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Bosonic encoding of quantum information
into harmonic oscillators is a hardware effi-
cient approach to battle noise. In this regard,
oscillator-to-oscillator codes not only provide
an additional opportunity in bosonic encod-
ing, but also extend the applicability of er-
ror correction to continuous-variable states
ubiquitous in quantum sensing and commu-
nication. In this work, we derive the op-
timal oscillator-to-oscillator codes among the
general family of Gottesman-Kitaev-Preskill
(GKP)-stablizer codes for homogeneous noise.
We prove that an arbitrary GKP-stabilizer
code can be reduced to a generalized GKP
two-mode-squeezing (TMS) code. The optimal
encoding to minimize the geometric mean er-
ror can be constructed from GKP-TMS codes
with an optimized GKP lattice and TMS gains.
For single-mode data and ancilla, this opti-
mal code design problem can be efficiently
solved, and we further provide numerical evi-
dence that a hexagonal GKP lattice is optimal
and strictly better than the previously adopted
square lattice. For the multimode case, general
GKP lattice optimization is challenging. In
the two-mode data and ancilla case, we identify
the D4 lattice—a 4-dimensional dense-packing
lattice—to be superior to a product of lower di-
mensional lattices. As a by-product, the code
reduction allows us to prove a universal no-
threshold-theorem for arbitrary oscillators-to-
oscillators codes based on Gaussian encoding,
even when the ancilla are not GKP states.

1 Introduction
The power of quantum information processing

comes from delicate quantum effects such as coher-
ence, squeezing and entanglement. As noise is ubiqui-
tous, maintaining such power relies on quantum error
correction. Since the early works [1, 2], various codes
and the corresponding error correction systems have
been proposed, mostly focusing on discrete-variable
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physical realizations. The Gottesman-Kitaev-Preskill
(GKP) code [3] provides an alternative approach to
utilize the bosonic degree of freedom of an oscillator
to encode a qubit. Such a qubit-to-oscillator encoding
is hardware efficient, as the entire degree of freedom
of a (cavity) mode is utilized and at the same time,
microwave cavities have a long lifetime [4]. By this
approach, the lifetime of a logical qubit has been ex-
tended beyond the error correction ‘break-even’ point
for cat codes [5] and more recently for GKP codes [6].

The concatenation of bosonic codes and qubit codes
has also shown great promise [7], with applications
in quantum repeaters [8] and quantum computer ar-
chitecture [9]. It then becomes a natural question
whether an oscillator can be encoded into multiple
oscillators to gain additional advantage in protect-
ing logical data. Noh, Girvin and Jiang provide
an affirmative answer by designing a GKP-stabilizer
code [10, 11] to protect an oscillator by entangling
it with an additional GKP ancilla. Despite that
these oscillator-to-oscillator codes alone do not have
a threshold theorem due to their analog nature and
finite squeezing [12], an oscillator-to-oscillator encod-
ing at the bottom-layer can substantially suppress the
error in a multi-level qubit encoding [13]. Moreover,
the GKP-stabilizer code can be utilized in general to
protect an oscillator in an arbitrary quantum state,
including a squeezed vacuum state and continuous-
variable multi-partite entangled states that are widely
applicable to quantum sensing [14, 15] and communi-
cation [16].

To maximally benefit from the oscillator-to-
oscillator encoding for various tasks mentioned above,
it is important to find the optimal GKP-stabilizer
code design. In this paper, we make progress to-
wards this endeavour for the commonly considered
homogeneous noise case [11]. We prove that an arbi-
trary GKP-stabilizer code can be reduced to a gener-
alized GKP two-mode-squeezing (TMS) code. There-
fore, GKP-TMS codes with optimized GKP ancilla
and gains can achieve the minimum geometric mean
error. For decoding, we derive the minimum mean
square error (MMSE) estimator, which is superior to
the linear estimator [11] in terms of minimizing the
residue noise on the data modes. While linear esti-
mation leads to a break-even point (the point above
which noise can no longer be reduced by error correc-
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tion) of additive noise at σ⋆
lin ∼ 0.558, the MMSE es-

timation pushes it to σ⋆
MMSE = 0.605(5), which is just

at the edge of the best break-even region for arbitrary
GKP codes [0.607, 0.701] derived from our quantum
capacity analyses.

For single-mode data and ancilla, we further show
that the optimal code design problem of minimizing
the geometric mean error can be efficiently solved and
provide numerical evidence that a hexagonal GKP
lattice is optimal and strictly better than the pre-
viously adopted square lattice. For the multimode
case, solving the optimal lattice is more challenging.
For two-mode data and ancilla, we identify the D4 lat-
tice [17, 18]—a 4-dimensional dense-packing lattice—
to be superior to direct products of 2-dimensional lat-
tices. For a single data mode with two ancilla modes,
we compare a few examples of lattices and find the
performance to be dependent on the noise levels. Our
results indicate that high-dimensional lattices have
the potential of outperforming low-dimensional ones
for GKP-stablizer codes.

Besides the results on the optimal code design, the
code reduction also allows us to prove a more general
version of the no-threshold-theorem of Ref. [12], where
the original proof relies on explicit maximum likeli-
hood error decoder based on GKP-type syndrome in-
formation. Our proof is based on a simple, classical
information-theoretical argument; moreover, our no-
threshold-theorem applies to all GKP-stabilizer codes,
and more generally, even when the GKP ancilla are
replaced by general non-Gaussian states.

This paper is organized as the following. Section 2
introduces the general GKP-stabilizer code for encod-
ing an oscillator into many oscillators. Our main the-
orem of code reduction and optimality is presented in
Section 3, which then leads to the no-threshold theo-
rem in Section 4. Section 5 introduces general GKP
lattices and the MMSE estimation. The final part of
the paper addresses code optimization and compar-
ison, with single-mode case in Section 6 and multi-
mode case in Section 7. We end the paper with dis-
cussions on the heterogeneous case in Section 8 and
the imperfect GKP states in Section 9.

2 General GKP-stabilizer code
As shown in Fig. 1 (a), a general GKP-stabilizer

code operates as follows. An arbitrary N -mode data
system in quantum state Ψ is encoded into K =
M + N modes by applying a Gaussian unitary to
entangle the data system with an M -mode ancilla
system in a non-Gaussian state L. In general, non-
Gaussian states are required, due to the no-go the-
orem of Gaussian error correction [19]. Typically,
we are interested in (canonical) GKP lattice states,
hence L for lattice. The Gaussian unitary USenc can
be described by the symplectic transform Senc (see
Appendix B for a brief introduction of Gaussian uni-
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(Theorem 2)

≡ TMS⊗(L′)

Figure 1: Illustration of GKP-stabilizer code reduction (here,
M = N). (a) A general GKP-stabilizer code with encoding
Senc and an ancillary GKP lattice L. The syndromes s are
extracted from stabilizer measurements on the ancillary lat-
tice L and inform the corrective displacements on the data
Df(s). (b) Reduction of the GKP stabilizer code to a set of
TMS operations between the data and ancilla modes, up to
local symplectic transformations Λd and Λa. (c) Coherent
data processing via Λd does not change the performance of
the code. Acting on the initial ancillary lattice L by a sym-
plectic transformation Λa produces another lattice L′. Thus,
a general GKP-stabilizer code reduces to a direct product of
TMS codes with a GKP ancillary lattice L′, TMS⊗(L′).

taries). We denote the corresponding unitary channel
as USenc .

At this juncture, we want to emphasize that the
GKP lattice states appearing in this paper are canon-
ical lattice states as opposed to computational lat-
tice states. Computational lattice states allow one to
encode a qubit (or qudit) into an oscillator per the
original GKP approach [3]. Canonical lattices have
larger spacing than their computational counterparts
and, consequently, cannot support digital informa-
tion. However, canonical lattices can be quite useful
in multimode codes and, particularly, for oscillators-
to-oscillators codes, as demonstrated in Refs [11, 20].
Therefore, when considering GKP states in this pa-
per, we refer solely to canonical lattices. We describe
the mathematical and technical details of canonical
lattice states in Section 5.

As explained in the original GKP paper [3], a nat-
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ural noise model for bosonic systems is random dis-
placements. In practice, such noise arises from am-
plifying a lossy signal, leading to additive Gaussian
noise (AGN)—i.e. the random displacements have a
Gaussian distribution. As general correlated Gaus-
sian noises can be reduced to independent noises [20],
it suffices to consider a product of single-mode AGNs.
Formally, we denote the single-mode AGN channel as
Nσ, where σ2 is the variance of the displacement noise
on a single mode.

On the decoding side, an inverse Gaussian unitary
described by S−1

enc is first applied to disentangle the
data and the ancilla. Then one measures the ancilla
system to perform error correcting displacement op-
erations Df(s) based on the measurement results (or
syndromes) s 1. Here, f is a vector function (i.e.,
f : R2M → R2N ) that takes the syndromes s as input
and provides an estimate for the error displacements
on the data. The corrective displacements aim to can-
cel the additive noise on the data. Due to the analog
nature of the errors, such a cancellation is never per-
fect, and there will be residual, random displacements
ξd on the output data modes.

To quantify the error correction performance, we
evaluate the covariance matrix Vout of the residue
displacements ξd, despite the distribution of ξd be-
ing non-Gaussian after decoding. Note that, prior to
encoding, one may also apply a Gaussian unitary USd

and then apply the inverse U−1
Sd

after the final de-
coding step. Pre- and post-processing transform the
residue noise covariance matrix as S−1

d VoutS
−⊤
d . Such

an operation is considered ‘free’ and should not im-
prove the performance of the error correction. There-
fore, we consider the geometric mean (GM) error

σ̄2
GM ≡ 2N

√
detVout, (1)

as the figure of merit to benchmark code performance,
which is necessarily invariant under symplectic op-
erations on the data. Moreover, the GM error has
information theoretic roots, as it relates to a lower
bound on the quantum capacity for the additive non-
Gaussian noise channel of a multimode GKP code.
Given the geometric mean error of general additive
noise σ̄2

GM, the quantum capacity of the N -mode addi-
tive noise channel CQ ≥ max

[
0, N log2

(
1

eσ̄2
GM

)]
(see

Lemma 14 of Appendix H).
As an alternative simpler metric, we also consider

the root-mean-square (RMS) error,

σ̄2
RMS ≡ Tr{Vout}

2N
. (2)

The RMS error is only invariant under orthogonal
symplectic (e.g., linear optical) transformations on

1Note that the measurement and displacements can be
equivalently pushed before the inverse unitary, as shown in
Ref. [13].

the data. However, it is easier to evaluate and pro-
vides an upper bound for the GM error, σ̄2

RMS ≥ σ̄2
GM.

Before moving to our main results, we specify a few
code examples. In Ref. [11], two codes are proposed
based on the canonical GKP square lattice, the GKP-
TMS code described by the TMS symplectic matrix

SG =
( √

GI
√

G − 1Z√
G − 1Z

√
GI

)
, (3)

with the gain G tunable, and the GKP-squeezed-
repetition code (also see Ref. [14]), which has the fol-
lowing encoding matrix for N = 2 modes,

S
[2]
Sq−Rep ≡


1/λ 0 0 0
0 λ 0 −λ
λ 0 λ 0
0 0 0 1/λ

 , (4)

with λ being a tunable parameter.

3 General reduction of encoding
We focus on the homogeneous noise model, where

the displacement error on all modes are independent
and identically distributed (iid), where the overall K-
mode noise channel

⊗K
i=1 Nσ.

Towards proving the optimal code design, we begin
with the following lemma to simplify a general code.

Lemma 1. For an iid AGN channel
⊗K

i=1 Nσ and up
to local Gaussian unitaries acting on all data or all
ancilla modes, a GKP-stabilizer code with any sym-
plectic encoding matrix Senc reduces to a direct prod-
uct of N TMS operations (between the N data modes
and N ancilla modes) together with an identity oper-
ation on the remaining M − N ancilla modes—i.e.,
Senc →

⊕N
i=1 SGi

⊕ I2(M−N).

In other words, we can decompose a general GKP-
stabilizer code into TMS operations and local sym-
plectic operations; see Fig. 1 (a-b) for a visual aid of
the lemma for the M = N case. The local Gaus-
sian unitary UΛd

and its inverse are applied on the
data modes, while the local Gaussian unitary UΛa

and
its inverse are applied on the ancilla modes. Conse-
quently, the encoding and decoding can be taken as
simple product of TMS operations. The proof of this
result is based on Gaussian channel synthesis and the
modewise entanglement theorem [21] (Theorem 7 and
Theorem 8 of Appendix B, respectively), which we
present in Appendix F in full detail.

The above lemma reduces the number of parame-
ters in code description from 2(M +N)2 to 2M2+2N2

in the leading order. In fact, as we will explain
later, coherent data processing (via Λd) only reshapes
the residual noise; it does not aid in error correc-
tion. Hence a further reduction to 2M2 is permis-
sible. Moreover, the generally multimode entangling
operations between data and ancilla are now given by
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standard TMS operations with N to-be-determined
gain parameters Gi.

We now consider the GM error as a performance
metric and arrive at the following main result of the
work (see Fig. 1 (c)).

Theorem 2 (Sufficiency of TMS⊗(L)). For an iid
AGN channel, in terms of the geometric mean error
on the data modes, the most general GKP-stabilizer
code can be completely reduced to a direct product of
TMS codes with a general (potentially multimode) an-
cillary lattice state L, defined as TMS⊗(L).

Proof. Theorem 2 is a consequence of Lemma 1, to-
gether with the fact that (1) a local symplectic trans-
formation Λa on the initial ancillary lattice L defines a
new (symplectically integral) lattice L′ (see, e.g., Ap-
pendix C) and (2) coherent pre- and post-processing
of the data modes do not increase code performance.
To show (2), using the geometric mean σ̄2

GM as a per-
formance metric, first observe that we can push data
noise processing via Λ−1

d after the corrective displace-
ment Df by simply redefining our error estimator
f ′ ≡ Λdf , i.e., Df ◦ UΛ−1

d
= UΛ−1

d
◦ DΛdf . Just after

corrective displacements (but prior to data process-
ing), the residual error covariance matrix on the data
modes is Vout and transforms to V ′

out = Λ−1
d VoutΛ

−⊤
d

after data processing. However, the geometric mean is
invariant under symplectic transformations; in other
words, detV ′

out = detVout. Thus, the performance of
the code (as quantified by the geometric mean error)
only depends on the gain parameters of the TMS op-
erations, the ancillary lattice state, and the error es-
timator for corrective displacements—not on Λd. ■

Theorem 2 reduces code design to choosing N gain
parameters for the TMS operations and finding a
good ancillary lattice L for best code performance.
[We approach this problem numerically in later sec-
tions.] Therefore, the following corollary directly fol-
lows from Theorem 2 as an observation.

