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Abstract—This paper addresses the problem of safety-critical
control for multi-agent systems with unknown dynamics in
unknown environments. It has been shown that stabilizing affine
control systems to desired (sets of) states while optimizing
quadratic costs subject to state and control constraints can be
reduced to a sequence of quadratic programs (QPs) by using Con-
trol Barrier Functions (CBFs) and Control Lyapunov Functions
(CLFs). One of the main challenges in this approach is obtaining
accurate system dynamics of all components in the system,
which is especially difficult when online model identification
is required given limited computational resources and system
data. We address this problem by proposing a robust framework
(to unknown dynamics including uncertainties) through defining
adaptive affine control dynamics that are updated based on
the error states obtained by real-time sensor measurements.
We define a CBF for a safety requirement on the unmodelled
agents based on the adaptive dynamics and error states, and
reformulate the safety-critical control problem as the above
mentioned sequence of QPs. Then we determine a set of events
that trigger the QPs and ensure safety when solving them. We
also derive a condition that guarantees the satisfaction of a CBF
constraint between events. The proposed framework can also be
used for state convergence guarantees for systems with unknown
dynamics based on CLFs. We illustrate the effectiveness of the
proposed framework on a robot control problem, an adaptive
cruise control problem and a traffic merging problem using
autonomous vehicles. We also compare the proposed event-driven
method with the classical time-driven approach.

Index Terms—Unknown Dynamics, Event-Driven Control,
Control Barrier Function, Optimal Control.

I. INTRODUCTION

ONSTRAINED optimal control problems with safety

specifications are central to increasingly widespread
safety-critical autonomous and cyber physical systems. Tra-
ditional Hamiltonian analysis [1] and dynamic programming
[2] cannot accommodate the size and nonlinearities of such
systems, and they only work efficiently for small-scale linear
systems. Model predictive control (MPC) [3] methods have
been shown to work for large, non-linear systems that can
be easily linearized. However, safety requirements are hard
to guarantee. Motivated by these limitations, barrier and con-
trol barrier functions enforcing hard safety constraints have
received increased attention in recent years [4] [5] [6].
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Barrier functions (BFs) are Lyapunov-like functions [7],
[8], whose use can be traced back to optimization problems
[9]. More recently, they have been employed to prove set
invariance [10], [11], [12] and for multi-objective control [13].
In [7], it was proved that if a BF for a given set satisfies
Lyapunov-like conditions, then the set is forward invariant.
Control BFs (CBFs) are extensions of BFs for control systems,
and are used to map a constraint defined over system states to
a constraint on the control input. The CBFs from [4] and [5]
work for constraints that have relative degree one with respect
to the system dynamics. The exponential CBF [14], which
works for arbitrarily high relative degree constraints, employs
input-output linearization and finds a pole placement controller
with negative poles. The high order CBF (HOCBF) proposed
in [6] is simpler and more general than the exponential CBF
[14].

CBFs are usually based on the assumption that the control
system is affine in controls and the cost is quadratic in controls.
Convergence to desired states is achieved by Control Lyapunov
Functions (CLFs) [15]. The time domain is discretized, and
the state and control are assumed to be constant over each
time interval. The optimal control problem is thus reduced to
a (possibly large) sequence of Quadratic Program (QPs), one
for each time interval [16], where the control is kept constant
for the whole interval.

Most existing works based on the QP approach use a
uniform time discretization. One of the challenges is to adapt
this process (i.e., determine the next time when a QP needs
to be solved) to guarantee safety. The work in [17] proposes
an approach based on the Lipschitz constants of the system.
The authors of [18] use a procedure inspired from event-
triggered control for Lyapunov functions [19]. The prescribed
performance is used to trigger the update of control using
CBFs [20]. All these approaches assume that the dynamics are
accurately modelled, which is often not the case in reality. To
infer dynamics, machine learning techniques can be used [21]
[22], which are computationally expensive and not guaranteed
to yield sufficiently accurate dynamics for the CBF method.
Although it is possible to still guarantee safety though uncer-
tainty bounds [21], or for probabilistic satisfaction [22], the
conservativeness issue is difficult to address. The work in [23]
uses piecewise linear systems to estimate the system dynamics,
which is also computationally expensive. All these approaches
fail to work for systems (such as time-varying systems) that
require online model identification. Instead, we focus on how
to address the safety-critical problem with unknown dynamics
in an online and less-conservative fashion. CBFs for multi-
agent systems have also been extensively studied, as in [24],
[25]. However, the dynamics of other agents are even harder



to identify, which we also address here.

In this paper, we propose a robust framework by defining
adaptive affine dynamics that are updated in a time-efficient
way to approximate the actual unmodelled dynamics. The
adaptive and real dynamics are related through the error
states obtained by real-time sensor measurements. We define
a HOCBEF for a safety requirement on the actual system based
on the adaptive dynamics and error states, and reformulate
the safety-critical control problem as the above mentioned
sequence of QPs. We determine a set of events required to
trigger each QP solution in order to ensure safety and derive
a condition that guarantees the satisfaction of the HOCBF
constraint between events. The triggering of events is based on
the value of the HOCBF. The adaptive dynamics are updated at
each event to accommodate the real dynamics according to the
error states. We illustrate our approach and compare with the
classical time-driven method on a robot control problem, an
ACC problem and a traffic merging problem using autonomous
vehicles.

The contributions of this paper can be summarized as
follows. First, our computationally efficient event-triggered
framework is robust, and guarantees safety for systems with
unknown dynamics, especially for systems requiring online
identification (for dynamics), in which case computationally
expensive modelling approaches [21] [23] fail to work. Sec-
ond, we make the events in the proposed framework adaptive
such that their triggers depend on the values of the safety
metrics (i.e., how far the system state is from the unsafe set).
This makes our method significantly less conservative (quan-
tified by how much the system state can approach the unsafe
set boundary) and computationally more efficient (fewer QPs)
than other methods. Third, we address the singularity problem
prevalent in all CBF/CLF methods (i.e., the control coefficients
corresponding to a CBF/CLF constraint can become 0 at a
certain state) by making it an additional event in the proposed
framework. Fourth, the proposed framework also addresses
the inter-sampling effect of the CBF method (i.e., safety
guarantees between event times), and can be used to guarantee
state convergence for CLFs as well.

This paper builds on but significantly extends [26] which
proposed a conservative event-triggered framework guarantee-
ing safety for a single system. Here, we extend the frame-
work to multi-agent systems, alleviate the conservativeness of
the framework using adaptive events, consider state conver-
gence guarantees, and address the singularity problem of the
CBF/CLF method in the proposed framework with more case
studies.

The remaining of the paper is organized as follows. In Sec.
II, we present preliminaries on HOCBFs and CLFs. Sec. III
formulates a general optimal control problem. We derive the
event triggered control for safety-critical systems in Sec. IV,
and show how the proposed framework can be applied to state
convergence guarantees in Sec. V. We present case studies and
results in Sec. VI, and conclude this paper in Sec. VIIL.

II. PRELIMINARIES

Definition 1. (Class IC function [27]) A continuous function
a:[0,a) — [0,00),a > 0 is said to belong to class K if it is

strictly increasing and «(0) = 0.

Consider an affine control system (assumed to be known in
this section) of the form

& = f(z) +g(z)u (1)

where x € X C R™, where X is a closed state constraint set,
f:R"™ -5 R™ and g : R" — R"*? are Lipschitz continuous,
and u € U C R? is a closed control constraint set defined as

2)

With Upin, Umex € RY and the inequalities are interpreted
componentwise.

U:= {u e R?: Umin < U < umaz}~

Definition 2. A set C C R" is forward invariant for system
(1) if its solutions starting at any x(0) € C satisfy x(t) € C,
vt > 0.

Definition 3. (Relative degree) The relative degree of a
(sufficiently many times) differentiable function b : R™ — R
with respect to system (1) is the number of times it needs to be
differentiated along its dynamics until the control u explicitly
shows in the corresponding derivative.

In this paper, since function b is used to define a constraint
b(x) > 0, we will also refer to the relative degree of b as the
relative degree of the constraint.

For a constraint b(x) > 0 with relative degree m, b : R™ —

R, and 9o(x) := b(x), we define a sequence of functions
PR > Riie{l,...,m}

Pi(x) = i1 () + (i (z)),i € {1,...,m}, (3)
where a;(-),i € {1,...,m} denotes a (m — )" order
differentiable class KC function.

We further define a sequence of sets C;,i € {1,...,m}
associated with (3) in the form:
C; = {meX:wi,l(az)20},i€{1,...,m}. 4)

Definition 4. (High Order Control Barrier Function (HOCBF)
[6]) Let C4,...,C,, be defined by (4) and V1 (x), ..., Ym(x)
be defined by (3). A function b : R™ — R is a High Order
Control Barrier Function (HOCBF) of relative degree m for
system (1) if there exist (m —14)'" order differentiable class K
Sunctions a;,i € {1,...,m — 1} and a class K function oy,
such that
sug[L}”b(m) + LaL7 b(z)u + R(b()) + ot (m—1())] > 0,
ue

%)
for all x € CiN,...,NCy,. In (5), L}" (Lg) denotes Lie
derivatives along f (g) m (one) times, and R(-) denotes the
remaining Lie derivatives along f with degree less than or
equal to m — 1 (omitted for simplicity, see [6]). Moreover, it
is assumed that LgL’}%lb(:B) # 0 when b(x) = 0.

The HOCBF is a general form of the relative degree one
CBF [4], [5], [28], i.e., setting m = 1 reduces the HOCBF to
the common CBF form (it is assumed that L,b(x) # 0 when
b(x) = 0):

Lb(x) + Lyb(x)u + a1 (b(x)) > 0, (6)

and it is also a general form of the exponential CBF [14].



Theorem 1. ([6]) Given a HOCBF b(x) from Def. 4 with
the associated sets C1,...,Cy, defined by (4), if x(0) €
CiN,...,NCy,, then any Lipschitz continuous controller u(t)
that satisfies (5), YVt > 0 renders CiN,...,NCy, forward
invariant for system (1).

