Distributed Estimation in Network Systems Using
Event-Driven Receding Horizon Control

Shirantha Welikala and Christos G. Cassandras

Abstract—We consider the problem of estimating the states
of a distributed network of nodes (targets) through a team of
cooperating agents (sensors) persistently visiting the nodes so
that an overall measure of estimation error covariance evaluated
over a finite period is minimized. We formulate this as a multi-
agent persistent monitoring problem where the goal is to control
each agent’s trajectory defined as a sequence of target visits
and the corresponding dwell times spent making observations
at each visited target. A distributed on-line agent controller is
developed where each agent solves a sequence of receding horizon
control problems (RHCPs) in an event-driven manner. A novel
objective function is proposed for these RHCPs so as to optimize
the effectiveness of this distributed estimation process and its
unimodality property is established under some assumptions.
Moreover, a machine learning solution is proposed to improve the
computational efficiency of this distributed estimation process by
exploiting the history of each agent’s trajectory. Finally, extensive
numerical results are provided indicating significant improve-
ments compared to other state-of-the-art agent controllers.

I. INTRODUCTION

This paper considers the problem of controlling a team of
mobile agents (sensors) deployed to monitor a finite set of
points of interest (fargets) in a mission space. Each target state
follows independent (from other targets) stochastic dynamics
and the goal of the agent team is to estimate the target states
so that an overall measure of estimation error covariance
evaluated over a finite period is minimized.

As introduced in [1], this problem is different from con-
ventional distributed estimation problems [2] because: (i) we
use mobile, rather than stationary, sensors, (ii) we aim to
estimate a distributed set of target states rather than a common
global state and (iii) we focus on developing an optimal
distributed control strategy for the mobile sensor trajectories
rather than an optimal fusion framework for the distributed
sensor measurements. However, the proposed approach can
still be seen as one of optimal data fusion, but one that
estimates a potentially large number of target states using a
typically small number of sensors. In fact, this shortage of
sensors is what motivates the exploitation of each sensor’s
mobility. We also highlight that this is the same motivation that
expanded the study of conventional optimal coverage problems
[3] (where stationary agents are used to monitor a given
mission space) to optimal persistent monitoring problems [4]
(where mobile agents are used). Considering this analogy
and many other similarities, we cast this optimal estimation
problem as an optimal persistent monitoring problem.

*Supported in part by NSF under grants ECCS-1931600, DMS-1664644,
CNS-1645681, by AFOSR under grant FA9550-19-1-0158, by ARPA-E under
grant DE-AR0001282 and by the NEXTCAR program under grant DE-
ARO0000796 and by the MathWorks.

The authors are with the Division of Systems Engineering and Center
for Information and Systems Engineering, Boston University, Brookline, MA
02446, {shiran27, cgc}@bu.edu.

In the literature, persistent monitoring problems have been
widely studied and find many applications such as in sensing
[5], data collection [6], surveillance [7] and energy manage-
ment [8]. Many variants of persistent monitoring problems
have been considered in the literature under different forms of
(1) target state dynamics [4], [9], (i) global objectives [10]-
[13], (iii) agent motion dynamics [14], [15] and (iv) mission
spaces [4], [16]-[18].

A closely related persistent monitoring problem is studied
in [4] where the target state dynamics are assumed to be
deterministic (i.e., each target state itself is a measure of
uncertainty with no explicit stochasticity) and the agent team
is tasked with minimizing the target state (uncertainty) values
via sensing targets. To find the optimal agent trajectories in this
problem setting, [4] proposes a network (graph) abstraction for
the target-agent system along with a gradient-based distributed
on-line parametric control solution. The subsequent work in
[12] appends to this solution a centralized off-line stage to
find an effective set of periodic agent trajectories as an initial
condition. For the same persistent monitoring problem, our
recent work in [14] takes an alternative approach and develops
a distributed on-line solution based on Event-Driven Receding
Horizon Control (RHC) [19]. This RHC solution has many
attractive features, such as being gradient-free, parameter-
free, initialization-free, computationally cheap and adaptive to
various forms of state and system perturbations.

In contrast to [4], [12], [14], the persistent monitoring
problems considered in this paper and [10], [20], [21] are
more challenging as they assume that each target state follows
independent stochastic dynamics and task the agent team
to persistently estimate the set of target states so that an
overall measure of error covariance associated with target state
estimates is minimized. However, despite such differences in
the problem setup, this class of persistent monitoring problems
can be addressed by adopting the key concepts used in [12],
[14]. For example, [10] formulates a minimax problem over
an infinite horizon and proposes a centralized off-line periodic
solution inspired by [12]. Similarly, this paper considers a
mean overall estimation error covariance objective evaluated
over a finite horizon and develops a distributed on-line RHC
solution (not constrained to be periodic) inspired by [14].

While [10] and [21] adopt the persistent monitoring setting
to address the underlying estimation task, they only consider
single-agent scenarios. Therefore, they require additional clus-
tering and assignment stages to handle multi-agent scenarios
(analogous to [12]). Moreover, both [10] and [21] consider
infinite horizon objective functions and develop periodic so-
Iutions in a centralized off-line stage. In contrast, [20] and
this work (both of which also adopt the persistent monitoring
setting to address the underlying estimation task) use finite
horizon objective functions and develop distributed solutions

well-suited for multi-agent scenarios. However, the solution
proposed in [20] is computationally expensive, off-line and
time-driven. To address these limitations, this work restricts
the target state dynamics to a one-dimensional space (as in
[4], [12], [14]) and develops a computationally efficient, on-
line and event-driven persistent monitoring solution.

The contributions of this paper are as follows. First, it is
shown that each agent’s trajectory is fully defined by the se-
quence of control decisions it makes at specific discrete event
times. Second, a receding horizon control problem (RHCP) is
formulated for an agent to solve at any one of these event
times so as to determine the immediate set of optimal control
decisions to execute within a planning horizon. Hence, the
event-driven nature of this control approach significantly re-
duces the computational complexity due to its flexibility in the
frequency of control updates. A novel element in this RHCP
is that, unlike conventional RHC where the planning horizon
is an exogenously selected global parameter [19], [22]-[24],
it can simultaneously determine the optimal planning horizon
length along with the optimal control decisions locally and
asynchronously by each agent. Note that, similar to all RHC
solutions [19], [22], [23], the determined optimal control
decisions are subsequently executed only over a shorter action
horizon defined by the next event that the agent observes,
thus defining an event-driven process. Third, a novel RHCP
objective function form (as opposed to the one used in [14]) is
proposed to maximize the utilization of each agent’s sensing
capabilities over its planning horizon. Properties of this RHCP
objective function form are studied, leading to establish its uni-
modality under certain conditions. This unimodality property
is crucial as it ensures that each agent can independently solve
their RHCPs globally and computationally efficiently using
a simple gradient descent algorithm. In addition, a machine
learning solution is developed to improve the computational
efficiency of the proposed RHC-based agent controllers (i.e.,
of the overall distributed estimation process) by exploiting
the history of each agent’s optimal controls. Finally, the
performance of the proposed RHC-based agent controllers
is investigated in terms of providing accurate target state
estimates and enabling target state controls compared to other
state-of-the-art agent controllers.

Compared to related work in [4], [12], [14], [25] where
agents are tasked with regulating deterministic piece-wise
linear target state trajectories, this paper and [1], [10], [26]
are entirely different as we task the agents with estimating
stochastic linear target state trajectories. Further, compared
to [14], this paper and [1] use a novel RHCP objective
function form. This paper also provides a justification and
extensive analysis of this novel RHCP objective function form.
In addition, compared to [14], this paper proposes a machine
learning solution to improve the computational efficiency of
the RHC-based agent controllers. Moreover, while [10], [26]
propose centralized off-line parametric control solutions, [1]
and this paper propose distributed on-line RHC solutions.
Compared to [1], this paper provides: 1) the details of all the
RHCPs, 2) a milder assumption, 3) new theoretical results, 4) a
machine learning based computational efficiency improvement
scheme, and 5) new numerical results.

The paper is organized as follows. The problem formulation
is presented in Section II and a few preliminary theoretical
results are discussed in Section III. Section IV and V present
the RHCP formulation and its solution, respectively. The
subsequent Section VI describes how machine learning can be
used to assist in solving RHCPs efficiently. The performance
of the proposed RHC method is demonstrated using simulation
results in Section VII. Finally, concluding remarks and future
work are provided in Section VIII.

II. PROBLEM FORMULATION

We consider M stationary nodes (targets) in the set ¥ =
{1,2,...,M} and N mobile agents (sensors) in the set o/ =
{1,2,...,N} located in an [-dimensional mission space. The
location of a target i € ¥ is fixed at ¥; € R/ and that of an
agent a € </ at time ¢ is denoted by s,(t) € R.

a) Graph Topology: A directed graph topology ¥ =
(¥,&) is embedded into the mission space so that the targets
are represented by the graph vertices ¥ and the inter-target
trajectory segments available for agents to travel between tar-
gets are represented by the graph edges & C {(i,j):i,j € V}.
These trajectory segments are allowed to take arbitrary shapes
in R! to account for possible constraints in the mission space
and agent dynamics. We use p;; to represent the travel time
that an agent spends on a trajectory segment (i, j) € & to reach
target j from target i.

b) Target Dynamics: Each target i € ¥ has an associated
state ¢;(r) € R” that follows the dynamics

Gi(t) = Aigi(t) + By (1) + wi(t), (1
where {w;() };cy are mutually independent, zero mean, white,
Gaussian distributed processes with E[w;(¢)w/(t)] = Q;. Sim-
ilar to [10], [20], [21], in this work, the main focus is on
persistently maintaining an accurate set of estimates of these
target states using the fleet of mobile agents as target state
sensors. Hence, in this setting, agents are not responsible for
controlling target states and thus we assume that each target i
independently selects (or is aware of) its control input v;(¢).

When an agent visits a target i € ¥/, it takes the measure-
ments z;(¢) € R™ which follow a linear observation model

zi(t) = Higi(t) +vi(t), 2)
where {v;(f) };c» are mutually independent, zero mean, white,
Gaussian distributed processes with E[v;(¢)vi(t)] = R;.

The matrices in (1) and (2): A;, B, Q;, H; and R; are time
invariant and known at target i € ¥'. Moreover, the matrices
Q; and R; are positive definite.

¢) Kalman-Bucy Filter: Considering the models (1) and
(2), the maximum likelihood estimator ¢;(r) of the target state
¢;(¢) is a Kalman-Bucy filter [27] evaluated at target i:

9i(t) = Aidi(1) +Byvy(1) + mi(t) () HIR; " (2i(r) — Higi(1)) ,
where Q;(¢) is the estimation error covariance (i.e., Q;(t) =
E(ei(t)el(t)) with e;(t) = ¢;(t) — §i(t)) given by the matrix
Riccati equation [28]:

.Q,'([) :AiQi(I) + Q.l(l)A: +0i— ni(I)Q,’(I)G,’Qi(Z), 3)
with G; = H/R; 'H; and (using 1{-} as the indicator function)
Ni(t) £ 1{Target i is observed by an agent at time ¢}. (4)
Based on (3), when a target i € ¥ is being sensed by an
agent (i.e., when 7;(¢) = 1), the covariance Q;(¢) decreases

and, as a result, the state estimate (ﬁi becomes more accurate.
The opposite occurs when a target is not being observed by
an agent. It is also worth pointing out that the dynamics of the
covariance €;(¢) (3) are independent of the target state control
v;(t) in (1), due to the principle of separation [29].
d) Agent Model: According to the adopted graph topol-
ogy, we assume that once an agent a € .o/ spends the required
travel time to reach a target i € ¥, its location s,(¢) falls
within a certain range from the target location ¥; which enables
establishing a constant sensing ability (i.e., H;, R; are fixed)
of the target state ¢;(z). Without loss of generality, we denote
the number of agents present at target i € 7 at time ¢ as
Ni(t) £ Y 1{sa(t) =Y} (5)
acsl
To prevent resource (agent sensing) wastage and simplify
the analysis, similar to [12], [14], we next introduce a control
constraint that prevents simultaneous target sharing by multi-
ple agents at each target i € ¥ as

N;(t) € {0,1}, Vt > 0. 6)
Evidently, this constraint only applies if N > 2. Moreover, un-
der (6), according to the definitions (4) and (5), n;(¢) = Ni(¢).
Also, note that due to the use of a fixed set of travel times
{pij : (i,j) € &}, the analysis in this paper is independent
of the agent motion dynamic model (similar to [4], [12],
[14]). However, analogous to the work in [25], with some
modifications, the proposed solution in this paper can be

adapted to accommodate specific agent dynamic models.

