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Abstract

Entanglement has been known to boost target detection, despite it being destroyed by lossy-noisy
propagation. Recently, Zhuang and Shapiro (2022 Phys. Rev. Lett. 128 010501) proposed a quantum
pulse-compression radar to extend entanglement’s benefit to target range estimation. In a radar
application, many other aspects of the target are of interest, including angle, velocity and cross
section. In this study, we propose a dual-receiver radar scheme that employs a high time-bandwidth
product microwave pulse entangled with a pre-shared reference signal available at the receiver, to
investigate the direction of a distant object and show that the direction-resolving capability is
significantly improved by entanglement, compared to its classical counterpart under the same
parameter settings. We identify the applicable scenario of this quantum radar to be short-range
and high-frequency, which enables entanglement’s benefit in a reasonable integration time.

1. Introduction

Radio Detection and Ranging (radar) system exploits the techniques of transmitting and receiving
electromagnetic (EM) field for detecting properties of distant objects. In a radar system, the ranging
measurement of an object can be inferred by the time-of-flight of a pulse [1-7]. Conventional radars use a
classical coherent EM field probe. With the recent emergence of quantum sensing technology [8-11],
quantum radar has been proposed utilizing entanglement for higher sensitivity [12—14]. The notion of
quantum radar started with the detection of absence or presence of a target in the quantum illumination
protocol [15—17], where a six-decibel advantage was found in the error exponent. Recent works have also
extended the applicability of quantum radar to ranging [18, 19], showing a huge entanglement advantage in
range accuracy due to the nonlinear nature of the range estimation problem. However, radar detection is a
complex task aiming at estimating various properties of the target, such as range, angle, velocity and cross
section. The benefit of quantum radar has not been fully explored in estimating these different properties.
In this paper, we consider a dual-receiver bistatic quantum radar scheme (see figure 1(a)) to resolve the
angular elevation of a distant target. In fact, the proposed angle-resolving protocol is compatible with both
bistatic and momostatic schemes, shown in figure 1, since that the equivalence of the two schemes can be
made by choosing the source-to-target distance in monostatic scheme as the half of source-to-target-
to-receiver distance in bistatic scheme (i.e. (L’ + L) /2). In the large signal-to-noise ratio (SNR) limit, we
identify a factor of two angle resolution advantage from entanglement. Furthermore, in the intermediate
SNR region, by evaluating the quantum Ziv-Zakai bound [20], we identify a huge angle resolution advantage
from entanglement at the SNR threshold, similar to [18]. To connect to practical scenarios, we analyze
entanglement’s advantage in angle detection of an unmanned aerial system (UAS) versus its range and
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integration time, where we identify short-range of a hundred meters to be the parameter region where
entanglement’s benefit over a classical radar is applicable.

2. Radar angle estimation

To precisely determine the angle relative to the vertical direction, ¢, shown in figure 1, we consider two
quantum receivers, each with an individual aperture, separated by distance d. By assuming a distant target
(L',L>> d), the return microwave wave vectors are approximated as parallel between the two receivers. The
overall return-path transmissivity (source-to-target-to-receiver) x < 1 is assumed to be small, and known
a priori.

Our proposed quantum radar detects the angle ¢ by analyzing the difference of signal arrival time at the
two receivers. Based on any prior knowledge of ¢, for example acquired using passive imaging on a
classical-radar pre-estimate, we direct the dual-receivers toward ¢, ~ ¢ to maximize the transmissivity of the
return field. (Here ‘¢’ denotes compensation.) By doing so, the effective transmissivity, projected on the plane
of the receiver, is £ 4, = Kk cos (¢ — @), which decays with the error of the prior knowledge |¢ — ¢| (i.e.
|p— &c| < m/2).

Radar, in general, is operated at microwave frequency for both quantum [21, 22] and classical [5, 6]. In
our case, we choose the microwave frequency at wy /27 ~ 100 GHz in W-band, since that this frequency
band is robust to degraded visual environments [23] with high precision and especially suitable for the
applications of UAS localization [24]. The thermal bath has the density operator in Fock basis

o0

~ 1 NB w "
)= (i) Mo m

n—=

with mean photon number per mode N (w) that follows the Planck-law distribution, plotted in figure 2,

1

Np (w) = ehw/ksTs _ 1’ (2)

where 7 is the reduced Planck constant, kg is the Boltzmann constant and T is the temperature of the
thermal bath. From this, we can see that the W-band domain is especially noisy (i.e. N5 (w) > 1). Thereby,
the return-path propagation in W-band can be modeled as a very noisy and lossy channel.

Regardless of the radar scheme being classical or quantum, the input-output relation for the field
operators (in units \/photons/second) are the same. For transmitted field E (t), the return field at the
receiver station k, Ej (), can be described as

Ei(t) = /R exp (i€)E[t — (1 F dsing/20)] + /T — kg Ve (1), (3)

where k € {R1,R2}, £ € [0,27) denotes the phase picked up from the reflection of the target, 7 = (L' +L)/c
is the time of flight of the microwave probe pulse, ¢ is the speed of light, Vg, (¢) and Vg, (1) are the
environmental noise field operators that correspond to the ‘—> and ‘4’ signs in ‘F of equation (3). Both

Ex (1) and Vi (1) satisfy the commutation relations,

[Ek (1), Ef (t')] - [f;k (1), Vf (t’)] =6 (t—1') 6y, (4)

where k,I € {R1,R2}. In a general phase-incoherent scenario, § is random and unknown; to begin with, we
will consider the phase-coherent case of known & and 7, recognizing that the results obtained are lower
bounds on the phase-incoherent counterparts, similar to [18]. Indeed, coherent phase consideration might
be idealistic; however, essentially, the phase noise is identical across all modes and [25] demonstrated that the
coherence and incoherence of phase result in a convergent evaluation outcome in the SNR range of interest.
Moreover, the assumption of known 7 can always be justified via accurately measuring the ranging of L’ 4+ L
with the protocol of quantum ranging in [25].