Definition 5. (Control Lyapunov Function (CLF) [15]) A
continuously differentiable function V. : R™ — R is an
exponentially stabilizing control Lyapunov function (CLF) for
system (1) if there exist constants ¢y > 0,co > 0,c3 > 0 such
that for Yo € R, ¢1||z||* < V(z) < cof|z||?,
nf [LyV(@) + LV (@)u+ V(@) <0 ()
Many existing works [4], [14], [17] combine CBFs for
systems with relative degree one with quadratic costs to form
optimization problems. An explicit solution to such problems
can be obtained based on some assumptions [29]. Alterna-
tively, we can discretize time and an optimization problem
with constraints given by the CBFs (inequalities of the form
(5)) is solved at each time step. The inter-sampling effect in
this approach is considered in [17]. If convergence to a state
is desired, then a CLF constraint of the form (7) is added,
as in [4] [17]. Note that these constraints are linear in the
control since the state value is fixed at the beginning of the
interval. Therefore, each optimization problem is a quadratic
program (QP). The optimal control obtained by solving each
QP is applied at the current time step and held constant for
the whole interval. The state is updated using dynamics (1),
and the procedure is repeated. Replacing CBFs by HOCBFs
allows us to handle constraints with arbitrary relative degree
[6]. Throughout the paper, we will refer to this method as
the time-driven approach. The CBF method works if (1) is
an accurate model for the system. However, this is often not
the case in reality, especially for time-varying systems. In
what follows, we show how we can find a safety-guaranteed
controller for systems with unknown dynamics.

IIT. PROBLEM FORMULATION AND APPROACH

We consider a multi-agent system with a controlled agent
(state * € X and control v € U) whose dynamics are
unknown, and with a set S, of other agents (state y;, € X
for agent i € S,) whose dynamics are also unknown. For
instance, the controlled agent could be the ego vehicle in
autonomous driving, and other agents are either other vehicles
or obstacles. The controlled agent only has onboard sensors to
detect its own state and that of other agents. For the unknown
dynamics of the controlled agent and other agents, we make
the following assumption:

Assumption 1. The relative degree of each component of x
is known with respect to the real unknown dynamics', and the
same applies to y;,i € S,.

A typical example for the above assumption is the au-
tonomous driving problem, in which case we have a controlled
(ego) vehicle and some other vehicles around the controlled

The relative degree is defined similarly to Def. 3 for the real unknown
dynamics.

one. If the position of the controlled vehicle (whose dynamics
are unknown) is a component in 2 and the control is acceler-
ation, then the relative degree of the position with respect to
the unknown vehicle dynamics is two by Newton’s law. The
same applies to other vehicles that the controlled vehicle may
interact with. We assume that we have sensors to monitor x
and its derivatives, as well as to monitor y; and its derivatives
for all 7 € S,. Measuring derivatives of « can be challenging,
but accurate measurements may not be necessary: we can relax
this requirement by limiting measurement accuracy within
some bounds, as shown later.

Note that the controlled agent can be swapped with any of
the other agents, i.e., we may choose to consider some other
agent as the controlled one and select the remaining agents to
form the set .S,,.

Objective 1: (Minimizing cost) Consider an optimal control
problem for the real unknown dynamics of the controlled agent
with the cost: -

min [ ¢(lfut))as ®
u(t) Jo
where || - || denotes the 2-norm of a vector, C(-) is a strictly
increasing function of its argument. 7" > 0.

Objective 2: (Terminal state constraint) We wish the termi-
nal state x(7") to reach a point K, where K € R™. This cost
can be easily extended to multiple terminal costs for different
state components.

Safety requirements: The real unknown dynamics of the
controlled agent should always satisfy a safety requirement
with respect to another agent ¢ € S, whose dynamics are also
unknown:

b(x(t),y:(t)) > 0,vt € [0,T]. )

where b : R™ x R™ — R is continuously differentiable and
has relative degree m € N with respect to the real controlled
agent. The above safety constraint is defined pair-wise, but
can be extended to involve more than two agents. The relative
degree m is known by Assumption 1.

Control constraints: The controlled agent should always
satisfy control bounds in the form of (2).

A control policy for the real unknown dynamics of the
controlled agent is feastble if constraints (9) and (2) are
satisfied at all times. Note that state limitations are particular
forms of (9) that only depend on the state . In this paper, we
consider the following problem:

Problem 1. Find a feasible control policy for the real unknown
dynamics of the controlled agent such that the cost (8) is
minimized.

Approach: Problem 1 is a general problem formulation. In
order to solve it in an online fashion, we replace the safety
constraints above by HOCBF constraints, and solve it through
a sequence of discretization steps (conservatively). Thus, Prob-
lem 1 is solved by point-wise optimization, which leads to sub-
optimal solutions compared to the original problem. There are
four steps involved in the solution:

Step 1: define adaptive affine dynamics for the controlled
agent and adaptive dynamics for other agents. We need



affine dynamics of the form (1) in order to apply the CBF-
based QP approach to solve Problem 1. Under Assump. 1, we
define affine dynamics that have the same relative degree for
(9) as the real controlled agent and we estimate through & the
actual state x using the dynamics:

z= fa(:i> + ga(i})u (10)

where f, : R® - R,g, : R® - R*"*9, and £ € X C R”
is the state vector corresponding to x in the unknown dy-
namics. Since f,(+), gq(-) in (10) can be adaptively updated
to accommodate the real unknown dynamics, as shown in the
next section, we call (10) adaptive affine dynamics. The real
unknown dynamics and (10) are related through the error states
e := ¢ — T obtained from the real-time measurements of the
agent and the integration of (10) as f,, g, are known. There
are user-defined bounds for these errors, and the convergence
between the adaptive affine dynamics (10) and the real dynam-
ics depends on the update events. Theoretically, we can take
any affine dynamics in (10) to model the agent as long as their
states are of the same dimension and with the same physical
interpretation as those of the plant. Clearly, we would like the
adaptive dynamics (10) to “stay close” to the real dynamics.
This notion will be formalized in the next section.

Along the same lines, if other agents have their own
(unknown) dynamic model, we also define adaptive dynamics
for each agent i € S, to estimate its real unknown dynamics
in the form:

(1)

where ¢; € X with h,; : R" — R, and ¥; is the state
vector corresponding to y; in the unknown dynamics. Note
that h, ;(-) will also be adaptively updated and we refer to
(11) as adaptive dynamics. The real unknown dynamics of
agent ¢ € S, and (11) are also related through the error states
obtained from the real-time measurements of the agent and
the integration of (11) (as h,; is known). Observe that it is
possible that &, ;(-) also includes the control of agent ¢ (which
is omitted for simplicity), in which case, we have a multi-agent
control problem. Our approach in this paper can also work for
such multi-agent control problems (in which case (11) is also
affine in control). We focus only on decentralized multi-agent
control problems in this paper for simplicity, but the proposed
framework can be applied to cases in which controls should
be jointly determined (as in game theory). Therefore, we omit
the control component in A, ;(-).

Step 2: find a HOCBF that guarantees (9). Based on (10),
(11), the error state and its derivatives, we use a HOCBF to
enforce (9). Details are shown in the next section.

Step 3: formulate the CBF-based QP. We use a CLF
to have the terminal state approach K in Objective 2. The
approach to guarantee convergence for unknown dynamics is
similar to the above mentioned HOCBF method, and it will be
shown in the following sections. If C(||u(t)|]) = ||u(t)||* in
(8), then we can formulate Problem 1 using a CBF-CLF-QP
approach [4], with a CBF replaced by a HOCBF [6] if m > 1.

Step 4: determine the events required to specify when
to solve the QP and the conditions that guarantee the
satisfaction of (9) between events. We need to determine

Yi = ha,i(yi)

the event times tx,k = 1,2,...(¢; = 0) at which each QP
must be solved in order to guarantee the satisfaction of (9)
for the real unknown dynamics. Since there is obviously a
difference between the adaptive affine dynamics (10) and the
real unknown dynamics of the controlled agent (as well as
between the adaptive dynamics (11) and other agents), in
order to guarantee safety for the controlled agent, we need
to properly define events (dependent on the error states, the
state of (10) and the state of (11)) to solve the QP.

The proposed solution framework is outlined in Fig. 1 where
we note that we apply the same control from the QP to both
the real unknown dynamics of the controlled agent and to
the adaptive affine dynamics in (10). Note that in a static
environment, i.e., other agent states do not change or are
known, we can remove the adaptive dynamics and other plant
blocks in Fig. 1.

Solver (QP)

Optimal control
Adaptation

u Controlled agent (real ' Adaptive
unknown dynamics) affine dynamics
| ‘-“ T u 3
(Yi ¥Vi\ -
Other agents (real \ Adaptive |
unknown dynamics) dynamics

Fig. 1. The solution framework for Problem 1, the connection between the real
unknown dynamics of the controlled agent and the adaptive affine dynamics
(10), and the connection between the real unknown dynamics of other agents
in S, and the adaptive dynamics (11). The states x, y;,7 € S, are from the
sensor measurements of the controlled agent and the other agents.

IV. SAFETY-CRITICAL CONTROL

In this section, we treat the terminal cost in Objective 2 as
a soft constraint (the case of a hard terminal constraint will be
covered in the next section), and provide the technical details
involved in formulating the CBF-based QPs that guarantee the
satisfaction of the safety constraint (9) for the controlled agent.
We start with a relative-degree-one safety constraint (9).