¢) Global Objective: The goal is to design controllers
for the agents to minimize the finite horizon global objective

T

el / Y r(Q4(1))dr. 7
') /&
This choice of global objective (7) was inherited from related
prior work [26]. Based on its form, clearly it motivates finding
agent trajectories that minimize target state estimation error
covariance values across the target network over the specified
finite horizon. Therefore, (7) is a natural and intuitive choice
for the global objective. Moreover, as we will see in the sequel,
(7) is simple enough to be conveniently decomposed, and thus,
it also motivates the development of distributed on-line optimal
agent control strategies.

Nevertheless, we also propose an alternative global objective
o Jo Tiey mi(e)u(Q(2))dt)
Jo Tie te(Qi(t))dt
First, note that the denominator of (8) is proportional to
(7). Hence, optimizing (minimizing) (8) will lead to agent
trajectories that minimize (7) (notice the negative sign in (8)).
Second, note that the numerator of (8) represents a quantity
that reflects the overall agent sensing effort as 1;(t) = 1 only
when an agent senses the target i. Therefore, this alternative
objective (8), omitting the negative sign, can be seen as the
efficiency of overall agent sensing effort, i.e., the fraction of
resources (agents) used for sensing (as opposed to both sensing
and traveling). Hence, it is clear that optimizing (8) requires
agents to optimally allocate their sensing resources across the
target network over the finite horizon [0,T]. Moreover, it is
worth pointing out that compared to (7), (8) is conveniently
normalized, thus its value has a direct intuitive interpretation.

Jr

80 0 100 0

-0.1

-0.2

-0.3

Cost value between [t, ¢ +
IS
S

0 -0.4 -0.5
0 10 20 30 40 50 0 5 10 15 20

Time: ¢ Time: ¢

(a) Accumulated cost (b) Instantaneous cost

Fig. 1: Comparison between J; in (7) and J; in (8).

A final observation is that numerical experiments have
shown that both J; (7) and J; (8) profiles (under the same agent
controls over ¢ € [0, T]) behave in the same manner after a brief
transient phase (e.g., see Fig. 1(a)). Therefore, we can see
that both (7) and (8) are equally appropriate global objective
function choices for this optimal estimation problem.

As mentioned earlier, we view this optimal estimation prob-
lem as a persistent monitoring on networks (PMN) problem.
Moreover, we assume that the initial condition of this PMN
problem setup, defined by ¢;(0), ¢;(0) and ;(0), Vi € ¥, is
known at respective targets.

f) Agent Control: Based on the graph topology ¢ =
(¥,&), we define the neighbor set and the neighborhood of
atarget i€ ¥ as A 2 {j:(i,j) €&} and A 2 Ui},
respectively. The basic agent controls are as follows. Whenever
an agent a € o is ready to leave a target i € ¥, it selects
a next-visit target j € 4. Thereafter, the agent travels over
(i,j) € & to arrive at target j upon spending p;; amount of
time. Subsequently, it selects a dwell-time u; € Rxo to spend
at target j (which contributes to decreasing Q;(r), making
¢;(t) — ¢;(t)), and then makes another next-visit decision.

Therefore, the overall control exerted by an agent consists
of a sequence of dwell-times u; € R>o and next-visit targets
J € ;. Our goal is to determine (u;(z),j(¢)) for any agent
residing at a target i € ¥ at any time ¢ € [0,T] which are
optimal in the sense of minimizing the global objective (7).

This PMN problem is much more complicated than the well-
known NP-hard traveling salesman problem (TSP) based on
the metrics: (i) the number of decision variables, and (ii) the
nature of feasible decision spaces. In particular, in PMN: (i)
we need to determine dwell-times at each visited target, and
account for (ii) the involved target dynamics, (iii) the presence
of multiple agents, and (iv) the freedom to revisit targets.

The same reasons make it computationally intractable to
apply dynamic programming techniques so as to obtain the
optimal controls, even for a relatively simple PMN problem.

g) Receding Horizon Control: In order to address this
hard dynamic optimization problem, this paper proposes an
Event-Driven Receding Horizon Controller (RHC) at each
agent a € o/. Even though the key idea behind RHC derives
from Model Predictive Control (MPC), it exploits the event-
driven nature of the considered problem to significantly reduce
the complexity by effectively decreasing the frequency of
control updates. As introduced and extended later on in [19]
and [14], [22], [23], respectively, the RHC method involves

solving an optimization problem of the form (7) limited to
a finite planning horizon, whenever an event of interest to
the (agent) controller is observed. The determined optimal
controls are then executed over an action horizon defined
by the occurrence of the next such event. This event-driven
process is continued iteratively.

Pertaining to the PMN problem considered in this paper, the
RHC, when invoked at time ¢ for an agent residing at target
i € ¥, aims to determine (i) the immediate dwell-time u; at
target i, (ii) the next-visit target j € 47 and (iii) the next dwell-
time u; at target j. These control decisions are jointly denoted
by Ui(t) £ [ui(t), j(t), u;(¢)] and its optimal value is obtained
by solving an optimization problem of the form

Ui (t) = argmin [Jg(Xi(2),Ui(t); H) +Ju(Xi(t + H))], (9)

U;(1)€U(r)
where X;(r) is the current local state and U(r) is the feasible
control set at ¢ (exact definition is provided later). The term
Ju(Xi(r),U;i(t);H) represents the immediate cost over the
planning horizon [t,z + H] and Jy(X;(t + H)) stands for an
estimate of the future cost based on the state at r 4+ H.

In contrast to standard methods where the planning horizon
length H is exogenously selected, here we adopt the variable
horizon approach proposed in [14] where the planning horizon
length is treated as an upper-bounded function of control
decisions w(U;(t)) < H. In other words, we constrain the
planning horizon to be [r,r + w(U;(r))] C [t,t + H] where
[r,r+ H] is now treated as a predefined fixed planning horizon.
Hence, this approach incorporates the selection of planning
horizon length w(U;(¢)) into the optimization problem (9),
which now can be re-stated as

UF(t)= argmin Jy(X;(r),Ui(t); w(Ui(2)))
Ui(r) € U(1) (10)
subject to w(U;(r)) < H.

Note that the term Jy (X;(t +H)) in (9) has been omitted in
(10). This compromise is made to enforce the proposed RHC
method to be distributed so that each agent can separately
solve (10) on-line using only its local state information. Apart
from achieving such desirable qualities, this compromise also
provides additional compensation by optimizing the planning
horizon length w(U;(¢)) in (10) (as opposed to using a fixed
planning horizon length H in (9)). In particular, this optimiza-
tion of w(U;(r)) compensates for the intrinsic inaccuracies
resulting from the omission of Jy (X;(t + H)). This claim is
justified in the following remark.

Remark 1: Note that in (9), Jy(X;(t + H)) motivates an
agent to optimize its state at the end of the planning horizon.
However, under (10), in lieu of Jy(X;(t + H)), the w(U;(t))
term motivates an agent to optimize instead (through U;(¢)) its
end of the planning horizon ¢+ w(U;(t)), thus compensating
for the omission of the future cost.

III. PRELIMINARY RESULTS

Based on (3), the error covariance ;(¢) of any target i € ¥
is continuous and piece-wise differentiable. Specifically, €;(t)
jumps only when one of the following two (strictly local)
events occurs: (i) an agent arrival at target 7, or (ii) an agent
departure from target i. These two events occur alternatively

and respectively trigger two different modes of subsequent

Q;(t) behaviors, named active and inactive modes, described
by using 1;(t) =1 and 1n;(z) =0 in (3). In the following
discussion, we use 7;(¢) € {0,1} to represent the mode of
target i € 7 and I, as the identity matrix in R”".

Lemma 1: 1f a target i € ¥ is in the mode n;(¢) € {0,1}
during a time period [ty,#], its error covariance Q;(z) for any
time ¢ € [to, 1] is given by

Qi(t) = Gi(1)D; (1), (1)
C,'(I) _ L Wi(— Q,'(t()) . L A; Oi
where Di(t)} =¥ilt ’(ﬁ{ N with ¥; = n(G AT "
Proof: Onmitting the argument ¢ for notational convenience

and using the substitution ; = C;D; Uin (3) gives
Ci—CiD; ' D; = (ACi+ QiDi) — CiD; ' (0iGiCi — A Dy).

Note that there is an extra degree of freedom left for selecting
C; and D; as the substitution (11) has replaced €; with two new
variables C; and D;. We exploit this extra degree of freedom
to derive two equations from the above equation as follows.
Notice that both sides of the above equation takes an affine
linear form with respect to —C;D;” !. Therefore, equating the
coefficients of 1 and —C;D; ! terms above gives two equations:

]~ v, el (oo

Recall that n;(¢) = 1 if the target i is active and 1;(t) =0
otherwise. Finally, setting the initial conditions: C;(ty) = Q; (o)
and D;(ty) = I, the above linear differential equation can be
solved to obtain the result in (11). |
Using the above lemma, a simpler expression for Q;(¢) than
(11) can be derived if target i is in the inactive mode: n;(r) = 0.
Corollary 1: If a target i € ¥ is inactive during ¢ € [fo,#],
the corresponding Q;(¢) for any time 7 € [fg,#] is given by

1
Qi(t):<I>,-(t)[£2,»(to)+(t—zo)/0 wi(t,x)dx}CI)iT(t), (12)

where @;(r) = 4i(~0) and ;(t,x) = (@;(r)) *Qi(®T (1)) .
Proof: According to Lemma 1, when n;(z) = 0, Q;(¢) is
given by (11) where ¥; is a block triangular matrix. Therefore,
e¥i=10) can be written (using [30, p. 1]) as
i) _ {cbi(t) (1= 10) Jy (@] (1))~ 0:(@] <r>>-de} |
0 (@] (1)
Applying this in (11) gives D;(t) = ®;'(¢) and Ci(t) =
@;(1)Q(10) + (1 — 10) fy (B () *Qi(®7 (1)) *dx. Finally,
Q;(t) = Ci(¢)D; ! (t) gives the expression in (12). |
From Lemma 1 and Corollary 1, it is clear that the exact
form of the “tr(;(¢))” expression required for the global
objective (7) cannot be written more compactly - unless the
matrices A; and ¥; have some additional properties.

a) One-Dimensional PMN Problem: In the remainder
of this paper, similar to [4], [12], [14], we constrain ourselves
to one-dimensional target state dynamics and agent observa-
tion models by setting

n=m=1, (13)
in (1) and (2). This is a reasonable assumption given that
the goal of this work is to derive necessary theoretical
results to apply the RHC method and then to explore its
feasibility for the considered particular PMN problem setup.
In future work, we expect to generalize these theoretical
results and the RHC solution to higher-dimensional target state
models. Therefore, we henceforth consider the fixed target

parameters A;, Q;, H;, R;, G; and the time-varying quantities
0i(1), zi(t), §i(t), Qi(t), Vi € ¥ as scalars.

b) Local Contribution: The contribution to the global
objective Jr in (7) by a target i € ¥ during a time period
[to,11] is defined as +.J;(fo,t1) where

Jilio,t) £ /t (Qu(t))dt = /, " Qu(t)dr.

We further define the corresponding active and inactive por-
tions of the above local contribution term Ji(tp,t;) in (14)
respectively as JA(to,7;) and J! (t07t1) where

t07 tl / nl dt and

men=4<vmm»mmw.

Notice that, by definition, J;(fo,t1) = J2(to,t1) +J! (to,11).
Lemma 2: 1If a target i € ¥ is active during ¢t € [fg,11], the
corresponding Q;(¢) for any time ¢ € [fp,#] is given by

cit + cipe” M=)

(14)

15)

Qult) = : 16
o) vitcil + vipcipeit=1) (16)

where)ui = 21/AI»Z+Q,'G,', Vil = é(—Ai + 1/Al-2+QiGi),
g (—Ai = \JA} +0iG;

)y ci1 = vipQi(tp) — 1 and cp =
—vi1Q;(t9) + 1. The corresponding local contribution J;(fo, % +
w) in (14) (where w = (t — 1)) is given by J;(fo,70 +w) =
JA(to,10 +w) where
1
+—Ww.