Subsequently, we take the Fourier transform on equation (3) to convert field operators of mode k (i.e.
k € {R1,R2}) into the frequency domain:

I::"k (W) = \/Kg,4, €Xp [zféfw)} i?(w) + /11— m¢,¢cf}k (w), (5)

where £ | =& +w (7 Fdsing/2c),

oo 00

E(t) = %/ E(w)e “'dw, E(t)= %/ l%k (w)e ™dw, Vi(t) = %/7 ]221( (w)e ™dw. (6)

— 00 —0o0
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Figure 1. Schemes of dual-receiver (a) bistatic and (b) monostatic radar. R1: receiver 1, R2: receiver 2. T: transmitter. QM:
quantum memory, L’ and L denote the source-to-target and target-to-receiver distances in bistatic scenario.

T, =300K
T,=150K
Ty=50K

0.1
0.1

0.5 1 5 10 50 100
wlw,

Figure 2. Mean photon number per mode in the thermal environment, for the Planck-Law distribution.

The noise mode V (w) (in units of /photons/Hz) satisfy the auto-correlation relations:

V] @) V(@) =T [ (@) V] (@) Vilw)] 20 N3e d (w =), 7)
where Nj° = Nj (wp) and the last term of equation (7) is derived by assuming the narrow bandwidth of the
noise background mode.

For simplicity, in the following section, we model each transmitted temporal mode of the microwave
probe for the classical and the quantum radars respectively, as a coherent state and a two-mode squeezed
vacuum (TMSV) state, with identical mean photon number per mode Ny at the central frequency of the
pulse wy. Since the aforementioned two states are both Gaussian and can be fully characterized by their
quadrature mean and covariance matrices (CMs), we analyze the two radars with their corresponding mean
and CMs. Note that although we have introduced the continuous-time field operators to describe the radar
signals, in a finite-time analysis one can always discretize the field into the orthogonal frequency modes, each
with a finite frequency bin size [18]. We will adopt this discrete-mode approach, where finite dimensional
CMs are well-defined, for evaluating various quantities. Denote the number of frequency bins as N. The
matrix elements of the CM, V, of an N-mode Gaussian state are given by:

[V]N = (X%) — (%)) (X1), Vj,l={1,2,...,N}, (8)
where X = {§1,p1,42:P2 .-, 4n.Pn} " with quadrature operator §; = &, + a! and p, = (a;—al) /i,
Vs € {1,2,...,N}. Here a,’s are the annihilation operators of the modes.

2.1. Classical radar
Classical radar transmits a coherent state |\/€ s (f) e=™°'), quantum description of an ideal laser-light pulse, in
a compressed chirped pulse whose amplitude is

1/

s()=(2rT3) 4exp [iAwt? /2T, — t*/ATj], (9)
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mean photon number is £, bandwidth is Aw and pulse duration is T (i.e. 27/ T; < Aw < wy). The pulse
has the spectrum

S(Q) = /00 s(t) e *Mdt ~ (sz/Z’/T)_l/4 exp [ 42;2] (10)

with
1 2 210 ~ 2
2ﬂ[ Q°IS(Q) ]7dQ2 ~ Aw?, (11)

Le. Q=w—wp.

Considering the input and the received fields are E (t), Ex (t), where k € {R1,R2} is the index of the signal
mode at the corresponding receiver station, we discretize each field into discrete frequency modes via Fourier
series as

E(t) _ Z %m eith’ Ek (t) _ Zfikﬂﬂ eith, (12)

meZ meZ

with Fourier coefficients

LT iQ
gzgi/ deE(t— '),
" \ Td T/

= 1 T it (13)
Epim = —/ dtEg; (t —wdsing/c)e """ 13
" v Td T/ )

2 1 T/Jer 2 Q. t
ERZ,m e dtEg, (t) e B s

vV Td T/

where 7/ = 7+ wdsin¢/2c and Q,,, = 2w m/T,;. The overall received quantum state ﬁg of the system is
specified by its mean and CM, with the CM given by a direct sum of each 4-by-4 CM of two received modes
at the same frequency, namely Ve = @, (2N3" + 1)14, and quadrature mean (f()? =@, <5(>an Here
‘D, is the direct sum of all frequency modes and 1, is the 4 x 4 identity matrix. Assuming large pulse
duration T, >> 1, we treat each discrete frequency modes (2, as the ‘continuous’ frequency modes 2 and
derive the total photon number of the input as

Td oo
/)ME@Mm:%/ dQS(Q) = NsAwT, =€, (14)
0 —00
where
S(Q) = V2rNsexp [-Q? /2Aw?] (15)

is the mean photon number per mode of the flat-top spectral mode with width 1/T; centered at wq + Q.
The quadrature mean of the received field can be obtained as (X)gﬂ =/25(Q) kg4, {cos (Sé;)o +Q> ,

T
sin (5;:30 +Q) ,COS (géfgo +Q> ,sin (f((sz)o +Q) } . Similar discretization process can be found in [25].

2.2. Quantum radar
In quantum radar, the transmitted microwave pulse is entangled with an idler pulse, which is stored in a
quantum memory at the location of the two receivers. As the signal pulse is returned from the target and to
receiver 1 and 2, we perform a joint measurement on the quantum state of the idler and return from both
receivers.