A. Relative-degree-one Constraints

Suppose the safety constraint in (9) has relative degree one
with respect to both dynamics (10) and the actual dynamics
of the controlled agent. In this case, since (9) involves the
state of both the controlled agent and agent i € S,, the set C;
corresponding to (4) takes the form:

Cy ={(z,yi;) € X x X :b(zx,y;) > 0}. (12)

Next, we show how to find a CBF that guarantees (9) for
the real unknown dynamics. Let

e, =T, € =Y; —Yi,i € Sy (13)
Note that x and & are state vectors from direct measurements
of the controlled agent and from the adaptive affine dynamics

(10), respectively, and y; and y; are state vectors from direct



measurements of agent ¢ € S, and from the adaptive dynamics
(11), respectively. Then,
b(z,y:) = b(T + es, yi + €;). (14)
Differentiating b(x + e, y; + e;), we have
db(i’—i—ez, gl—l—ez)

- Bb(:i—l—ez, yl—l—ez) i!+ 81)(5:-1—61, gl—&—ez) ¢

dt - oz de, i
+ab(;erezj gi+e;) Gt ob(z+eq,yite:) é

8yi 881'
(15)

where &, = & — &, &; = 1J; — 9; are evaluated online through
x, yl (from direct measurements of the actual state derivatives)
and &, y; are given through (10), (11), respectively. Measure-
ment uncertainties may be addressed as explained below.

Remark 1. (Measurement uncertainties) If the measurements
x and x (or y; and y;) are subject to uncertainties, and the
uncertainties are bounded, then we can apply the bounds of
x and x (or y; and y;) in evaluating the next event time
ty+1 (introduced later) instead of x and x (or y; and y;)
themselves. In other words, e, (t) and é,(t) (e;(t) and é;(t))
are determined by the bounds of x, x (or y; and y;) and the
state values of the adaptive affine system (10) (or (11)).

The CBF constraint that guarantees (9) for known dynamics
(1) is as in (6), which is obtained by replacing & with (1).
However, for the unknown dynamics, the CBF constraint is:

db(.’]}, y?)
dt
Equivalently, we have
db(z+es, Yite:)
dt

Combining (15), (16), (10) and (11), we get the CBF
constraint that guarantees (9):

+ Oq(b(:fc,yi)) Z 0.

+ oy (b(z+es,yite;)) >0. (16

Ob(@.ys) ;o @ys) o Obl@iy:),
0x fa(@) oz ga(ZT)u + e
(@, yi) ob(z, yi) .
, ob(x, yi) . s,
0vi ha,i(¥i) + de, é; + a1 (b(z,y;)) > 0(17)

Recall that we may have the control input showing up in
ha,i(9i), in which case the above CBF constraint (17) depends
on both the control input u of the current controlled agent
and the control u; of agent ¢ € S,. In other words, we
have a multi-agent control problem that jointly determines
all control inputs for safety guarantee, which can still be
solved using the proposed framework (not considered in this
paper). Then, the satisfaction of (17) implies the satisfaction
of b(Z + e, Y; + ;) > 0 by Thm. 1 and (14). Thus, (9) is
guaranteed to be satisfied for the real unknown dynamics of
the controlled agent. For the above CBF constraint, we have
the following assumption:

2. %:éyi)ga(i) 7é 0,Ve < X’Vyi € X such

Assumption
that b(x,y;) = 0.

The above assumption may not be necessary for a safety-
enforcing CBF, as the system trajectory with a CBF (HOCBF)
for safety will never reach the safe set boundary, as shown

in Lemma 1 of [30], if we define power class-/C functions
with power no less than 1 in the CBF and if the initial state
is inside the safe set. If Assumption 2 does not hold and the
CBF constraint (17) is not satisfied (without the w component)
at the boundary of the set C;, then we may shrink the safe
set (if the manifold of {(z,y;)|22 = 0} does not cut through
the safe set) or define another CBF so that the system avoids
those states [31]; however, this approach can make the system
conservative. We may also define a higher relative degree CBF
than needed so as to address this problem. A more general
non-conservative approach is the subject of future research.

Note that, if y; in (9) and the dynamics (11) are known
(such as the ACC example considered in case studies), we
may just consider a single agent control problem, i.e. we just
have b(x) instead of b(x,y;), then we obtain the following
simple version of the above CBF constraint:

) ) 4 O, oy 4 2

é, +ai(b(x)) > 0.

(18)
Now, we can formulate a CBF-based problem in the form:

T
min w(t)])? + pd3(t)) dt 19
Jmin [ ()l +5(0) (19
subject to (17), (2), and the relaxed CLF constraint
Ly V(®)+ Ly, V(Z)u+ eV (Z) <6(1), (20)

where V(Z) = (£ — K)TP(Z — K), P is positive definite,
cs = € > 0in Def. 5, p > 0, and J(¢) is a relaxation for
the CLF constraint. Since state convergence is relaxed in this
section, so we just replace « by & in the above CLF constraint.

Following the time-driven approach introduced at the end of
Sec. II, we solve the problem (19) at time ¢,k =1,2..., and
this problem is a QP. However, at time ¢, the QP does not gen-
erally know the error states e, (t), e;(¢) and their derivatives
é.(t),e;(t),Vt > t. Thus, it cannot guarantee that the CBF
constraint (17) is satisfied in the time interval (¢, tx11], where
ti+1 is the next time instant to solve the QP. This is what
motivates the introduction of events defining the conditions
needed to guarantee the satisfaction of (17) V¢ € (ty,tr41]

We start by imposing bounds on e, = (ey1,...,€,,) and
€y = (éz1,...,6p ) defined as w = (w1,...,w,) € RY,
and v = (v1,...,1,) € R

lex i < wj, |€s.5] < vy, je{l,...,n}. (21

These two inequalities can be rewritten in the form |e,| <
w, |é,| < v for simplicity. Similarly, we also bound e;, &; by

lei| < Wi, l&;| <V, i € Sa. (22)

where the inequalities are interpreted componentwise.
Similar to the bounds we introduced for the error states and

their derivatives, we also define the following bounds on the

deviations of states from their values Z(tx), 9;(tx),7 € Sq:

j(tk) - s(ﬁl(b(wa yz))) S T S j(tk) + S(Bl(b(ili, yz)))a
Yi(te) — Si(Ba(b(x,95))) < yi < gi(te) + Si(Ba2(b(zx, yz()z)%3

where the inequalities are interpreted componentwise, s : R —
RZ,,S; : R — RZ, and B1(-), Ba2(-) are class /C functions.



For simplicity, we can just use constant vectors s € R™, S, €
R™ in the above. Their relative advantages and the choice of
s(+), S;(-) will be discussed later. We denote the set of states
that satisfy (23) at time ¢, by

Sa(tr) = {y1 € X s @(tr) — s(Br(b(z(tr), yi(tr)))) <
y1 < @(ty) + s(B1(b(x(tk), yi(te)))), i € Sa}~2

(
Sy.i(tk) = {y2 € R" 1 g;(t) — Si(Ba(b(x(tr), yi(tr)))) <
Yo < Yi(tr) + Si(Ba(b((tr), yi(tk)))()z}é)

Now, with (21), (22) and (23), we are ready to find a
condition that guarantees the satisfaction of (17) in the time
interval (tx,tx1]. This is done by considering the minimum
value of each component in (17), as shown next.

Let z := (y1, €z, €4, Y2, €, €;), where y1 € S.(tx),y2 €
Sy,i(tx). We then define an overall set S(¢x):

S(tk) = {Z S Rﬁn Y1 € Sr(tk), |e$| <w,
|e»L| < V,Yys € Syﬂ(tk)v ‘ei| < Wi7
€| < Vi, (y1 +es,y2+e;) € Cr,i €5, ).

Consider the first term in (17) and let by, min(tx) € R be

the minimum value of w fa(x) for the preceding
time interval that satisfies z € S(¢;) starting at time tg, i.e.,
let

(26)

Ob(y1 + ez, y2 + €;)

bfa,mm(tk)=zg§1(§k) our fa(y1)- (27
Similarly, we can also find the four mini-

mum  values  bo, min(tx) € R, be,min (tr) €
R, bha,i,min(tlg) ( )E R, bEi,min(tk) S R of
ob(x,y;

. Ob(mys _\ 9b(my
a1 (b(z, ¥5)), =g €q, g;y )ha,i(yi), (my Pey)e. e G,
respectively, for the preceding time interval [tk,tkH] that
satisfy z € S(ty) starting at time g, i.e., let

bay,min(ty) = min a1 (b(yr + ex, y2 + €;)), (28)
zeS(ty)
. Ob(yr + ez, y2+€;) .
bc min t = : Ty 2
minlte) = _min Des ¢ @9
. Ob(yr + ez, y2 + €;)
b - main t 0 ) — ’ hai 5 30
ha,ismin (tk) din 9us i(y2),  (30)
b, min(ts) = min XWitenyzEe), 5y
2€5(ty) oe;

The above optimizations may be nonlinear programs (NLP).
If the safety constraints are linear, then each optimization is
just a LP or QP. However, note that even the NLPs are easy
to solve since the constraints are mostly linear, as shown in
the case studies of Section VI.

This leaves only one remaining term in (17): if
Mga( &) is independent of Z, e,, y;, e;, then we do not
need to find its limit value within the bound z € S (tr)s
otherwise, let Z = (Z1,...,%,) € R", u = (u1,...,uy) € RY
and g, = (g1,...,94) € R"¥9. The sign of uj(tk) Jj €
{1,...,¢},k = 1,2... can be determined by solving the
CBF-based QP (19) at time t;. We can then determme the
limit value by, 1im(tx) € R,j € {1,...,q} of ob(z, yl)gj(;i:)
by

s Ob(yites,yzte;)

if w;(tx)>0
b (1) = zgls‘l(?k) dy1 95 (Y1), if u;(tx) >0,
gy tim (tr) = Ob(yr+es,ya+ei)

(32)
max

otherwise
z€S(ty) o1 93 (y1),

Let b, 1im (k) = (bg, tim (&), -
db(x,y;
set by tim (1) = 2EB g () if
of x,e,,y;,e; for notational 51mphclty
To sum up, the condition that guarantees the satisfaction of
(17) in the time interval (tj,tr+1] is given by

bfa,min (tk) + bga,lim(tk)u(tk) + bem,min(tk) + bha,i,min(tk)
+bei,min(tk¢) + bal,min(tk) 2 0.

