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A Distributed Computationally Aware Quantizer
Design via Hyper Binning

Derya Malak and Muriel Médard

Abstract—We design a distributed function-aware quantization
scheme for distributed functional compression. We consider 2
correlated sources X1 and X2 and a destination that seeks an
estimate f̂ for the outcome of a continuous function f(X1, X2).
We develop a compression scheme called hyper binning in order
to quantize f via minimizing the entropy of joint source partition-
ing. Hyper binning is a natural generalization of Cover’s random
code construction for the asymptotically optimal Slepian-Wolf
encoding scheme that makes use of orthogonal binning. The key
idea behind this approach is to use linear discriminant analysis
in order to characterize different source feature combinations.
This scheme captures the correlation between the sources and
the function’s structure as a means of dimensionality reduction.
We investigate the performance of hyper binning for different
source distributions and identify which classes of sources entail
more partitioning to achieve better function approximation.
Our approach brings an information theory perspective to the
traditional vector quantization technique from signal processing.

Index Terms—Function-aware quantization, function coding,
computation, hyper binning, orthogonal binning.

I. INTRODUCTION

Compression and processing of large amount of data is a
challenge in various applications. From an information theory
perspective, there are asymptotic optimal approaches to the
distributed source compression problem that can achieve arbi-
trarily small decoding error probability for large blocklengths,
such as noiseless distributed coding of correlated sources as
proposed by Slepian-Wolf [2], and their extensions [3]–[5],
which are based on orthogonal binning of typical sequences.
Practical Slepian-Wolf encoding schemes include coset codes
[4], and turbo codes [6]. Other examples include rate region
characterization using a graph-based approach, such as [7]–
[10], and coding for computation with communication con-
straints [11], [12]. While some approaches focus on network
coding for computing linear functions, such as [13], [14], there
exist works exploiting functions with special structures, e.g.,
in [15] as well as coding of sparse graphical data, e.g., [16].

The related work in the signal processing domain includes
vector quantization and distributed estimation-based models.
A vector quantization technique was proposed in [17], where
the feature space is partitioned via a hierarchical tree-based
classifier such that the average entropy of the class distribution
in the partitioned regions is minimized. In [18], conditions
for efficiently quantizing scalar parameters were characterized
and estimators that require transmitting just one bit per source
that exhibits variance almost equal to the minimum variance
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estimator based on unquantized observations were proposed.
Max-Lloyd algorithm, which is a Voronoi iteration method,
was applied to vector quantization and pulse-code modulation
[19]. Vector quantization using linear hyperplanes was applied
to distributed estimation in sensor networks in the presence of
noise [20], and with resource constraints [21]. In addition to
the quantization-based approaches, the problem of detection
and hypothesis testing have drawn significant attention, see
the schemes, e.g., a mismatched detector for channel coding
and hypothesis testing [22], or signal constellation design with
maximal error exponent [23]. There has recently been quite
interesting work in traditional signal processing that minimizes
some distortion measure from the quantized measurements,
e.g., hardware-limited quantization for achieving the minimum
mean-squared error (MMSE) distortion [24], task-based quan-
tization for recovering functions with special structures, e.g.,
quadratic functions as in [25], and sparse functions [26].

Another perspective on efficient representation is coding for
functional compression, which is complementary to the vector
quantization methods. In [27], the authors have proposed a
hypergraph-based coloring scheme whose rate lies between
the Berger-Tung inner and outer bound and showed that for
independent sources, their scheme is optimal for general func-
tions. In [28], the author has derived inner and outer bounds
for multiterminal source coding. The author has shown that
for scalar codes (scalar quantizers followed by block entropy
coders) the two bounds converge. In [29], the authors have
considered the distributed functional source coding problem,
in which the sink node computes an estimate of the function
g(X1, . . . , Xs) under MSE distortion. The setting is restricted
to the communication of source data over rate-limited links,
and scalar quantization of each Xi for i = 1, . . . , s using
a sequence of companding quantizers {Qi

K
} of increasing

resolution K, mostly for independent sources {Xi}
s

i=1
. Unlike

[29], we consider vector quantization without the assumptions
on the source independence or the rate-limited links.

In [39], the authors have considered high-resolution source
coding with multidimensional companding for non-difference
distortion measures. In [40], the author has minimized the
MSE for the Wyner-Ziv problem with decoder side infor-
mation and functional distortion. In [41], the authors have
used a structured hyperplane wave partition model using a
frame model – a redundant set of basis vectors – that provides
O(1/R2) MSE distortion as a function of the redundancy R
[41], and the follow-on works such as [42] have focused on
deterministic qualities of quantization, and [43], which con-
cerns applying frames to a packet erasure network. This model,
similar to network coding [14], serves for recovering the
DoFs more effectively. Different from [39]–[43], we assume
a randomized model where reconstruction is not consistent.
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Problem types Side information Distributed source coding for computing
f(X1, X2) = (X1, X2) Wyner and Ziv [3] Coleman et al. [5], Berger et al. [30],

Barros and Servetto [31], Wagner et al. [32]
Coding for computing general f(X1, X2) Yamamoto [33] Feizi and Médard [10]

Doshi et al. [9], Basu et al. [34] Basu et al. [27]
Product of two broadcast channels Watanabe [35]
Multiple access channel (MAC) Rajesh et al. [36] Nazer and Gastpar [37]
Two-hop and diamond networks Guo [38]

TABLE I: Research progress on nonzero-distortion source coding problems.

The broad and common objective in these models is finding
ways of effective compression and communication of massive
data. This goal is realizable by capturing underlying redun-
dancy both in data and functions, and recovering a sparse
representation, or labeling, at the destination. From a practical
perspective, the redundancy across geographically dispersed
sources’ data plays a big role and can provide significant gains
in compression. Hence, from a technical point of view, com-
pressing data is preferred for reducing resource consumption in
networks (e.g., wireless or data center networks). Furthermore,
there might be privacy concerns at the source sites because
sources may not be willing to share sensitive data, including
customer data or medical records. Additionally, the destination
might only be interested in a function of the data and cannot
store the entire data. In this scenario, the sources aim to
collectively determine a function outcome without disclosing
their data to each other. Hence, the distributed computation of
functions naturally fits into the distributed source compression
framework, ensuring the protection of sources.

We summarize the efforts on nonzero-distortion source
encoding problems in Table I. Despite these approaches, the
exact achievable rate region for the function compression
problem is, in general, an open problem. To the best of our
knowledge, it is only solved for special scenarios, including
general tree networks [10], linear functions [14], identity
function [2], and rate-distortion characterization with decoder
side information [3]. However, there do not exist tractable
approaches that approximate the information-theoretic limits
to perform functional compression in general topologies. Thus,
unlike compression, for which coding techniques exist, and
compressed sensing acts in effect as an alternative for coding,
for purposes of simplicity and robustness, there is currently
no family of coding techniques for functional compression.

Our main contributions are summarized as follows:
• A novel approach, called hyper binning, for distributed

function-aware quantization that uses hyperplane arrange-
ments (Sect. II-A). It provides a vector quantized functional
representation of distributed sources that minimizes the
entropy of joint source partitioning (Sect. II).

• Application of hyper binning to sources modeled as a
Gaussian mixture model (GMM) (Sect. III), as a special
tractable case of the problem. To demonstrate the gains of
hyper binning, we also consider more general continuous
and discrete-valued sources (Sects. IV, VI, and VII).

• The theoretical justification for the rate-distortion perfor-
mance of hyper binning, for distortion criteria including a)
entropy-based, b) mean-squared error (MSE), or c) Ham-
ming distortion and d) Gaussian approximation. (Sect. III-D,
where we provide the rate-distortion expressions for the

general case and the case of the GMM).
• A scaling between the number of hyperplanes J and the

blocklength n that hyper binning can support (Sect. II-C).
• Characterization of the description length of hyper binning

at finite blocklengths via Kolmogorov complexity (Sect. V).
• A comparison of hyper binning for real-valued source data

with coloring-based modular compression schemes that de-
couple quantization and binning (orthogonal binning, e.g.,
Slepian-Wolf coding [2], or codebook trimming [10] [Sect.
IV]) for discrete-valued data (Sect. VI).

• An encoding heuristic for hyper binning by exploiting the
Gács-Körner common information (GK-CI) (Sect. VII).

Via the proposed hyper binning scheme, we aim to address
the following central questions:

• What functions f can we approximate well? Via hyper
binning, the class of functions f we can compute (with
zero error) is the class of f given by a hyperplane
arrangement. Our approach can be used to well approx-
imate discrete, piecewise constant, or linearly separable
functions. In addition, hyper binning can model f that
are continuous in the neighborhood of the quantization
levels. For other classes of f , the approximation depends
on the distortion metric and criterion and the number of
hyperplanes in general position (GP), which divides the
space into a maximum number of regions [44].

• How should we choose the hyperplane parameters given
a function f? This choice depends on the distortion
criterion. For instance, in Sect. III, we detail source data
satisfying a Gaussian mixture model subject to a given
LDA classification error criterion. However, for general
source distribution models subject to different distortion
metrics, f significantly impacts the design. To that end,
we consider various examples in Sect. VI.

• How many hyperplanes J do we require at finite block-
lengths? How does J scale as n ! 1? The maximum
blocklength that can be supported with J hyperplanes in
GP is nmax = J

2
+ O

�
1

J

�
, i.e., J ⇡ 2nmax as n ! 1.

Connections to the State-of-the-Art. The novelty of hyper
binning is that we find a partitioning of the sources using a
hyperplane arrangement to allow describing a function of inter-
est up to some quantization distortion rather than determining
an independently quantized representation of dispersed source
data oblivious to the function. Such a scheme needs fewer
dimensions than the codeword size and captures the function’s
dependence on the data. The technique differs from traditional
vector quantization for data compression and brings together
techniques from information theory, such as distributed source
encoding, functional compression, and optimization of mutual
information, to the area of signal processing via function quan-
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Fig. 1: Distributed compression scheme of Slepian-Wolf [2] via binning constructed using the asymptotically optimal approach in [45].
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Fig. 2: Orthogonal trimming of the random binning-based codebook, where the bins of Xn
1 and Xn

2 are independently trimmed.

tization inspired by hyperplane-based vector quantizers. Hyper
binning does not rely on the NP-hard nature of graph coloring
[10] and the asymptotically optimal information-theory-based
models [2], [3] which are impractical for finite blocklengths.
Hyper binning is an intuitive generalization using linear hy-
perplanes for encoding continuous functions through a vector
quantization of the high dimensional codebook space. Our
results can be used to recover the instances, e.g., the Slepian-
Wolf compression model or its orthogonal trimming.

Organization. The paper’s organization to answer the cen-
tral questions outlined above is as follows. Sect. II states
the problem of vector quantized functional representation of
distributed sources and describes a linear hyperplane-based
distributed function encoding approach called hyper binning.
Sect. II-B provides the motivation behind, Sect. II-C details
background on convex sets and hyperplanes, and Sect. II-D
details the necessary conditions for encoding the functions.
Sect. III focuses on the analytical details of hyper binning
for encoding functions to determine the optimal hyperplane
allocation for a specific instance where the source data is
characterized by a Gaussian mixture model (GMM). More
specifically, for the GMM, Sect. III-A describes the data and
hyperplane arrangement, Sect. III-B focuses on optimizing the
arrangement to maximize a notion of the mutual information
between the function and the partitions, Sect. III-C describes
the behavior of the mutual information for different source
data distribution models across the classes of the GMM and
Sect. III-D details several rate-distortion models (including the
entropy-based, mean-squared, Hamming, and Gaussian distor-
tion models) of hyper binning for characterizing the GMM.
Sect. IV contrasts hyper binning and orthogonal binnings
for infinite blocklengths, along with the assumptions on the
sources, via building on the classical distributed encoding
approach of [2]. Sect. V is concerned with the compression
complexity at finite blocklengths. To demonstrate the gains of
hyper binning for more general source distributions, including
continuous-valued sources, Sect. VI provides a rate-region
comparison of hyper binning and existing schemes on graph-
based [10] and hypergraph-based [27], [34] coloring schemes,
both for pre and post-quantized source data. Sect. VII details
a discussion on the connections between hyper binning and

coloring-based coding models and a heuristic for encoding that
relies on the Gács-Körner CI. Finally, Sect. VIII summarizes
our contributions and points out future directions.

Notation. The binary entropy function, denoted h(p), satis-
fies h(p) = �p log

2
p � (1 � p) log

2
(1 � p). Given a discrete

random variable X , H(X) = E[� log
2
(X)] is the entropy of

X in bits. Similarly, H(X1, X2) is the joint entropy of X1

and X2, and H(X1|X2) is entropy of X1 conditioned on X2.
Let C be a non-empty closed convex subset of Rn, i.e., C ✓

Rn, and x, z be vectors in Rn, and k·k denote the Euclidean
norm on Rn. For n 2 N , let Bn = {x 2 Rn : kxk  1} be
the unit ball, and ⌫n�1 denote the uniform distribution on the
unit sphere Sn�1 = {x 2 Rn : kxk = 1}.