Assuming Ty > 1, we treat the discrete frequency modes of the quantum pulse, centered at the frequency
wo, as the ‘continuous’ frequency modes, and have the field operators of two signals (i.e. R1, R2) and idler as,

A 1 &

B =5 [ a0d@e @ b= [ dod@eieon (16)

2 — 0 TJ—c0

where ;ik Q)= 1::"k (wo + ) and 21 Q)= 1:5[ (wo — ), where k € {R1,R2} and I denote the receiver and
idler modes. The field operators in equation (16) have spectral auto-correlations

(AL () AL(Q7) = (A] () A, (")) = 278 () (2 — Q). (17)
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and cross-correlations,

HQ)A(Q) = (4] () A(Q)) = 27 C(2)5(Q - Q)
HQ)A(Q) =278 ()5 (2 — Q') 8y,

—~
;>1>

. (18)
(A

where k,1 € {R1,R2},C(02) = /S (Q) (S(2) + 1). The mean photon number of the two signals or idler is,

Ta Ty 0o
A (B (D E) = [ dr(E (0B (1) = 21; / A0S (Q) = NsAwT, =€, (19)
0 0 —00

and its average bandwidth is

/jo S(Q)deQ/ /jo S(0)dQ = Aw?. (20)

Equations (19) and (20) coincide with the mean photon number in equation (14) and the bandwidth in
equation (11) of the classical framework, showing that the power and bandwidth of our quantum-radar
transmitter are identical as the classical case.

After discretization, the overall received field in the quantum radar case can be described by a collection
of N mode triplets, each triplet consisting of one idler mode and two received modes at receiver 1 and
receiver 2. The global state ﬁg is zero-mean Gaussian state characterized by the CM Vg =@, Vg"ﬂ, where

A, CoR, ) CoR
vyt = Cng)S({) BYL, D2W¢§+)7¢§2—> (21)
CYR ol DYwW ) g By1
with A? =28 (Q) + 1, B = 2N;* +2k4,4,S (Q) + 1, CF = 2,/F5.6.C (Q), DY = A% 4,
Ry =Relexp (i0) (Z, — iX,)], Wy = Re[exp (i) (I, + Y;)]. Here I, X;, Y, and Z, are the 2 X 2 identity, Pauli
X, Y, and Z matrices, ¢§) =&+ (wo+ Q) (T £dsing/2c), N3° = ()}E\A@/ (1—Kp,p.) (f/,j]};&, where
k€ {R1,R2}.

2.3. Variance bound of estimator

In this section, we evaluate lower bounds of the mean squared error (MSE) in angle estimation. The
Cramér—Rao bound (CRB) provides an asymptotically tight lower bound on the minimum possible MSE
among all unbiased estimators when the SNR is large. Whereas CRB is well known to be tight in the limit of
large SNR, it typically predicts a much smaller error than the actual error limit of the system as the SNR is
small. The Ziv-Zakai bound (ZZB) is another lower bound, obtained by analyzing the error probability in a
binary hypothesis problem, and is proved to be a tighter bound than CRB in multiple cases of the low-SNR
region [18, 20, 26-31]. In the following, we compare the estimation of ¢ by CRBs and ZZBs in the quantum
and classical cases.

2.3.1. CRB

In radar detection, the target angle ¢ is encoded into the output state p,. CRB indicates the minimum
variance lower bound of the unbias estimator for estimating ¢ from Py, dpgy = 1/Fy, where Fy is the
quantum fisher information (QFI),

1—/F(pg,p
e—0 €

, (22)

and

2
Fponiond) = [ (Vo) | 23)

is the Uhlmann fidelity [32] between states pg and pg . For our evaluation, in classical scenario, we assign

{Pos Ppte} = { /33, pAéH'e }, whereas in quantum scenario, { ﬁg, ﬁg+€ } Under the approximation Ng, x < 1

5
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and N} >> 1, we have the fidelities of classical and quantum cases as F{ g 1—

kS () @Q,E/N“’0 and Fg b = 1—268(Q) @Q7G/N§° at frequency wy + 2, where

Of . = cos (¢ — ¢c) +cos (¢ — dc+ )
Q)d

~2y/c0s (¢ — ) cos (6 + ¢ — &) cos [(“j ey

(sin(0-+9 —sing) .

Followed by the definition of QFI in equation (22), we derive the QFI for classical and quantum radar as,

0 1o  SQkeg | d(w+9)°
Fco ™57 ™ 2

N cos” ¢+ tan” (¢ — @)} : (25)
Since QFI is additive across all the frequency modes 2, we integrate equation (25) over the whole
fluorescence spectrum. This can be justified by taking a continuous limit of a discrete set of frequency
modes [18]; in other words, we calculate F(q),¢ = Ty f }' Q. dQ to attain the gross QFIs of both
scenarios Fc 4 =~ 2(SNR) Ty and Fq, 4 ~ 4 (SNR) T, where SNR = kE /N3’ = AwT kN5 /N3 and

2 2 2
T, = cos(qbz— ) {d (wO;LAw ) cos? ¢+ tan® (¢ — @)} _ (26)

It is interesting to note that the QFI of quantum radar is twice of that of the classical radar, similar to the
ranging case [18]. Owing to the fact that CRB is only tight in large SNR limit, we take ¢ = ¢ for evaluating
the CRB. Ultimately, we derive the classical CRB (CCRB) and quantum CRB (QCRB) as §¢2 gz = 1/ Fe,o
and d¢3crp = 1/Fq,¢» and plot them as the red and blue dotted lines in figure 3.