(33)

We would also like to add the sign condition to the set
S(tx) in order to make this framework work as shown in (32),
i.e., we add %gi@) > 0 if %gi(a‘:) is positive at
time tj, and vice versa. Note that, despite Assumption 2, it is
still possible that by, 1im (tx) = 0 by (32) as we consider all
possible state z € S(tx). If (33) is satisfied even without the
control component, then the safety is still guaranteed even if
we do not consider (33) in the QP. Otherwise, we can deal
with it with the approaches discussed after Assumption 2. In
this paper, we tune the parameters of the CBF (i.e., how to
define a class-X function of a CBF) and change the reference
path (e.g., changing the parameters (such as c3 in Def. 5) of

a CLF) to avoid these possible “singular” states.

In order to apply the above condition (33) to the problem
(19), we just replace (17) by (33) and consider the problem
at time fg, i.e., we have a QP:

bgq,lzm( 1)) € RY, and we

(m Yi) ¢(z) is independent

min

w(ty),0(ty)
subject to (33), (2) and (20). The feasibility of the above QPs
can be guaranteed by finding a suitable feasibility constraint,
as shown in [32]; briefly, we determine sufficient conditions

for feasibility and then enforce them by using another CBF.
Based on the above, we define seven events that determine
the condition that triggers an instance of solving the QP (34):

lu(te)||® + po°(tx) (34)

» Event 1: |e,| < w is about to be violated.

» Event 2: |é,| < v is about to be violated.

o« Event 3: the state of (10) reaches the boundaries of
Sy (ty) in (24).

o Event 4: |e;| < W is about to be violated.

» Event 5: |é;| <V is about to be violated.

o Event 6: the state of (11) reaches the boundaries of
Sy.i(tr) in (25).

« Event 7: ng(i),j € {1,...,q} changes sign for
t > t;, compared to the sign it had at ¢j.

In other words, the next time instant t;, 1,k = 1,2... to

solve the QP (34) is determined by:
th+1 = min{t >ty : |ex(t)| = w or |é,(t)| = v
or [Z(t) — &(tk)| = s(Br(b(x(tk), yi(tr)))) or |ei(t)] = Wi
or es(0)] = Vi o P8V g,(a) e q1,.
Si(B2(b((tr), yi(tr)))),i € Sa},
(35)

where t; = 0. Events 1, 2,4, 5, 7 can be detected by direct sen-
sor measurements, while Events 3, 6 can be detected by moni-
toring the dynamics (10), (11). The magnitude of each compo-
nent of s(B1(b(@(tx), yi(tr)))), Si(B2(b(x(tr), yi(tx)))) (as
well as other bounds) is selected to capture a tradeoff between
the time complexity and the conservativeness of this approach:
if the magnitude is large, then the number of events is small

..,q} changes sign

or |gi(t) — gi(tr)| =



but this approach is considerably conservative as we determine
the condition (33) through the minimum values as in (27)-(32).
If s(-), S;(-) are some constants, then the control system will
be too conservative when its state reaches the boundary of
the set C; as the states of (10) and (11) change slowly at the
boundary. However, when the system states are far from the
boundary of C4, i.e., b(x(tx), yi(tx)) takes some large value,
this again will make the control system too conservative if we
take s(-),S;(-) as a function of b(x(tx), yi(tx)). Therefore,
we wish to truncate both s(-), S;(-) in the form:

s0, if 8(B1(b(z(tk), yi(tr)))) > S0,
s(B1(b(z(tr), yi(tr)))), 0therwis(e3.6

Si(aa(b(e(t).us(t))) ={ G o (1) = 5

, otherwise.
(37

s(1(0(at). 910 = {

where sg € R", Sy € R".

Formally, we have the following theorem to show that the
satisfaction of the safety constraint (9) is guaranteed for the
real unknown dynamics under condition (33):

Theorem 2. Given a HOCBF b(x) with m = 1 as in Def.
4, let tp41,k = 1,2... be determined by (35) with t; = 0,
and (33) be determined by (27)-(32), respectively. Then, under
Assumptions 1-2, any control u(ty) that satisfies (33) and
updates the real unknown dynamics and the adaptive dynamics
(10) within time interval [ty,tr41) renders the set Cy forward
invariant for the real unknown dynamics.

Proof: By (35), we have that
z(t) € Su(tr), |ex ()] < w, |é.(1)] < v, (x(t),yi(t)) € C1,
Yi(t) € Syi(te),|ei(t)] < Wi, |éi(t)| < Vi,

for all ¢t € [t,trt1],k = 1,2.... Thus, the limit values

bfa,min (tk), ba1 ,min (tk), b(’,m?n (tk)7 bhayi,min(tk)y bEi,min (tk),

determined by (27)-(31), respectively, are the minimum values
ob i = Ob(x,y:) 2
for 2L £, (@(1)), au (b(x(t), 3i (1)), Zhedéa(t),

Mha (i), %éi(t), respectively, for  all
te Ttk, tx+1). In other words, we have
8b(:(: Yi) 8b(:c,yi)é )

o= Ja(®(t) + e (b(z(t), i (1)) +
),

ey
8()( T, Yi _ ab(wa yz) 5. .
78__ ai(Gi(t)) + e €i(t) > by, min(tr)

+ba1,mzn (tk) + be,min(tk) + bhaﬂ;,m,in(tk) + bEi,min (tk)a
YVt € [tk,tk+1).

where T = e, +Z,y; = €; + Y.
By (32), we have that

Wga(i(t))u(tk) > bga,”m(tk)u(tk),w S [tk,tk.»,-l).
Following the last two equations and (33), we have
O 1 (@(1)) + P L) g, 20 ut) + o (la(0),9:(1))

(%(ac Yi) ob(, yi) yl) _ ob(z, yi) .
Tezez(t) ayl ha ’b(y’b(t)) de; ( ) > 0

vVt € [tk,tk+1).
By (16), (17) and the last equation, we have that
db(x(t 2(t), yi(t i (T _ _
OO0 O+O) 1 o, (b(@(0) +ea(t),5:(0) +e:(1))
>0,Vt € [tk,tk+1),k =1,2...

By Thm. 1, we have that b(Z(t He, (t), g;(tHe; (t)) > 0,VE >
0 and by (14), we have that C; is forward invariant for the
real unknown dynamics. |

Remark 2. We could also consider the minimum value

of Pwrtesyrted f () Muntervateds g (by, +

er Y2 + €;)) + LUtenvte) () 4 litesyate) o,

within the bound z € S(ty) instead of considering them
separately as in (27)-(32). This will be less conservative (but
more computationally expensive) as the constraint (33) is
stronger compared with the CBF constraint (17), and we wish
to find the largest possible value of the left-hand side of (17)

that can support Thm. 2.

Events 1 and 2 will be frequently triggered if the modelling
of the adaptive affine dynamics (10) has a large error with
respect to the real dynamics of the control system and the
same is true for Events 4 and 5. Therefore, we would like
to model the adaptive affine dynamics (10) and the adaptive
dynamics (11) as accurately as possible in order to reduce the
number of events required to solve the QP (34).

State synchronization and adaptation of dynamics: An
additional important step is to synchronize the state of the
real unknown dynamics of the control system with the state
of the adaptive affine dynamics in (10) such that we always
have e, (tx) = 0 and make é,(t) close to 0. This is done by
setting

(1) = 2(th), (38)

and by updating f,(Z(t)) in the adaptive affine dynamics (10)
right after (+*) an event occurs at t:

k

Fol@(E) + D ealt).

=0

fo((t1)) = (39)
where t7,¢~ denote instants right after and before ¢. In this
way, the dynamics (10) are adaptively updated at each event,
ie., at tg,k = 1,2,.... Note that we may also update g,(-),
which is harder than updating f,(-) since g,(-) is multiplied
by w that is to be determined, i.e., the update of g,(-) will
depend on u. We do not consider the update of g,(-) in this
paper, but it does not diminish the validity of the approach.
This possibility is the subject of ongoing work.

Along the same lines, we also synchronize the state of agent
i € S, and (11), by updating h,;(y;(t)) of the adaptive
dynamics (11) right after an event occurs at ¢ (i.e., at t+):

Yi(te) = yi(te), (40)
k

ha,i(Gi(t7)) = has(Gi(t7) + ) €lt).

=0

(41)

The control obtained by solving a traditional CBF-based QP
is Lipschitz if there are no control bounds (2) [33]. However,
control bounds exist in our formulation, which is an event-
triggered QP. Even so, the safety is still guaranteed in the
proposed framework and there exists a minimum inter-event
time, as shown next. By (38) and (39), we have that e, (¢x) = 0
and é,(ty) is close to 0. There exist lower bounds for the
occurrence times of Event 1 and Event 3 (the same applies
to Events 4 and 6) as the controls are bounded, and they are



determined by the limit values of the component of f,, g,
within X and U, as well as the real unknown dynamics.
Assuming the functions that define the real unknown dynamics
are Lipschitz continuous, and the functions f,,g, in (10)
are also assumed to be Lipschitz continuous, it follows that
e, is also Lipschitz continuous since w € U. Suppose the
largest Lipschitz constant among all the components in « is
L,Vx € X, and the smallest Lipschitz constant among all the
components in Z is L, V& € X, then the lower bound time for
Event 2 is ‘E’“Z , where v,,;, > 0 is the minimum component
in v. Similarly, there is also a lower bound time for Events
5 and 7. On the other hand, since the control is constant in
each time interval, and there exists a lower bound for the event
time, Zeno behavior will not occur. We summarize the event-
triggered control scheme in Alg. 1.

