
A PARALLEL ALGORITHM FOR COMPUTING PARTIAL1

SPECTRAL FACTORIZATIONS OF MATRIX PENCILS VIA2

CHEBYSHEV APPROXIMATION∗3

TIANSHI XU† , ANTHONY P. AUSTIN‡ , VASSILIS KALANTZIS§ , AND YOUSEF SAAD¶4

Abstract. We propose a distributed-memory parallel algorithm for computing all the eigenvalues5
(and corresponding eigenvectors) of a large, sparse, real symmetric positive definite matrix pencil6
that lie within a target interval. The algorithm is based on Chebyshev interpolation of the eigenvalues7
of the Schur complement (over the interface variables) of a domain decomposition reordering of the8
pencil and accordingly exposes two dimensions of parallelism: one derived from the reordering and9
one from the independence of the interpolation nodes. The new method demonstrates excellent10
parallel scalability, comparing favorably with PARPACK, and does not require factorization of the11
mass matrix, which significantly reduces memory consumption, especially for 3D problems. Our12
implementation is publicly available on GitHub.13

Key word. Symmetric generalized eigenvalue problem, spectral Schur complements, Chebyshev14
approximation, parallel computing15

AMS subject classifications. 15A18, 65D15, 65F15, 65N55, 65Y05, 68W1016

1. Introduction. Several applications in science and engineering require the17

computation of a handful of the algebraically smallest eigenvalues and associated18

eigenvectors of a large, sparse matrix pencil (A,M), where the n× n matrices A and19

M are real symmetric and M is positive-definite. Often, one is provided bounds α20

and β on the eigenvalues of interest, and the goal is then to compute all nev eigenpairs21

of (A,M) that lie within [α, β]. Problems of this sort arise, for instance, in spectral22

clustering [41], and low-frequency response analysis [6, 15].23

Due to the size of modern matrix problems, parallel computing has become an24

integral part of software libraries targeting large-scale eigenvalue computations. In25

many packages (e.g., PARPACK [30, 34], PRIMME [37], BLOPEX [28]), linear algebra ker-26

nels are the main source of parallelism, with operations such as matrix-vector and27

dot products performed in parallel by distributing the data across multiple proces-28

sors. Several recent packages improve scalability by exploiting additional levels of29

parallelism via techniques such as spectrum slicing (pEVSL [31]), rational filtering30

(FEAST/PFEAST [20, 27, 35], and z-Pares [36]), and parallel shift-and-invert methods31

[42, 46]. In addition, the SLEPc collection of distributed-memory eigenvalue algorithms32

[14] contains implementations of several of these methods.33

Another class of distributed-memory eigenvalue solvers is based on algebraic do-34

main decomposition, also known as algebraic substructuring; see the references in35

∗Submitted to the editors June 5, 2022.
Funding: The work of the first and the last author was supported by the National Science Foun-

dation (NSF) grant DMS-1912048. The work of the second author was supported by the Research
Initiation Program at the Naval Postgraduate School. The work of the third author was supported
by the Mathematical Sciences Council of IBM Research through its Exploratory Science initiative.

†Dept. of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
(xuxx1180@umn.edu)

‡Dept. of Applied Mathematics, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93940
(anthony.austin@nps.edu)

§IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
(vkal@ibm.com)

¶Dept. of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
(saad@umn.edu)

1

This manuscript is for review purposes only.



2 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

[17] for details. In domain decomposition, the adjacency graph associated with the36

pencil (A,M) is partitioned into several non-overlapping subgraphs. The eigenvalue37

problem then decouples into two separate tasks: first, one determines the eigenvector38

components associated with the interface variables of the partitioned graph; then, one39

finds the components associated with the interior variables. The second task paral-40

lelizes naturally over the subgraphs. For more information on this type of solver, see41

[6, 12, 17, 29, 45].42

1.1. A new parallel algorithm. In this article, we combine the domain decom-43

position approach with Chebyshev function approximation to design a new distributed-44

memory parallel eigensolver. The contributions of our work are:45

1. The algorithm parameterizes the eigenvector components associated with the46

interior and interface variables as univariate, analytic vector-valued functions.47

It then uses the fact that Chebyshev interpolation of these functions yields48

good approximations to the eigenvectors to construct a subspace for use with a49

Rayleigh–Ritz projection scheme. We present theoretical and practical details50

when the interpolation points are Chebyshev nodes of the second kind.51

2. The proposed algorithm leverages multi-dimensional parallelism by assigning52

computations associated with different Chebyshev nodes to different proces-53

sor groups and assigning computations associated with different subdomains54

to different processors within each group. Our numerical experiments demon-55

strate that the algorithm achieves higher parallel efficiency than PARPACK on56

distributed-memory systems communicating via the Message Passing Inter-57

face (MPI) [13]. A C++/MPI implementation of the proposed algorithm is58

available publicly at https://github.com/Hitenze/Schurcheb.59

3. In contrast to previous work on domain decomposition eigensolvers, the pro-60

posed algorithm requires the computation of neither derivatives of eigenvec-61

tors [18] nor a large number of eigenvectors of linearized spectral Schur com-62

plements [5, 6]. Moreover, unlike branch-hopping domain decomposition al-63

gorithms, which compute eigenvalues one at a time [19, 21], the proposed64

algorithm introduces model parallelism in addition to data parallelism by65

approximating all sought eigenvalues simultaneously via Rayleigh–Ritz pro-66

jection. Unlike approaches based on the Lanczos algorithm, the proposed67

algorithm does not require a distributed-memory factorization of A or M ;68

therefore, it is not limited by the efficiency of distributed-memory triangular69

solves. Finally, in contrast to most rational filtering techniques, especially70

those based on discretizations of complex contour integrals [22, 23], the pro-71

posed algorithm does not evaluate functions at complex values and therefore72

does not require complex arithmetic.73

1.2. Notation and roadmap. Throughout the paper, we denote the set of74

eigenvalues of a general pencil (K,F ) by Λ(K,F ) and the eigenpairs of the specific75

pencil (A,M) by
(
λi, x

(i)
)
, i = 1, . . . , n, ordered algebraically: λ1 ≤ · · · ≤ λn.76

Given bounds α and β such that α < λ1, our aim is to compute all nev eigenpairs of77

(A,M) that lie in [α, β], i.e., the nev algebraically smallest eigenvalues of A and their78

corresponding eigenvectors. Finally, we denote by Ran(K) and Ker(K) the range and79

kernel of a matrix K and by span{v1, . . . , vk} the linear span of vectors v1, . . . , vk.80

This paper is organized as follows. Section 2 presents background on algebraic81

graph partitioning and domain decomposition. Section 3 shows how the eigenvectors82

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 3

G1

Is

G3

G2

G4

Fig. 2.1: A 4-way partitioning of a 6×6 discretized domain obtained from an edge separator.
The four colors distinguish the four different subdomains. Solid-colored nodes correspond to
interior variables. Nodes with a gray background correspond to interface variables. Solid
lines correspond to edges between vertices of the same partition. Dashed lines correspond to
edges between vertices of neighboring partitions

of (A,M) can be identified as values of certain univariate, vector-valued functions and83

discusses how they can be approximated by Rayleigh–Ritz projection onto a subspace84

formed via Chebyshev approximation. Section 4 discusses the distributed-memory85

implementation of the proposed algorithm on 2D grids of MPI processes. Section 586

showcases the performance of the proposed algorithm using numerical experiments87

performed in both sequential and distributed-memory computing environments. Fi-88

nally, Section 6 presents our concluding remarks.89

2. Domain decomposition variable ordering. Let G = (V, I) be an simple90

undirected graph with vertex set V and edge set I. A p-way edge separator is a subset91

Is ⊆ I whose removal from I divides the vertices of the graph G into p ∈ N non-92

overlapping sets V1, . . . ,Vp, such that the induced subgraphs G1 = (V1, I1), . . . ,Gp =93

(Vp, Ip), are disjoint. We refer to the induced subgraphs variously as subdomains,94

substructures, or partitions. A vertex is called an interface vertex if it is incident to95

an edge in Is and an interior vertex otherwise.96

Applied to graphs derived from matrices, edge separators are commonly used97

in parallel computing to achieve load balancing during the execution of distributed-98

memory linear algebra kernels. In this context, the induced subgraphs ideally have99

similar numbers of vertices and edges, while the size (cardinality) of the separator100

set is kept to a minimum. Finding the “best” edge separator is an NP-hard prob-101

lem. In practice, one relies on heuristics, such as the algebraic partitioning strategies102

implemented in the popular METIS and ParMETIS packages [24, 25].103

To a symmetric matrix pencil (A,M) of dimension n, we associate a graph GA,M104

in the usual way, taking V = {1, . . . , n} for the vertex set and I = {(i, j) | Ai,j 6=105

0 or Mi,j 6= 0} for the edge set. Thinking of the eigenvalue problem Ax = λMx106

as a set of n linear equations, the vertices correspond to the n unknown variables107

This manuscript is for review purposes only.



4 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

in the vector x, and GA,M has an edge connecting vertices i and j if both the ith108

and jth variables appear together in one of the equations. A p-way edge separator109

for GA,M groups the variables into p disjoint sets or subdomains. Interface vertices110

correspond to variables that are coupled (via equations) with variables from multiple111

subdomains, while interior vertices correspond to variables that are coupled only with112

other variables from the same subdomain. Figure 2.1 illustrates this for a 4-way113

partitioning of a graph that models a 6× 6 regular grid.114

Having partitioned GA,M , we reorder the variables, listing all interior variables115

first, grouped by in order by subdomain, followed by the interface variables, also116

grouped by subdomain. Let P be the permutation matrix that effects this reordering.117

Under P , the matrices A and M are reordered into a pair of structured block matrices:118

(2.1)

PTAP =




B1 E1

B2 E2

. . .
. . .