2.3.2.ZZB

ZZ7B is a Bayesian bound, calculated by averaging the MSE over a priori probability density function of the
estimating parameter so as to incorporate knowledge of a priori parameter space [27, 28]. Specifically,
consider a random variable X with the prior distribution Py (-), and then the ZZB of the MSE can be
evaluated as

5 = / mdccv{ / h dxmin{Px<x>,Px<x+c>}Pr<x;x+<>}, @7)

where Py (x) denotes the probability density of prior knowledge at angle x, V denotes the valley-filling
operation, i.e. Vf(7) = max,>of(7 +7), and Pr(x;x + () denotes the minimum error probability to
distinguish two hypotheses,

H1:X=X7 HZ:X:x+C. (28)

Considering uniform prior-knowledge in the range [¢ — A¢ /2, + Ap /2], where A¢ denotes the
uncertainty range, we rewrite equation (27) as

i ; ) ¢+A¢/zf<dx
= P N . 2
728 /0 ¢¢ Aqb g r(x;x+C) (29)

Note that as Pr (x;x + () decreases with ¢ increasing, and the distribution is uniform, so the principle value is
always achieved at . Considering the limit of A¢ < 1, we can approximate the above results as

A¢
56~ [ dcc(1--S ) Pr(dio+0). (30)
. A

We will justify this assumption later. The error probability Pr(+) in equation (29) or equation (30) is
obtained from the maximum likelyhood-ratio test in classical scenario or from the Helstrom limit in
quantum. While classical ZZB (CZZB) is fairly straightforward to calculate, quantum ZZB (QZZB) is
challenging due to the integration of the Helstrom limit. To enable efficient evaluation, we approximate the
Helstrom limit with the quantum Chernoff bound (QCB) (i.e. Pr — P(QCB)Y A5 QCB is exponentially tight,
we expect the results to reveal the advantage of entanglement, similar to previous works [15, 18].

6
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0 e - T T T
| CZZB (Eq. 30) —

-10¢ QZZB (Eq. 30) —1
% -20¢ Quant:isn 1
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—60¢ SNRin ]

-70 : _— ' :

-10 0 10 20 30
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Figure 3. The ZZBs and CRBs of quantum and classical cases normalized to 6%, = A¢?/12. Green dashed and blue solid curves
denote the QZZBs derived from equations (29) and (30), the red solid curve denotes the CZZB and is derived from equation (30),
red and blue dotted lines stand for the CCRB and QCRB. wy /27 = 100 GHz, Aw/27 =5 GHz, d=8 m, ¢ = ¢ = 0.1 rad and
A¢ = 7/100. The gray vertical dashed line denotes the location of SNR threshold.

Similar to [15, 33, 34], we can derive the QCBs for classical and quantum as (see more details in
appendix A)

PO (164 ¢) <exp [~ (SNR) O ¢ /2] /2 (31)
P (619 +C) < exp [~2(SNR) O, /2,
where
@(b’c ~ cos (¢ — ¢c) +cos(p— p.+C) —2\/cos(¢—¢c)coS(¢_¢c+C)
2 Aw? >

X exp | — {sin(¢ + ¢) —sin gb}z} cos {d;:) {sin(¢+ () —sing}|,

8c2

under the approximation of Ng, k < 1 and N3° > 1. In angle detection, the error exponent of QCB achieves
6 dB advantage over the classical one, same conclusion as QI. Akin to CRB evaluation, we set ¢. = ¢ and plug
the upper bounds of P(CQCB) and PL2Y) from equation (31) into equation (30) to evaluate the ZZBs
normalized to §¢2, = A¢? /12 (i.e. 6¢%; is the ZZB by assuming Pr = 1/2) in figure 3.

Under appropriate parameter settings, figure 3 shows a huge quantum advantage (~30 dB) at the SNR
threshold of the quantum radar, where the precision improves drastically with SNR increasing (will be later
quantified in section 2.4). In the high SNR regime, QZZB coincides with the QCRB while CZZB has an 3 dB
offset higher than CCRB. Moreover, the approximation at the A¢ < 1 limit used in equation (30) can be
justified by the concurrence of the blue solid curve (evaluated via equation (30)) and green dashed curve
(evaluated via equation (29)) in figure 3 when setting a small A¢ (e.g. A¢p = 7/100).

2.4. Quantum advantage versus pulse duration and range

To understand the practical use scenario of quantum radar, it is necessary to evaluate the trade-off between
the quantum advantage with the pulse duration at a given set of physical parameter (e.g. k and N3°). To
calculate the ZZB without considering the long pulse approximation, we have to calculate the QCB
numerically rather than adopting the asymptotic formula in equation (31). At the same time we will adopt
the full numerical approach in equation (29), instead of the approximated result in equation (30).

We will focus on the SNR threshold of the quantum radar to evaluate the quantum advantage. Before
proceeding to the evaluation, we make our definition of SNR threshold precise. The intermediate SNR that
results in a significant drop of QZZB is defined as the SNR threshold (SNRy,) of quantum radar, manifested
in figure 3. In the high SNR regime (SNR > SNRy, ), the major contribution of the integration over ¢ in
equation (30) comes from the values near the origin and, thereafter, QZZB can be asymptotically derived as

&;%ZZB ~1/47,(SNR), (33)

7



10P Publishing Quantum Sci. Technol. 8 (2023) 035016 B-H Wu et al

Quantum Advantage (dB)
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Figure 4. The numerical calculation of quantum advantage at SNRy, = 4.88 dB versus pulse duration and object’s distance

(i.e. assuming L’ = L). A, = 20 m?, 0 =0.1 m?, N}* = 32 (i.e. Ts = 150 K), wo /27 = 100 GHz, Aw /27 =5 GHz,d=10m,
¢=0.1rad and A¢ = 7/100.

where Ty, was defined in equation (26). On the other hand, the QZZB in the low SNR regime
(SNR < SNRy,) follows the inequality,

5rs = 000778 2 Obmpexp [—4 (SNR)], (34)

iLe.0< (:)(ﬁ,g < 2. SNRy, is defined as the particular SNR that matches the asymptotic limit in equation (33)
and the asymptotic lower bound limit in equation (34) (i.e. §¢2exp [—4 (SNR)]), and formulated as

SNRy, = g [1/T 6 0¢mg] /4, (35)

where g[y] is the inverse function of ye ™, Vy > 1.