II. PROBLEM STATEMENT

We consider a system with two encoders (the problem
can be generalized to any number of encoders s > 2) and
a joint decoder. For a given blocklength n, two encoders
observe random sequences Xn

1
2 X

n

1
and Xn

2
2 X

n

2
where

the pairs {(X1(l), X2(l)) : l = 1, . . . , n} are two statistically
dependent and length n sequences drawn independently and
identically (i.i.d.) according to a known joint distribution
pX1,X2(x1, x2), i.e., the sequences have a joint distribu-
tion that satisfies

Q
n

l=1
pX1,X2(x1(l), x2(l)) for xn

i
2 X

n

i
,

i 2 {1, 2}. The decoder aims to recover a vector quantized
functional representation of distributed sources. The source
terminals must independently encode these observations into
messages sent to a decoder who wishes to estimate the
sequence f(Xn

1
, Xn

2
) = {f(X1(l), X2(l)) : l = 1, . . . , n}

subject to distortion (which we detail in Sect. III-D), where
f : X1 ⇥ X2 ! Y is a single-letter function that could be
continuous or discrete. In particular, we are interested in the
case where X1 = X2 = Y ✓ R, i.e., X1 and X2 could have
bounded support and f could be defined on a bounded subset
of R2. We assume that f is known both at the sources and the
decoder, and there is no feedback in the system.

Some special cases of this distributed quantization problem
have been considered in the literature, including the distributed
encoding scenario studied by Slepian-Wolf in their landmark
paper when f is the identity function [2]. Specifically, given
sources X1 and X2 with finite alphabets, the Slepian-Wolf



4

Hyperbinning Compression

DecoderEncoder 1

Hyperbinning Compression

Encoder 2

Xn

2

Xn

1

f̂(Xn

1
, Xn

2
)

{⌘(aj , bj)}J

j=1

{⌘(aj , bj)}J

j=1

n
1{a|

j X
n
1 >bj}

oJ

j=1

n
1{a|

j X
n
2 >bj}

oJ

j=1

R1

R2

Rate

Rate

Estimate of 
the function

Fig. 3: Hyper binning, which generalizes the orthogonal compression to convex regions determined by the intersections of hyperplanes.

theorem gives a theoretical bound on the lossless compression
rate for distributed coding of two statistically dependent and
i.i.d. finite alphabet source sequences [2]. Indeed, Cover
developed an asymptotically optimal encoding scheme using
orthogonal binning [45]. The orthogonal binning is such that
the codewords are selected uniformly at random from each bin,
and the bins are equally likely. The functional extensions of
[2] in [10] and [27] are also on the already post-quantized data
streams. In this paper, we generalize the coding approach in
[2]. Instead of decoding the identity function, i.e., the sources
X1 and X2 themselves, we recover a continuous function f of
X1 and X2 that satisfies the properties detailed in Sect. II-D.

A common assumption in the point-to-point model of Shan-
non [46] or more general communication systems is that signal
is discrete-time sequence X(l), l = 1, . . . , n. The goal is
to design a distributed compression scheme that gives the
best possible reconstruction for a given distortion criterion.
In particular, a classical approach is scalar quantization of
source data samples, which turns the source data into a discrete
memoryless sequence, followed by distributed compression,
allowing the use of distributed source coding techniques, as
shown in Fig. 1. Another approach generalizes the above quan-
tization scheme to a compression model for estimating a class
of functions that allows orthogonal trimming of codebooks, as
shown in Fig. 2. In this approach, the random bins (uniformly
quantized bins) generated by the coding theorem of Slepian-
Wolf [2] are trimmed orthogonally, i.e., the trimming of the
sequences Xn

1
and Xn

2
is independently performed. While the

theorem of Slepian-Wolf is originally for discrete variables,
the rate-distortion function of Wyner–Ziv coding is known
for both discrete and continuous alphabet cases of the source
and the side information with a general distortion metric in
[47], [3]. The designs in Figs. 1 and 2 are optimal only for
a set of functions (piecewise constant or block). However,
the separation-based approach (which first quantizes and then
compresses the data) may be suboptimal. By contrast, a strat-
egy that employs compression on the functional representation
of the vector quantized data can outperform separation. In this
paper, we go beyond the classical compression algorithms that
work on the post-quantized single-letter representation of data.
We propose a novel linear hyperplane-based function encoding
approach, called hyper binning, that can operate on the pre-
quantized data, using ideas from vector quantization to provide
a more effective way of functional compression.

A. What is Hyper Binning?

Hyper binning relies on quantizing Xn

1
and Xn

2
using a col-

lection of linear hyperplanes called a hyperplane arrangement.
A linear hyperplane is an (n� 1)-dimensional subspace of an

n-dimensional vector space and hence can be described with
a linear equation of the following form:

a1x1 + a2x2 + · · · + anxn = b.

The idea is to partition a high dimensional codebook space
into closed convex regions called hyper bins that capture the
correlations between X1 and X2 as well as the dependency
between the function f and (X1, X2). The key intuition
is that closed convex sets have dual representations as an
intersection of half-spaces. For this purpose, we use a finite
set of hyperplanes, and their crossings determine the hyper
bins, i.e., the quantized outcomes of f . Via hyper binning, it
is possible to represent f accurately up to a distortion level.
The quantization error can vanish by optimizing the number,
parameters, and dimensions of the hyperplanes employed. To
the best of our knowledge, hyper binning is a new functional
viewpoint to the challenging problem of distributed function-
aware quantization in computational information theory.

We denote a hyperplane arrangement with cardinality J
by {⌘(aj , bj)}J

j=1
. The choice of the hyperplane parameters

{aj 2 Rn, bj 2 R : j = 1, . . . J} depends on the
characteristics of the joint distribution of X1 and X2 and
its relation with the function f(Xn

1
, Xn

2
) to be estimated,

which is detailed in Sect. III. In our encoding approach, unlike
the orthogonal binning and orthogonal trimming approaches,
we determine the half-spaces determined by the arrangement,
where a half-space corresponding to hyperplane j is a set given
by {x 2 Rn : a|

j
x > bj}, and compress the intersection of

half-spaces. We illustrate this novel approach in Fig. 3.
The hyper binning-based encoding scheme is applicable

under broad source distributions pX1,...,Xs(x1, . . . , xs), given
a number of sources s. In Sect. III, we use the GMM as
a tractable instance under the general framework for hyper
binning. We consider the case in which the encoders have the
same parameters {aj , bj}

J

j=1
motivated by using the Gács-

Körner CI, where the CI rate is the rate of compressing the
parameters {aj , bj}

J

j=1
(as will be detailed in Sect. VII-B).

While the hyperplane parameters for the individual encoders
need not be the same, the CI between the encoders is less for
the case of different parameters versus the same parameters.

B. Why Hyper Binning?

Sending colorings of sufficiently large power graphs of
characteristic graphs followed by source coding, e.g., Slepian-
Wolf compression [2], leads to an achievable encoding for
compressing functions provided that the functions satisfy some
additional conditions [10]. Instead of sending source variables,
it is optimal to send coloring variables that model a valid
encoding of a characteristic graph that captures which source
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outcomes should be distinguished to recover the desired func-
tion [8]. The destination then uses a look-up table to compute
the desired function value by using the received colorings.
While in some cases, the coloring problem is not NP-hard, in
general, finding this coloring is an NP-complete problem [48].

As in Slepian-Wolf encoding, in hyper binning, each bin
represents a typical sequence of function f ’s outcomes and is a
collection of infinite length sequences. Hyper binning does not
rely on NP-hard concepts such as finding the minimum entropy
coloring of the characteristic graph of f . Unlike graph color-
ing, hyper binning with a sufficient number of hyperplanes in
GP jointly partitions the source random variables in a way to
achieve the desired quantization error at the destination for
a given computation task. Given an entropy-based distortion
measure as in, e.g., [49], we require the following condition on
the number of hyperplanes J : R1 +R2 =

P
J

j=1
h(qj) � 1�✏

J = min
k

n
k :

2nX

j=k+1

h(qj)  ✏
o

.

Hyper binning naturally allows (a conditionally) independent
encoding across the sources via an ordering of hyperplanes
at each source prior to transmission and their joint decoding
at the destination. This is possible with a helper mechanism
that ensures the communication of the common randomness,
through extracting the Gács-Körner common information (GK-
CI) [50], characterized via hyperplanes. The GK-CI variable
is the maximum common information that can be extracted
from each source. We detail this measure in Sect. VII-B.

C. Technical Background
The next remark provides the necessary and sufficient

condition for a set to be convex. It also imposes a necessary
condition on the function f we represent via partitioning.

Remark 1. A set C is convex if and only if for any random
variable X (or function) over C, P(X 2 C) = 1, its
expectation is also in C, i.e., E[X] 2 C [51].

If C = {PC x |x 2 Rn
}, then for each x 2 Rn there exists

a unique point PC x 2 C that is closest to x in the Euclidean
sense. Unique projection of x onto C [51, Ch. E.9] equals

PC x = arg min
y2C

kx � yk
2
.

Every linear hyperplane ⌘ is an affine set parallel to an
(n � 1)-dimensional subspace of Rn [51]. Let H

n be the
space of hyperplanes in Rn. A hyperplane ⌘ 2 H

n
⇢ Rn

is characterized by the linear relationship given as follows:
⌘(a, b) = {y 2 Rn : a|y = b}, a 2 Sn�1, b 2 R, (1)

where a is the nonzero normal and Sn�1 is the unit sphere.
Projection of x 2 Rn onto ⌘ [51, Ch. E.5] is given as

Px = arg min
y2H

kx � yk
2

= x � a(a|a)�1(a|x � b).

We shall let s and J denote the number of sources and
hyperplanes, respectively. A hyperplane arrangement of size
J in an s dimensional source space creates at most r(s, J) =P

s

k=0

�
J

k

�
 2J regions. Hyperplanes in general position (GP)

divide the space to r(s, J) regions [44]. In this paper, for the
sake of presentation, we study the case s = 2. We represent
the source data by feature vectors {xt} 2 Rn that are mixtures

0 20 40 60 80 100
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0
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6

Fig. 4: Maximum n vs J in GP for different number of sources s.

of Gaussian variables and sampled from a training set where
t denotes the index of xt, which we detail in Sect. III.

Example 1. A hyperplane arrangement of size J = 3 for
n = 2 in GP divides the space into r(2, 3) = 7 regions.

For each hyperplane ⌘(a, b) there are n+1 unknowns a, b to
be determined, hence there are (n+1)J unknown hyperplane
parameters in total. A given number of hyperplanes J in GP
can support a feature vector in an n-dimensional space where
the dimension is upper bounded as

nmax = max
n�1

[n | (n + 1)J  r(s, J)]. (2)

This inequality is because the required number of hyper-
plane parameters, (n + 1)J unknowns, should be smaller
than the number of regions denoting the quantized function
outcomes where each output is an equation represented by
intersections of half-spaces. This result gives a necessary
condition (a lower bound on J) to support a feature vector
in Rn. In Fig. 4 we sketch the relation between nmax and
J . The number of dimensions a hyperplane arrangement can
capture scales exponentially in the number of sources s (for
s > 2) vs orthogonal binning that provides linear scaling of
the total number of dimensions in s as J increases. In this
paper, s = 2, and nmax = J

2
+O

�
1

J

�
following from (2), i.e.,

J linearly scales with n as J ⇡ 2nmax as n tends to infinity.

Theorem 1. Kolmogorov-Arnold representation theorem
[52]. Given a multivariate continuous function f , Kolmogorov
and Arnold established that f can be written as a finite
composition of continuous functions of a single variable and
the binary operation of addition [52]. More specifically,

f(xn) = f(x1, . . . , xn) =
2nX

j=0

 j

⇣ nX

p=1

 j,p(xp)
⌘
. (3)

For the representation result of Kolmogorov-Arnold, there
exist proofs with specific constructions [53]. In (3) the only
true multivariate function is the sum since every function can
be written using univariate functions and summing [52]. Hyper
binning is a special case of (3) such that  j,p(xp) = ajp·xp for
some constant ajp, for j 2 {0, . . . , 2n} and p 2 {1, . . . , n},
where we approximate the upper limit 2n of the outer sum
with J hyperplanes. We note that for a class of functions we
are interested in, it is possible that a subset of outer functions
{ j}

2n

j=0
may be equal to 0. For a continuous function given

in the most general form in (3), the approximation is more
accurate when the hyperplanes are selected to capture the
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high-influence  j terms, meaning the terms that have a more
dominant impact on f . Furthermore, we model xn using
feature vectors {xt} coming from either source, which we
detail in Sect. III. The outer function  j satisfies

 j(y) = cj · y�bj + dj · y<bj , (4)
where cj and dj are constants with opposite signs to represent
the two different directions of hyperplane j.

