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Abstract—We design a distributed function-aware quantization
scheme for distributed functional compression. We consider 2
correlated sources X; and X> and a destination that seeks an
estimate f for the outcome of a continuous function f(X;, X>).
We develop a compression scheme called hyper binning in order
to quantize f via minimizing the entropy of joint source partition-
ing. Hyper binning is a natural generalization of Cover’s random
code construction for the asymptotically optimal Slepian-Wolf
encoding scheme that makes use of orthogonal binning. The key
idea behind this approach is to use linear discriminant analysis
in order to characterize different source feature combinations.
This scheme captures the correlation between the sources and
the function’s structure as a means of dimensionality reduction.
We investigate the performance of hyper binning for different
source distributions and identify which classes of sources entail
more partitioning to achieve better function approximation.
Our approach brings an information theory perspective to the
traditional vector quantization technique from signal processing.

Index Terms—Function-aware quantization, function coding,
computation, hyper binning, orthogonal binning.

I. INTRODUCTION

Compression and processing of large amount of data is a
challenge in various applications. From an information theory
perspective, there are asymptotic optimal approaches to the
distributed source compression problem that can achieve arbi-
trarily small decoding error probability for large blocklengths,
such as noiseless distributed coding of correlated sources as
proposed by Slepian-Wolf [2], and their extensions [3]-[5],
which are based on orthogonal binning of typical sequences.
Practical Slepian-Wolf encoding schemes include coset codes
[4], and turbo codes [6]. Other examples include rate region
characterization using a graph-based approach, such as [7]-
[10], and coding for computation with communication con-
straints [11], [12]. While some approaches focus on network
coding for computing linear functions, such as [13], [14], there
exist works exploiting functions with special structures, e.g.,
in [15] as well as coding of sparse graphical data, e.g., [16].

The related work in the signal processing domain includes
vector quantization and distributed estimation-based models.
A vector quantization technique was proposed in [17], where
the feature space is partitioned via a hierarchical tree-based
classifier such that the average entropy of the class distribution
in the partitioned regions is minimized. In [18], conditions
for efficiently quantizing scalar parameters were characterized
and estimators that require transmitting just one bit per source
that exhibits variance almost equal to the minimum variance
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estimator based on unquantized observations were proposed.
Max-Lloyd algorithm, which is a Voronoi iteration method,
was applied to vector quantization and pulse-code modulation
[19]. Vector quantization using linear hyperplanes was applied
to distributed estimation in sensor networks in the presence of
noise [20], and with resource constraints [21]. In addition to
the quantization-based approaches, the problem of detection
and hypothesis testing have drawn significant attention, see
the schemes, e.g., a mismatched detector for channel coding
and hypothesis testing [22], or signal constellation design with
maximal error exponent [23]. There has recently been quite
interesting work in traditional signal processing that minimizes
some distortion measure from the quantized measurements,
e.g., hardware-limited quantization for achieving the minimum
mean-squared error (MMSE) distortion [24], task-based quan-
tization for recovering functions with special structures, e.g.,
quadratic functions as in [25], and sparse functions [26].

Another perspective on efficient representation is coding for
functional compression, which is complementary to the vector
quantization methods. In [27], the authors have proposed a
hypergraph-based coloring scheme whose rate lies between
the Berger-Tung inner and outer bound and showed that for
independent sources, their scheme is optimal for general func-
tions. In [28], the author has derived inner and outer bounds
for multiterminal source coding. The author has shown that
for scalar codes (scalar quantizers followed by block entropy
coders) the two bounds converge. In [29], the authors have
considered the distributed functional source coding problem,
in which the sink node computes an estimate of the function
9(X1,...,X,) under MSE distortion. The setting is restricted
to the communication of source data over rate-limited links,
and scalar quantization of each X; for ¢ = 1,...,s using
a sequence of companding quantizers {Q% } of increasing
resolution K, mostly for independent sources {X;}5_;. Unlike
[29], we consider vector quantization without the assumptions
on the source independence or the rate-limited links.

In [39], the authors have considered high-resolution source
coding with multidimensional companding for non-difference
distortion measures. In [40], the author has minimized the
MSE for the Wyner-Ziv problem with decoder side infor-
mation and functional distortion. In [41], the authors have
used a structured hyperplane wave partition model using a
frame model — a redundant set of basis vectors — that provides
O(1/R?) MSE distortion as a function of the redundancy R
[41], and the follow-on works such as [42] have focused on
deterministic qualities of quantization, and [43], which con-
cerns applying frames to a packet erasure network. This model,
similar to network coding [14], serves for recovering the
DoFs more effectively. Different from [39]-[43], we assume
a randomized model where reconstruction is not consistent.



Problem types

Side information

Distributed source coding for computing

f(X1, X2) = (X1, X2)

Wyner and Ziv [3]

Coleman et al. [5], Berger et al. [30],
Barros and Servetto [31], Wagner et al. [32]

Coding for computing general f(X1, X2) | Yamamoto [33]

Doshi et al. [9], Basu et al. [34]

Feizi and Médard [10]
Basu et al. [27]

Product of two broadcast channels
Multiple access channel (MAC)
Two-hop and diamond networks

Watanabe [35]
Rajesh et al. [36]

Nazer and Gastpar [37]
Guo [38]

TABLE I: Research progress on nonzero-distortion source coding problems.

The broad and common objective in these models is finding
ways of effective compression and communication of massive
data. This goal is realizable by capturing underlying redun-
dancy both in data and functions, and recovering a sparse
representation, or labeling, at the destination. From a practical
perspective, the redundancy across geographically dispersed
sources’ data plays a big role and can provide significant gains
in compression. Hence, from a technical point of view, com-
pressing data is preferred for reducing resource consumption in
networks (e.g., wireless or data center networks). Furthermore,
there might be privacy concerns at the source sites because
sources may not be willing to share sensitive data, including
customer data or medical records. Additionally, the destination
might only be interested in a function of the data and cannot
store the entire data. In this scenario, the sources aim to
collectively determine a function outcome without disclosing
their data to each other. Hence, the distributed computation of
functions naturally fits into the distributed source compression
framework, ensuring the protection of sources.

We summarize the efforts on nonzero-distortion source
encoding problems in Table I. Despite these approaches, the
exact achievable rate region for the function compression
problem is, in general, an open problem. To the best of our
knowledge, it is only solved for special scenarios, including
general tree networks [10], linear functions [14], identity
function [2], and rate-distortion characterization with decoder
side information [3]. However, there do not exist tractable
approaches that approximate the information-theoretic limits
to perform functional compression in general topologies. Thus,
unlike compression, for which coding techniques exist, and
compressed sensing acts in effect as an alternative for coding,
for purposes of simplicity and robustness, there is currently
no family of coding techniques for functional compression.

Our main contributions are summarized as follows:

o A novel approach, called hyper binning, for distributed
function-aware quantization that uses hyperplane arrange-
ments (Sect. II-A). It provides a vector quantized functional
representation of distributed sources that minimizes the
entropy of joint source partitioning (Sect. II).

o Application of hyper binning to sources modeled as a
Gaussian mixture model (GMM) (Sect. III), as a special
tractable case of the problem. To demonstrate the gains of
hyper binning, we also consider more general continuous
and discrete-valued sources (Sects. IV, VI, and VII).

o The theoretical justification for the rate-distortion perfor-
mance of hyper binning, for distortion criteria including a)
entropy-based, b) mean-squared error (MSE), or ¢) Ham-
ming distortion and d) Gaussian approximation. (Sect. III-D,
where we provide the rate-distortion expressions for the

general case and the case of the GMM).

o A scaling between the number of hyperplanes J and the
blocklength n that hyper binning can support (Sect. I1I-C).

o Characterization of the description length of hyper binning
at finite blocklengths via Kolmogorov complexity (Sect. V).

o A comparison of hyper binning for real-valued source data
with coloring-based modular compression schemes that de-

couple quantization and binning (orthogonal binning, e.g.,

Slepian-Wolf coding [2], or codebook trimming [10] [Sect.

IV]) for discrete-valued data (Sect. VI).

o An encoding heuristic for hyper binning by exploiting the
Gacs-Korner common information (GK-CI) (Sect. VII).
Via the proposed hyper binning scheme, we aim to address

the following central questions:

« What functions f can we approximate well? Via hyper
binning, the class of functions f we can compute (with
zero error) is the class of f given by a hyperplane
arrangement. Our approach can be used to well approx-
imate discrete, piecewise constant, or linearly separable
functions. In addition, hyper binning can model f that
are continuous in the neighborhood of the quantization
levels. For other classes of f, the approximation depends
on the distortion metric and criterion and the number of
hyperplanes in general position (GP), which divides the
space into a maximum number of regions [44].

« How should we choose the hyperplane parameters given
a function f? This choice depends on the distortion
criterion. For instance, in Sect. III, we detail source data
satisfying a Gaussian mixture model subject to a given
LDA classification error criterion. However, for general
source distribution models subject to different distortion
metrics, f significantly impacts the design. To that end,
we consider various examples in Sect. VL.

« How many hyperplanes J do we require at finite block-
lengths? How does J scale as n — 0o? The maximum
blocklength that can be supported with J hyperplanes in
GP is nmax = 3 + O (1), ie, J = 2npax as n — oo.

Connections to the State-of-the-Art. The novelty of hyper

binning is that we find a partitioning of the sources using a
hyperplane arrangement to allow describing a function of inter-
est up to some quantization distortion rather than determining
an independently quantized representation of dispersed source
data oblivious to the function. Such a scheme needs fewer
dimensions than the codeword size and captures the function’s
dependence on the data. The technique differs from traditional
vector quantization for data compression and brings together
techniques from information theory, such as distributed source
encoding, functional compression, and optimization of mutual
information, to the area of signal processing via function quan-
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Fig. 1: Distributed compression scheme of Slepian-Wolf [2] via binning constructed using the asymptotically optimal approach in [45].
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Fig. 2: Orthogonal trimming of the random binning-based codebook, where the bins of X7 and X3' are independently trimmed.

tization inspired by hyperplane-based vector quantizers. Hyper
binning does not rely on the NP-hard nature of graph coloring
[10] and the asymptotically optimal information-theory-based
models [2], [3] which are impractical for finite blocklengths.
Hyper binning is an intuitive generalization using linear hy-
perplanes for encoding continuous functions through a vector
quantization of the high dimensional codebook space. Our
results can be used to recover the instances, e.g., the Slepian-
Wolf compression model or its orthogonal trimming.

Organization. The paper’s organization to answer the cen-
tral questions outlined above is as follows. Sect. II states
the problem of vector quantized functional representation of
distributed sources and describes a linear hyperplane-based
distributed function encoding approach called hyper binning.
Sect. II-B provides the motivation behind, Sect. II-C details
background on convex sets and hyperplanes, and Sect. II-D
details the necessary conditions for encoding the functions.
Sect. IIT focuses on the analytical details of hyper binning
for encoding functions to determine the optimal hyperplane
allocation for a specific instance where the source data is
characterized by a Gaussian mixture model (GMM). More
specifically, for the GMM, Sect. III-A describes the data and
hyperplane arrangement, Sect. III-B focuses on optimizing the
arrangement to maximize a notion of the mutual information
between the function and the partitions, Sect. III-C describes
the behavior of the mutual information for different source
data distribution models across the classes of the GMM and
Sect. III-D details several rate-distortion models (including the
entropy-based, mean-squared, Hamming, and Gaussian distor-
tion models) of hyper binning for characterizing the GMM.
Sect. IV contrasts hyper binning and orthogonal binnings
for infinite blocklengths, along with the assumptions on the
sources, via building on the classical distributed encoding
approach of [2]. Sect. V is concerned with the compression
complexity at finite blocklengths. To demonstrate the gains of
hyper binning for more general source distributions, including
continuous-valued sources, Sect. VI provides a rate-region
comparison of hyper binning and existing schemes on graph-
based [10] and hypergraph-based [27], [34] coloring schemes,
both for pre and post-quantized source data. Sect. VII details
a discussion on the connections between hyper binning and

coloring-based coding models and a heuristic for encoding that
relies on the Géacs-Korner CI. Finally, Sect. VIII summarizes
our contributions and points out future directions.