Bp Ep

ET
1 C1,1 C1,2 · · · C1,p

ET
2 C2,1 C2,2 · · · C2,p

. . .
...

...
. . .

...
ET

p Cp,1 Cp,2 · · · Cp,p




PTMP =




MB1
ME1

MB2
ME2

. . .
. . .

MBp
MEp

MT
E1

MC1,1 MC1,2 · · · MC1,p

MT
E2

MC2,1
MC2,2

· · · MC2,p

. . .
...

...
. . .

...
MT

Ep
MCp,1

MCp,2
· · · MCp,p




.

119

To provide more detail, let di and si denote, respectively, the numbers of interior120

and interface variables belonging to the ith domain. The matrices Bi and MBi
are of121

size di × di and represent the coupling between the interior variables within the ith122

subdomain. The matrices Ei and MEi
are of size di × si and represent the coupling123

between the interior and interface variables of the ith subdomain. Finally, the matrices124

Ci,j and MCi,j
are of size si × sj and represent the coupling between the interface125

variables of the ith subdomain and those of the jth subdomain. If the ith and jth126

subdomains do not neighbor one another, Ci,j = MCi,j
= 0. Since A and M are127

symmetric, Cj,i = CT
i,j and MCj,i

= MT
Ci,j

.128

Our algorithm makes essential use of the structure of this reordering of A and M .129

For the remainder of the paper, we assume that A and M have been so reordered and130

suppress mention of the permutation P . We write A and M in 2× 2 block form as131

(2.2) A =

[
B E
ET C

]
, M =

[
MB ME

MT
E MC

]
,132

with the blocks being defined in the obvious way to conform to the structure just133

described. Finally, we define d = d1+ · · ·+dp and s = s1+ . . .+sp, the total numbers134

of interior and interface variables, respectively. Thus, the matrices B and MB are135

d× d, E and ME are d× s, and C and MC are s× s. Of course, d+ s = n.136

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 5

3. A parallel algorithm based on Chebyshev approximation. Our algo-137

rithm is based on the fact that the eigenvalues and eigenvectors of the matrix A−ζM138

are analytic functions of ζ ∈ C (vector-valued in the case of the latter). By definition,139

if ζ = λi is an eigenvalue of the pencil (A,M), then A − ζM is singular, and its140

null vectors are the eigenvectors for (A,M) corresponding to λi. By continuity, if ζ141

is close (but not equal) to λi, then A − ζM will be “nearly singular” in the sense142

that it will have one or more eigenvalues that are small in magnitude, and the eigen-143

vectors of A − ζM corresponding to these eigenvalues will be good approximations144

to null vectors of A − λiM . On this basis, our algorithm computes the eigenvectors145

corresponding to the smallest eigenvalues of A − ζiM at several points ζi within the146

search interval [α, β]. By choosing the ζi well, we can guarantee that the subspace147

spanned by these “near-null” vectors contains good approximations to the eigenvec-148

tors of (A,M). The algorithm extracts such approximations from this subspace via149

Rayleigh–Ritz projection.150

3.1. Spectral Schur complements. To make this process efficient and paral-151

lelizable, we exploit the block structure of A and M induced by the variable reordering152

discussed in the previous section. Partition the eigenvector x(i) associated with the153

eigenvalue λi of (A,M) as154

x(i) =

[
u(i)

y(i)

]
,155

where u(i) ∈ R
d and y(i) ∈ R

s, conforming to the partitioning of A and M in (2.2),156

and define157

(3.1) B(ζ) = B − ζMB , E(ζ) = E − ζME , C(ζ) = C − ζMC ,158

for ζ ∈ C. In this notation, the eigenvector equation (A− λiM)x(i) = 0 becomes159

(3.2)

[
B(λi) E(λi)
ET (λi) C(λi)

] [
u(i)

y(i)

]
= 0.160

Under the mild assumption that B(λi) is invertible, i.e., that λi /∈ Λ(B,MB), we can161

eliminate the ET (λi) block in the second row, yielding162

(3.3)
[
C(λi)− ET (λi)B(λi)

−1E(λi)
]
y(i) = 0.163

That is, the s× 1 bottom part y(i) of the eigenvector x(i) is a null vector of the Schur164

complement C(λi) − ET (λi)B(λi)
−1E(λi). Having found y(i), one can recover the165

corresponding top part u(i) via166

(3.4) u(i) = −B(λi)
−1E(λi)y

(i),167

which requires the solution of a d× d block diagonal linear system.168

What if λi ∈ Λ(B,MB)? This case would seldom occur in practice, but we can169

come to understand it by writing u(i) = u
(i)
P + u

(i)
N , where u

(i)
P ∈ Ran

(
B(λi)

)
and170

u
(i)
N ∈ Ker

(
B(λi)

)
. In place of (3.4), the first block equation in (3.2) yields171

(3.5) u
(i)
P = −B(λi)

+E(λi)y
(i),172

where B+(λi) is the (Moore–Penrose) pseudoinverse of B(λi). From this and the173

second block equation in (3.2), we obtain174

(3.6) E(λi)
Tu

(i)
N +

[
C(λi)− ET (λi)B(λi)

+E(λi)
]
y(i) = 0175

This manuscript is for review purposes only.



6 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

instead of (3.3).176

If it happens that Ran
(
E(λi)

)
⊥ Ker

(
B(λi)

)
, so that the first term in (3.6)177

vanishes, then the eigenvectors can be found in a manner analogous to the case178

when λi /∈ Λ(B,MB) but with B(λi)
−1 replaced by B(λi)

+. Specifically, one can179

take y(i) from among the null vectors of the Schur-complement-like matrix C(λi) −180

ET (λi)B(λi)
+E(λi) and then recover u

(i)
P from (3.5). The component u

(i)
N can be181

taken arbitrarily from Ker
(
B(λi)

)
(i.e., from among the eigenvectors of (B,MB)182

corresponding to the eigenvalue λi). We thus obtain an eigenspace of dimension183

dimKer
(
C(λi)−ET (λi)B(λi)

+E(λi)
)
+ dimKer

(
B(λi)

)
. More generally, given u

(i)
N ,184

one can solve (3.6) for y(i) and then leverage (3.5) to find u
(i)
P . Unfortunately, an185

easy way to compute u
(i)
N does not appear to exist, and even if one did, forming and186

factoring C(λi)− ET (λi)B(λi)
+E(λi) would still be prohibitively expensive.187

It is better simply to avoid the case λi ∈ Λ(B,MB) to begin with. This can188

be done by adjusting the partitioning until no eigenvalues of (B,MB) lie within the189

search interval [α, β]. As the likelihood of this being necessary is already small—in190

particular, we did not need to do this in any of the numerical experiments reported191

below—we will not attempt to develop a comprehensive strategy here, leaving this as192

a potential matter for future work.193

3.2. Chebyshev approximation of eigenvector components. We have thus194

reduced the problem to that of finding those values ζ in [α, β] for which the parame-195

terized spectral Schur complement [5, 19],196

S(ζ) = C(ζ)− ET (ζ)B(ζ)−1E(ζ),197

is singular, assuming that no eigenvalue of (A,M) within [α, β] is also an eigenvalue198

of (B,MB). For ζ /∈ Λ(B,MB), let µ1(ζ), . . . , µs(ζ) and y1(ζ), . . . , ys(ζ) denote the199

eigenvalues and corresponding eigenvectors of S(ζ), respectively:200

S(ζ)yi(ζ) = µi(ζ)yi(ζ), i = 1, . . . , s.201

The µi and yi can be defined such that they are analytic functions of ζ ∈ C away202

from Λ(B,MB). At each point of Λ(B,MB), they have at most a pole singularity203

[21, 26, 33, 39]. We refer to the µi as the eigencurves of S. We also define204

ui(ζ) = −B(ζ)−1E(ζ)yi(ζ), i = 1, . . . , s,205

which is also analytic in ζ away from Λ(B,MB).206

The matrix S(ζ) is singular precisely when one of its eigenvalues is zero: µi(ζ) = 0207

for some i. The following result asserts that each of the nev < s eigenvalues of A in208

[α, β], counted according to multiplicity, occurs as a zero of one and only one µi and209

that the top and bottom parts of the corresponding eigenvectors are given by ui and210

yi. (For eigenvalues of non-unit multiplicity, this statement is to be interpreted as211

saying that there is a distinct µi associated with each copy of the eigenvalue.) The212

assumption that β < min
(
Λ(B,MB)

)
ensures that [α, β] is free of any poles of S and213

the eigencurves. The assumption that nev < s ensures that the dimension of the space214

in which we plan to search is large enough to contain all the eigenvectors we seek.215

Proposition 3.1. Assume β < min
(
Λ(B,MB)

)
, and nev < s. Then, there exist216

nev distinct integers κ1, . . . , κnev
∈ {1, 2, . . . , s} such that217

(3.7) µκi
(λi) = 0, y(i) = yκi

(λi), u(i) = uκi
(λi).218

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 7

Proof. First, consider the case in which the λi are all simple eigenvalues. Follow-219

ing (3.3), we have S(λi)y
(i) = 0 for some where y(i) 6= 0. The matrix S(λi) is singular220

and has exactly one zero eigenvalue, denoted by µκi
(λi), for some 1 ≤ κi ≤ s. The221

expressions in (3.7) follow directly. It remains to show that κi 6= κj when i 6= j. This222

follows from the fact that the µκi
are free of poles and strictly decreasing on [α, β]223