Corollary 2.1 (Optimality of TMS⊗(L)). The op-
timal GKP-stabilizer code with N data modes can be
constructed from a GKP-TMS code TMS⊗(L) with an
optimized (potentially multimode) GKP lattice L and
optimized TMS gain parameters {Gi}N

i=1.

As a side note, in deriving Lemma 1 and Theo-
rem 2, observe that we do not explicitly utilize prop-
erties of the ancilla state L. This indicates that our
results hold for any Gaussian encoding with general
non-Gaussian ancilla, not only for the GKP-stabilizer
codes. In particular, one can likewise consider a gen-
eral M -mode non-Gaussian resource state L and a
family of such states F (L) that are related to L
via Gaussian transformations, i.e. F (L) ≡ {L′ =
UΛa

(L)|Λa ∈ Sp(2M,R)}, where Sp(2M,R) is the set
of 2M × 2M real symplectic matrices. Such a class of
codes represent a fairly general encoding of oscillators-
to-oscillators, especially considering that Gaussian
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Figure 2: Circuit diagrams for concatenated codes. (a) Gen-
eral definition of a concatenated code. Data couples to an
ancilla via S(1). Adding more layers leads to further error
suppression. (b) Equivalent representation using TMS code
reduction. Most operations in a concatenated code can be
done offline on the ancillae and the ancillae can be coupled
to the data at the end via TMS. (c) Example of a three mode
concatenated squeezed repetition code (cf. Ref. [10]). (d)
Example of a three mode concatenated TMS code.

operations supplied with non-Gaussian GKP ancillae
are universal and sufficient for fault-tolerant quantum
computation [22].

3.1 Concatenated codes
In general, a concatenated code applies another

layer of encoding on the ancilla mode to suppress the
noise level on the ancilla modes, prior to utilizing the
ancilla modes to protect the data modes, as shown
in Fig. 2(a). Examples of concatenated codes are the
GKP-squeezed-repetition code detailed in Fig. 2(c),
where repeated sum-gate and single-mode squeezing is
applied in each layer of encoding, and the three-mode
TMS code shown in Fig. 2(d). The purpose of con-
catenation is to suppress the logical output variance to
higher powers of the input AGN σ, analogous to DV
qubit codes. In particular, for N concatenation lay-
ers, we expect that σout ∼ σN+1. Evidence of higher-
order error suppression has been shown for squeezed
repetition codes [10, 14] and TMS codes [20, 15].

We now make an interesting observation on Theo-
rem 2 as it pertains to concatenated codes. To pro-
tect N data modes with a concatenated code, Theo-
rem 2 states that we can prepare a multimode ancilla
(M > N) “offline” and then couple the N data modes
to the M ancilla modes with only N TMS gates. This
is shown schematically in Fig. 2(b) for N = 1 data
modes. In other words, most of the operations are
pushed to entangling ancilla modes (which generally
requires ∼ M2 elementary gates). As an example,
to protect a single data mode (N = 1) by a concate-
nated code that leverages M ancilla modes, the ancilla
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modes themselves need to interact by some M mode
Gaussian unitary, which can be done offline, but the
data only needs to couple to one of the ancilla modes
by a single TMS operation in the last step of encoding;
see Fig. 2(b) for an illustration.

3.2 Example of code reduction
We give a few example code reductions (conse-

quences of Lemma 1) by specifying the local symplec-
tic matrices Λd and Λa discussed in Lemma 1.

In the two-mode case, we reduce the GKP-
squeezed-repetition code, S

[2]
Sq−Rep of Eq. (4), to a

GKP-TMS code. The local symplectic transform Λd

is a single-mode squeezer Λd = diag( 4
√

2λ, 1/ 4
√

2λ)
and Λa = Λ−1

d . Applying Λa and Λd, we obtain
TMS with gain G = (

√
2 + 1)/2. Hence, the two-

mode squeezed repetition code is equivalent to a TMS
code of fixed gain G = (

√
2 + 1)/2 and an ancilla

rectangular GKP (with dimensions specified by the
squeezing parameter λ).

Consider one data mode and two ancilla modes. We
show that a downward staircase concatenation of the
TMS code (as sketched in Fig. 2(d)) [20] Sdwn

G1,G2
=

(I2 ⊕SG2)(SG1 ⊕I2) is equivalent to an upward stair-
case concatenation Sup

Ga,G12
= (SG12 ⊕ I2)(I2 ⊕ SGa

)
with to be determined gains Ga and G12

2. The data
mode is already in normal form, hence Λd = I2. The
local symplectic transform on the ancilla modes is
given by an inverse TMS transformation, Λa = S−1

Ga
,

with gain Ga = G2G1/(1 + G2(G1 − 1)). Applying
Λd and Λa then reduces the staircase encoding to
TMS between the first and second modes with gain
G12 = 1 + G2(G1 − 1).

As a final example, we reduce the three-mode
squeezed-repetition code introduced in Ref. [10] (see
sketch in Fig. 2(c)), which leads to cubic noise sup-
pression for the output standard deviation. The
squeezed-repetition code has encoding matrix

S
[3]
Sq−Rep =


1/λ2 0 0 0 0 0

0 λ2 0 −λ 0 0
1 0 λ 0 0 0
0 0 0 1/λ 0 −λ
λ2 0 λ3 0 λ 0
0 0 0 0 0 1/λ

 ; (5)

see Fig. 2(c) for a circuit diagram. By squeezing the
data mode via Λd = Sq(λ(λ2 + λ4) 1

4 ) and applying a
two-mode ancilla transformation Λa, which is lengthy
to show, we end up with TMS between the first and
the second mode with gain G12 = (

√
1/λ2 + 1+1)/2.

In our analyses of this section, we have considered
geometric mean as a performance metric. While such

2The phrase downward staircase refers to the fact that we
couple the first and second modes, then the second and third
modes etc., whereas an upward staircase starts from the bottom
mode and goes to the top.

a choice is motivated by information-theoretical roots
of the metric, some generalization of the results is
possible. First, while the sufficiency and optimality
of TMS⊗(L) in Theorem 2 and Lemma 1 are derived
with geometric mean of error as the metric, they hold
for any metric that is invariant under local symplectic
transformations. On the other hand, it is generally an
open question to what extend some of the results here
hold or approximately hold for non-Gaussian additive
noise channels.

4 Code reduction implies no threshold
for finite squeezing

We prove a no threshold theorem for finite squeez-
ing that applies to general oscillator-to-oscillator
codes based on Gaussian encoding. Interestingly, the
no threshold theorem is a direct consequence of our
general code reduction to TMS codes.

Consider iid AGN noise ξ = (ξd, ξa) for the
displacement errors on N data modes and M an-
cilla modes. After the encoding (and decoding)
transformations Senc (S−1

enc), the correlated noises
are (xd,xa) = S−1

encξ ∼ N (0,Vx), where Vx =
σ2S−1

encS
−⊤
enc . Since all encoding can be reduced to

TMS up to local transformations via Lemma 1, we
need only consider Vx as a direct sum of N cor-
related two-mode blocks (plus an identity block on
the remaining M − N ancilla modes), which has qq
and pp correlations between data and ancilla arising
from two-mode squeezing (but zero qp correlations).
Therefore, to analyze general properties of the code,
we can focus our attention on one data-ancilla mode
pair (say, the ith mode pair) and one quadrature (say,
the q quadrature) at a time; see Appendix I for further
details.

Let qai be the (2i − 1)th element of xa (where
i = 1, 2, . . . , N) that is correlated with qdi

of xd via
TMS with gain Gi, and let q̃di

≡ q̃di
(qai

) be the esti-
mation of the data noise given knowledge of the an-
cilla noise, which we can extract from, e.g., syndrome
measurements. Although perfect knowledge of the an-
cilla noise is not generally available, we assume that
it is in order to place an ultimate lower bound. Now
from the corollary of Theorem 8.6.6 in Ref. [23], the
estimation variance of a generic random variable X,
given side information Y , is lower bounded by a func-
tion of the conditional differential entropy S(X|Y )
via E[(X − X̃(Y ))2] ≥ exp [2S(X|Y )] /2πe. In our
current setting, S(qdi

|qai
) = ln

(
2πeσ2

2Gi−1

)
/2, which is

limited by the finite squeezing to correlate the noises
(see Appendix I for a derivation). We point out that
an equivalent relation holds for the momenta, pai and
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pdi . Therefore,

E
[(

qdi
− q̃di

)2
]

≥ σ2

2Gi − 1 . (6)

If the TMS has a finite squeezing level Gi, then hav-
ing a larger number of ancilla modes (or an arbitrary
ancilla state) will not further help error correction.
This implies a universal no-threshold theorem for a
wide variety of codes based on Gaussian encoding—
including but not limited to GKP-stabilizer codes.

Theorem 3 (No threshold for finite squeezing). For
N data modes and arbitrary number of ancilla modes,
the residual error for any oscillators-to-oscillators
code using Gaussian encoding is lower bounded by

Tr(Vout) ≥
N∑

i=1

2σ2

2Gi − 1 (7)

where Vout is the covariance matrix for the residual
output error of the code, Gi are the two-mode squeez-
ing gains of the encoding after code reduction [see
Lemma 1 and Theorem 2], and σ2 is the variance of
the iid AGN channels.
Proof. The proof follows by summing over the indi-
vidual variances (left hand side) of Eq. (6), which is
less than or equal to the trace of the residual output
covariance matrix, Vout. The factor of two is due to
the fact that the q and p quadratures of the ith mode
contribute equally to the sum due to the structure of
two-mode squeezing. ■

If we place a tolerance on the output error ε ≥
Tr(Vout), Theorem 3 implies that the (average) gain
G must scale as G ∼ Nσ2/ε for the error to stay be-
low tolerance, which is independent of the number of
ancilla modes M used in the code. Thus, we can-
not make ε arbitrarily small with a finite amount of
squeezing even if we increase the number of ancilla
modes; this is the essence of the no-threshold theo-
rem for oscillator-to-oscillator codes.

Our proof follows from the general code reduction
Theorem 2 (see also Lemma 1) and a simple, classical
data-processing argument. Furthermore, our result
has a broader scope than a similar no-threshold re-
sult of Ref. [12] based on GKP-stabilizer codes and
maximum-likelihood decoding, as we do not require
the ancilla modes to be prepared in GKP states and
the decoding strategy does not enter into our proof.
The only caveat here is the assumption of iid noise
across all modes (likewise in [12]).

5 General GKP lattices and minimum
mean square estimation

Before exploring code designs, we review general
GKP lattices and derive the minimum mean square
estimation (MMSE) that minimizes σ̄2

RMS in Eq. (2).

5.1 GKP lattices
Consider a set of vectors {λL

K}2N
k=1, where λL

K ∈
R2N , that generate a rigid phase-space lattice L ⊂
R2N . We define the ‘stabilizers’ (formed by displace-
ment operators) of the lattice as SL

K ≡ DλL
K

, such
that

[SL
K , SL

J ] = 0, ∀ K, J. (8)

The commutator relation is equivalent to the condi-
tion λL ⊤

K ΩλL
J = 2πnKJ , where Ω = IN ⊗

( 0 1
−1 0

)
is

the N -mode symplectic form and nKJ ∈ Z is an in-
teger (see Appendix B and Appendix C). A lattice L
with basis vectors {λL

K} which satisfy this condition
is known as a symplectically integral lattice [17]. By
virture of the commutator (8), the stabilizers form
a group SL ≡ ⟨SL

1 , . . . , SL
2N ⟩. We define the lattice

state |L⟩ as the +1 eigenstate of all elements in SL,
i.e. ‘SL |L⟩ = |L⟩’. This state is periodic in the 2N
dimensional phase space of the modes. See Fig. 3 for
an illustration of two-dimensional (symplectically in-
tegral) lattices.

From the lattice (column) vectors, one can con-
struct a 2N × 2N generator matrix,

M =
(
λL

1 λL
2 . . . λL

2N

)
. (9)

Then, the set of conditions λL ⊤
K ΩλL

J = 2πnKJ can
be compactly written as

M⊤ · Ω · M = 2πA, (10)

where A is an anti-symmetric matrix with only inte-
ger elements. We can generate the same lattice with
different choices of basis vectors. For instance, given
a generator matrix M that generates a lattice L, one
can choose a unimodular matrix N (i.e., integer ma-
trix with detN = 1) such that M ′ = MN also gen-
erates L.

We now make the distinction between computa-
tional GKP states and canonical GKP states precise.
In general, if we want to encode a qudit with d-levels
into a system of M oscillators, the encoded Hilbert
space stabilized by SL will be related to the genera-
tor matrix M via d =

√
detM/(2π)M [3, 17, 18].3

In this paper, we are focusing on the d = 1 case which
only supports a single code state. This is commonly
referred to as canonical GKP state [11] (hence the
moniker “canonical GKP lattice state” for generic lat-
tices) or the sensor state in the square lattice case [24].

5.2 Minimum mean square error (MMSE) es-
timation

Here we consider MMSE for corrective displace-
ments, which is constructed to minimize the RMS
error of Eq. (2) (as RMS error is the square root of

3The factor 1/(2π)M is due to our definition of the genera-
tor matrix M , which differs from convention in Refs. [3, 17, 18]
by a constant factor

√
2π.
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Figure 3: Illustration of two-dimensional lattices with basis
vectors denoted: (a) Square, (b) Rectangular, (c) Hexagonal.
Any two-dimensional symplectically integral lattice can be
generated from the square lattice by rotation and squeezing.

mean square error). The encoding symplectic trans-
form Senc correlates the additive noise between the
data and the ancilla. Let the covariance matrix of the
AGN be Vξ. The error correlations are described by

Vx = S−1
encVξS

−⊤
enc . (11)

The additive noise on the ancilla xa can be ex-
tracted by measuring the stabilizers SL

J . This leads
to an error syndrome s ∈ [−

√
π/2,

√
π/2]2M , from

which we can estimate the additive noise on the data
xd. For a general lattice with generator matrix M ,
we have s = R√

2π(M⊤Ωxa), where R√
2π is the

element-wise modulus of
√

2π that associates the vec-
tor M⊤Ωxa to the nearest lattice point within a re-
gion [−

√
π/2,

√
π/2]2M of that point [11]; see also

Appendix D.
The joint probability density distribution (PDF) of

the data and the error syndrome, P (xd, s), is not a
Gaussian distribution but a sum of Gaussian distribu-
tions. The MMSE minimizes σ̄2

RMS in Eq. (2), and the
estimator can be derived from the conditional distri-
bution P (xd|s) via fMMSE(s) =

´
R2N dxd xdP (xd|s)

leading to the following theorem (see Appendix G for
a derivation).