1
JA 10,00 +w) = —lo
lto,fo+w) G; g(Vi2 — Vil Vil

Proof: We first use Lemma 1 to derive (16). Note that
under (13), ¥; in (11) is such that ¥; € R%*Z and it can be
simplified using 1;(¢) = 1, since, by assumption, the target i is

active. The eigenvalues of ¥; are +A;/2 and the correspond-

ing generalized eigenvector matrix is {vl !

¥iw

Vi =

virci +vicpe M

a7

vl Therefore,
the matrix exponent e " required in (11) can be evaluated
1 lw _Aw 1
dia T

Vit V2 gl) {Vn
this result in (11) gives

Ci(t) :e@ Vip — vire MY

Dj(t) vitvin(1— e ") —v;p +vipeh™ 1
Since Q;(t) = Ci(t)/Di(t) (from (11)), we now can use the
above result to obtain (16).

Finally, using (15), (17) can be obtained by analytically
evaluating the integral of ;(z) over the period [to, % + w]:

A() to+w Ai(t—19)
Ji (to, 00 +w) = /
Y o Vitci +vipcpe A(T0)

Lemma 3: If a target i € ¥ is inactive during ¢ € [to, 1], the
corresponding Q;(¢) for any time ¢ € [fp, 7] is given by
0, 0
1) = () + 5) o - 2
and the corresponding local contribution J,-(to,to +w) (where
w=(t—1t9)) is given by J;(to,to +w) = J (to,to +w) where
1 Ql 2A; Qz
T (to, 1 =— [Qi(t0) + = |
i (to,10+w) 2Ai< (0)+2A>()—
Proof: These two results (18) and (19) can be proved by
using ; in (11) as ¥; = [A; 0;;0 —AT] and following the
same steps used in the proof of Lemma 2.]

—1
1
Ww :
as eV = . Applyin
e Vi2:| pplymg

—14ehv } [Qi(to)}

ci1 +cpe
B dr. []

(18)

w. (19)

Inactive at j

|Tran5\t | |Active atj|
’W‘ u Pij u;
. i]
Decisions: e V__J
F— l]
) I | I
0 t
[Events] [tocarevent] Ceave]

Fig. 2: Event timeline and control decisions under RHC.

Inactive at i

-+

T

|Leave 1'| |Arrive at j|

IV. RHC PROBLEM (RHCP) FORMULATION

Consider an agent a € o7 residing on a target i € ¥ at some
time ¢ € [0,T]. Recall that control U;(¢) in (10) consists of
the dwell-time u; at the current target i, the next-visit target
J € A, and the dwell-time u; at the next-visit target j (see
Fig. 2). Therefore, agent a has to optimally select the three
control decisions (control vector) U;(t) = [u;(t), j(t),u;(t)].

a) The RHCP: Let us denote the real-valued component
of the control vector Uj(t) in (10) as Uj; S [ui,uj] (omitting
time arguments for notational simplicity). The discrete com-
ponent of U;(¢) is simply the next-visit target j € 47. Let us
define the planning horizon length W(U (¢)) in (10) as
(|| denotes the cardinality operator or the 1 -norm depending
on the argument) so that it covers the control decisions
and corresponding controllable events that can occur in the
immediate future pertaining to the current neighborhood .4}
as shown in Fig. 2. The current local state X;(¢) in (10) is
taken as X;(r) = {Q;(t) : j € A;}. Then, the optimal controls
are obtained by solving (10), which can be re-stated as the
following set of optimization problems, henceforth called the
RHC Problem (RHCP):

w=w(Uy) =

Uj;= argmin Ju(Xi(1),Uijs w(Uij)); Vj € M,
UijeU (21)
subject to w(U;;) <H
% : *
j*= argmin Ju (Xi (1), U5 w(U?)).
ey j j (22)

Before getting into details, note that (21) involves solving |4/
optimization problems, one for each neighbor j € .4;. Then,
(22) determines j* through a simple numerical comparison.
Therefore, the optimal control vector U/ (z) of (10) is the
composition: U/ (1) = {Uj}-, j*}.

The RHCP objective function Jg(+) is chosen in terms of
the local objective function of target i, which is denoted by
Ji(to, 1) over any interval [t,#;] C [0, 7] (the exact definition of
Ji(tg,11) is provided later on in (24)). In particular, we define
the RHCP objective function as the local objective function of
target i evaluated over the planning horizon [f,7 +w]:

JH(X,‘(I),U,']';H):./_i(l,[+W), (23)
and the RHCP feasible control space as U={U : U € R27 U>
0, |U|+pij < H} (including the constraint w(U;;) < H)

b) Planning Horizon: In conventional RHC methods,
the RHCP objective function is evaluated over a fixed planning
horizon, e.g., [t,r+ H] C [0,T], where H is selected exoge-
nously. This leads to control solutions that are dependent on
the choice of the used fixed planning horizon length H. When
developing on-line control methods, having such a dependence
on a predefined parameter is undesirable, as it prevents the

controller from having the opportunity to fine-tune H and re-
evaluate its controls.

However, through (20) and (23) above, we have made the
RHCP solution (i.e., (21) and (22)) free of the parameter H
(i.e., fixed planning horizon length) by only using H as an
upper-bound to the actual planning horizon length w(U;;) in
(20) and selecting H to be sufficiently large (e.g., H =T —1).
Moreover, since the planning horizon length w(U;;) is control-
dependent, this RHCP formulation simultaneously determines
the optimal planning horizon length w* = |U.| +pjj+ in terms
of the optimal control vector U/ (t) = {U, j*}.

In all, we use two planning related horizon concepts in
this paper: 1) the fixed planning horizon [r,r + H], and 2)
the planning horizon [f,7+w(U;;)]. They are related such that
[t,t +w(Ui;)] C [t,t +H| where H is a predefined sufficiently
large constant such as H =T —¢ and w(U;;) is optimized on-
line through (21)-(22) to be w(U;;*).

c) Local Objective: As mentioned earlier, the local ob-
jective function of a target i € ¥ over a period [f,#;) C [0, 7]
is denoted by J;(fo,t1). The purpose of J; is to be used in (23)
as the RHCP objective by each agent that visits target i for
the selection of its controls U; = [u;, j,u;].

The local versions of the global objective (7) (based on
“local contribution” functions (14)): J; and } ;c 4 J; are two
conventional candidates for the local objective function J; [14].
However, note that: (i) such candidate forms can be written
as summations of the contribution terms in (17) and (19), (ii)
both (17) and (19) increase monotonically with its argument
w and (iii) in this case, w = u; + p;; +u; (20). Therefore, when
minimizing J;, both of its candidate forms (J; and Y, iesdy)
yield the controls uj =0, u; =0 in an attempt to minimize w
(making w* = p;;). This would imply that no agent ever dwells
at any target.

Hence, instead of using a local version of the global objec-
tive (7), we propose to use a local version of the alternative
global objective (8) as the local objective function:

Tito,1) & —7Zje'%J?(t0’tl).

Yics/ilto,11)
This choice of local objective represents the normalized active
contribution (i.e., the contribution during agent visits in (15))
of the targets in the neighborhood .4} over the interval [to,?;).
Due to this particular form (24), when it is used as the RHCP
objective function (23), the agent (residing at target i) will
have to optimally allocate its sensing capabilities (resources)
over the target i and the next-visit target j € .4; (i.e., have
to optimally select the controls u; and u;). Moreover, in the
sequel, we will show that this local objective function is
unimodal in most cases of interest.

Since we have already shown that (8) and (7) perform in an
equivalent manner (see Fig. 1(a) and [31, Tab. II, Fig.10]), we
can also conclude that agents minimizing a local version of (8)
(i.e., (24)) can in fact lead to minimizing (7). Moreover, when
the instantaneous values of J; (7) and J, (8) (i.e., evaluated
over a very small period [t,7 + A]) are compared, we have
seen that J; is more sensitive to the variations of the system
(while remaining within a small interval) compared to J; (e.g.,
see Fig 1(b)). These qualities imply the feasibility of (24) as

(24)

a local objective function for the use of agents to decide their
controls (in a distributed manner) so as to optimize the global
objective (7).

Finally, note that the local objective function J;(fo, 1) in (24)
can be obtained locally at target i by evaluating the required
J3(t0,11) and Ji(to,11) terms for all j € 47 using Lemmas 2
and 3, respectively (recall J;(fo,t1) = J‘;‘ (to,11) +J§(to,t1)).

d) Event-Driven Action Horizon: Similar to all receding
horizon controllers, an optimal receding horizon control solu-
tion computed over a planning horizon [t +w*] C [t,t + H]
is generally executed only over a shorter action horizon
[t,t4+h] C [t,t +w*]. In this event-driven persistent monitoring
setting, the value of & is determined by the first event that
takes place after the time instant when the RHCP was last
solved. Therefore, in the proposed RHC approach, the control
is updated whenever asynchronous events occur. This prevents
unnecessary steps to re-solve the RHCP (i.e., (21)-(22)) unlike
time-driven receding horizon control.

In general, the determination of the action horizon 4 may be
controllable or uncontrolled. The latter case occurs as a result
of random or external events in the system (if such events are
allowed), while the former corresponds to the occurrence of
any one event resulting from an agent finishing the execution
of a RHCP solution determined at an earlier time. We next
define two controllable events associated with an agent when
it resides at target i. Both of these events define the action hori-
zon h based on the RHCP solution Uy (t) = [u; (1), j*(t),uj(t)]
obtained by the agent at time ¢ € [0, T':

1. Event [h — u}]: This event occurs at time ¢+ u; () and
indicates the end of the active time at target i. By definition,
this coincides with an agent departure event from i.

2. Event [h — p;j<]: This event occurs at time ¢+ p; () and
is only feasible after an event [z — u}] has occurred (including
the possibility that u}(t) = 0). Clearly, this coincides with an
agent arrival event at target j*(z).

Among these two types of events, only one is feasible at
any one time. However, it is also possible for a different event
to occur after ¢z, before one of these two events occurs. Such
an event is either external, random (if our model allows for
such events) or is controllable but associated with a different
target than i. In particular, let us define two additional events
that may occur at any neighboring target j € .4; and affect
the agent residing at target i. These events aim to ensure the
control constraint (6) (to prevent simultaneous target sharing)
and apply only to multi-agent persistent monitoring problems.

At time ¢, if a target j € ¥ already has a residing agent or
if an agent is en route to visit it from a neighboring target in
</1§, it is said to be covered. Now, an agent a € </ residing
in target i can prevent simultaneous target sharing at j € 4}
by simply modifying the neighbor set .4/ used in its RHCP
solved at time ¢ to exclude all such covered targets. Let us
use #(¢) to indicate a time-varying neighbor set of i. Then,
if target j becomes covered at 7, we set A;(r) = A7(t7)\{j}
Most importantly, note that as soon as an agent a is en route
to j*, j* becomes covered - preventing any other agent from
visiting j* prior to agent a’s subsequent departure from j*.

Based on this discussion, we define the following two
additional neighbor-induced local events at j € 4} affecting

an agent a residing at target i:

3. Covering Event C;, j € .4;: This event causes .4{(t) to
be modified to A47(t)\{/}-

4. Uncovering Event C;, j € .4;: This event causes .#;(t)
to be modified to A{(t) U{/}.

If one of these two events takes place while an agent remains
active at target / (i.e., prior to the occurrence of event [h — u]),
then the RHCP is re-solved to account for the updated .A47(¢).
This may affect the optimal solution’s values U compared
to the previous solution. Note, however, that the new solution
will still give rise to a subsequent event [h — u]].

e) Two Forms of RHCPs: The exact form of the RHCP
((21)-(22)) that needs to be solved at a certain event time de-
pends on the event that triggered the end of the previous action
horizon. In particular, corresponding to the two controllable
event types, there are two possible RHCP forms:

1. RHCP1: This problem is solved by an agent when an
event [h — py;] occurs at time ¢ at target i for any k € 4;(¢),
i.e., at the arrival of the agent at target i. The solution U/ (r)
includes u}(t) > 0, representing the active time to be spent at
i. This problem may also be solved while the agent is active
at i if a C; or C; event occurs at any neighbor j € 4(1).