Notation. The binary entropy function, denoted h(p), satis-
fies h(p) = —plogy p — (1 — p) log,(1 — p). Given a discrete
random variable X, H(X) = E[—log,(X)] is the entropy of
X in bits. Similarly, H(X7, X5) is the joint entropy of X;
and X, and H(X;|X3) is entropy of X; conditioned on X5.

Let C be a non-empty closed convex subset of R", i.e., C' C
R™, and x, z be vectors in R™, and ||-|| denote the Euclidean
norm on R"™. For n € N, let B" = {x € R" : ||x]| < 1} be
the unit ball, and v,,_;1 denote the uniform distribution on the
unit sphere S~ ! = {x € R" : ||x|| = 1}.

II. PROBLEM STATEMENT

We consider a system with two encoders (the problem
can be generalized to any number of encoders s > 2) and
a joint decoder. For a given blocklength n, two encoders
observe random sequences X7 € A" and X35 € X' where
the pairs {(X1(1), X2(1)): I = 1,...,n} are two statistically
dependent and length n sequences drawn independently and
identically (i.i.d.) according to a known joint distribution
Pxy,x,(T1,22), ie., the sequences have a joint distribu-
tion that satisfies [],_, px, x,(z1(1), 22(1)) for x? € &7,
i € {1,2}. The decoder aims to recover a vector quantized
functional representation of distributed sources. The source
terminals must independently encode these observations into
messages sent to a decoder who wishes to estimate the
sequence f(X7T, X%) = {f(X1(),X2(D): 1 = 1,...,n}
subject to distortion (which we detail in Sect. III-D), where
f X x Xy — Y is a single-letter function that could be
continuous or discrete. In particular, we are interested in the
case where X1 = X5 = )Y C R, i.e., X; and X5 could have
bounded support and f could be defined on a bounded subset
of R2. We assume that f is known both at the sources and the
decoder, and there is no feedback in the system.

Some special cases of this distributed quantization problem
have been considered in the literature, including the distributed
encoding scenario studied by Slepian-Wolf in their landmark
paper when f is the identity function [2]. Specifically, given
sources X; and X, with finite alphabets, the Slepian-Wolf
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Fig. 3: Hyper binning, which generalizes the orthogonal compression to convex regions determined by the intersections of hyperplanes.

theorem gives a theoretical bound on the lossless compression
rate for distributed coding of two statistically dependent and
ii.d. finite alphabet source sequences [2]. Indeed, Cover
developed an asymptotically optimal encoding scheme using
orthogonal binning [45]. The orthogonal binning is such that
the codewords are selected uniformly at random from each bin,
and the bins are equally likely. The functional extensions of
[2] in [10] and [27] are also on the already post-quantized data
streams. In this paper, we generalize the coding approach in
[2]. Instead of decoding the identity function, i.e., the sources
X, and X themselves, we recover a continuous function f of

X1 and X, that satisfies the properties detailed in Sect. II-D.
A common assumption in the point-to-point model of Shan-

non [46] or more general communication systems is that signal
is discrete-time sequence X(I), [ = 1,...,n. The goal is
to design a distributed compression scheme that gives the
best possible reconstruction for a given distortion criterion.
In particular, a classical approach is scalar quantization of
source data samples, which turns the source data into a discrete
memoryless sequence, followed by distributed compression,
allowing the use of distributed source coding techniques, as
shown in Fig. 1. Another approach generalizes the above quan-
tization scheme to a compression model for estimating a class
of functions that allows orthogonal trimming of codebooks, as
shown in Fig. 2. In this approach, the random bins (uniformly
quantized bins) generated by the coding theorem of Slepian-
Wolf [2] are trimmed orthogonally, i.e., the trimming of the
sequences X1' and X3 is independently performed. While the
theorem of Slepian-Wolf is originally for discrete variables,
the rate-distortion function of Wyner—Ziv coding is known
for both discrete and continuous alphabet cases of the source
and the side information with a general distortion metric in
[47], [3]. The designs in Figs. 1 and 2 are optimal only for
a set of functions (piecewise constant or block). However,
the separation-based approach (which first quantizes and then
compresses the data) may be suboptimal. By contrast, a strat-
egy that employs compression on the functional representation
of the vector quantized data can outperform separation. In this
paper, we go beyond the classical compression algorithms that
work on the post-quantized single-letter representation of data.
We propose a novel linear hyperplane-based function encoding
approach, called hyper binning, that can operate on the pre-
quantized data, using ideas from vector quantization to provide
a more effective way of functional compression.

A. What is Hyper Binning?

Hyper binning relies on quantizing X7 and X% using a col-
lection of linear hyperplanes called a hyperplane arrangement.
A linear hyperplane is an (n — 1)-dimensional subspace of an

n-dimensional vector space and hence can be described with
a linear equation of the following form:
ai1x1 + asxs + -+ apx, = b.

The idea is to partition a high dimensional codebook space
into closed convex regions called hyper bins that capture the
correlations between X; and X, as well as the dependency
between the function f and (X3, X5). The key intuition
is that closed convex sets have dual representations as an
intersection of half-spaces. For this purpose, we use a finite
set of hyperplanes, and their crossings determine the hyper
bins, i.e., the quantized outcomes of f. Via hyper binning, it
is possible to represent f accurately up to a distortion level.
The quantization error can vanish by optimizing the number,
parameters, and dimensions of the hyperplanes employed. To
the best of our knowledge, hyper binning is a new functional
viewpoint to the challenging problem of distributed function-
aware quantization in computational information theory.

We denote a hyperplane arrangement with cardinality J
by {n(a;, bj)}}‘]:r The choice of the hyperplane parameters
{a; € R",)b; € R : j = 1,...J} depends on the
characteristics of the joint distribution of X; and X, and
its relation with the function f(X7, X%) to be estimated,
which is detailed in Sect. III. In our encoding approach, unlike
the orthogonal binning and orthogonal trimming approaches,
we determine the half-spaces determined by the arrangement,
where a half-space corresponding to hyperplane j is a set given
by {x € R": aJx > b;}, and compress the intersection of
half-spaces. We illustrate this novel approach in Fig. 3.

The hyper binning-based encoding scheme is applicable
under broad source distributions px, . x. (%1,...,%s), given
a number of sources s. In Sect. III, we use the GMM as
a tractable instance under the general framework for hyper
binning. We consider the case in which the encoders have the
same parameters {a;, b; }}’:1 motivated by using the Gécs-
Korner CI, where the CI rate is the rate of compressing the
parameters {a;, b, }3’=1 (as will be detailed in Sect. VII-B).
While the hyperplane parameters for the individual encoders
need not be the same, the CI between the encoders is less for
the case of different parameters versus the same parameters.

B. Why Hyper Binning?

Sending colorings of sufficiently large power graphs of
characteristic graphs followed by source coding, e.g., Slepian-
Wolf compression [2], leads to an achievable encoding for
compressing functions provided that the functions satisfy some
additional conditions [10]. Instead of sending source variables,
it is optimal to send coloring variables that model a valid
encoding of a characteristic graph that captures which source



outcomes should be distinguished to recover the desired func-
tion [8]. The destination then uses a look-up table to compute
the desired function value by using the received colorings.
While in some cases, the coloring problem is not NP-hard, in
general, finding this coloring is an NP-complete problem [48].

As in Slepian-Wolf encoding, in hyper binning, each bin
represents a typical sequence of function f’s outcomes and is a
collection of infinite length sequences. Hyper binning does not
rely on NP-hard concepts such as finding the minimum entropy
coloring of the characteristic graph of f. Unlike graph color-
ing, hyper binning with a sufficient number of hyperplanes in
GP jointly partitions the source random variables in a way to
achieve the desired quantization error at the destination for
a given computation task. Given an entropy-based distortion
measure as in, e.g., [49], we require the following condition on
the number of hyperplanes J: Ry + Ry = Z;.]:l h(gj) > 1—e¢

2n
J:mkin{k : Z h(g;) < e}.
j=k+1
Hyper binning naturally allows (a conditionally) independent
encoding across the sources via an ordering of hyperplanes
at each source prior to transmission and their joint decoding
at the destination. This is possible with a helper mechanism
that ensures the communication of the common randomness,
through extracting the Gacs-Korner common information (GK-
CI) [50], characterized via hyperplanes. The GK-CI variable
is the maximum common information that can be extracted
from each source. We detail this measure in Sect. VII-B.

C. Technical Background

The next remark provides the necessary and sufficient
condition for a set to be convex. It also imposes a necessary
condition on the function f we represent via partitioning.

Remark 1. A set C is convex if and only if for any random
variable X (or function) over C, P(X € C) = 1, its
expectation is also in C, i.e., E[X] € C [51].

If C = {Pcx|x € R"}, then for each x € R™ there exists
a unique point P x € C' that is closest to x in the Euclidean
sense. Unique projection of x onto C' [51, Ch. E.9] equals

Pox = in|x—yl,.
cx = argmin [|x — ]|,

Every linear hyperplane n is an affine set parallel to an
(n — 1)-dimensional subspace of R™ [51]. Let H™ be the
space of hyperplanes in R™. A hyperplane n € H" C R"
is characterized by the linear relationship given as follows:

n(a,b) ={y €R":aly =b}, ac S" ' beR, (1)

where a is the nonzero normal and S™~! is the unit sphere.
Projection of x € R™ onto n [51, Ch. E.5] is given as

Px = argmin [|x — y||, =x —a(aTa) ' (aTx — b).
yeEH

We shall let s and J denote the number of sources and
hyperplanes, respectively. A hyperplane arrangement of size
J in an s dimensional source space creates at most (s, J) =
Si—o (1) < 27 regions. Hyperplanes in general position (GP)
divide the space to r(s,J) regions [44]. In this paper, for the
sake of presentation, we study the case s = 2. We represent
the source data by feature vectors {x;} € R" that are mixtures
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Fig. 4: Maximum n vs J in GP for different number of sources s.

of Gaussian variables and sampled from a training set where
t denotes the index of x;, which we detail in Sect. III.

Example 1. A hyperplane arrangement of size J = 3 for
n = 2 in GP divides the space into r(2,3) = 7 regions.

For each hyperplane 7(a, b) there are n+1 unknowns a, b to
be determined, hence there are (n + 1)J unknown hyperplane
parameters in total. A given number of hyperplanes J in GP
can support a feature vector in an n-dimensional space where
the dimension is upper bounded as

Timax = MAx n](n+1)J <r(s,J). (2)

This inequality is because the required number of hyper-
plane parameters, (n + 1)J unknowns, should be smaller
than the number of regions denoting the quantized function
outcomes where each output is an equation represented by
intersections of half-spaces. This result gives a necessary
condition (a lower bound on J) to support a feature vector
in R™. In Fig. 4 we sketch the relation between ny.x and
J. The number of dimensions a hyperplane arrangement can
capture scales exponentially in the number of sources s (for
s > 2) vs orthogonal binning that provides linear scaling of
the total number of dimensions in s as J increases. In this
paper, s = 2, and nyax = 3 + O (4) following from (2), i.e.,
J linearly scales with n as J = 2ny,,x as n tends to infinity.