Theorem 4. For a GKP-stabilizer code with GKP
lattice state L described by generator matrix M , the
minimum mean square estimation (MMSE) for an er-
ror syndrome s is given by

fMMSE(s)

= −
∑

n V −1
d Vda(s − n

√
2π)e(

√
2πn⊤Vd|as−πn⊤Vd|an)∑

m e(
√

2πm⊤Vd|as−πm⊤Vd|am)
,

(12)

where m,n ∈ Z2M sum over all integer vectors, and
the matrices Vda, Vd and Va are defined through the
equation(
Vd Vda

V T
da Va

)−1
≡ (I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤).

(13)

and Vd|a = Va − V T
daV

−1
d Vda.

Figure 4: Output noise for a single-mode (N = M = 1)
GKP stabilizer code. Input noise variance is σ2 = 10−2. We
optimize the TMS gain G for each point (r, θ). (a) RMS error
σ̄2

RMS, (b) GM error σ̄2
GM. For the square lattice (green line),

σ̄2
RMS = 1.25129(5) × 10−3and σ̄2

GM = 1.25129(5) × 10−3.
The four hexagonal lattice points (red dots) have the same
output noises of σ̄2

RMS = 1.15575(5) × 10−3 for RMS error
and σ̄2

GM = 1.15575(5) ×10−3 for GM error. Only the range
θ ∈ [0, π/4] is considered due to symmetry; see Appendix E.

As an exmaple, we provide the explicit application
of Theorem 4 on GKP-TMS code in Appendix G.3.

Given the estimator fMMSE(s) above, the residual
noise covariance matrix for the data, Vout, can be eval-
uated. In Appendix G.4, we show that the PDF of
joint distribution P (xd, s) is invariant under a change
of lattice basis M → MN where N is a unimodular
matrix. It follows that the error correction perfor-
mance with MMSE is invariant under a change of lat-
tice basis as well.

If the noise level is much smaller than
√

2π, then
s = R√

2π(M⊤Ωxa) ≈ M⊤Ωxa. In this case, the
PDF is close to the Gaussian distribution. From
Eq. (12), keeping the leading terms n = 0 and m = 0
for numerator and denominator, the estimator is close
to linear estimation, fLinear(s) = −V −1

d Vdas. How-
ever, unlike MMSE, linear estimation is not invariant
under lattice basis transform. See Appendix G for
technical details.

Both the linear and MMSE estimators assume
knowledge of the covariance matrix of the Gaussian
noise. While matrix multiplication and inversion are
both required (only once) to derive the estimators, lin-
ear estimation involves no summations. On the con-
trary, MMSE estimation requires summation over two
integer vectors of length 2M . Fortunately, the conver-
gence of the summation is exponential, which makes
the evaluation possible, although the cost grows with
the number of modes.
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(θ, r)
(

π
4 , 4

√
3
)

(0.16π, 2.095) (0.11π, 3.021) (0.18π, 3.385)

N
(

1 0
0 1
) (−2 −1

1 0
) ( 2 −1

1 0
) ( 1 −2

1 −1
)

Table 1: Equivalent representations of a hexagonal lattice. N is a unimodular matrix that relates the lattice basis vectors.

6 Optimal single-mode code
Since all single-mode canonical lattice states can

be generated by local symplectic transformations on
the square grid (see Appendix C), Theorem 2 and
Corollary 2.1 immediately imply the following.

Theorem 5. For single-mode data and ancilla un-
dergoing iid AGN, the TMS code TMS(L), with gain
G and an ancillary lattice L ⊂ R2 generated from the
square grid by a local symplectic transformation, is
the optimal GKP-stabilizer code in terms of geomet-
ric mean error.

Therefore, to obtain the best two-mode GKP-
stablizer code, one simply needs to optimize the lo-
cal Gaussian unitary and TMS gain, alongside choos-
ing an optimal estimator f for the classical decoding
strategy. Deriving the best estimator f to minimize
the GM error is nontrivial. On the other hand, we
can obtain an upper bound on the GM error from
the RMS error since σ̄2

RMS ≥ σ̄2
GM. Suppose that one

can optimize the RMS error (which is possible with
MMSE of Theorem 4) while showing that the GM er-
ror is very close to σ̄2

RMS; then, this is an indication
that the code is optimal for GM error as well.

For the single-mode case, any ancillary lattice L
can be generated by applying a single-mode Gaussian
unitary UΛa

on the square GKP lattice (see Fig. 3 for
an illustration). The canonical square GKP lattice
can be written down in the q or p quadrature bases
as

|□⟩ ∝
∑
n∈Z

|q = nℓ⟩ =
∑
n∈Z

|p = nℓ⟩ , (14)

which is a translation invariant square lattice in the
single-mode phase space R2 with period ℓ =

√
2π.

Moreover, any single-mode Gaussian unitary can be
described by a symplectic transform, with the decom-
position R(ϕ)Sq(r)R(θ), where R(φ) is a 2 × 2 ro-
tation matrix and Sq(r) ≡ diag[r, 1/r] is single-mode
squeezing. Due to the symmetry of the AGN, the ef-
fect of the last phase rotation R(ϕ) applied on the
lattice will not change the performance, therefore we
parameterize the transform as Λa = Sq(r)R(θ) such
that |L⟩ = UΛa

|□⟩. As examples, a rectangular GKP
state (Fig. 3b) is given by θ = 0 and r > 0, and a
hexagonal GKP state (Fig. 3c) is given by θ = π/4
and r7 = 4

√
3.

In Fig. 4(a), we plot the contour of the RMS er-
ror σ̄2

RMS for an MMSE decoder optimized over the
TMS gain G for each point (r, θ). We find four equal

minimum points for σ̄2
RMS, which turn out to be equiv-

alent lattice representations of the hexagonal lattice
as listed in Table 1. Meanwhile, the square lattice
has r = 1 with θ arbitrary (represented by the green
line); the rectangular lattice has θ = 0 and r changes
the shape of the rectangle (represented by the blue
line). The square and rectangular lattices are strictly
sub-optimal.

In Fig. 4(b), we plot the GM error σ̄2
GM in (r, θ)

parameter space for the same optimized gain values
of Fig. 4(a). The two subplots are very similar, with
some deviations at the left-bottom corner due to the
large squeezing of a rectangular lattice which induces
asymmetry between q and p quadratures. The hexag-
onal lattices again minimize the output noise. More-
over, for the hexagonal lattices, σ̄2

GM ≈ σ̄2
RMS up to

our numerical precision, which is a strong indicator
that—even if we minimize the GM error instead—the
hexagonal lattice is still optimal.

7 Multimode codes
It turns out that all canonical (or “self-dual”) lat-

tices can be generated from canonical square GKP
(consequence of Corollary 1 in Ref. [18]). There-
fore, Theorem 5 can generalize to the multimode
case. However, optimization is still challenging since
|Sp(2M,R)| = 2M2 + M parameters need to be op-
timized in general. The search for an optimal GKP
lattice suggested by Theorem 2 and Corollary 2.1 is
therefore difficult. Nevertheless, as we will show in
this section with a few examples, going to higher-
dimensional lattices may indeed improve the perfor-
mance of oscillators-to-oscillators codes.

Below, we present our results on multi-mode codes.
We first give a lower bound on the output noise for
a general multimode GKP code, then discuss break-
even points. Finally, evaluate the performance of N =
M = 2 and N = 1, M = 2 multimode GKP stabilizer
codes for various lattice configurations (e.g., square,
hexagonal, and D4) and estimation strategies (e.g.,
linear estimation versus MMSE).

7.1 Lower bound and AGN break-even point
By information theoretic arguments (see Ap-

pendix H), we are able to find lower bounds for the
RMS and GM errors, σ̄RMS and σ̄GM, for a gen-
eral multimode GKP code, with M ancilla modes
and N data modes, in terms of the variances σ2

i of
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Figure 5: Lower bound σLB [Eq. (15)] on output noise ver-
sus initial noise σ for multimode GKP codes with increasing
M/N . A transition occurs at σ = 1/

√
2 ≈ .707, which pro-

vides an upper bound for the maximal, correctable amount
of AGN—i.e., σ⋆ ≤ 1/

√
2, where σ⋆ is the AGN error break-

even point for multimode GKP codes.

the AGN channels
⊗

i Nσi
(Theorem 16). In par-

ticular, for iid AGN, we show that (Corollary 16.1)
σ̄RMS ≥ σ̄GM ≥ σLB, where

σLB ≡ 1√
e

(
σ2

1 − σ2

)N+M
2N

. (15)

For single-layer codes (N = M), there is at best
quadratic error suppression, exactly similar to the
N = M = 1 GKP codes discussed in Ref. [11]. Higher
order error suppression can be obtained for codes with
M > N—with the output standard deviation scaling
as ∼ σ1+ M

N per Eq. (15)—in agreement with the re-
sults on concatenated codes (for N = 1 and M > 1)
found in Refs. [10, 11, 20, 15].

In Fig. 5, we plot the ratio σLB/σ versus the initial
AGN noise σ, for increasing M/N ; σLB/σ = 1 corre-
sponds to the break-even point. We observe a sharp
transition occurring near σ = 1/

√
2 which defines an

upper bound on the AGN error break-even point σ⋆

for general multimode GKP codes—i.e., σ⋆ ≤ 1/
√

2.
Thus, for σ ≳ 1/

√
2, we expect no gain to be had from

such codes. This is consistent with the upper bound
on the energy-unconstrained quantum capacity of an
AGN channel [25] (see also Ref. [20] and Lemma 15
of Appendix H) CQ(Nσ) ≤ max[0, log2( 1−σ2

σ2 )], which
vanishes as σ → 1/

√
2. Furthermore, since a bosonic

pure-loss channel with transmittance η ∈ [0, 1] can be
converted via pre-amplification to an AGN channel
with variance σ2 = 1 − η [25], the AGN break-even
point σ⋆ then corresponds to a pure-loss transmissiv-
ity η⋆ = 1 − σ⋆ 2 ≥ 1/2.

The multimode GKP circuit of Fig. 1 corresponds
to an (N mode) additive non-Gaussian noise chan-
nel Ñ for the data, with output GM error σ̄GM.
We find a lower bound for the quantum capacity
of the channel Ñ (see Lemma 14 in Appendix H),
CQ(Ñ ) ≥ max[0, N log2( 1

eσ̄2
GM

)]. Assuming break-
even σ̄GM = σ, this in turn implies a lower bound for

L
σ 0.1 0.2 0.5

Square 0.0354 0.120 0.490
Hexagonal 0.0340 0.117 0.489

D4 0.0322 0.112 0.487

Table 2: Output geometric mean error σ̄GM for a N = M =
2 multimode GKP stabilizer code. Various lattices L (Square,
Hexagonal, D4) and three representative values of AGN (σ =
0.1, 0.2, 0.5) are considered. MMSE was used. See Fig. 6.

the AGN error break-even point, σ⋆ ≥ 1/
√

e ≈ .607
(thus, η⋆ ≤ 1 − 1/e ≈ .632). Hence, the break-even
point σ⋆ (η⋆) for multimode GKP codes lies within
.607 ≤ σ⋆ ≤ .701 (.5 ≤ η⋆ ≤ .632). In the next sec-
tion, we numerically find break-even points for mul-
timode (N = M = 2) GKP stabilizer codes and
MMSE estimation with AGN error break-even points
near 1/

√
e ≈ .607. We remark that linear estimation

strategies have a lower break-even point of .558 [11].
See Fig. 6 and below.

7.2 Two data modes and two ancilla modes
(N = M = 2)

We compare the performance of different initial lat-
tices L for a single-layer, multimode (N = M = 2)
GKP-TMS code TMS⊗2(L). The encoding (decod-
ing) is given by two TMS operations, with each
TMS operation coupling one data mode to one ancilla
mode; see Fig. 1. The gain values of the TMS opera-
tions are (numerically) chosen to minimize the RMS
error σ̄2

RMS = Tr{Vout}/4. We consider MMSE esti-
mation, which optimizes the RMS error and thus sets
an upper bound on the optimal GM error. We also
consider linear estimation with initial square GKP
states, which was analyzed in Ref. [11].

In our analysis, we choose three initial GKP lat-
tice states: a direct product of square GKP states,
a direct product of hexagonal GKP states, and a
D4 lattice which can be generated from two-square
GKP states by a two-mode symplectic transforma-
tion [see Eq. (69) in Appendix C]. The D4 GKP
state is necessarily entangled; hence, the D4 TMS
code TMS⊗2(D4) is a genuine multimode code. On
the other hand, since the TMS encoding (decoding)
operates on individual data modes and the additive
noises are independent, the multimode square and
hexagonal TMS codes, TMS⊗2(□) and TMS⊗2(7),
are simple extensions of their single-mode counter-
parts, i.e. TMS⊗2(□) ≃ TMS(□) ⊗ TMS(□) and
TMS⊗2(7) ≃ TMS(7) ⊗ TMS(7).