Combining the upper bound in (2), which states nmax ⇡
J

2
,

and the upper limit 2n of the sum in (3), we see that choosing
J = 2n makes sure that in the representation theorem of
Kolmogorov-Arnold in [52], the error of representation van-
ishes as n ! 1. The linear scaling between n and J for s = 2
in the asymptotic regime implies that random binning and hy-
per binning have similar performance for quantized variables
as n ! 1. These schemes differ at finite blocklengths since
orthogonal binning requires quantization, whereas hyper bin-
ning provides an already quantized representation, where the
bins are determined by a hyperplane tessellation capturing f .
The half-space decision probabilities are parametrized by the
hyperplanes (to be given by (7)), and the decision regions of
hyperplanes are described via binary entropy functions of these
probabilities, eliminating the need for post-quantization. In
orthogonal binning, quantization is followed by binning, where
the latter corresponds to the post-quantization phase. Unlike in
orthogonal binning, in hyper binning, the initial quantization
phase via hyperplanes eliminates the need for further binning.
Thus, there is no need for post-quantization. We will validate
the choice of J (i.e., the number of hyperplanes) to ensure
the desired distortion in an MSE sense in Sect. III-D, and tie
the modeling of finite blocklengths to Kolmogorov complexity
[45, Ch. 7.3] in Sect. V, respectively.

Hyper binning embeds the quantization phase and is dis-
crete, i.e., it does not require further post-quantization prior
to compression. Hence, we can apply the scheme of Berger-
Tung, detailed in [54], or the coding scheme in [10] and its
generalization in [27] on the quantized representation. Since
the compression gain of hyper binning over random binning
lies in the pre-quantization aspect, any compression scheme,
such as [10], [27], [54], can be implemented on top of hyper
binning to recover the function representation in (3).

We next give a fundamental separation result on convex sets.

Theorem 2. Supporting hyperplane [55, Thm 1]. A point
x lies in C if and only if max

a
(a|x � SC(a))  0, where

SC(a) = sup{a|z : z 2 C} is the supporting hyperplane.

We next detail the necessary conditions for distributed
functional compression of sources via hyper binning.
D. Necessary Conditions for Encoding the Functions

Let X1 and X2 be real-valued source random variables, i.e.,
Xi ✓ R for i 2 {1, 2}. Our approach entails some assumptions
on the function. Hyper binning yields a partitioning of the joint
sources’ data to convex sets Pk, where k 2 {1, . . . , M} such
that M is the total number of partitions obtained from a set
of hyperplanes in GP. Given a number of hyperplanes in GP,
the hyperplanes attain the maximum number of partitions M .

This section details the necessary conditions for the function
for encoding. We emphasize that the function f could be

continuous or discrete. Our goal is to describe a class of
continuous or discrete functions via their quantized estimates
f̂ . When f is continuous, the distortion between f and
f̂ is bounded away from 0. For this case, we refer the
reader to Example 2, where we contrast the achievable rate
reduction performed by different binning schemes, and to
Example 5, where we consider Gaussian variables and analyze
the rate-distortion function using the notion of ✏-achievable
hypergraphs [34]. When f is discrete, which is pertinent in
information theory, we refer the reader to Examples 3, 4, 6,
and 7 for various discrete-valued random variables and their
functions using the notions of ✏-characteristic hypergraphs
versus D-characteristic graphs, as detailed in [10], [27]. The
quantized function f̂ : (X1, X2) ! Z is such that the
mapping Z ! {1, . . . , M} is a bijection. From Remark 1,
our model is restricted to a class of functions f satisfying that
if P(f 2 Pk) = 1, then E[f ] 2 Pk for each Pk [56].

The function f to be quantized, if continuous, has to
be continuous at (x1, x2) 2 (X1, X2) since f�1(Pk) is
a neighborhood of (x1, x2) for every neighborhood Pk of
f(x1, x2) in Z . If it is not continuous at (x1, x2), there might
be a region Pk for a given k 2 {1, . . . , M} of f(x1, x2)
such that f�1(Pk) is not a neighborhood of (x1, x2). In
other words, multiple disjoint hyper bins may yield the same
function outcome, which we do not explicitly capture in our
setting. The domain of f can also be discrete, as in [10].

Using the basic properties of hyperplanes presented in this
section, in Sect. III-(A-C) we will develop the scheme of hyper
binning where the sources can be described by a Gaussian
mixture model, a specific tractable instance of the general
problem stated in Sect. II. The coding rate of hyper binning can
be characterized using the binary entropy function, which we
will detail. We will also discuss the hyperplane arrangements
for different rate-distortion models and demonstrate the perfor-
mance of hyper binning versus the state-of-the-art solutions.

III. DESIGNING HYPER BINS FOR GAUSSIAN MIXTURES

We design hyper binning for distributed functional quanti-
zation recalling that the source data is represented by feature
vectors. We use linear discriminant analysis (LDA) to distin-
guish different classes of feature vector combinations yielding
the same function outcome. LDA is a classification technique
for the separation of multiple classes of variables using linear
combinations of observations/features/measurements, where
the classes are known a priori. LDA works when the mea-
surements on independent variables for each observation are
continuous quantities. The set of features {xt} for each sample
of an event has a known class y. The classification problem is
to find a good predictor for the class y of any sample of the
same distribution given only an observation xt. In LDA the
conditional probability density functions (pdfs) p(xt|y = 0)
and p(xt|y = 1) are both the normal distribution with mean
and covariance parameters (µ0,⌃) and (µ1,⌃), respectively.
Hence, the samples come from a Gaussian mixture model
(GMM) given by �0 N (µ0,⌃) + �1 N (µ1,⌃), where �0 and
�1 are the cluster weights given by the proportion of feature
vectors. The Bayes optimal solution is to predict points as
being from the second class if the log-likelihood ratio is
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bigger than some threshold, so that the decision criterion
of xt being in a class y is a threshold on the dot product
w · xt > c, i.e., a function of the linear combination of the
observations, for some threshold c, where w = ⌃�1(µ1 �µ0)
and c = w ·

1

2
(µ1 + µ0). The observation belongs to y if the

corresponding xt is located on a certain side of a hyperplane
perpendicular to w. The location of the plane is defined by c.

In the case of multiple classes, the GMM is given by

WM ⇠ �k

XM

k=1

N (µk,⌃) , M � 2 , (5)
where M is the total number of classes, µk is the mean vector
for class k 2 {1, . . . , M}, ⌃ is the covariance matrix (same for
all k), nk is the count of feature vectors {xt} of class k in the
data, N =

P
M

k=1
nk is the total number of {xt}, and �k = nk

N

is the relative count of class k data. The analysis for LDA with
2 classes can be extended to find a subspace that contains the
class variability. The conditional pdfs p(xt|y = k) for {xt} of
class k are independent Gaussian variables given by N (µk,⌃)
(same for all k). The scatter between class variability is the
sample covariance of the class means ⌃b = 1

M

P
M

l=1
(µl �

µ)(µl � µ)T , where µ is the mean of the class means. The
class separation in a direction w is S = wT⌃bw(wT⌃w)�1.
A. Data and Hyperplane Arrangement

The feature vectors {xt} lie in an n-dimensional space and
are modeled by a GMM given by (5), where each xt can
come from (belong to) either source X1 or X2, and {xt} are
independent and belong to the same GMM.

We employ a linear hyperplane arrangement for classifying
{xt}. To describe this arrangement, we need J(n+1) parame-
ters in total, where J is the number of hyperplanes. To achieve
the desired distortion for a given function f , we shall choose
J following (2) to represent or distinguish the desired number
of distinct outcomes M of f . The orientations of hyperplanes
will depend on the correlations between X1 and X2 as well
as the correlations between (X1, X2) and f .
B. Optimizing Hyperplane Arrangement

To provide a joint characterization of sources by capturing
their correlation as well as the features of the function f ,
we exploit LDA. In LDA, the encoded data is obtained by
projecting the source data on a hyperplane arrangement, and
by looking at which side of each hyperplane the vector lies.
The criterion of a vector being in a class y is purely a
function of this linear combination of the known observations.
The observation belongs to y if the corresponding vector is
located on a certain side of a hyperplane. We independently
design each hyperplane. The hyperplane arrangement, i.e., the
collection of hyperplane parameters (a, b), depends on the
particular function f and the distribution of the vectors {xt}.

For a hyperplane ⌘(a, b) described by vector a 2 Rn and
b 2 R as in (1), the projected feature vector ut = a|xt lies
on one side of ⌘(a, b) if ut  b, and on the other side if
ut � b. Mapping xt to the ut space is equivalent to computing
the inner product of the feature vector and a. As a result of
this linear mapping, the distribution for the one-dimensional
mapping outcome that models class k is also Gaussian, with
the following mean and variance, respectively:

mk = µ|
k
a, �2 = a|⌃a, k = 1, . . . , M. (6)

In our setup, we note that the feature vectors lie in a high
dimensional space and form an independent set of Gaus-
sian random variables. Because their linear projections onto
hyperplanes are also Gaussian and independent, the notions
of the set of hyperplanes and the feature vector classes
are exchangeable. More specifically, with a careful choice
of the parameters {mk}

M

k=1
and �, we can observe that (i)

projecting multiple vector classes onto a single hyperplane is
equivalent to (ii) projecting a set of feature vectors {xt} onto
M hyperplanes to generate a total number of classes M where
each class index k can be considered as a mapping from {xt}

to a hyper bin index. Using this analogy, we represent/describe
our model in (ii) via the multi-class interpretation in (i).

In the multi-class interpretation, the number of feature
vectors of class k that lie to the right of b = a|µ0 for a
hyperplane characterized by ⌘(a, b) is given by nk,r = nkpk

where the probability that a feature vector belongs to partition
k, or equivalently it lies to the right of b, is given by

pk = Q
⇣

|b � mk|

�

⌘
, k = 1, . . . , M, (7)

where mk is the one-dimensional mapped mean of xt to the ut

space given that it belongs to class k, and Q(z) = 1

2
erfc

�
zp
2

�

is the complementary cumulative distribution function (CDF)
of the standard Gaussian distribution such that Q(z) ! 0 as
z ! 1 monotonically. An observation is that as � increases,
pk becomes higher due to (7). As � increases, since pk’s also
increase, pM+1 increases. Furthermore, pk increases in mk

given that b � mk. We assume that pk is a fixed constant, and
the function f determines the distribution {pk}

M

k=1
.

In the multi-hyperplane interpretation, let qj = P(a|
j
xt �

bj) be the probability that a feature vector lies to the right of
bj for a hyperplane j = 1, . . . , J characterized by ⌘(aj , bj),
i.e., the tail probability of one-dimensional Gaussian variable.
Hence, the relation between {pk}

M

k=1
and {qj}

J

j=1
satisfies

pk =
Y

j2Sk

qj

Y

j /2Sk

(1 � qj), k = 1, . . . , M, (8)

where Sk is the set of the hyperplanes j for which the hyper
bin k lies to the right of bj . Our goal is to decide the class of
hyperplanes with optimal {(aj , bj)}J

j=1
such that if we assign

the feature vectors at each source to one of two partitions
based on whether ut  b (or equivalently x|a  b), then the
average of the entropy of the class distribution in the partitions
is minimized [17]. Minimizing the entropy of partitioning is
equivalent to maximizing the mutual information associated
with the partitioning, i.e., the difference between the entropy
of function f and the average of the entropy of the partitions.

Our objective is to minimize the entropy of the partitioning.
To that end, we choose the following mutual information
metric associated with the partitioning via hyper binning:

I(M, {pk}
M+1

k=1
, {nk}

M

k=1
) = h(pM+1) �

MX

k=1

�kh(pk). (9)

This metric captures the accuracy of classifying the function
outcomes. While I(·) depends on {pk}

M+1

k=1
, {nk}

M

k=1
such

that N =
P

M

k=1
nk, we only emphasize its dependence on

the number of classes M in the partitioning process, i.e., use
I(M) for brevity. The higher the entropy for the classification
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of M partitions, i.e., {h(pk)}M

k=1
, the lower I(M) is.

The trend of I(M) in (9) depends on the distributions of
{xt}. To maximize I(M) via hyper binning, it is intuitive that
(a, b) should be such that pk’s are close to 0 or 1 to minimize
h(pk)’s, and pM+1 = 1

N

P
M

k=1
nk,r = 1

N

P
M

k=1
nkpk is close

to 0.5, i.e., there are an approximately equal number of feature
vectors in the two partitions to maximize h(pM+1).

