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A PARALLEL ALGORITHM FOR COMPUTING PARTIAL
SPECTRAL FACTORIZATIONS OF MATRIX PENCILS VIA
CHEBYSHEV APPROXIMATION*

TIANSHI XU', ANTHONY P. AUSTIN* VASSILIS KALANTZIS!, AND YOUSEF SAADY

Abstract. We propose a distributed-memory parallel algorithm for computing all the eigenvalues
(and corresponding eigenvectors) of a large, sparse, real symmetric positive definite matrix pencil
that lie within a target interval. The algorithm is based on Chebyshev interpolation of the eigenvalues
of the Schur complement (over the interface variables) of a domain decomposition reordering of the
pencil and accordingly exposes two dimensions of parallelism: one derived from the reordering and
one from the independence of the interpolation nodes. The new method demonstrates excellent
parallel scalability, comparing favorably with PARPACK, and does not require factorization of the
mass matrix, which significantly reduces memory consumption, especially for 3D problems. Our
implementation is publicly available on GitHub.

Key word. Symmetric generalized eigenvalue problem, spectral Schur complements, Chebyshev
approximation, parallel computing

AMS subject classifications. 15A18, 65D15, 65F15, 65N55, 65Y05, 68W10

1. Introduction. Several applications in science and engineering require the
computation of a handful of the algebraically smallest eigenvalues and associated
eigenvectors of a large, sparse matrix pencil (4, M), where the n X n matrices A and
M are real symmetric and M is positive-definite. Often, one is provided bounds «
and [ on the eigenvalues of interest, and the goal is then to compute all n,, eigenpairs
of (A, M) that lie within [«, §]. Problems of this sort arise, for instance, in spectral
clustering [41], and low-frequency response analysis [6, 15].

Due to the size of modern matrix problems, parallel computing has become an
integral part of software libraries targeting large-scale eigenvalue computations. In
many packages (e.g., PARPACK [30, 34], PRIMME [37], BLOPEX [28]), linear algebra ker-
nels are the main source of parallelism, with operations such as matrix-vector and
dot products performed in parallel by distributing the data across multiple proces-
sors. Several recent packages improve scalability by exploiting additional levels of
parallelism via techniques such as spectrum slicing (pEVSL [31]), rational filtering
(FEAST/PFEAST [20, 27, 35|, and z-Pares [36]), and parallel shift-and-invert methods
[42, 46]. In addition, the SLEPc collection of distributed-memory eigenvalue algorithms
[14] contains implementations of several of these methods.

Another class of distributed-memory eigenvalue solvers is based on algebraic do-
main decomposition, also known as algebraic substructuring; see the references in
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2 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

[17] for details. In domain decomposition, the adjacency graph associated with the
pencil (A, M) is partitioned into several non-overlapping subgraphs. The eigenvalue
problem then decouples into two separate tasks: first, one determines the eigenvector
components associated with the interface variables of the partitioned graph; then, one
finds the components associated with the interior variables. The second task paral-
lelizes naturally over the subgraphs. For more information on this type of solver, see
[6, 12, 17, 29, 45].

1.1. A new parallel algorithm. In this article, we combine the domain decom-
position approach with Chebyshev function approximation to design a new distributed-
memory parallel eigensolver. The contributions of our work are:

1. The algorithm parameterizes the eigenvector components associated with the
interior and interface variables as univariate, analytic vector-valued functions.
It then uses the fact that Chebyshev interpolation of these functions yields
good approximations to the eigenvectors to construct a subspace for use with a
Rayleigh—Ritz projection scheme. We present theoretical and practical details
when the interpolation points are Chebyshev nodes of the second kind.

2. The proposed algorithm leverages multi-dimensional parallelism by assigning
computations associated with different Chebyshev nodes to different proces-
sor groups and assigning computations associated with different subdomains
to different processors within each group. Our numerical experiments demon-
strate that the algorithm achieves higher parallel efficiency than PARPACK on
distributed-memory systems communicating via the Message Passing Inter-
face (MPI) [13]. A C++/MPI implementation of the proposed algorithm is
available publicly at https://github.com/Hitenze/Schurcheb.

3. In contrast to previous work on domain decomposition eigensolvers, the pro-
posed algorithm requires the computation of neither derivatives of eigenvec-
tors [18] nor a large number of eigenvectors of linearized spectral Schur com-
plements [5, 6]. Moreover, unlike branch-hopping domain decomposition al-
gorithms, which compute eigenvalues one at a time [19, 21], the proposed
algorithm introduces model parallelism in addition to data parallelism by
approximating all sought eigenvalues simultaneously via Rayleigh—Ritz pro-
jection. Unlike approaches based on the Lanczos algorithm, the proposed
algorithm does not require a distributed-memory factorization of A or M;
therefore, it is not limited by the efficiency of distributed-memory triangular
solves. Finally, in contrast to most rational filtering techniques, especially
those based on discretizations of complex contour integrals [22, 23], the pro-
posed algorithm does not evaluate functions at complex values and therefore
does not require complex arithmetic.

1.2. Notation and roadmap. Throughout the paper, we denote the set of
eigenvalues of a general pencil (K, F) by A(K, F) and the eigenpairs of the specific
pencil (4, M) by (Ni,z®), i = 1,...,n, ordered algebraically: A\; < -+ < A,.
Given bounds « and f such that o < A1, our aim is to compute all n., eigenpairs of
(A, M) that lie in [«, 8], i.e., the ne, algebraically smallest eigenvalues of A and their
corresponding eigenvectors. Finally, we denote by Ran(K') and Ker(K) the range and
kernel of a matrix K and by span{vi,...,v;} the linear span of vectors vy, ..., vg.

This paper is organized as follows. Section 2 presents background on algebraic
graph partitioning and domain decomposition. Section 3 shows how the eigenvectors

This manuscript is for review purposes only.
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PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 3

Fig. 2.1: A 4-way partitioning of a 6 X 6 discretized domain obtained from an edge separator.
The four colors distinguish the four different subdomains. Solid-colored nodes correspond to
interior variables. Nodes with a gray background correspond to interface variables. Solid
lines correspond to edges between vertices of the same partition. Dashed lines correspond to
edges between vertices of neighboring partitions

of (A, M) can be identified as values of certain univariate, vector-valued functions and
discusses how they can be approximated by Rayleigh—Ritz projection onto a subspace
formed via Chebyshev approximation. Section 4 discusses the distributed-memory
implementation of the proposed algorithm on 2D grids of MPI processes. Section 5
showcases the performance of the proposed algorithm using numerical experiments
performed in both sequential and distributed-memory computing environments. Fi-
nally, Section 6 presents our concluding remarks.

2. Domain decomposition variable ordering. Let G = (V,Z) be an simple
undirected graph with vertex set V and edge set Z. A p-way edge separator is a subset
Zs C T whose removal from Z divides the vertices of the graph G into p € N non-
overlapping sets Vi, ..., V,, such that the induced subgraphs G, = (V1,Z4),...,G, =
(Vp,Z,), are disjoint. We refer to the induced subgraphs variously as subdomains,
substructures, or partitions. A vertex is called an interface vertex if it is incident to
an edge in Z; and an interior verter otherwise.

Applied to graphs derived from matrices, edge separators are commonly used
in parallel computing to achieve load balancing during the execution of distributed-
memory linear algebra kernels. In this context, the induced subgraphs ideally have
similar numbers of vertices and edges, while the size (cardinality) of the separator
set is kept to a minimum. Finding the “best” edge separator is an NP-hard prob-
lem. In practice, one relies on heuristics, such as the algebraic partitioning strategies
implemented in the popular METIS and ParMETIS packages [24, 25].