To understand the quantum advantage trade-off, we specify our radar system to the application of UAS.
In UAS detection, when the target is at distance L (away from the center of receivers), the transmissivity of
the interrogation channel

GT a. Au

= 0T T 36
= e b (36)

where Gr = A,/ (2 ¢/w, )’ is radar’s antenna gain, A, is the antenna’s area, o is the target’s cross section area.
Plugging these parameters into our simulation model and fixing SNR = SNRy, by tuning N, we numerically
calculate the quantum advantage trade off in figure 4. Under this parameter setting, the quantum advantage
is appreciable (2 15 dB) for distance L' = L ~ 500 m by setting a practical pulse duration of T; = 0.1 s.

3. Conclusion and discussion

In this work, we propose a two-receiver bistatic radar framework to employ a microwave probe entangled
with a reference pre-shared with the receivers, in detecting the direction of the target and prove that
quantum radar outperforms the classical competitor. The proposed quantum radar has the SNR threshold
(i.e. SNRy,) 6 dB lower than the classical one’s and, as a result, the quantum advantage is significant when we
enact the radar at the SNRy, of quantum radar at the long integration time limit. When the integration time
is finite, the quantum advantage applies to short range precise ranging of small targets such as UAS. Our
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proposed quantum radar generalizes the previous results in quantum radar ranging [18] towards a general
quantum radar detection system capable of detecting various properties of targets.

Ultimately, there is one more point that worth mentioning. The proposed dual-receiver system does not
make use of the spatial field distribution on the imaging plane; indeed, concatenating our analysis with
spatial mode sorter and photodetection could potentially improve the estimation of ¢; however, we show
that such a mode sorting approach only brings marginal improvement even in the best-case scenario (see
more details in appendix B), as the usual size of aperture is small compared with the separation of the
apertures. Hence, considering the level of complexity in the receiver design, it is not necessary to incorporate
such processing into our design.
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Appendix A. Quantum Chernoff bound

The error probability in distinguishing the two hypotheses of quantum state (i.e. ; and H,) is upper
bounded by the QCB,

Pam = 2 int [Te 53,73} (1)

where py, and pyy, are the density operators corresponding to H, and H,. In radar scenario, the two
hypotheses refer to parameters specified in equation (28), and the QCB defined in equation (A.1) [33] under
the approximation A¢ < 1 can be derived as

PP (¢4 () = HP” $:p+), (A2)

with each frequency contributing
PHéi9+C) = inf {PP(¢10+()} (A.3)

and

2N| | 1 .
1 —
P (p;04¢) = 7] exp {—Axg’c (Ag’f) (Axg’c) } . (A.4)
\/det AGS 2 ’
Q,s
Here N denotes the number of involved mode, Ax¢’C = <A>‘z’+< - (f(>3 denotes the quadrature mean

difference, G{* W =v2/[y+1)£(y—1)],ieVy>1, KV:C -G {)\7’] X GE:E [)\JW'C] ,
Ag’,g = Cg,s + C(éjrlcfs’

(+) [’
ch =y éz()m@z (sg')T, (A.5)

=1 '

)\f/ is the jth symplectic eigenvalue associated with the symplectic matrix S in parameter ¢’ = {¢, 0 + (}.
Subsequently, we claim that the infimum in equation (A.3) occurs at s = 1/2 and support it with
numerical justifications and perturbation theory. Figure A1 shows the plot of equation (A.4) in quantum
case with 2 = 0 as a function of s (i.e. Pgs). In figure A1(a), we fix k while changing Ng; in figure A1(b), Ny is
fixed while x changes. Obviously, in these parameter settings, all minimal values, consistently, occur at the
choices of s = 1/2. To be more strict on justifying s = 1/2, we employ the perturbation theory, introduced by
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Figure Al. PUQ’S versus s with wo /27w = 100 GHz, Aw/27 =1 MHz,d=20m, N‘;” =32,¢=0rad and ¢ = 7/3. (a) Blue,
red and black curves stand for different choices of k and Ty as {x, T} = {5 x1071,8 s}, {5 x 1073,0.8 ms} and

{5 x 1074,8 ms} with Ng = 0.1. (b) Cyan, magenta and gray curves stand for different choices of N5 and T, as {Ns, Ty} =
{2,0.32 us}, {0.63,10 us} and {0.2,3.2 us} with K =0.5.

[35], on our angle-resolving radar model with the approximation Ng, x < 1 and N3° > 1, and easily
conclude that infinimum does occur at s = 1/2 by the Theorem 4 of [35], considering that p;, and py, are
‘close’ to each other.

Therefore, we can calculate equation (A.3) in both cases as P (¢; ¢+ ) < exp [—kS (Q)@fg c/2N"1/2
and P (¢3¢ + () < exp [—ZHS(Q)@g’C/N‘g"]/Z under the approximation of N, k < 1 and N3° > 1, where
92,4 was defined in equation (24), yielding the QCBs in equation (31).