Theorem 1. Kolmogorov-Arnold representation theorem
[52]. Given a multivariate continuous function f, Kolmogorov
and Arnold established that f can be written as a finite
composition of continuous functions of a single variable and
the binary operation of addition [52]. More specifically,

2n n
J&N = f@rm) = 03 vip@). G
7=0 p=1

For the representation result of Kolmogorov-Arnold, there
exist proofs with specific constructions [53]. In (3) the only
true multivariate function is the sum since every function can
be written using univariate functions and summing [52]. Hyper
binning is a special case of (3) such that ¥, ,(x,,) = a;p, -z, for
some constant a;,,, for j € {0,...,2n} and p € {1,...,n},
where we approximate the upper limit 2n of the outer sum
with J hyperplanes. We note that for a class of functions we
are interested in, it is possible that a subset of outer functions
{7, 520 may be equal to 0. For a continuous function given
in the most general form in (3), the approximation is more
accurate when the hyperplanes are selected to capture the



high-influence ¥; terms, meaning the terms that have a more
dominant impact on f. Furthermore, we model x" using
feature vectors {x;} coming from either source, which we
detail in Sect. III. The outer function V; satisfies

i(y) = cj Lysp; +dj - Lycp,, 4
where c; and d; are constants with opposite signs to represent
the two different directions of hyperplane j.

Combining the upper bound in (2), which states 1,y ~ %,
and the upper limit 2n of the sum in (3), we see that choosing
J = 2n makes sure that in the representation theorem of
Kolmogorov-Arnold in [52], the error of representation van-
ishes as n — oo. The linear scaling between n and J for s = 2
in the asymptotic regime implies that random binning and hy-
per binning have similar performance for quantized variables
as n — oo. These schemes differ at finite blocklengths since
orthogonal binning requires quantization, whereas hyper bin-
ning provides an already quantized representation, where the
bins are determined by a hyperplane tessellation capturing f.
The half-space decision probabilities are parametrized by the
hyperplanes (to be given by (7)), and the decision regions of
hyperplanes are described via binary entropy functions of these
probabilities, eliminating the need for post-quantization. In
orthogonal binning, quantization is followed by binning, where
the latter corresponds to the post-quantization phase. Unlike in
orthogonal binning, in hyper binning, the initial quantization
phase via hyperplanes eliminates the need for further binning.
Thus, there is no need for post-quantization. We will validate
the choice of J (i.e., the number of hyperplanes) to ensure
the desired distortion in an MSE sense in Sect. III-D, and tie
the modeling of finite blocklengths to Kolmogorov complexity
[45, Ch. 7.3] in Sect. V, respectively.

Hyper binning embeds the quantization phase and is dis-
crete, i.e., it does not require further post-quantization prior
to compression. Hence, we can apply the scheme of Berger-
Tung, detailed in [54], or the coding scheme in [10] and its
generalization in [27] on the quantized representation. Since
the compression gain of hyper binning over random binning
lies in the pre-quantization aspect, any compression scheme,
such as [10], [27], [54], can be implemented on top of hyper
binning to recover the function representation in (3).

We next give a fundamental separation result on convex sets.

Theorem 2. Supporting hyperplane [55, Thm 1]. A point
x lies in C if and only if max(aTx — Sc(a)) < 0, where
a

Sc(a) =sup{aTz : z € C} is the supporting hyperplane.

We next detail the necessary conditions for distributed
functional compression of sources via hyper binning.

D. Necessary Conditions for Encoding the Functions

Let X, and X5 be real-valued source random variables, i.e.,
X; C Rfori € {1,2}. Our approach entails some assumptions
on the function. Hyper binning yields a partitioning of the joint
sources’ data to convex sets Py, where k € {1,..., M} such
that M is the total number of partitions obtained from a set
of hyperplanes in GP. Given a number of hyperplanes in GP,
the hyperplanes attain the maximum number of partitions M.

This section details the necessary conditions for the function
for encoding. We emphasize that the function f could be

continuous or discrete. Our goal is to describe a class of
continuous or discrete functions via their quantized estimates
f . When f is continuous, the distortion between f and
f is bounded away from 0. For this case, we refer the
reader to Example 2, where we contrast the achievable rate
reduction performed by different binning schemes, and to
Example 5, where we consider Gaussian variables and analyze
the rate-distortion function using the notion of e-achievable
hypergraphs [34]. When f is discrete, which is pertinent in
information theory, we refer the reader to Examples 3, 4, 6,
and 7 for various discrete-valued random variables and their
functions using the notions of e-characteristic hypergraphs
versus D-characteristic graphs, as detailed in [10], [27]. The
quantized function f : (X;,X3) — Z is such that the
mapping Z — {1,...,M} is a bijection. From Remark 1,
our model is restricted to a class of functions f satisfying that
if P(f € P) =1, then E[f] € Py for each P, [56].

The function f to be quantized, if continuous, has to
be continuous at (z1, ¥3) € (X1, Ap) since f~1(Py) is
a neighborhood of (x1, x2) for every neighborhood Py of
f(x1, z2) in Z. If it is not continuous at (x1, z2), there might
be a region Pj, for a given k € {1,...,M} of f(x1, z2)
such that f~1(P) is not a neighborhood of (z1, x3). In
other words, multiple disjoint hyper bins may yield the same
function outcome, which we do not explicitly capture in our
setting. The domain of f can also be discrete, as in [10].

Using the basic properties of hyperplanes presented in this
section, in Sect. ITI-(A-C) we will develop the scheme of hyper
binning where the sources can be described by a Gaussian
mixture model, a specific tractable instance of the general
problem stated in Sect. II. The coding rate of hyper binning can
be characterized using the binary entropy function, which we
will detail. We will also discuss the hyperplane arrangements
for different rate-distortion models and demonstrate the perfor-
mance of hyper binning versus the state-of-the-art solutions.

III. DESIGNING HYPER BINS FOR GAUSSIAN MIXTURES

We design hyper binning for distributed functional quanti-
zation recalling that the source data is represented by feature
vectors. We use linear discriminant analysis (LDA) to distin-
guish different classes of feature vector combinations yielding
the same function outcome. LDA is a classification technique
for the separation of multiple classes of variables using linear
combinations of observations/features/measurements, where
the classes are known a priori. LDA works when the mea-
surements on independent variables for each observation are
continuous quantities. The set of features {x;} for each sample
of an event has a known class y. The classification problem is
to find a good predictor for the class y of any sample of the
same distribution given only an observation x;. In LDA the
conditional probability density functions (pdfs) p(x:|y = 0)
and p(x¢|y = 1) are both the normal distribution with mean
and covariance parameters (fto, %) and (w1, Y), respectively.
Hence, the samples come from a Gaussian mixture model
(GMM) given by ¢o N (po,3) + ¢1 N (1, ), where ¢y and
¢1 are the cluster weights given by the proportion of feature
vectors. The Bayes optimal solution is to predict points as
being from the second class if the log-likelihood ratio is



bigger than some threshold, so that the decision criterion
of x; being in a class y is a threshold on the dot product
W - X; > ¢, i.e., a function of the linear combination of the
observations, for some threshold ¢, where w = ! (1 — o)
and ¢ = w - (1 + po). The observation belongs to y if the
corresponding x; is located on a certain side of a hyperplane
perpendicular to w. The location of the plane is defined by c.
In the case of multiple classes, the GMM is given by

M

Wy~ ), N2, M22, )
where M is the total number of classes, py is the mean vector
forclass k € {1,..., M}, ¥ is the covariance matrix (same for
all k), ny, is the count of feature vectors {x;} of class & in the
data, N = 224:1 ny, is the total number of {x;}, and v}, = 3¢
is the relative count of class k data. The analysis for LDA with
2 classes can be extended to find a subspace that contains the
class variability. The conditional pdfs p(x:|y = k) for {x;} of
class k are independent Gaussian variables given by A (g, )

(same for all k). The scatter between class variabilij%}/ is the
1

sample covariance of the class means ¥, = 7> =, (i —
w)(pr — )T, where p is the mean of the class means. The

class separation in a direction w is S = w’ Syw(w! Zw) L.
A. Data and Hyperplane Arrangement

The feature vectors {x;} lie in an n-dimensional space and
are modeled by a GMM given by (5), where each x; can
come from (belong to) either source X; or X, and {x;} are
independent and belong to the same GMM.

We employ a linear hyperplane arrangement for classifying
{x:}. To describe this arrangement, we need J(n+1) parame-
ters in total, where J is the number of hyperplanes. To achieve
the desired distortion for a given function f, we shall choose
J following (2) to represent or distinguish the desired number
of distinct outcomes M of f. The orientations of hyperplanes
will depend on the correlations between X; and X5 as well
as the correlations between (X7, X5) and f.

B. Optimizing Hyperplane Arrangement

To provide a joint characterization of sources by capturing
their correlation as well as the features of the function f,
we exploit LDA. In LDA, the encoded data is obtained by
projecting the source data on a hyperplane arrangement, and
by looking at which side of each hyperplane the vector lies.
The criterion of a vector being in a class y is purely a
function of this linear combination of the known observations.
The observation belongs to y if the corresponding vector is
located on a certain side of a hyperplane. We independently
design each hyperplane. The hyperplane arrangement, i.e., the
collection of hyperplane parameters (a,b), depends on the
particular function f and the distribution of the vectors {x;}.

For a hyperplane 7(a, b) described by vector a € R™ and
b € R as in (1), the projected feature vector u; = aTx; lies
on one side of n(a,b) if u; < b, and on the other side if
uy > b. Mapping x; to the u; space is equivalent to computing
the inner product of the feature vector and a. As a result of
this linear mapping, the distribution for the one-dimensional
mapping outcome that models class % is also Gaussian, with
the following mean and variance, respectively:
k=1,...,M. (6)

mi = pja, o’ =alSa,

In our setup, we note that the feature vectors lie in a high
dimensional space and form an independent set of Gaus-
sian random variables. Because their linear projections onto
hyperplanes are also Gaussian and independent, the notions
of the set of hyperplanes and the feature vector classes
are exchangeable. More specifically, with a careful choice
of the parameters {m;}?., and o, we can observe that (i)
projecting multiple vector classes onto a single hyperplane is
equivalent to (ii) projecting a set of feature vectors {x;} onto
M hyperplanes to generate a total number of classes M where
each class index k can be considered as a mapping from {x;}
to a hyper bin index. Using this analogy, we represent/describe
our model in (ii) via the multi-class interpretation in (i).

In the multi-class interpretation, the number of feature
vectors of class k that lie to the right of b = aTu/ for a
hyperplane characterized by 7(a,b) is given by ny , = ngpk
where the probability that a feature vector belongs to partition
k, or equivalently it lies to the right of b, is given by

pk:Q(W), k=1,...,M, )
where my, is the one-dimensional mapped mean of x; to the
space given that it belongs to class k, and Q(z) = 1 erfc (%)
is the complementary cumulative distribution function (CDF)
of the standard Gaussian distribution such that Q(z) — 0 as
z — oo monotonically. An observation is that as ¢ increases,
pi becomes higher due to (7). As o increases, since py’s also
increase, pps+1 increases. Furthermore, pj increases in my
given that b > my. We assume that py, is a fixed constant, and
the function f determines the distribution {ps }1L ;.