[21], which implies that λi is the only root of µκi
in [α, β].224

That the result also holds in the case where one or more of the λi have non-unit225

multiplicity can be seen by considering arbitrarily small perturbations of (A,M) that226

have all simple eigenvalues and appealing to continuity.227

We lose no generality in assuming that κi = i, and we will do so throughout the228

rest of the paper: from this point forward, µi will denote the eigencurve of S that229

crosses the real axis at λi.230

Proposition 3.1 tells us that the components u(i) and y(i) of a sought eigenvector231

x(i) are equal to yi(λi) and ui(λi), respectively. Since both yi(ζ) and ui(ζ) are analytic232

on [α, β], they can be approximated accurately by interpolation at Chebyshev nodes.233

Specifically, for an integer N ≥ 1, let234

(3.8) χj =
α+ β

2
+ cos

(
jπ

N − 1

)
β − α

2
, j = 0, . . . , N − 1,235

be the N Chebyshev nodes of the second kind in [α, β],1 and let ℓj denote the jth236

Lagrange basis function for polynomial interpolation in these nodes. That is, ℓj is237

the unique polynomial of degree N − 1 such that ℓj(χk) is 1 if k = j and 0 if k 6= j.238

Finally, let Eρ be the Bernstein ellipse centered on [α, β] with parameter ρ; that is,239

Eρ is the open subset of C bounded by the ellipse with foci at α and β and sum of240

the lengths of its semimajor and semiminor axes equal to ρ. Since yi(ζ) and ui(ζ) are241

analytic on [α, β], they can be analytically continued to Eρ for some ρ > 0. We have:242

Proposition 3.2. Assume that β < min
(
Λ(B,MB)

)
, that nev < s, and that ui243

and yi are analytic in Eρ for all i = 1, . . . , nev and some ρ > 0. For each i, there244

exists w(i) ∈ R
N such that245

x(i) =

[
u(i)

y(i)

]
=

[
ui(χ0) · · · ui(χN−1)
yi(χ0) · · · yi(χN−1)

]
w(i) +O(ρ−N ).246

Proof. Let w
(i)
j = ℓj(λi) for j = 0, . . . , N − 1. Then, the top d (respectively,247

bottom s) components of the matrix-vector product give the value at λi of the poly-248

nomial interpolant to u(i) (respectively, y(i)) in the Chebyshev nodes χj . The result249

now follows from a standard theorem on the convergence of Chebyshev interpolants250

to analytic functions [40, Theorem 8.2].251

Instead of interpolating ui and yi directly, we use their samples at the Chebyshev252

nodes to generate a subspace in which to look for approximations to the x(i). This253

approach eliminates the need to keep track of the association between the samples254

and the eigencurves, which may be difficult if the eigencurves cross.2 Proposition 3.2255

ensures that this subspace contains good approximations to the x(i) for large enough256

N . We can express this fact as a statement about the angle between this subspace257

and the sought eigenspace:258

1For N = 1, we take χ0 = (α+ β)/2.
2For example, it can happen that µ2(χj) < µ1(χj) < µ3(χj) < · · · < µs(χj) for some j. If so,

the eigenvector of S(χj) corresponding to its smallest eigenvalue is a sample of y2(χj), not y1(χj),
even though µ1 is the eigencurve for the smallest eigenvalue of (A,M).

This manuscript is for review purposes only.



8 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Algorithm 3.1 The proposed algorithm.

1: input: A ∈ R
n×n, M ∈ R

n×n, N ∈ N, α ∈ R, β ∈ R, nev ∈ Z, Y = 0, V = 0
2: output: approximations of eigenpairs

(
λi, x

(i)
)
, i = 1, . . . , nev

3: /* Pre-processing: reorder matrices A and M */
4: ⊲ Call a p-way edge separator to partition the graph GA,M .
5: ⊲ If β < min

(
Λ(B,MB)

)
continue, else set p := 2p and repeat step 4.

6: /* Main loop; embarrassingly parallel over the N Chebyshev nodes */
7: for j = 0, . . . , N − 1 do

8: ⊲ Set χj =
α+ β

2
+ cos

(
jπ

N − 1

)
β − α

2
.

9: ⊲ Set Yj = [y1(χj), . . . , ynev(χj)].
10: ⊲ Solve B(χj)Vj = −E(χj)Yj .
11: end for

12: /* Rayleigh-Ritz projection phase */

13: ⊲ Set R =

[
V0 · · · VN−1

Y0 · · · YN−1

]
.

14: ⊲ Optionally, orthonormalize the columns of R.
15: ⊲ Compute the nev algebraically smallest eigenvalues and associated eigenvectors

of the eigenvalue problem (RTAR)f = θ(RTMR)f .
16: ⊲ Return (θi, PRf (i)) ≈

(
λi, x

(i)
)
, i = 1, . . . , nev.

Corollary 3.3. Let X = span{x(1), . . . , x(nev)}, and let259

R = span

{[
u1(χ0)
y1(χ0)

]
, . . . ,

[
u1(χN−1)
y1(χN−1)

]
, . . . ,

[
unev

(χ0)
ynev(χ0)

]
, . . . ,

[
unev

(χN−1)
ynev(χN−1)

]}
.260

Then,261

sin θ(X ,R) = O(ρ−N ),262

where θ(X ,R) is the largest principal angle between X and the closest subspace of R263

to X with the same dimension as X .264

Proof. The quantity sin θ(X ,R) is known as the gap between X and R and can265

be expressed as [3] [26, sect. IV.2.1] [38, sect. II.4]266

sin θ(X ,R) = max
x∈X

min
r∈R

‖x− r‖

‖x‖
.267

The result follows immediately from this formula and Proposition 3.2.268

3.3. A parallel algorithm. Our algorithm builds the subspace R of Corollary269

3.3 and then uses Rayleigh–Ritz projection to extract approximations to the x(i) from270

R. The procedure is summarized in Algorithm 3.1.271

For each Chebyshev node χj , Algorithm 3.1 computes the eigenvectors associated272

with the nev algebraically smallest eigenvalues of S(χj). These eigenvectors form the273

s×nev matrix Yj (step 9). Then, the algorithm computes the matrix Vj , which requires274

the solution of a linear system with the coefficient matrix B(χj) and nev right-hand275

sides (step 10). Finally, the algorithm uses Rayleigh–Ritz projection (steps 15–16) to276

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 9

approximate the sought eigenpairs of (A,M). The dimension of the projected pencil is277

at most Nnev, and the associated eigenvalue problem is solved by a dense, symmetric278

eigenvalue solver.279

The for loop in steps 7–11 is embarrassingly parallel: each matrix pair (Yj , Vj)280

can be computed independently of the other pairs. The computation of Vj can be281

further decomposed into the solution of p independent linear systems. Partition Vj282

and Yj by rows as283

Vj =



V1,j

...
Vp,j


 , Yj =



Y1,j

...
Yp,j


 ,284

285

where Vk,j and Yk,j are associated with the kth subdomain. Then,286



B1(χj)

. . .

Bp(χj)






V1,j

...
Vp,j


 =



E1(χj)Y1,j

...
Ep(χj)Yp,j


287

288

(where we have extended the notation (3.1) to the blocks comprising B, MB , E, and289

ME in the obvious way), and so the Vk,j can be computed by solving290

Bk(χj)Vk,j = −Ek(χj)Yk,j , k = 1, . . . p.291

These p linear systems can be solved in parallel.292

3.4. Practical details. If the desired number nev of eigenvalues is not known293

a priori, it can be computed directly by decomposing A−αM and A− βM in LDLT294

factorizations and using Sylvester’s law of inertia [7]. Alternatively, if this is too295

expensive, one can estimate nev using a spectral density profile of (A,M) [44]. To296

reduce the chance of the algorithm missing eigenvalues, we recommend taking nev297

slightly larger than estimated or required. To further reduce this chance, one can298

apply a few steps of subspace iteration or Lanczos with polynomial filtering and299

deflation as post-processing after step 16. Since the number of iterations needed300

should not be large, one can use iterative methods to approximate M−1 instead of301

exact factorizations.302

The results of section 3.2 relied on the hypothesis β < min
(
Λ(B,MB)

)
. How303

can we enforce this requirement in practice? Observe that if δ1, δ2, . . . , δd, are the304

eigenvalues of (B,MB), then λi ≤ δi ≤ λi+n−d, i = 1, . . . , d by a version of the305

interlacing theorem. Therefore, decreasing the dimension of (B,MB), i.e., increasing306

the value of p, makes it more likely that λnev ≤ β < δ1. Algorithm 3.1 adopts the307

practical strategy of doubling p until β < min
(
Λ(B,MB)

)
is satisfied (step 5).308

Finally, note that Algorithm 3.1 is a one-shot method in the sense that if the309

accuracy of the approximate eigenpairs is not satisfactory, then the whole process310

must be repeated with a higher value of N . We find that in practice, N = 8 reaches311

nearly the maximum attainable accuracy on a wide range of problems; see Section 5.312

If one wishes to apply Algorithm 3.1 for several values of N , it is beneficial to take313

these N to have the form N(k) = 2k + 1 for integers k. Having run the algorithm314

with N = N(k), one can reduce the computational cost of running the algorithm with315

N = N(k + 1) by exploiting the fact that the nodes (3.8) for N(k) are a subset of316

those for N(k + 1) and reusing the samples taken during the N = N(k) run.317

This manuscript is for review purposes only.