To a symmetric matrix pencil (A4, M) of dimension n, we associate a graph Ga
in the usual way, taking ¥V = {1,...,n} for the vertex set and Z = {(i,j) | 4;; #
0 or M;; # 0} for the edge set. Thinking of the eigenvalue problem Az = AMz
as a set of n linear equations, the vertices correspond to the n unknown variables
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4 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

in the vector x, and G4, ) has an edge connecting vertices ¢ and j if both the ith
and jth variables appear together in one of the equations. A p-way edge separator
for G4 ar groups the variables into p disjoint sets or subdomains. Interface vertices
correspond to variables that are coupled (via equations) with variables from multiple
subdomains, while interior vertices correspond to variables that are coupled only with
other variables from the same subdomain. Figure 2.1 illustrates this for a 4-way
partitioning of a graph that models a 6 x 6 regular grid.

Having partitioned G4 pr, we reorder the variables, listing all interior variables
first, grouped by in order by subdomain, followed by the interface variables, also
grouped by subdomain. Let P be the permutation matrix that effects this reordering.
Under P, the matrices A and M are reordered into a pair of structured block matrices:

"B, B _
By Ey
B E
PTAP = P P
ET Cii Cip Cip
ET Co1 Chpo Cop
(2 1) L EpT Cp,l Cp,2 Cpm_
’ [Mp, Mg, ]
MBQ MEZ
MB ME
PTMP = v p
M§1 MC1,1 MCI,Q MCl,p
Mgz MC2,1 MC2,2 Mcz p
L Mgp Mcpyl MCP:Q MCPYP_

To provide more detail, let d; and s; denote, respectively, the numbers of interior
and interface variables belonging to the ith domain. The matrices B; and Mp, are of
size d; X d; and represent the coupling between the interior variables within the ith
subdomain. The matrices E; and Mg, are of size d; x s; and represent the coupling
between the interior and interface variables of the ith subdomain. Finally, the matrices
Ci,j and Mc, ; are of size s; X s; and represent the coupling between the interface
variables of the ¢th subdomain and those of the jth subdomain. If the ¢th and jth
subdomains do not neighbor one another, C; ; = M¢, , = 0. Since A and M are
symmetric, C;; = CZ} and Mc,, = ng

Our algorithm makes essential use of the structure of this reordering of A and M.
For the remainder of the paper, we assume that A and M have been so reordered and
suppress mention of the permutation P. We write A and M in 2 x 2 block form as

<[54 ey )

(2:2) ET C ML Mc

with the blocks being defined in the obvious way to conform to the structure just
described. Finally, we define d =d; +---+dp, and s = 51 +...+ s, the total numbers
of interior and interface variables, respectively. Thus, the matrices B and Mp are
dx d, F and Mg are d x s, and C' and M¢ are s x s. Of course, d + s = n.

This manuscript is for review purposes only.
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PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 5

3. A parallel algorithm based on Chebyshev approximation. Our algo-
rithm is based on the fact that the eigenvalues and eigenvectors of the matrix A — (M
are analytic functions of ¢ € C (vector-valued in the case of the latter). By definition,
if ¢ = \; is an eigenvalue of the pencil (A, M), then A — (M is singular, and its
null vectors are the eigenvectors for (A4, M) corresponding to A;. By continuity, if ¢
is close (but not equal) to \;, then A — (M will be “nearly singular” in the sense
that it will have one or more eigenvalues that are small in magnitude, and the eigen-
vectors of A — (M corresponding to these eigenvalues will be good approximations
to null vectors of A — \; M. On this basis, our algorithm computes the eigenvectors
corresponding to the smallest eigenvalues of A — (; M at several points (; within the
search interval [, 8]. By choosing the (; well, we can guarantee that the subspace
spanned by these “near-null” vectors contains good approximations to the eigenvec-
tors of (A, M). The algorithm extracts such approximations from this subspace via
Rayleigh-Ritz projection.

3.1. Spectral Schur complements. To make this process efficient and paral-
lelizable, we exploit the block structure of A and M induced by the variable reordering
discussed in the previous section. Partition the eigenvector (¥ associated with the
eigenvalue \; of (A, M) as

. (@)
u
2 = L/(i)} ;

where u¥ € R? and 3" € R®, conforming to the partitioning of A and M in (2.2),
and define

(3.1) B(()=B—-(Mp, E()=E—-(Mg,  C(()=C-(Mc,
for ¢ € C. In this notation, the eigenvector equation (A — \;M)z(Y) = 0 becomes

62 s e [ol -0

Under the mild assumption that B(\;) is invertible, i.e., that A\; ¢ A(B, Mp), we can
eliminate the ET();) block in the second row, yielding

(3.3) [C(,\i) — ET(/\i)B(/\i)ilE(/\i)]y(i) —0

That is, the s x 1 bottom part y(? of the eigenvector z(*) is a null vector of the Schur
complement C()\;) — ET(A\)B(\;)"'E()\;). Having found y, one can recover the

corresponding top part u(® via
(34) u(z) = —B(/\i)_lE()\i)y(i),

which requires the solution of a d x d block diagonal linear system.

What if A; € A(B,Mp)? This case would seldom occur in practice, but we can

come to understand it by writing u(® = ug) + ug\i]), where ug) € Ran(B();)) and

u%) € Ker(B()\;)). In place of (3.4), the first block equation in (3.2) yields
(3.5) up = —BO) B,

where Bt ();) is the (Moore-Penrose) pseudoinverse of B(A;). From this and the
second block equation in (3.2), we obtain

(3.6) B k) + [C() — ET()BOA)TEO)]y® =0

This manuscript is for review purposes only.
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6 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

instead of (3.3).

If it happens that Ran(E()\;)) L Ker(B()\;)), so that the first term in (3.6)
vanishes, then the eigenvectors can be found in a manner analogous to the case
when \; ¢ A(B, Mpg) but with B()\;)~! replaced by B(\;)T. Specifically, one can
take y(* from among the null vectors of the Schur-complement-like matrix C'()\;) —
ET(\)B(M\)*tE()\;) and then recover ug) from (3.5). The component ug\l,) can be
taken arbitrarily from Ker(B()\;)) (i.e., from among the eigenvectors of (B, Mp)
corresponding to the eigenvalue )\;). We thus obtain an eigenspace of dimension
dimKer(C(\;) — ET(X\)B(X;)TE();)) + dim Ker(B();)). More generally, given ug\z,),
one can solve (3.6) for y() and then leverage (3.5) to find ug). Unfortunately, an
easy way to compute ug\l,) does not appear to exist, and even if one did, forming and
factoring C(\;) — ET(X\;)B(X\;)T E(\;) would still be prohibitively expensive.

It is better simply to avoid the case \; € A(B,Mp) to begin with. This can
be done by adjusting the partitioning until no eigenvalues of (B, Mp) lie within the
search interval [«, 8]. As the likelihood of this being necessary is already small—in
particular, we did not need to do this in any of the numerical experiments reported
below—we will not attempt to develop a comprehensive strategy here, leaving this as
a potential matter for future work.