In the multi-hyperplane interpretation, let ¢; = P(ajx; >
b;) be the probability that a feature vector lies to the right of
b; for a hyperplane j = 1,...,J characterized by n(a;,b;),
i.e., the tail probability of one-dimensional Gaussian variable.
Hence, the relation between {px}5L; and {q;}7_, satisfies

pe=J]o [[O-¢) k=1...,M, (8)
JESK  j¢Sk

where Sy, is the set of the hyperplanes j for which the hyper
bin £ lies to the right of b;. Our goal is to decide the class of
hyperplanes with optimal {(a;, bj)}'j’:1 such that if we assign
the feature vectors at each source to one of two partitions
based on whether u; < b (or equivalently xTa < b), then the
average of the entropy of the class distribution in the partitions
is minimized [17]. Minimizing the entropy of partitioning is
equivalent to maximizing the mutual information associated
with the partitioning, i.e., the difference between the entropy
of function f and the average of the entropy of the partitions.
Our objective is to minimize the entropy of the partitioning.
To that end, we choose the following mutual information

metric associated with the partitioning via hyper binning:

M
(M A h 2 A ily) = hipari) = D wh(pe). 9)
k=1

This metric captures the accuracy of classifying the function
outcomes. While I(-) depends on {pj}2"%*, {ny}IL, such
that N = 221:1 ng, we only emphasize its dependence on
the number of classes M in the partitioning process, i.e., use
I(M) for brevity. The higher the entropy for the classification



of M partitions, i.e., {h(py)}+L,, the lower I(M) is.

The trend of I(M) in (9) depends on the distributions of
{x¢}. To maximize I(M) via hyper binning, it is intuitive that
(a,b) should be such that p;’s are close to 0 or 1 to minimize
h(pk)’s, and pari1 = 3 Sply ke = A Yoy NPk s close
to 0.5, i.e., there are an approximately equal number of feature
vectors in the two partitions to maximize h(pysy1).

Assume for optimal I(M) that each py is approximately
0 or 1. As o increases, h(par+1) decreases, and h(py), k €
{1,..., M}, increases. For the asymmetric case where ny is
proportional to pg, incrementing M improves I (M) since each
added hyperplane provides more information to distinguish the
function outcomes. However, for the symmetric case where
ng = M, adding beyond a certain number of hyperplanes
does not help. We later demonstrate this behavior in Prop. 3.

C. Source Data Distribution Models for a GMM

We next assume that mq < ... < mpy—_1 < myps, and o is
fixed. Hence, (7) implies that p; < ... < ppr—1 < pas. Further
assume that 3 < py, for all k, yielding h(p1) > ... > h(par).

1) Asymmetric Data Distribution: Consider a scenario
where the class distribution is such that each ny, is proportional
to py, i.e., n, = Bpy for some B € RT. The asymmetry among
pi is exacerbated by ny. This asymmetry makes the classes
more distinguishable. A function that satisfies this criterion,
i.e., a non-surjective function, can be compressed well.

We next determine a relation between the mutual infor-
mation metrics I(M) = I(M, {pk}M+1 {ni}M ) versus
I(M +1) = I(M + 1, {pp }242 {fig }5 1) when we switch
from M to M +1 classes. To that end, we assume that (i) ny =
Bpk, k€ {1,...,M} for § € RT, (ii) the number of feature
vectors of class k in the source data distribution Wy,
namely {7} t" versus {nj}1L,, satisfies 71, = any for
some « € [0,1], and (iii) the distribution W11 is such that
{pk}M+2 can be determined using ppsio = % Zgﬁl T Pk»
noting that inclusion of the M +1-th class does not change the
probability {py }L, given in (7) that a feature vector (of class
k) lies to the right of a hyperplane characterized by 7(a,b).

Proposition 1. Consider a setting with two distributed sources
and a function f satisfying the properties listed in Sect. II-D.
Then for two data distributions Wy and Wy 1 of the form
(5) that are related via (i)-(iii) outlined above, we have the
relation I(M + 1) > I(M), YM > 1.

Proof. We refer the reader to the supplementary material. [

2) Symmetric Data Distribution: We now consider the
uniform class distribution case such that n; = % Unlike
the asymmetric case the classes are less distinguishable. A
function that satisfies this criterion cannot be compressed
well due to 1ts surjectivity. For the symmetric case, let
Dy = MZk 1 Pr. Hence, we obtain (M + 1)par41 =
Mpar + prro1. Letting hyy = i Zk 1 h(pr), it is easy to
note that (M + 1>hM+1 MhM + h(pju+1)

Proposition 2. For symmetric data distributions Wy and
Whry1 of the form (5) and related via (i)-(iii), it holds that

Fias = I (Par) _1(ar) < = para)

<I(M-+1
M1 S VS

, (10)

where we note that h (Par) > h(pas1). In the limit as M —
oo, the gap I(M +1) — I(M) — 0 from the squeeze theorem.

Proof. We refer the reader to the supplementary material. [

Prop. 2 provides a convergence result on [(M) as in (10).
It also implies that the gains caused by the increments in M
provide diminishing returns, consistent with the intuition.

For the uniform scenario, I(M) = h (pas) — has. Because
entropy is concave, h(par) > has. Let h(ph;) = has such that
i < 1/2. This implies that pas € [phy, 1 — iyl

Proposition 3. For the symmetric data distribution model with
a source data distribution Wy as in (5), I(M) converges to

. — ha — h(prrs1)
ngnQQI(N)—I(lHMX:le—H (11)
Proof. The proof follows from convergence of
{%} to 0 as M — oo. For details, we
refer the reader to the supplementary material. O

In Fig. 5 (c)-(d), we illustrate the variation of I(M) with
respect to M for different o2. On the left, the class distribution
is asymmetric such that ny o pi. Here, the monotone
increasing trend of I(M) can be observed. On the right, the
class distribution is uniform such that ny, = N/M. Note that
I(M) drops with o because the higher variability, the harder
it becomes to distinguish the classes. We observe this trend in
both cases. In the asymmetric case with n; o pg, we have the

relation h (% 211:/[:1 nkpk) > h (ﬁ 21]:4:1 pk)
Sl h(pr) < & Sal, h(pr). Hence, I(M) is always
higher for the asymmetric case than for the symmetric case.

. Furthermore,

D. Rate-Distortion Models for Hyper Binning

The rate-distortion function is the solution of the problem
R(D) = min, (s {1(X; X) : E[d(X, X)] < D}, where
Px| (&) is the conditional probability density function
(PDF) of the compressed signal X for the original signal X.

For hyper binning, given a distortion level D > 0, the rate-
distortion function for f (X7, X)) or shortly for f" satisfies

mln { Zh (g5) d(f™, 7)) < }

Using LDA 013551ﬁcat10n error we can compute E[d(f", ")]
in (12), using the CDF of {x;} and relation (8). When there
are two classes to be distinguished, the Bhattacharyya bound
upper bounds the error probability [57]. For the multi-class
model, we leave the error analysis as future work.
Exploiting the representation in (3) where the outer function
satisfies (4), we next consider different distortion criteria.

a) Entropy-based distortion: In random binning, the en-
tropy for the J-bit quantization of x7 is h(x7}) + J, where
h(x%}) denotes the differential entropy of x7 and A = 277
is the bin length. For a Gaussian vector x7' with a covariance
matrix X, the entropy of its J-bit quantization is approximately

h(x?)+J = log((27re) detX) + J. (13)

(12)
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Fig. 5: (a) A block function (no correlation across bins). (b) A smooth function (correlation across bins). Mutual information I (M) versus

M: (c) Asymmetric, ng o pg, (d) Symmetric, n, = N/M.

On the other hand, in hyper binning, we derive a vector
quantized functional representation of the data vector using
J hyperplanes in total. The rate needed for this procedure is

3o

Jj=1

a;

Zh( (P2EE).
ajYa;

where ¢; = IP’(aJTx1 >b;) forj=1,...,J, and (14) is upper

bounded by J because h(g;) < 1 for all j. Similarly, the sum

rate required for the exact description of (3) with the outer

2n 2n a;p
function in (4) is >257, h(q;) = >251, h(Q(\}Ta]))
We next give a necessary condition on J to meet the

entropy-based distortion measure, e.g., similar to [49]. We note
that this result is valid for distributions beyond Gaussians.

Proposition 4. (Entropy-based distortion for continuous ran-
dom variables at infinite blocklengths.) Fix an ¢ > 0. Given
an entropy-based distortion criterion E[d(f",f")] = [h(X) —
R(D)]* < € as n — oo, using the rate needed in (14) for
recovering the hyper binning representation of f and the rate-
distortion function in [45] for squared-error distortion, the

number of hyperplanes J is required to satisfy the condition:
2n

> hig) < e}

j=k+1

J:mkin{k : (15)

If source X is Gaussian distributed with variance o2 and
memoryless, then h(X) = 3 log(2mec?). The rate-distortion

function with squared-error distortion is given by [45]:
2

() = D) = [oma (5 )]

where h(D) = 3 log(2mes?,) is the differential entropy of a

Gaussian random variable D with variance 0%,

R(D) = (16)

To capture the effect of distortion on random binning for
the quantized vector x} in (13) where h(X) is replaced by
the rate-distortion function R(D) = [h(x}) — h(D)]* where

h(D) = %1og((2ﬂ'e)” detXp) <e (17)

for the Gaussian vector D with covariance matrix Y p. In
the asymptotic regime, the number of typical codewords is
approximately 9271 M) for hyper binning, versus 2" (X:)
typical sequences for random binning [58], or gnHex, (X0 for
characteristic graph coloring [10] of source ¢ € {1,2}. For
finite blocklengths, we will exploit Kolmogorov complexity
for the quantized vector x7, which is to be detailed in (24).

b) Mean-squared error (MSE) distortion: Given an MSE
distortion criterion E[d(f",f")] = 1 LY () — F()? <e

the approximation using J hyperplanes yields an MSE:

2n
2
E[(ch{a;xtzbj} - ) ] <e
j=J

We next give a sufficient condition to meet the MSE criterion.

@ farsrcty) (8)

Proposition 5. (MMSE distortion for Gaussian random vari-
ables at infinite blocklengths.) Fix an € > 0. The following
condition on J is sufficient to meet the MSE distortion crite-
rion E[d(f", )] = LS (f@) = f)? < easn — oo
provided that d; = —c; in the MSE expression of (18):

2n

Zk:JCk < WVe.

Proof. We refer the reader to the supplementary material. [

19)

We can generalize (12) and Prop. 5 to finite blocklengths
via the notions of dispersion [59] that we briefly discuss next.
c) Hamming distortion: For equiprobable source, the
symbol error rate-distortion, i.e., d(x™,%") = > " | 1z 24}
results in E[d(X;, X;)] = P(X; # X;). In this case, the rate-
dispersion function is zero, and the finite blocklength coding
rate is approximated by R(D) + 1 log’" +0(%) [59].

d) Gaussian approximation: For a stationary and mem-
oryless source with bounded and separable distortion, i.e.,
d(x", &™) = L 3 d(2,4;)), the coding rate can be mod-
eled as a function of the rate dispersion V(D) [59, Thm 12]:

% Q logn)
logn

where 0(108’") in (20) grows asymptotically as fast as ==
Here, 6 is given by Eqns. (84)-(85) in [59, Thm 12], which is
a more precise definition of the Big Theta © notation.
While V(D) provides an approximation for the coding rate,
in Sect. V, we establish a connection between Kolmogorov
complexity [45] to bound the coding rate for hyper binning.