2. RHCP2: This problem is solved by an agent residing at
target i when an event [h — u}] occurs at time ¢. The solution
U/ (t) is now constrained to include uj(t) = 0 by default,
implying that the agent must immediately depart from i.

The interconnection between different events and RHCPs
involved in the proposed RHC method is illustrated in Fig. 3.

Event C;
JEN;

4{ Solve Execute u; Solve Execute j*
1 "|RHCPL (Dwell at i) RHCP2 Travel to j*
1
I =
! Event (; Event
: JEM [h = u;] /ADeparture form i)
! =~
[<(e e Event
\l (_]/) (Arrival at j*\[h - p;;+]

Fig. 3: The proposed event-driven receding horizon control
(RHC) strategy (focusing on an agent at a target i € ¥).

V. SOLVING EVENT-DRIVEN RHCPs
A. Solution of RHCP2

We begin with RHCP2 as it is the simplest RHCP given that
in this case u;(t) = 0 by default. Hence, Uj; in (21) is limited
to U;; = u; and the planning horizon length w(U;;) in (20)
becomes w(U;;) = p;j+u;. Based on the control constraints:
w(Uij) = pij+uj < H and u; > 0, any target j € 4(t) such
that p;; > H will not result in a feasible dwell-time value u;.
Thus, such targets are directly omitted from (21).

a) Constraints: According to the above discussion, note
that in this RHCP2, u; is constrained by 0 <u; < H — p;;.

b) Objective: According to (23), the objective function
of RHCP2 is J;(¢,t +w). To obtain an exact expression for J;,
it is decomposed using (24) as

IR YV S/

(JA FID) + e son iy Vi +0) A+t +Zk(J£{5’)
where the last equality follows from the fact that J/ﬁ‘ = J,f(t,tJr
w) =0 as any target k € 4;\{j} will not be visited during

1

the planning horizon [¢,7 +w] (e.g., see Fig 4). Similarly, we
can write J4 = J;(t + pij,t + pij +u;), Ji = J;(t,1 + pij) and
Jl =Ji(t,t+pij+u;). Each of these terms can be evaluated
using Lemmas 2 and 3.

These results together with (25) give the objective function
Ji(t,t +w) required for RHCP2 in the form J;(u;) (with a
slight abuse of notation) as
- A(u;j
Ji(uj) = - ()

S LA 26
A(u;) 1 B(uy) (20)

A(uy) = J?:C]+C210g(1+C3€71juj)—|—C4uj, 27
B(uj) & T4 Y Ji=cs+couj+ Y cue® i, (28)
k k
1 G,‘Ql~+Q;Vj2
Cl :76210g(1+c3)7)= —, 63:f']7‘7
Gj G+ 0vji
1
Q/j:QJ(t+plj)7 vjlaij—Q7(A + A?—FQ]G])’
=—, ¢ Q; 1) 2450 _ 1y LiPii
4 le’ <= 2Aj< Jr2A (e) 24,
-y 1 (Q +Q—+Qp) Qi =Q;t)
DA, U T TR) AR
Q= Q1) C(,:—Z—k C7k:L<Qk+&)32AkpU.
’ =24’ 24y 24,
(29)
4 Qi (1); vk € NA\(}
Qe (t) i+ T
¢ Crw)

Fig. 4: Example state trajectories during [¢,#+w) for RHCP2.

¢) Unimodality of J;(u;): We first prove the following
lemma to eventually establish the unimodality of J;(u;).

Lemma 4: The RHCP2 objective function Ji(u;) (26)
satisfies the following properties:
lim Ji(u;) = 0 and (30)
u/-—>0
L; if Ay <0,Yk € S\{j},
hm Jl(l/tj) _ 1 1 k . l\{]} (31)
Uj—roo 0 otherwise,

where L; = —1/(1+ E—Z) (with ¢4, cg are as defined in (29)),
and all the limits are approached from below.

Proof: To establish these two results, we exploit the
A(u;), B(uj) notation introduced in (26). The result in (30)
is proved using the relationships: lim,;0A(u;) = 0 (note
that, from (29): ¢; + czlog(1 +¢3) = 0) and limuﬁoB(uj) =
¢s+ Y c7x > 0. Similarly, (31) is proved using the limit (given
by L’Hospital’s rule):

o Bly) { i Ay <0,V € A\{j},
j i oo otherwise.

The directions in which each of these limits are approached
can be established using the inequalities: A(u;) >0, B(u;) >0
(since A(u;) and B(u;) defined respectively in (27) and (28)
are contributions of the targets and the travel time p;; > 0) and
Ji(uj) <0 (based on the definition in (26)), for all u; > 0. W

Second, in the following lemma, we establish two possible
steady-state target error covariance values.

Lemma 5: 1If a target i € ¥ is sensed by an agent for an
infinite duration of time, its error covariance Q;(¢) is such that

lim Q;(f) = Qi 2 O : (32)
e —A;i+ /Ai2 + 0:G;
On the other hand, if a target i € ¥ is not sensed by an agent
for an infinite duration of time,

lim Q,’(l) _ { Qi,ss £ —% lf A; <O,
[0 oo if A; > 0.

Proof: The relationships in (32) and (33) can be obtained
by simply evaluating the limit — oo of the Q;(¢) expressions
proved in Lemma 2 and Lemma 3, respectively.]

Note that Q; ; and Qi,ss respectively defined in (32) and (33)
are two fixed characteristic values of a target i € ¥* where: 1)
0< Qi,ss < Qi,ss if A; <0, and 2) Qi,ss <0< Qi,ss if A; > 0.

Assumption 1: The initial error covariance value Q;(0) of
a target i € ¥ is such that: 1) Q;(0) € (Qis, Qi) if A; <O,
and 2) Q,(O) S (Qms, oo) if A; > 0.

The mildness of the above assumption can be justified using
the steady state target error covariance values established in
Lemma 5. In particular, note that this assumption is violated
by a target i € ¥ only if 1) Q;(0) < Q; 4, or 2) Q;(0) > Q; 4
with A; < 0. In the first case, based on (32), there should exist
a finite time 7; o > 0 where Q;(f; o) > Q; 4 occurs - if the target
i was not sensed by an agent during a finite interval [t,',o, t_i70] -
[0, 7;0]. In the second case, based on (33) (with A; < 0), there
should exist a finite time 7o > 0 where Q;(f;0) < Q; 4 occurs
- if the target i was sensed by an agent during a finite interval
[tio, fip] € [0,f;0]. This implies that even if Assumption 1 is
violated at some target i € ¥ (at the initial time = 0), we
can enforce it at an alternative initial time t =% ¢ simply by
temporarily regulating agent visits to the target i. Finally, we
point out that 0 <% o < T due to the exponentially fast error
covariance dynamics proved in (16) and (18).

Lemma 6: Under Assumption 1, the error covariance value
Q;(1) of a target i € ¥ at any time ¢ > 0 satisfies: 1) Q;(¢) €
(Qi7ss; Qi,ss) if A; <0, and 2) Qi(l) € (Qi,ss, oo) if A; > 0.
Proof: The proof follows directly from the results established
in Lemma 5. This is because, under Assumption 1, the proved
limiting values in (32) and (33) can respectively be considered
as minimum and maximum achievable Q;(¢) values. Note that
this result holds irrespective of how target i is sensed by the
agents, i.e., irrespective of the form of 1;(¢) signal in (3). W

Remark 2: Irrespective of Assumption 1, using the Lya-
punov stability analysis [32], it can be shown that, under
arbitrarily switched 1;(z) signals (agent visits), the closed
intervals [Q; g, Qi) and [Q;, o] are globally attractive
positively invariant sets for the error covariance dynamics (3)
under A; < 0 and A; > 0, respectively. Moreover, the said
attractiveness can be proved to be a finite-time attractiveness
to the corresponding open intervals if we omit the switching
signals (agent visits) of the form: 1) n;(¢) =0,V > 0if A; <0
and Q;(0) > Q;, and 2) n;(t) = 1,¥t > 0 if A; > 0 and
Q;(0) < Q; 4, respectively. In other words, by temporarily
regulating agent visits to a target i € ¥ where Assumption

(33)

1 is violated, we still can ensure the statement in Lemma 6
for that target i, but for any time ¢ > ;o where 0 <o < T.

Lemma 7: Under Assumption 1, for any target i € ¥ and

time ¢ > 0, 2Qi(t)A,' +Q; > 0.
Proof: First, note that in general Q;(¢) > 0 and Q; > 0.
Therefore, A; >0 = 2Q,(¢)A;+ Q; > 0. On the other hand, if
A; <0, according to Lemma 6, €;(f) < Qi,xs’ ie., Qi(f) < f%
as Qg = _% (from (33)). Therefore, A; <0 = Q;(r) <
—% < 2Q;(t)A; + Q; > 0. This completes the proof. H

We are now ready to prove the unimodality of J;(u;).

Theorem 1: Under Assumption 1, the objective function of
RHCP2 (.e., J_,(u]) in (26)) is unimodal.

Proof: Again we exploit the A(u;), B(u;) notation intro-
duced in (26). As argued in the proof of Lemma 4, A(u j) >0,
B(u;) >0 and J;(u;) <0 for all u; > 0. Now, according to the
limits of J;(u;) established in Lemma 4, it is clear that J;(u;)
has at least one or more local minimizers.

Through differentiating (26), we can obtain an equation
dJi(u;)

for the stationary points of Ji(u;) as: @ = 0 —=
A(-)dB(uj) —B(-)dA(uj) =0. For notational convenience, let
MJ duj I/l] du]- - ’

us re-state this equation as AB’ — BA’ = 0. Using the same
notation, the second derivative of J;(u;) can be written as
dz;’:}; i) A(Iil;g‘gﬁ - (A_Blf(ifil)g()/;%y). Therefore, the nature of
a stationary point of J;(u;) is determined by the sign of the
term AB” — BA”. Since we already know A >0 and B > 0, let
us focus on the A” and B” terms.

Using the A(u;) expression in (27), we can write

2 Aiu;
A — dZA(;{j) _ Cgczlj; jUj . 34
du; (c3+eMiti)?
From (29), ¢ >0 and ¢3 <0 <= Q)1 +pyj) > — %2 =

ﬁ = Q4 (the last two steps respectively used the relation-
i ;

ships v;1vj2 = —5* and (32). Since Q;(t+pi;) > Qj5 (from
Lemma 6), ¢3 < 0 and thus (34) implies A” <0 for all u; > 0.
Using the B(u;) expression in (28), we can write

2
-- 5(31) = Y QA+ Q) Pit) (35)
Y ke

Notice that (2Q(1)Ax + Qk) > 0,Vt > 0,k € A\{j} (from
Lemma 7) and 24%(Piit4j) > 0 for all u j = 0. Therefore, (35)
implies B” > 0 for all u; > 0.

So far, we have shown that A >0, B> 0, B” >0 while A” <
0, Yu; > 0. Therefore, AB” —BA” > 0 for all u; > 0. Hence,
all the stationary points of J;(u;) should be local minimizers.
Since J;(u;) and all its derivatives are continuous, it cannot
have two (or more) local minimizers without having a local
maximizer(s). Therefore, J;(u;) has only one stationary point
which is the global minimizer and thus J;(u;) is unimodal. W
d) Solving RHCP?2 for optimal control u’;: The solution

Uj; = [uj] of (21) is given by u} where

B//

argmin J;(u;). (36)
0<uj<H—pi

Since the above objective function J;(u;) is unimodal (from

Theorem 1) and its feasible space is convex, we use the

projected gradient descent [33] algorithm to efficiently obtain

the globally optimal control decision uj

e) Solving for Optimal Next-Visit Target j*: Using the
obtained u values in (36) for all j € Ai(t), we now know the
optimal trajectory costs J;(u}), Vj € 4i(r). Based on (22), the
optimal target to visit next is j* = argmin c 4, Ji(u5).