Algorithm 1: Event-triggered control

Input: Measurements « and  from the controlled
agent, measurements y and y; from agent
i € S,, adaptive affine model (10), adaptive
model (11), settings for QP (34),
w,v,s(-), W;, Vi, S(-).
Output: Event time ¢,k =1,2,...
k= ]., tr =0;
while ¢, < T do
Measure  and  from the controlled agent at #;
Measure y and y; from agent i € S, at ty;
Sync. the state of (10) and the controlled agent by
(38),(39);
Sync. the state of (11) and agent i by (40),(41);
Evaluate (27)-(32);
Solve the QP (34) at ¢; and get w*(tx);
while ¢t < T do
Apply u*(t)) to the controlled agent and (10)
for t > tg;
Measure  and  from the controlled agent;
Measure y and y; from agent i € S,;
Evaluate t;1 by (35);
if i1 is found with € > 0 error (i.e., the
states reach the bounds with € error in (35))
then
k <+ k + 1, break;
end

and uw*(ty).

end
end

B. High-relative-degree Constraints

In this subsection, we consider the safety constraint (9)
whose relative degree is larger than one with respect to the
real unknown dynamics and (10). In other words, we need to
consider the HOCBF constraint (5) to find the state feedback
control with the HOCBF method. To adapt to the safety
constraint (9) that involves other agents with states y;, we

have the following definitions for the sequence of functions
and sets corresponding to (3) and (4):

’(/)J(wa yl) = wﬂ—l(xvyl) + a?(w]_l(wﬂyl))?] € {1’ v 7717’}7
(42)
Cj={(z,yi)) € X x X :¢pj1(x,y;) > 0}, 5 € {1,...,m}.
(43)

where o (x, y;) = b(z, y).

Similar to the last subsection, we find the error state e,
and e; by (13), and obtain an alternative form of the HOCBF
b(x,y;) as in (14). The HOCBF constraint (5) that guarantees
b(x + e, y; + e;) > 0 with respect to the real unknown
dynamics is

O2U@ 1) fimi(2) +
L9, yi) omy | 07D, i) (
dem " oym de ’
+R((x, y:)) + am(Ym—1(z,9:)) >0,
(44)
where 2~ b(m vi) ¢™](2) denotes the m-time partial derivative
of b(x, y,) W1th respect to & along f,(x) (similar concept
to the Lie derivative in Def. 4), and we have similar def-
initions for <" b(w’yf)f[m Ul (Z)u and - g(”f,;yf)h[m]( i)
R(b(x,y;)) also contains the remaining time derivatives of e,
and e; with degree less than m. e/} = z() — 20) ) =
(J) 'QZ( ) j € {l,...,m} is the j** derivative and is
evaluated online by x ) (from a sensor) of the real system and
) of (10), and by ylj (from a sensor) of system ¢ € S, and
Z(J ) of (11), respectively. Note that it is difficult to measure
high-order state derivatives. However, we do not need to know
their exact values in this framework, as discussed in Remark 1.
Similar to the relative-degree-one case, we make the following

assumption:

0" b(x, yi)
oxm
) (gi) +

fir@)gl (@)u
0" b(x, y:) o(m)

Assumption 3, 2"b@.v:) fhm=1

X at the boundary of C1 N

g([ll](:ﬁ) #0,Vx € X,Vy; €
N Chpye

In order to find a condition that guarantees the satisfaction
of (44) in [ty,tpe1),k = 1,2,..., we let e, and e, j €
{1,...,m} be bounded by w € RZ; and v; € RZ, and let
e; and e( ),j € {1,...,m} be bounded by W; € RZ, and
Vij € RY, ie., we have

e <wjje{l,... (45)

|ea:| S w, 7m}7

‘ei| S Wi7 ‘egj)‘ S W,]a] S {17 s am}7 (46)

where the inequalities are interpreted componentwise and the
absolute function | - | applies to each component. We also
consider the sets of states similar in form to (24) and (25).
- (1) (m) e m)
Let z = (y1,€ez,ex’,...,€x ,Ya,€5,€; ..., "),
where y1 € Sy(tx),y2 € Sy.i(tr). We further define a set
Sh(t) in the form

Sh(te) ={z:y1 € Sz(tr)
A (1e9)] < vj),y2 € Syi(t), led] < Wi, (47)
AT (1e] < Vi), (g1 + ex, 2 + €5) € NI, Cyyi € Sal,

Jes] < w,

where AJZ; denotes the conjunction from 1 to m.
Then, we can find the minimum values bflnmm(tk) €
]Ra bozm,min (tk) S R» be"”,m,in(tk) S R, bh;’fi,min (tk) S



R, bEm min(tk) € R, bR min(tx) € R for the preceding time
interval that satisfies z € Sy, (¢x) starting at time ¢ by

"b(y1 + ez, y2 + €;)

brm min(tk) = i L[lm] 48
fat () zegl}:gk) oy1™ () @8)
bam,min(tk) = min  m(Pm-1(Y1 + €z,y2 + €;))  (49)

z€Sp (tr)
. 0"b(y1 + €z, Y2 + €:) (m)
bem min(t = T 50
min(te) = _pin | der © 0
. 0"b(y1 +es, Y2t ) m)

brm min(ty) = h" 51
hgmin (be) = _ min | Ty ai (y2) (5D
bgm min(tk) = min 0"b(y1 + €x,y2 + €1) el™ (52)

@ 2€S, (tr) oel"
brmin(tk) = min  R(b(y1 + ez, y2 + €;)) (53)

z€Sy (tg)

If %“ff")f,gmfl] (:E)g([ll] () is independent of Z, e, and
Y;, e;, then we do not need to find its limit value within
the set Sy, (tx); otherwise, we proceed as follows. The sign
of u;(tg),j € {1l,...,¢q} can be determined as in the
relative-degree-one case. We can then determine its limit value
by, 1im(tx) € R,j € {1,...,q} (defined similar to the relative-
degree-one case) by

min 2" bWites,y2+eq) f([Lm—ll (yl)gj[_l] (yl),

z€Sh (tr) oyr™
bg; tim (tr) = O™ by ten o tes) plm—110, [0
S fa  (w)gy (w),
otherwise

(54)
bgq lzm(tk)) S Rlxq7
b(m yl)fm 1]( )g Ll](:i:) if

Let bga,lim(tk) = (bgl,lim(tk)a

and we set bg pim(ty) =

8m’”
9 g;"fnyf)f[m Y(@)gl" (@) is independent of Z, e, and ¥;,

e; for notational simplicity.
The condition that guarantees the satisfaction of (44) in the
time interval [ty,tx1) is then given by

bim min(ts) 4 by, tim (tx)w(tr) + bem min (tr) + bhgfi,mm (tr)
+bEZ",min (tk) + bam,min(tk) + bR,min (tk) Z 0.
(55)
We also add the sign condition to S (t;) as in the relative
degree one case. In order to apply the above condition to
problem (19), we just replace (17) by (55) and consider the
problem at time %, i.e., we have a QP:

Lminlu(t)]* +po%(6)

subject to (55), (2) and (20). The feasibility of the above
QPs can also be guaranteed by finding a proper feasibility
constraint [32].

Based on the above, we also have seven events that deter-
mine the triggering conditions for solving the QP (56):

(56)

o Event 1: |em| < w is about to be violated.
o Event 2: |€x | < v; is about to be violated for each

ie{l,...,m}
+ Event 3: the state of (10) reaches the boundaries of
Sy (t).

« Event 4: |e;| < W; is about to be violated.
o Event 5: \egj)\ < Vj; is about to be violated for each

jed{1,....,m}.
o« Event 6: the state of (11) reaches the boundaries of

Sy.i(te).

™ b(ay:) plm—1
e Event 7: %f[ ]()H()j e {1,...,q}
changes sign for ¢ > ¢, compared with tj.

The next time instant t5 1,k = 1,2... (t; = 0) to solve
the QP (56) is determined by:

tet1 = min{t > ¢y : |ex(t)] = w or |e(3)( t)| = vy,

Je{Ll,...,m}or |2(t) — &(te)| = s(Br(b(z(tr), yi(tr))))

or |gi(t) — ¥i(tr)| = Si(B2(b(z(tr), yi(tr))))

or %pl()i()je{l ..,q} changes sign
or les(t)| = Wi or el ()| = Vi, € {1,.

m}’l G SE}?
(57)

Formally, we have the following theorem that shows the
satisfaction of the safety constraint (9) for the real unknown
dynamics:

Theorem 3. Given a HOCBF b(x) as in Def. 4. Let tj,41,k =

. be determined by (57) with t1 = 0, and (55) be deter-
mined by (48)-(54), respectively. Then, under Assumptions I,
3, any control u(ty) that satisfies (55) and updates the real
unknown dynamics and (10) within time interval [ty,tyt1)
renders the set Cy N --- N Cy, forward invariant for the real
unknown dynamics.

Proof: Similar to the proof of Thm. 2, we have

VD, 9O) 1 (a(t), (1)) + com (1 ((1), 91 0)

>0,Vt e [tk,tkdrl},k} 1,2.

which is equivalent to the HOCBF constraint (5) in Def. 4.
Then, by Thm. 1, (14) and e’ = z0) — () el = 49 —

’(J ) j € {1,...,m}, we can recursively show that Ci,i €
{1 .,m} are forward invariant, i.e., the set C1N---NC,, is
forward invariant for the real unknown dynamics. ]

The process can be summarized through an algorithm
similar to Alg. 1 and we can deal with measurement uncer-
tainties as in Remark 1. We also synchronize the state of the
real unknown dynamics with the state of the adaptive affine
dynamics in (10) (as well as the state of agent ¢ € S, and
(11)) as in (38) and (39) (as well as (40) and (41)) such that
we always have ew(tk) = 0,e;(ty) = 0,¢; )( ti) = 0 and

e (t),7 € {1,...,m} stay close to 0.

V. STATE CONVERGENCE

In this section, we propose a framework similar to that
of solving safety-critical control problems whose goal is to
achieve guaranteed state convergence for systems with un-
known dynamics. In other words, we define a CLF

V(z)=(x - K)'P(x - K), (58)

where P is positive definite, for the state convergence require-
ment in Objective 2, and wish V(x(t)) to be decreasing for
all ¢ > 0. For state convergence, we set an infinite horizon,
ie., T = oo in (8).

Next, we show how to find a CLF constraint that guarantees
(58) is decreasing. We first consider an error state similar to
(13), and we denote it as e instead of e, for simplicity. Let

e:=xr—. 59)



Note that « and & are state vectors from direct measurements
of the control system (plant) and from the adaptive affine
dynamics (10), respectively. Then

V(z)=V(Z +e). (60)
Differentiating V(& + e), we have
dvV(z+e) OV(x+e). OV(x+e).
dt oz 2t e ¢ O

where ¢ = & — x is evaluated online from & (from direct
measurements of the actual state derivative) and Z (given
through (10)).