10 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Besides increasing N , one can also improve the accuracy of one or more of the318

eigenpairs by using the approximate eigenvectors obtained from Algorithm 3.1 as the319

initial subspace for an implicitly-restarted (or thick-restarted) Lanczos method [8, 43]320

applied to (A,M). This technique can also be used to ensure that all nev eigenpairs321

of (A,M) have been computed (i.e., none have been missed) by checking to see if the322

algebraically smallest eigenvalue returned by the restarted Lanczos method is smaller323

than β.324

4. A distributed-memory implementation. We now describe our parallel325

implementation of Algorithm 3.1 based on the MPI standard. Throughout this dis-326

cussion, we assume a distributed-memory computing environment with Np = prpc327

MPI processes organized in a pr×pc 2D MPI grid. In addition to the default commu-328

nicator MPI COMM WORLD, we denote by Gr
i , i = 0, . . . , pr−1, and Gc

j , j = 0, . . . , pc−1,329

the MPI communicators associated with the ith row and jth column of the grid,330

respectively.331

Our parallel implementation utilizes the row dimension of the grid for domain332

decomposition data parallelism (i.e., distributed storage of A and M), and the column333

dimension of the grid for model parallelism (i.e., distribution over the N Chebyshev334

nodes). Therefore, the row and column dimensions of the grid satisfy the inequalities335

pr ≤ p and pc ≤ N , respectively.336

4.1. Data distribution on 2D MPI grids. First, we consider the data dis-337

tribution along the row dimension of the grid. For each communicator Gc
j , j =338

0, . . . , pc − 1, we distribute A and M such that the pr MPI processes associated with339

Gc
j hold a unique subset of the partitions of the graph GA,M . In particular, let p be340

a scalar multiple of pr, and set τ = p/pr. Then, the ith process is assigned data341

associated with partitions iτ + 1, iτ + 2, . . . , (i+ 1)τ , i.e.,342

Data held by process i of Gc
j:





Biτ+1, . . . , B(i+1)τ ,MBiτ+1
, . . . ,MB(i+1)τ

Eiτ+1, . . . , E(i+1)τ ,MEit+1
, . . . ,ME(i+1)τ

Ciτ+1,:, . . . , C(i+1)τ,:,MCiτ+1,:
, . . . ,MC(i+1)τ,:

,343

where the subscript “:” represents all column indices of matrices C and MC . Or-344

dering the unknowns/equations by increasing MPI rank leads to the following global345

representation of A (and similarly for M):346

(4.1) A =




B1 E1

ET
1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET
2 C2,2 C2,pr

. . .

Bpr
Epr

Cpr,1 Cpr,2 ET
pr

Cpr,pr




.347

The ordering in (4.1) is more natural from the perspective of parallel computing than348

that in (2.1), which is more natural for discussing the linear algebra.349

We now focus on the column dimension of the grid. Let N be a scalar multiple350

of pc, and set η = N/pc. We distribute the N Chebyshev nodes across the pc MPI351

processes of each row communicator Gr
i , i = 0, . . . , pr − 1, such that each process352

receives exactly η unique Chebyshev nodes. In particular, the jth process associated353

is assigned the Chebyshev node(s) χjη+1, . . . , χ(j+1)η j = 0, . . . , pc−1. From a parallel354

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 11

efficiency perspective, it is advisable to exhaust parallelism across the N Chebyshev355

nodes first, by setting pc = N , since this level of parallelism involves no communication356

among groups of processes assigned different Chebyshev nodes.357

An illustration of the data distribution on a 2D MPI grid with Np = 16 processes358

and N = 8 Chebyshev nodes is shown in Figures 4.1 and 4.2 where the dimensions359

of the grid are (pr, pc) = (4, 4) and (pr, pc) = (2, 8), respectively. For (4, 4) case we360

have pc < N , and each column subgrid is responsible for processing h = 8/4 = 2361

Chebyshev nodes, while the computation of each matrix pair (Yj , Vj) exploits four362

MPI processes. Contrast this with the (2, 8) case, in which each separate column363

subgrid handles exactly one Chebyshev node (η = 1), leading to trivial parallelism364

with respect to the N Chebyshev nodes, but the computation of each matrix pair365

(Yj , Vj) utilizes just two processes.366

Gc
0 Gc

1 Gc
2 Gc

3

Gr
0

Gr
1

Gr
2

Gr
3

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

B1, E1, C1,1, C1,2, C1,3, C1,4

B2, E2, C2,1, C2,2, C2,3, C2,4

B3, E3, C3,1, C3,2, C3,3, C3,4

B4, E4, C4,1, C4,2, C4,3, C4,4

χ0, χ1 χ2, χ3 χ4, χ5 χ6, χ7

Fig. 4.1: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with Np = 16,
N = 8, and (pr, pc) = (4, 4). The distribution of M is identical to that of A.

4.2. Computation of Yj via PARPACK. Our implementation computes the eigen-367

vectors of the Schur complement matrices S(χj), j = 0, . . . , N − 1, via the PARPACK3368

software library, a distributed-memory implementation of ARPACK [30]. The main369

distributed-memory kernels of PARPACK are: (a) orthogonalization of the Krylov basis,370

and (b) a user-defined routine that performs distributed matrix-vector multiplication371

with S(χj).372

Regarding (a), consider first the case pc = N . Orthonormalizing the basis vec-373

tors computed on each m-step cycle of the implicitly restarted Arnoldi method via374

Gram–Schmidt costs O(sm2) floating-point operations and O
(
log(pr)m

2
)
point-to-375

point MPI messages. This communication cost increases proportionally with the376

number of Chebyshev nodes processed by each column subgrid. In particular, when377

pc = 1, i.e., all available Np MPI processes are assigned to the default communicator,378

PARPACK requires O
(
N log(Np)m

2
)
MPI messages just for Gram–Schmidt.379

As for (b), note that the product between the distributed matrix S(χj) and a380

3https://github.com/opencollab/arpack-ng

This manuscript is for review purposes only.



12 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Gc
0 Gc

1 Gc
2 Gc

3 Gc
4 Gc

5 Gc
6 Gc

7

Gr
0

Gr
1

p0

p8

p1

p9

p2

p10

p3

p11

p4

p12

p5

p13

p6

p14

p7

p15

B1, E1, C1,1, C1,2

B2, E2, C2,1, C2,2

χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

Fig. 4.2: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with Np = 16,
N = 8, and (pr, pc) = (2, 8). The distribution of M is identical to that of A.

distributed vector f =
[
fT
1 · · · fT

p

]T
∈ R

s can be written as381

(4.2) S(χj)f =













∑

k∈N1

C1,k(χj)fk

...
∑

k∈Np

Cp,k(χj)fk













−







B1(χj)
−1E1(χj)f1
...

Bp(χj)
−1Ep(χj)fp






,382

where Ni denotes the list of partitions adjacent to partition i (and where we have383

extended the notation (3.1) to the blocks of A − ζM defined by (4.1) in the obvious384

way). Due to the partitioning, the second term on the right-hand side of (4.2) can be385

computed in an embarrassingly parallel manner. On the other hand, the first term of386

the right-hand side of (4.2) requires point-to-point communication between processes387

handling neighboring partitions.388

4.3. Orthonormalization of the Rayleigh–Ritz basis. Our implementation389

orthonormalizes the columns of the Rayleigh–Ritz projection matrix R via Gram–390

Schmidt. To take advantage of all Np MPI processes, we exploit the default commu-391

nicator MPI COMM WORLD.392

The (i, j) process of the pr × pc 2D MPI grid holds the submatrices Vi,j and Yi,j ,393

leading to the following representation of R as a 2D logical array:394

R̂2D =

Gc
0

Gc
1

· · · Gc
pc−1






[
V0,0

Y0,0

] [
V0,1

Y0,1

]
· · ·

[
V0,pc−1

Y0,pc−1

]
Gr

0

...
...

...
...

.

.

.[
Vpr−1,0

Ypr−1,0

] [
Vpr−1,1

Ypr−1,1

]
· · ·

[
Vpr−1,pc−1

Ypr−1,pc−1

]
Gr

pr−1

.395

The goal is to transform R̂2D into a n×Nnev matrix R1D such that each one of the Np396

processes holds a submatrix that has roughly n/Np rows and Nnev columns. This can397

be achieved by the following two-step procedure. First, we perform a gather reduction398

on the submatrices
[
V T
i,j Y T

i,j

]T
, j = 0, . . . , pc − 1. This reduction is performed399

independently within each communicator Gr
i , i = 0, . . . , pr − 1. Second, each process400

associated with Gr
i discards all rows of the previously reduced matrix except for a401

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 13

Gr
4

Gr
3

Gr
2

Gr
1

Gc
1 Gc

2 Gc
3 Gc

4

p12

p8

p4

p0

p13

p9

p5

p1

p14

p10

p6

p2

p15

p11

p7

p3

⇐⇒

⇐⇒

⇐⇒

⇐⇒

p12

p13

p14

p15

p8

p9

p10

p11

p4

p5

p6

p7

p0

p1

p2

p3

Fig. 4.3: 2D-to-1D (and vice-versa) MPI grid mapping. Left: color/pattern layout of a
2D grid of MPI processes with pc = pr = 4. Right: color/pattern layout of the same grid
collapsed in 1D MPI grid topology.

unique, continuous set of rows. We can then write402

(4.3) R1D =




V0,0 · · · V0,pc−1

Y0,0 · · · Y0,pc−1

... · · ·
...

... · · ·
...