Assume for optimal I(M) that each pk is approximately
0 or 1. As � increases, h(pM+1) decreases, and h(pk), k 2

{1, . . . , M}, increases. For the asymmetric case where nk is
proportional to pk, incrementing M improves I(M) since each
added hyperplane provides more information to distinguish the
function outcomes. However, for the symmetric case where
nk = N

M
, adding beyond a certain number of hyperplanes

does not help. We later demonstrate this behavior in Prop. 3.

C. Source Data Distribution Models for a GMM
We next assume that m1 < . . . < mM�1 < mM , and � is

fixed. Hence, (7) implies that p1 < . . . < pM�1 < pM . Further
assume that 1

2
< pk for all k, yielding h(p1) > . . . > h(pM ).

1) Asymmetric Data Distribution: Consider a scenario
where the class distribution is such that each nk is proportional
to pk, i.e., nk = �pk for some � 2 R+. The asymmetry among
pk is exacerbated by nk. This asymmetry makes the classes
more distinguishable. A function that satisfies this criterion,
i.e., a non-surjective function, can be compressed well.

We next determine a relation between the mutual infor-
mation metrics I(M) = I(M, {pk}

M+1

k=1
, {nk}

M

k=1
) versus

I(M + 1) = I(M + 1, {pk}
M+2

k=1
, {ñk}

M+1

k=1
) when we switch

from M to M+1 classes. To that end, we assume that (i) nk =
�pk, k 2 {1, . . . , M} for � 2 R+, (ii) the number of feature
vectors of class k in the source data distribution WM+1,
namely {ñk}

M+1

k=1
versus {nk}

M

k=1
, satisfies ñk = ↵nk for

some ↵ 2 [0, 1], and (iii) the distribution WM+1 is such that
{pk}

M+2

k=1
can be determined using pM+2 = 1

N

P
M+1

k=1
ñkpk,

noting that inclusion of the M +1-th class does not change the
probability {pk}

M

k=1
given in (7) that a feature vector (of class

k) lies to the right of a hyperplane characterized by ⌘(a, b).

Proposition 1. Consider a setting with two distributed sources
and a function f satisfying the properties listed in Sect. II-D.
Then for two data distributions WM and WM+1 of the form
(5) that are related via (i)-(iii) outlined above, we have the
relation I(M + 1) � I(M), 8M � 1.

Proof. We refer the reader to the supplementary material.

2) Symmetric Data Distribution: We now consider the
uniform class distribution case such that nk = N

M
. Unlike

the asymmetric case the classes are less distinguishable. A
function that satisfies this criterion cannot be compressed
well due to its surjectivity. For the symmetric case, let
p̄M = 1

M

P
M

k=1
pk. Hence, we obtain (M + 1)p̄M+1 =

Mp̄M + pM+1. Letting h̄M = 1

M

P
M

k=1
h(pk), it is easy to

note that (M + 1)h̄M+1 = Mh̄M + h(pM+1).

Proposition 2. For symmetric data distributions WM and
WM+1 of the form (5) and related via (i)-(iii), it holds that
h̄M � h (p̄M )

M + 1
 I(M + 1) � I(M) 

h̄M � h(pM+1)

M + 1
, (10)

where we note that h (p̄M ) > h(pM+1). In the limit as M !

1, the gap I(M +1)� I(M) ! 0 from the squeeze theorem.

Proof. We refer the reader to the supplementary material.

Prop. 2 provides a convergence result on I(M) as in (10).
It also implies that the gains caused by the increments in M
provide diminishing returns, consistent with the intuition.

For the uniform scenario, I(M) = h (p̄M ) � h̄M . Because
entropy is concave, h(p̄M ) � h̄M . Let h(p̄⇤

M
) = h̄M such that

p̄⇤
M

 1/2. This implies that p̄M 2 [p̄⇤
M

, 1 � p̄⇤
M

].

Proposition 3. For the symmetric data distribution model with
a source data distribution WM as in (5), I(M) converges to

lim
N!1

I(N) = I(1) +
1X

M=1

h̄M � h(pM+1)

M + 1
. (11)

Proof. The proof follows from convergence of
{

h̄M �h(pM+1)

M+1
}M to 0 as M ! 1. For details, we

refer the reader to the supplementary material.

In Fig. 5 (c)-(d), we illustrate the variation of I(M) with
respect to M for different �2. On the left, the class distribution
is asymmetric such that nk / pk. Here, the monotone
increasing trend of I(M) can be observed. On the right, the
class distribution is uniform such that nk = N/M . Note that
I(M) drops with � because the higher variability, the harder
it becomes to distinguish the classes. We observe this trend in
both cases. In the asymmetric case with nk / pk, we have the
relation h

⇣
1

N

P
M

k=1
nkpk

⌘
> h

⇣
1

M

P
M

k=1
pk

⌘
. Furthermore,

P
M

k=1
�kh(pk) < 1

M

P
M

k=1
h(pk). Hence, I(M) is always

higher for the asymmetric case than for the symmetric case.

D. Rate-Distortion Models for Hyper Binning

The rate-distortion function is the solution of the problem
R(D) = minpX̂|X(x̂|x)

�
I(X; X̂) : E[d(X, X̂)]  D

 
, where

p
X̂|X(x̂|x) is the conditional probability density function

(PDF) of the compressed signal X̂ for the original signal X .
For hyper binning, given a distortion level D > 0, the rate-

distortion function for f(Xn

1
, Xn

2
) or shortly for fn satisfies

R(D) = min
J

n JX

j=1

h(qj) : E[d(fn, f̂n)]  D
o

. (12)

Using LDA classification error we can compute E[d(fn, f̂n)]
in (12), using the CDF of {xt} and relation (8). When there
are two classes to be distinguished, the Bhattacharyya bound
upper bounds the error probability [57]. For the multi-class
model, we leave the error analysis as future work.

Exploiting the representation in (3) where the outer function
satisfies (4), we next consider different distortion criteria.

a) Entropy-based distortion: In random binning, the en-
tropy for the J-bit quantization of xn

1
is h(xn

1
) + J , where

h(xn

1
) denotes the differential entropy of xn

1
and � = 2�J

is the bin length. For a Gaussian vector xn

1
with a covariance

matrix ⌃, the entropy of its J-bit quantization is approximately

h(xn

1
) + J =

1

2
log((2⇡e)n det⌃) + J. (13)



9

2

4

0

6

f B
(X
1,
X 2
) 8

0

10

X2

0.5

X1

2
1 4

0
1

4

2

f(X
1,
X 2
)=
X 1
.X
2

X2

0.5 3

X1

4

2
0 1 2 4 6 8 10

M, number of partitions

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
I

=0.5
=1
=2
=4

2 4 6 8 10
M, number of partitions

0

0.05

0.1

0.15

0.2

0.25

0.3

M
I

=0.5
=1
=2
=4

(b)(a) (d)(c)
Fig. 5: (a) A block function (no correlation across bins). (b) A smooth function (correlation across bins). Mutual information I(M) versus
M : (c) Asymmetric, nk / pk, (d) Symmetric, nk = N/M .

On the other hand, in hyper binning, we derive a vector
quantized functional representation of the data vector using
J hyperplanes in total. The rate needed for this procedure is

JX

j=1

h(qj) =
JX

j=1

h
⇣
Q
⇣bj � a|

j
µ

q
a|

j
⌃aj

⌘⌘
, (14)

where qj = P(a|
j
xn

1
� bj) for j = 1, . . . , J , and (14) is upper

bounded by J because h(qj)  1 for all j. Similarly, the sum
rate required for the exact description of (3) with the outer
function in (4) is

P
2n

j=1
h(qj) =

P
2n

j=1
h
⇣
Q
⇣

bj�a|
j µp

a|
j ⌃aj

⌘⌘
.

We next give a necessary condition on J to meet the
entropy-based distortion measure, e.g., similar to [49]. We note
that this result is valid for distributions beyond Gaussians.

Proposition 4. (Entropy-based distortion for continuous ran-
dom variables at infinite blocklengths.) Fix an ✏ > 0. Given
an entropy-based distortion criterion E[d(fn, f̂n)] = [h(X) �

R(D)]+  ✏ as n ! 1, using the rate needed in (14) for
recovering the hyper binning representation of f and the rate-
distortion function in [45] for squared-error distortion, the
number of hyperplanes J is required to satisfy the condition:

J = min
k

�
k :

2nX

j=k+1

h(qj)  ✏
 
. (15)

If source X is Gaussian distributed with variance �2 and
memoryless, then h(X) = 1

2
log(2⇡e�2). The rate–distortion

function with squared-error distortion is given by [45]:

R(D) = [h(X) � h(D)]+ =
h1
2

log
2

⇣ �2

�2

D

⌘i+
, (16)

where h(D) = 1

2
log(2⇡e�2

D
) is the differential entropy of a

Gaussian random variable D with variance �2

D
.

To capture the effect of distortion on random binning for
the quantized vector xn

1
in (13) where h(X) is replaced by

the rate-distortion function R(D) = [h(xn

1
) � h(D)]+ where

h(D) =
1

2
log((2⇡e)n det⌃D)  ✏ (17)

for the Gaussian vector D with covariance matrix ⌃D. In
the asymptotic regime, the number of typical codewords is
approximately 2

PJ
j=1 h(qj) for hyper binning, versus 2nH(Xi)

typical sequences for random binning [58], or 2
nHGXi

(Xi) for
characteristic graph coloring [10] of source i 2 {1, 2}. For
finite blocklengths, we will exploit Kolmogorov complexity
for the quantized vector xn

1
, which is to be detailed in (24).

b) Mean-squared error (MSE) distortion: Given an MSE
distortion criterion E[d(fn, f̂n)] = 1

n

P
n

l=1
(f(l) � f̂(l))2  ✏,

the approximation using J hyperplanes yields an MSE:

E
⇥� 2nX

j=J

cj{a|
j xt�bj} � dj{a|

j xt<bj}
�2⇤

 ✏. (18)

We next give a sufficient condition to meet the MSE criterion.

Proposition 5. (MMSE distortion for Gaussian random vari-
ables at infinite blocklengths.) Fix an ✏ > 0. The following
condition on J is sufficient to meet the MSE distortion crite-
rion E[d(fn, f̂n)] = 1

n

P
n

l=1
(f(l) � f̂(l))2  ✏ as n ! 1,

provided that dj = �cj in the MSE expression of (18):
X2n

k=J

ck 
p
✏. (19)

Proof. We refer the reader to the supplementary material.

We can generalize (12) and Prop. 5 to finite blocklengths
via the notions of dispersion [59] that we briefly discuss next.

c) Hamming distortion: For equiprobable source, the
symbol error rate-distortion, i.e., d(xn, x̂n) =

P
n

l=1
1{xl 6=x̂l},

results in E[d(Xl, X̂l)] = P(Xl 6= X̂l). In this case, the rate-
dispersion function is zero, and the finite blocklength coding
rate is approximated by R(D) + 1

2

log n

n
+ O

�
1

n

�
[59].

d) Gaussian approximation: For a stationary and mem-
oryless source, with bounded and separable distortion, i.e.,
d(xn, x̂n) = 1

n

P
n

l=1
d(xl, x̂l)), the coding rate can be mod-

eled as a function of the rate dispersion V (D) [59, Thm 12]:

R(D) +

r
V (D)

n
Q�1(✏) + ✓

⇣ log n

n

⌘
, (20)

where ✓
�

log n

n

�
in (20) grows asymptotically as fast as log n

n
.

Here, ✓ is given by Eqns. (84)-(85) in [59, Thm 12], which is
a more precise definition of the Big Theta ⇥ notation.

While V (D) provides an approximation for the coding rate,
in Sect. V, we establish a connection between Kolmogorov
complexity [45] to bound the coding rate for hyper binning.

IV. BINNING FOR DISTRIBUTED SOURCE CODING

In this part, we detail a fundamental limit for the asymptotic
compression of distributed sources followed by an achievable
random binning. This type of random binning is equivalent to
orthogonal quantization of typical source sequences, as we will
describe in Prop. 6. We will then contrast the hyper binning
scheme with other baselines that rely on random binning.

If the encoders and the decoder do not make use of the cor-
relation between the sources, the lowest rate one can achieve
for lossless compression is H(Xi) for Xi for i 2 {1, 2}.

Slepian-Wolf Compression. This scheme is the distributed
lossless compression setting with source variables X1 and X2

jointly distributed according to pX1, X2 , where the function
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f(X1, X2) is the identity function. In this case, the Slepian-
Wolf theorem gives a theoretical bound for the lossless coding
rate for distributed coding of the two statistically dependent
i.i.d. finite alphabet source sequences X1 and X2 as [2]:

RX1 � H(X1|X2), RX2 � H(X2|X1),

RX1 + RX2 � H(X1, X2), (21)
which implies that X1 can be asymptotically compressed up to
the rate H(X1|X2) [2]. This theorem states that making use of
the correlation allows a much better compression rate to jointly
recover (X1, X2) at a receiver at the expense of vanishing
error probability for long sequences, it is both necessary and
sufficient to separately encode (X1, X2) at rates satisfying
(21). The codebook design is done in a distributed way, i.e.,
no communication is necessary between the encoders.