We report the output GM error σ̄GM = 4
√

detVout
of the codes in Fig 6. As shown in the figure, the
D4 TMS code TMS⊗2(D4) performs better than the
square and hexagonal TMS codes TMS⊗2(□) and
TMS⊗2(7), at least for the few data that we gen-
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Figure 6: Quantum error correction (QEC) ratio between output noise and input noise of a single-layer, multimode (N = M =
2) GKP TMS code TMS⊗2(L) for different lattices L (Square, Hexagonal, D4) and estimation strategies (linear, MMSE).
The square code with linear estimation (dotted purple) agrees with the original GKP TMS code presented in Ref. [11]. Grey
hatched region is forbidden by information theoretic arguments. While the break-even point of the linear estimation with
square lattice σ ≃ 0.558 (purple diamond), the break-even point of the MMSE estimation σ = 0.605(5) for both square and
hexagonal lattices (green star). For D4 lattice, we narrowed the break-even point to 0.60 − 0.61, which is consistent with
square and hexagonal lattices.

erated (corresponding to σ = .1, .2, .5; see also Ta-
ble 2), however we expect similar findings for σ ≪
1. Indeed, using TMS⊗2(□) as a benchmark [11],
we find the relative performance of other lattices to
be better for smaller initial noise σ. For instance,
at σ = .01, we find that TMS⊗2(7) outperforms
TMS⊗2(□) by a relative difference of about 5.25%.
For σ = .1, TMS⊗2(7) achieves a relative difference
of about 3.95%, whereas TMS⊗(D4) achieves a rela-
tive difference of about 9.04%. For σ = .2, the rel-
ative difference is 2.5% for TMS⊗2(7) and 6.67% for
TMS⊗(D4). Finally, for σ = .5 (which is near the
break-even point σ ≈ .607), the relative difference is
.20% for TMS⊗2(7) and .61% for TMS⊗(D4). Nu-
merical values of σ̄GM for the different lattices and
σ = .1, .2, .5 are displayed in Table 2.

We observe that single-layer (N = M) codes us-
ing MMSE—regardless of the initial lattice L be-
ing hexagonal or square—have a break-even point
σ⋆

MMSE ≈ .605(5) (teal star in Fig. 6), whereas linear
estimation on square lattice has a break-even point
of σ⋆

lin ≈ .558 [11] (purple diamond). For D4 lattice,
we narrowed the break-even point to between 0.60
and 0.61, which is consistent with σ⋆

MMSE. Indeed,
the break-even point is likely universal for all lattices
with MMSE decoding. The value σ⋆

MMSE ≈ .605(5)
for MMSE agrees with the lower bound on the break-
even point (.607 ≤ σ⋆ ≤ .701) for general GKP codes
discussed in the previous section. It is an open ques-
tion whether this can be pushed further or not.

7.3 One data mode and two ancilla modes
(N = 1 and M = 2)

In Sec. 3.1, we showed that general concatenation
can be reduced to ancilla preparation and then pre-
sented examples of this reduction with one data mode
and two ancilla modes (N = 1, M = 2) in Sec. 3.2.
Indeed, the reduction of encoding shows that a single
TMS operation between the lone data mode and only
one of the ancilla modes is required (see Fig. 2(b)).
The other ancilla mode—which need not directly in-
teract with the data—is in general entangled with the
ancilla that interacts with the data. Code optimiza-
tion then reduces to optimizing the ancillary GKP
lattice state and the TMS strength.

Due to the numerical challenge in two-mode lat-
tice optimization, we focus on the TMS concatenation
code and compare a few lattices, similar to Sec. 7.2.
We examine the concatenated GKP-TMS code as it
represents the best-known code for N = 1 and M = 2
(better than the squeezed-repetition code [20]). In
what follows, we consider an “upward staircase” TMS
concatenation, in which two ancillary modes (pre-
pared in various lattices) are first coupled by a TMS
operation of gain G2 followed by a TMS operation
of gain G1 that couples the lone data mode to only
one of the ancilla; see the inset of Fig. 7 for an il-
lustration.4 Consequently, we can interpret the code
as a scenario where a lone data mode is coupled to a

4It is worth noting that this “upward staircase” concate-
nation is equivalent to a “downward staircase” concatenation
[Fig. 2(d)], as demonstrated in Sec. 3.2.
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Figure 7: Quantum error correction (QEC) ratio of different
lattices for a 1 data + 2 ancilla concatenated TMS code.
The fences represent error bars of the local minima. Inset
shows the encoding where G1 and G2 are the TMS gains.

σ 0.1 0.2 0.3
Square (18.9, 1.14) (3.43, 1.20) (1.92, 1.20)

Hexagonal (22.5, 2.04) (3.20, 1.11) (1.75, 1.11)
D4 (8.46, 1.21) (3.21, 1.04) (1.72, 1.01)

Table 3: Optimized two-mode squeezing gains (G1, G2) for
different input noise σ. G1 characterizes the two-mode
squeezing between the data and ancilla, while G2 charac-
terizes the squeezing that correlates the two-mode lattices.
See Fig. 7 inset.

correlated two-mode lattice state. To provide a more
comprehensive analysis, we numerically optimize over
the TMS gains G1, G2 for three different types of ini-
tial ancillary lattices: square, hexagonal and D4.

We consider three different levels of initial noise
σ = 0.1, 0.2, 0.3 and numerically optimize the gains
(G1, G2) to minimize σ̄GM. The quantum error cor-
rection (QEC) ratio σ̄GM/σ is plotted in Fig. 7, and
the corresponding optimal values of gain parameters
are shown in Table 3. With the additional TMS gain
G2 > 1, the product of two square or hexagonal lat-
tices becomes a four-dimensional lattice entangled be-
tween the two ancillary modes. Moreover, the four
dimensional lattice generated in such way can out-
perform D4 lattice, especially for the case σ = 0.1
case. Although there are always caveats with nu-
merical optimization, such results indicate that high-
dimensional GKP lattice design is very much an open
problem for GKP-stabilizer codes.

8 Heterogeneous noise case
We attempt to make progress towards generaliz-

ing our findings on iid AGN to more generic sources
of AGN. Consider a generic N mode AGN channel
NY , where Y is a 2N × 2N noise matrix that may
contain correlations. From Ref. [20], any correlated
Gaussian noises can be reduced to a product of het-

erogeneous AGN channel by symplectic transforma-
tions, i.e. NY →

⊗
i Nσi

, where σ2
i is the variance

of the ith mode. It is thus sufficient to examine inde-
pendent AGNs with different variances, for which we
posit the following conjecture.

Conjecture. Consider N data modes and N an-
cilla modes undergoing heterogeneous AGN (

⊗
i Nσi

).
Then, up to unitary data processing and ancilla prepa-
ration, two- (one data and one ancilla) and four-mode
interactions (two data and two ancilla) are sufficient
for encoding.

To promote support for this claim, consider a
generic symplectic encoding matrix Senc. Observe
that the Gaussian channel NY ′ = U−1

Senc
◦ (
⊗

i Nσi
) ◦

USenc is an AGN channel with noise matrix Y ′ =
S−1

enc(
⊕

i σiI2)S−⊤
enc , which has diagonal blocks corre-

sponding to local noises and off diagonal blocks corre-
sponding to (generally multimode) correlated noises.
By the results of Ref. [26] (see also Ref. [27]), there
exists local symplectic transformations Λd,Λa ∈
Sp(2N,R) that condense the correlation blocks to ele-
mentary two (one data and one ancilla) and four (two
data and two ancilla) mode units. Since the initial
noise channels are independent, the correlation units
originate from the encoding, and it certainly seems
plausible that two- and four-mode interactions are
sufficient to generate them. However, we do not find
this argument strong enough to unequivocally vali-
date the conjecture.

Though we have inferred that a generic 2N mode
encoding (encoded in Senc) reduces to “local” two- and
four-mode interactions between data and ancillae, our
reduction is not constructive, in the sense that it does
not give us which particular interactions to use (such
as the TMS of Theorem 2). Moreover, as stated, our
reduction in the heterogeneous case is only expected
to hold when the number of data modes equals the
number of ancilla modes (N = M) and thus does not
straightforwardly apply to codes where the number
of ancilla modes is greater than the number of data
modes (such as concatenated codes).

9 Analyses on finite-squeezing
A GKP state |L⟩ has support on the entire phase

space of the modes and thus has infinite energy. We
can regularize the state by confining the energy to a
ball of radius ∼ ∆−1 in phase space via

|L(∆)⟩ ∝ exp
(

−∆2r̂⊤r̂

2

)
|L⟩ ; (16)

see also Refs. [25, 28, 11, 29]. Note that r̂⊤r̂/2 =∑N
i=1 n̂i+N/2. The regularizer (or envelope operator)

has a nice form in the displacement operator basis,

exp
(

−∆2r̂⊤r̂

2

)
∝
ˆ

dµ exp
(

− µ2

4 tanh(∆2/2)

)
Dµ.

(17)
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Figure 8: Quantum error correction (QEC) gain σ2/σ2
GM

versus input noise σ for finite GKP squeezing in dB sGKP =
(10.5, 10.6, 20, 30, ∞). Solid lines correspond to hexagonal
lattice. Dashed lines correspond to square lattice.

We can thus think of the regularization procedure as
coherently applying displacements (with a Gaussian
envelope) on the GKP state. To simplify the analy-
sis, we can twirl the regularized state [28] to gener-
ate an incoherent GKP state,

⊗N
i=1 NσGKP(|L⟩⟨L|),

where we define the finite GKP noise per mode
σ2

GKP = tanh
(
∆2/2

)
; the relation between finite

squeezing and the variance of the GKP noise is
sGKP = −10 log10(2σ2

GKP). This twirling is not phys-
ical as it requires an infinite amount of energy and
is only used for computational convenience. We use
this noise model to approximate finite GKP noise in
all of our calculations. Specifically, we assume that
the GKP ancilla modes as well as the GKP states
used for measurements are all noisy. We thus have
two layers of finite GKP squeezing noise which enter
into the analysis in slightly different ways as discussed
below.

With the finite-squeezed GKP states as encoding
ancilla and measurement ancilla, the final covariance
matrix defined in Eq. (13) changes to(
Vd Vda

V T
da Va

)−1
≡(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤)

+ 02N ⊕ σ2
GKP(M⊤M + I2M ).

(18)

The GKP noise proportional to M⊤M originates
from the GKP lattice ancilla whereas the GKP noise
proportional to the identity comes from noisy mea-
surements; see Appendix J for a derivation. We thus
see that all computations from previous sections carry
over (e.g., the MMSE formula Eq. (12) applies) with
the updated covariance matrices to incorporate GKP
noise.

In Fig. 8, we plot the QEC gain σ2/σ̄2
GM versus the

input AGN σ for hexagonal and square GKP with fi-
nite GKP squeezing. We assume MMSE estimation.

The functional behaviors are similar to that presented
in Ref. [11] for a square GKP and linear estimation.
Though, an important distinction here is that we find
a break-even squeezing of around sdB = 10.5dB, be-
low which there is no QEC gain, whereas linear es-
timation leads to a higher value of 11 dB [11]. Note
that at each squeezing level, when σ ≈ σGKP, the
GKP finite-squeezing noise significantly contributes
to the noise budget, and the square lattice is slightly
better than the hexagonal lattice due to a smaller
det(M⊤M + I2M ), with values 2 for square and
2 + 4/

√
3 for hexagonal.

10 Discussions and conclusions
In this paper, we derived the optimal form of GKP-

stabilizer codes—TMS encoding on GKP ancilla with
general lattices—for homogenous input noise. In the
case of single-mode data and ancilla, we identified the
GKP-TMS code with a two-dimensional hexagonal
GKP ancilla to be optimal. For higher dimensions,
we found D4 lattices to be superior to lower dimen-
sional lattices. We were also able to prove a universal
no-threshold theorem for all oscillators-to-oscillators
codes based on Gaussian encodings and showed that
the continuous errors on the data cannot be made ar-
bitrarily small without an infinite amount of squeez-
ing. This is not too surprising because these errors
are intrinsically analog and may only be suppressed
with continuous variable resources (e.g., squeezing).

Before closing, a few open questions are worth men-
tioning. We expect the D4 lattice to perform well
and thus picked it for benchmarking, however there
might be better lattices in four or higher dimensions.
Searching for good lattices in higher dimension can
in general be challenging, as the number of free pa-
rameters grow with the number of modes quadrati-
cally. Although we derived the minimize mean square
estimator (MMSE), the optimal estimator for mini-
mizing the geometric mean error is unknown (to our
knowledge). We narrowed the range of optimal break-
even point of additional noise level down to the range
.607 ≤ σ⋆ ≤ .701 from quantum capacity bounds and
found MMSE reaching the lower end of this range;
the actual optimal break-even point is an open prob-
lem, although we expect it to be closer to the lower
end. Finally, regarding heterogeneous noise sources,
we have conjectured that two- and four-mode interac-
tions are sufficient for general (Gaussian) encodings,
however we do not have definitive nor constructive
proof of this claim. Ideal code design for heteroge-
neous noise sources is thus open; dedicated numerical
studies may be required to address such.
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Appendix
A Notation

Consider an N -mode bosonic Hilbert space H ⊗N ,
where H is the Hilbert space of a single bosonic
mode. Define the vector of canonical operators for
the N modes as,

r̂⊤ ≡ (q̂1, p̂1, . . . , q̂N , p̂N ) , (19)

such that,
[r̂k, r̂j ] = iΩkj , (20)

where Ω is the N -mode symplectic form,

Ω =
N⊕

i=1
Ω1 with Ω1 =

(
0 1

−1 0

)
. (21)

The canonical operators q̂ and p̂ of a single mode are
the real and imaginary parts, respectively, of the an-
nihilation operator, â. Throughout the appendix, we
write ‘hat’ on operators only in places where operators
can potentially be confused with numbers. For exam-
ple, in quadrature operators; While we omit ‘hat’ for
unitary operators and others that are easily recog-
nized as operators.

In several figures, we draw quantum circuits with
the circuit elements representing symplectic transfor-
mations S corresponding to a unitary US . A dictio-
nary of commonly used circuit elements is shown in
Fig. 9.

B Gaussian Evolution
B.1 Gaussian unitaries

Given an N -mode symplectic transformation S ∈
Sp(2N,R), where Sp(2N,R) is the set of 2N × 2N
real symplectic matrices (of dimension |Sp(2N,R)| =
2N2 + N), such that SΩS⊤ = Ω and detS = 1,

(a)

≡ SG

(b)

≡ B

(c)

≡ SUM1→2

(d)

≡ S−1G

(e)

≡ B−1

(f)

≡ SUM−1
2→1

(g)

≡ erZ
(h)

≡ e−rZ

|Ψ⟩d

|□⟩a Λ Nσ

Nσ

1

Figure 9: Dictionary of circuit elements for (a and d) two-
mode squeezers, (b and e) beamsplitters, (c and f) SUM
gates, and (g and h) single-mode squeezers.

one can find a unitary representation US , which en-
codes the symplectic transformation S and acts on
the canonical operators as,

U †
S r̂US = Sr̂. (22)

A useful fact that holds for an arbitrary symplectic
matrix is the so-called Bloch-Messiah (or Euler) de-
composition [30]. The statement is that a symplectic
matrix S ∈ Sp(2N,R) decomposes to

S = B′ ·

(
N⊕

i=1
eriZ

)
· B, (23)

where Z is the Pauli-Z matrix and eriZ is a single
mode squeezing transformation on the ith mode with
squeezing strength ri. Here B′,B ∈ Sp(2N,R) ∩
SO(2N) ≃ U(N), where U(N) is the unitary group
of dimension |U(N)| = N2. In other words, B′

and B are passive (e.g., linear optical) transfor-
mations, which admit an even further decomposi-
tion in terms of two-mode beamsplitters and phase-
shifts [31]. Since the squeezing transformation is a di-
agonal matrix with N free parameters, it follows that
|Sp(2N,R)| = 2|U(N)|+N = 2N2 +N , as mentioned
previously.