3.2. Chebyshev approximation of eigenvector components. We have thus
reduced the problem to that of finding those values ¢ in [«, 8] for which the parame-
terized spectral Schur complement [5, 19],

S(0) =C(C) = ET(OB(C)E(0),

is singular, assuming that no eigenvalue of (A, M) within [«, 8] is also an eigenvalue

of (B, Mp). For C ¢ A(B, Mg), let 1(C), ., 1ts(C) and y1(C), .., ys(C) denote the
eigenvalues and corresponding eigenvectors of S((), respectively:

S(C)yl(g) :Ui(C)yi(<)7 t=1,...,s.

The p; and y; can be defined such that they are analytic functions of ( € C away
from A(B,Mp). At each point of A(B, Mp), they have at most a pole singularity
[21, 26, 33, 39]. We refer to the p; as the eigencurves of S. We also define

wi(¢) = =BT EQui(C),  i=1,....s,

which is also analytic in ¢ away from A(B, Mp).

The matrix S(¢) is singular precisely when one of its eigenvalues is zero: 1;(¢) =0
for some i. The following result asserts that each of the n., < s eigenvalues of A in
[a, B], counted according to multiplicity, occurs as a zero of one and only one p; and
that the top and bottom parts of the corresponding eigenvectors are given by u; and
y;. (For eigenvalues of non-unit multiplicity, this statement is to be interpreted as
saying that there is a distinct p; associated with each copy of the eigenvalue.) The
assumption that 8 < min(A(B, Mp)) ensures that [«, 8] is free of any poles of S and
the eigencurves. The assumption that ne, < s ensures that the dimension of the space
in which we plan to search is large enough to contain all the eigenvectors we seek.

PROPOSITION 3.1. Assume 5 < min(A(B,MB)), and ney < s. Then, there exist
Ney distinct integers K1, ..., kn,, € {1,2,...,8} such that

(3.7) e (Ai) = 0, y(i) = Y, (Ni)s u = U, (Ai)-

This manuscript is for review purposes only.
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PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 7

Proof. First, consider the case in which the \; are all simple eigenvalues. Follow-
ing (3.3), we have S()\;)y") = 0 for some where y* # 0. The matrix S()\;) is singular
and has exactly one zero eigenvalue, denoted by ., (A;), for some 1 < k; < s. The
expressions in (3.7) follow directly. It remains to show that x; # £; when ¢ # j. This
follows from the fact that the p,, are free of poles and strictly decreasing on [«, (]
[21], which implies that \; is the only root of ., in [«, 8].

That the result also holds in the case where one or more of the \; have non-unit
multiplicity can be seen by considering arbitrarily small perturbations of (A, M) that
have all simple eigenvalues and appealing to continuity. ]

We lose no generality in assuming that x; = ¢, and we will do so throughout the
rest of the paper: from this point forward, p; will denote the eigencurve of S that
crosses the real axis at \;.

Proposition 3.1 tells us that the components u(? and y( of a sought eigenvector
2 are equal to y;(\;) and u;()\;), respectively. Since both y;(¢) and u;(¢) are analytic
on [a, ], they can be approximated accurately by interpolation at Chebyshev nodes.
Specifically, for an integer N > 1, let

a+p g B—a .
(3.8) Xj =~ +COS<N—1) 5 , j=0,...,N—1,

be the N Chebyshev nodes of the second kind in [, 8]," and let ¢; denote the jth
Lagrange basis function for polynomial interpolation in these nodes. That is, ¢; is
the unique polynomial of degree N — 1 such that ¢;(xy) is 1 if k = j and 0 if k # j.
Finally, let E, be the Bernstein ellipse centered on [, 3] with parameter p; that is,
E, is the open subset of C bounded by the ellipse with foci at o and 8 and sum of
the lengths of its semimajor and semiminor axes equal to p. Since y;({) and w;(¢) are
analytic on [a, 5], they can be analytically continued to E, for some p > 0. We have:

PROPOSITION 3.2. Assume that B < min(A(B,MB)), that nev < s, and that u;

and y; are analytic in E, for all i = 1,...,ne, and some p > 0. For each i, there
exists w') € RN such that
. (@) . e .
@ _ [u™] _ [ui(xo) ui(xn-1)| @) -N
'\ = N w'’ 4+ O .
[y(z)} [yi(XO) o yi(xv—1) (™)

Proof. Let wy) = {;(N;) for j = 0,...,N —1. Then, the top d (respectively,
bottom s) components of the matrix-vector product give the value at \; of the poly-
nomial interpolant to u(? (respectively, 4(¥)) in the Chebyshev nodes X;- The result
now follows from a standard theorem on the convergence of Chebyshev interpolants
to analytic functions [40, Theorem 8.2]. d

Instead of interpolating u; and y; directly, we use their samples at the Chebyshev
nodes to generate a subspace in which to look for approximations to the z(*). This
approach eliminates the need to keep track of the association between the samples
and the eigencurves, which may be difficult if the eigencurves cross.? Proposition 3.2
ensures that this subspace contains good approximations to the 2(*) for large enough
N. We can express this fact as a statement about the angle between this subspace
and the sought eigenspace:

IFor N = 1, we take xo = (o + )/2.

2For example, it can happen that pa(x;) < p1(X;) < pa(x;) < - < ps(x;) for some j. If so,
the eigenvector of S(x;) corresponding to its smallest eigenvalue is a sample of y2(x;), not y1(x;),
even though w1 is the eigencurve for the smallest eigenvalue of (A, M).

This manuscript is for review purposes only.
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8 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Algorithm 3.1 The proposed algorithm.

1: input: A R M cR"™™ NeN, a€eR, SER, nevw €Z, Y =0, V=0
2: output: approximations of eigenpairs ()\i, x(i)) , t=1,.. 0, Ney

3: /* Pre-processing: reorder matrices A and M */
4: > Call a p-way edge separator to partition the graph G4 .
5 > If B < min(A(B, MB)) continue, else set p := 2p and repeat step 4.

6: /* Main loop; embarrassingly parallel over the N Chebyshev nodes */
7. for j=0,...,N—1do

8: DSethza;B—&-cos(Nﬁr Bga.
9: > Set V= [y1(x;);- - Ynew (X5)]-

10: > Solve B(x;)V; = —E(x,)Y;.

11: end for

12: /* Rayleigh-Ritz projection phase */

Vo - Vn_i

Yo -+ Yno1|

14: > Optionally, orthonormalize the columns of R.

15: > Compute the ne, algebraically smallest eigenvalues and associated eigenvectors
of the eigenvalue problem (RTAR)f = 0(RTMR)f.

16: > Return (6;, PRFW) =~ (A, 2®), i =1,..., nev.

13: > Set R =

COROLLARY 3.3. Let X = span{z™) ... (")} and let
U1(X0) Ul(XN—l):| {Un (Xo)} |:Un (XN—l)] }
bpan{ |:y1(XO)} [yl(le) Yne, (X0) Yneo (XN-1)
Then,

sinf(X,R) = O(p~N),

where (X, R) is the largest principal angle between X and the closest subspace of R
to X with the same dimension as X.

Proof. The quantity sin6(X,R) is known as the gap between X and R and can
be expressed as [3] [26, sect. IV.2.1] [38, sect. I1.4]

[l — |

sin (X, R) = max min
zeX rer ||z

The result follows immediately from this formula and Proposition 3.2. 0

3.3. A parallel algorithm. Our algorithm builds the subspace R of Corollary
3.3 and then uses Rayleigh-Ritz projection to extract approximations to the z(* from
R. The procedure is summarized in Algorithm 3.1.