Random Binning. Distributed codebook design for com-
puting functions f on the data (X1, X2) at the receiver
sites is challenging, irrespective of whether or not X1 and
X2 are correlated. A random code construction for source
compression that achieves this fundamental limit, i.e., the
Slepian-Wolf rate region for distributed sources given in [2],
has been provided by Cover in [58], which we detail next.

Proposition 6. Cover’s random binning [58]. Binning
asymptotically achieves zero error for the identity function
f(X1, X2) = (X1, X2) when the encoders assign sufficiently
large codeword lengths nR1 and nR2 in bits to each source
sequence where R1 > H(X1) and R2 > H(X2|X1).

Proof. Here, we list the steps of random binning, detailed in
[58], for the lossless source coding for single source case:
1) Each xn

2 X
n is randomly and independently assigned an

index m(xn) 2 [1 : 2nR] uniformly over [1 : 2nR]. Bin
B(m) is a subset of sequences with the same index m.
Both the encoder and decoder know the bin assignments.

2) The encoder, upon observing xn
2 B(m), sends index m.

3) The decoder, upon receiving m, declares that x̂n to be the
estimate of the source sequence if it is the unique typical
sequence1 in B(m); otherwise, it declares an error.

4) A decoding error occurs if xn is not typical, i.e., E1 =
{Xn /2 T

n

✏
}, or there are multiple typical sequences, i.e.,

E2 = {x̃n
2 B(M) for some x̃n

6= Xn, x̃n
2 T

n

✏
}.

5) Let M ⇠ Unif[1 : 2nR] ?? Xn denote the random bin
index of Xn

2 B(M). If R > H(X) + �(✏), Cover has
shown that the probability of error Pn

e
averaged over Xn

and random binnings ! 0 as n ! 1 [58]. Hence, there is
at least a sequence of binnings with Pn

e
! 0 as n ! 1.

The result can easily be generalized to distributed sources.

To illustrate the gains that we can achieve with an optimally
designed hyper binning scheme and contrast with the existing
well-known binning methods, we next devise an example.
Our goal is to explore how informative different types of
partitionings can be for quantifying a function.
Example 2. Contrasting different binning methods for
distributed source coding for functional compression. Con-
sider a functional compression problem where the sources X1

1For a typical set T n
✏ ⇢ Xn, the probability of a sequence from Xn being

drawn from T n
✏ is greater than 1� ✏, i.e., P[xn 2 T n

✏ ] � 1� ✏ [45, Ch. 3].

and X2 are continuous-valued. We consider three ways of
compressing the sources to recover an approximate represen-
tation at the decoder. While random binning is asymptotically
optimal, for ease of exposition, we first assume that the
blocklength satisfies n = 1. To indicate their main features,
we illustrate the encoding for different binning schemes in Fig.
6, where X1 2 [0, 1] and X2 2 [0, 1] that are both uniformly
distributed, and that lie on the y and x-axes, respectively.
For example, in Slepian-Wolf encoding (Left), each source
independently and uniformly partitions the source outcome
into 4 bins. Hence, there are 4 ⇥ 4 = 16 bins in total.
The block binning scheme (Middle) trims some of the bins
in the encoding scheme of Slepian-Wolf because the function
is piecewise constant or block, and there is no correlation
across bins. This approach modularizes the encoding into
uniform quantization and compression (bin trimming). In this
example, there are 4 blocks and each Bk can be obtained
via aggregating the bins of Slepian-Wolf. If the function is
more general than a block function, orthogonal trimming may
not work. Instead, hyper binning can leverage the function
and its dependency on the jointly distributed sources via the
regions created from the intersections of linear hyperplanes
and can make the quantization phase function-oriented, where
the hyperplane parameters {(aj , bj)}J

j=1
are adjusted ac-

cording to the function f(X1, X2). As a result, this reduces
the redundancy in compression because the quantization is
tailored for recovering the intended function and is more
effective. We next detail each binning scheme separately. We
emphasize that for illustration purposes, we chose n = 1.

(Top) Binning approach of Slepian-Wolf [2]. In the first
scenario, the sources first uniformly (scalar) quantize xn

1
2

[0, 1]n and xn

2
2 [0, 1]n into a discrete set using 2 bits each.

The bin assignments (m1(xn

1
), m1(xn

2
)) 2 [1 : 4] ⇥ [1 : 4] for

the source pair (Xn

1
, Xn

2
) takes M = 16 possible outcomes,

with each outcome being equally likely. The Slepian-Wolf
encoding scheme distinguishes all possible jointly typical out-
comes. However, the binning scheme does not capture the func-
tion’s structure, i.e., it does not distinguish f(Xn

1
, Xn

2
) and

(Xn

1
, Xn

2
) from each other. In this case with M = 16 equally

likely partitions (bins), P((Xn

1
, Xn

2
) = (i1, i2)) = 1/16, the

entropy of the partitions equals H(Xn

1
, Xn

2
) = log

2
(16) = 4.

Then, ISW = H(Xn

1
, Xn

2
) � H(Xn

1
, Xn

2
) = 0. We show the

block diagram for independent encoding and joint decoding
of two correlated data streams Xn

1
and Xn

2
in Fig. 1.

(Left) Orthogonal trimming of the binning-based code-
book. When the function (on [0, 1]2) is piecewise constant
in the blocks domain, then the uniform (scalar) quantization
followed by trimming achieves an optimal encoding rate.
The block binning or generalized orthogonal binning scheme
can capture functions with the pair (Xn

1
, Xn

2
) having a

blockwise dependence, such as the function shown in Fig.
5 (a). In this example, there are 4 blocks Bk, with indices
k = 1, . . . , 4, corresponding to different function outcomes.
Hence, fB(Xn

1
, Xn

2
) and (Xn

1
, Xn

2
) can be distinguished

under this blockwise partitioning. This encoding scheme is
easy to implement by combining some of the blocks prior
to implementing the Slepian-Wolf encoding scheme in each
Bk. Clearly, this is more efficient than completely ignoring
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the function’s structure and directly implementing the Slepian-
Wolf encoding. Hence, for sources sharing blockwise depen-
dency, i.e., H(fB(Xn

1
, Xn

2
)) < H(Xn

1
, Xn

2
). In this example

with 4 blocks, we use 3 hyperplanes, as shown in Fig. 6 (Mid-
dle). Hence, for block binning P(Bk) = P(fB(Xn

1
, Xn

2
) =

k) =
P

i1,i2: fB=k
pi1 i2 . The colored region B2 has a prob-

ability P(B2) = 9/16. Similarly, P(B1) = 3/16, P(B3) =
P(B4) = 2/16. This implies that the entropy of the partitions
equals H(fB(Xn

1
, Xn

2
)) = 1.67. In this case, block binning

yields IB = H(Xn

1
, Xn

2
)�H(fB(Xn

1
, Xn

2
)) = 2.33. We show

the block diagram for orthogonal trimming-based compression
for piecewise constant functions fB(Xn

1
,Xn

2
) in Fig. 2.

Block function
fB(X1, X2)

General function
f(X1, X2)

Slepian-Wolf binning

Block binning Hyper binning

Identity function
(X1, X2)

X1

X2

X2 X2

X1 X1

B1 B2

B3 B4

P1
P2

P3 P4

SW(i, j)

Fig. 6: Hyperplane organization. (Top) Binning approach of Slepian-
Wolf [2]. (Left) Function sensitive, correlation insensitive partition-
ing. (Right) Function and correlation sensitive partitioning.

(Right) Hyper binning-based codebook. If the function is
not piecewise constant, then quantizing and then compressing
may not be as good. The hyper binning scheme can capture the
dependencies in the pair (Xn

1
, Xn

2
) and f(Xn

1
, Xn

2
), unlike

the block binning scheme. In this scheme, we cannot consider
the partitions Pk, with indices k = 1, . . . , 4, corresponding to
function outcomes independently since each partition shares a
non-orthogonal boundary to capture the dependency across
the sources. With hyper binning, it is possible to jointly
encode correlated sources as well as the function up to some
distortion, determined by the hyperplane arrangement. As
a result, for sources with dependency (more general than
blockwise dependency), we can achieve H(f(Xn

1
, Xn

2
)) <

H(fB(Xn

1
, Xn

2
)). We partition the region using 2 hyperplanes

in GP by incorporating the correlation structure between
the function and the sources. In this case, P(P1) = 0.375,
P(P2) = 0.531, P(P3) = 0.031, P(P4) = 0.063, and the
entropy of the partitions satisfies H(f(Xn

1
, Xn

2
)) = 1.42

for each k. Hence, the hyper binning model yields I(M) =
H(Xn

1
, Xn

2
) � H(f(Xn

1
, Xn

2
)) = 2.58. For the example

function with unit blocklength, i.e., n = 1, as shown in Fig.
6 (right), the x-axis intercepts are 0.67 and 0.09, and y-axis
intercepts are 0.27 and �0.13, and f : [0, 1]2 ! {1, 2, 3, 4}.
More specifically, Pk, k = 1, 2, 3, 4 specifies f(x1, x2):

f(x1, x2) = k, c1x1 + c2x2, c3x1 + c4x2 2 Pk, (22)

which is equivalent to f(x1, x2) = 1 () c1x1 + c2x2 >
d1, c3x1 +c4x2 > d2, and similarly for f(x1, x2) 2 {2, 3, 4},
where c1 = 1

0.27
, c2 = 1

0.67
, d1 = 1, and c3 = 0.68, c4 = �1,

d2 = �0.09, where the hyperplane parameters are such that
the outcomes are as shown in Fig. 6 (Right). By letting a2 =
c2
c1

�
c4
c3

and b2 = d1
c1

�
d2
c3

, and a1 = c1
c2

�
c3
c4

and b1 = d1
c2

�
d2
c4

,
we can rewrite the RHS of (22) for k = 1 as

f(x1, x2) = 1 () a1x1 > b1, a2x2 > b2, (23)
and similarly for k 2 {2, 3, 4}, showing that we can reliably
compute f by using one hyperplane per source, i.e., aixi = bi,
i 2 {1, 2}, even for n = 1. For this example, we cannot
characterize f using block binning as illustrated in Fig. 6
(Middle). That is because each function outcome is jointly de-
cided. More specifically, given an outcome f 2 S , for random
binning, we cannot find a disjoint set pair S1 and S2 such that
P(f(X1, X2) 2 S) ⇡

P
m1(x1)2S1

P
m2(x2)2S2

p(x1, x2).
Hence, for f(x1, x2) in (22), hyper binning has higher accu-
racy than orthogonal binning in finite blocklengths n. While
we can generalize hyper binning to n � 2, we next focus on
the complexity of finite blocklengths due to space constraints.

In Fig. 7-(a), we sketch how we compute a convex region
via hyper binning for a simple example. An outcome, e.g., (b)-
(d), is the intersection of the hyperplane tessellation formed
by solid black lines with the red-shaded region specified by the
sources. Some partitions, e.g., as shown in Fig. 7-(e), do not
define a unique convex bin, i.e., a function outcome, causing
decoding errors. Such events should have a low probability of
occurrence via accurately capturing {aj , bj}

J

j=1
(Props. 4-5).

V. HYPER BINNING AT FINITE BLOCKLENGTHS

For finite blocklengths, the rate limits in (21) do not hold. In
that case, we can exploit the notion of Kolmogorov complexity
K(xn), i.e., the minimum description length of a string xn.
Let Xn be i.i.d. integer-valued variables with entropy H(X),
where X is their finite alphabet, and E

h
K(Xn

)

n

i
be the average

shortest description length of length-n sequence Xn. Then,
there is a constant c such that the relation of Kolmogorov
complexity and entropy for all n satisfies [45, Ch. 7.3]:

H(X)  E

K(Xn)

n

�
 H(X) +

|X | log n

n
+

c

n
. (24)

In random binning, the J = � log(�) bit quantization of
Xn

1
has an entropy of approximately h(Xn

1
) + J , where the

quantization bin length � satisfies � = 2�J . For the J bit
quantization of a string xn

1
, we obtain the average description

length via the addition of J

n
bits on both sides of (24) as

H(X�)  E
hK({X�(l)}n

l=1
)

n

i
 H(X�) +

|X�| log n

n
+

c

n
,

where X� is the alphabet for the quantized variable X� with
|X�| = 2J , and H(X�) ⇡

1

n
h(xn

1
)+ J

n
bits. The finite length

n description of J-bit quantization of Xn

i
, for i 2 {1, 2}

requires an additional |X�| log n

n
bits on top of quantization.