Thus, upon solving RHCP2, agent a departs from target i at
time ¢ and follows the path (i, j*) € & to visit target j*. In the
spirit of RHC, recall that the optimal control will be updated
upon the occurrence of the next event, which, in this case, will
be the arrival of the agent at j*, triggering the solution of an
instance of RHCP1 at j*.

B. Solution of RHCPI

We next consider the RHCP1, which is the most general
version among the two RHCP forms. In RHCP1, U;; in (21)
is directly U;;j = [u;,u;] and the planning horizon w is the same
as in (20), where w(Uj;) = u; + pij + u;.

a) Constraints: Based on the control constraints in (21),
note that in this RHCP1, u; and u; are constrained by 0 <
uj, 0<u; and wu;+u; <H— p;;, where the last constraint
follows form w(U;;) < H.

b) Objective: According to (23), the objective function
of RHCP1 is J;(t,t +w). To obtain an exact expression for J;,
it is decomposed using (24) as

T+ I+ Tie sion iy 92
(A +I)) + (I +TD) + Lk s gy Ui +I7)
JA 7}
T T AL A 71 7l . (37
A +I3) + (i +T5 4 Lrenon iy i)

Similar to (25), note that each term in (37) is also evaluated
over the planning horizon [t, 4+ w]. Therefore Ji' = J (1,1 +
w) =0 as any target k € .4;\{j} will not be visited during
the planning horizon (e.g., see Fig. 5). Moreover, we can
write JIA = Ji(t,1 4 u;), Jj-\ = Jj(l +u;i + pij,t +ui + pij + Llj),
Jil =],'(t + uit +ui + pij + Ltj),]jl- = Jj(l,t +u; + P,’j) and
]/i = Ji(t,t + u; + pij + I/lj).

Ji=-

Each of these terms can be
evaluated using Lemmas 2 and 3. These results together
with (37) give the objective function J;(¢, +w) required for
RHCP2 in the form J;(u;,u;) (again with a slight abuse of
notation) as
Alui,uj)
A(ui,uj) —I—B(ui, uj) ’
where A(ui,uj) £ J;A —‘r./;‘, B(ui,uj) £ ./iI —‘r—.ljl + Zkez/ﬂ\{j} Jl{'
Specifically, A(u;,u;) and B(u;,u;) take the following forms:
A(uj,uj) =ar +axlog(1 +a3efl"”")

+aglog(1 + ase® " + age % 4 aze¥4iti—Ait)

J_l(uuuj) =

(38)

+ agu; +aguj, (39)
B(ui,uj) =by + bou; + b3u + bae* 1"t 4 bse*i"i
+ Z kaeZAk(M[+Mj) +C(u,-,uj)7 (40)
ke A\{}
1 + czeiliui + C362Aiuj —+ C467)Ll'”i+2Aiuj
C(M[,I/tj) =C1 |: . ’
1 =+ cse il

where the coefficients a;,b;,c;,VI present in (39) and (40) are
given in appendix A.

¢) Unimodality of J;(uj,u;j): Proving the unimodality
of Ji(uj,u;j) is a challenging task due to the complexity of
the A(u;,u;) and B(u;,u;) expressions in (38). However, we

Q% (0); vk € N\(j}

witpg |

(t+w)

T Q. ()]
t (t+w) t

Fig. 5: Example state trajectories during [t,7 +w) for RHCP1.

establish that J;(u;,u;) is unimodal along the lines u; = 0
and u; = 0. Further, we show that J;(u;,u;) — O whenever
(ui,uj) — (0,0), u; — oo or u; — oo. Based on these theoretical
observations and the experimental results (see Fig. 6), we
conjecture that J_,-(ui,u j) is unimodal. However, to date, we
have not provided a formal proof of this.

Lemma 8: The RHCP1 objective function J;(u;, u;) satisfies
the following properties:

li Ji(uj,ui) =0 li Ji(ui,ui) =0
(a0 i) =0, () o) ilui-1)
. = L; if A <0, Vk € ‘/1{\{]}7
lim J;(u;,0) =
S i(1:,0) {0 otherwise, 41)
_ L ifA 0, Vk \{Jj
lim J;(0,u;) =< A <, ke AN
uj—reo ’ 0 otherwise,
where L; = —1/(1+2) and L;j = —1/(1 + 2) (with

by, ag, b3, ag are as defined in Appendix A).

Proof: The result in (41) can be obtained by following the
same steps used in the proof of Lemma 4.]

Theorem 2: Under Assumption 1, the functions J;(u;,0)
and J;(0,u;) are unimodal.

Proof: This proof basically follows the same steps as
the proof of Theorem 1. As an example, let us consider
proving the unimodality of J;(u;,0). First, J;(u;,0) is written
as J_,'(ui,()) = —A(u,)/(ﬁ(u,) —I—E(u,)) where A(u,) :A(u,-,O)
and B(u;) = B(u;,0). Therefore, similar to before, the nature
of the stationary points of J;(u;,0) is dependent on the sign of
AB" — BA”". Next, using A(u;,u;) and B(u;,u;) expressions in

. an_ d?B(u;)0) T d*A(ui0)
(39) and (40), we can derive B" = —a and A" = -2
in terms of the the coefficients shown in Appendix A. Fina{lly,
using Lemma 6 and Lemma 7 (under Assumption 1), it can
be proven that B” >0 and A” < 0,Vu; > 0. Since A >0, B >
0, Vu; > 0, we now can conclude that AB” — BA” > 0,Vu; > 0.

This result, together with the limits established in Lemma 8
implies that there exists only one stationary point in J;(;,0),
which is the global minimizer. Further, since J;(u;,0) and all
of its derivatives are continuous, it can also be concluded that
Ji(u;,0) is a unimodal function. Following the same steps, the

unimodality of J;(0,u;) can also be established. [|
0 0 0
g &) =005
£-005 £ 01 £
= e = -0.1
~ S ~
10 % 10 v
10 10 10
5 5 5 5 5 5
uj 0o u uj 0o u Uj 00 u,
x _ %k
(a)uj—O (®) uf =0 (c)ui,uj>0

Fig. 6: Three example cases of RHCP1 objective function

Ji(ui,u;j) plots (location of the minimizer: (u;,u})).

d) Solving RHCPI for Optimal Controls u;, u;: The
solution Uy; = [uf, uj] of (21) is given by (u;, u}) where
(u, u}) = argmin J;(u;,u;),
UjUj
0<u;, 0<uj,
uituj < H—pjj

In (42), the feasible space is convex and we already con-
jectured that the objective function is unimodal. Therefore,
again, we use the projected gradient descent algorithm [33] to
efficiently obtain the optimal control decisions (u;,u7).

e) Solving for Optimal Next-Visit Target j*: Using the
obtained U; = [u;,u}] values in (42) for all j € #;(t), we now
have at our disposal the optimal trajectory costs f,(u:‘,u’;) for
all j € 4#(t). Based on (22), the optimal neighbor to plan as
the next-visit target is given by j* = argmin;c 4 J_,(uf,uj)

Upon solving RHCP1, the agent remains stationary (active)
on target i for a duration of #; or until any other event occurs.
If the agent completes the determined active time u] (i.e., if
the corresponding event [2 — u}] occurs), the agent will have
to subsequently solve an instance of RHCP2 to determine
the next-visit target and depart from target i. However, if a
different event occurred before the anticipated event [h — u}],
the agent will have to re-solve RHCP1 to re-compute the
remaining active time at target i.

Remark 3: In the proposed RHC solution, there are only
three tunable parameters: 1) the upper bound H to the planning
horizon, 2) the gradient descent step size, and 3) the gradient
descent initial condition. For H, as stated before, selecting a
sufficiently large value (e.g., H =T —1) ensures that it does
not affect the RHC solutions. For the gradient descent step
size, there are established standard choices [33]. Finally, the
established unimodality properties imply that RHC solutions
are not affected by the gradient descent initial condition.

(42)

VI. IMPROVING COMPUTATIONAL EFFICIENCY USING
MACHINE LEARNING

Recall that when solving a RHCP, an agent a € 7 (residing
on a target i € ¥ at some time ¢ € [0,7]) has to solve the
optimization problems (21)-(22). The problem in (21) involves
solving |#;] different optimization problems (one for each
neighbor j € .4) to get the optimal continuous (real-valued)
controls: {U}; : j € 4;}. The problem in (22) is only a simple
numerical comparison that determines the optimal discrete
control: the next-visit j* € .4;. Upon solving this RHCP,
the agent will only use U;}* and j* to make its immediate
decisions. Hence, the continuous controls: {U};: j € A\{j"}}
found when solving (21) are wastefully discarded. This mo-
tivates the use of derived information {U;: j € i} (part
of which will surely be discarded) to introduce a learning
component as explained next.

Note that if j* can be determined ahead of solving (21), we
can prevent this waste of computational resources by limiting
the evaluation of (21) only for the pre-determined neighbor j*

to directly get Uij*. Roughly speaking, this approach should
|41

save a fraction %A of the processing (CPU) time required
to solve the RHéP (i.e., (21)-(22)).

a) Ideal Classification Function: The goal is to approx-
imate an ideal classification function F; : Rlsg | — A} where

J = EXi() = argmin Jy (Xi(t), Uiy w(U}))) (43)
JjeN
= argmin Jy (X;(t), argmin Jy (X;(1),Ujs w(Uij)); w(U}3))

JEN; U;jeU
where X;(t) = {Q;(t) : j € A7} is the local state at target i at
time ¢ and F;(X;(t)) (explicitly expressed in the second line) is
the result of combining equations (21) and (22). In the machine
learning literature, this kind of an ideal classification function
F;(X;) is commonly known as an underlying function (or a
target function) and X; is considered as a feature vector [34].

We emphasize that F; is strictly dependent on: (i) the current
target i € ¥/, (ii) the agent a € &/ and (iii) the RHCP type.
Therefore, F; in actuality should be written as Fi”’l (where
1 € {1,2} represents the RHCP type) even though we omit
doing so for notational simplicity.

b) Classifier Function: Due to the complexity of this
ideal classification function F;(X;) in (43), we cannot analyti-
cally simplify it to obtain a closed form solution for a generic
input (feature) X;. Therefore, we propose to use machine
learning techniques to model F;(X;) by an estimate of it -
which we denote as f;(X;; Z;). Here, &; represents a collected
data set of size L and the notation fj(X;;%;) implies that this
classifier function has been constructed (trained) based on Z;.
Note that similar to F;, both f; and Z; depend not only on the
target 7 but also on the agent a and the RHCP type /.

Since our aim is to develop a distributed on-line persistent
monitoring solution, the agent a itself has to collect this data
set Z; based on its very first L instants where a RHCP of type
[was fully solved at target i. Specifically, Z; can be thought of
as a set of input-output pairs: Z; = {(X;(7),j*(7)): 7€ Flal}
where ff’l is the set of the first L event times where agent a
fully solved a RHCP of type [while residing at target i.

c) Application of Neural Networks: In order to construct
the classifier function f;(X;; %;), among many commonly used
classification techniques such as linear classifiers, support
vector machines, kernel estimation techniques, etc., we chose
an Artificial Neural Networks (ANN) based approach. This
choice was made because of the key advantages that an ANN-
based classification approach holds [34]: (i) generality, (ii)
data-driven nature, (iii) non-linear modeling capability and (iv)
the ability to provide posterior probabilities.

Let us denote a shallow feed forward ANN model as y =
hi(x;®) where x is the |.#;]-dimensional input feature vector
and y (or h;(x;®)) is the |4;|-dimensional output vector under
the ANN weight parameters ®. For simplicity, we propose to
use only one hidden layer with ten neurons with hyperbolic
tangent sigmoid (fansig) activation functions. At the output
layer, we propose to use the softmax activation function so that
each component of the output (denoted as 7;(x;0), k € A7)
will be in the interval (0, 1).