For each Chebyshev node x;, Algorithm 3.1 computes the eigenvectors associated
with the n., algebraically smallest eigenvalues of S(x;). These eigenvectors form the
$XNey matrix Y (step 9). Then, the algorithm computes the matrix V;, which requires
the solution of a linear system with the coefficient matrix B(x;) and ne, right-hand
sides (step 10). Finally, the algorithm uses Rayleigh-Ritz projection (steps 15-16) to

This manuscript is for review purposes only.
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PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 9

approximate the sought eigenpairs of (A, M). The dimension of the projected pencil is
at most Nne,, and the associated eigenvalue problem is solved by a dense, symmetric
eigenvalue solver.

The for loop in steps 7-11 is embarrassingly parallel: each matrix pair (Yj,V;)
can be computed independently of the other pairs. The computation of V; can be
further decomposed into the solution of p independent linear systems. Partition V;
and Y; by rows as

Vl,_]
vi=| Y=

’ J . ’

ij ij

Y1,

where Vi, ; and Y}, ; are associated with the £th subdomain. Then,

Bi(x;) Vi Ey(x;)Y1,;

Bp(Xj) Vp,j Ep(Xj)Yp,j

(where we have extended the notation (3.1) to the blocks comprising B, Mp, E, and
Mg in the obvious way), and so the Vj ; can be computed by solving

Br(x) Vi, = —Er(x;)Yk ;s k=1,...p.

These p linear systems can be solved in parallel.

3.4. Practical details. If the desired number n, of eigenvalues is not known
a priori, it can be computed directly by decomposing A — oM and A — M in LDLT
factorizations and using Sylvester’s law of inertia [7]. Alternatively, if this is too
expensive, one can estimate n., using a spectral density profile of (4, M) [44]. To
reduce the chance of the algorithm missing eigenvalues, we recommend taking ne,
slightly larger than estimated or required. To further reduce this chance, one can
apply a few steps of subspace iteration or Lanczos with polynomial filtering and
deflation as post-processing after step 16. Since the number of iterations needed
should not be large, one can use iterative methods to approximate M ~! instead of
exact factorizations.

The results of section 3.2 relied on the hypothesis 8 < min(A(B, Mp)). How
can we enforce this requirement in practice? Observe that if d1,ds,...,d4, are the
eigenvalues of (B, Mpg), then A\; < 6; < Njyp—ag, ¢ = 1,...,d by a version of the
interlacing theorem. Therefore, decreasing the dimension of (B, Mp), i.e., increasing
the value of p, makes it more likely that A,,, < 8 < §;. Algorithm 3.1 adopts the
practical strategy of doubling p until 5 < min (A(B, MB)) is satisfied (step 5).

Finally, note that Algorithm 3.1 is a one-shot method in the sense that if the
accuracy of the approximate eigenpairs is not satisfactory, then the whole process
must be repeated with a higher value of N. We find that in practice, N = 8 reaches
nearly the maximum attainable accuracy on a wide range of problems; see Section 5.
If one wishes to apply Algorithm 3.1 for several values of N, it is beneficial to take
these N to have the form N(k) = 2% 4 1 for integers k. Having run the algorithm
with N = N(k), one can reduce the computational cost of running the algorithm with
N = N(k + 1) by exploiting the fact that the nodes (3.8) for N(k) are a subset of
those for N(k + 1) and reusing the samples taken during the N = N (k) run.

This manuscript is for review purposes only.
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Besides increasing N, one can also improve the accuracy of one or more of the
eigenpairs by using the approximate eigenvectors obtained from Algorithm 3.1 as the
initial subspace for an implicitly-restarted (or thick-restarted) Lanczos method [8, 43]
applied to (A, M). This technique can also be used to ensure that all ne, eigenpairs
of (A, M) have been computed (i.e., none have been missed) by checking to see if the
algebraically smallest eigenvalue returned by the restarted Lanczos method is smaller
than .

4. A distributed-memory implementation. We now describe our parallel
implementation of Algorithm 3.1 based on the MPI standard. Throughout this dis-
cussion, we assume a distributed-memory computing environment with N, = p,p.
MPI processes organized in a p, X p. 2D MPI grid. In addition to the default commu-
nicator MPI_COMM_WORLD, we denote by G7,7=0,...,p,—1,and G5, j =0,...,p.—1,
the MPI communicators associated with the ith row and jth column of the grid,
respectively.

Our parallel implementation utilizes the row dimension of the grid for domain
decomposition data parallelism (i.e., distributed storage of A and M), and the column
dimension of the grid for model parallelism (i.e., distribution over the N Chebyshev
nodes). Therefore, the row and column dimensions of the grid satisfy the inequalities
pr < p and p. < N, respectively.

4.1. Data distribution on 2D MPI grids. First, we consider the data dis-
tribution along the row dimension of the grid. For each communicator G§, j =
0,...,p. — 1, we distribute A and M such that the p,, MPI processes associated with
G5 hold a unique subset of the partitions of the graph G4 . In particular, let p be
a scalar multiple of p,, and set 7 = p/p,. Then, the ith process is assigned data
associated with partitions i7 4+ 1,47+ 2,..., (i + 1)7, i.e.,

Biry1,-- s Biiv1yrs MBi oy - s My,

Data held by process i of Gj: ¢ Eiry1,..., Eiyyrs M,y 1y s ME, ), ,
Ci‘r+1,:7 ey C’(i+1)‘r7:7 MCiTJrl,:a ey MC(Z‘-H)T,:
where the subscript “:” represents all column indices of matrices C' and M¢. Or-

dering the unknowns/equations by increasing MPI rank leads to the following global
representation of A (and similarly for M):

(B,  Ey
ET  Ci; Cip Cip.,
By B
(4.1) A= Can Ef  Cop Cap,
By, Ep,
Cp,. 1 Cp.2 E;;’l Cp,p. |

The ordering in (4.1) is more natural from the perspective of parallel computing than
that in (2.1), which is more natural for discussing the linear algebra.

We now focus on the column dimension of the grid. Let N be a scalar multiple
of p., and set n = N/p.. We distribute the N Chebyshev nodes across the p. MPI
processes of each row communicator G}, ¢ = 0,...,p, — 1, such that each process
receives exactly n unique Chebyshev nodes. In particular, the jth process associated
is assigned the Chebyshev node(s) Xjy+1;- -+, X(j+1)n J = 0,...,p.—1. From a parallel
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efficiency perspective, it is advisable to exhaust parallelism across the N Chebyshev
nodes first, by setting p. = N, since this level of parallelism involves no communication
among groups of processes assigned different Chebyshev nodes.

An illustration of the data distribution on a 2D MPI grid with IV, = 16 processes
and N = 8 Chebyshev nodes is shown in Figures 4.1 and 4.2 where the dimensions
of the grid are (p,,p.) = (4,4) and (p,,p.) = (2,8), respectively. For (4,4) case we
have p. < N, and each column subgrid is responsible for processing h = 8/4 = 2
Chebyshev nodes, while the computation of each matrix pair (Y;,V;) exploits four
MPI processes. Contrast this with the (2,8) case, in which each separate column
subgrid handles exactly one Chebyshev node (n = 1), leading to trivial parallelism
with respect to the N Chebyshev nodes, but the computation of each matrix pair
(Y;,V;) utilizes just two processes.