The CLF constraint that guarantees state convergence for
known dynamics (1) is as in (7), which is done by replacing &
with (1). However, for unknown dynamics, the CLF constraint

is:
oV (x)
ot
Equivalently, we have
oV (z +e)
ot

Combining (61), (62) and (10), we get the CLF constraint
that guarantees state convergence:

8V( )fa( )+ agfﬁw) ‘giw)é—kc:z,V(a:)SO
(63)

If the CBF (HOCBF) constraint (33) (or (55)) that guaran-
tees (9) does not conflict with the convergence requirement,
we can formulate the following problem:

min/ [|w(t)||?dt
u(t) Jo

subject to (33) (or (55)), (2), and the CLF constraint (63).

Following the approach introduced at the end of Sec. II, we
solve problem (64) at time t;,k = 1,2..., and this problem
is a QP. However, at time ¢, the QP does not generally know
the error state e(t) and its derivative é(t),Vt > t5. Thus, it
cannot guarantee that the CLF constraint (63) is satisfied in
the time interval (t,tg41], Where ¢ is the next time instant
to solve the QP. In order to find a condition that guarantees
the satisfaction of (63) V¢ € (tk,txr+1], we bound the error
state and its derivative as in (21).

We now consider the state & at time ¢;, which satisfies:

@(tr) — si(V(2(tr)) < @ < @(te) + s1(V(2(tr))), (65)

where the inequalities are interpreted componentwise, s; :
R — RZ,. The choice of s;(-) is similar to the safety-critical
control case in the last section, and we also truncate it like
(36). We denote the set of states that satisfy (65) at time ¢y,
by

+ CgV(.’B) < 0,

+eV(Z+e) <0, (62)

0
9o (T)u +

(64)

Si(tr) ={y € X : @(tp) — si(V(z(tx)))
<y < x(ty) + si(V(x(te))) )

We also consider the set of states x such that V(x) <
V(x(ty)) as the Lyapunov function will keep decreasing after
tr:

Sa(te) = {(y, €) - y € Si(tr), le] <w,V(y+e) < V(x(tx))}
(67)

(66)

Now, with the above bounds, we are ready to find a condi-
tion that guarantees the satisfaction of (63) in the time interval
(tk,tx+1]. This is also done by considering the maximum
value of each component in (63), as shown next.

We find the maximum values Vi, mae(tk) S
R7 ch?,}maw (tk) € R Vve max (tk) S R of
axg;m) fa(@), 3V (), Bg( )e respectively, for the preceding
time interval that satisfies (y, e) € Sq(t), |é| < v starting at
time tg, i.e., let

oV(y+e)

\% mazx t = a 68

o mas (tk) (y,e)esr?%f),\é&v Oy faly)  (68)

bes,maz(tr) = max csV(y+e (69)
pman(ti) = max vy te)
V(y+e).

maa(te) = o X T Oe (70)

For the remaining term in (63), if 22 9o () is independent

of &, e, then we do not need to ﬁng its limit value within

the bound (y,e) € Sq(tr),|€é| < v; otherwise, we proceed as
follows. We can determine the limit value Vi tim (te) € R, €
av _
{1, q} of 25 g, () by
oV (y+e) ;
max 1 s if w;(t 20,
Vi tim (t) = {(y,e>esd<tk,),é|3uaii' ) ‘(jj w) (1)
A min oaviyre) . otherwise
(y.e)eSa(ty)lel<v Y 9 ),

(71)
Let Vga,lim(tk) = (V91 lim (tk) ng l1m(tk)) € R9, and
we set Vo, 1im(tr) = V V(@) 9o (T ) 1f ov ( )ga(‘) is indepen-
dent of  and e for notatlonal 31mp11c1ty

The condition that guarantees the satisfaction of (17) in the
time interval (¢,txy1] is then given by

Viamaz (tk) + Vg tim (te)w(tr) + Ve maz (tk) + Veg maz (tr) < 0.
(72)

In order to apply the above condition to problem (64), we
just replace (63) by (72) and consider the problem at time ¢,
i.e., we have a QP:

mln |Jw(t)])? (73)

w(ty)

subject to (33) (or (55)), (2), and the CLF condition (72).
Based on the above, we define one additional event (in
addition to the seven events from the safety-critical control
case in the last section) that determine the triggering conditions
for solving the QP (73):
« Event a: the state of (10) reaches the boundaries of
Si(t)-
o Event b: the coefficients of the controls in the CLF
constraint change sign, similar to Event 7 in the safety
guarantee case.

In other words, the next time instant 11,k = 1,2...
to solve the QP (73) is determined by the minimum value
between the t54; from (35) (or (57)) and the ¢, defined below:

=min{t >t : |2(t) — Z(tx)| = st (V(x(tr))),

74
or the triggering time ¢ of Event b}, 74)

where t; = 0.

Formally, we have the following theorem to show that
the convergence for the CLF (58) is guaranteed for the real
unknown dynamics with the condition (72):



Theorem 4. Given a CLF V (x) in (58), let Tj41,k =1,2. ..
be determined by the minimum value between the ty, from
(35) (or (57)) and the t,, and (72) be determined by (68)-(71),
respectively. Then, under Assumption 1, any control u(ty)
that satisfies (72) and updates the real unknown dynamics
and the adaptive dynamics (10) within time interval [ty Tr+1)
guarantees that the system state converges to the origin.

Proof: The proof is similar to Thm. 2.

The process can be summarized through an algorithm simi-
lar to Alg. 1 and we can deal with measurement uncertainties
as in Remark 1. We also synchronize the state of the real
unknown dynamics and (10) as in (38) and (39) such that we
always have e(t;) = 0 and é(¢x) stay close to 0.

If the CLF constraint (72) conflicts with the CBF (HOCBF)
constraint (33) (or (55)), one typical way is to relax (72) by
replacing 0 with ¢, and include § in the cost function as in
(19). Another way to address this is to define a proper CLF
(58), e.g., by properly defining the matrix P. This possibility
is the subject of ongoing work.

VI. APPLICATIONS

In this section, we consider three classes of problems where
the proposed approach is applied: a robot control problem,
an Adaptive Cruise Control (ACC) problem and a traffic
merging problem. All the computations and simulations were
conducted in MATLAB. We used quadprog to solve the
quadratic programs and ode45 to integrate the dynamics.

A. State convergence for a robot control problem

In this case, to simplify the problem, we assume unicycle
dynamics for a robot which are known and are given below.
Our goal is to study how the inter-sampling effect could affect
the performance of the system by comparing the time-driven
and event-driven methods for solving this problem.

(75)

T=wcosf, y=wvsinf, 0 =uy, 0= us,

where (z,y) € R? denotes the coordinates of the robot in the
Cartesian frame, v denotes its speed, and 6 denotes its heading.
The inputs w1, us denote rotation rate control and acceleration
control, respectively. g(x) = (g1(x), g2(x)).

The problem we consider in this case is to make the robot
location be stabilized to the origin while minimizing the
control [ (u}(t) 4+ u3(t)) dt, given an initial state a(0).

We only require the robot to go to the origin, i.e., the
terminal state requirement applies to the robot position. If we
define a CLF V(x) = 2? + y?, then the relative degree of
the CLF is 2, and the CLF method cannot work properly as
we only take the Lie derivative once in this CLF. In order to
address this problem, we combine the state feedback control
and the CLF method.In other words, in order to drive the robot
to the origin, the desired states for v cos § and v sin 0 are —k,x

and —koy, k1 > 0, ke > 0, respectively. We then define a CLF:
V(z) = (veos® + krx)? + (vsinf + kay)>  (76)

The above CLF has relative degree 1 with respect to both u;
and us for (75).

In Def. 5, we choose c3 = € > 0, and have the following
CLF constraint:

2(veosf + x)vcosh + 2(vsinf + y)vsin

Lfv(:l!)
+2(—(vcosf + x)vsinb + (vsinf + y)v cos ) uy

Lg V()
+2((vcost + x)cosf + (vsin€ + y) sinh) us + eV (x) <0

L92 V(m)
(77
Since the dynamics are known, the only relevant events are
Events a and b in Sec. V. Attime t;, k = 0,1, ..., we consider
the state of (75) bounded by:

z(tk) =V (e(te)) <z < 2(te) + 1 V(x(te)),
y(te) — v V(x(te)) <y <y(te) + 72V (x(tr)), (78)
0(tr) — vV (x(tr)) < 0 < O(tr) + 3V (z(ts)),
v(tr) — 74V (z(tr)) < v < olte) + 74V (2(tr)),

where 11V (x(tr)), v2V (2(tr)), 13V (2(tk)), 74V (2 (1)) are
all truncated by so > 0, as shown in (36).

Then, we can find the maximum (limit) values of
LV (x),eV(x) (LyV(x)), respectively, within the bounds
defined by (78) and V(x) < V(x(tx)), and get the CLF
constraint as in (72). Note that each process of finding the
maximum (limit) value is a NLP as all the costs are nonlinear
functions, although the constraints in (78) are linear. We
use fmincon in Matlab to solve these NLPs. The sign of
u(t),t € [tg,tr4+1] is determined by the solution of the QP
u(t) + ud(t), s.t., (77) at time t = t;,.

The  simulation  parameters are  x(0) =
(-10,—-10,—m,2),e = 02,71 = 72 = 74 = l,y3 =
0.5,80 = 0.1, k1 = 1,k = 1. We first present results of the
time-driven method with different discretization time steps
At, as shown in Fig. 2. We can see that the robot becomes
unstable when it gets close to the origin under all three
possible At values. In order to address this problem, we can
further decrease At to 0.02s, as shown in Fig. 3. The stability
is improved at the cost of additional computation effort.

y/m

time-driven, At = 1s
st/ time-driven, At = 055

. time-driven, At = 0.1s 00.050.10.15
-12 -10 -8 -6 -4 -2 0 2 4
x/m

Fig. 2. Trajectories of the robot with the time-driven method under three
different discretization time At.