From (2), we have n 
J

2
+ O

�
1

J

�
. Combining this with

(24), the representation complexity of random binning due
to the separation of quantization and compression phases is
approximately 2 bits higher than that of hyper binning. Hyper
binning, unlike orthogonal binning, eliminates the need for
post-quantization. The J bit vector quantization is tailored for
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Fig. 7: (a) Computing a convex region. (b)-(d) The source hyperplanes are emphasized (red) to represent the regions corresponding to several
different function outcomes. Each outcome is the intersection of the tessellation with the red-shaded region. (e) A decoding error occurs.

the functions, and each function outcome relies on a collec-
tion of binary decisions. This process does not involve the
quantization of continuous variables, i.e., approximating the
differential entropy via the addition of J bits. The complexity
is solely determined based on the binary entropy function.

We show the diagram of hyper binning for compression
in Fig. 3. Sampling is a suboptimal single-letter approach. In
information theory, coding and compression typically follow
signal processing. Hyper binning does the compression step
after signal processing and before coding. It captures the entire
data vector instead of a single-letter representation, giving a
functional equivalence of vector quantization.

VI. COMPARISONS WITH THE EXISTING WORK

Characteristic hypergraph coloring in [27] relies on ✏�
achievable schemes where the hyperedge-based construction
exploits the fine granularity properties in the graph when
a non-zero distortion is allowed. This distortion notion is
more unified that generalizes the characteristic graph coloring
approach in [10] via the modeling of hyperedges.

To contrast the hyper binning scheme with the existing work
on graph coloring in [10] and its hypergraph-based coloring
extension in [27], we next consider the Example 1 in [27].
✏-characteristic hypergraphs vs D-characteristic graphs.

The D-characteristic hypergraph of X , GD

X
, has the vertex

set X with any set S ✓ X forming a hyperedge in GD

X
if for

any x1, x2 2 S, d(x1, x2)  D where d(·) is some metric on
X . For independent sources X1 and X2, an outer bound to
the achievable rate region using D-characteristic hypergraphs
is given by [10, Thm 43] as R

(D/2)

GX1,X2
= (R1, R2) such that

Ri � HGXi (D/2)(Xi), i 2 {1, 2}, (25)
where HGX(D)(X) = minX2W2�(G

D
X) I(W ; X), and W and

�(GD

X
) denote a hyperedge and the set of hyperedges in GD

X
.

Example 3. Let (X1, X2) be i.i.d. Bern(1/2) variables. The
decoder wants to compute the identity function f(x1, x2) =
(x1, x2) with ✏ = 0.5. Authors in [27] have demonstrated
that this example achieves equality in the Berger-Tung bound
(R1, R2) 2 Ri,✏ and is optimal. The optimal rate region
satisfies (R1, R2) = RG,✏ such that R1 � 0, R2 � 0, and
R1+R2 � 1. For the same setting, using the approach in [10],
where (R1, R2) = R

D/2

GX1 ,GX2
, the achievable rate is Ri � 1,

which is contained in the inner region devised in [27]. In hyper
binning, since the function f is identity and X1 ?? X2, i.e.,
no CI between the sources, the rate region problem becomes
equivalent to that of Slepian-Wolf with a distortion metric. For

a fair comparison, we need to make a connection between
entropy-based distortion, e.g., in [49], versus the notion of ✏-
characteristic graphs. Exploiting [49], the rate region satisfies
R1 � H(X1)�✏�, R2 � H(X2)�✏(1��) for � 2 [0, 1]. Since
H(Xi) = 1, R1 � 1 and R2 � 0 (and similarly R1 � 0 and
R2 � 1) are achievable. Due to time-sharing, hyper binning
can satisfy the optimal rate region of Berger-Tung. Exploiting
the Hamming distortion where P(X1 6= X̂1)  ✏, the rate-
distortion function for X1 ⇠Bern(0.5) satisfies

R1(✏) = (1 � h(✏)) · 0✏0.5. (26)
For recovering (X1, X2) under the maximum norm constraint,
letting

���Xi � X̂i

���  ✏i for i 2 {1, 2}, we have
P

2

i=1
(Xi �

X̂i)2 
P

2

i=1
✏2
i

 ✏2. In this case, we obtain R1 � 1, R2 �

1 if 0  ✏1, ✏2 < 1, which implies P(Xi 6= X̂i)  0, and
R1 � 0, R2 � 0 if ✏1, ✏2 � 1, implying P(Xi 6= X̂i)  1.

Depending on the distortion criterion, we can achieve the
same rates, e.g., for entropy-based distortion, as [27], or
higher rates, e.g., for Hamming distortion. This conclusion
holds as maximal distortion is, in general, restricted to dis-
crete sources. It does not generalize to continuous variables,
especially when we do not exploit the hypergraph structure.

We next consider a numerical example where there is no
side information, which is in line with Example 2 in [27].

Example 4. Let X be uniformly distributed over {0, 1, 2} and
f(X) = X . Authors in [27] have shown R 2 RG,✏ such that

R � min
X2W2�(G

✏
X)

I(X; W ) =

8
><

>:

log
2
(3), 0  ✏ < 0.5,

2/3, 0.5  ✏ < 1,

0, 1  ✏,

where G✏

X
is an ✏-achievable hypergraph such that

E[ kW�Xk>✏] = 0. If ✏ 2 [0.5, 1), then H(W ) = 1 since
there are two maximal independent sets with 0.5 probability
each. Furthermore, H(W |X) = 1

3
because H(W |X = 1) = 1

that happens with probability 1

3
and H(W |X 6= 1) = 0. Ex-

ploiting D-characteristic graph compression (no hyperedges)
in [10], the rate region specified by R 2 R

D

GX
is given as

R � min
X2W2�(G

D
X)

I(X; W ) =

(
log

2
(3), 0  D < 2,

0, 2  D.

In [10], different from [27], when D 2 [1, 2), the independent
sets are singletons because there is no notion of hyperedges,
and all source outcomes need to be distinguished. However,
for 2  D, we no longer need to differentiate the outcomes.

In [34], the authors extended the coloring scheme in [10]
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via hypergraphs. The graph G✏

Xi
, i 2 {1, 2} is an ✏-achievable

hypergraph such that E[
kf(X1,X2)�f̂(X1,X2)k>✏

] = 0. The
scheme in [34] results in a smoother decay in rate-distortion
than that of [10]. Since the approaches in [10] and [27] are for
compressing post-quantized variables, without optimizing the
quantization phase, for a fair comparison of hyper binning with
them, we next draw an example with continuous variables.

Example 5. Let X1 and X2 be distributed according to
standard normal distribution N (0, 1) and consider the func-
tion in (23). Letting Xi,� = �l, for Xi 2 [l�, (l + 1)�)
and i 2 {1, 2}, and using the CDF of the standard nor-
mal distribution, denoted by �(x) = 1p

2⇡

R
x

�1 e�t
2
/2dt, the

quantized variables satisfy P(X1,� = �l) = �((l + 1)�) �

�(l�). Evaluating (23) using the quantized variables, we get
P
⇣
X1,� > b1

a1

⌘
=
P

{l: l>
b1

a1� }[�((l + 1)�) � �(l�)], and
similarly for X2,�. Then source i 2 {1, 2} needs to decide
whether aixi > bi or not. The rate required for this model is

h
⇣
P
⇣
X1,� >

b1

a1

⌘⌘
+ h
⇣
P
⇣
X2,� >

b2

a2

⌘⌘
. (27)

To achieve compression with the desired distortion (quantizer
bin length� = 2�J ), this approach requires J bits per source.

For this example, the encoding rates for different ✏ are:
• If ✏ 2 [0, 1), then for function in (23) the result is identical

to that of [10] and [27]. If the source distributions are
uniform, e.g., Gaussian variables binary quantized around
the means, each user needs 1 bit for compression, i.e.,
R

✏

GX1 ,GX2
= RG,✏ such that Ri � 1 for i 2 {1, 2}.

• If ✏ 2 [1, 2), the set of independent sets are {{1, 2},
{2, 3}, {3, 4}}. Given the interval of X2, X1 yields either
of the hypergraphs {{1, 2}, {2, 3}} or {{2, 3}, {3, 4}}. If
the sources are uniform, each of these graphs has entropy
H(W ) = 1, and H(W |X1) = 1/4. In either case, it
holds that RG,✏ = (R1, R2), where R1 � 1, R2 � 3/4,
and the sum rate is 1 + 3/4 = 7/4 in [34]. Similarly,
R

✏

GX1 ,GX2
= (R1, R2) where R1 = R2 � 1 in [10] since

given X2, X1 yields either {1, 3} or {2, 4}. If ✏ 2 [1, 2),
given the interval of X1, X2 yields either {{1, 2}} or
{{3, 4}}. In either case, the sum rate is 1 + 0 = 1 in [34].
In [10] R

✏

GX1 ,GX2
, where R1 = R2 � 1, and the sum rate

is 1 + 1 since given X1, X2 yields either {1, 2} or {3, 4}.
• If ✏ 2 [2, 3), RG,✏ is such that R1 � 1, R2 � 0, and the

sum rate is 1+0 = 1 in [34], which is similarly as in [10].
In functional compression of (23) the chain rule does not
hold [10]. To keep the sum rate constant if we swap X1

and X2, the distortion ✏ can be scaled by 1/2. This is
because given X1, the function outcome lies either in {1, 2}

or {3, 4}, i.e., R2 � 0 if ✏ > 1. If instead X2 is given, the
outcome lies either in {1, 3} or {2, 4}, i.e., R1 � 0 if ✏ > 2.

The weak law of large numbers (WLLN) states that the sample
average Xn = 1

n

P
n

l=1
X(l) converges in probability towards

the expected value, i.e., Xn ! µ as n ! 1. Hence, in
hyper binning while for single letter representation it holds
that P(X1 > b1

a1
) = 1 � �

⇣
b1
a1

⌘
, we observe that P(X1n >

b1
a1

) ! {0, 1} as n ! 1. As a result, compressing the length-
n source vector provides a more accurate compression. The
WLLN is true even if the summands are independent but not

identically distributed [60]. For large blocklengths, the rate
for the single letter representation of hyper binning is

h
⇣
P
⇣
X1 >

b1

a1

⌘⌘
+ h
⇣
P
⇣
X2 >

b2

a2

⌘⌘
. (28)

Provided that the sources are uniformly distributed about the
planes, we have that P

⇣
X1 > b1

a1

⌘
= P

⇣
X2 > b2

a2

⌘
= 1

2
,

and the sum rate satisfies 1 + 1 = 2. However, this rate
is clearly not achievable for finite blocklengths. In the non-
asymptotic regime, exploiting the Kolmogorov complexity we
can characterize the performance [45, Ch. 7.3].

In the asymptotic blocklength regime, using J hyperplanes
where J properly scales with n, and {aij , bij}

J

j=1
for sources

i 2 {1, 2}, the average coding rate for hyper binning is

1
n

JX

j=1

h
�
P(a|

1jX
n
1 > b1j)

�
+

1
n

JX

j=1

h
�
P(a|

2jX
n
2 > b2j)

�

 J
n

2X

i=1

h
⇣ 1
J

JX

j=1

P(a|
ijX

n
i > bij)

⌘
, (29)

where the inequality in (29) follows from the concavity of
entropy. The result of 1

J

P
J

j=1
P(a|

ij
Xn

i
> bij) is a probability.

The classical orthogonal binning, i.e., random binning, is
such that each sequence is uniformly assigned to one of 2nR1

bins where R1 > H(X1) and bin B(m) denotes the subset of
sequences with the same index m = 1, . . . , 2nR1 . Evaluating
the probability P(a|

1j
Xn

1
> b1j) we obtain

P(a|
1j

Xn

1
> b1j) =

X

{m: a|
1jX

n
1 >b1j}

P(Xn

1
2 B(m)) = ⇣1j ,

where P(Xn

1
2 B(m)) = 2�nR1 , and ⇣j for a given j

represents the fraction of bins such that a|
1j

Xn

1
> b1j . Hence,

1

J

JX

j=1

P(a|
1j

Xn

1
> b1j) =

1

J

JX

j=1

⇣1j = E[Z1], (30)

where Z1 = ⇣1j with probability 1/J for any j 2 {1, . . . , J}.
Exploiting the random binning approach, the RHS of (29) is

J

n
h (E[Z1]) +

J

n
h (E[Z2]) . (31)

In the case of J = 2 hyperplanes and uniform probabilities
such that P(a|

ij
Xn

1
> b1j) = 1/2 for i 2 {1, 2}, this yields a

sum rate of Jh (E[Z1]) + Jh (E[Z2]) = J · 1 + J · 1 = 4 bits
(ignoring the scaling with n). However, if the distribution is not
uniform such that e.g., for each i 2 {1, 2} we have P(a|

ij
Xn

i
>

bij) = 1/4 for j = 1 and P(a|
1j

Xn

1
> b1j) = 3/4 for j = 2,

then the LHS of (29) equals h(1/4)+h(3/4)+h(1/4)+h(3/4).
Hence the sum rate is 3.245 bits, indicating the savings (0.755
bits in the asymptotic regime) over classical random binning.