Gy G5 Gy G

G} Ipo:- {pif Ip2b {ps) By, E,C11,01,2,C1,3,C1 4
:--:—-:--;--:E:--:l;:
paai-ganf-qmag--aaea
G |pal Ypsp Ypef Yprh Bao Ey,Co1,C59,053,Co4
B Y BB
Gy [osk Toob ok fon]  Bs B Csy.Can. G
5 :_:l:__ __'_J::__J; 3, F3,C03,1,C32,C3.3,C3 4

! 1 ! 1 ! 1
| S DR R RN e R .

ar W‘ m :| 14|' Ipisk By By Cuy Cuo Cus O
3 |:-- '_. |_ 4 4 4,1 4.2 4.3, 4.4

X0s X1 X25X3 X4, X5 X6, X7

Fig. 4.1: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with N, = 16,
N =8, and (pr,pc) = (4,4). The distribution of M is identical to that of A.

4.2. Computation of Y; via PARPACK. Our implementation computes the eigen-
vectors of the Schur complement matrices S(x;), j =0,..., N — 1, via the PARPACK®
software library, a distributed-memory implementation of ARPACK [30]. The main
distributed-memory kernels of PARPACK are: (a) orthogonalization of the Krylov basis,
and (b) a user-defined routine that performs distributed matrix-vector multiplication

Regarding (a), consider first the case p. = N. Orthonormalizing the basis vec-
tors computed on each m-step cycle of the implicitly restarted Arnoldi method via
Gram-Schmidt costs O(sm?) floating-point operations and O (log(p,)m?) point-to-
point MPI messages. This communication cost increases proportionally with the
number of Chebyshev nodes processed by each column subgrid. In particular, when
pe = 1, i.e., all available N,, MPI processes are assigned to the default communicator,
PARPACK requires O(N log(Np)mQ) MPI messages just for Gram—Schmidt.

As for (b), note that the product between the distributed matrix S(x;) and a

3https://github.com/opencollab/arpack-ng

This manuscript is for review purposes only.



381

382

383
384
385
386
387

388

389
390
391
392
393

394

12 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Ge G Gy Gy OGS G GE G

Go Apof Apifp dAp2f Apsh Apaf Apsf P prf B, E1.CiiCro

[ [
[ [

e I e e i e I e
1 1

G Apsf :p9: :plo: :pu: :Plz: J4E1 :P14: D1s

By, By, Cs.1,Cs2

X0 X1 X2 X3 X4 X5 X6 X7

Fig. 4.2: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with N, = 16,
N =8, and (pr,pc) = (2,8). The distribution of M is identical to that of A.

distributed vector f = [flT e pr]T € R® can be written as

(&5 J _
kg\:fl +)fi Bi(x;) ' Ei(x))f

(4.2) SO f = : - : ;

S CorOo) | LBow) " En(xi)
kEN)

where N; denotes the list of partitions adjacent to partition ¢ (and where we have
extended the notation (3.1) to the blocks of A — (M defined by (4.1) in the obvious
way). Due to the partitioning, the second term on the right-hand side of (4.2) can be
computed in an embarrassingly parallel manner. On the other hand, the first term of
the right-hand side of (4.2) requires point-to-point communication between processes
handling neighboring partitions.

4.3. Orthonormalization of the Rayleigh—Ritz basis. Our implementation
orthonormalizes the columns of the Rayleigh—Ritz projection matrix R via Gram—
Schmidt. To take advantage of all /N, MPI processes, we exploit the default commu-
nicator MPT_COMM_WORLD.

The (4, j) process of the p, x p. 2D MPI grid holds the submatrices V; ; and Y; ;,
leading to the following representation of R as a 2D logical array:

G G$ o Ge

pe—1
‘/0,0 ‘/011 . VO,pC—l G~
Y0.0 Yo,1 Yop.—1 0
Rop = : : : : ;
Vp.—1,0 Vor—11| . [Vor—1p.—1 ar
}/137‘_170 va‘_lvl YpT_LpC_l e

The goal is to transform ﬁgD into a n X Nne, matrix Rip such that each one of the NV,
processes holds a submatrix that has roughly n/N, rows and N7, columns. This can
be achieved by the following two-step procedure. First, we perform a gather reduction

. T . . .
on the submatrices [Vf; Yf;] ,J =0,...,p. — 1. This reduction is performed
independently within each communicator G}, ¢ =0,...,p, — 1. Second, each process

associated with G} discards all rows of the previously reduced matrix except for a

This manuscript is for review purposes only.
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Gi G5 G5 G

Po
Y41
P2
Pp3
P4
D5
Pe
pr
s
P9
P1o
pir
P12
D13

H14

i

Fig. 4.8: 2D-to-1D (and vice-versa) MPI grid mapping. Left: color/pattern layout of a
2D grid of MPI processes with p. = pr = 4. Right: color/pattern layout of the same grid
collapsed in 1D MPI grid topology.

Gy | P4 | b5 | Pe | P71 | =

GY // P9 | P1o
G} %yw P14

e

unique, continuous set of rows. We can then write

V0,0 e Vo,pe—1 Ro,0
Yoo o Yop.-1 :
RO,pC—l
(4.3) Rip = - . ’
Ry 10
Vor—1,0 = Vo—1pe—1
_YprfLo e Ypr717p671_ | Ry, —1,po—1]

where R; ; is held by the MPI process of rank ip. + j associated with MPI_COMM_WORLD,
i.e., the jth process associated with the row communicator Gj. This can be done
efficiently in a single line of code by calling MPT_A11toall independently within each
communicator G}, ¢ = 0,...,p, — 1. A graphical illustration of this 2D-to-1D grid
remapping is shown in Figure 4.3.

Once the remapping is complete, we apply distributed block Gram—Schmidt to
the columns of Rip using MPI_COMM_WORLD and a block size equal to ne,. Then, we
map Rip back to the 2D layout by reversing the above procedure. For further details
on parallel Gram-Schmidt, including a discussion of numerical stability, see [4, 9].

4.4. Formation and solution of the projected eigenvalue problem. Fi-
nally, we form the projected pencil (RT AR, RT M R) and find its eigenvalues. As the
projected pencil is small, once it is formed, we compute its eigenvalues serially us-
ing the DSYGVX routine from LAPACK [2]. The remainder of this section is devoted to
discussing our approach to forming RT AR within the 2D distributed-memory data
layout described above. The procedure for forming RT MR is identical.

We form RT AR in two phases. Let R; = [V;T YjT]T. In the first phase, we

This manuscript is for review purposes only.
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Step 1
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<—> MPI_Allgather

- === MPI_Reduce

—3 MPI_Gather

Fig. 4.4: Communication pattern for the distributed-memory computation of RT AR and
RTMR using our 2D MPI data layout (pr = pc = 4). The root process of MPI_COMM_WORLD
is located in the upper left corner.

compute AR = [ARO ARy ARN,l]. When p. = N, this operation is embar-
rassingly parallel, since each of the products AR;, j =0,...,N —1, can be computed
independently. Using the rank-based representation of A from (4.1), we write

(B,  Ei 11 Vo, |

Ef ¢y, Cio Cip. Yo,;

By  Ej Vi,

(44)  AR; = Coa EF  Cap Cap, | | Y1y
Bpr Epr V;?r*l,j
Cpr,l Cme EZT Opr,pw-_ _Y;Jr»*lxj_

Communication between different MPI processes of G is point-to-point, and the ith
process needs to send Y; ; to the kth process if and only if Cj ; # 0.