We further compare the proposed event-driven method and
the time-driven method, as shown in Fig. 3. The trajectory
of the time-driven method is spiral, and the system converges
to the origin much slower than the event-driven method. This



is because the event-driven method always searches for the
largest gradient of the CLF within the bound defined by (78),
while the time-driven method only evaluates the gradient of
the CLF at time ¢. If we choose v1V (x(tx)), v2V (x(tx)),
vV (x(tr)), 74V (2(tx)) in (78) to be some constant values,
the trajectory of the event-driven method is also spiral, and the
robot may also be unstable when it gets close to the origin.
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Fig. 3. Trajectories of the robot with both the time-driven (under the
discretization time At = 0.02) and event-driven methods.

B. Safety guarantee for an ACC problem

In ACC, we assume that the preceding vehicle has a constant
speed v, > 0, and thus, only Events 1-3 in Sec. IV are
involved. The real dynamics are unknown to the controller:

[0 ] = [ 20+ 300 - g rew
Z(t) oa(t) +vp — v(t)
where * = (v,z) and z(t) denotes the distance between
the preceding and the ego vehicle, v, > 0,v(t) denote
the velocities of the preceding and ego vehicles along the
lane, respectively, and w(t) is the control of the ego vehi-
cle. {o1(t)},{o2(t)},{o3(t)} denote three random processes
whose pdf’s have finite support. M denotes the mass of the
ego vehicle and F.(v(t)) denotes the resistance force, which is
expressed [27] as: Fy.(v(t)) = fosgn(v(t))+ frv(t)+ f2v2(t),
where fo > 0, f1 > 0 and f3 > 0 are unknown.

The adaptive affine dynamics will be automatically updated
as shown in (39), and are in the form:

(79

{ 28 } - { hég?t)_jf 3(28))) }Jr{ % }U(t) (80)
— N——
(1) fa(@(1)) ga (2 (1))

where hq(t) € R, ho(t) € R denote the two adaptive terms in
(39) (also see (84) below), h1(0) = 0, ho(0) = 0. Z(¢) denotes
the distance between the preceding and the ego vehicle for
the above adaptive dynamics, and 9(¢) denotes the velocity.
F,(9(t)) denotes the resistance force, which is different from
F, in (79) and is expressed as: F,(v(t)) = gosgn(v(t)) +
g19(t) + g202(t), where gg > 0, g1 > 0 and go > 0 are
empirically determined.

The control bound is defined as: —cqMg < u(t) <
ceMg, ¥t >0, where ¢, >0 and ¢4 > 0 are the maximum
acceleration and deceleration coefficients, respectively.

We require that the distance z(t) between the ego vehicle
(real dynamics) and its immediately preceding vehicle be
always greater than [, > 0, i.e.,

2(t) > 1,, Vt>0. (81)

The obj ectlve is to minimize the cost

fOT (W) dt. The ego vehicle is also trying
to achieve a desired speed vg > 0, which is implemented by
a CLF V(Z) = (v — v4)? with c3 = € as in Def. 5. Since the
relative degree of the rear-end safety constraint (81) is two,
we define a HOCBF b(x) = z — [, with oy (b(x)) = b(w)
and as(Y1(x)) = i1(x) as in Def. 4 to implement the
safety constraint. Then, the HOCBF constraint (5) which
in this case is (with respect to the real dynamics (79)):
b(x) + 2b(x) + b(x) > 0. Combining (13), (80) and this
equation, we have a HOCBF constraint in the form:

F,(o(t -1 ..
22 22 92b(z)
LU fo () Pre) g, (@) de2 (82)

+2(ha(t) + v, — B(t) + éa(t)) + 2(8) + ea(t) — I, > 0
R(b(z))+oz(¥1(x))

where e = (e, e3),e1 =v —T,e3 = 2 — Z.

Constant s(-) function in (24): We first consider the case
that the s(-) function in (24) is a constant vector. As in (23)
and (45), we consider the state and bound the errors at step
ty,k=1,2... for the above HOCBF constraint in the form:

’l_}(tk) —51 < S’l_)(tk) + 81,
lea| < wa,

E(tk) —52<z< z(tk) + s2,

83
lé2| < a1, 3)

|é2] < a2
where s1 > 0,59 > 0,wy > 0, Va1 > 0, Va9 > 0.

Motivated by (24) and (39), we also synchronize the state
and update the adaptive dynamics (80) at step i,k =1,2...
in the form:

o(tk) = v(te), Z(tk) = 2(tk),
hl(t+):h1(t7)leé2(ti)7 ha( t+ =ha(t Jrz éa(t

where éx(t;) = 2(tg) — (he +vp — 0(tr)), Ea(tr) = Z(tk) —
EnDZul) 4 by (), ulty) = ulte—1) and u(te) = 0.
2(tg), 2 (tk) are estimated by a sensor that measures the ego
vehicle real dynamics (79) at time .

Then, we can find the limit values as in (48)-(54), solve
the QP (56) at each time step ¢,k = 1,2..., and evaluate
the next time step ¢;41 by (57) afterwards. In the evaluation
of ty11, we have e; = 2 — Z,é3 = 2 — (ha + v, — 0),62 =
zZ— W + hy, where z, z, Z are estimated by a sensor
that measures the ego vehicle real dynamics (79), and u(ty) is
already obtained by solving the QP (56) and is held constant
until we find ¢;1. The optimization of (48) is also a QP, while
the optimizations of (49)-(54) are LPs. Therefore, they can all
be efficiently solved. Each QP or LP can be solved with a
computational time < 0.01s in MATLAB (Intel(R) Core(TM)
i7-8700 CPU @ 3.2GHzx2).

In the simulation, the initial states of the real dynam-
ics (79) and the adaptive dynamics (80) are x(0) =
z(0) = (20m/s,100m). The final time is 7' = 30s.
Other simulation parameters are v, = 13.89m/s,vq =
24m/s,M = 1650kg,g = 9.81m/s% fo = 0.IN,f; =
5Ns/m, fo = 0.25Ns%/m, gy = 0.3N,g; = 10Ns/m, gy =
0.5N52/m,51 = 0.4777,/8,82 = O.5m,w2 = lm,yg’l =
0.5m/s,v92 =0.2m/s% c, = 0.6,c4 = 0.6,p = 1,€ = 10.

The pdf’s of o1(t),02(t), o3(t) are uniform over the inter-
vals [—0.2,0.2)m/s2, [-2,2]m/s,[0.9,1.1], respectively. The



sensor sampling rate is 20Hz. We compare the proposed event-
driven framework with the time driven approach. The dis-
cretization time step for the time-driven approach is At = 0.1.

The results are shown in Figs. 4 and 5. Note that in the
event-driven approach (blue lines), the control exhibits large
variations in order to be responsive to the random processes in
the real dynamics. The control is constant in each time interval.
If we decrease the uncertainty levels by a factor of 10, the
control is smoother (magenta lines). Thus, highly accurately
modelled adaptive dynamics can smooth the control.

It follows from Fig. 5 that the set C7; N C5 is forward
invariant for the real vehicle dynamics (79), i.e., the safety
constraint (81) is guaranteed with the proposed event-driven
approach. However, the safety is not guaranteed even with
state synchronization under the time-driven approach.

25
—  x\ — Event-driven, high uncertainty |
~ 20 —— Time-driven without state sync
E ——— Time-driven with state sync.
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Fig. 4. Speed and control profiles for the proposed event-driven framework
and time-driven with or without state synchronization.
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Fig. 5. The variations of functions b(«(t)) and 1 (a(¢)) for the proposed
event-driven framework and time-driven with or without state synchronization.
b(x(t)) > 0 and 91 (x(t)) > 0 imply the forward invariance of C; N Ca.
The set C; N Cy is forward invariant for the real dynamics (79) with the
proposed event-driven framework. Both the set C; and C2 are not forward
invariant under time-driven approach with or without state synchronization.

In the event-driven approach, the number of QPs (events)
within [0, T'] is reduced by about 50% compared with the time-
driven approach. If we multiply the bounds of the random pro-
cesses o1(t), o2(t) by 2, then the number of events increases
by about 23% for both the 20Hz and 100Hz sensor sampling
rate, which shows that accurate adaptive dynamics can reduce
the number of events, and thus improves the computational

efficient. We also present the event times and state errors
between the real dynamics and the nominal dynamics in the
case when uncertainty levels decrease by a factor of 10 in Fig.
6. The events are less frequently triggered after the ego vehicle
approaches its preceding vehicle with similar speed. The state
errors significantly increase when events are not triggered for
a long time, but reset to 0 when a new event is triggered.
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Fig. 6. Event times and state errors for event triggered control between the real
dynamics and the adaptive affine control dynamics. The state errors increase
when no events are triggered, and reset to 0 when a new event is triggered.

Comparison between constant s(-) function and time-
varying s(-) in (24): Next, we consider the comparison
between a constant s(-) function (as in the above case) and a
time-varying s(-) in (24). In other words, in the time-varying
case, we replace the state bounds in (83) by:

O(tr) — mb(x(te)) <0 < 9(tk) + 11b(x(tr)),
<z<

k
2(t) — yob(@(ty) < 7 < 2(60) +ebla(te) )

where v1 > 0,72 > 0. v1b(x(tg)),veb(x(ty)) are
truncated by 0.4, 0.5, respectively, as shown in (36).All
other settings are the same as before. The pdf’s
of o1(t),02(t),05(t) are uniform over the intervals

[—0.02,0.02]m/s?,[-0.2,0.2]m/s, [0.99, 1.01], respectively.

We consider different v;,72 values and show how they
may affect the conservativeness of the vehicle in Fig. 7. The
time-varying s(-) in (24) makes the system less conservative
compared with the constant case. This is because s(-) depends
on the value of the barrier function b(x) in the time-varying
case, and the magnitude of s(-) is small when the system state
gets close to the safety set boundary. Meanwhile, when the
system state gets close to the safety set boundary, the system
state variation is small, and smaller s(-) can make the system
state stay closer to the set boundary. It follows from Fig. 7
that smaller 1,2 can force the system state to stay closer to
the set boundary.