In the non-asymptotic regime, exploiting (24) we can char-
acterize the encoding rate more precisely.
VII. A DISCUSSION ON COMPUTATIONAL INFORMATION
THEORY AND COMPARISON WITH MODULAR SCHEMES

In this section, to devise a new perspective on computational
information theory, we provide connections between our dis-
tributed computationally aware quantization scheme that relies
on hyper binning and the coloring-based coding models for
distributed functional compression. First, in Sect. VII-A, we
describe coloring-based modular coding models that decouple
coloring from Slepian-Wolf compression. Next, in Sect. VII-B,
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we shift our focus to describe an achievable encoding for hyper
binning and detail the encoding implementation in 3 steps.

A. Hyper Binning vs Coloring-based Coding Schemes

Since the sources cannot communicate with each other, the
only way to rate reduction is through a source’s defining its
equivalence class for functional compression. We next give
a block function example for which codebook trimming fol-
lowed by the Slepian-Wolf encoding is asymptotically optimal.

Example 6. A trimmable codebook. Two sources X1 ?? X2

are uniformly distributed over the alphabets X1 = X2 =
{0, 1, 2, 3}. The function is f(X1, X2) = X1 � X2. Note that
this function exhibits the behavior as shown in Fig. 5 (a).
Given the function, source 1 can determine an equivalence
class [x1] which is mapped to f(x1, X2). Similarly, source 2
can determine an equivalence class [x2] mapped to f(X1, x2).
For this model, [0] = [2] and [1] = [3] both for X1 and X2, i.e.,
each source needs 1 bit to identify themselves since the data
distributions are uniform. However, the entropy of the function
is 1 bit because there are only 2 equally likely classes.

For computing the function, each source specifies its equiva-
lence class without any help from the other source. To specify
its equivalence class [x1] source 1 to transmit R1 = 1 bit.
Similar arguments follow for source 2 and R2 = 1. Hence,
R1 + R2 = 2. In this example, each equivalence class is
equiprobable and has the same size, which is 2 for each source
since the model is symmetric, making the setup more tractable.

While for a specific class of functions, random binning or
orthogonal trimming of the binning-based codebook work,
we conjecture that such techniques may not optimize the
rate region for general functions (even without correlations).
However, as authors have shown in [27] that for independent
sources, the Berger-Tung inner and outer bounds converge, and
hence the rate of their hypergraph-based scheme lies between
the bounds of [54] and is optimal for general functions.

For functions with particular structures, e.g., the block
function shown in Fig. 5 (a), we can trim the binning-based
codebook, as we detailed in Example 2. In general, trimming
may not work, e.g., the smooth function in Fig. 5 (b). We next
provide an example where orthogonal binning of a codebook
is suboptimal for distributed functional compression.

Example 7. Let f(X1, X2) = (X1 · X2) mod 2 with discrete
alphabets X1 = {1, 2, 3, 4} and X2 = {0, 1}. We infer that

f = 0 ) x̃1 2 X1, x̃2 = 0, or x̂1 2 {2, 4}, x̂2 = 1.

f = 1 ) x̃1 2 {1, 3}, x̂2 = 1, (32)
but f(3, 1) 6= f(2, 1). We illustrate the source pairs causing
distinct outcomes in Fig. 8, indicating that trimming of orthog-
onal bins may not work even if sources have no correlation.

From Example 7 we conjecture that orthogonal binning is
in general not efficient when computing general functions and
/ or with correlated sources. To see that when the decoder
observes f(x̂n

1
, x̂n

2
), it is possible that f(x̂n

1
, x̂n

2
) = f(x̃n

1
, x̃n

2
)

for some source pair (x̃n

1
, x̃n

2
) 6= (x̂n

1
, x̂n

2
). In this case, the

bins cannot be combined since f(x̂n

1
, x̃n

2
) 6= f(x̃n

1
, x̂n

2
) in

general. Hence, orthogonal binning is clearly suboptimal.

X2

X1

(x̂n

1
, x̂n

2
)(x̃n

1
, x̂n

2
)

(x̃n

1
, x̃n

2
)(x̂n

1
, x̃n

2
)

Fig. 8: Source combinations for computing f(X1, X2) in Example
7 for which trimming of orthogonal codebook does not hold. We fill
in the source pairs causing different outputs with different patterns.

Exploiting the notion of characteristic graphs, the authors
in [8] have recently devised coloring-based approaches and
used them in characterizing rate bounds in various functional
compression setups. We use the notation HGXi

(Xi) to repre-
sent the graph entropy for the characteristic graph GXi that
captures the equivalence relation source Xi builds for a given
function f on the source random variables (X1, . . . , Xs).

Definition 1. [10, Defn. 19] A joint-coloring family VC =
{v1

c
, . . . , vl

c
} for Xi with any valid colorings cGXi

for i =
1, . . . , s is such that each vi

c
, called a joint coloring class, is

the set of points (xi1
1

, xi2
2

, . . . , xis
s

) whose coordinates have the
same color, i.e., vi

c
= {(xi1

1
, xi2

2
, . . . , xis

s
), (xl1

1
, xl2

2
, . . . , xls

s
) :

cGX1
(xi1

1
) = cGX1

(xl1
1

), . . . , cGXs
(xis

s
) = cGXs

(xls
s

)}, for
any valid i1, . . . , is, and l1, . . . , ls. vi

c
is connected if between

any two points in vi

c
, there exists a path that lies in vi

c
.

For any achievable coloring-based coding scheme, authors
in [9] have provided a sufficient condition called the Zig-Zag
Condition, and authors in [10] both a necessary and sufficient
condition called the Coloring Connectivity Condition. These
are modular schemes that decouple coloring from Slepian-
Wolf compression. We next state the condition in [10].

Definition 2. [10, Defn. 20] Let Xi be random variables with
any valid colorings cGXi

for i = 1, . . . , s. A joint coloring
class vi

c
2 VC satisfies the Coloring Connectivity Condition

(CCC) when it is connected, or its disconnected parts have the
same function values. Colorings cGX1

, . . . , cGXs
satisfy CCC

when all joint coloring classes satisfy CCC.

Remark 2. CCC vs orthogonal binning. CCC ensures the
conditions for orthogonal binning, i.e., codebook trimming. A
coloring-based encoding that satisfies CCC is applicable to
Example 6. However, it may be suboptimal for functions not
allowing for trimming, see Example 7. Let x̃n

1
2 {1, 3} and

x̂n

1
2 {2, 4} and x̃n

2
= 0 and x̂n

2
= 1. Note that (x̂n

1
, x̂n

2
) ⇠

(x̂n

1
, x̃n

2
) and (x̂n

1
, x̃n

2
) ⇠ (x̃n

1
, x̃n

2
) (CCC preserved). However,

(x̃n

1
, x̃n

2
) 6⇠ (x̃n

1
, x̂n

2
) (CCC not preserved). Hence, CCC

is necessary for trimming. This function also explains the
suboptimality of coloring-based coding in general.

B. An Achievable Encoding Scheme for Hyper Binning-based
Distributed Function Quantization

We next provide a high-level abstraction for an achievable
encoding of hyper binning with s = 2 sources. For a function
f(X1, X2) known both at the sources and at the destination,
let {⌘1, ⌘2, . . . , ⌘J} 2 H

2
⇢ R2 be the hyperplane arrange-

ment of size J in GP that divides R2 into exactly M = r(2, J)
regions, and is designed to sufficiently quantize f(X1, X2).
Our goal is to predetermine the parameters {(aj , bj)}J

j=1
that
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maximize I(M). We assume that these parameters are known
at both sources and sent to the destination only once. We also
highlight that we provide a heuristic for encoding, instead of
explicitly generating codebooks, as we describe next.

The Gács-Körner Common Information Carried via
Hyperplanes. To enable distributed computation for non-
decomposable functions, we envision a helper-based dis-
tributed functional compression approach. Hyper binning re-
quires the transmission of common randomness between the
source data and across the data and its function, captured
through the hyperplanes. The common information (CI) mea-
sures provide alternate ways of compression for comput-
ing when there is common randomness between two jointly
distributed sources [50]. Among these measures, the Gács-
Körner CI (GK-CI) has applications in the private constrained
synthesis of sources and secrecy [61] and is relevant here
because it can be separately extracted from either marginal
of X1 and X2 [50]. In distributed CI extraction, to the best
of our knowledge, the GK-CI is the only CI that exploits the
combinatorial structure of pX1,X2 to decompose the sources
into latent common and non-common parts that ideally form
disjoint components of a bipartite graph. More specifically, the
GK-CI decomposition of pX1,X2 partitions the bipartite graph
representation of pX1,X2 into a set K of a maximal number of
connected components D1, . . . , D|K| where |K| is their cardi-
nality. The GK-CI variable K represents the index of the con-
nected component and equals K = arg max

H(U |X1)=H(U |X2)=0

H(U),

i.e., K can be separately extracted from either source [50].
The combinatorial structure of pX1,X2 , captured via K, can
be encoded through a helper as a proxy for establishing
bipartitions K, which can provide efficient encoding and
transmission of data when joint typicality decoding is not
possible [61]. Letting P(Dk) =

P
x1, x22Dk

pX1,X2(x1, x2),
the GK-CI between X1 and X2 [50] equals

H(K) = �

X

k2K
P(Dk) log(P(Dk)) bits. (33)

In our distributed quantization setting, the helper should com-
municate in a prescribed order the hyperplane parameters that
are J(n+1) in total. The rate of CI is the rate of compressing
the parameters {(aj , bj)}J

j=1
. While these parameters are real-

valued, they have approximate floating-point representations.
Furthermore, while they might need to be updated with n,
from (2), the update rates of J and hence of the hyperplane
parameters is logarithmic with respect to n.

Encoding. In encoding each source Xi, i = 1, 2 indepen-
dently determines an ordering of hyperplanes to compress Xi.
Let these orderings be OXi ✓ ⇡Xi({⌘1, ⌘2, . . . , ⌘J}), where
⇡Xi is the permutation of the hyperplane arrangement from the
perspective of source i. Note that ⇡Xi1

6= ⇡Xi2
for i1 6= i2

because sources might build different characteristic graphs.
Source i determines an ordering OXi , which is from the most
informative, i.e., decisive in classifying the source data, to the
least such that the first bit provides the maximum reduction
in the entropy of the function outcome.

Transmission. Because each source has the knowledge
of {(aj , bj)}J

j=1
, it does the comparisons ajxt � bj for

hyperplane j and sends the binary outcomes of these com-

parisons. Hence, each source needs to send at most J bits
(1 bit per hyperplane) to indicate the region representing the
outcome of f . There are at most 2J possible configurations,
i.e., codewords, among which nearly |C|HP = 2

PJ
j=1 h(qj)

are typical. Source i transmits a codeword that represents a
particular ordering ⇡Xi . Hence, in the proposed scheme with
J hyperplanes, we require up to 2J bits to describe a function
with M = r(2, J) outcomes. This is unlike the Slepian-
Wolf setting, where source i has approximately |C|SW =
2nH(Xi) codewords to represent the typical sequences with
blocklength n as n goes to infinity [2]. Hence, an advantage
of the hyper binning scheme over the scheme of Slepian-
Wolf is that it can capture the growing blocklength n with
J hyperplanes without exceeding an expected distortion. Note
that as hyper binning captures the correlation between the
sources as well as between the sources and the function,
it provides a representation with a reduced codebook size
|C|HP < |C|SW for distributed functional compression. If using
J ⌧ n hyperplanes ensures that the majority of qj is in
{0, 1}, then the efficiency of the function representation is
obvious. However, if J linearly scales with n, since HGXi

(Xi)
is the entropy of the characteristic graph that source i builds
to distinguish the outcomes of f [7], a sufficient condition forP

J

j=1
h(qj) ⇡ nHGXi

(Xi) is that h(qj) ⇡
n

J
HGXi

(Xi), 8 j.
Reception. At the destination, each codeword pair received

from the sources yields a distinct function output that can be
determined by the specific order of the received bits in the
codebooks designed for evaluating the outcome of f along
with the CI carried via the hyperplanes.

Discussion. Sects. VII-A and VII-B focus on achievable
schemes and are suboptimal in some cases. However, hyper
binning is not modular, unlike the coloring-based approaches,
e.g., graph coloring followed by Slepian-Wolf compression in
[10] or its hypergraph-based extension in [27]. Hyper binning
does not involve a coloring step or a separate quantization
phase prior to compression. Instead, it jointly performs quan-
tization and compression. This joint design is possible through
the knowledge of the hyperplane parameters at the source sites.