The second phase multiplies RT and AR and stores the matrix product in the
root process of MPI_COMM_WORLD. To achieve this, we apply the following procedure,
which is illustrated in Figure 4.4:

1. Apply MPI_Allgather on the submatrices [AR,;];, j = 0,...,p. — 1, across
the row communicator G}, where [AR;]; denotes the submatrix of AR, held
by the ith process. Each process associated with G then has its own copy
of the matrix [[ARo]l [ARQ]Z [ARpC—l]i] .

2. The ith process associated with the column communicator G¢ then computes
Zij = Rl [[ARo]; [ARy); [AR,._1];] and calls MPI_Reduce on the
data Z; ; associated with the processes in Gf.

3. At the end of the previous step, the kth MPI process associated with Gj,
holds the kth block of rows of the matrix RT AR. Finally, all processes in G
call MPI_Gather, creating RT AR in the root process.

5. Numerical experiments. We now illustrate the performance of Algorithm
3.1 in both sequential and distributed-memory computing environments. We per-
formed our experiments on the Minnesota Supercomputing Institute’s Mesabi cluster.
Each node of Mesabi is equipped with 64 GB of system memory and two 12-core 2.5
GHz Intel Xeon E5-2680v3 (Haswell) CPUs. We built our code with the Intel ICC
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18.0.0 compiler. We used the Intel Math Kernel Library (MKL) for basic matrix op-
erations, including its sparse matrix routines and its implementation of the standard
BLAS and LAPACK libraries for sequential dense matrix operations. While it is possible
to exploit shared-memory parallelism, the experiments described below use just one
thread per MPI process.

To compute the ne, sought eigenvectors of the spectral Schur complements S(x;),
we used PARPACK with full orthogonalization and restart dimension m = 2ne,. The
linear systems involving the block-diagonal matrix B(y;) were solved with the Intel
MKL implementation of the PARDISO solver. For the search interval [a, (], we set
a=0,8= (A, +An.,+1)/2 in all experiments.

5.1. Numerical illustration. We first demonstrate the qualitative performance
of Algorithm 3.1 on a set of four small problems:
e “APF4686,” a standard eigenvalue problem of dimension n = 4,686 generated
by the ELSES quantum mechanical nanomaterial simulator® [16],
e “Kuu/Muu,” a generalized eigenvalue problem of dimension n = 7,102 from
the SuiteSparse matrix collection® [10],
e “FDmesh,” a standard eigenvalue problem generated by a regular 5-point
finite difference discretization of the Laplacian on a square, and
e “FEmesh,” a generalized eigenvalue problem obtained by discretizing the
Laplacian on a square with linear finite elements.
For the latter two, the discretization fineness was chosen to yield matrices of dimension
n = 20,000, and the associated pencils have several eigenvalues of multiplicity 2.
Figure 5.1 plots the relative errors in the eigenvalues returned by Algorithm 3.1
and the corresponding residual norms for the problems “APF4686” (left, ne, = 30)
and “Kuu/Muu” (right, ne, = 100) for N = 2,4,6,8. Figure 5.2 plots the same
quantities for “FDmesh” (left) and “FEmesh” (right), where ne, = 100 in both cases.
In agreement with the discussion in Section 3, increasing N leads to greater accuracy in
the approximation of the sought eigenpairs. Moreover, all eigenpairs are approximated
to comparable accuracies for a given value of N, i.e., the accuracy of an eigenpair is
relatively insensitive to the location of the eigenvalue inside [« §].

5.2. Distributed-memory performance. We now illustrate the distributed-
memory efficiency of Algorithm 3.1 on a variety of larger problems coming from dis-
cretizations of the Laplacian as well as general symmetric matrices and pencils from
the SuiteSparse collection.® Unless otherwise indicated, throughout the rest of this
section, we take ne, = 100, and we set the second dimension of the 2D MPI grid to be
pe = N. In most of the tests we report the results with N = 8 or N = 4. The parallel
efficiency of a program executing on ¢ € N processes is P(¢) = T1/(¢T), where Ty,
denotes the wall-clock time for execution on ¢ processes.

We benchmark Algorithm 3.1 against PARPACK applied directly to the pencil
(A, M) both with and without shift-and-invert. PARPACK requires the application
of either M ~! (without shift-and-invert) or A=! (with shift-and-invert), and since A
and M are distributed, we used a distributed direct solver for these operations. The
results reported here were generated using the MUMPS package [1], but our code also
provides interfaces for SuperLU_Dist [32] and the Intel Cluster Sparse Solver (pro-
vided in the MKL). For PARPACK, we report the wall-clock time and parallel efficiency

4http://www.elses.jp
Shttps:/ /sparse.tamu.edu/
60ur implementation is available publicly at https://github.com/Hitenze/Schurcheb.
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in the eigenvalues and mazimum residual norm across all ne, eigenpairs.

for a restart length equal to m = 2ne, with all MPI processes bundled in the de-
fault communicator MPI_COMM_WORLD. To keep the comparisons fair, the convergence
tolerance passed to PARPACK for each problem is set to the maximum residual norm

returned by Algorithm 3.1.

5.2.1. Eigenvalue problems from finite difference discretizations. First,
we apply Algorithm 3.1 to matrices arising from finite difference discretizations of the

Dirichlet eigenvalue problem,

(5.1)

—Au = \u
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Fig. 5.2: Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and correspond-
ing residual norms (center) for various values of N for the problems “FDmesh” (left) and
“FEmesh” (right). The bottom two figures plot the mazimum relative error in the eigenvalues
and mazimum residual norm across all ney eigenpairs.

where A denotes the Laplacian and () is either the square (0,1)? in 2D or the cube
(0,1)% in 3D. We use the standard 5- and 7-point stencils in 2D and 3D, respectively.
All these eigenvalue problems are standard ones, with M equal to the identity matrix.

Our first set of experiments focuses on the strong scaling of Algorithm 3.1. We
take ney = 100 and use N = 4,8 Chebyshev nodes. In our results, we refer to
Algorithm 3.1 with N = 4 as SchurCheb(4) and with N = 8 as SchurCheb(8).
We first consider three different 2D discretizations with matrix sizes n = 257 x 256,
n = 513 x 512, and n = 1025 x 1024, respectively. Table 5.1 lists the maximum
relative error in the eigenvalues returned by Algorithm 3.1. Figure 5.3 (left) plots
the parallel efficiency of Algorithm 3.1 for N = 8, where we report separately the
parallel efficiencies associated with: (a) computation of the eigenvector matrices Y7,
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Fig. 5.3: Left: parallel efficiency of Algorithm 3.1 with ney = 100 and p. = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4,8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from Np = 2 to N, = 512.
The number of partitions is set equal to p = 32 (n = 257 x 256), p = 64 (n = 513 x 512),
and p = 128 (n = 1025 x 1024), when N = 8. The value of p is doubled when N = 4 since
each column communicator now has twice as many processes.

Table 5.1: Mazimum relative error in the eigenvalues returned by Algorithm 3.1 for the finite
difference problems.

n = 257 x 256 n =513 x512 n=1025x 1024 n =65 X 64 x 63

SchurCheb (4) 51x 1074 8.2x107° 1.4x 1074 9.1x107°
SchurCheb(8) 2.3x107° 29 x 1071 25 %1077 1.9 x 1010
j=0,...,N —1, (b) orthonormalization of the projection matrix R, and (c) ev-

erything else. Since p. = N, the computation of the Y} is embarrassingly parallel,
leading to nearly perfect efficiency for this step. On the other hand, both the or-
thonormalization of R and the formation of RT AR require communication among
the IV, processes, and their efficiency can deteriorate for larger values of IV,. Note
also that the parallel granularity of Algorithm 3.1 is lower for smaller problem sizes,
leading to lower efficiencies compared to larger problems.