Based on this ANN model, the classifier function is

7= fi(Xi:Z;) = argmax h; i (X;;0%),
ke
where ®* represents the optimal set of ANN weights obtained
by training the ANN model y = h;(x; ®) using the data set ;.
Specifically, these optimal weights ®* are determined through

(44)

back-propagation (and gradient descent) [34] such that the
(standard) cross-entropy based cost function H(®) evaluated
over the data set Z; = {(X;(1),j*(1)): 7€ l'fll} given by

H©)= 1 ¥ ¥ [1/'(2) =k} log (is(X(1):0))

rer‘i’" ke

FL((2) # kY log (1 - iy ((2):0)] + 2=],
is minimized (A represents the regularization constant).

d) RHC with Learning (RHC-L): Needless to say, the
optimal weights ®* (and hence the classifier function f;(X;; ;)
in (44)) are determined only when the agent a has accumulated
a data set Z; of length L. In other words, the agent a has to
be familiar enough with solving the RHCP type [at target i
in order to learn f;(X;; %;).

Upon learning f;(X;;), the RHCP given in (21) and (22)
can be solved very efficiently by simply evaluating:

5= fX0:9),
U, argmin Jy (X;(t),U;5 H),
/ Uif*EU

(45)

(46)
(47)

to obtain the optimal controls U (¢) = {U;}*’ 7} (i.e., without
having to solve (21) associated with targets j € 47\ {;*}). For
convenience, we call this approach the RHC-L method.

Notice that (47) (when compared to (21)) only involves
a single continuous optimization problem - which may even
be a redundant one to solve if the underlying RHCP is of
type 2 (i.e., a RHCP2) where knowing the next-visit target
(i.e., j* now approximated by j*) is sufficient to take the
immediate action. Therefore, the proposed RHC-L method can
be expected to have significantly lower processing times for
evaluating the RHCPs faced by the agents compared to the
RHC method - upon the completion of the learning phase.

The only drawback in this RHC-L approach when compared
to the original RHC method is the performance degradation
that can be expected due to learning-related errors, i.e., due
to the mismatch between F;(X;)(= j*) in (43) and its estimate
fi(Xi:) (= j*) learned in (44).

e) RHC with Active Learning (RHC-AL): We next pro-
pose a technique to suppress the aforementioned performance
degradation that stems from the learning-related errors. For
this purpose, we exploit the fact that ANN outputs are actually
estimates of the posterior probabilities [34], i.e.,

h,’ﬁk(Xi;("D*) ~ P(‘]>k = k|X,'), (48)
where, h;;(X;;©*) is the output of the ANN corresponding
to the neighbor k € .4; and P(j* = k|X;) is the probability of
the ideal classification function j* = F;(X;) in (43) resulting
F(X;) = k € 4, given the feature vector X;. Note that Fj(-)
here is an unknown function that we try to estimate and hence
J¥*(=F(X;)) is a random variable.

Based on (48) and (44), the mismatch error between F;(X;)
and f;(X;; ;) given the feature vector X; can be estimated as
ei(X;) £ P(Fi(Xi) # fi(Xi: Zi)|Xi) = 1 — maxpe_s; hix(Xi;0%).
Clearly, prior to solving the RHC-L problems (46) and (47),
the agent can evaluate this mismatch error metric ¢;(X;) and
if it falls above a certain threshold, it can resort to follow
the original RHC approach and solve (21) and (22), instead.
Moreover, in such a case, the obtained RHC solutions can be

incorporated into the data set &; and re-train the ANN (to
update the weight parameters ®* in 7;(X;; ®*) (44)).

We call this “active learning” approach the RHC-AL
method. It is important to highlight that this RHC-AL ap-
proach helps agents to make correct decisions in the face of
unfamiliar scenarios. Therefore, we can expect the RHC-AL
method to perform well compared to the RHC-L method -
only at the expense of trading off the advantage that the RHC-
L method had in terms of the processing times compared to
the RHC method.

Remark 4: The proposed on-line learning process can
alternatively be carried out off-line (if the system allows it)
as each agent (for each target i € ¥ and each RHCP type) can
synthetically generate data sets Z; exploiting the relationship
(43) with a set of randomly generated features X;. Moreover, if
the agents are homogeneous, the proposed distributed learning
process can be made centralized by allowing agents to share
their data sets (pertaining to the same targets and RHCP types).

Remark 5: The proposed RHC-L and RHC-AL solutions
in this section involve several tunable parameters related to
the used: 1) ANN architecture, 2) ANN learning process, and
3) the data set (size). As stated before, in experiments, these
were chosen to promote simplicity.

VII. SIMULATION RESULTS

This section contains the details of three different simulation
studies. In the first, we explore how the RHC-based agent
control method performs compared to four other agent control
techniques, in terms of the performance metric Jr in (7)
evaluated over a relatively short period: 7 = 50s. Second, we
study how well the persistent target state estimates provided
by different agent control methods can facilitate local target
state tracking control tasks. Finally, we explore the long-term
performance of agent controllers by selecting 7 = 750s. In
particular, we compare the agent control methods: RHC, RHC-
L and RHC-AL in terms of the performance metric Jr and the
average processing (CPU) time taken to solve each RHCP.

Persistent Monitoring Problem Configurations: In this
section, we consider the four randomly generated persistent
monitoring problem configurations (PCs) shown in Fig. 7.
In there, blue circles represent the targets and dark black
lines indicate the trajectory segments that are available for
the agents to travel between targets. Agents and target error
covariance values at t = (0 are represented by red triangles and
yellow vertical bars/blue texts, respectively (see also Fig. 9 for
PCs at t =T). The PCs 1,2 have seven targets and two agents
each and the PCs 3,4 have ten targets and four agents each. In
each PC, the target parameters were selected using the uniform
distribution U[-,-] as follows: ¥; ~ U[0,1], A; ~ U[0.01,0.41],
B; ~ U[0.01,0.41], Q; ~ U[0.1,2.1], R; ~ U[2,10] and we
set H; =1 for all i € ¥. If the distance between any two
targets is less than a certain threshold o, a linear shaped
trajectory segment was deployed between those targets. For
PC 1, 0 = 0.7 (dense) was used and for the reset, o = 0.45
(sparse) was used. Each agent is assumed to travel with a unit
speed on these trajectory segments and H = 10 is used.

(a) PC 1

! Cost: 0
4882 Time: 0

! Cost: 0

0.4703 _0.3437
Time: 0 y 9

4

(c) PC 3 (d) PC 4

Fig. 7: Four randomly generated persistent monitoring problem
configurations (PCs) and their initial conditions.

A. Simulation Study 1: The effect of agent controls on target
state estimation over a relatively short period.

In this section, we compare the performance metric Jr
(defined in (7) with T = 50) observed for the four PCs shown
in Fig. 7 when using five different agent control methods:
(i) the centralized off-line periodic control (MTSP) method
proposed in [10] (ii) a basic distributed on-line control (BDC)
method (which is an ad-hoc control method), (iii) the proposed
RHC method, (iv) a periodic version of the BDC (BDC-
P) method and (v) a periodic version of the RHC (RHC-P)
method. In essence, this simulation study is aimed to observe
the effectiveness of the overall target state estimation process
(as it is directly reflected by the metric Jr) rendered by the
aforementioned different agent controllers. According to (3),
the choice of target controls ;(¢) in (1) do not affect J7. Hence
in this study, we set: v;(tr) =0, Yie ¥, Vr €[0,T].

a) The Basic Distributed Control (BDC) Method: The
BDC method uses the same event-driven control architecture
as the RHC method. However, instead of u; and j* given in
(21) and (22), it uses: uf = argming>o H{Q;(r+7) < (1+
€)Q; s}, and j* = argmax;c s, Qj(t) with € =0.075 and
Q; s defined in (32). In all, the BDC method forces an agent
to dwell at each visited target i until its error covariance ;(r)
drops to an € fraction closer to the corresponding €; ;, value,
and then, the next-visit target is determined as the neighbor
J € Ai(t) with the maximum Q;(r) value.

b) The Centralized Off-line Control (MTSP) Method
[10]: Unlike the distributed on-line agent control methods:
RHC and BDC, the MTSP method proposed in [10] fully
computes the agent trajectories in a centralized off-line stage,
focusing on minimizing an infinite horizon objective function:

max limsup tr(Q;(¢)) (49)
icV

t—soo
via selecting periodic agent trajectories. However, this objec-

tive is in the same spirit of Jr (7) as it also aims to maintain

the target error covariances as low as possible.

The MTSP method first uses the spectral clustering algo-
rithm [35] to decompose the target topology ¢ into sub-graphs
among the agents. Then, on each sub-graph, starting from the
traveling salesman problem (TSP) solution, a greedy target
visitation cycle is constructed. Essentially, this set of target
visitation cycles is a candidate solution for the famous multi-
TSP [36] (hence the acronym: MTSP). Finally, the dwell-time
spent at each target (on the constructed target visitation cycle)
is found using a golden ratio search algorithm exploiting many
interesting mathematical properties.

¢) Hybrid Methods: BDC-P and RHC-P: In some
applications, having a periodicity in visiting targets can be
a crucial constraint (e.g., bus routes). Even in such cases, the
proposed RHC method (or the BDC method) can still be used
to make the dwell-time decisions at each visited target instead
of using a fixed set of predetermined dwell-times like in the
MTSP method. However, the optimal next-visit target, i.e., j*
in (22) (or in BDC method) would now be given by the off-
line computed target visitation cycles (similar to the MTSP
method). We use the label RHC-P (or BDC-P) to represent
such a hybrid periodic agent control method. Note that in this
RHC-P method, when solving for the dwell-times, (i.e., (21)),
the RHCP objective (24) should only consider neighboring
targets in the agent’s target visitation cycle. Pertaining to the
PCs shown in Fig. 7, target clusters and corresponding periodic
target visitation cycles used by the periodic agent control
methods (MTSP, BDC-P and RHC-P) are shown in Fig. 8.

1

08 08
06 0.6

> 1 > d

04 04 7

5 G 2

0.2 3 0.2 ®

\\

o SNy 0 2}

2 04 06 08 °1 X

X

0 0.

(a) PC 1

6
5
0.8 S 0.8
1
06 2 06 9
> >
10 04

0.2 0.2

. ‘%\N? o 10
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
X X
(c) PC3 (d) PC 4

Fig. 8: Target clusters and periodic agent trajectories (magenta
contours) used by the methods: MTSP, BDC-P and RHC-P.

Results and Discussion: Obtained results from the
comparison are summarized in Tab. I. According to these
results, on average, the RHC method has outperformed all the
other agent control methods. It can be seen that the RHC-P
method has the second-best performance level, and it has even
performed slightly better than the RHC method in two cases.
This observation is justifiable because the RHC-P method has

a significant centralized and off-line component compared to
the RHC method, which is completely distributed and on-

TABLE II: The worst-case performance comparison (i.e., Jy
in (50)) under five agent control methods in four PCs.

line. Corresponding final states of the PCs given by the RHC The Worst-Case Agent Control Mechanism
method are shown in Fig. 9. Target State Estimator | Off-line Off-line/On-line On-line
Performance (Jy) MTSP BDC-P | RHC-P BDC RHC
. .. 1 4023 | 28834 | 50.19 | 9633 | 7157
TABLE I: Performance comparison of target state estimation PC No 5 3303 | 3%6.19 5562 | 27042 T 3229
(i.e., Jr in (7)) under five agent control methods in four PCs. : 3 4754 | 42753 46.52 | 386.66 | 306.84
4 11574 | 40338 | 49.26 | 487.65 | 77.41
. o Agent Control Mechanism Average: 6038 | 42636 | 5290 | 310.27 | 122.03
Targer State E“z;““)tor Offfine | Off-line/On-Tine On-Tine
CHOMMAnce 77 MTSP | BDC-P | RHC-P | BDC | RHC
1 99.88 | 11923 | 84.41 | 88.68 | 88.16 . .
e N 3 90.08 | 15525 7780 | 10175 | 70.51 target states effectively. Here, we assume each target has its
0. . .
3 133.50 | 268.85 | 128.90 | 162.48 | 132.83 own tracking control task that needs to be achieved through
4 187.88 | 231.28 | 123.70 | 174.32 | 113.30 . .
Average: 3783 119365 T 10370 T 131.81 | 10120 a simple local state feedback control mechanism. Clearly,

! Cost: 70.509
Time: 50

! Cost: 88.156
Time: 50

(a PC1

"I Cost: 13283 9,926 09.15
Time: 50 9.188
0.8 5
0.79

(b) PC 2

"I Cost: 113.3917.24
Time: 50 S
i

(c)PC3 (d) PC 4

Fig. 9: Final state of the PCs after using the RHC method.
The Worst-Case Performance: Inspired by the objective

function (49) used in [10] (and also to make the performance

comparison with [10] fair), we define the worst-case perfor-

mance of an agent controller over the period [0, 7] as Ji where
max

Qi(1)).
eV, te[O,T]tr((t)) (50)

In our case, Jy is simply the maximum recorded target error
covariance value in the network over the period [0,7]. For
the same experiments that gave the results shown in Tab.
I, we have evaluated the corresponding Jy (50) value and
the obtained results are summarized in Tab. II. According
to these results, it is evident that the periodic agent control
methods have an advantage compared to the fully distributed
and on-line methods like RHC and BDC in terms of worst-case
performance. Nevertheless, the fact that the RHC-P method
has obtained the best average Ji value (and the second-best
average Jr value as shown in Tab. I) implies that the proposed
RHC method can successfully be adopted to address different
problem settings (with different constraints, objectives, etc.).