Consider vectors µ,ν ∈ R2N and define the Weyl
(displacement) operator,

Dµ ≡ exp
(
iµ⊤Ωr̂

)
, (24)

which form an operator basis for the space of bounded
operators B(H ⊗N ) via Tr(DµD−ν) = (2π)N δ2N (µ−
ν) [32]. Displacement operators satisfy a composition
rule,

DµDν = e−iω(µ,ν)DνDµ, (25)

where ω(µ,ν) ≡ µ⊤Ων. The anti-symmetric bi-
linear form ω : R2N × R2N → R takes as input
the real vectors µ and ν and computes ω(µ,ν) ∈
R, which is called the symplectic inner product be-
tween µ and ν. The symplectic inner product obeys
ω(ν,µ) = −ω(µ,ν) and is invariant under symplec-
tic transformations, i.e. ω(Sµ,Sν) = ω(µ,ν). Fi-
nally, from Eq. (22) and the general conjugation for-
mula U†f(ĝ)U = f(U †ĝU), it can be shown that the
displacement operators transform under symplectic
transformations via

USDµU †
S = DSµ, (26)

where Sµ ∈ R2N .
We now provide explicit symplectic matrices for

some commonly used Gaussian unitaries in the single-
and two-mode cases. For a single-mode, we only have
two possible transformations, which are a single-mode
squeezer and phase rotation. For two-mode opera-
tions, some common elements used in this paper and
in the literature are a beamsplitter, TMS, and a SUM
gate.
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(a)

≡ SG

(b)

≡ B

(c)

≡ SUM1→2

(d)

≡ S−1
G

(e)

≡ B−1

(f)

≡ SUM−1
2→1

(g)

≡ erZ
(h)

≡ e−rZ

=

1

Figure 10: Bloch-Messiah decomposition for a TMS opera-
tion in terms of 50:50 beamsplitters and single mode squeez-
ing.

A single-mode squeezer with squeezing strength r
has a symplectic matrix representation,

Sq(er) ≡ erZ , (27)

and a phase rotation at angle ϕ has a representation,

R(ϕ) ≡
(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)
. (28)

The two-mode beamsplitter has a symplectic rep-
resentation

B =
(

cos θI sin θI
− sin θI cos θI

)
, (29)

where, e.g., cos2 θ is the transmittance of the beam-
splitter. For a 50:50 beamsplitter (θ = π/4), we ex-
press the symplectic matrix as B1/2. [For a beam-
splitter with transmittance T , we may write BT .]

The SUM-gate SUMδ ≡ e−iδQ̂1⊗P̂2 operates on the
canonical operators as,

Q̂1 → Q̂1, P̂1 → P̂1 − δP̂2,

Q̂2 → Q̂2 + δQ̂1, P̂2 → P̂2.
(30)

where δ ∈ R and has symplectic representation,

SUMδ =
(

I2 −δΠP

δΠQ I2

)
, (31)

SUM−1
δ =

(
I2 δΠP

−δΠQ I2

)
, (32)

where ΠQ = diag(1, 0) and ΠP = diag(0, 1) represent
projections along the Q quadrature and P quadrature
of the respective modes. For δ = 1, we use the no-
tation SUM ≡ SUMδ=1, which is the conventional
definition of the SUM-gate in the literature. Observe
that SUMδ1 · SUMδ2 = SUMδ1+δ2 . The SUM-gate
is the CV analog to the CNOT gate for qubit-into-
oscillator codes [3] and thus useful for ancilla-assisted
stabilizer measurements (see Section D).

A TMS transformation with gain G has symplectic
representation,

SG =
( √

GI
√

G − 1Z√
G − 1Z

√
GI

)
. (33)

Parameterizing the gain G in terms of the squeezing
strength r via G = cosh2 r, one can provide a Bloch-
Messiah decomposition for TMS in terms of two-mode
beamsplitters and single-mode squeezers,

SG = B1/2 ·
(
Sq(er) ⊕ Sq(e−r)

)
· B⊤

1/2. (34)

See Fig. 10 for an illustration.

B.2 Gaussian channels
Consider an initial separable quantum state Ψ ⊗

ρE , where Ψ ∈ H ⊗N is a N mode quantum state
of the system (not necessarily Gaussian) and ρE ∈
H ⊗M is a M mode Gaussian quantum state of the
environment. Given a symplectic transformation S
with unitary representation US , we define a Gaussian
quantum channel G : H ⊗N → H ⊗N which acts on
the system modes via

G(Ψ) ≡ TrE

[
US (Ψ ⊗ ρE) U†

S

]
. (35)

Let the symplectic matrix S be written in the follow-
ing form,

S =
(
A B
C D

)
, (36)

where A is a 2N × 2N matrix that dictates internal
evolution of the system and B is a 2N × 2M rectan-
gular matrix which encodes the interaction between
environment and system. [For a system of N modes
evolving under the Gaussian channel G, it is sufficient
to choose M ≤ 2N to fully characterize the chan-
nel [33].] From thus, one can prove the following the-
orem,

Theorem 6 (Gaussian channel characteriza-
tion). Given a Gaussian environment state
ρE—characterized by the first and second mo-
ments µE and σE—a Gaussian quantum channel
G : H ⊗N → H ⊗N is completely determined by a
displacement-noise vector d, a scaling matrix X, and
a noise matrix Y such that

d = BµE , (37)
X = A, (38)
Y = BσEB⊤, (39)

where A and B are sub-matrices of the symplectic
matrix S [Eq. (36)] that couples the system to the en-
vironment.

The displacement-noise vector d can always be sub-
sumed into a unitary displacement occurring on the
system state; thus of primary interest to the dynamics
are the scaling and noise matrices, X and Y , respec-
tively.

Another useful fact to know about Gaussian chan-
nels is how their noise vectors, scaling matrices, and
noise matrices combine when we concatenate Gaus-
sian channels.

Theorem 7 (Gaussian channel synthesis). Con-
sider two Gaussian channels G1 and G2 with char-
acterizations (d1,X1,Y1) and (d2,X2,Y2), respec-
tively. Then the composite channel G12 = G2 ◦ G1,
which is also a Gaussian channel, has a characteri-
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zation (d12,X12,Y12) that take the form [34, 25]

d12 = d2 + X2d1, (40)
X12 = X2X1, (41)
Y12 = X2Y1X

⊤
2 + Y2. (42)

B.3 Condensing correlations
We discuss the condensation of correlations—

from multimode correlations to elementary pair-like
correlations—for general Gaussian transformations.

B.3.1 Phase-space Schmidt decomposition

As highlighted in the main text (Theorem 2), for
the special case of iid AGN, we can significantly re-
duce the freedom in a generic GKP-stabilizer code by
effectively reducing the code to a direct product of
TMS codes and a general ancillary GKP lattice L.
The workhorse in proving Theorem 2 is the modewise
entanglement theorem just below.

Theorem 8 (Modewise entanglement [21]). Consider
a subsystem A of N modes and a subsystem B of
M modes, such that the joint system AB consists
of K = M + N modes, and define the positive def-
inite matrix ϱAB = ϱSS⊤, where ϱ ∈ (0, ∞) and
S ∈ Sp(2K,R). Then, there exists local symplectic
matrices ΛA ∈ Sp(2N,R) and ΛB ∈ Sp(2M,R) such
that,

(ΛA ⊕ ΛB)ϱAB

(
Λ⊤

A ⊕ Λ⊤
B

)
=

ϱ

(
N⊕

i=1
SGiS

⊤
Gi

)
⊕ IK−2N , (43)

where SGi
is a TMS squeezing operation of gain Gi

[see, e.g., Eq. (33)] between the ith mode in A and the
(N + i)th mode in B.

Theorem 8 is sometimes referred to as the phase-
space Schmidt decomposition for Gaussian states [35];
see Refs. [21] and [32] for proofs and Ref. [36, 35] for
more discussion and a generalization to ‘bisymmetric’
noise.

As an illustrative example, let ϱAB be the covari-
ance matrix for an isotropically mixed K mode Gaus-
sian state ΨAB (ϱ ≥ 1). Then, by Lemma 8, the
state ΨAB is locally equivalent (up to a Gaussian uni-
tary U†

ΛA
⊗ U †

ΛB
) to a direct product of N (noisy)

TMS vacuum states and K−2N uncorrelated thermal
states. In other words, ΨAB is modewise entangled—
i.e., each mode in A is entangled with only one corre-
sponding mode in B.

B.3.2 Not-so-normal mode decomposition

We briefly discuss a generalization of the normal
mode decomposition (see, e.g., Refs. [33, 32]) to a

Figure 11: Multimode correlations condense to elementary
two- and four-mode units (see Theorem 9 below and cf.
Ref. [26]).

“not-so-normal” mode decomposition [26, 27]. We uti-
lize this decomposition in our argument for the re-
duction of GKP codes against heterogeneous AGN.
It is easier to state the results of Ref. [26] by us-
ing the following order of canonical operators r̂ =
(q̂1, q̂2, . . . , p̂1, p̂2, . . . )⊤.

Theorem 9 (Not-so-normal mode decomposi-
tion [26]). Consider a 2N × 2N invertible, non-
defective matrix X. Then, there exists symplectic
transformations SA,SB ∈ Sp(2N,R) such that

SAXSB =
(
IN 0
0 JR

)
, (44)

where JR =
⊕N

k=1 J(λk) is a N × N block-diagonal
matrix consisting of the (two-fold degenerate) eigen-
values {λk}N

k=1 of the matrix XΩ⊤X⊤Ω. For com-
plex λk = ak + ibk, the diagonal blocks are 2 × 2 ma-
trices Jk(λk) =

(
ak bk

−bk ak

)
. For real λk, Jk(λk) = λk.

As a technical aside, for defective X, the above the-
orem still holds, however in that case, JR is an N ×N
matrix in real Jordan form (hence the subscript), with
Jordan blocks containing the degenerate eigenvalues
of X.

As an example, if X is a positive definite real
matrix, then the above is effectively equal to the
normal mode decomposition. Recall from the nor-
mal mode decomposition that there exists S′

A,S′
B ∈

Sp(2N,R) such that S′
AXS′

B = ν ⊕ ν where
ν = diag(ν1, ν2, . . . , νN ) and νk are the symplectic
eigenvalues of X [33, 32]. The eigenvalues λk of
XΩ⊤X⊤Ω are real in this case and are related to
the symplectic eigenvalues νk of X via λk = ν2

k .
Indeed, one can show that the decomposition in
Eq. (44) and the normal mode decomposition just
above are equivalent up to local squeezing transforma-
tions

⊕
k Sq(erk ), with squeezing strengths erk = νk.

As another example, consider a 4N ×4N covariance
matrix σ for an 2N mode Gaussian quantum state.
Let us go back to (q1, p1, q2, p2, . . . ) ordering; this will
allow us to write the covariance matrix in block form
as below. Then, consider a bipartite cut which parti-
tions a subsystems A of N modes from a subsystem
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B of N modes. We write the covariance matrix in
blocks as

σ =
(

σA σAB

σ⊤
AB σB

)
, (45)

where σA,σB are local covariance matrices and σAB

is the correlation matrix. Consider local symplec-
tic transformations SA,SB ∈ Sp(2N,R) such that
σ → (SA ⊕ SB)σ(S⊤

A ⊕ S⊤
B ). The correlation matrix

transforms as σAB → SAσABS⊤
B . By Theorem 9,

we can choose SA and SB to reduce σAB into “not-
so-normal” form, completely determined by Jordan
blocks J(λk). This transformation condenses the cor-
relations into two- and four-mode units. In particular,
each λk ∈ R implies two-mode correlations, whereas
λk ∈ C implies four-mode correlations; see Fig. 11 for
an illustration.

C GKP lattice states
We present some details regarding lattice GKP

states for N modes and, for concreteness, provide
explicit examples for one and two modes; see also
Refs. [17, 18].

C.1 Modular quadratures
Consider a GKP lattice state |L⟩ and the stabilizer

group SL = ⟨SL
1 , . . . , SL

2N ⟩, such that SL |L⟩ = |L⟩.
Since SL

J = exp
(
iĝL

J

)
, where ĝL

J ≡ λL ⊤
J Ωr̂, we can

equivalently say that |L⟩ is an eigenstate of the mod-
ular quadratures {ĝL

J } (which are the generators of
translations in the lattice) with eigenvalue 0 mod 2π.
Given a generator matrix M of L, we can package all
the modular quadratures quite nicely into a vector
operator,

ĝL = M⊤Ωr̂ =

ĝL
1

ĝL
2
...

 . (46)

If the lattice is a symplectic self-dual lattice [37]
(see below), such that M⊤ΩM = 2πΩ, then
ĝL = ΩM−1r̂ and ĝL defines a new set of quadra-
ture operators, up to a factor ℓ =

√
2π.

C.2 Canonical GKP state
The prototypical example of a lattice state is the

canonical (square) GKP state |□⟩, which one can de-
fine via the stabilizers,

S □
1 ≡ exp

(
iλ□ ⊤

1 Ω1r̂
)

= eiℓq̂, (47)

S □
2 ≡ exp

(
iλ□ ⊤

2 Ω1r̂
)

= eiℓp̂, (48)

where ℓ ≡
√

2π, such that S □
K |□⟩ = |□⟩ ∀ k ∈ {1, 2}.