Vpr−1,0 · · · Vpr−1,pc−1

Ypr−1,0 · · · Ypr−1,pc−1




=




R0,0

...
R0,pc−1

...
Rpr−1,0

...
Rpr−1,pc−1




,403

where Ri,j is held by the MPI process of rank ipc+j associated with MPI COMM WORLD,404

i.e., the jth process associated with the row communicator Gr
i . This can be done405

efficiently in a single line of code by calling MPI Alltoall independently within each406

communicator Gr
i , i = 0, . . . , pr − 1. A graphical illustration of this 2D-to-1D grid407

remapping is shown in Figure 4.3.408

Once the remapping is complete, we apply distributed block Gram–Schmidt to409

the columns of R1D using MPI COMM WORLD and a block size equal to nev. Then, we410

map R1D back to the 2D layout by reversing the above procedure. For further details411

on parallel Gram–Schmidt, including a discussion of numerical stability, see [4, 9].412

4.4. Formation and solution of the projected eigenvalue problem. Fi-413

nally, we form the projected pencil (RTAR,RTMR) and find its eigenvalues. As the414

projected pencil is small, once it is formed, we compute its eigenvalues serially us-415

ing the DSYGVX routine from LAPACK [2]. The remainder of this section is devoted to416

discussing our approach to forming RTAR within the 2D distributed-memory data417

layout described above. The procedure for forming RTMR is identical.418

We form RTAR in two phases. Let Rj =
[
V T
j Y T

j

]T
. In the first phase, we419

This manuscript is for review purposes only.



14 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

MPI Allgather

Step 1

MPI Reduce

Step 2

MPI Gather

Step 3

Fig. 4.4: Communication pattern for the distributed-memory computation of RTAR and
RTMR using our 2D MPI data layout (pr = pc = 4). The root process of MPI COMM WORLD

is located in the upper left corner.

compute AR =
[
AR0 AR1 · · · ARN−1

]
. When pc = N , this operation is embar-420

rassingly parallel, since each of the products ARj , j = 0, . . . , N − 1, can be computed421

independently. Using the rank-based representation of A from (4.1), we write422

(4.4) ARj =




B1 E1

ET
1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET
2 C2,2 C2,pr

. . .

Bpr
Epr

Cpr,1 Cpr,2 ET
pr

Cpr,pr







V0,j

Y0,j

V1,j

Y1,j

...
Vpr−1,j

Ypr−1,j




423

Communication between different MPI processes of Gc
j is point-to-point, and the ith424

process needs to send Yi,j to the kth process if and only if Ck,i 6= 0.425

The second phase multiplies RT and AR and stores the matrix product in the426

root process of MPI COMM WORLD. To achieve this, we apply the following procedure,427

which is illustrated in Figure 4.4:428

1. Apply MPI Allgather on the submatrices [ARj ]i, j = 0, . . . , pc − 1, across429

the row communicator Gr
i , where [ARj ]i denotes the submatrix of ARj held430

by the ith process. Each process associated with Gr
i then has its own copy431

of the matrix
[
[AR0]i [AR2]i · · · [ARpc−1]i

]
.432

2. The ith process associated with the column communicator Gc
j then computes433

Zi,j = RT
i,j

[
[AR0]i [AR2]i . . . [ARpc−1]i

]
and calls MPI Reduce on the434

data Zi,j associated with the processes in Gc
j .435

3. At the end of the previous step, the kth MPI process associated with Gr
0436

holds the kth block of rows of the matrix RTAR. Finally, all processes in Gr
0437

call MPI Gather, creating RTAR in the root process.438

5. Numerical experiments. We now illustrate the performance of Algorithm439

3.1 in both sequential and distributed-memory computing environments. We per-440

formed our experiments on the Minnesota Supercomputing Institute’s Mesabi cluster.441

Each node of Mesabi is equipped with 64 GB of system memory and two 12-core 2.5442

GHz Intel Xeon E5-2680v3 (Haswell) CPUs. We built our code with the Intel ICC443

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 15

18.0.0 compiler. We used the Intel Math Kernel Library (MKL) for basic matrix op-444

erations, including its sparse matrix routines and its implementation of the standard445

BLAS and LAPACK libraries for sequential dense matrix operations. While it is possible446

to exploit shared-memory parallelism, the experiments described below use just one447

thread per MPI process.448

To compute the nev sought eigenvectors of the spectral Schur complements S(χj),449

we used PARPACK with full orthogonalization and restart dimension m = 2nev. The450

linear systems involving the block-diagonal matrix B(χj) were solved with the Intel451

MKL implementation of the PARDISO solver. For the search interval [α, β], we set452

α = 0, β = (λnev + λnev+1)/2 in all experiments.453

5.1. Numerical illustration. We first demonstrate the qualitative performance454

of Algorithm 3.1 on a set of four small problems:455

• “APF4686,” a standard eigenvalue problem of dimension n = 4,686 generated456

by the ELSES quantum mechanical nanomaterial simulator4 [16],457

• “Kuu/Muu,” a generalized eigenvalue problem of dimension n = 7,102 from458

the SuiteSparse matrix collection5 [10],459

• “FDmesh,” a standard eigenvalue problem generated by a regular 5-point460

finite difference discretization of the Laplacian on a square, and461

• “FEmesh,” a generalized eigenvalue problem obtained by discretizing the462

Laplacian on a square with linear finite elements.463

For the latter two, the discretization fineness was chosen to yield matrices of dimension464

n ≈ 20,000, and the associated pencils have several eigenvalues of multiplicity 2.465

Figure 5.1 plots the relative errors in the eigenvalues returned by Algorithm 3.1466

and the corresponding residual norms for the problems “APF4686” (left, nev = 30)467

and “Kuu/Muu” (right, nev = 100) for N = 2, 4, 6, 8. Figure 5.2 plots the same468

quantities for “FDmesh” (left) and “FEmesh” (right), where nev = 100 in both cases.469

In agreement with the discussion in Section 3, increasingN leads to greater accuracy in470

the approximation of the sought eigenpairs. Moreover, all eigenpairs are approximated471

to comparable accuracies for a given value of N , i.e., the accuracy of an eigenpair is472

relatively insensitive to the location of the eigenvalue inside [α, β].473

5.2. Distributed-memory performance. We now illustrate the distributed-474

memory efficiency of Algorithm 3.1 on a variety of larger problems coming from dis-475

cretizations of the Laplacian as well as general symmetric matrices and pencils from476

the SuiteSparse collection.6 Unless otherwise indicated, throughout the rest of this477

section, we take nev = 100, and we set the second dimension of the 2D MPI grid to be478

pc = N . In most of the tests we report the results with N = 8 or N = 4. The parallel479

efficiency of a program executing on φ ∈ N processes is P (φ) = T1/(φTφ), where Tφ480

denotes the wall-clock time for execution on φ processes.481

We benchmark Algorithm 3.1 against PARPACK applied directly to the pencil482

(A,M) both with and without shift-and-invert. PARPACK requires the application483

of either M−1 (without shift-and-invert) or A−1 (with shift-and-invert), and since A484

and M are distributed, we used a distributed direct solver for these operations. The485

results reported here were generated using the MUMPS package [1], but our code also486

provides interfaces for SuperLU Dist [32] and the Intel Cluster Sparse Solver (pro-487

vided in the MKL). For PARPACK, we report the wall-clock time and parallel efficiency488

4http://www.elses.jp
5https://sparse.tamu.edu/
6Our implementation is available publicly at https://github.com/Hitenze/Schurcheb.

This manuscript is for review purposes only.



16 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

5 10 15 20 25 30
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60 80 100
10

-16

10
-12

10
-8

10
-4

10
0

5 10 15 20 25 30
10

-12

10
-8

10
-4

10
0

20 40 60 80 100
10

-10

10
-6

10
-2

10
2

2 4 6 8
10

-15

10
-10

10
-5

10
0

2 4 6 8

10
-10

10
-5

10
0

Fig. 5.1: Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and corresponding
residual norms (center) for various values of N for the problems “APF4686” (left, nev = 30)
and “Kuu/Muu” (right, nev = 100). The bottom two figures plot the maximum relative error
in the eigenvalues and maximum residual norm across all nev eigenpairs.

for a restart length equal to m = 2nev with all MPI processes bundled in the de-489

fault communicator MPI COMM WORLD. To keep the comparisons fair, the convergence490

tolerance passed to PARPACK for each problem is set to the maximum residual norm491

returned by Algorithm 3.1.492

5.2.1. Eigenvalue problems from finite difference discretizations. First,493

we apply Algorithm 3.1 to matrices arising from finite difference discretizations of the494

Dirichlet eigenvalue problem,495

(5.1)
−∆u = λu in Ω

u = 0 on ∂Ω,
496

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 17

20 40 60 80 100
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60 80
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60
10

-10

10
-6

10
-2

10
2

20 40 60 80
10

-10

10
-6

10
-2

10
2

2 4 6 8

10
-10

10
-5

10
0

2 4 6 8
10

-15

10
-10

10
-5

10
0

Fig. 5.2: Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and correspond-
ing residual norms (center) for various values of N for the problems “FDmesh” (left) and
“FEmesh” (right). The bottom two figures plot the maximum relative error in the eigenvalues
and maximum residual norm across all nev eigenpairs.

where ∆ denotes the Laplacian and Ω is either the square (0, 1)2 in 2D or the cube497

(0, 1)3 in 3D. We use the standard 5- and 7-point stencils in 2D and 3D, respectively.498

All these eigenvalue problems are standard ones, with M equal to the identity matrix.499

Our first set of experiments focuses on the strong scaling of Algorithm 3.1. We500

take nev = 100 and use N = 4, 8 Chebyshev nodes. In our results, we refer to501

Algorithm 3.1 with N = 4 as SchurCheb(4) and with N = 8 as SchurCheb(8).502

We first consider three different 2D discretizations with matrix sizes n = 257 × 256,503

n = 513 × 512, and n = 1025 × 1024, respectively. Table 5.1 lists the maximum504

relative error in the eigenvalues returned by Algorithm 3.1. Figure 5.3 (left) plots505

the parallel efficiency of Algorithm 3.1 for N = 8, where we report separately the506

parallel efficiencies associated with: (a) computation of the eigenvector matrices Yj ,507

This manuscript is for review purposes only.