; (20)

IV. BINNING FOR DISTRIBUTED SOURCE CODING

In this part, we detail a fundamental limit for the asymptotic
compression of distributed sources followed by an achievable
random binning. This type of random binning is equivalent to
orthogonal quantization of typical source sequences, as we will
describe in Prop. 6. We will then contrast the hyper binning
scheme with other baselines that rely on random binning.

If the encoders and the decoder do not make use of the cor-
relation between the sources, the lowest rate one can achieve
for lossless compression is H(X;) for X; for ¢ € {1,2}.

Slepian-Wolf Compression. This scheme is the distributed
lossless compression setting with source variables X; and X5
jointly distributed according to px,, x,, where the function



f(X1, X2) is the identity function. In this case, the Slepian-
Wolf theorem gives a theoretical bound for the lossless coding
rate for distributed coding of the two statistically dependent
i.i.d. finite alphabet source sequences X; and X5 as [2]:

RXl > H(X1|X2)a RXz > H(X2|X1)a

Rx, + Rx, > H(X1, Xa), 21
which implies that X; can be asymptotically compressed up to
the rate H(X1|X3) [2]. This theorem states that making use of
the correlation allows a much better compression rate to jointly
recover (X1, X5) at a receiver at the expense of vanishing
error probability for long sequences, it is both necessary and
sufficient to separately encode (X7, X5) at rates satisfying
(21). The codebook design is done in a distributed way, i.e.,
no communication is necessary between the encoders.

Random Binning. Distributed codebook design for com-
puting functions f on the data (X, X5) at the receiver
sites is challenging, irrespective of whether or not X; and
Xo are correlated. A random code construction for source
compression that achieves this fundamental limit, i.e., the
Slepian-Wolf rate region for distributed sources given in [2],
has been provided by Cover in [58], which we detail next.

Proposition 6. Cover’s random binning [58]. Binning
asymptotically achieves zero error for the identity function
f(X1, Xo) = (X4, X3) when the encoders assign sufficiently
large codeword lengths nR1 and nRy in bits to each source
sequence where Ry > H(X1) and Ry > H(X3|X1).

Proof. Here, we list the steps of random binning, detailed in

[58], for the lossless source coding for single source case:

1) Each x™ € &A™ is randomly and independently assigned an
index m(x") € [1 : 2"F] uniformly over [1 : 2"f]. Bin
B(m) is a subset of sequences with the same index m.
Both the encoder and decoder know the bin assignments.

2) The encoder, upon observing x" € B(m), sends index m.

3) The decoder, upon receiving m, declares that X" to be the
estimate of the source sequence if it is the unique typical
sequence1 in B(m); otherwise, it declares an error.

4) A decoding error occurs if x” is not typical, i.e., & =
{X"™ ¢ T}, or there are multiple typical sequences, i.e.,
&y = {X™ € B(M) for some X" # X", X" € T }.

5) Let M ~ Unif[l : 2"%] 1 X" denote the random bin
index of X" € B(M). If R > H(X) + d(¢), Cover has
shown that the probability of error P* averaged over X"
and random binnings — 0 as n — oo [58]. Hence, there is
at least a sequence of binnings with P' — 0 as n — oo.

The result can easily be generalized to distributed sources. [

To illustrate the gains that we can achieve with an optimally
designed hyper binning scheme and contrast with the existing
well-known binning methods, we next devise an example.
Our goal is to explore how informative different types of
partitionings can be for quantifying a function.

Example 2. Contrasting different binning methods for
distributed source coding for functional compression. Con-
sider a functional compression problem where the sources X1

IFor a typical set 7> C &X™, the probability of a sequence from X™ being
drawn from 7 is greater than 1 — ¢, i.e., P[x™ € 7*] > 1 — € [45, Ch. 3].

and Xs are continuous-valued. We consider three ways of
compressing the sources to recover an approximate represen-
tation at the decoder. While random binning is asymptotically
optimal, for ease of exposition, we first assume that the
blocklength satisfies n = 1. To indicate their main features,
we illustrate the encoding for different binning schemes in Fig.
6, where X1 € [0,1] and X5 € [0,1] that are both uniformly
distributed, and that lie on the y and x-axes, respectively.
For example, in Slepian-Wolf encoding (Left), each source
independently and uniformly partitions the source outcome
into 4 bins. Hence, there are 4 x 4 = 16 bins in total.
The block binning scheme (Middle) trims some of the bins
in the encoding scheme of Slepian-Wolf because the function
is piecewise constant or block, and there is no correlation
across bins. This approach modularizes the encoding into
uniform quantization and compression (bin trimming). In this
example, there are 4 blocks and each By, can be obtained
via aggregating the bins of Slepian-Wolf. If the function is
more general than a block function, orthogonal trimming may
not work. Instead, hyper binning can leverage the function
and its dependency on the jointly distributed sources via the
regions created from the intersections of linear hyperplanes
and can make the quantization phase function-oriented, where
the hyperplane parameters {(a;, bj)}‘j]:1 are adjusted ac-
cording to the function f(X1,Xs). As a result, this reduces
the redundancy in compression because the quantization is
tailored for recovering the intended function and is more
effective. We next detail each binning scheme separately. We
emphasize that for illustration purposes, we chose n = 1.

(Top) Binning approach of Slepian-Wolf [2]. In the first
scenario, the sources first uniformly (scalar) quantize X} €
[0,1]™ and x5 € [0,1]" into a discrete set using 2 bits each.
The bin assignments (my(x7), m1(x5)) € [1:4] x [1: 4] for
the source pair (X7, X3) takes M = 16 possible outcomes,
with each outcome being equally likely. The Slepian-Wolf
encoding scheme distinguishes all possible jointly typical out-
comes. However, the binning scheme does not capture the func-
tion’s structure, i.e., it does not distinguish (X7, X%) and
(X7, X3 from each other. In this case with M = 16 equally
likely partitions (bins), P((X}, X%) = (i1, i2)) = 1/16, the
entropy of the partitions equals H(X7, X%) = log,(16) = 4.
Then, Isw = H(XT, X3) — H(XY, X%) = 0. We show the
block diagram for independent encoding and joint decoding
of two correlated data streams X7 and X4 in Fig. 1.

(Left) Orthogonal trimming of the binning-based code-
book. When the function (on [0,1)%) is piecewise constant
in the blocks domain, then the uniform (scalar) quantization
followed by trimming achieves an optimal encoding rate.
The block binning or generalized orthogonal binning scheme
can capture functions with the pair (X7, X%) having a
blockwise dependence, such as the function shown in Fig.
5 (a). In this example, there are 4 blocks By, with indices
k = 1,...,4, corresponding to different function outcomes.
Hence, fp(X7T, X%) and (X7, X%) can be distinguished
under this blockwise partitioning. This encoding scheme is
easy to implement by combining some of the blocks prior
to implementing the Slepian-Wolf encoding scheme in each
By. Clearly, this is more efficient than completely ignoring



the function’s structure and directly implementing the Slepian-
Wolf encoding. Hence, for sources sharing blockwise depen-
dency, i.e., H(fp(X?, X%)) < H(XY, X%). In this example
with 4 blocks, we use 3 hyperplanes, as shown in Fig. 6 (Mid-
dle). Hence, for block binning P(By) = P(fp(X?, X%) =
k) = Z“ in: f—k Diriz- The colored region By has a prob-
ability P(By) = 9/16. Similarly, P(By) = 3/16, P(B3) =
P(B4) = 2/16. This implies that the entropy of the partitions
equals H(fp(XT, X)) = 1.67. In this case, block binning
yields Ip = H(XT, X5)—H(fp(XT, X3)) = 2.33. We show
the block diagram for orthogonal trimming-based compression
for piecewise constant functions fg(X7,X%) in Fig. 2.
X,

Identity function
(X1, X5)
> X,

SWiij

Block function
fB()(l ’ XZ)

Slepian-Wolf binning Yiﬂeral function
1(X,, X,)
X,

P,

B; B, Py P,

Block binning Hyper binning

Fig. 6: Hyperplane organization. (Top) Binning approach of Slepian-
Wolf [2]. (Left) Function sensitive, correlation insensitive partition-
ing. (Right) Function and correlation sensitive partitioning.

(Right) Hyper binning-based codebook. If the function is
not piecewise constant, then quantizing and then compressing
may not be as good. The hyper binning scheme can capture the
dependencies in the pair (X7, X%) and (X7, X3), unlike
the block binning scheme. In this scheme, we cannot consider
the partitions Py, with indices k =1, ..., 4, corresponding to
function outcomes independently since each partition shares a
non-orthogonal boundary to capture the dependency across
the sources. With hyper binning, it is possible to jointly
encode correlated sources as well as the function up to some
distortion, determined by the hyperplane arrangement. As
a result, for sources with dependency (more general than
blockwise dependency), we can achieve H(f(X7, X7)) <
H(fp(XT, X%)). We partition the region using 2 hyperplanes
in GP by incorporating the correlation structure between
the function and the sources. In this case, P(Py) = 0.375,
P(P;) = 0.531, P(P;) = 0.031, P(Py) = 0.063, and the
entropy of the partitions satisfies H(f(X}, X%)) 1.42
for each k. Hence, the hyper binning model yields 1(M) =
H(XT, X3) — H(f(XT, X5)) 2.58. For the example
function with unit blocklength, i.e., n = 1, as shown in Fig.
6 (right), the x-axis intercepts are 0.67 and 0.09, and y-axis
intercepts are 0.27 and —0.13, and f : [0,1]*> — {1,2,3,4}.
More specifically, Py, k =1,2,3,4 specifies f(x1,22):

f(thQ) = k7

c1x1 + ca2, c3x1 +car2 € Py,  (22)

which is equivalent to f(x1,22) =1 <= c121 + coxo >
dy, c3x1+caxe > do, and similarly for f(xq1,22) € {2,3,4},

where ¢ = 0.—127, 2 = 5o di =1, and c3 = 0.68, ¢4 = —1,
do = —0.09, where the hyperplane parameters are such that
the outcomes are as shown in Fig. 6 (Right). By letting as =
c2—C‘*andb —dl—d—z and ay = ¢t — 2 and by =d_do
c1 [ c2  ca’
we can rewrite the RHS of (22) for K= 1 as

f(xhl'g) =1 <— a1xr1 > b17 agxTo > bz, (23)

and similarly for k € {2,3,4}, showing that we can reliably
compute f by using one hyperplane per source, i.e., a;x; = b;,
i € {1,2}, even for n = 1. For this example, we cannot
characterize [ using block binning as illustrated in Fig. 6
(Middle). That is because each function outcome is jointly de-
cided. More specifically, given an outcome f € S, for random
binning, we cannot find a disjoint set pair S1 and Sy such that
]P)(f(XhXQ) € S) ~ Zml(acl)ESl ZmQ(ZL‘Q)ESQ p(xlva)'
Hence, for f(x1,x2) in (22), hyper binning has higher accu-
racy than orthogonal binning in finite blocklengths n. While
we can generalize hyper binning to n > 2, we next focus on
the complexity of finite blocklengths due to space constraints.

In Fig. 7-(a), we sketch how we compute a convex region
via hyper binning for a simple example. An outcome, e.g., (b)-
(d), is the intersection of the hyperplane tessellation formed
by solid black lines with the red-shaded region specified by the
sources. Some partitions, e.g., as shown in Fig. 7-(e), do not
define a unique convex bin, i.e., a function outcome, causing
decoding errors. Such events should have a low probability of
occurrence via accurately capturing {a;, b; }jzl (Props. 4-5).

