and solicit feedback from disaster
recovery researchers, affected community members (residents, leaders, and policymakers),
and other stakeholders. Observing how data and models from one domain affect the

simulations in another can also generate feedback and collaboration across disciplines.

The location or geographic focus of a testbed can have a large impact on its utility in serving
the above functions. A good location has substantial data available to characterize the hazard, the
built and natural environments, and the socioeconomic attributes of the population. It also helps if
the local government is interested, supports these simulations with data, and brings forward local
policy-related questions that can be informed by simulation results.

Groups of participants reviewed existing studies during breakout sessions and suggested eight
potential testbed locations that we grouped into four geographical areas. Table 5 provides a summary
of the opportunities in each area (a detailed description of the desirable features is available in Table
S3). The suggested locations reinforce that natural hazard risk is governed by different hazards in
the West and East Coasts of the United States. While Christchurch in New Zealand and Kathmandu
in Nepal were suggested as good examples that were recently impacted by severe earthquakes and
have both valuable data and support from the local government, participants (primarily from a
North American context) were generally concerned about data availability and lack of familiarity

with the local environment in non-US regions.
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Within the United States, regional studies on the West Coast often focus on the San Francisco
Bay Area (Deierlein et al., 2020; ATC, 2018; Detweiler and Wein, 2018b), but there are recent
examples from Los Angeles (Kang et al., 2019; Cook et al., 2021) and Seattle (Marafi et al., 2020)
as well. In California, wildfires (Lautenberger, 2017), fires following earthquakes (Detweiler and
Wein, 2018a), and flooding due to atmospheric rivers (USGS, 2011) present additional hazards on
top of the earthquake risk. In the Northwest, subduction earthquakes and potential tsunamis can
represent a markedly different environment. The East Coast has several large metropolitan areas
that are affected by various wind and water-borne hazards. The consequences of hurricanes in
the coastal regions of Texas (Hamideh and Rongerude, 2018), North Carolina (Wang et al., 2019),
and New Jersey (Deierlein et al., 2020; Kijewski-Correa et al., 2020) have been studied recently.
The longitudinal study in Lumberton, NC (Sutley et al., 2021) already offers valuable data and the
city is expected to become a prime location for hindcasting and recovery model calibration. Three
groups of workshop participants independently suggested South Florida for consideration because
a large population is frequently exposed to severe storms, in addition to threats from sea level rise
and other climate change effects. Miami-Dade County was specifically mentioned because there
is a large number of industrial facilities in the region as well as because Miami is a major city and
tourist destination with considerable high-rise residential development.

Besides large regional studies with millions of households, recently created smaller testbeds
[e.g., Seaside, OR in Park et al. (2019)] demonstrate that by focusing on a few thousand buildings,
researchers can develop high quality exposure and household data. These smaller testbeds can also
be computationally more affordable to run large sensitivity studies that might not be feasible for
large regions. Such smaller studies can serve as proofs-of-concept and benchmarks for new models

and methodologies.

CONCLUDING REMARKS
The workshop organized by the NHERI SimCenter in early 2020 to review and discuss sim-
ulation and data needs to support disaster recovery planning provided important insights into the

prerequisites for the next generation of studies on the regional impact of disasters and post-disaster
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recovery of communities. The investigation of households and their homes emerged from discus-
sions as an area with abundant opportunities for collaboration between various disciplines in natural
hazards engineering. Participants identified a large number of existing tools and recognized the
need to better integrate these into computational workflows to facilitate sharing and re-using models
and results. The high-fidelity simulations that can support more nuanced risk mitigation policies
and recovery planning will require additional building and demographic information. Investments
in robust and trustworthy methods to collect such information and make it publicly accessible in
a standardized format is necessary for our community to be able to tackle large-scale problems at
high fidelity. In this paper, and in the supporting digital data, the authors share specific examples
of high-value data that participants frequently mentioned as critical information for their work. Fi-
nally, testbeds were highlighted as multi-purpose tools for sharing, benchmarking, and promoting
data, models, and workflows in the NHE community and beyond.

In addition to the opportunity areas that are the main focus of this paper, a few remarks about

workshop design are shared below to support future organizers:

* Breakout sessions with structured exercises rather than only discussions allow organizers
to collect rich insights and evidence from participants. This increases the likelihood of
identifying pathways for meaningful advancements in the NHE field. We hope that the
collected data—published at DesignSafe (Zsarnoczay et al., 2021)—provides a helpful
reference.

* Designing workshop exercises around the data that we intended to collect worked well
for this workshop, although further improvements might have been possible if the post-
processing methodology and ontology had been conceived beforehand.