18 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

2 4 8 16 32 64 128

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of 257× 256 Laplacian

2 4 8 16 32 64 128

101

102

Number of MPI processes

T
im

e
(s
)

Time of 257× 256 Laplacian

8 16 32 64 128 256

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of 513× 512 Laplacian

8 16 32 64 128 256

101

102

Number of MPI processes

T
im

e
(s
)

Time of 513× 512 Laplacian

64 128 256 512

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of 1025× 1024 Laplacian

lanczos orthogonalization
other total

64 128 256 512
101

102

Number of MPI processes

T
im

e
(s
)

Time of 1025× 1024 Laplacian

SchurCheb(8) SchurCheb(4) parpack
parpack-shift-invert lobpcg-amg

Fig. 5.3: Left: parallel efficiency of Algorithm 3.1 with nev = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4, 8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from Np = 2 to Np = 512.
The number of partitions is set equal to p = 32 (n = 257 × 256), p = 64 (n = 513 × 512),
and p = 128 (n = 1025 × 1024), when N = 8. The value of p is doubled when N = 4 since
each column communicator now has twice as many processes.

Table 5.1: Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the finite
difference problems.

n = 257× 256 n = 513× 512 n = 1025× 1024 n = 65× 64× 63

SchurCheb(4) 5.1 × 10−4 8.2 × 10−5 1.4 × 10−4 9.1 × 10−5

SchurCheb(8) 2.3 × 10−9 2.9 × 10−11 2.5 × 10−7 1.9 × 10−10

j = 0, . . . , N − 1, (b) orthonormalization of the projection matrix R, and (c) ev-508

erything else. Since pc = N , the computation of the Yj is embarrassingly parallel,509

leading to nearly perfect efficiency for this step. On the other hand, both the or-510

thonormalization of R and the formation of RTAR require communication among511

the Np processes, and their efficiency can deteriorate for larger values of Np. Note512

also that the parallel granularity of Algorithm 3.1 is lower for smaller problem sizes,513

leading to lower efficiencies compared to larger problems.514

Figure 5.3 (right) plots the wall-clock time achieved by Algorithm 3.1 forN = 4, 8,515

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 19

8 16 32 64 128 256

60

80

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of 65× 64× 63 Laplacian

lanczos orthogonalization
other total

8 16 32 64 128 256

101

102

Number of MPI processes

T
im

e
(s
)

Time of 65× 64× 63 Laplacian

SchurCheb(8) SchurCheb(4) arpack
arpack-shift-invert lobpcg-amg

Fig. 5.4: Left: parallel efficiency of Algorithm 3.1 with nev = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4, 8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from Np = 8 to Np = 256.
The number of partitions is set to p = 64 (N = 8) and p = 128 (N = 4).

Table 5.2: Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert
for the finite difference problems.

n = 257× 256 n = 513× 512 n = 1025× 1024 n = 65× 64× 63
Np = 128 Np = 256 Np = 512 Np = 256

SchurCheb(4) 1.2 GB 2.4 GB 9.3 GB 2.3 GB
SchurCheb(8) 2.2 GB 4.6 GB 18.8 GB 4.6 GB
PARPACK 21.4 GB 45.0 GB 106.4 GB 46.6 GB

PARPACK with and without shift-and-invert, and the Locally Optimal Block Precondi-516

tioned Conjugate Gradient (LOBPCG) method as implemented in the BLOPEX package517

of hypre [11]. The wall-clock times of LOBPCG were obtained with AMG precondition-518

ing and we present the best (lowest) times after performing extensive tests involving519

various choices for the hyperparameters and preconditioners. Regarding the perfor-520

mance of PARPACK, note that due to the fact that A comes from a 2D discretization,521

shift-and-invert is generally very fast when the direct solver scales satisfactorily; how-522

ever, the efficiency of MUMPS falls off faster than that of Algorithm 3.1 as Np increases,523

and for larger values of Np, Algorithm 3.1 becomes the fastest and most scalable ap-524

proach. Similarly, LOBCPG is competitive with Algorithm 3.1 for smaller values of Np525

but becomes comparatively slower as Np increases.526

Figure 5.4 plots the same quantities for a 3D discretization matrix of size n =527

65×64×63. The main difference between the 2D and 3D case is that PARPACK without528

shift-and-invert now converges much faster, leading to lower orthogonalization costs.529

Moreover, because A is banded, the parallel efficiency of distributed-memory sparse530

matrix-vector products with A remains high even when Np = 256. Nonetheless,531

Algorithm 3.1 still attains greater strong scaling efficiency than PARPACK (with or532

without shift-and-invert) and hence will outperform it given enough parallel resources.533

As Algorithm 3.1 does not need to factor A, it requires considerably less storage534

than PARPACK with shift-and-invert. Table 5.2 lists the global peak memory consump-535

tion for both of these algorithms for the finite difference discretization problems just536

described. Even with N = 8 Chebyshev nodes, Algorithm 3.1 uses 5 to 10 times less537

memory than shift-and-invert PARPACK across all problems.538

We now focus on the performance of Algorithm 3.1 when the problem size n539

This manuscript is for review purposes only.



20 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

8 16 32 48 64 80 96 128
10−2

10−1

100

101

Number of MPI processes

T
im

e
(s
)

Weak scaling of 257× 256 Laplacian

600

800

1,000

1,200

1,400

N
u
m
b
er

of
S
p
M
V

Weak scaling of 257× 256 Laplacian

8 16 32 48 64 80 96 128
10−1

100

101

Number of MPI processes

T
im

e
(s
)

Weak scaling of 513× 512 Laplacian

1,000

1,500

2,000

N
u
m
b
er

of
S
p
M
V

Weak scaling of 513× 512 Laplacian

lanczos orthogonalization other nmvs

Fig. 5.5: Weak scaling with respect to N (pr = 8, pc = N) for two 2D finite difference
discretization problems. The number of MPI processes ranges from Np = 8 to Np = 128.
The solid red lines denote the maximum number of iterations required by PARPACK to compute
the matrices Yj , j = 0, . . . , N − 1.

and number of partitions p are fixed and Np varies proportionally to N . We set540

p = pr = 8 and pc = N where N = 2, 4, . . . , 16. For this experiment, we consider541

the 2D discretizations of sizes n = 257× 256 and n = 513× 512 and report the wall-542

clock times for each major operation of Algorithm 3.1 in Figure 5.5. The amount of543

time spent computing the matrices Yj and Vj is nearly constant since the maximum544

number of matrix-vector products (iterations) required by PARPACK to compute each545

Yj , is more or less the same for each Np (see the solid lines). On the other hand,546

the amount of time required for orthonormalization and the Rayleigh–Ritz projection547

both increase due to: (a) higher computational complexity and (b) higher volume of548

communication among the increasing number of MPI processes.549

Next, we evaluate the performance of Algorithm 3.1 when computing different550

numbers of eigenvalues (different nev) for the same matrix. We consider the 2D551

discretizations of sizes n = 257×256 and n = 513×512. In each group of tests, we fix552

p, pr, pc, and Np and then vary nev. For the n = 257×256 problem, we take Np = 128553

and pr = N and then set p = 16 when N = 8 and p = 32 when N = 4. For the554

n = 512 × 512 problem, we double p and Np. Figure 5.6 reports the total wall-clock555

times for Algorithm 3.1 under these configurations, taking nev = 50, 100, 150, 200,556

as well as those for PARPACK (with and without shift-and-invert) and LOBPCG. The557

cost of solving the Schur complement eigenvalue problems in Algorithm 3.1 at each558

Chebyshev node increases as nev increases. Nonetheless, Algorithm 3.1 still attains559

wall-clock times that are competitive with PARPACK and LOBPCG.560

In the preceding experiments, we took pc = N . As our final experiment in this561

section, we consider the effect of varying the 2D MPI grid topology. We consider562

the 2D discretizations of sizes n = 513 × 512. We take N = 8, Np = p = 128,563

nev = 100, and vary the topology as (pr, pc) = (128, 1), (64, 2), (32, 4), (16, 8). Table564

5.3 lists a breakdown of the wall-clock times for the various parts of Algorithm 3.1565

for each topology. The topology (pr, pc) = (128, 1) processes the N Chebyshev nodes566

sequentially, one after the other, but uses allNp MPI processes during the computation567

of each matrix pair (Yj , Vj), j = 0, . . . , N−1, taking on average (26.08+0.35)/8 ≈ 3.3568

seconds for each. At the other extreme, the topology (pr, pc) = (16, 8) processes569

the N Chebyshev nodes completely in parallel, but now computing each (Yj , Vj)570

requires more time—in the worst case, approximately 4 times as much (13.21+0.35 =571

13.56 seconds)—since only pr = 16 processes are available for parallelization of those572

computations. Nevertheless, the total time to solution is nearly halved with (pr, pc) =573

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 21

50 100 150 200
100

101

Number of Eigenvalues

T
im

e
(s
)

Weak scaling of 257× 256 Laplacian

500

1,000

1,500

2,000

N
u
m
b
er

of
S
p
M
V

Weak scaling of 257× 256 Laplacian

SchurCheb(8) SchurCheb(4) arpack arpack-shift-invert lobpcg-amg nmvs(8) nmvs(4)

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

Weak scaling of 513× 512 Laplacian

1,000

2,000

3,000

4,000

N
u
m
b
er

of
S
p
M
V

Weak scaling of 513× 512 Laplacian

Fig. 5.6: Weak scaling with respect to nev for two 2D finite difference discretization problems.
The number of MPI processes are Np = 128 and Np = 256, respectively. The solid red lines
denotes the maximum number of iterations required by PARPACK to compute the matrices Yj ,
j = 0, . . . , N − 1 in Algorithm 3.1.