V. HYPER BINNING AT FINITE BLOCKLENGTHS

For finite blocklengths, the rate limits in (21) do not hold. In
that case, we can exploit the notion of Kolmogorov complexity
K (x™), i.e., the minimum description length of a string x".
Let X" be i.i.d. integer-valued variables with entropy H(X),
where X is their finite alphabet, and E
shortest description length of length-n sequence X™. Then,
there is a constant ¢ such that the relation of Kolmogorov
complexity and entropy for all n satisfies [45, Ch. 7.3]:
|X|logn

n

(X )| be the average

K(X™
H(X)<E {()} < H(X) + +<
n n
In random binning, the J = —log(A) bit quantization of
X’ has an entropy of approximately h(X7) + .J, where the
quantization bin length A satisfies A = 277, For the J bit
quantization of a string X', we obtain the average description

length via the addition of % bits on both sides of (24) as

H(Xa )<E[M} < H(Xa)+ -

where XA is the alphabet for the quantlzed varlable XA with
|Xa| =27, and H(Xa) ~ 2h(x})+ < bits. The finite length
n description of .J-bit quantlzatlon of Xr, for i € {1,2}
requires an additional [Xallogn hits on top of quantization.
From (2), we have n < % + 0 (%) Combining this with
(24), the representation complexity of random binning due
to the separation of quantization and compression phases is
approximately 2 bits higher than that of hyper binning. Hyper
binning, unlike orthogonal binning, eliminates the need for
post-quantization. The J bit vector quantization is tailored for

Xall
| XAl ogn_’_i

)
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Fig. 7: (a) Computing a convex region. (b)-(d) The source hyperplanes are emphasized (red) to represent the regions corresponding to several
different function outcomes. Each outcome is the intersection of the tessellation with the red-shaded region. (e) A decoding error occurs.

the functions, and each function outcome relies on a collec-
tion of binary decisions. This process does not involve the
quantization of continuous variables, i.e., approximating the
differential entropy via the addition of J bits. The complexity
is solely determined based on the binary entropy function.

We show the diagram of hyper binning for compression
in Fig. 3. Sampling is a suboptimal single-letter approach. In
information theory, coding and compression typically follow
signal processing. Hyper binning does the compression step
after signal processing and before coding. It captures the entire
data vector instead of a single-letter representation, giving a
functional equivalence of vector quantization.

VI. COMPARISONS WITH THE EXISTING WORK

Characteristic hypergraph coloring in [27] relies on e—
achievable schemes where the hyperedge-based construction
exploits the fine granularity properties in the graph when
a non-zero distortion is allowed. This distortion notion is
more unified that generalizes the characteristic graph coloring
approach in [10] via the modeling of hyperedges.

To contrast the hyper binning scheme with the existing work
on graph coloring in [10] and its hypergraph-based coloring
extension in [27], we next consider the Example 1 in [27].

e-characteristic hypergraphs vs D-characteristic graphs.
The D-characteristic hypergraph of X, GZ, has the vertex
set X with any set S C X forming a hyperedge in G¥ if for
any x1, x2 € S, d(x1,22) < D where d(-) is some metric on
X. For independent sources X; and X5, an outer bound to
the achievable rate region using D-characteristic hypergraphs
is given by [10, Thm 43] as R/ = (Ry, R») such that

Gx,, X,
R; > Hgy (pj2)(Xi), i€{1,2}, (25)

where He (p)(X) = minycwepen) I(W; X), and W and
I'(GR) denote a hyperedge and the set of hyperedges in G%.

Example 3. Let (X1, X2) be i.i.d. Bern(1/2) variables. The
decoder wants to compute the identity function f(x1,x2) =
(z1,22) with € = 0.5. Authors in [27] have demonstrated
that this example achieves equality in the Berger-Tung bound
(R1,R2) € R;. and is optimal. The optimal rate region
satisfies (R1, R2) = Rg,. such that Ry > 0, Ry > 0, and
Ri1+4 Rs > 1. For the same setting, using the approach in [10],
where (R1, R2) = RgQ,GXQ’ the achievable rate is R; > 1,
which is contained in the inner region devised in [27]. In hyper
binning, since the function f is identity and X1 1L X, i.e.,
no CI between the sources, the rate region problem becomes
equivalent to that of Slepian-Wolf with a distortion metric. For

a fair comparison, we need to make a connection between
entropy-based distortion, e.g., in [49], versus the notion of e-
characteristic graphs. Exploiting [49], the rate region satisfies
Ry > H(X1)—€d, Ry > H(X3)—€(1-9) for § € [0,1]. Since
H(X;)=1 Ry > 1 and Ry > 0 (and similarly Ry > 0 and
Ro > 1) are achievable. Due to time-sharing, hyper binning
can satisfy the optimal rate region of Berger-Tung. Exploiting
the Hamming distortion where P(X, # Xl) < ¢ the rate-
distortion function for X, ~Bern(0.5) satisfies

R1 (E) = (1 — h(E)) . 10§€§0_5. (26)
For recovering (X1, Xo) under the maximum norm constraint,
letting HXZ - XZ“ <€ for i € {1,2}, we have E?:1(Xi -

X;)? < 2?21 €2 < €2. In this case, we obtain Ry > 1, Ry >
1if0 < €, €2 < 1, which implies P(X; # X})A <0, and
Ry >0, Ry >0 if e, e2 > 1, implying P(X; # X;) < 1.
Depending on the distortion criterion, we can achieve the
same rates, e.g., for entropy-based distortion, as [27], or
higher rates, e.g., for Hamming distortion. This conclusion
holds as maximal distortion is, in general, restricted to dis-
crete sources. It does not generalize to continuous variables,
especially when we do not exploit the hypergraph structure.

We next consider a numerical example where there is no
side information, which is in line with Example 2 in [27].

Example 4. Let X be uniformly distributed over {0,1,2} and
f(X) = X. Authors in [27] have shown R € Rg . such that

log,(3), 0<e<0.5,
R> min  I[(X;W) =< 2/3, 05 <e<1,
XEWET(GY)
0, 1 < e,

where G is an e-achievable hypergraph such that
E[lyw_x|>c] = 0. If € € [0.5, 1), then H(W) = 1 since
there are two maximal independent sets with 0.5 probability
each. Furthermore, H(W|X) =  because HW|X =1) =1
that happens with probability & and H(W|X # 1) = 0. Ex-
ploiting D-characteristic graph compression (no hyperedges)
in [10], the rate region specified by R € Rgx is given as

I 3 0<D<2
R>  min  I(X;W) = 0eB) 0=D<2
XeWeT(GR) 0, 2<D.

In [10], different from [27], when D € [1, 2), the independent
sets are singletons because there is no notion of hyperedges,
and all source outcomes need to be distinguished. However,
for 2 < D, we no longer need to differentiate the outcomes.

In [34], the authors extended the coloring scheme in [10]



via hypergraphs. The graph G, i € {1,2} is an e-achievable
hypergraph such that E[]l||f(X1,X2)—f(X1,X2)H>E] = 0. The
scheme in [34] results in a smoother decay in rate-distortion
than that of [10]. Since the approaches in [10] and [27] are for
compressing post-quantized variables, without optimizing the
quantization phase, for a fair comparison of hyper binning with
them, we next draw an example with continuous variables.

Example 5. Let X1 and X5 be distributed according to
standard normal distribution N'(0,1) and consider the func-
tion in (23). Letting X; o = Al, for X; € [IA, (I + 1)A)
and i € {1,2}, and using the CDF of the standard nor-
mal distribution, denoted by ®(x) = \/% ffoo et /2dt, the
quantized variables satisfy P(X1.a = Al) = ®((I + 1)A) —
®(IA). Evaluating (23) using the quantized variables, we get

]p(XLA > L) = Ty [2(U+ 1DA) — @A), and
similarly for Xo a. Then source i € {1,2} needs to decide
whether a;x; > b; or not. The rate required for this model is

n(P(x18 > %)) +n(P(Xzn > Z—z))

To achieve compression with the desired distortion (quantizer
bin length A = 2=7), this approach requires J bits per source.
For this example, the encoding rates for different € are:

e If e €0, 1), then for function in (23) the result is identical
to that of [10] and [27]. If the source distributions are
uniform, e.g., Gaussian variables binary quantized around
the means, each user needs 1 bit for compression, i.e.,
Ry, Gx, = Ra,e such that R; > 1 for i € {1,2}.

e lf e € [217 2), the set of independent sets are {{1,2},
{2,3},{3,4}}. Given the interval of Xo, X1 yields either
of the hypergraphs {{1,2},{2,3}} or {{2,3},{3,4}}. If
the sources are uniform, each of these graphs has entropy
HW) =1, and HW|X1) = 1/4. In either case, it
holds that Rg . = (R1, Rz2), where Ry > 1, Ry > 3/4,
and the sum rate is 1 + 3/4 = T7/4 in [34]. Similarly,
72‘@){1’6;)(2 = (Ry, R2) where Ry = Ry > 1 in [10] since
given Xo, X, yields either {1,3} or {2,4}. If € € [1, 2),
given the interval of X1, Xy yields either {{1,2}} or
{{3,4}}. In either case, the sum rate is 1 +0 =1 in [34].
In [10] RE;XI’GX2, where R1 = Ry > 1, and the sum rate
is 1+ 1 since given X1, Xo yields either {1,2} or {3,4}.

e If € €[2,3), Rg, is such that Ry > 1, Ry > 0, and the
sum rate is 14+0 = 1 in [34], which is similarly as in [10].
In functional compression of (23) the chain rule does not
hold [10]. To keep the sum rate constant if we swap Xi
and Xo, the distortion € can be scaled by 1/2. This is
because given X1, the function outcome lies either in {1,2}
or {3,4}, i.e, Ry > 0 if € > 1. If instead X is given, the
outcome lies either in {1,3} or {2,4}, i.e, Ry > 0 ife > 2.

The weak law of large numbers (WLLN) states that the sample

average X, = = >°" | X () converges in probability towards

the expected value, i.e., X, — pas n — oo. Hence, in
hyper binning while for single letter representation it holds

that P(X, > 2—1) =1-9 2—11) we observe that P(X,, >
%) — {0,1} as n — oco. As a result, compressing the length-

n source vector provides a more accurate compression. The
WLLN is true even if the summands are independent but not
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identically distributed [60]. For large blocklengths, the rate
for the single letter representation of hyper binning is

n(p (x> %)) +n(P(x; > Z—z))

Provided that the sources are uniformly distributed about the
planes, we have that P (X1 > %) = P(Xs > Z—z) = %,
and the sum rate satisfies 1 + 1 = 2. However, this rate
is clearly not achievable for finite blocklengths. In the non-
asymptotic regime, exploiting the Kolmogorov complexity we

can characterize the performance [45, Ch. 7.3].