Figure 5.3 (right) plots the wall-clock time achieved by Algorithm 3.1 for N = 4,8,
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Fig. 5.4: Left: parallel efficiency of Algorithm 3.1 with ney = 100 and p. = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4,8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from N, = 8 to N, = 256.
The number of partitions is set to p =64 (N =8) and p =128 (N =4).

Table 5.2: Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert
for the finite difference problems.

n=257x256 n=>513x512 n=1025x 1024 n =65 X% 64 x 63
N, =128 N, = 256 N, =512 N, = 256
SchurCheb(4) 1.2 GB 2.4 GB 9.3 GB 2.3 GB
SchurCheb(8) 2.2 GB 4.6 GB 18.8 GB 4.6 GB
PARPACK 21.4 GB 45.0 GB 106.4 GB 46.6 GB

PARPACK with and without shift-and-invert, and the Locally Optimal Block Precondi-
tioned Conjugate Gradient (LOBPCG) method as implemented in the BLOPEX package
of hypre [11]. The wall-clock times of LOBPCG were obtained with AMG precondition-
ing and we present the best (lowest) times after performing extensive tests involving
various choices for the hyperparameters and preconditioners. Regarding the perfor-
mance of PARPACK, note that due to the fact that A comes from a 2D discretization,
shift-and-invert is generally very fast when the direct solver scales satisfactorily; how-
ever, the efficiency of MUMPS falls off faster than that of Algorithm 3.1 as IN,, increases,
and for larger values of IV,,, Algorithm 3.1 becomes the fastest and most scalable ap-
proach. Similarly, LOBCPG is competitive with Algorithm 3.1 for smaller values of N,
but becomes comparatively slower as N, increases.

Figure 5.4 plots the same quantities for a 3D discretization matrix of size n =
65 x 64 x 63. The main difference between the 2D and 3D case is that PARPACK without
shift-and-invert now converges much faster, leading to lower orthogonalization costs.
Moreover, because A is banded, the parallel efficiency of distributed-memory sparse
matrix-vector products with A remains high even when N, = 256. Nonetheless,
Algorithm 3.1 still attains greater strong scaling efficiency than PARPACK (with or
without shift-and-invert) and hence will outperform it given enough parallel resources.

As Algorithm 3.1 does not need to factor A, it requires considerably less storage
than PARPACK with shift-and-invert. Table 5.2 lists the global peak memory consump-
tion for both of these algorithms for the finite difference discretization problems just
described. Even with N = 8 Chebyshev nodes, Algorithm 3.1 uses 5 to 10 times less
memory than shift-and-invert PARPACK across all problems.

We now focus on the performance of Algorithm 3.1 when the problem size n
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Fig. 5.5: Weak scaling with respect to N (p, = 8, p. = N) for two 2D finite difference
discretization problems. The number of MPI processes ranges from N, = 8 to N, = 128.
The solid red lines denote the maximum number of iterations required by PARPACK to compute
the matrices Y, j =0,...,N — 1.

and number of partitions p are fixed and N, varies proportionally to V. We set
p=pr =8 and p. = N where N = 2,4,...,16. For this experiment, we consider
the 2D discretizations of sizes n = 257 x 256 and n = 513 x 512 and report the wall-
clock times for each major operation of Algorithm 3.1 in Figure 5.5. The amount of
time spent computing the matrices Y; and Vj is nearly constant since the maximum
number of matrix-vector products (iterations) required by PARPACK to compute each
Y;, is more or less the same for each N, (see the solid lines). On the other hand,
the amount of time required for orthonormalization and the Rayleigh—Ritz projection
both increase due to: (a) higher computational complexity and (b) higher volume of
communication among the increasing number of MPI processes.

Next, we evaluate the performance of Algorithm 3.1 when computing different
numbers of eigenvalues (different ne,) for the same matrix. We consider the 2D
discretizations of sizes n = 257 x 256 and n = 513 x 512. In each group of tests, we fix
D, Pr, De, and N, and then vary ne,. For the n = 257 x 256 problem, we take IV, = 128
and p, = N and then set p = 16 when N = 8 and p = 32 when N = 4. For the
n = 512 x 512 problem, we double p and IV,. Figure 5.6 reports the total wall-clock
times for Algorithm 3.1 under these configurations, taking ne., = 50,100, 150, 200,
as well as those for PARPACK (with and without shift-and-invert) and LOBPCG. The
cost of solving the Schur complement eigenvalue problems in Algorithm 3.1 at each
Chebyshev node increases as me, increases. Nonetheless, Algorithm 3.1 still attains
wall-clock times that are competitive with PARPACK and LOBPCG.

In the preceding experiments, we took p. = N. As our final experiment in this
section, we consider the effect of varying the 2D MPI grid topology. We consider
the 2D discretizations of sizes n = 513 x 512. We take N = 8, N, = p = 128,
ney = 100, and vary the topology as (p,,p.) = (128,1), (64,2), (32,4), (16,8). Table
5.3 lists a breakdown of the wall-clock times for the various parts of Algorithm 3.1
for each topology. The topology (p.,p.) = (128,1) processes the N Chebyshev nodes
sequentially, one after the other, but uses all N, MPI processes during the computation
of each matrix pair (Y;,V}), j =0,..., N —1, taking on average (26.08+0.35)/8 ~ 3.3
seconds for each. At the other extreme, the topology (p,,p.) = (16,8) processes
the N Chebyshev nodes completely in parallel, but now computing each (Y;,V;)
requires more time—in the worst case, approximately 4 times as much (13.21+0.35 =
13.56 seconds)—since only p, = 16 processes are available for parallelization of those
computations. Nevertheless, the total time to solution is nearly halved with (p,,p.) =
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Fig. 5.6: Weak scaling with respect to ney for two 2D finite difference discretization problems.
The number of MPI processes are N, = 128 and N, = 256, respectively. The solid red lines
denotes the mazimum number of iterations required by PARPACK to compute the matrices Y,
7=0,...,N —1 in Algorithm 3.1.

Table 5.3: Wall-clock time breakdown of Algorithm 3.1 for various 2D MPI grid topologies.
(RR: Rayleigh—Ritz, GS: Gram—Schmidt).

(pr,pe) Setup Yo..n-1 Vo,..~n-1 GS RR DSYGVX Total

(128,1) 1.42 26.08 0.35 141 1.76 0.14 31.17
(64,2) 0.68 18.06 0.36 1.94 181 0.14 23.15
(32,4) 0.32 13.95 0.35 171 191 0.14 18.41
(16,8) 0.18 13.21 0.35 1.65 2.03 0.14 17.61

(16, 8) versus (p,,p.) = (128,1). Thus, in agreement with our previous results, setting
pe = N is best unless the smaller value of p, creates a memory bottleneck.

5.2.2. Eigenvalue problems from finite element discretizations. To illus-
trate the performance of Algorithm 3.1 for generalized eigenvalue problems, we again
consider matrices arising from discretizations of (5.1) but with linear finite elements
instead of finite differences. In 2D, we consider the square = (0,1)? and the disc
Q= {(z,y) : 22+ y? < 1}, both meshed with unstructured triangular elements. In
3D, we consider the cube Q = (0, 1), meshed with unstructured tetrahedra.