Jw =

B. Simulation Study 2: The effect of agent controls on local
target state tracking control

In this simulation study, we explore a byproduct of achiev-
ing reasonable target state estimates: the ability to control the

for this purpose, each target has to rely on its own state
estimate - of which the accuracy deteriorates when the target
is not visited by an agent regularly. We define a new metric
Jc to represent the performance of the overall rarget state
tracking control process and compare the obtained Jc values
by different agent controllers under different PCs.

a) Target Control Mechanism: In this simulation study,
we assume that each target i € ¥ has to control its state ¢;(r)
such that a signal y;(t) = C;;(t) + D;, tracks a given reference
signal r;(¢) (C;, D; are also given).

Let us define the tracking error as e;(t) = y;(t) — ri(t).
In order to make e;(r) follow the asymptotically stable
dynamics: ¢; = —Kje;(t) (with K; > 0), the target i needs
to select its control input v;(¢) in (1) as (also recall (13))
v(t) = —ge (CilAi+Ki)gi(r) + KiDi — (7i(t) + Kiri(1))) -
However, since target i is unaware of its state ¢;, naturally,
the target state tracking controller can use the state
estimate ¢; in the above state feedback control law as
vi(t) = —ﬁ (C,'(A,' +Ki)$i(t) +K;D; — (i4(t) —|—K,~r,-(t))) . To
measure the performance of this target state tracking control
task, we propose to use the performance metric Jc where

1 T
Je 2 [el s1)
T Jo
b) Results and Discussion: In this study, we set C; = 1,
D; =0, K; =2 and select the reference signal that needs to
be tracked as: ri(t) = 10sin(2¢t +1i),Vi € #,t € [0,T] with
T = 50s. The performance metric Jc observed for different
PCs with different agent controllers are summarized in Tab
III. Similar to before, the obtained results show that the RHC
method, on average, has outperformed all the other agent
controllers. Corresponding final states of the PCs observed
under the RHC method are shown in Fig. 10. The red vertical
bars (drawn on top of yellow vertical bars) represent the
absolute tracking error |e;(¢)| of each target i at r = T. These
results imply that having an agent control mechanism that
provides superior target state estimation capabilities (i.e., lower
Jr) indirectly enables the targets to have better control over
their states (i.e., lower J¢).
C. Simulation Study 3: Long term performance with learning

In both previous simulation studies, we focused on a rel-
atively short period (7T = 50s) that essentially encompassed
the transient phase of the PMN system (which, in general,
is the most challenging part to control/regulate). However, in
this final simulation study, we aim to explore the performance
of agent controllers over a lengthy period (T = 750s) that

TABLE III: Performance comparison of target state tracking
(i.e., Jc in (51)) under five agent control methods in four PCs.

Agent Control Mechanism

Tlféffz‘r;‘;‘;zec(‘}r;‘rx"l}e; OffTne | Off-Tine/on-Tine On-Tne
MTSP | BDC.P | RHC-P | BDC | REC
1 5797 | 5199 | 35099 | 4840 | 48.12
PC No 2 5166 | 5680 | 5235 | 5554 | 50.14
: 3 73.81 | 8140 | 7408 | 80.80 | 7433
i 8576 | 8634 | 7735 | 86.61 | 7581
Average: 6730 | 69.13 | 6369 | 6786 | 62.10

! Cost: 70.509
Time: 50

! Cost: 88.156
Time: 50
Ctrl. Cost: 48.119

Ctrl. Cost: 50.443

1
Cost: 132.83 % F089.15

Time: 50 4

! Cost: 113.3
9.188 Time: 50 °
5 08 11.22
d

0/Ctrl. Caost: 74.33 1 (—) 0
0 0.2 0.4 0.6 0.8 71 0 0.2 0.4 0.6 0.8 1
X X

(c)PC3 (d PC 4

Fig. 10: Final state of the PCs after using the RHC method
with target state tracking control.

includes both the transient and the steady-state phases of the
PMN system. Note that this kind of a problem setup is ideal
for deploying the machine learning influenced RHC solutions:
RHC-L and RHC-AL proposed in Section VI. Therefore, in
this study, we specifically compare the three controllers: RHC,
RHC-L and RHC-AL for PCs 1 and 2, in terms of the evolution
of: (i) the performance metric J; (7) and (ii) the average
processing time (commonly known as the “CPU time”) taken
to solve a RHCP, throughout the period ¢ € [0,T]. Note that
these CPU times were recorded on an Intel Core i7-8700 CPU
3.20 GHz Processor with a 32 GB RAM.

As shown in Figs. 11(a) and 12(a), the RHC method takes
the highest amount of CPU time to solve a RHCP. Its upward
trend in the initial stages of the simulations indicates a tran-
sient phase of the processor (due to system cache utilization).
We point out that this particular transient phase is independent
of that of J; curves shown in respective Figs. 11(b) and 12(b).
Table IV shows that based on the steady-state averages for PC
I (in Fig. 11), the RHC-L method spends 86.5% less CPU
time compared to the RHC method but at a loss of 4.7% in
performance. For the same PC, the RHC-AL method shows a
66.7% reduction in CPU time while having only a 0.1% loss
in performance.

In these simulations of RHC-L and RHC-AL methods, for
the on-line training of classifiers f;(X;; %;) (required in (46)),
we have selected the data set size L =25 (i.e., |Z;| =25). As

implied by Figs. 11(a) and 12(a), agents have been able to col-
lect that amount of data points well within their transient phase
(of the J; curve). Even though learning based on transient data
has a few advantages, it is mostly regarded as ineffective -
especially if the learned controller would mostly operate in a
steady-state condition. Therefore, we next extend the data set
size to be L =|%;| =75 and execute the same RHC-L method,
which henceforth is called the RHC-LE method. According
to the summarized steady-state averaged data given in Tab
IV, for PC 1 and 2, the RHC-LE method respectively shows
77.5% and 68.9% reductions in CPU time compared to the
RHC method - while having almost no loss in performance
(< 0.001%) in both cases. Based on this observation, it is
clear that the proposed RHC-LE method significantly improves
computational efficiency with almost no loss in performance.

Remark 6: We attribute the observed superior performance
of the proposed control solution to its specifically designed
agent controllers (21)-(22). Apart from achieving such per-
formance, the proposed agent controllers have many desirable
practical qualities (e.g., computationally efficient, distributed,
on-line, asynchronous and event-driven); moreover, they are
the theoretically optimal controllers in their respective spatial
and temporal neighborhoods (as explained using the estab-
lished theoretical results in Theorems 1 and 2). However, while
these practical qualities are coveted, they also make it difficult
to establish global performance guarantees beyond the local
performance guarantees [10], [12].

Remark 7: The reported experimental results in Tables I
and II support the goal of this paper to develop a com-
putationally efficient, distributed, on-line, and event-driven
persistent monitoring solution. In particular, they show that
the proposed RHC method performs better than other com-
putationally expensive methods such as MTSP and RHC-P
(both involve significant off-line computation components).
Moreover, according to Table IV, the introduced learning-
based computational efficiency improvement (e.g., RHC-LE
method) does not compromise performance to achieve com-
putational efficiency improvements. Therefore, it is clear that
the improvement in computational efficiency (and achieving
any other practical quality) has not come at the cost of a
performance loss [14].

VIII. CONCLUSION

The goal of the estimation problem considered in this paper
is to observe a distributed set of target states in a network
using a mobile fleet of agents so as to minimize an overall
measure of estimation error covariance evaluated over a finite
period. Compared to existing centralized off-line agent control
solutions, a novel computationally efficient distributed on-line
solution is proposed based on event-driven receding horizon
control. In particular, each agent determines their optimal
planning horizon and the immediate sequence of optimal
decisions at each event of interest faced in its trajectory.
Numerical results show higher performance levels in multiple
aspects than existing other centralized and distributed agent
control methods. Future work aim to generalize the proposed
solution for multidimensional target state dynamics.

e RHC-L
; 10 100 S
o
o RHC /
21 8 RHC-L 80 - RII(; -
7a - ~ / RHC-LE
£c R,H(‘—Lh S o r RHC-AL
226 RHC-AL £ 60
24 &
02 92
g8 4 40
s 20 >
s \ 60 100 140 RHO
5 2 \w 2 AL
s RHC-LE
= RHC-AL
0 0
0 200 400 600 800 0 200 400 600
Simulation Time (t) Simulation Time ()

(a (b)

Fig. 11: Evolution of the average processing time taken
solve a RHCP and the objective function value for PC 1.

»
o
©
=}

IS

I
o

w

75

N

70 b————
50 150 25

Moving average of processing (CPU) time
taken to solve a RHCP
S
o

Sl : e
U\ "
1 VA A A 10 RHC-LE
RHC-AL
0.5 0
0 200 400 600 800 0 200 400 600
Simulation Time (t) Simulation Time ()
(a) (b)

Fig. 12: Evolution of the average processing time taken
solve a RHCP and the objective function value for PC 2.

800

800

to

to

TABLE IV: Average over the steady-state period ¢ € [500,750]

of the curves in Figs. 11 and 12.

Average over steady-state: RHC RHC-L RHC-LE | RHC-AL
(Interval: [500, 750]) (L=25) (L=175) (L=25)
PC 1 CPU Time 10.589 1.429 2.379 3.526
J; 96.132 100.611 96.132 96.269
PC 2 CPU Time 3.791 0.967 1.181 1.733
J; 80.289 82.190 80.289 83.968
APPENDIX
A. Coefficients of the RHCPI1 objective function (38)
1 Gi—2Av; 1 —-GiQ;—0Q; 1
Gj TL2A(vp—vi)l Gi T LQi(via—vir) G
GiQ;+0Qivip 1 ij(ZAij + Qj)€2Ajpij
a3 =————————, 4= —, 45 = —)
GiQ;i+ Qivit G, Qjvja+24;
Gj — 2AjVj2 1 1
ag=————"—-"a7=—as, dg = —, g = —,
6 Gj*ZAjVj] ! 5 8 Vil ’ Vi2
Qi Qj Q)
by = “aa (1424ip;j) — E?(l +24;pij) — 2,
Ok Qi Ok
-) [— 1+24 p~)+—} by=—Y) —
7 (kMij y D2)
keAN\{j} 44, 2A keMzAk
1
by = — %, 4= — (0 +24,;Q;)e*iPi
= 2A; 4A2
ke /\{Jj} 7
Qi 2A:0; 2A,0;
bs = —=e“NiPii b = —— (O + 24582) e~ Pis |
5 442 6k 4A%(Qk k%)
1 V[lQi—l 2A;p;
cl = — , OQ=——F7——, 3=—e"""Y,
2Avit vinQi — 1

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

_GiQi+ Qv
GiQi+ Qi
REFERENCES

c4=—C2, C5=

S. Welikala and C. G. Cassandras, “Event-Driven Receding Horizon
Control for Distributed Estimation in Network Systems,” in Proc. of
American Control Conf., 2021, pp. 1559-1564.

S. He, H. S. Shin, S. Xu, and A. Tsourdos, “Distributed Estimation
Over a Low-Cost Sensor Network: A Review of State-Of-The-Art,”
Information Fusion, vol. 54, pp. 21-43, 2020.

M. Zhong and C. G. Cassandras, “Distributed Coverage Control and
Data Collection with Mobile Sensor Networks,” IEEE Trans. on Auto-
matic Control, vol. 56, no. 10, pp. 2445-2455, 2011.