In the asymptotic blocklength regime, using J hyperplanes
where J properly scales with n, and {a;j, b;; }3-]:1 for sources
i € {1,2}, the average coding rate for hyper binning is

(28)

J J
1 n 1 n
Py jgil h (P(aLXl > blj)) + o jgil h (P(a;jXQ > sz))

5 J
<235 pE X > ). @
i= J=

where the inequality in (29) follows from the concavity of
entropy. The result of % Z;’:l ]P’(aiTjX;Z > b;;) is a probability.
The classical orthogonal binning, i.e., random binning, is
such that each sequence is uniformly assigned to one of 2™
bins where Ry > H(X1) and bin B(m) denotes the subset of
sequences with the same index m = 1,...,2"% Evaluating
the probability P(a], X} > by;) we obtain

P(anX? > blj) = Z P(X? (S B(m)) = Clj,
{m:a]; X7 >by;}
where P(XY € B(m)) = 27", and ¢; for a given j
represents the fraction of bins such that anX}I > by;. Hence,

J J

1 1

j E ]P’(aLX? > blj) = j E Clj = E[Zl]7 (30)
i=1 =1

where Z1 = (1, with probability 1/J for any j € {1,...,J}.
Exploiting the random binning approach, the RHS of (29) is

Ih @z + @z, (1)

In the case of J = 2 hyperplanes and uniform probabilities
such that P(al, X} > bi;) = 1/2 for i € {1,2}, this yields a
sum rate of Jh (E[Z1]) + Jh (E[Z3]) = J -1+ J -1 =4 bits
(ignoring the scaling with n). However, if the distribution is not
uniform such that e.g., for each i € {1,2} we have P(al, X} >
bij) = 1/4 for j = 1 and P(a]; X} > by;) = 3/4 for j =2,
then the LHS of (29) equals h(1/4)+h(3/4)+h(1/4)+h(3/4).
Hence the sum rate is 3.245 bits, indicating the savings (0.755
bits in the asymptotic regime) over classical random binning.

In the non-asymptotic regime, exploiting (24) we can char-
acterize the encoding rate more precisely.

VII. A DISCUSSION ON COMPUTATIONAL INFORMATION
THEORY AND COMPARISON WITH MODULAR SCHEMES

In this section, to devise a new perspective on computational
information theory, we provide connections between our dis-
tributed computationally aware quantization scheme that relies
on hyper binning and the coloring-based coding models for
distributed functional compression. First, in Sect. VII-A, we
describe coloring-based modular coding models that decouple
coloring from Slepian-Wolf compression. Next, in Sect. VII-B,



we shift our focus to describe an achievable encoding for hyper
binning and detail the encoding implementation in 3 steps.

A. Hyper Binning vs Coloring-based Coding Schemes

Since the sources cannot communicate with each other, the
only way to rate reduction is through a source’s defining its
equivalence class for functional compression. We next give
a block function example for which codebook trimming fol-
lowed by the Slepian-Wolf encoding is asymptotically optimal.

Example 6. A trimmable codebook. Two sources X1 1L X5
are uniformly distributed over the alphabets X1 = Xy =
{0,1,2,3}. The function is f(X1, X2) = X1 ® Xs. Note that
this function exhibits the behavior as shown in Fig. 5 (a).
Given the function, source 1 can determine an equivalence
class [x1] which is mapped to f(x1, X2). Similarly, source 2
can determine an equivalence class [x2] mapped to (X1, z2).
For this model, [0] = [2] and [1] = [3] both for X, and X, i.e.,
each source needs 1 bit to identify themselves since the data
distributions are uniform. However, the entropy of the function
is 1 bit because there are only 2 equally likely classes.

For computing the function, each source specifies its equiva-
lence class without any help from the other source. To specify
its equivalence class [x1] source 1 to transmit Ry = 1 bir.
Similar arguments follow for source 2 and Rs = 1. Hence,
Ri1 + Ry = 2. In this example, each equivalence class is
equiprobable and has the same size, which is 2 for each source
since the model is symmetric, making the setup more tractable.

While for a specific class of functions, random binning or
orthogonal trimming of the binning-based codebook work,
we conjecture that such techniques may not optimize the
rate region for general functions (even without correlations).
However, as authors have shown in [27] that for independent
sources, the Berger-Tung inner and outer bounds converge, and
hence the rate of their hypergraph-based scheme lies between
the bounds of [54] and is optimal for general functions.

For functions with particular structures, e.g., the block
function shown in Fig. 5 (a), we can trim the binning-based
codebook, as we detailed in Example 2. In general, trimming
may not work, e.g., the smooth function in Fig. 5 (b). We next
provide an example where orthogonal binning of a codebook
is suboptimal for distributed functional compression.

Example 7. Let f(X1, X2) = (X1 - X2) mod 2 with discrete

alphabets Xy = {1,2,3,4} and Xy = {0,1}. We infer that
f=0=>%€ X, 32 =0, or X €{2,4}, xo=1.
f=1=7% €{1,3}, @2 =1, (32)

but f(3,1) # f(2,1). We illustrate the source pairs causing

distinct outcomes in Fig. 8, indicating that trimming of orthog-
onal bins may not work even if sources have no correlation.

From Example 7 we conjecture that orthogonal binning is
in general not efficient when computing general functions and
/ or with correlated sources. To see that when the decoder
observes f(X7],X%), it is possible that f(X},%5) = f(X},X3)
for some source pair (X7,X5) # (X7,%5). In this case, the
bins cannot be combined since f(X},X%) # f(X}?,%X%) in
general. Hence, orthogonal binning is clearly suboptimal.

Xy

R, R3)(XERD)

X,

Ry X )(XT, X3

Fig. 8: Source combinations for computing f(X1, X2) in Example
7 for which trimming of orthogonal codebook does not hold. We fill
in the source pairs causing different outputs with different patterns.

Exploiting the notion of characteristic graphs, the authors
in [8] have recently devised coloring-based approaches and
used them in characterizing rate bounds in various functional
compression setups. We use the notation Hg, (X;) to repre-
sent the graph entropy for the characteristic graph G x, that
captures the equivalence relation source X; builds for a given
function f on the source random variables (X7, ..., X;).

Definition 1. [0, Defn. 19] A joint-coloring family Vg
{wk,...,v} for X; with any valid colorings cax, for i =
1,...,s is such that each v, called a joint coloring class, is
the set of points (1.111 , mg“, e , 2% ) whose coordinates have the

same color, iie, v, = {(z a7, av), (a7, 2F, .. @)
chl(xll) = Cle(xll)a'-wchs(xgs) = CG’XS(Z‘SS)}, fOl"

any valid iy, ... ,is, and ly, ..., ls. v% is connected if between
any two points in v;, there exists a path that lies in v,

For any achievable coloring-based coding scheme, authors
in [9] have provided a sufficient condition called the Zig-Zag
Condition, and authors in [10] both a necessary and sufficient
condition called the Coloring Connectivity Condition. These
are modular schemes that decouple coloring from Slepian-
Wolf compression. We next state the condition in [10].

Definition 2. [70, Defn. 20] Let X; be random variables with
any valid colorings cg . for i = 1,...,s. A joint coloring
class vl € Vg satisfies the Coloring Connectivity Condition
(CCC) when it is connected, or its disconnected parts have the
same function values. Colorings cGy. ..., cGx, satisfy CCC
when all joint coloring classes satisfy CCC.

Remark 2. CCC vs orthogonal binning. CCC ensures the
conditions for orthogonal binning, i.e., codebook trimming. A
coloring-based encoding that satisfies CCC is applicable to
Example 6. However, it may be suboptimal for functions not
allowing for trimming, see Example 7. Let X7 € {1,3} and
X7 € {2,4} and X3 = 0 and X = 1. Note that (X},X}) ~
(XT,X%) and (X7,X5) ~ (X}, X%) (CCC preserved). However,
(XT,X5) # (X7,%5) (CCC not preserved). Hence, CCC
is necessary for trimming. This function also explains the
suboptimality of coloring-based coding in general.

B. An Achievable Encoding Scheme for Hyper Binning-based
Distributed Function Quantization

We next provide a high-level abstraction for an achievable
encoding of hyper binning with s = 2 sources. For a function
f(X1, X2) known both at the sources and at the destination,
let {n1,n2,...,m7} € H?> C R? be the hyperplane arrange-
ment of size .J in GP that divides R? into exactly M = r(2, J)
regions, and is designed to sufficiently quantize f(X;, X2).
Our goal is to predetermine the parameters {(a;, b;)} 3’:1 that



maximize I(M). We assume that these parameters are known
at both sources and sent to the destination only once. We also
highlight that we provide a heuristic for encoding, instead of
explicitly generating codebooks, as we describe next.

The Gacs-Korner Common Information Carried via
Hyperplanes. To enable distributed computation for non-
decomposable functions, we envision a helper-based dis-
tributed functional compression approach. Hyper binning re-
quires the transmission of common randomness between the
source data and across the data and its function, captured
through the hyperplanes. The common information (CI) mea-
sures provide alternate ways of compression for comput-
ing when there is common randomness between two jointly
distributed sources [50]. Among these measures, the Gacs-
Korner CI (GK-CI) has applications in the private constrained
synthesis of sources and secrecy [61] and is relevant here
because it can be separately extracted from either marginal
of X; and X5 [50]. In distributed CI extraction, to the best
of our knowledge, the GK-CI is the only CI that exploits the
combinatorial structure of px, x, to decompose the sources
into latent common and non-common parts that ideally form
disjoint components of a bipartite graph. More specifically, the
GK-CI decomposition of px, x, partitions the bipartite graph
representation of px, x, into a set C of a maximal number of
connected components Dy, ..., Djx| where || is their cardi-
nality. The GK-CI variable K represents the index of the con-
nected component and equals K = arg max H(U),

H(U|X1)=H(U|X2)=0

i.e., K can be separately extracted from either source [50].
The combinatorial structure of px, x,, captured via K, can
be encoded through a helper as a proxy for establishing
bipartitions X, which can provide efficient encoding and
transmission of data when joint typicality decoding is not
possible [61]. Letting P(Dx) = >_, . cp, PX1,x, (21, 72),
the GK-CI between X; and X5 [50] equals

H(K) = - P(Dy)log(P(Dy)) bits.
kek

In our distributed quantization setting, the helper should com-
municate in a prescribed order the hyperplane parameters that
are J(n+1) in total. The rate of CI is the rate of compressing
the parameters {(a;, b;)} 'f:l. While these parameters are real-
valued, they have approximate floating-point representations.
Furthermore, while they might need to be updated with n,
from (2), the update rates of J and hence of the hyperplane
parameters is logarithmic with respect to n.

Encoding. In encoding each source X;, i = 1, 2 indepen-
dently determines an ordering of hyperplanes to compress X;.
Let these orderings be Ox, C wx,({m,7n2,...,ms}), wWhere
mx, is the permutation of the hyperplane arrangement from the
perspective of source i. Note that 7y, # mx, for iy # is
because sources might build different characteristic graphs.
Source ¢ determines an ordering Ox,, which is from the most
informative, i.e., decisive in classifying the source data, to the
least such that the first bit provides the maximum reduction
in the entropy of the function outcome.

Transmission. Because each source has the knowledge
of {(aj, b;) 5]:1, it does the comparisons a;x; > b; for
hyperplane j and sends the binary outcomes of these com-

(33)

parisons. Hence, each source needs to send at most J bits
(1 bit per hyperplane) to indicate the region representing the
outcome of f. There are at most 27 possible configurations,
i.e., codewords, among which nearly |Clgp = 9% -1 h(a;)
are typical. Source 7 transmits a codeword that represents a
particular ordering my,. Hence, in the proposed scheme with
J hyperplanes, we require up to 2. bits to describe a function
with M = r(2,J) outcomes. This is unlike the Slepian-
Wolf setting, where source ¢ has approximately |C|sw =
2nH(Xi) codewords to represent the typical sequences with
blocklength n as n goes to infinity [2]. Hence, an advantage
of the hyper binning scheme over the scheme of Slepian-
Wolf is that it can capture the growing blocklength n with
J hyperplanes without exceeding an expected distortion. Note
that as hyper binning captures the correlation between the
sources as well as between the sources and the function,
it provides a representation with a reduced codebook size
|Clup < |C|sw for distributed functional compression. If using
J < n hyperplanes ensures that the majority of ¢; is in
{0,1}, then the efficiency of the function representation is
obvious. However, if .J linearly scales with n, since He (X3)
is the entropy of the characteristic graph that source ¢ builds
to distinguish the outcomes of f [7], a sufficient condition for
S h(gy) = nHey, (X;) is that h(g;) = 2He (X), Y j.