Table 5.3: Wall-clock time breakdown of Algorithm 3.1 for various 2D MPI grid topologies.
(RR: Rayleigh–Ritz, GS: Gram–Schmidt).

(pr, pc) Setup Y0,...,N−1 V0,...,N−1 GS RR DSYGVX Total

(128,1) 1.42 26.08 0.35 1.41 1.76 0.14 31.17
(64,2) 0.68 18.06 0.36 1.94 1.81 0.14 23.15
(32,4) 0.32 13.95 0.35 1.71 1.91 0.14 18.41
(16,8) 0.18 13.21 0.35 1.65 2.03 0.14 17.61

(16, 8) versus (pr, pc) = (128, 1). Thus, in agreement with our previous results, setting574

pc = N is best unless the smaller value of pr creates a memory bottleneck.575

5.2.2. Eigenvalue problems from finite element discretizations. To illus-576

trate the performance of Algorithm 3.1 for generalized eigenvalue problems, we again577

consider matrices arising from discretizations of (5.1) but with linear finite elements578

instead of finite differences. In 2D, we consider the square Ω = (0, 1)2 and the disc579

Ω = {(x, y) : x2 + y2 ≤ 1}, both meshed with unstructured triangular elements. In580

3D, we consider the cube Ω = (0, 1)3, meshed with unstructured tetrahedra.581

Figure 5.7 plots the parallel efficiency of Algorithm 3.1 (left) and associated wall-582

clock times as Np varies. We also plot the wall-clock time of PARPACK with shift-583

and-invert but omit results for PARPACK without shift-and-invert, which required an584

excessive amount of time to converge for these problems. The small sizes of the585

problems (n ≈ 150,000) have chosen intentionally in order to simulate an environment586

with an abundance of parallel resources. As in the experiments of the previous section,587

Algorithm 3.1 attains high parallel efficiency and scales better than PARPACK. The588

efficiency of the orthogonalization step in Algorithm 3.1 dropped below 50% for the589

3D case when Np = 512 due to a large communication-to-computation ratio for the590

Gram–Schmidt process; nevertheless, the overall efficiency is still close to 100%.591

Next, we show the results of a weak scaling test similar to one in the previous592

section, wherein Algorithm 3.1 is applied to a given problem for increasing values593

of nev. As before, we fix p, pr, pc, and Np for each group of tests, and vary nev594

as nev = 50, 100, 150, 200. We use the same finite element problems of the previous595

experiment set pc = N . When N = 8, we use Np = 128 and p = 16 for the 2D596

domains and Np = 512 and p = 64 for the 3D domains. When N = 4, we double597

This manuscript is for review purposes only.



22 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

16 32 64 128

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of rectangular mesh, n = 178, 464

16 32 64 128

101

102

Number of MPI processes

T
im

e
(s
)

Time of rectangular mesh, n = 178, 464

16 32 64 128

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of circular mesh, n = 146, 093

16 32 64 128

101

102

Number of MPI processes
T
im

e
(s
)

Time of circular mesh, n = 146, 093

128 256 512

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of 3D mesh, n = 170, 967

lanczos orthogonalization other total

128 256 512

101

101.5

Number of MPI processes

T
im

e
(s
)

Time of 3D mesh, n = 170, 967

SchurCheb(8) SchurCheb(4) arpack-shift-invert

Fig. 5.7: Left: parallel efficiency of Algorithm 3.1 applied to the finite element problems with
nev = 100 and pc = N = 8. Right: wall-clock time comparison between Algorithm 3.1 with
N = 4 and N = 8, and PARPACK with shift-and-invert. The number of MPI processes ranges
from Np = 8 to Np = 512. The number of partitions is set equal to p = 16 for the 2D meshes
and p = 64 for the 3D mesh.

p. The results are reported in Figure 5.8. Again, Algorithm 3.1 attains times to598

solution that are competitive with PARPACK, even though the cost of solving the local599

eigenvalue problems at each Chebyshev node increases with nev.600

Finally, Table 5.4 lists the wall-clock times for Algorithm 3.1 and PARPACK with601

shift-and-invert on a set of larger finite element problems. For Algorithm 3.1 we602

report the wall-clock times for the case Np = 512 and pc = N = 4; for PARPACK, we603

report the best (lowest) wall-clock time obtained over several runs with different Np.604

Algorithm 3.1 was twice as fast for the 2D problems, and about as fast as PARPACK605

for the 3D problem. Note, though, that in addition to having superior7 scalability,606

Algorithm 3.1 also uses much less memory.607

5.2.3. Eigenvalue problems from the SuiteSparse collection. Finally, to608

demonstrate the performance of Algorithm 3.1 for more general matrices, we apply609

it to several problems taken from the SuiteSparse matrix collection with sizes rang-610

ing from n = 66, 172 to n = 1, 222, 045. Additional details are given in Table 5.5.611

The “qa8fk/qa8fm” problem is a generalized eigenvalue problem; the other four are612

standard problems (M is the identity matrix).613

Figure 5.9 plots the parallel efficiency (left) and wall-clock time (right) for Al-614

gorithm 3.1 on each of these problems. For comparison, we also plot the wall-clock615

7The best wall-clock time of PARPACK for the 3D mesh problem was achieved for Np = 128.

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 23

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

Circular mesh, n = 146, 093

0

1,000

2,000

3,000

N
u
m
b
er

of
S
p
M
V

Circular mesh, n = 146, 093

SchurCheb(8) SchurCheb(4) arpack arpack-shift-invert lobpcg-amg nmvs(8) nmvs(4)

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

Rectangular mesh, n = 178, 464

0

1,000

2,000

N
u
m
b
er

of
S
p
M
V

Rectangular mesh, n = 178, 464

50 100 150 200
100

101

102

103

Number of Eigenvalues

T
im

e
(s
)

3D mesh, n = 170, 967

1,000

1,100

1,200

1,300

N
u
m
b
er

of
S
p
M
V

3D mesh, n = 170, 967

Fig. 5.8: Weak scaling with respect to nev for three finite element problems. The numbers
of MPI processes are Np = 128 for the 2D domains and Np = 512 for the 3D domain. The
solid red lines denotes the maximum number of iterations required by PARPACK to compute
the matrices Yj , j = 0, . . . , N − 1. in Algorithm 3.1.

Table 5.4: Total wall-clock time for Algorithm 3.1 and PARPACK with shift-and-invert for the
finite element problems with Np = 512, p = 128, and pc = N .

2D square 2D disc 3D cube
n = 1, 086, 615 n = 845, 397 n = 1, 351, 083

SchurCheb(4) 17.2 s 18.3 s 90.1 s
PARPACK 33.6 s 25.9 s 90.3 s

time of PARPACK with and without shift-and-invert. As in the previous experiments,616

Algorithm 3.1 maintains high parallel efficiency up to 512 MPI processes, and, pro-617

vided enough parallel resources, outperforms PARPACK. Additionally, Algorithm 3.1 is618

more memory efficient than shift-and-invert PARPACK as Np increases; Table 5.6 lists619

the peak memory consumption for both algorithms for the maximum Np used in each620

group of tests for each problem. Finally, Table 5.7 lists the maximum error in the621

eigenvalues returned by Algorithm 3.1 for N = 4 and N = 8.622

6. Conclusion. We presented a distributed-memory Rayleigh–Ritz projection623

algorithm to compute a few of the smallest eigenvalues and associated eigenvectors of624

a sparse, symmetric matrix pencil. The algorithm introduces embarrassing parallelism625

by recasting the problem as one of approximating univariate, vector-valued functions626

via Chebyshev approximation. The computational work associated with Chebyshev627

node can be assigned to a different group of processors, and we described a scheme for628

doing this using a 2D grid of MPI processes. We discussed several theoretical aspects629

and implementation details, including how to orthonormalize the Rayleigh–Ritz basis630

and form the projected eigenvalue problem. Our experiments demonstrated that the631

proposed algorithm attains good parallel efficiency, superior to PARPACK.632

This manuscript is for review purposes only.



24 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Table 5.5: Problems from the SuiteSparse matrix collection. Here, n denotes the size of the
pencil (A,M); nnz(.): counts the number of nonzero entrie in its arguments; and p denotes
the number of partitions for the case N = 8.