N. Zhou, C. G. Cassandras, X. Yu, and S. B. Andersson, “Optimal
Threshold-Based Distributed Control Policies for Persistent Monitoring
on Graphs,” in Proc. of American Control Conf., 2019, pp. 2030-2035.
J. Trevathan and R. Johnstone, “Smart Environmental Monitoring and
Assessment Technologies (SEMAT)—A New Paradigm for Low-Cost,
Remote Aquatic Environmental Monitoring,” Sensors (Switzerland),
vol. 18, no. 7, 2018.

S. L. Smith, M. Schwager, and D. Rus, “Persistent Monitoring of
Changing Environments Using a Robot with Limited Range Sensing,”
in Proc. of IEEE Intl. Conf. on Robotics and Automation, 2011, pp.
5448-5455.

K. Leahy, D. Zhou, C. L. Vasile, K. Oikonomopoulos, M. Schwager, and
C. Belta, “Persistent Surveillance for Unmanned Aerial Vehicles Subject
to Charging and Temporal Logic Constraints,” Autonomous Robots,
vol. 40, no. 8, pp. 1363-1378, 2016.

N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot Rendezvous
Planning for Recharging in Persistent Tasks,” IEEE Trans. on Robotics,
vol. 31, no. 1, pp. 128-142, 2015.

N. Rezazadeh and S. S. Kia, “A Sub-Modular Receding Horizon
Approach to Persistent Monitoring for A Group of Mobile Agents Over
an Urban Area,” in IFAC-PapersOnlLine, vol. 52, no. 20, 2019, pp. 217-
222.

S. C. Pinto, S. B. Andersson, J. M. Hendrickx, and C. G. Cassandras,
“Optimal Minimax Mobile Sensor Scheduling Over a Network,” in Proc.
of American Control Conf. (to appear), 2021.

J. Yu, S. Karaman, and D. Rus, “Persistent Monitoring of Events With
Stochastic Arrivals at Multiple Stations,” IEEE Trans. on Robotics,
vol. 31, no. 3, pp. 521-535, 2015.

S. Welikala and C. G. Cassandras, “Greedy Initialization for Distributed
Persistent Monitoring in Network Systems,” Automatica, vol. 134, p.
109943, 2021.

S. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and
D. Casbeer, “The Generalized Persistent Monitoring Problem,” in Proc.
of American Control Conf., 2019, pp. 2783-2788.

S. Welikala and C. G. Cassandras, “Event-Driven Receding Horizon
Control for Distributed Persistent Monitoring in Network Systems,”
Automatica, vol. 127, p. 109519, 2021.

Y.-W. Wang, Y.-W. Wei, X.-K. Liu, N. Zhou, and C. G. Cassandras,
“Optimal Persistent Monitoring Using Second-Order Agents with Phys-
ical Constraints,” IEEE Trans. on Automatic Control, vol. 64, no. 8, pp.
3239-3252, 2017.

P. Maini, K. Yu, P. B. Sujit, and P. Tokekar, “Persistent Monitoring with
Refueling on a Terrain Using a Team of Aerial and Ground Robots,” in
Proc. of IEEE Intl. Conf. on Intelligent Robots and Systems, 2018, pp.
8493-8498.

N. Zhou, X. Yu, S. B. Andersson, and C. G. Cassandras, “Optimal
Event-Driven Multi-Agent Persistent Monitoring of a Finite Set of Data
Sources,” IEEE Trans. on Automatic Control, vol. 63, no. 12, pp. 4204—
4217, 2018.

C. Song, L. Liu, G. Feng, and S. Xu, “Optimal Control for Multi-Agent
Persistent Monitoring,” Automatica, vol. 50, no. 6, pp. 1663-1668, 2014.
W. Li and C. G. Cassandras, “A Cooperative Receding Horizon Con-
troller for Multi-Vehicle Uncertain Environments,” IEEE Trans. on
Automatic Control, vol. 51, no. 2, pp. 242-257, 2006.

S. S. Park, Y. Min, J. S. Ha, D. H. Cho, and H. L. Choi, “A
Distributed ADMM Approach to Non-Myopic Path Planning for Multi-
Target Tracking,” IEEE Access, vol. 7, pp. 163 589-163 603, 2019.

X. Lan and M. Schwager, “Planning Periodic Persistent Monitoring
Trajectories for Sensing Robots in Gaussian Random Fields,” in In Proc.
of IEEE Intl. Conf. on Robotics and Automation, 2013, pp. 2415-2420.
Y. Khazaeni and C. G. Cassandras, “Event-Driven Cooperative Receding
Horizon Control for Multi-Agent Systems in Uncertain Environments,”
IEEE Trans. on Control of Network Systems, vol. 5, no. 1, pp. 409-422,
2018.

[23] R. Chen and C. G. Cassandras, “Optimal Assignments in Mobility-
on-Demand Systems Using Event-Driven Receding Horizon Control,”
IEEE Trans. on Intelligent Transportation Systems, pp. 1-15, 2020.

[Online]. Available: https://doi.org/10.1109/TITS.2020.3030218

A. Ma, K. Liu, Q. Zhang, T. Liu, and Y. Xia, “Event-Triggered
Distributed MPC with Variable Prediction Horizon,” IEEE Trans. on
Automatic Control, vol. 66, no. 10, pp. 4873-4880, 2020.

S. Welikala and C. G. Cassandras, “Event-Driven Receding Horizon
Control of Energy-Aware Dynamic Agents for Distributed Persistent
Monitoring,” arXiv e-prints, p. 2102.12963, 2021. [Online]. Available:
http://arxiv.org/abs/2102.12963

S. C. Pinto, S. B. Andersson, J. M. Hendrickx, and C. G. Cassandras,
“Multi-Agent Infinite Horizon Persistent Monitoring of Targets with
Uncertain States in Multi-Dimensional Environments,” in Proc. of 21st
IFAC World Congress, 2020.

M. Athans and E. Tse, “A Direct Derivation of the Optimal Linear Filter
Using the Maximum Principle,” IEEE Trans. on Automatic Control,
vol. 12, no. 6, pp. 690-698, 1967.

J. Nazarzadeh, M. Razzaghi, and K. Y. Nikravesh, “Solution of the
Matrix Riccati Equation for the Linear Quadratic Control Problems,”
Mathematical and Computer Modelling, vol. 27, no. 7, pp. 51-55, 1998.

[24]

[25]

[26]

[27]

(28]

[29] B. Friedland, Control System Design: An Introduction to State-Space

Methods. Dover Publications, 2012.

L. Dieci and A. Papini, “Conditioning of the Exponential of a Block
Triangular Matrix,” Numerical Algorithms, vol. 28, no. 1-4, pp. 137-
150, 2001.

S. Welikala and C. G. Cassandras, “Event-Driven Receding Horizon
Control for Distributed Estimation in Network Systems,” arXiv e-prints,
p. 2009.11958, 2020. [Online]. Available: https://arxiv.org/abs/2009.
11958

H. Lin and P. J. Antsaklis, Hybrid Dynamical Systems: An Introduction
to Control and Verification. now, 2014. [Online]. Available:
https://ieeexplore.ieee.org/document/8187294

[30]

(31]

[32]

(33]
[34]

D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 2016.

G. P. Zhang, “Neural Networks for Classification: A Survey,” IEEE
Trans. on Systems, Man and Cybernetics Part C: Applications and
Reviews, vol. 30, no. 4, pp. 451-462, 2000.

U. von Luxburg, “A Tutorial on Spectral Clustering,” arXiv e-prints, p.
0711.0189, 2007. [Online]. Available: http://arxiv.org/abs/0711.0189

T. Bektas, “The Multiple Traveling Salesman Problem: An Overview

of Formulations and Solution Procedures,” Omega, vol. 34, no. 3, pp.
209-219, 2006.

[35]

[36]

Shirantha Welikala received the B.Sc. de-
gree in electrical and electronic engineering
from University of Peradeniya, Peradeniya,
Sri Lanka, in 2015 and the M.Sc. and the
Ph.D. degrees in systems engineering from
Boston University, Brookline, MA, USA, in
2019 and 2021, respectively. From 2015 to
2017, he was with the Department of Elec-
trical and Electronic Engineering, University of Peradeniya,
Sri Lanka, where he worked first as a Temporary Instructor
and subsequently as a Research Assistant. He is currently a
Postdoctoral Research Fellow in the Department of Electrical
Engineering, University of Notre Dame, South Bend, IN, USA.
His main research interests include control and optimization of
cooperative multi-agent systems (focusing coverage and mon-
itoring applications), control of networked systems, passivity,
symbolic control, machine-learning, robotics, and smart grid.
s, including the 2015 Ceylon Electricity Board Gold Medal,
the 2019 President’s Award for Scientific Research in Sri
Lanka and the 2021 Outstanding Ph.D. Dissertation Award
in Systems Engineering.

Christos G. Cassandras is Distinguished
Professor of Engineering at Boston Uni-
versity. He is Head of the Division of
Systems Engineering, Professor of Elec-
trical and Computer Engineering, and co-
founder of Boston University’s Center
‘ /B for Information and Systems Engineering
(CISE). He received degrees from Yale University, Stanford
University, and Harvard University. In 1982-84 he was with
ITP Boston, Inc. where he worked on the design of automated
manufacturing systems. In 1984-1996 he was a faculty mem-
ber at the Department of Electrical and Computer Engineering,
University of Massachusetts/Amherst. He specializes in the
areas of discrete event and hybrid systems, cooperative con-
trol, stochastic optimization, and computer simulation, with
applications to computer and sensor networks, manufacturing
systems, and transportation systems. He has published about
450 refereed papers in these areas, and six books. He has
guest-edited several technical journal issues and currently
serves on several journal Editorial Boards, including Editor
of Automatica. In addition to his academic activities, he has
worked extensively with industrial organizations on various
systems integration projects and the development of decision
support software. He has most recently collaborated with The
MathWorks, Inc. in the development of the discrete event and
hybrid system simulator SimEvents.

Dr. Cassandras was Editor-in-Chief of the IEEE Transac-
tions on Automatic Control from 1998 through 2009 and has
also served as Editor for Technical Notes and Correspondence
and Associate Editor. He was the 2012 President of the IEEE
Control Systems Society (CSS). He has also served as Vice
President for Publications and on the Board of Governors of
the CSS, as well as on several IEEE committees, and has
chaired several conferences. He has been a plenary/keynote
speaker at numerous international conferences, including the
2017 IFAC World Congress, the American Control Conference
in 2001 and the IEEE Conference on Decision and Control
in 2002 and 2016, and has also been an IEEE Distinguished
Lecturer.

He is the recipient of several awards, including the 2011
IEEE Control Systems Technology Award, the Distinguished
Member Award of the IEEE Control Systems Society (2006),
the 1999 Harold Chestnut Prize (IFAC Best Control Engi-
neering Textbook) for Discrete Event Systems: Modeling and
Performance Analysis, a 2011 prize and a 2014 prize for the
IBM/IEEE Smarter Planet Challenge competition, the 2014
Engineering Distinguished Scholar Award at Boston Univer-
sity, several honorary professorships, a 1991 Lilly Fellowship
and a 2012 Kern Fellowship. He is a member of Phi Beta
Kappa and Tau Beta Pi. He is also a Fellow of the IEEE and
a Fellow of the IFAC.

https://doi.org/10.1109/TITS.2020.3030218
http://arxiv.org/abs/2102.12963
https://arxiv.org/abs/2009.11958
https://arxiv.org/abs/2009.11958
https://ieeexplore.ieee.org/document/8187294
http://arxiv.org/abs/0711.0189

	Introduction
	Problem Formulation
	Preliminary Results
	RHC problem (RHCP) formulation
	Solving Event-Driven RHCPs
	Solution of RHCP2
	Solution of RHCP1

	Improving Computational Efficiency Using Machine Learning
	Simulation Results
	Simulation Study 1: The effect of agent controls on target state estimation over a relatively short period.
	Simulation Study 2: The effect of agent controls on local target state tracking control
	Simulation Study 3: Long term performance with learning

	Conclusion
	Appendix
	Coefficients of the RHCP1 objective function (38)

	References