Reception. At the destination, each codeword pair received
from the sources yields a distinct function output that can be
determined by the specific order of the received bits in the
codebooks designed for evaluating the outcome of f along
with the CI carried via the hyperplanes.

Discussion. Sects. VII-A and VII-B focus on achievable
schemes and are suboptimal in some cases. However, hyper
binning is not modular, unlike the coloring-based approaches,
e.g., graph coloring followed by Slepian-Wolf compression in
[10] or its hypergraph-based extension in [27]. Hyper binning
does not involve a coloring step or a separate quantization
phase prior to compression. Instead, it jointly performs quan-
tization and compression. This joint design is possible through
the knowledge of the hyperplane parameters at the source sites.

VIII. CONCLUSIONS

We introduced a distributed function-aware quantization
scheme for distributed functional compression called hyper
binning. While distributed source compression algorithms in
general focus on quantizing continuous variables and then
compressing them, hyper binning does the compression step
on the functional representation, providing a natural gener-
alization of orthogonal binning to computation. Optimizing
the tradeoff between the number of hyperplanes and the
blocklength is crucial in exploiting the high dimensional data,
especially in a finite blocklength setting. The proposed model
can adapt to the changes and learn from data by successively
fine-tuning the hyperplane parameters with the growing data
size. Due to Kolmogorov complexity, for finite blocklengths,
hyper binning can be iteratively refined to capture the function
accurately at a lower cost than random binning. We believe
that our approach provides a fresh perspective to vector quan-
tization for computing. However, we do not claim optimality.
This caveat is due to the difficulty of the NP-completeness



of graph entropy and practical implementation because there
is no constructive algorithm. Our future work includes sam-
pling and vector quantization for function computation from
an information-theoretic standpoint. Extensions also include
analyzing general convex bodies formed by nonlinear hyper-
planes, hypersurfaces, and multivariate functions.
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SUPPLEMENTARY MATERIAL

We recall the following notation being used in the paper:
har = 27 Saty h(pr) and harn = 54 Sty h(pr). and
hence (M + 1)hpro1 = Mhys + h(parsr).

Given an MSE distortion criterion E[d(f", ™) =
LS (f(1) = f(1)? < e, the approximation using J hy-
perplanes yields an MSE:

2
E[( Z cj{a;xtzbj} - dj{a;'.'xt<bj}) ] <e (34)
j=J

A. Proof of Proposition 1

Adding one more hyperplane, p;’s decay and for given N,
ny’s also decrease but since the source data is preserved, we
have Sy np = St iy = Soetamg = N where a €
[0,1]. Letting @ =1 — a, the following holds for I(M + 1):

M+1

1 M+1 .
I(M+1) = h(ﬁ 3 ﬁkpk) -
k=1

" h(ps)
1 < M
- h(ﬁ Zankpk+o7pM+1> *QZ’WJL(M) —ah(prr+1)

@ M M
> ah( > “Ykpk) +ah(parp1)—ah(pasa)— Y avh(pr),
k=1 k=1
where (a) is due to the concavity of h. The RHS of (a) is
al(M). For asymmetric data distribution, we have ny = Opy.
The following relation confirms the monotonicity of I(M):

, RSN T TSV
(M +1) = ah(ﬁ Zpk) =D~ Mpw) = al(M),
k=1 k=1

where (b) follows from the definition of I(M) that yields
I(M) = h(% ZkM_lpi? — M Beep(p,). As I(M +1) >

k=1 I
al(M) where « € [0, 1], the final result can be obtained.

B. Proof of Proposition 2

The mutual information I(M + 1) satisfies the relation:

Mpas + _
1M +1) = b BRI —
M 1 Mhys + h(pars1)
> - _
Z g1 Pm) + g o) M+1
M _ M
_ ) — hr) = — (M

where the inequality is due to the concavity of h.
Given M, assume {p; ., are fixed and in the increasing
order 1/2 < p; < pa < ... < py and hence hypr. When we

. . Mpr+prr41 =
increment M, since h (Tﬂ) < h(pm)s

M _ 7 h (pm) — h(par41)
< _
I(M+1)_M+1(h(pM) har) + M
_ MI(M)  h(pm)— hprvy1) har — h(prrs1)
TSR M+1 = 1M+ M+1

Combining the bounds we attain the desired result.

C. Proof of Proposition 3

For the convergence argument, from (10), taking a sum from
M =1to N — 1, we have that

N-1 7 _ N-1 7
hyv —h (pur) har — h(prr41)
— L < I(N)-I(1) < —_—
2 TSI T
M=1 B M=1
From the law of large numbers, hy; — E[h] =0 as M — oo
and h(par) — 0, i.e., the sequence {%ﬁ”“)} converges
to 0. It is indeed a Cauchy sequence. Note that a sequence
1, T3, 3, ... of real numbers is called a Cauchy sequence if,
for every positive real number ¢, there is a positive integer /N

T — Tp| < €.

Hence, it is convergent.

If ng’s are symmetric, I(M) has the behavior, as shown in
Fig. 5 (d). The decay rates are low if M is large. However,
if M is small, we expect the first term to decrease slower
(concavity), yielding high mutual information. As M gets
larger, the decrease in the first term is sharper, and the mutual
information decays, which we formally investigate next:

AI(M +1) = M1+ T ((har = Dar) = (h(prrg1) — Paas)) -
Since h(p)

— p is decreasing in p for p > 1/2, we have that
h(par) —Pam > h(Par+1) — Par+1- However, because entropy
is concave, i.e., h(Par) — Par > har — pas for all M, this does
not imply that hpr —pas > b (pars1) —parss for all M. When
M is small, the gap h(pas) — hs is smaller and it is possible
to have AT(M + 1) > 0. However, when M gets larger, the
gap h(par) — has is larger and AI(M + 1) < 0.

There is a global maximum (M *) such that AI(M +1) ~
0. This is true when h (pA{+1) —PM+1 = ?L]W —DMr- The value
M™ is unique since as M > M*, the relative increase of ppsy1
is more than Py, and the relative decrease of h (pas41) with
respect to h () is higher and hyy is smaller than h (pas).

D. Proof of Proposition 5

Noting that a}x? is Gaussian distributed, and c; should be
its average value such that a; Tx? > b;, and similarly for d;
which is the average of ajx ' such that aj X7 < b;. In other
words, the following relationships hold for j € 7;, i € {1,2}:

b,
Ccj = E[a}x? |a;XT<L Z b]] = ]%a (35)
J
dj = Elajx} [ajx]’ < bj] = i((l;])) (36)
J

where ¢(x) is the density function of the standard normal
distribution and Q(z) = 1 — ®(x) where the Q-function is the
tail distribution function of the standard normal distribution.
Note that the ratio of the parameters satisfy - L= 1(I><(I,b(’b) -

We can evaluate the relation in (34) via 1ncorp0rat1ng the
definition ¢; = P(aJx; > b;) as
b, — E[alx j
b — Ela;xi] Ll YA

e o) s
Var[ajx] alYa;

For the bivariate normal distribution, the pdf of the vector
[X,Y]" (where X = afx; and Y = a]x;) satisfies



1 1 (m—,ux)z
exp | — 5
2roxoyy/1 — p? 2(1—p?) ox

() (52 (52)])

where the means satisfy ux = ajp and py = aj p, the stan-

dard derivations satisfy ox = 1/aJTZaj and oy = y/a]Xay,

and the correlation is
_ E[XY]

OX0y

—UXHY

al (X + ppT)ay — pxfry
0X0y
For a given pair (j, k) such that j # k we let
gjx = P(ajx; > by, agx; > by),
Pk = ]P’(ajT-xt > bj, ajxy < by),
ik = IP’(aJT-Xt < bj, ajxy < by). (38)
Combining the relations (34), (37) and (38), we obtain that

Eld(f, KZCJ alx;> _dj]la}xf,<bj>
2n
. ( Z Ck]]-a;thbk - dk]]'azxt<bk>:|
k=J
2n 2n
= Z Z cjcxP(ajx; > bj, afx; > by)
j=J k=J
2n 2n
+ Z Z cjdk]P’(ajT-xt > by, ajx¢ < by)
J=J k=Jk#j
2n 2n
+ Z Z djcrP(ajx; < bj, afx; > by)
J=J k=Jk#j
2n  2n
+3 ) djdiP(alx, < by, alx; < by).
j=J k=J
We can rewrite E[d(f, f)] as
2n 2n
Eld(f, f)] = Z Z cjcrP(ajxy > b;, alx; > by)
J=J k=J,k#j
2n
+) EP(alx, > by)
j=J
2n 2n
+ 22 Z cjdeE”(a]T-xt > b, alx; < by)
j=J k=J,k#j
2n 2n
+3 0 Y didiP(alx, < by, alx; < by)
J=J k=J,k#£j
2n
+ Z d3P(alx; < bj)
ij
38) 2n 2n 2n
(3 Z Z cickqjk + Zc q; +22 Z c;jdrpjk
j=J k=J,k#j j=J k=J,k#j
2n 2n

+>0) dderkJer? 1-q)

j=J k=J,k#j

<Z%Z%”Z% Z A
k=J,k#j
+Zd del—qk

where the last mequallty follows from (38) where we observe
that g¢; = g + pjr and 1 — g, = pji + 755 for any k # j.

In general, from (39) and using the definitions of g;x, pjk,
and 7, it is not straightforward to determine the set of
hyperplane parameters {a;, b;}. The MSE depends on how
we jointly determine a;, b;, n, J. Note also that {c;}7_, and
{qj} _1 depend on the blocklength n. We emphasize that
it is not straightforward to derive a necessary condition for
achieving the desired MSE metric. On the other hand, we
observe that when c; is high (when the separation between
two regions needs to be large) or € is small, then the required
number of hyperplanes, i.e., J, is high.

If we assume that d; = —c;, we can have the following
sufficient condition to meet the MSE criterion:

(39)

2n 2n 2n 2n
g Ciq; g ck — 2 g Cjq; E Ck
j=J k=J j=J k=J,k#j

2n
+ZCJZCk L—qy) <

Rearranging the above relatlon we obtaln

2n  2n 2n 2n
—Zchckqj—&—QZc qj+Zchck 1—qj
j=J k=J j=J k=J
2n
*220 qJ+Zc] — 2q;) ch
k=J

= Z (20?%‘ + Cj(]. - 2(]j) Z Ck> <e.
j=J k=J

Hence, a sufficient condition to ensure the desired distortion
level is given as for j = J,...,2n

(20 —20]ch>q]+cj§:ck2 I (40)

which is equivalent to the condition for any j € {J,...,2n}:

1
41
; 2n (2n—J—|—1 Cﬂch) 1)
ZCj_QCijCk

q; <

where recall that from (35) ¢; = 1fg’gb)j). As b; increases we

expect ¢; to increase and g; to decrease. However, we cannot
increase b; arbitrarily because

2n—J—|—1 CJZC">O

Rearranging this inequality and summlng up both sides of the
equation from k = J to k = 2n, for the sufficient condition
in (41) to hold it is required that

2n
Z cr < Ve
k=J