C. Traffic merging (decentralized multi-agent control)

The merging problem arises when traffic must be joined
from two roads, usually associated with a main lane and a
merging lane as shown in Fig. 8. We consider the case where
all traffic consists of vehicles randomly arriving at the two
lanes joined at the Merging Point (MP) M. The segment from
the origin O or O’ to the merging point M has a length L
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Fig. 7. The variations of functions b(a(t)) and 1 (a(t)) for the pro-
posed event-driven framework with constant and time-varying s(-) in (24).
b(x(t)) > 0 and 1 (x(t)) > 0 imply the forward invariance of C1 N Cs.

for both lanes, and is called the control zone. In order to
share or obtain other vehicle information, each vehicle can
use its onboard sensors or communicate with a coordinator
associated with the MP whose main function is to collect and
share vehicle states. A more detailed merging problem setup
is given in [34]. In contrast to the problem considered in [34]
where the vehicle dynamics are assumed known, in real traffic
merging each vehicle does not know the dynamics of other
vehicles and may also not have accurate dynamics of its own.
Therefore, the safe merging constraint becomes critical and
hard to be guaranteed.
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[/} L M
[o_xs_ [ T i Xo, Vi U CAVs exi
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X, Va, 114
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Fig. 8. The merging problem, a collision may happen at the merging point.

The real dynamics for 7 are unknown to the controller:
l'z(t) = Ji’l(t) + ’Ui(t), ’Ul(ﬁ) = O-i’Q(t) + Ui’g(t)ui(t),

where x; = (z;,v;) and x;(t) denotes the along lane distance
of vehicle ¢ with respect to the origin, v;(t) denotes its the ve-
locity, and w(t) is its control (acceleration). o1 (t), o2(t), o5(t)
denote three random processes whose pdf’s have finite support.

As in [34], we consider the following double integrator as
the initial adaptive model:

zi(t) = hia(t) + v5(2),

(86)

Bilt) = hiz(D) + (), 87)

where &; = (Z;,7;). hi1(t) € R, h; 2(t) € R denote the two
adaptive terms in (39), h;1(0) = 0, h; 2(0) = 0.

The objective is to jointly minimize the travel time
and energy consumptlon for each vehicle ¢ in the form
j;o (B +u2(t)) dt, where t0,¢" denote the arrival time of
vehicle 7 at the origin and at the merging point M, respectively.
B > 0 is a weight parameter that captures the time-energy
consumption trade-off. The rear-end safety constraint between
vehicle ¢ and its preceding vehicle ¢, is similar to the ACC
example. For simplicity, we only consider the safe merging
constraints for two CAVs ¢,7 — 1 coming from different roads:

zio1 (") — @) = evi(ti") + o (88)

where ¢ > 0 is the headway time and [y > 0. For simplicity,
we consider high speed traffic merging, and take /o = 0. In
order to use the CBF method to implement the above safe
merging constraint, we convert it to a continously differen-
tiable constraint:

vi(t),Vt € [t9, 7],

1771

.’Eifl(t) — .’L’Z(t) 2 %2

zi(t)

i (89)
where x;_1(t) — z;(t) > 0 when x;(t) = 0, which means
the two vehicles ¢ — 1,7 are allowed arrive at the same time
at the origins O and O’, respectively. Moreover, note that
xi—1(t) — z;(t) > u;(t) when x;(t) = L, which satisfies
the safe merging constraint (88) when i arrives at the merging
point M (¢ — 1 has already passed the merging point).

We take ¢ as the ego vehicle in the merging problem. We
assume vehicle ¢+ — 1 is under unconstrained optimal control
[34], and vehicle 7 takes the unconstrained optimal control as
a reference. Vehicle ¢ does not know its own dynamics, as
well as those of 7 — 1. In order to implement the continous
version of the safe merging constraint (89), we define a CBF
by, xi1) = xzi—1(t) — x;(t) — gow‘L(t)vl( t). The relative
degree of this CBF is only one with respect to (86). We choose
aq (b(xi, @;—1)) = b(x;, x;—1) in Def. 4. The CBF constraint
5) wh@ch in this case is (with respect to the real dynamics
(86)): b(x;,x;—1) + b(x;,x;—1) > 0. Combining (13), (87)
and this constraint, we have

Vic1+hi—11+ €z, — Ui —hin —ég

_g(ﬁi"‘hi,l +éz,)(Titey,) — f(fri-exi)(url-hi,z-f-évi)

L L
FEid oy — i = Ca, = o (Ei ) (T e0) 20,

(90)

where €ri 1 = Tj1 — Ti—1,€x; = Ty — Ty, €y, = V; — V.
The vehicles may arrive at the origins at the same time,
i.e., b(x;,x;—1) may be initially close to 0. Thus, we take
s(+), S;(+) in (23) to be some constant vectors. Similar to (23)
and (45), (46), we consider the state and bound the errors at
step ty,k = 1,2... for the above CBF constraint in the form:

Zi—1(te) — S1 < ZTi—1 < Ti—1(tr) + S1,

Ui—1(tr) — S2 < Ui—1 < Ti—1(t) + Se,
Zi(tr) — 51 < Ty <Ti(te) + 51, 0i(lr) — 52 <0 < Ui(tg) + s2,
lea; | S W, éay | SV,
|€aci| < wi, |€xL| <, |€Uz‘| < we, |évi‘ <y

(€2))
where S; > 0,52 > 0,51 > 0,80 >0, W > 0,w; > 0, ws >
0,V >0,v; >0,v5 > 0.



Motivated by (38)-(41), we synchronize the state and update
the adaptive dynamics (87) at step 5,k = 1,2... in the form:

Ti—1(tr) = ®ic1(tr), Vic1(te) = vic1(t), Ti(tr) = @i(te),

k
Bi(tx) = vi(tx), hifl,l(t+):hi71,l(t7)+z ;4 (L),
i=0

k k
hig(F)=hin(t7)+ > éa, (i) hia(t) =hio(t7)+> €y, (t:),

i=0 i=0 @)
where €, ,(tx) = @i—1(tr) — (Vim1(te) + himia(tr)),
€, (tr) = @i(t) — (Us(tr) + hia(te)), v, (tk) = Viltr) —
(wi(ty) + hia(te)), u(ty) = wu(tyx—1) and wu(ty) = O.
Zi—1(tk), ;i (tr), v;(t) are estimated by a sensor that mea-
sures the real dynamics (86) of ¢ — 1,¢ at time .

Then, we can find the limit values as in (27)-(32), solve the
QP (34) at each time step t;,k = 1,2..., and evaluate the
next time step fx41 by (35) afterwards. In the evaluation of
tk+1, we have €xi 1 = Ti—1 75’1‘_1, €y, = T4 7@1', €y, = Vj —
Ty, €y = Tim1—(Tim1+hi—1,1), €a, = Ti—(Tithin), €y, =
Uy — (u; + hi2), where @;_1, z;,v;, £3_1, &4, U; are estimated
by a sensor that measures the real dynamics of ¢ — 1,4, and
u(ty) is already obtained by solving the QP (34) and is held as
a constant until we find tx41. The optimizations (27)-(32) are
NLPs due to the nonlinearity of the CBF b(x;,x;_1). Each
NLP can be solved with a computational time of about 0.03s
using fmincon in MATLAB, and each QP can be solved within
0.01s using quadprog in MATLAB (Intel(R) Core(TM) i7-
8700 CPU @ 3.2GHzx?2).

In the simulation, the initial speeds of vehicles ¢ — 1,7 are
18m/s,20m/s with arrival times Os, 1s at the origin O or O’,
respectively. Other simulation parameters are S = 2.666, p =
1.8s, L = 400m, S = 0.5m, Sy = 0.2m/s,s1 = 0.5m, s9 =
02m/s,W = 0.6m,V = 03m/s,w; = 0.6m,wy =
0.3m/s,v1 = 0.3m/s, v = 0.2m/s%.

The pdf’s of o1 (t),o2(t),03(t) are uniform over the inter-
vals [—2,2]m/s, [-0.2,0.2]m/s?,[0.9, 1.1], respectively. The
sensor sampling rate is 100Hz. We compare the proposed
event-driven framework with the time-driven approach (At =
0.02s) that takes double integrator as vehicle dynamics.

The simulation results are shown in Fig. 9. Note that, in
order to improve the computation efficiency while staying
close to optimal solutions, we employed the joint optimal
control and barrier function method. As expected, the safe
merging constraint between ¢ and ¢ — 1 is not satisfied with
the time-driven method (blue curves shown in Fig. 9) due to
the unknown dynamics of both 7 and 7 — 1. The safe merging
constraint for ¢ and ¢ — 1 is guaranteed when using the event-
driven approach, as the red curves shown in Fig. 9, but vehicle
i tends to be conservative when it approaches the merging
point. In order to alleviate this conservativeness, we consider
a small-bound case in which the state and error bound values
are 20% of the default values, as the green curves shown in
Fig. 9.

VII. CONCLUSION & FUTURE WORK

This paper proposes an event-triggered framework for
safety-critical control of systems with unknown dynamics.

28 T T T T T T T T

26+

24t

v, /(m/3)

time-driven, At = (.02
event-driven,large bounds |
event-driven,small bounds

22

blzi(t), z:-1(t))

Fig. 9. Comparision between the proposed event-driven method and the time-
driven method in guaranteeing the satisfaction of the safe merging constraint
for vehicles 4,7 — 1. b(x;, x;—1) > 0 denotes the forward invariance of C1,
i.e., the satisfaction of the safe merging constraint (under the event driven
method). In the small-bounds case, all the state and error bound values are
20% of the ones in the large-bounds case (default values).

This framework is based on defining adaptive affine dynamics
to estimate the real system state, and an event-triggering mech-
anism for solving the problem using a condition we determine
that guarantees safety or convergence between events. We have
demonstrated the effectiveness of the proposed framework by
applying it to three separate applications. In the future, we
will study the issue of guaranteeing the feasibility of all QPs,
as well as investigate an extension of the proposed framework
to include receding horizon control.
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