Figure 5.7 plots the parallel efficiency of Algorithm 3.1 (left) and associated wall-
clock times as NN, varies. We also plot the wall-clock time of PARPACK with shift-
and-invert but omit results for PARPACK without shift-and-invert, which required an
excessive amount of time to converge for these problems. The small sizes of the
problems (n &~ 150,000) have chosen intentionally in order to simulate an environment
with an abundance of parallel resources. As in the experiments of the previous section,
Algorithm 3.1 attains high parallel efficiency and scales better than PARPACK. The
efficiency of the orthogonalization step in Algorithm 3.1 dropped below 50% for the
3D case when IV, = 512 due to a large communication-to-computation ratio for the
Gram-—Schmidt process; nevertheless, the overall efficiency is still close to 100%.

Next, we show the results of a weak scaling test similar to one in the previous
section, wherein Algorithm 3.1 is applied to a given problem for increasing values
of ney. As before, we fix p, pr, p., and NN, for each group of tests, and vary ney
as ney = 50,100, 150,200. We use the same finite element problems of the previous
experiment set p. = N. When N = 8, we use IV, = 128 and p = 16 for the 2D
domains and N, = 512 and p = 64 for the 3D domains. When N = 4, we double
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Fig. 5.7: Left: parallel efficiency of Algorithm 3.1 applied to the finite element problems with
Nnev = 100 and p. = N = 8. Right: wall-clock time comparison between Algorithm 3.1 with
N =4 and N =8, and PARPACK with shift-and-invert. The number of MPI processes ranges
from Np =8 to Np = 512. The number of partitions is set equal to p = 16 for the 2D meshes
and p = 64 for the 3D mesh.

p. The results are reported in Figure 5.8. Again, Algorithm 3.1 attains times to
solution that are competitive with PARPACK, even though the cost of solving the local
eigenvalue problems at each Chebyshev node increases with n.y .

Finally, Table 5.4 lists the wall-clock times for Algorithm 3.1 and PARPACK with
shift-and-invert on a set of larger finite element problems. For Algorithm 3.1 we
report the wall-clock times for the case IV, = 512 and p. = N = 4; for PARPACK, we
report the best (lowest) wall-clock time obtained over several runs with different N,,.
Algorithm 3.1 was twice as fast for the 2D problems, and about as fast as PARPACK
for the 3D problem. Note, though, that in addition to having superior’ scalability,
Algorithm 3.1 also uses much less memory.

5.2.3. Eigenvalue problems from the SuiteSparse collection. Finally, to
demonstrate the performance of Algorithm 3.1 for more general matrices, we apply
it to several problems taken from the SuiteSparse matrix collection with sizes rang-
ing from n = 66,172 to n = 1,222,045. Additional details are given in Table 5.5.
The “qa8fk/qa8fm” problem is a generalized eigenvalue problem; the other four are
standard problems (M is the identity matrix).

Figure 5.9 plots the parallel efficiency (left) and wall-clock time (right) for Al-
gorithm 3.1 on each of these problems. For comparison, we also plot the wall-clock

"The best wall-clock time of PARPACK for the 3D mesh problem was achieved for N, = 128.
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Fig. 5.8: Weak scaling with respect to ney for three finite element problems. The numbers
of MPI processes are N, = 128 for the 2D domains and N, = 512 for the 8D domain. The
solid red lines denotes the mazximum number of iterations required by PARPACK to compute
the matrices Y, j =0,...,N — 1. in Algorithm 3.1.

Table 5.4: Total wall-clock time for Algorithm 3.1 and PARPACK with shift-and-invert for the
finite element problems with N, = 512, p = 128, and p. = N.

2D square 2D disc 3D cube
n=1,086,615 mn =845,397 n =1,351,083
SchurCheb (4) 172 s 18.3 s 90.1 s
PARPACK 33.6 s 25.9 s 90.3 s

time of PARPACK with and without shift-and-invert. As in the previous experiments,
Algorithm 3.1 maintains high parallel efficiency up to 512 MPI processes, and, pro-
vided enough parallel resources, outperforms PARPACK. Additionally, Algorithm 3.1 is
more memory efficient than shift-and-invert PARPACK as IV, increases; Table 5.6 lists
the peak memory consumption for both algorithms for the maximum N, used in each
group of tests for each problem. Finally, Table 5.7 lists the maximum error in the
eigenvalues returned by Algorithm 3.1 for N =4 and N = 8.

6. Conclusion. We presented a distributed-memory Rayleigh-Ritz projection
algorithm to compute a few of the smallest eigenvalues and associated eigenvectors of
a sparse, symmetric matrix pencil. The algorithm introduces embarrassing parallelism
by recasting the problem as one of approximating univariate, vector-valued functions
via Chebyshev approximation. The computational work associated with Chebyshev
node can be assigned to a different group of processors, and we described a scheme for
doing this using a 2D grid of MPI processes. We discussed several theoretical aspects
and implementation details, including how to orthonormalize the Rayleigh—Ritz basis
and form the projected eigenvalue problem. Our experiments demonstrated that the
proposed algorithm attains good parallel efficiency, superior to PARPACK.
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Table 5.5: Problems from the SuiteSparse matrix collection. Here, n denotes the size of the
pencil (A, M ); nnz(.): counts the number of nonzero entrie in its arguments; and p denotes
the number of partitions for the case N = 8.

Dataset n p nnz(A)/n nnz(M)/n Application
qa8fk/qa8fm 66,172 16 25.1 25.1 3D acoustics
af_shell3 504,855 64 34.8 1.0 structural problem
tmt_sym 726,713 64 6.99 1.0 electromagnetics
ecology?2 999,999 64 5.00 1.0 2D/3D problem
thermal?2 1,228,045 64 6.99 1.0 thermal problem

Table 5.6: Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert
for the SuiteSparse problems.

qa8 af_shell3 tmt_sym ecology?2 thermal2

N, =128 N, =512 N, =512 N, =512 N, =512
SchurCheb(4) 0.7 GB 5.9 GB 6.7 GB 8.9 GB 11.2 GB
SchurCheb(8) 1.4 GB 11.9 GB 13.2 GB 17.5 GB 22.2 GB
PARPACK 21.7 GB 47.7 GB 50.8 GB 58.7 GB 56.5 GB

Table 5.7: Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the
SuiteSparse problems.

qa8 af_shell3 tmt_sym ecology?2 thermal2

SchurCheb(4) 3.2x107% 21x107* 16x107* 18x107° 9.1x107°
SchurCheb(8) 1.0x107% 38 x 107 65x107% 89x107? 1.9x1071°

In the future, we plan to develop a version of this algorithm based on generalized
spectral Schur complements, in which the matrix Y is formed by computing a few
eigenvectors of the pencil (S(x;),—S"(x;)) instead of S(x;) alone. This may allow
one to reduce the value of N, permitting the use of more parallel resources within each
column MPI communicator. We also plan on extending the implementation of our
current algorithm so that the computations local to each MPI process are performed
using graphics processing units. Finally, we plan on applying our software to problems
from real-world applications, e.g., frequency response analysis.

7. Acknowledgements. The authors acknowledge the Minnesota Supercom-
puting Institute (MSI) at the University of Minnesota for providing resources that con-
tributed to the research results reported within this paper (http://www.msi.umn.edu).
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