» The choice between labeling artifacts ourselves or asking participants to assign their own
labels is not trivial. The former requires more work after the workshop and leaves more to
interpretation when confronted with ambiguous answers. The latter requires more time in
each breakout during the workshop to ensure participants understand the ontology and are

not overwhelmed by the task. We advise against asking participants to choose from pre-
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defined labels without first providing specific and detailed descriptions of each label to avoid
them inadvertently biasing the labeling process. Even then, participant-assigned labels
are subject to greater inconsistencies due to variances in interpretation and participants’
perceptions of themselves and their responses. Alternatively, labels can be more consistent
when assigned after the event by a limited number of persons with a common frame of
reference.

* Successful workshops organized since the one in this paper, with a similar approach to bring-
ing several projects together and focus on overarching issues and synergies [e.g., Rosinski
et al. (2021); NIST Center for Risk-Based Community Resilience Modeling (2021)], af-
firm that the NHE community continues to benefit from this type of interaction. Future
workshops could expand to international events. Such a broad audience would provide op-
portunities to recognize diverse NHE contexts and to promote changes that support greater

collaboration and reproducible research at a global scale.
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TABLE 1. Proposed ontology for natural hazard engineering data.

Category

Description

Natural Hazard

Which type of natural hazard does the data describe?

Earthquake & Geo | Ground motion, Liquefaction, Landslide, Sinkhole
Wind | Hurricane, Tropical storm, Nor’easter, Tornado
Water | Flood, Storm surge, Tsunami, Sea level rise
Climate | Extreme temperature, Drought
Fire | Wildfire, Fire following earthquake
Phase | Which phase of the simulation workflow does the data belong to?
Exposure | Characterize the built and social environment and how it changes over time before
or between disasters.
Hazard | Characterize historical hazard events or parametrize models to simulate the fre-
quency and intensity of synthetic scenarios.
Damage | Describe the damage after past events or parametrize models to simulate the damage
in synthetic scenarios.
Consequences | Describe the consequences (e.g., losses, injuries, disruption) after past events or
parametrize models to simulate consequences in synthetic scenarios.
Recovery | Describe the recovery process after past events or parametrize models to simulate
recovery after synthetic scenarios.
Context | Which part of the local environment does the data belong to?

Natural env.

Topography, bathymetry, soil conditions, etc.

Built env. | Structures and infrastructure components in the area
Households | Individual members or households in the population
Businesses | Individual businesses in the economy at-large
Services | Education, insurance industry, medical infrastructure, etc.
Origin | How was the data generated?
Simulation | Computer simulation using numerical models to produce synthetic data
Experiment | Controlled experimental tests (both engineering and social sciences)
Observation | Field data, including satellite, street-view, and reconnaissance images, Surveys,
polls, data from social media, and data from monitoring systems and sensors.
Provider | Who provides the data?

Public sector
Private sector
Academic entity

Government agencies
For-profit and non-governmental organizations
Universities

Access
Private

Shared

Published

Public

Where is the data stored?

Available only to the producer and is difficult or impossible to share; for example,
results stored in a non-standard format on a local hard drive.

Available upon request or subscription to a service run by the producer; data is
stored in a format that is readable at least by expert users.

Available upon subscription to a journal or a service independent from the data
producer; for example, data archived or published by journals.

Open access
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TABLE 2. Examples of housing-related applications and related data needs for planning and
policy-making (source: Workshop participants)

Context Examples

Simulation of cascading effects.
Session [ Modeling of post-disaster recovery to anticipate potential long-term
Connecting to Stakeholders effects of different disaster scenarios, and to be applicable to a range of

temporal and spatial scales.

Simulation of re-occupancy and functional (physical) recovery of

homes.
Session II Comparison of various policies and strategies for funding and prioriti-
Connecting Across Experts zation of building retrofits.
Ability to prioritize among multiple housing restoration or recovery
options.

Most household data consumed is sourced from the US Census Bureau,
specifically the American Community Survey (ACS); few researchers
are producing household-level data.

Data relating to structural features of houses, damages to homes, and
socio-economic characteristics of households.

Session IIT
Data Sources

Longitudinal studies and investigations of multiple facets of community
recovery.

Testbeds that explore various scenarios and plausible futures to enhance
our understanding of myriad impacts, consequences, and patterns of
recovery spatially and temporally.

Session IV
Interdisciplinary Engagement
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TABLE 3. Examples of additional high-value data listed among aspirational data needs (source:

Workshop participants)

Theme Recurring Examples
Information on the structural system in tax assessor databases;
Buildings Information on structural retrofits and modifications;

Inventories with building-specific information for entire cities.