Dataset n p nnz(A)/n nnz(M)/n Application

qa8fk/qa8fm 66,172 16 25.1 25.1 3D acoustics
af shell3 504,855 64 34.8 1.0 structural problem
tmt sym 726,713 64 6.99 1.0 electromagnetics
ecology2 999,999 64 5.00 1.0 2D/3D problem
thermal2 1,228,045 64 6.99 1.0 thermal problem

Table 5.6: Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert
for the SuiteSparse problems.

qa8 af shell3 tmt sym ecology2 thermal2
Np = 128 Np = 512 Np = 512 Np = 512 Np = 512

SchurCheb(4) 0.7 GB 5.9 GB 6.7 GB 8.9 GB 11.2 GB
SchurCheb(8) 1.4 GB 11.9 GB 13.2 GB 17.5 GB 22.2 GB
PARPACK 21.7 GB 47.7 GB 50.8 GB 58.7 GB 56.5 GB

Table 5.7: Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the
SuiteSparse problems.

qa8 af shell3 tmt sym ecology2 thermal2

SchurCheb(4) 3.2× 10−4 2.1× 10−4 1.6× 10−4 1.8× 10−5 9.1× 10−5

SchurCheb(8) 1.0× 10−8 3.8× 10−10 6.5× 10−8 8.9× 10−9 1.9× 10−10

In the future, we plan to develop a version of this algorithm based on generalized633

spectral Schur complements, in which the matrix Yj is formed by computing a few634

eigenvectors of the pencil
(
S(χj),−S′(χj)

)
instead of S(χj) alone. This may allow635

one to reduce the value of N , permitting the use of more parallel resources within each636

column MPI communicator. We also plan on extending the implementation of our637

current algorithm so that the computations local to each MPI process are performed638

using graphics processing units. Finally, we plan on applying our software to problems639

from real-world applications, e.g., frequency response analysis.640

7. Acknowledgements. The authors acknowledge the Minnesota Supercom-641

puting Institute (MSI) at the University of Minnesota for providing resources that con-642

tributed to the research results reported within this paper (http://www.msi.umn.edu).643

REFERENCES644

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, MUMPS: A general purpose645
distributed memory sparse solver, in International Workshop on Applied Parallel Comput-646
ing, Springer, 2000, pp. 121–130.647

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,648
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’649
Guide, SIAM, Philadelphia, PA, 1999.650

[3] C. A. Beattie, M. Embree, and D. C. Sorensen, Convergence of polynomial restart Krylov651

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 25

16 32 64 128

60

80

100

120

140

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of qa8fk/qa8fm

16 32 64 128

100.5

101

101.5

Number of MPI processes

T
im

e
(s
)

Time of qa8fk/qa8fm

128 256 512

60

80

100

120

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of tmt sym

128 256 512
101

102

Number of MPI processes
T
im

e
(s
)

Time of tmt sym

128 256 512

60

80

100

120

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of af shell3

128 256 512
101

102

Number of MPI processes

T
im

e
(s
)

Time of af shell3

128 256 512

60

80

100

120

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of ecology2

128 256 512

101.5

102

102.5

Number of MPI processes

T
im

e
(s
)

Time of ecology2

128 256 512

60

80

100

120

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of thermal2

lanczos orthogonalization other total

128 256 512

101.5

102

102.5

Number of MPI processes

T
im

e
(s
)

Time of thermal2

SchurCheb(8) SchurCheb(4)
arpack arpack-shift-invert

Fig. 5.9: Left: parallel efficiency of Algorithm 3.1 with nev = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4 and N = 8, and PARPACK

with and without shift-and-invert. The number of MPI processes ranges from Np = 16 to
Np = 512.

methods for eigenvalue computations, SIAM Rev., 47 (2005), pp. 492–515.652
[4] C. Bekas and A. Curioni, Very large scale wavefunction orthogonalization in density func-653

tional theory electronic structure calculations, Comput. Phys. Commun., 181 (2010),654
pp. 1057–1068.655

This manuscript is for review purposes only.



26 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

[5] C. Bekas and Y. Saad, Computation of smallest eigenvalues using spectral Schur comple-656
ments, SIAM J. Sci. Comput., 27 (2005), pp. 458–481.657

[6] J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring method for658
eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25 (2004),659
pp. 2084–2106.660

[7] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving sym-661
metric linear systems, Math. Comp., (1977), pp. 163–179.662

[8] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for663
large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), p. 21.664

[9] E. Carson, K. Lund, M. Rozložńık, and S. Thomas, Block Gram-Schmidt algorithms and665
their stability properties, Linear Algebra Appl., 638 (2022), pp. 150–195.666

[10] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.667
Software, 38 (2011), pp. 1–25.668

[11] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in669
International Conference on Computational Science, Springer, 2002, pp. 632–641.670

[12] W. Gao, X. S. Li, C. Yang, and Z. Bai, An implementation and evaluation of the AMLS671
method for sparse eigenvalue problems, ACM Trans. Math. Software, 34 (2008), pp. 1–28.672

[13] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the673
Message-Passing Interface, MIT Press, Cambridge, MA, 1999.674

[14] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the675
solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351–362.676

[15] W. Heylen, S. Lammens, and P. Sas, Modal analysis theory and testing, vol. 200, Katholieke677
Universiteit Leuven Leuven, Belgium, 1997.678

[16] T. Hoshi, H. Imachi, A. Kuwata, K. Kakuda, T. Fujita, and H. Matsui, Numerical aspect679
of large-scale electronic state calculation for flexible device material, Jpn. J. Ind. Appl.680
Math., 36 (2019), pp. 685–698.681

[17] V. Kalantzis, Domain decomposition algorithms for the solution of sparse symmetric gener-682
alized eigenvalue problems, PhD thesis, University of Minnesota, 2018.683

[18] V. Kalantzis, A domain decomposition Rayleigh–Ritz algorithm for symmetric generalized684
eigenvalue problems, SIAM J. Sci. Comput., 42 (2020), pp. C410–C435.685

[19] , A spectral Newton-Schur algorithm for the solution of symmetric generalized eigenvalue686
problems, Electron. Trans. Numer. Anal., 52 (2020), pp. 132–153.687

[20] V. Kalantzis, J. Kestyn, E. Polizzi, and Y. Saad, Domain decomposition approaches for688
accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems, Nu-689
mer. Linear Algebra Appl., 25 (2018), p. e2154.690

[21] V. Kalantzis, R. Li, and Y. Saad, Spectral Schur complement techniques for symmetric691
eigenvalue problems, Electron. Trans. Numer. Anal., 45 (2016), pp. 305–329.692

[22] V. Kalantzis, Y. Xi, and L. Horesh, Fast randomized non-Hermitian eigensolvers based on693
rational filtering and matrix partitioning, SIAM J. Sci. Comput., 43 (2021), pp. S791–S815.694

[23] V. Kalantzis, Y. Xi, and Y. Saad, Beyond automated multilevel substructuring: Domain695
decomposition with rational filtering, SIAM J. Sci. Comput., 40 (2018), pp. C477–C502.696

[24] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular697
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.698

[25] G. Karypis, K. Schloegel, and V. Kumar, Parmetis: Parallel graph partitioning and sparse699
matrix ordering library, (1997).700

[26] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, NY, 1966.701
[27] J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad, PFEAST: A high performance sparse702

eigenvalue solver using distributed-memory linear solvers, in SC’16: Proceedings of the703
International Conference for High Performance Computing, Networking, Storage and Anal-704
ysis, IEEE, 2016, pp. 178–189.705

[28] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally opti-706
mal preconditioned eigenvalue solvers (BLOPEX) in HYPRE and PETSc, SIAM J. Sci.707
Comput., 29 (2007), pp. 2224–2239.708

[29] J. H. Ko and Z. Bai, High-frequency response analysis via algebraic substructuring, Int. J.709
Numer. Meth. Eng., 76 (2008), pp. 295–313.710

[30] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large711
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,712
1998.713

[31] R. Li, Y. Xi, L. Erlandson, and Y. Saad, The eigenvalues slicing library (EVSL): Algorithms,714
implementation, and software, SIAM J. Sci. Comput., 41 (2019), pp. C393–C415.715

[32] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct716
solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110–717

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 27

140.718
[33] S. Lui, Kron’s method for symmetric eigenvalue problems, J. Comput. Appl. Math., 98 (1998),719

pp. 35–48.720
[34] K. J. Maschhoff and D. Sorensen, A portable implementation of ARPACK for distributed721

memory parallel architectures, in Proceedings of the Copper Mountain Conference on It-722
erative Methods, vol. 1, 1996.723

[35] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79724
(2009), p. 115112.725

[36] T. Sakurai, Y. Futamura, A. Imakura, and T. Imamura, Scalable eigen-analysis engine for726
large-scale eigenvalue problems, in Advanced Software Technologies for Post-Peta Scale727
Computing, Springer, 2019, pp. 37–57.728

[37] A. Stathopoulos and J. R. McCombs, PRIMME: PReconditioned Iterative MultiMethod729
Eigensolver—methods and software description, ACM Trans. Math. Software, 37 (2010),730
pp. 1–30.731

[38] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA,732
1990.733

[39] Y. Su, T. Lu, and Z. Bai, 2D eigenvalue problems I: Existence and number of solutions, arXiv,734
(2019). arXiv:1911.08109v1 [math.NA].735

[40] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,736
2013.737

[41] U. Von Luxburg, A tutorial on spectral clustering, Stat. and Comput., 17 (2007), pp. 395–416.738
[42] D. B. Williams-Young, P. G. Beckman, and C. Yang, A shift selection strategy for parallel739

shift-invert spectrum slicing in symmetric self-consistent eigenvalue computation, ACM740
Trans. Math. Software, 46 (2020), pp. 1–31.741

[43] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,742
SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.743

[44] Y. Xi, R. Li, and Y. Saad, Fast computation of spectral densities for generalized eigenvalue744
problems, SIAM J. Sci. Comput., 40 (2018), pp. A2749–A2773.745

[45] C. Yang, W. Gao, Z. Bai, X. S. Li, L.-Q. Lee, P. Husbands, and E. Ng, An algebraic746
substructuring method for large-scale eigenvalue calculation, SIAM J. Sci. Comput., 27747
(2005), pp. 873–892.748

[46] H. Zhang, B. Smith, M. Sternberg, and P. Zapol, SIPs: Shift-and-Invert Parallel Spectral749
Transformations, ACM Trans. Math. Software, 33 (2007), pp. 9:1–9:19.750

This manuscript is for review purposes only.