The vectors λ□
K are given explicitly as

λ□
1 ≡ ℓ (0, −1)⊤

, (49)

λ□
2 ≡ ℓ (1, 0)⊤

. (50)

Observe that [S □
1 , S □

2 ] = 0 since ω
(
λ□

1 ,λ□
2
)

= ℓ2 =
2π. For reference, a generator matrix built from these
vectors is

M□ =
(
λ□

1 λ□
2

)
= ℓΩ1, (51)

which is just the symplectic form in R2. The modular
quadratures ĝ□ are thus equivalent (up to a factor ℓ)
to the canonical operators q̂ and p̂, as explicitly seen
above for the stabilizers (47)-(48). One may therefore
refer to the quadrature basis for the square GKP state
as the ‘canonical’ or ‘standard’ basis. In terms of the
basis states for q̂ and p̂, the canonical GKP state can
be written as

|□⟩ ∝
∑
n∈Z

|q = nℓ⟩ =
∑
n∈Z

|p = nℓ⟩ , (52)

which is a translation invariant square lattice in the
single-mode phase space with period ℓ =

√
2π.

We denote N canonical GKP states as |□N ⟩ ≡
|□⟩⊗N , corresponding to a 2N dimensional hyper-
cube. The multimode lattice can be described by the
vectors λ□

J , where J = {1, . . . , 2N}, such that, e.g.,

λ□
1 = (0, −ℓ)⊤ ⊕ 0⊤

2(N−1),

λ□
2 = (ℓ, 0)⊤ ⊕ 0⊤

2(N−1),

...

λ□
2N−1 = 0⊤

2(N−1) ⊕ (0, −ℓ)⊤,

λ□
2N = 0⊤

2(N−1) ⊕ (ℓ, 0)⊤,

where 02(N−1) is a 2(N − 1) dimensional zero vector.
The generator matrix is the symplectic form on N
modes, which is simply a direct sum of the generator
matrices for the individual modes,

M□N

=
(
λ□

1 . . . λ□
2N

)
= ℓΩ, (53)

such that L□N ≃ ℓZ2N . This represents a canonical
hypercube in 2N dimensions, which is a (symplectic)
self-dual lattice.

C.3 Self-dual GKP states
One can generate other all other (symplectic) self-

dual lattices via symplectic transformations on the
canonical hypercube (a consequence of Corollary 1 in
Ref. [18]). The corresponding lattice states are ‘sym-
plectically equivalent’ to N canonical GKP states but
can nonetheless be useful resources for practical tasks.

Consider a symplectic transformation Λ ∈
Sp(2N,R) with unitary representation UΛ and define
new lattice vectors λΛ

J ≡ Λλ□
J . Since the symplec-

tic inner product is invariant under symplectic trans-
formations, it follows that ω(λΛ

J ,λΛ
K) = ω(λ□

J ,λ□
K),

and thus one can naturally define a symplectically
integral lattice LΛ via {λΛ

J }. Furthermore, we can
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Λ□NLΛ
≡

Figure 12: Self-dual GKP lattice state LΛ generated from N
canonical square GKP by a symplectic transformation Λ.

associate these vectors with the lattice stabilizers
SΛ

J ≡ DλΛ
J
, which generate the stabilizer group SLΛ =

⟨SΛ
1 , SΛ

2 , . . . , SΛ
2N ⟩. By relation (26), the stabilizers for

LΛ are related to canonical stabilizers via conjugation,

SΛ
J = UΛS□

J U†
Λ. (54)

It follows immediately that the state |LΛ⟩ ≡ UΛ |□N ⟩
is a +1 eigenstate of any element in SLΛ , i.e.
SLΛ |LΛ⟩ = |LΛ⟩.

Consider a generator matrix, MΛ, built from the
lattice vectors,

MΛ ≡
(
λΛ

1 λΛ
2 . . . λΛ

2N

)
. (55)

A generator matrix and the symplectic transforma-
tion Λ are related via

MΛ = ℓΛΩ = ΛM□N

, (56)

i.e., a generator matrix for the new lattice MΛ can
be found by transforming a generator matrix of the
canonical lattice M□N

by a symplectic transforma-
tion Λ. It immediately follows that MΛ ⊤ΩMΛ =
2πΩ.

Using Eq. (46), one can show that the modular
quadratures ĝΛ which generate discrete translations
on the lattice are explicitly given as

ĝΛ = ℓΛ−1r̂. (57)

Since Λ ∈ Sp(2N,R), ĝΛ defines a good set of canon-
ical operators which obey the canonical commutation
relations up to a factor ℓ2 = 2π.

We provide some examples of self-dual lattices be-
low.

Example: Hexagonal GKP. An example of a
single-mode (N = 1) symplectic lattice built from the
canonical lattice is the hexagonal lattice L7, which
admits the densest sphere-packing in R2. Consider
the following symplectic transformation,

Λ7 ≡ ℓ7
ℓ

(
1 − 1

2
0

√
3

2

)
, (58)

where ℓ7/ℓ =
√

2/31/4 ≈ 1.07. The hexagonal lattice
vectors are defined from the square lattice vectors via
λ7K = Λ7λ□

K and written explicitly as

λ71 ≡ ℓ7
(

1/2, −
√

3/2
)⊤

, (59)

λ72 ≡ ℓ7 (1, 0)⊤
. (60)

Note that
∥∥λ7k ∥∥ =

∥∥λ72 − λ71
∥∥ = ℓ7 ≈ 1.07, where

∥·∥ is the Euclidean norm; this is also the minimal
distance between lattice points in L7. [As an aside,
the Euclidean norm of a vector µ can be defined in
symplectic geometry via the symplectic inner product
ω(·, ·) without needing to refer to Euclidean geome-
try. Indeed, consider the dual vector µ̃ ≡ Ωµ, then
ω(µ̃,µ) = ∥µ∥.]

Furthermore, the hexagonal stabilizer group S7 can
be generated from the following stabilizers,

S71 ≡ exp
(

iλ7⊤
1 Ω1r̂

)
= exp

[
iℓ7

(√
3

2 q̂ + 1
2 p̂

)]
,

(61)

S72 ≡ exp
(

iλ7⊤
2 Ω1r̂

)
= exp[iℓ7p̂], (62)

which can also be found via conjugation of the square
stabilizers via S7K = U7S□

KU †
7, where U7 is a uni-

tary representation of Λ7. As in the general case,
the hexagonal GKP state is formally given by |7⟩ =
U7 |□⟩, which is necessarily a +1 eigenstate of the
stabilizer group elements, i.e. S7 |7⟩ = |7⟩.

Example: Rectangular GKP. Consider the sym-
plectic squeezing matrix with squeezing strength η ≡
er,

Sq(η) =
(

η 0
0 1/η

)
. (63)

We define the new lattice vectors λη
K ≡ Sq(η)λ□

K from
which we construct the stabilizers,

S η
1 ≡ exp

(
iλη ⊤

1 Ω1r̂
)

= eiq̂ℓ/η, (64)

S η
2 ≡ exp

(
iλη ⊤

2 Ω1r̂
)

= eip̂ℓη. (65)

The state |η⟩ ≡ USq(η) |□⟩ is a +1 eigenstate of these
stabilizers, and defines a rectangular GKP state—i.e.,
squeezed along one quadrature and stretched along
the other. This state can be written in the position
and momentum bases as

|η⟩ ∝
∑
k∈Z

|q = kℓη⟩ =
∑
k∈Z

|p = kℓ/η⟩ . (66)

The rectangular GKP state has proven useful for bias-
enhanced QEC with the GKP surface code [38].

Example: GKP Bell state. An interesting class
of two-mode lattice states are entangled GKP states
generated via two-mode interactions. A prominent
example is a GKP Bell state Φ often used in DV quan-
tum information processing with bosonic qubits [39,
40]. A GKP Bell state can be formed by interact-
ing two canonical GKP states on a 50:50 beamsplit-
ter [39], i.e.

|Φ⟩ ≡ UB1/2 |□2⟩ . (67)
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The lattice vectors {λΦ
J } are given by the column vec-

tors of the generator matrix MΦ, which can be di-
rectly found via Eq. (56); explicitly,

MΦ = ℓB1/2Ω = ℓ√
2

(
Ω1 Ω1

−Ω1 Ω1

)
, (68)

where Ω1 is the symplectic form on R2. The GKP
Bell state has the same lattice spacing as the canonical
GKP state □2, since the former is simply a rotated
version of the latter in R4 and are thus not useful for
QEC. On the other hand, GKP Bell states are useful
in other quantum information processing tasks [39,
40], such as quantum teleportation.

Example: D4 GKP. The D4 lattice admits a dens-
est sphere packing in R4 [17]. One can generate a D4
lattice from a direct product of two canonical GKP
states by the following symplectic transformation,

Λ⊤
D4

= 4
√

2


1
2 − 1√

2
1
2 0

0 1√
2 0 1√

2
0 1√

2 0 − 1√
2

− 1
2 0 1

2
1√
2

 , (69)

such that |D4⟩ ≡ UΛD4
|□2⟩. Since ΛD4Λ

⊤
D4

̸= I,
there is squeezing involved.

D Syndrome measurements
We discuss how to extract error syndromes from a

general GKP lattice.

D.1 Error syndrome
Consider a lattice state L and a displacement error

e such that
|L; e⟩ ≡ De |L⟩ . (70)

Then observe the following set of equalities,

SL
K |L; e⟩ = SL

KDe |L⟩

= e−iω(λL
K ,e)DeS L

K |L⟩

= e−iω(λL
K ,e)De |L⟩

= e−iω(λL
K ,e) |L; e⟩ ,

where λL
K are the lattice vectors that satisfy

ω(λL
K ,λL

J ) = 2πnKJ with nKJ ∈ Z, and we have
used the composition rule (25) to go from the first
equality to the second equality. In other words, the
error state |L; e⟩ is an eigenstate of the stabilizer SL

K

with eigenvalue exp
[
−iω

(
λL

K , e
)]

.
The set of quantities {ω(λL

K , e) mod 2π}2N
K=1 are

the error syndromes extracted from stabilizer mea-
surements on the GKP lattice L. We can package
them nicely into an error syndrome vector s with the
help of a generator matrix M ,

s ≡ s(e) = ℓ−1M⊤Ωe mod
√

2π, (71)

w
u

n

Λ
−1

Λ
|□⟩ q

=

ĝLj mod 2π

Figure 13: GKP-assisted stabilizer measurement circuit for
SL

J . Equivalent to measuring the modular quadrature
ĝL

J mod 2π.

where the modulo operation acts elementwise and we
have factored out the canonical spacing ℓ. If L is
a symplectic self-dual lattice such that M = ℓΛΩ,
where Λ ∈ Sp(2N,R) [see Eq. (56)], then we may
write the syndrome vector as

s = Λ−1e mod
√

2π. (72)

D.2 Homodyne and ancilla-assisted measure-
ments

One way to measure displacements on a lattice
state is to perform homodyne measurements along the
modular quadratures (ĝ = M⊤Ωr̂ mod 2π). How-
ever, homodyne measurements are destructive, hence
an ancilla-assisted measurement scheme is warranted.

For lattices that can be generated from the canoni-
cal lattice via symplectic transformations (i.e., self-
dual lattices), we introduce a measurement circuit
that is related to the canonical measurement cir-
cuit (consisting of standard SUM gates and square
GKP [3]) via unitary conjugation; see Fig. 13 for an
illustration of the stabilizer measure circuit. Our mea-
surement scheme relies on the SUM gate, however we
remark that SUM-gate measurement strategies nec-
essarily require inline squeezing, as the SUM-gate is
not an orthogonal transformation. An ancilla-assisted
measurement strategy which moves squeezing offline
has been proposed in Ref. [40].

There are 2N stabilizers that need to be measured,
two for each mode of the GKP lattice L. However,
if the GKP lattice L is an ancillary state in a QEC
circuit and can thus be discarded after use, then only
N additional GKP ancillae (on top of the N mode
GKP lattice L) are required for measurements. This
reduces the GKP resources by half. In more detail,
we can first perform N nondestructive stabilizer (e.g.,
q quadrature) measurements via ancilla-assisted mea-
surements, which consumes N GKP measurement an-
cillae. Following these nondestructive measurements,
we subsequently perform N destructive homodyne
(e.g., p quadrature) measurements on the GKP lat-
tice L. Moreover, this measurement strategy can be
performed in parallel on the individual modes.
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E Symmetry of single-mode lattices
We can have the same lattice L with different

choices of bases. In particular, the generator matrices
M1 and M2 generate the same lattice if there exist
a unimodular matrix N (i.e. a matrix with integer
entries and detN = 1) such that

M⊤
1 = NM⊤

2 . (73)

Suppose that a single-mode symplectic self-dual lat-
tice is given by (we drop the ℓ =

√
2π factor in front

of M here for brevity)

M = R(ϕ)Sq(r)R(θ), (74)

where R(θ) and R(ϕ) are 2 × 2 rotation matrices and
Sq(r) is the single-mode squeezing. Fixing r, it is
easy to see that two bases

M1 = Sq(r)R(θ),
M2 = Sq(r)R(θ + π/2),

are the same lattice since M⊤
2 = R

(
π
2
)
M⊤

1 and
R
(

π
2
)

is a unimodular matrix. Furthermore, it is easy
to show that

M1 = Sq(r)R(θ),
M2 = Sq(r)R(−θ),

are the same lattice under a reflection about the x-
axis. Combining the above symmetries, we conclude
that two bases

M1 = Sq(r)R(θ),
M2 = Sq(r)R(π/2 − θ),

correspond to the same lattice.

E.1 Hexagonal lattice
A generator matrix for the hexagonal lattice can be

written as

M7 = ℓ7
ℓ

(
1 − 1

2
0

√
3

2

)
, (75)

where ℓ7/ℓ =
√

2/31/4 ≈ 1.07; see Eq. (58). By the
Bloch-Messiah decomposition,

M7 = R
(

−π

6

)
Sq(31/4)R

(π

4

)
, (76)

where Sq(31/4) = diag(31/4, 3−1/4). Due to rotation
symmetry, we have the same lattice if

M ′
7 ≡ Sq(r)R(θ)

= R(ϕ)M7N⊤, (77)

where N is a unimodular matrix. For N ̸= I, the
squeezing value r ≥ 31/4; see Table 1 of the main
text.