VIII. CONCLUSIONS

We introduced a distributed function-aware quantization
scheme for distributed functional compression called hyper
binning. While distributed source compression algorithms in
general focus on quantizing continuous variables and then
compressing them, hyper binning does the compression step
on the functional representation, providing a natural gener-
alization of orthogonal binning to computation. Optimizing
the tradeoff between the number of hyperplanes and the
blocklength is crucial in exploiting the high dimensional data,
especially in a finite blocklength setting. The proposed model
can adapt to the changes and learn from data by successively
fine-tuning the hyperplane parameters with the growing data
size. Due to Kolmogorov complexity, for finite blocklengths,
hyper binning can be iteratively refined to capture the function
accurately at a lower cost than random binning. We believe
that our approach provides a fresh perspective to vector quan-
tization for computing. However, we do not claim optimality.
This caveat is due to the difficulty of the NP-completeness
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of graph entropy and practical implementation because there
is no constructive algorithm. Our future work includes sam-
pling and vector quantization for function computation from
an information-theoretic standpoint. Extensions also include
analyzing general convex bodies formed by nonlinear hyper-
planes, hypersurfaces, and multivariate functions.
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1

SUPPLEMENTARY MATERIAL

We recall the following notation being used in the paper:
h̄M = 1

M

P
M

k=1
h(pk) and h̄M+1 = 1

M+1

P
M+1

k=1
h(pk), and

hence (M + 1)h̄M+1 = Mh̄M + h(pM+1).
Given an MSE distortion criterion E[d(fn, f̂n)] =

1

n

P
n

l=1
(f(l) � f̂(l))2  ✏, the approximation using J hy-

perplanes yields an MSE:

E
⇥� 2nX

j=J

cj{a|
j xt�bj} � dj{a|

j xt<bj}
�2⇤

 ✏. (34)

A. Proof of Proposition 1

Adding one more hyperplane, pk’s decay and for given N ,
nk’s also decrease but since the source data is preserved, we
have

P
M

k=1
nk =

P
M+1

k=1
ñk =

P
M+1

k=1
↵nk = N where ↵ 2

[0, 1]. Letting ↵̄ = 1 � ↵, the following holds for I(M + 1):

I(M + 1) = h
⇣ 1

N

M+1X

k=1

ñkpk

⌘
�

M+1X

k=1

ñk

N
h(pk)

= h
⇣ 1

N

MX

k=1

↵nkpk + ↵̄pM+1

⌘
�↵

MX

k=1

�kh(pk)� ↵̄h(pM+1)

(a)

� ↵h
⇣ MX

k=1

�kpk

⌘
+↵̄h(pM+1)�↵̄h(pM+1)�

MX

k=1

↵�kh(pk),

where (a) is due to the concavity of h. The RHS of (a) is
↵I(M). For asymmetric data distribution, we have nk = �pk.
The following relation confirms the monotonicity of I(M):

I(M + 1) � ↵h
⇣ �

N

MX

k=1

p2

k

⌘
�

MX

k=1

↵�pk

N
h(pk)

(b)

= ↵I(M),

where (b) follows from the definition of I(M) that yields
I(M) = h

⇣
�

N

P
M

k=1
p2

k

⌘
�
P

M

k=1

�pk

N
h(pk). As I(M + 1) �

↵I(M) where ↵ 2 [0, 1], the final result can be obtained.

B. Proof of Proposition 2

The mutual information I(M + 1) satisfies the relation:

I(M + 1) = h
⇣Mp̄M + pM+1

M + 1

⌘
� h̄M+1

�
M

M + 1
h(p̄M ) +

1

M + 1
h(pM+1) �

Mh̄M + h(pM+1)

M + 1

=
M

M + 1

�
h(p̄M ) � h̄M

�
=

M

M + 1
I(M),

where the inequality is due to the concavity of h.
Given M , assume {pk}

M

k=1
are fixed and in the increasing

order 1/2 < p1 < p2 < . . . < pM and hence h̄M . When we
increment M , since h

⇣
Mp̄M+pM+1

M+1

⌘
 h (p̄M ),

I(M + 1) 
M

M + 1

�
h (p̄M ) � h̄M

�
+

h (p̄M ) � h(pM+1)

M + 1

=
M I(M)

M + 1
+

h (p̄M ) � h(pM+1)

M + 1
= I(M)+

h̄M � h(pM+1)

M + 1
.

Combining the bounds we attain the desired result.

C. Proof of Proposition 3

For the convergence argument, from (10), taking a sum from
M = 1 to N � 1, we have that
N�1X

M=1

h̄M � h (p̄M )

M + 1
 I(N) � I(1) 

N�1X

M=1

h̄M � h(pM+1)

M + 1
.

From the law of large numbers, h̄M ! E[h] = 0 as M ! 1

and h(pM ) ! 0, i.e., the sequence {
h̄M �h(pM+1)

M+1
} converges

to 0. It is indeed a Cauchy sequence. Note that a sequence
x1, x2, x3, . . . of real numbers is called a Cauchy sequence if,
for every positive real number ", there is a positive integer N
such that for all natural numbers m, n > N , |xm � xn| < ".
Hence, it is convergent.

If nk’s are symmetric, I(M) has the behavior, as shown in
Fig. 5 (d). The decay rates are low if M is large. However,
if M is small, we expect the first term to decrease slower
(concavity), yielding high mutual information. As M gets
larger, the decrease in the first term is sharper, and the mutual
information decays, which we formally investigate next:

�I(M + 1) =
1

M + 1

��
h̄M � p̄M

�
� (h (pM+1) � pM+1)

�
.

Since h(p) � p is decreasing in p for p � 1/2, we have that
h(p̄M ) � p̄M � h(p̄M+1) � p̄M+1. However, because entropy
is concave, i.e., h(p̄M )� p̄M � h̄M � p̄M for all M , this does
not imply that h̄M �p̄M > h (pM+1)�pM+1 for all M . When
M is small, the gap h(p̄M )� h̄M is smaller and it is possible
to have �I(M + 1) � 0. However, when M gets larger, the
gap h(p̄M ) � h̄M is larger and �I(M + 1) < 0.

There is a global maximum I(M⇤) such that �I(M +1) ⇡

0. This is true when h (pM+1)�pM+1 ⇡ h̄M � p̄M . The value
M⇤ is unique since as M > M⇤, the relative increase of pM+1

is more than p̄M , and the relative decrease of h (pM+1) with
respect to h (p̄M ) is higher and h̄M is smaller than h (p̄M ).

D. Proof of Proposition 5

Noting that a|
j
xn

1
is Gaussian distributed, and cj should be

its average value such that a|
j
xn

1
� bj , and similarly for dj

which is the average of a|
j
xn

1
such that a|

j
xn

1
< bj . In other

words, the following relationships hold for j 2 Ji, i 2 {1, 2}:

cj = E[a|
j
xn

i
|a|

j
xn

i
� bj ] =

�(bj)

1 � �(bj)
, (35)

dj = E[a|
j
xn

i
|a|

j
xn

i
< bj ] =

�(bj)

�(bj)
, (36)

where �(x) is the density function of the standard normal
distribution and Q(x) = 1��(x) where the Q-function is the
tail distribution function of the standard normal distribution.
Note that the ratio of the parameters satisfy cj

dj
= �(bj)

1��(bj)
.

We can evaluate the relation in (34) via incorporating the
definition qj = P(a|

j
xt � bj) as

qj = Q

0

@bj � E[a|
j
xt]q

Var[a|
j
xt]

1

A = Q

0

@bj � a|
j
µ

q
a|

j
⌃aj

1

A . (37)

For the bivariate normal distribution, the pdf of the vector
[X, Y ]0 (where X = a|

j
xt and Y = a|

k
xt) satisfies



2

1

2⇡�X�Y

p
1 � ⇢2

exp

 
�

1

2(1 � ⇢2)

"✓
x � µX

�X

◆2

�2⇢

✓
x � µX

�X

◆✓
y � µY

�Y

◆
+

✓
y � µY

�Y

◆2
#!

,

where the means satisfy µX = a|
j
µ and µY = a|

k
µ, the stan-

dard derivations satisfy �X =
q

a|
j
⌃aj and �Y =

p
a|

k
⌃ak,

and the correlation is

⇢ =
E[XY ] � µXµY

�X�Y

=
a|

j
(⌃+ µµ|)ak � µXµY

�X�Y

.

For a given pair (j, k) such that j 6= k we let
qjk = P(a|

j
xt � bj , a|

k
xt � bk),

pjk = P(a|
j
xt � bj , a|

k
xt < bk),

rjk = P(a|
j
xt < bj , a|

k
xt < bk). (38)

Combining the relations (34), (37) and (38), we obtain that

E[d(f, f̂)] = E
h⇣ 2nX

j=J

cj a|
j xt�bj

� dj a|
j xt<bj

⌘

·

⇣ 2nX

k=J

ck a|
kxt�bk

� dk a|
kxt<bk

⌘i

=
2nX

j=J

2nX

k=J

cjckP(a|
j
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k
xt � bk)

+
2nX

j=J

2nX

k=J,k 6=j

cjdkP(a|
j
xt � bj , a|

k
xt < bk)

+
2nX

j=J

2nX

k=J,k 6=j

djckP(a|
j
xt < bj , a|

k
xt � bk)

+
2nX

j=J

2nX

k=J

djdkP(a|
j
xt < bj , a|

k
xt < bk).

We can rewrite E[d(f, f̂)] as

E[d(f, f̂)] =
2nX

j=J

2nX

k=J,k 6=j

cjckP(a|
j
xt � bj , a|

k
xt � bk)

+
2nX

j=J

c2

j
P(a|

j
xt � bj)

+ 2
2nX

j=J

2nX

k=J,k 6=j

cjdkP(a|
j
xt � bj , a|

k
xt < bk)

+
2nX

j=J

2nX

k=J,k 6=j

djdkP(a|
j
xt < bj , a|

k
xt < bk)

+
2nX

j=J

d2

j
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j
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(38)

=
2nX

j=J

2nX

k=J,k 6=j

cjckqjk +
2nX
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j
qj + 2

2nX

j=J

2nX

k=J,k 6=j

cjdkpjk

+
2nX

j=J
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(1 � qj)



2nX
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cjqj

2nX
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2nX

j=J

cjqj

2nX

k=J,k 6=j

dk

+
2nX

j=J

dj

2nX

k=J

dk(1 � qk), (39)

where the last inequality follows from (38) where we observe
that qj = qjk + pjk and 1 � qk = pjk + rjk for any k 6= j.

In general, from (39) and using the definitions of qjk, pjk,
and rjk, it is not straightforward to determine the set of
hyperplane parameters {aj , bj}. The MSE depends on how
we jointly determine aj , bj , n, J . Note also that {cj}

J

j=1
and

{qj}
J

j=1
depend on the blocklength n. We emphasize that

it is not straightforward to derive a necessary condition for
achieving the desired MSE metric. On the other hand, we
observe that when cJ is high (when the separation between
two regions needs to be large) or ✏ is small, then the required
number of hyperplanes, i.e., J , is high.

If we assume that dj = �cj , we can have the following
sufficient condition to meet the MSE criterion:

2nX

j=J

cjqj

2nX

k=J

ck � 2
2nX

j=J

cjqj

2nX

k=J,k 6=j

ck

+
2nX

j=J

cj

2nX

k=J

ck(1 � qk)  ✏.

Rearranging the above relation we obtain

�

2nX
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2nX

k=J

cjckqj + 2
2nX

j=J

c2

j
qj +

2nX

j=J

2nX

k=J

cjck(1 � qj)

= 2
2nX

j=J

c2

j
qj +

2nX

j=J

cj(1 � 2qj)
2nX

k=J

ck

=
2nX

j=J

 
2c2

j
qj + cj(1 � 2qj)

2nX

k=J

ck

!
 ✏.

Hence, a sufficient condition to ensure the desired distortion
level is given as for j = J, . . . , 2n 

2c2

j
� 2cj

2nX

k=J

ck

!
qj + cj

2nX

k=J

ck 
✏

2n � J + 1
, (40)

which is equivalent to the condition for any j 2 {J, . . . , 2n}:

qj 
1

2c2

j
� 2cj

2nP
k=J

ck

·

⇣ ✏

2n � J + 1
� cj

2nX

k=J

ck

⌘
, (41)

where recall that from (35) cj = �(bj)

1��(bj)
. As bj increases we

expect cj to increase and qj to decrease. However, we cannot
increase bj arbitrarily because

✏

2n � J + 1
� cj

2nX

k=J

ck > 0.

Rearranging this inequality and summing up both sides of the
equation from k = J to k = 2n, for the sufficient condition
in (41) to hold it is required that

2nX

k=J

ck 
p
✏.