Households, Businesses,
and Services

High-resolution insurance penetration data;

Information on supply chains for local businesses;

High-resolution information about workplaces of each household (both lo-
cation and industry)

Longitudinal data about household decisions after a disaster;

Recovery Population displacement and its effect on neighborhood recovery;
Availability and timeline of various funding sources
Real-time, high-resolution inundation hazard data (flood, storm surge,
Hazard tsunami);

High-resolution (parcel-level) hurricane wind data
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TABLE 4. Examples of Consumed Data by Dominant Theme (source: Workshop participants)

Dominant Themes

Recurring Examples

Built Environment

Tax assessors;

FEMA (Hazus exposure data and performance models);
Microsoft (building footprints);

Homeland Infrastructure Foundation-Level Data (HIFLD);
Zillow

Households

US Census Bureau (specifically the American Community Survey);
Bureau of Labor Statistics

Natural Environment

US Geological Survey (USGS);
National Oceanic and Atmospheric Administration (NOAA);
Pacific Earthquake Engineering Research Center (PEER)

Structural damage

Damage assessments sourced from images;
Component-level damage data (e.g., walls, roof, interior contents)
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TABLE 5. Recommended testbed locations and corresponding research opportunities (source:

Workshop participants).

Location Opportunities

Topology, bathymetry, land use and land cover data available.

Detailed information available about historical storms.
State of Florida / Exposure data available about buildings and transportation infrastructure.
Southern Florida /

Miami-Dade County

First-floor elevation information needed—machine learning opportunity.

Several industrial facilities are major contributors to local employment while
contributing to the risk of environmental damage.

High insurance penetration and information about insurance is available.

Pacific Northwest /
San Francisco Bay Area /
Los Angeles Metro Area

Local governments have a history of collaboration with experts from
academia and industry.

Post-disaster damage and consequence data available for recent earthquakes
and some of the recent wildfire events.

Maps of historical event intensities and probabilistic forecasts of future
events are available for earthquakes and tsunamis.

Tall building inventory available in San Francisco and water network infor-
mation available in Los Angeles.

First-floor elevation information needed—machine learning opportunity.
High-resolution geographical information about known structural vulnera-
bilities (e.g., cripple walls, soft-stories) is needed.

Tech companies are major employers in the LA, SF, and Seattle metro areas.
Investigation of the displacement of their workforce presents an opportunity
for collaboration.

Existing benefit-cost analysis (BCA) models by FEMA could be bench-
marked and enhanced.

Investigation of the impact of disasters on the wine industry is another
opportunity for collaboration.

Christchurch,
New Zealand

Rich data available on the impact of the earthquakes in 2011; including data
on cordons and their effects on local businesses.

Liquefaction-prone area with detailed information available about soil char-
acteristics.

Kathmandu,
Nepal

Rich data available on the impact of the earthquake in 2015; including
shaking intensities, damage, and aggregate casualty information
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Fig. 1. Distribution of participants’ self-reported (a) hazard expertise, (b) role, (c) scale in their
work on disaster risk and resilience, and (d) affiliation. N in the middle of the charts shows the
number of responses received from participants for each question.
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PARTICIPANT 2

Note: on all scales, 1=low and 5=high

INPUT DATA (CONSUMER)

OUTPUT DATA (PRODUCER)
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Fig. 2. Data map example.
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Fig. 3. Relative number of available software tools in each phase of the natural hazard risk
assessment workflow. (source: N=369 responses from Workshop participants).
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Fig. 4. Conceptualization of the SimCenter’s natural hazard risk assessment workflow.
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Fig. 5. Popular themes in aspirational data sources (source: Workshop participants, N=183)
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consume produce
Natural Hazard 32 responses 19 responses
Earthquake & Geo| 21 - 12
wind| 9 - 6
Water| 10 - 6
Climate| 2 l 0
Fire| 2 ! 1
Phase 46 responses 39 responses
Exposure| 45 17 -
Hazard| 32 14 -
Damage| 14 17 -
Consequences| 12 14 -
Recovery| 5 7 .
Context 47 responses 34 responses
Natural env.| 32 -
Builtenv.| 43 _
Households| 30 -
Businesses| 4 I
Services .
Origin 47 responses 39 responses
Observation| 46 _ 32
Simulation| 12 - 19
Experiment| 3 ! 3
Provider 47 responses N/A
Public sector
Academic entity
Private sector
Access 46 responses 35 responses
Private| 7 22
Shared| 15 7
Published| 6 8
Public| 44 14

Fig. 6. Distribution of consumed and produced data across key attributes. The provider class
for produced data could not be reported to protect respondent anonymity. (source: Workshop
participants)
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Fig. 7. Distribution characterizing the accessibility and reliability of consumed and produced data
(source: Workshop participants).

51 Zsarndczay et al., August 30, 2022



	Participants
	Methods for data collection
	1. Development of housing and household recovery models
	2. Integration of existing models into flexible computational workflows
	3. Investment in the collection of high-value open data
	4. Commitment to sharing and utilizing high-value data
	5. Development of versatile, multidisciplinary testbed studies