F Proof of Lemma 1
We prove Lemma 1 of the main text. The primary

techniques that we use are Gaussian channel synthesis
and the modewise entanglement theorem [21] (Theo-
rem 7 and Theorem 8 of Appendix B, respectively).
Below, we sometimes write Nσ for the K mode iid
AGN channel, as opposed to

⊗K
i=1 Nσ, for the sake of

brevity.
Denoting S = S−1

enc for simplicity, it is sufficient to
show that,

US ◦ Nσ ◦ U−1
S ≃(

U⊕SGi
⊗ idM−N

)
◦ Nσ ◦

(
U−1⊕

SGi

⊗ idM−N

)
,

(78)

where S ∈ Sp(2K,R) is an arbitrary symplectic ma-
trix for K = M + N modes, ‘≃’ means ‘equivalent
up to local unitaries’, idM−N is an identity superop-
erator on M − N modes, and

⊕
SGi is shorthand

for
⊕N

i=1 SGi
. The channel G1 ≡ US ◦ Nσ ◦ U−1

S is
a Gaussian channel characterized by a displacement-
noise vector d1 = 0, a scaling matrix X1 = I, and a
noise matrix Y1 = σ2SS⊤ (see Appendix B for details
about characterizing general Gaussian channels). By
the modewise entanglement theorem [21], there ex-
ists local symplectic matrices Λd ∈ Sp(2N,R) and
Λa ∈ Sp(2M,R) such that,

(Λd ⊕ Λa)Y1
(
Λ⊤

d ⊕ Λ⊤
a

)
=

σ2

(
N⊕

i=1
SGi

S⊤
Gi

)
⊕ I2(M−N), (79)

where SGi
is a TMS operation between the ith data

mode and the (N+i)th ancilla mode. The transforma-
tion Λd ⊕Λa corresponds to a direct product of local,
unitary Gaussian channels UΛd⊕Λa

= UΛd
⊗ UΛa

. We
can pre- and post-process with UΛd⊕Λa and U−1

Λd⊕Λa

to generate a new Gaussian channel,

G2 = UΛd⊕Λa
◦ G1 ◦ U−1

Λd⊕Λa

= UΛd⊕Λa ◦
(
US ◦ Nσ ◦ U−1

S

)
◦ U−1

Λd⊕Λa
. (80)

Then, by Gaussian channel synthesis, starting from
d1, X1 and Y1, G2 has a characterization d2 = 0,
X2 = I, and

Y2 = (Λd ⊕ Λa)Y1
(
Λ⊤

d ⊕ Λ⊤
a

)
= σ2

(
N⊕

i=1
SGiS

⊤
Gi

)
⊕ I2(M−N), (81)

where Eq. (79) was used for the second equality.
Defining the unitary Gaussian channel for the (mod-
ewise) TMS operations U⊕SGi

≡
⊗N

i=1 USGi
, it fol-

lows that,

G2 =
(

U⊕SGi
⊗ idM−N

)
◦Nσ◦

(
U−1⊕

SGi

⊗ idM−N

)
.

(82)
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Therefore, up to pre- and post-processing with local Gaussian unitaries, we have that G2 ≃ G1, which was
to be proved.

G Error estimation for general GKP lattices
Here we derive properties of error estimation—such as the joint PDF P (xd, s) after a QEC protocol and the

minimum mean square estimation (MMSE) x̃d = f(s) for error syndrome s—given an encoding Senc and ancilla
GKP state with generator matrix M . To simplify our derivations, we denote the probability density function
(PDF) of the 2n-dimensional multivariate Gaussian distribution as

g(Σ,x − µ) = 1
(2π)n

√
detΣ

exp
{

−1
2(x − µ)⊤Σ−1(x − µ)

}
, (83)

where x = (x1, .., x2n)⊤, Σ is the covariance matrix and µ is the mean. The dimension of the distribution is
implicitly given by the dimensions of Σ and µ.

G.1 Proof of Theorem 4
In the QEC protocol, the original noise covariance matrix Vξ =

⊕N+M
i=1 σ2

i I2 is transformed into

V −1
x = S⊤

encV
−1

ξ Senc, (84)

via the encoding symplectic transform Senc and decoding symplectic transform S−1
enc. Let the additive noise on

the data and ancilla be

xd = (x(q)
1 , x

(p)
1 , ..., x

(q)
N , x

(p)
N )⊤, (85)

xa = (x(q)
N+1, x

(p)
N+1, ..., x

(q)
N+M , x

(p)
N+M )⊤, (86)

which are random variables following the joint distribution

P (xd,xa) = g [Vx, (xd,xa)] . (87)

We define the interval I ≡ [−
√

π/2,
√

π/2], and the error syndrome

s = R√
2π(M⊤Ωxa) ∈ I2M . (88)

To get the joint distribution of xd and s, we first rewrite Eq. (87) as

P (xd,M⊤Ωxa) = g

[(
Vd Vda

V T
da Va

)−1
,
(
xd,M⊤Ωxa

)]
, (89)

where we have defined the covariance matrix in the block form(
Vd Vda

V T
da Va

)−1
≡ (I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤). (90)

and used the property g(Σ,x) = g(LΣL⊤,Lx) for some invertible matrix L. From here, the distribution of
the error and syndrome can be solved as

P (xd, s) =
ˆ
R2M

d
(
M⊤Ωxa

)
P (xd,M⊤Ωxa)

∑
k

δ
(
s − M⊤Ωxa − k

√
2π
)

(91)

=
∑
k

g
(

(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤), (xd, s − k
√

2π)
)

(92)

=
∑
k

g(V −1
d ,xd + V −1

d Vda(s − k
√

2π))g(V −1
d|a , s − k

√
2π). (93)

where we sum over all vector of integers k ∈ Z2M , δ(·) is Dirac delta distribution and Vd|a = Va −V T
daV

−1
d Vda.

From (91) to (92), we integrate over xa. From (92) to (93), we adopt the block form of Eq. (90) and separate
the joint distribution into two parts.
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The PDF of the syndrome measurement result can be obtained by integrating over xd,

P (s) =
ˆ
R2N

dxd P (xd, s) =
∑
k

g(V −1
d|a , s − k

√
2π). (94)

The PDF of the conditional distribution is therefore

P (xd|s) = P (xd, s)/P (s)

=
∑
n

g
(
V −1

d ,xd + V −1
d Vda

(
s − n

√
2π
))

g
(
V −1

d|a , s − n
√

2π
)

/

(∑
m

g(V −1
d|a , s − k

√
2π)
)

. (95)

The MMSE estimator is obtained by evaluating the mean of the conditional distribution

x̃d (s) ≡ fMMSE(s) =
ˆ
R2N

dxd xdP (xd|s)

= −
∑
n

V −1
d Vda

(
s − n

√
2π
)

g
(
V −1

d|a , s − n
√

2π
)

/

(∑
m

g(V −1
d|a , s − m

√
2π)
)

=
−
∑

n V −1
d Vda

(
s − n

√
2π
)

exp
{√

2πn⊤Vd|as − πn⊤Vd|an
}∑

m exp
{√

2πm⊤Vd|as − πm⊤Vd|am
} , (96)

where n,m ∈ Z2M . We have thus proven Eq. (12) of Theorem 4.

G.2 Output covariance matrix
Given an error syndrome s extracted from a general GKP ancilla in a QEC protocol, the element at the ith

row and jth column of the output covariance matrix Vout for N data modes is given as

[Vout]ij =
ˆ
R2N

dxd

ˆ
I2M

ds (xd − x̃d)i×jP (xd, s)

=
∑
k

ˆ
I2M

ds
ˆ
R2N

dxd (xd − x̃d)i×jg(V −1
d ,xd + V −1

d Vda(s − k
√

2π))g(V −1
d|a , s − k

√
2π)

=
∑
k

ˆ
I2M

ds
(

[V −1
d ]ijg(V −1

d|a , s − k
√

2π) + g(V −1
d|a , s − k

√
2π)

{
x̃d +

[
V −1

d Vda(s − k
√

2π)
]}

i×j

)
= [V −1

d ]ij +
∑
k

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

{
x̃d +

[
V −1

d Vda(s − k
√

2π)
]}

i×j

= [V −1
d ]ij +

∑
k

2π

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

[∑
n V −1

d Vda(n − k)g(V −1
d|a , s − n

√
2π)∑

m g(V −1
d|a , s − m

√
2π)

]
i×j

. (97)

where we use the notation xi×j = xixj , as the product vector components i and j and have expanded and
simplified by using the fact that
ˆ
R2M

dxd (xi − µi)(xj − µj)det(Vd)
1
2

(2π)N
exp
{

−1
2(x − τ )TVd(x − τ )

}
= [V −1

d ]
ij

+ (µi − τi)(µj − τj). (98)

G.3 Explicit analyses of the decoding strategies for GKP-TMS code
Here we show explicit calculation to obtain the estimators for GKP-TMS codes with GKP square lattice.

According to Eq. (11) and the encoding operation of the GKP-TMS code in Eq. (3), the random displacement
z = (z(1)

q , z
(1)
p , z

(2)
q , z

(2)
p ) of the output AGN channel now has the covariance matrix

Vx = S−1
encVξS

−⊤
enc =

(
[Gσ2

1 + (G − 1)σ2
2 ]I −

√
G(G − 1)(σ2

1 + σ2
2)Z

−
√

G(G − 1)(σ2
1 + σ2

2)Z [Gσ2
2 + (G − 1)σ2

1 ]I

)
. (99)

The GKP square lattice has generator matrix M = I. From eq. (13), we have

Vd = (G − 1)σ2
1 + Gσ2

2
σ2

1σ2
2

I, Vda =
√

G(G − 1)(σ2
1 + σ2

2)
σ2

1σ2
2

ΩZ, Vd|a = 1
(G − 1)σ2

1 + Gσ2
2
I. (100)
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The linear estimation becomes

fLinear(s) = −V −1
d Vdas = µ̃

(
0 1
1 0

)
s, (101)

where

µ̃ =
√

G(G − 1)(σ2
1 + σ2

2)
(G − 1)σ2

1 + Gσ2
2

. (102)

Further calculations on the output variance can be found in Refs. [11, 20].
The MMSE estimator of Eq. (12) becomes

fMMSE(s) =

∑
n µ̃

(
0 1
1 0

)
(s − n

√
2π)g(σ2

GI, s − n
√

2π)∑
m g(σ2

GI, s − m
√

2π)
. (103)

The output covariance matrix of Eq. (97) leads to

[Vout]ij = σ2
1σ2

2
(G − 1)σ2

1 + Gσ2
2

[I]ij +
∑
k

2πµ̃2
ˆ
I2

ds g(σ2
GI, s − k

√
2π)

[∑
n(n − k)g(σ2

GI, s − n
√

2π)∑
m g(σ2

GI, s − m
√

2π)

]
i×j

.

(104)

G.4 Lattice basis transformations and estimators
We show that the output joint PDF of the QEC protocol is invariant under a change of lattice basis. We then

show that the MMSE estimator of Theorem 4 is likewise invariant but that linear estimation depends upon the
choice of the lattice basis.

Theorem 10 (Invariance of the joint PDF). Consider a generator matrix M and a change of lattice basis by
a unimodular matrix N , which defines another generator matrix M ′ = MN⊤. Let s = R√

2π(M⊤Ωxa) be the
error syndrome and consider the joint PDF P (xd, s). Likewise, let s′ = R√

2π(M ′ ⊤Ωxa) = R√
2π(NM⊤Ωxa)

be the error syndrome in the new basis and the corresponding joint PDF P ′(xd, s′). Then, P ′(xd, s′) = P (xd, s).

Proof. From properties of modulo operations, we have that R√
2π(N−1s′) = R√

2π(N−1NM⊤Ωxa) = s, as
both N and N−1 are a matrices of integers. Therefore N−1s′ = s + ℓN−1s′

√
2π for some vector of integers

ℓN−1s′ determined by N−1s′. The joint PDF for the data xd and the error syndrome s′ in the new basis is
then

P ′(xd, s′) =
∑
k

g
(

(I2N ⊕ (NM⊤Ω))Vx(I2N ⊕ (NM⊤Ω)⊤), (xd, s′ − k
√

2π)
)

(105)

=
∑
k

g
(

(I2N ⊕ (M⊤Ω))Vx(I2N ⊕ (M⊤Ω)⊤), (xd,N−1(s′ − k
√

2π))
)

(106)

=
∑
k′

g
(

(I2N ⊕ (M⊤Ω))Vx(I2N ⊕ (M⊤Ω)⊤), (xd,N−1s′ − k′√2π)
)

(107)

=
∑
k′

g
(

(I2N ⊕ (M⊤Ω))Vx(I2N ⊕ (M⊤Ω)⊤), (xd, s − (k′ − ℓN−1s′)
√

2π)
)

(108)

=
∑
k′′

g
(

(I2N ⊕ (M⊤Ω))Vx(I2N ⊕ (M⊤Ω)⊤), (xd, s − k′′√2π)
)

(109)

= P (xd, s) . (110)

(105) follows directly from the Eq. (93). To move from (106) to (107), we use the fact that N−1 is a unimodular
matrix and acting with N−1 on an integer vector simply changes the summation index, N−1k → k′. In (108),
we use N−1s′ = s+ℓN−1s′

√
2π. And in (109), we change the summation index, which is over all integer vectors

in Z2M . ■

We next show that the MMSE estimator x̃d (s) = fMMSE(s) of Eq. (96) is invariant under a basis transfor-
mation, but before doing so, we prove a useful lemma.
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Lemma 11. Given a vector s ∈ R2M , a unimodular matrix N , and a function J(s), it follows that
ˆ
I2M

J(s) d
(
R√

2π(Ns)
)

=
ˆ
I2M

J(s) ds . (111)

Proof. For brevity, we use the shorthand R() for the modulo function R√
2π(). Given a unimodular matrix N , the

function f : s → R(Ns) is a bijection from I2M to I2M , as we can find the inverse function f−1 : R(Ns) → s by
s = R

(
N−1R(Ns)

)
. We can then divide the region I2M into sub regions Ak =

{
x ∈ I2M |Nx − k

√
2π ∈ I2M

}
.