Appendix B. Mode sorter

In this section, we apply mode sorter on the proposed radar and study the potential improvement. Instead of
dual-receiver, let us underpin the scheme of single-receiver, shown in figure B1, to simplify the calculation,
and we anticipate that mode sorter brings the same or, at least, similar improvement in single- and
dual-receiver schemes.

In a single receiver scenario, we set the target at the angle ¢, same as in dual-receiver radar, but set the
compensation angle to be zero ¢, = 0 (i.e. the face of radar is vertically directed, shown in figure B1) and
consider a soft-aperture located at the focal plane of the paraboloid antenna in figure B2(a). The received
pulse is collected by the paraboloid antenna as an elliptical Gaussian beam w (t;x,y) = s(t) € (x, y), where

cos ¢ p{ x2 ¥ (B.1)

£ = -z 7
(x.7) 27 12 42 4r2/cost ¢ |’

whose overall phase is set zero, r is the half length of the minor axis of ellipse (i.e. cross section of
paraboloid), and the field has the spectrum W (Q;x,y) = S(Q2) e (x, ), where s () and S(2) were denoted in
equations (9) and (10). The asymmetricity of the two axes comes from the angle deviation ¢ between the
incident plane and the imaging plane, yielding the y-axis, shown in figure B2(a), being elongated whereas
x-axis being the same.
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Figure B1. The scheme of single-receiver radar.

Figure B2. Scheme of single-receiver. (a) Trajectory of receiving signal. (b) The schematics of k-series mode sorter.

Hermite Gaussian (HG) mode is treated as a discriminator to sort the spatial mode of the field on the
imaging plane [36, 37], shown in figure B2(a). The proposed HG mode has the eigenfunction

i 19) = PO e [ 247, 52

indexed by non-negative integers 1, m € Ny, where 8 = v/2 (1+4Dy) /e /6, D= (27 AscL/wo)” is the
Fresnel number, A5 = 6% /4 is the aperture area (i.e. 4 is its diameter), v = (1 +iwy /L) /2~ 1/2, and
H, () denotes the nth order Hermite polynomial.

The received signal can be regarded as a far field if Dy < 1 and is decomposed by k HG modes and an
additional mode that covers the residual higher order ones. The field distribution projected on the imaging
plane depends on the parameter ¢, as demonstrated in the inset of figure B2(a).

To begin our analyses, we evaluate the overlap of a Gaussian function with each basis 1, ,, (x,y) at the
image plane, leading to the associate occupation probability

Pftm E{(Zn— D" 2m— l)!!} " : 4y cos¢ (1 —X>2n (cos%b—x)zm, (B3)

21+ mplm) 1+ x)(cos?dp+x) \1+x cos? ¢+ x

where x = 23%#? and this decomposition applies to our Gaussian beam imaging system [36]. For smooth
communication, we relabel the indices of probability at each mode as {7314’ ,Pf ,Pf ,Pf ,731_35 ,Pgb e ,73,? ,

1— E};l P]¢} = {pgio,pﬁo,pgil ,pio,p(ﬁl,p&, .. } and plot the lowest three order modes in figure B3. This
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Figure B3. Occupation probability of 19,0, %o,1 and 1 ¢ in different combinations of § /r. L =10 km and wy /27 = 100 GHz.

mathematical decomposition process can be visualized by passing the incident Gaussian beam through a
k-series beamsplitters, shown in figure B2(b). The jth mode (i.e. 1 < j < k) beamsplitter has the matrix form

n? J1=n?
Bf: " ) ®1L, (B.4)

where

. [P j=1 (B.35)
nd = 47 o 5
PP (-2, 2<i<k

These k beamsplitters entangle the k vacuaum modes V at the input and result in k + 1 output modes.

In the following, we apply the mode sorter on the analysis of classical radar and quantum radar. For
simplicity, we consider the mode sorter approach that involves only one beamsplitter, k = 1 and set § /r = 2
(x = 1) such that the fundamental mode (1) o) dominates all other HG modes when the concerning angle is
small ¢ < 1, shown in figure B3.

B.1. Classical radar

In classical single-receiver scheme, the global state, at the angle ¢, has the CM Vo = P, | (2N3° + 1)1, and
quadrature mean <§(>‘£ =@, B?(f()?g, where (f()gg’" = /28 () K0 (cOsE,sin E, 0, 0)" is the
quadrature at frequency wy + €2, (i.e. 2y, is the mth discretized frequency modes) in the basis of

(ds,ps, a5 . p3) " where = € (0,27] is the overall phase of the return signal, {gs, ps} and {45 ,p5 } are the
quadrature pairs of signal, projected on 1/ ¢ (i.e. occupation probability be ), and the residual HG modes
¥t (i.e. occupation probability 1 — P? ). Akin to calculating CRB and ZZB of dual-receiver radar in the main
text, under the approximations Ns, x < 1 and N3°, T; > 1, we asymptotically and analytically derive the
CCRB (red dotted line in figure B4),

-1

2
) SNR | ., cos® ¢ dp¢
R P () \ @ | (5:6)

Similarly, the QCB for distinguishing the hypotheses in equation (28) can be obtained as P(CQCB) (x+ () <

exp [— (SNR) 'y ¢ /4] /2, where

Iy ¢~ cosx + cos (x4 () — 24/ cos (x) cos (x + () (\/PfPerC + \/(1 —-Py) (1 PerC)) . (B.7)

rior knowledge in [¢p — A¢p/2, ¢ + A¢p /2], CZZB is numerically derived by plugging the upper bound of
(QCB)
Pe

into equation (30) with the approximation A¢ < 1 and is plotted as the red solid curve in figure B4.
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Figure B4. The ZZBs and CRBs of quantum and classical cases in single-receiver scenario. A¢ = /100, x = 1 and

¢ =7/2—Ag¢/2.

In equation (B.6), note that the size of the receiver antenna comes in via the transmissivity « in the SNR
(see equation (36)). The area of aperture A at the focal plane needs to match the antenna’s cross section area
A, in a way to receive all the beams that is reflected from the surface of paraboloid antenna, so that no
additional loss occurs to degrade the SNR.

B.2. Quantum radar
In a quantum single-receiver scheme, the collected microwave field is from the signal mode of a TMSV state.
After HG mode decomposition, the CM of global state at angle x” = {x,x+ (} is

AL, CYRe 0 .
Vo= (L@B) (CoRe B2L 0, | (L@BY) (B.8)
0, 0, BYL
in quadrature basis (g1, 1,qs, Ps, 43, P3 )» where {qy, p;} denotes the quadrature pair of idler mode,
B = 2N5* 4 2k oS (Q) + 1, C& = 2, /s 6C (), 02 denotes the 2 X 2 zero matrix. The QCRB (blue
dotted line in figure B4) is asymptotically and analytically derived as,

—1

2

SNR cos’ ¢ dpy

Sddors = § —— 4 sin® ¢+ ( - ) (B.9)
cos ¢ e (1 _ pf) do

and QCB, for distinguishing H; and , in equation (28), P((QQCB) (x50 4 ¢) < exp [— (SNR) T’ ¢]/2 under the
approximation Ng, s < 1 and N3° > 1. With uniform prior knowledge in [¢ — A¢/2,¢ + A¢/2], QZZBs
can be numerically calculated with or without the approximation A¢ < 1 by equation (30), which are
plotted as the blue solid and green dashed curves in figure B4. Same conclusion as dual-receiver, the
concurrence of two curves justifies the formula of equation (30) and they both coincide with the QCRB in
high SNR regime. In figure B4, we plot ZZBs in both classical and quantum scenarios by fixing the
uncertainty tolerance A¢ = 7/100 and setting ¢ = 7/2 — A¢/2. The choice of ¢ = 7/2 — A¢/2 has the
maximal distinguishability between 7{; and 7, because the occupation probability in HG fundamental
mode varies dramatically as target angle approaches /2. However, in figure B4, despite the optimal choice
of ¢, the noticeable reduction of ¢* /3¢ can only be observed when SNR goes to very high (e.g. >30 dB);
conversely, the dual-receiver radar mode sorter has significant reduction outcome even at low SNR regime
(e.g. ~1dB).

ORCID iD
Bo-Han Wu ® https://orcid.org/0000-0003-1475-1262

References

[1] Van Trees H L 2001 Detection, Estimation and Modulation Theory, Part I: Detection, Estimation and Linear Modulation Theory (New
York: Wiley)

[2] Van Trees H L 2001 Detection, Estimation and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian Signals in
Noise (New York: Wiley)

[3] Mallinckrodt A and Sollenberger T 1954 Optimum pulse-time determination IRE Trans. Inf. Theory 3 151

13


https://orcid.org/0000-0003-1475-1262
https://orcid.org/0000-0003-1475-1262
https://doi.org/10.1109/IREPGIT.1954.6373409
https://doi.org/10.1109/IREPGIT.1954.6373409

10P Publishing Quantum Sci. Technol. 8 (2023) 035016 B-H Wu et al

4] Skolnik M I 1960 Theoretical accuracy of radar measurements IRE Trans. Aeronaut. Navig. Electron. ANE-7 123

5] Skolnik M I 2002 Introduction to Radar Systems 3rd edn (New York: McGraw-Hill)

6] Skolnik M 12008 Radar Handbook ed (New York: McGraw Hill)

7] Marcum J 1960 A statistical theory of target detection by pulsed radar IRE Trans. Inf. Theory 6 59

8] Giovannetti V, Lloyd S and Maccone L 2001 Quantum enhanced positioning and clock synchronization Nature 412 417

9] Giovannetti V, Lloyd S and Maccone L 2004 Quantum enhanced measurements: beating the standard quantum limit Science

306 1330

10] Shapiro J H 2007 Quantum pulse compression laser radar Proc. SPIE 6603 660306

11] Maccone L and Ren C 2020 Quantum radar Phys. Rev. Lett. 124 200503

12] Lanzagorta M 2012 Quantum Radar Synthesis Lectures on Quantum Computing (San Rafael, CA: Morgan, Claypool)

13] Torromé R G, Bekhti-Winkel N B and Knott P 2020 Introduction to quantum radar (arXiv:2006.14238)

14] Shapiro J H 2020 The quantum illumination story IEEE Trans. Aerosp. Electron. Syst. 35 8-20

15] Tan S-H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro ] H 2008 Quantum illumination with
Gaussian states Phys. Rev. Lett. 101 253601

[16] Zhuang Q, Zhang Z and Shapiro ] H 2017 Optimum mixed state discrimination for noisy entanglement-enhanced sensing Phys.
Rev. Lett. 118 040801

17] Lloyd S 2008 Enhanced sensitivity of photodetection via quantum illumination Science 321 1463

18] Zhuang Q and Shapiro J H 2022 Ultimate accuracy limit of quantum pulse-compression ranging Phys. Rev. Lett. 128 010501

19] Zhuang Q 2021 Quantum ranging with Gaussian entanglement Phys. Rev. Lett. 126 240501

20] Tsang M 2012 Ziv-Zakai error bounds for quantum parameter estimation Phys. Rev. Lett. 108 230401

21] Ebrahimi M S, Zippilli S and Vitali D 2022 Feedback-enabled microwave quantum illumination Quantum Sci. Technol. 7 035003

22] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro ] H and Pirandola S 2015 Microwave quantum illumination Phys. Rev. Lett.
114 080503

[23] Sanders-Reed J N and Fenley S J 2018 Visibility in degraded visual environments (DVE) Proc. SPIE 10642 1064205

[24] Caris M, Johannes W, Sieger S, Port V and Stanko S 2017 Detection of small UAS with W-band radar Proc. 18th Int. Radar Symp.
(New York: IEEE) pp 1-6

[25] Zhuang Q and Shapiro ] H 2022 Supplemental material for ultimate accuracy limit of quantum pulse-compression ranging Phys.
Rev. Lett. 128 010501

[26] Van Trees H L and Bell K L 2007 Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking (Piscataway, NJ: Wiley)

[27] Ziv ] and Zakai M 1969 Some lower bounds on signal parameter estimation IEEE Trans. Inf. Theor. 15 386

[28] Seidman L P 1970 Performance limitations and error calculations for parameter estimation Proc. IEEE 58 644

[29] Chazan D, Zakai M and Ziv ] 1975 Improved lower bounds on signal parameter estimation IEEE Trans. Inf. Theor. 21 90

[30] Bellini S and Tartara G 1974 Bounds on error in signal parameter estimation IEEE Trans. Commun. 22 340

[31] Weinstein E 1988 Relations between Belini-Tartara, Chazan-Zakai-Ziv and Wax-Ziv lower bounds IEEE Trans. Inf. Theor. 34 342

(

[

(

(

[

(
(
[
(
(
[

(
[
(
(
[
(

(
[
(
(
[
(

32] Banchi L, Braunstein S L and Pirandola S 2015 Quantum fidelity for arbitrary Gaussian states Phys. Rev. Lett. 115 260501

33] Pirandola S and Lloyd S 2008 Computable bounds for the discrimination of Gaussian states Phys. Rev. A 78 012331

34] Pereira J L, Banchi L and Pirandola S 2021 Symplectic decomposition from submatrix determinants Proc. R. Soc. A 477 20210513

35] Grace M R and Guha S 2021 Perturbation theory for quantum information (arXiv:2106.05533)

36] Tsang M, Nair R and Lu X-M 2016 Quantum theory of superresolution for two incoherent optical point sources Phys. Rev. X
6031033

[37] Shapiro J, Guha S and Erkmen B 2005 Ultimate channel capacity of free-space optical communications J. Opt. Netw. 4 501

14


https://doi.org/10.1109/TANE3.1960.4201757
https://doi.org/10.1109/TANE3.1960.4201757
https://doi.org/10.1109/TIT.1960.1057560
https://doi.org/10.1109/TIT.1960.1057560
https://doi.org/10.1038/35086525
https://doi.org/10.1038/35086525
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1117/12.725025
https://doi.org/10.1117/12.725025
https://doi.org/10.1103/PhysRevLett.124.200503
https://doi.org/10.1103/PhysRevLett.124.200503
https://arxiv.org/abs/2006.14238
https://doi.org/10.1109/MAES.2019.2957870
https://doi.org/10.1109/MAES.2019.2957870
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.118.040801
https://doi.org/10.1103/PhysRevLett.118.040801
https://doi.org/10.1126/science.1160627
https://doi.org/10.1126/science.1160627
https://doi.org/10.1103/PhysRevLett.128.010501
https://doi.org/10.1103/PhysRevLett.128.010501
https://doi.org/10.1103/PhysRevLett.126.240501
https://doi.org/10.1103/PhysRevLett.126.240501
https://doi.org/10.1103/PhysRevLett.108.230401
https://doi.org/10.1103/PhysRevLett.108.230401
https://doi.org/10.1088/2058-9565/ac65ae
https://doi.org/10.1088/2058-9565/ac65ae
https://doi.org/10.1103/PhysRevLett.114.080503
https://doi.org/10.1103/PhysRevLett.114.080503
https://doi.org/10.1117/12.2305008
https://doi.org/10.1117/12.2305008
https://doi.org/10.1103/PhysRevLett.128.010501
https://doi.org/10.1103/PhysRevLett.128.010501
https://doi.org/10.1109/TIT.1969.1054301
https://doi.org/10.1109/TIT.1969.1054301
https://doi.org/10.1109/PROC.1970.7720
https://doi.org/10.1109/PROC.1970.7720
https://doi.org/10.1109/TIT.1975.1055325
https://doi.org/10.1109/TIT.1975.1055325
https://doi.org/10.1109/TCOM.1974.1092192
https://doi.org/10.1109/TCOM.1974.1092192
https://doi.org/10.1109/18.2648
https://doi.org/10.1109/18.2648
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevA.78.012331
https://doi.org/10.1103/PhysRevA.78.012331
https://doi.org/10.1098/rspa.2021.0513
https://doi.org/10.1098/rspa.2021.0513
https://arxiv.org/abs/2106.05533
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1364/JON.4.000501
https://doi.org/10.1364/JON.4.000501

	Entanglement-assisted multi-aperture pulse-compression radar for angle resolving detection
	1. Introduction
	2. Radar angle estimation
	2.1. Classical radar
	2.2. Quantum radar
	2.3. Variance bound of estimator
	2.3.1. CRB
	2.3.2. ZZB

	2.4. Quantum advantage versus pulse duration and range

	3. Conclusion and discussion
	Appendix A. Quantum Chernoff bound
	Appendix B. Mode sorter
	B.1.  Classical radar
	B.2.  Quantum radar

	References