There are finite number of these regions since N and x are finite. Let Bk = {f(x)|x ∈ Ak} be the image of
Ak. Then x ∈ Ak is equivalent to f(x) = Nx − k

√
2π ∈ Bk by the map f and thus

ˆ
I2M

J(s) d (f(s)) =
∑
k

ˆ
Bk

J(s) d (f(s)) (112)

=
∑
k

ˆ
Bk

J(s) d
(
Ns − k

√
2π
)

(113)

=
∑
k

ˆ
Ak

J(s) ds (114)

=
ˆ
I2M

J(s) ds , (115)

where we use |N | = 1 from (113) to (114). ■

Theorem 12 (Invariance of MMSE). Consider a generator matrix M and change of basis by a unimodular
matrix N , which defines another generator matrix M ′ = MN⊤. Let s = R√

2π(M⊤Ωxa) be the error
syndrome and consider the MMSE estimator x̃d (s) = fMMSE(s). Likewise, let s′ = R√

2π(NM⊤Ωxa) be
the error syndrome in the new basis and the corresponding MMSE estimator x̃′

d (s′) = fMMSE(s′). Then,
x̃′

d (s′) = x̃d (s).

Proof. From Theorem 10, we have that P (xd, s) = P ′(xd, s′) and thus P (xd|s) = P ′(xd|s′) for the conditional
distribution, such that

x̃′
d(s′) =

ˆ
R2N

dxd xdP ′(xd|s′)

=
ˆ
R2N

dxd xdP
(
xd|R√

2πs
)

= x̃d (s) ,

which was to be proved. ■

Corollary 12.1. The output covariance matrix Vout describing the noise on the data modes (i.e., the second
moments of data error) is invariant under a basis transformation on the ancillary lattice.

This corollary follows immediately from Theorem 12, but we explicitly derive such for clarity.

Proof. Consider the output covariance matrix in the new basis V ′
out [defined in a similar fashion as Eq. (97)]

and the following set of equalities,

[V ′
out]ij =

ˆ
R2N

dxd

ˆ
I2M

ds′ [xd − x̃′
d (s′)]i×j P ′(xd, s′)

=
ˆ
R2N

dxd

ˆ
I2M

ds′ [xd − x̃d (s)]i×j P (xd, s)

=
ˆ
R2N

dxd

ˆ
I2M

d
(
R√

2π(Ns)
)

(xd − x̃d (s))i×j P (xd, s)

=
ˆ
R2N

dxd

ˆ
I2M

ds (xd − x̃d (s))i×j P (xd, s)

= [Vout]ij .

We have used Theorems 10 and 12 to go from the first equality to the second equality and used the relation
s′ = R√

2π (Ns) and Lemma 11 to go from the third equality to the fourth equality. The final equality follows
by definition of the covariance matrix. ■
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We now discuss linear estimation and show that such is not invariant under a lattice basis transformation.

Theorem 13. Linear estimation is not invariant under a lattice basis transformation.

Proof. Considering only the n = 0 element in the sum of Eq. (96), we get the linear estimator

fLinear(s) = −V −1
d Vdas, (116)

which is obviously not invariant under a basis transformation. Indeed, consider a basis transformation such
that s′ = R√

2π(Ns). The estimator in Eq. (116) then changes to

fLinear(s′) = −V −1
d Vdas

′

= −V −1
d VdaR√

2π(Ns). (117)

and fLinear(s) ̸= fLinear(s′). ■

As a consequence, the output covariance matrix for linear estimation also changes under a change of lattice
basis. To show this explicitly, let us first write the output covariance matrix Vout in full,

[Vout]ij =
ˆ
R2N

dxd

ˆ
I2M

ds (xd − fLinear(s))i×jP (xd, s)

=
∑
k

ˆ
I2M

ds
ˆ
R2N

dxd (xd − fLinear(s))i×jg(V −1
d ,xd + V −1

d Vda(s − k
√

2π))g(V −1
d|a , s − k

√
2π)

=
∑
k

ˆ
I2M

ds [V −1
d ]

ij
g(V −1

d|a , s − k
√

2π) +
[
−V −1

d Vdas + V −1
d Vda(s − k

√
2π)
]

i×j
g(V −1

d|a , s − k
√

2π)

= [V −1
d ]ij +

∑
k

2π
[
V −1

d Vdak
]

i×j

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π), (118)

where we have used the expression of P (xd, s) in (93) and (98) in the first and second steps, respectively. Under
change of basis, the new elements of the covariance matrix V ′

out are

[V ′
out]ij =

ˆ
R2N

dxd

ˆ
I2M

ds′ [xd − fLinear(s′)]i×j P ′(xd, s′) (119)

=
ˆ
R2N

dxd

ˆ
I2M

d
(
R√

2π (Ns)
)

[xd + V −1
d VdaR√

2π(Ns)]i×jP (xd, s) (120)

=
ˆ
R2N

dxd

ˆ
I2M

ds [xd + V −1
d VdaR√

2π(Ns)]i×j P (xd, s) (121)

=
∑
k

ˆ
R2N

dxd

ˆ
I2M

ds [xd + V −1
d VdaR√

2π(Ns)]i×j g(V −1
d ,xd + V −1

d Vda(s − k
√

2π))g(V −1
d|a , s − k

√
2π)

(122)

=
∑
k

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

{
[V −1

d ]ij +
[
V −1

d VdaR√
2π(Ns) − V −1

d Vda(s − k
√

2π)
]

i×j

}
(123)

= [V −1
d ]ij +

∑
k

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

[
V −1

d VdaR√
2π(Ns) − V −1

d Vda(s − k
√

2π)
]

i×j
(124)

= [V −1
d ]ij +

∑
k

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

[
V −1

d Vdak
√

2π + V −1
d Vda

(
R√

2π(Ns) − s
)]

i×j
(125)

= [V −1
d ]ij +

∑
k

2π
[
V −1

d Vdak
]

i×j

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)︸ ︷︷ ︸

=[Vout]ij

+
∑
k

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

[
V −1

d Vda

(
R√

2π(Ns) − s
)]

i×j

+
∑
k

√
2π
[
V −1

d Vdak
]

i

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

[
V −1

d Vda

(
R√

2π(Ns) − s
)]

j

+
∑
k

√
2π
[
V −1

d Vdak
]

j

ˆ
I2M

ds g(V −1
d|a , s − k

√
2π)

[
V −1

d Vda

(
R√

2π(Ns) − s
)]

i
. (126)
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From (119) to (120), we use s′ = R√
2π (Ns), P ′(xd, s′) = P (xd, s) and the expression in (117). From (120)

to (121), we apply Lemma 11. To obtain (122), we input the explicit equation of (93). The integral of xd is
simplified with (98) from (122) to (123). From (123) to (125), we first recognize that the V −1

d part does not
depend on s and then reorganized the integrand. To obtain (125), we make use of the definition xi×j = xixj ,
where xi is the ith component of x, so that (a+b)i×j = (a+b)i(a+b)j = ai×j +bi×j +aibj +ajbi. Comparing
equations (118) and (126), we see that the linear estimation is not invariant under a lattice basis transformation.

H Lower bound on output variance for
multimode codes

We find a lower bound on the output variance for
multimode GKP codes (with N data modes and M ≥
N GKP ancilla modes), in a similar vein to the single-
mode lower bound found in Ref. [11]. We first provide
an effective reduction from multimode additive noise
to independent single-mode additive noises which we
utilize to prove the result.

Given a N mode input data state ρ, the output data
state ρ′ after a round of error correction with a mul-
timode GKP stabilizer code (which protects against
AGN) is related to the input by an additive non-
Gaussian noise channel Ñ via

ρ′ = Ñ (ρ) =
ˆ
R2N

ded P (ed)Ded
ρD†

ed
, (127)

where P (ed) is a multivariate non-Gaussian pdf that
describes the residual data noise ed—e.g., ⟨ed⟩ = 0
and ⟨{(ed)i, (ed)j}⟩ = (Vout)ij ; for brevity in what
follows, we let V ≡ Vout. Consider the Gaussian
approximations ρG and ρ′

G for the input and output
states ρ and ρ′, which agree with ρ and ρ′ at the level
of first and second moments. We have that

ρ′
G = NV (ρG) =

ˆ
R2N

ded g(V , ed)Ded
ρGD†

ed
,

(128)
where g(V , ed) is a Gaussian distribution according to
Eq. (83) with the same first and second moments as
the non-Gaussian pdf P (ed) and NV is a multimode
AGN channel with noise matrix V .

Let S be the symplectic transformation that di-
agonalizes V such that SV S⊤ =

⊕N
i=1 νiI2, where

νi ≥ 0 are the symplectic eigenvalues (single-mode
variances) of V . We append Gaussian unitaries U†

S

and US before and after error correction, respectively,
and define the resulting channel Ñ (S) ≡ US ◦Ñ ◦U−1

S ,
where US is the unitary channel of US . Then,

ρ′(S) = Ñ (S)(ρ)

=
ˆ
R2N

ded P (ed)
(

USDed
U†
S

)
ρ
(

USD†
ed

U†
S

)
=
ˆ
R2N

ded P (ed)DSed
ρD†

Sed

=
ˆ
R2N

ded P (S−1ed)Ded
ρD†

ed
, (129)

where Eq. (26) was used in the second line and a
change of variables was used in the third line, along

with the fact that d
(
S−1ed

)
= ded. The Gaussian

approximation for ρ′(S) is then simply,

ρ′
G(S) = NSV S⊤ (ρG) =

N⊗
i=1

Nνi
(ρG). (130)

This is due to the fact that displacements are always
local, Ded

=
⊗

i Dedi
, and that P (S−1ed) has a cor-

responding Gaussian distribution satisfying

g(V ,S−1ed) = g(SV S⊤, ed)

= g
(⊕

i
νiI2, ed

)
=
∏

i

g(νiI2, edi
), (131)

where edi
∈ R2. In other words, at the level of first

and second moments, we have decorrelated the resid-
ual noises on the data modes via S and reduced the
channel to a direct product of independent AGN chan-
nels. We will use this simplification in what follows
to prove a lower bound on the quantum capacity of a
general non-Gaussian additive noise channel Ñ , which
includes the single-mode case proven in Ref. [11].

Lemma 14. Consider a N mode additive non-
Gaussian noise channel Ñ [see Eq. (127)]. Let the
geometric mean error of the channel be defined as
σ̄2

GM = 2N
√

detV , where V is the 2N × 2N covari-
ance matrix of Ñ . Then the quantum capacity CQ of
Ñ has the following lower bound,

CQ(Ñ ) ≥ max
[
0, N log2

(
1

eσ̄2
GM

)]
. (132)

Proof. To prove this result, we first consider the chan-
nel Ñ (S) of Eq. (129). Since Ñ (S) is related to
Ñ by unitary pre- and post-processing, the quan-
tum capacities of the two channels are equivalent,
CQ(Ñ ) = CQ(Ñ (S)). We focus on the channel Ñ (S)

from hereon.
Observe that the single-shot coherent information

places a lower bound on the quantum capacity [41,
42, 43]

CQ(Ñ (S)) ≥ max
ρ

Ic(ρ, Ñ (S)) (133)

where Ic(ρ, Ñ (S)) = S(Ñ (S)(ρ)) − S(Ñ (S) c(ρ)) is the
coherent information, S is the von Neumann entropy
and Ñ (S) c is the complementary channel of Ñ (S).
By Gaussian extremality [44], one can show that
Ic(ρ, Ñ (S)) ≥ S(Ñ (S)(ρ)G) − S(Ñ (S) c(ρ)G) where,
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e.g., Ñ (S)(ρ)G is a Gaussian state with the same first
and second moments as Ñ (S)(ρ). In fact, Ñ (S)(ρ)G =⊗N

i=1 Nνi(ρG) from Eq. (130), which is just a direct
product of AGN channels acting on an input Gaus-
sian state ρG; similarly, Ñ (S) c(ρ)G =

⊗N
i=1 N c

νi
(ρG).

Therefore, Ic(ρ, Ñ (S)) ≥ Ic(ρG,
⊗N

i=1 Nνi
). In other

words, we have reduced the problem to analyzing a
set of independent AGN channels with Gaussian in-
put states; this has been done in previous works for a
single mode with an input thermal state Θn̄ [45, 25].
In the energy unconstrained setting (n̄ → ∞), the
single mode result is maxρG

Ic(ρG, Nνi
) = log(1/eνi).

Hence, for the multimode channel
⊗

Nνi
,

max
ρG

Ic

(
ρG,

N⊗
i=1

Nνi

)
≥

N∑
i=1

log
(

1
eνi

)
(134)

= log
(

1
eN
∏N

i=1 νi

)
. (135)

Since νi are the symplectic eigenvalues of the channel
covariance matrix V , detV =

∏N
i=1 ν2

i , and the result
is proved. ■

Now we consider the upper bound of the quantum
capacity. We begin by quoting a lemma in Refs. [25,
20].

Lemma 15. Given an N + M mode AGN chan-
nel, NY , with noise covariance matrix Y ≥ 0, the
quantum capacity CQ then has the following upper
bound [25, 20],

CQ (NY ) ≤
N+M∑

i=1
log2

(
1 − σ2

i

σ2
i

)
, (136)

where σ2
i are the symplectic eigenvalues of Y (i.e., the

single-mode variances) .

From the above results of lower and upper bounds,
we can have the following theorem.

Theorem 16 (Lower bound for output noise of mul-
timode codes). Consider a multimode GKP stabilizer
code which consumes M ≥ N ancillary GKP modes
to protect N data modes against independent AGN.
The joint noise channel across all modes is given by⊗N+M

i=1 Nσ2
i

with variances σ2
i . Let the 2N × 2N

output noise matrix of the data be Vout, with RMS
and GM errors given as σ̄2

RMS = Tr{Vout}/2N and

σ̄2
GM = 2N

√
detVout, respectively. Then,

σ̄RMS ≥ σ̄GM ≥ 1√
e

2N

√√√√(N+M∏
i=1

σ2
i

1 − σ2
i

)
. (137)

Proof. The proof for the geometric mean error fol-
lows by concurrently considering the lower bound
and upper bound of Lemmas 14 and 15, respectively.
In detail, we can use a multimode GKP code—and
thus the resultant additive non-Gaussian channel Ñ —
to transmit information across the AGN channels⊗N+M

i=1 Nσ2
i
. The transmission rate is bounded from

below by the quantum capacity CQ(Ñ ) since CQ(Ñ )
is achievable, which in turn is bounded from below
by Lemma 14. Likewise, the transmission rate is
bounded from above by the quantum capacity of the
original channel, CQ(

⊗N+M
i=1 Nσ2

i
), which in turn is

bounded from above by Lemma 15. This establishes
the second inequality in Eq. (137). The bound on the
RMS error [the first inequality in Eq. (137)] follows
from the fact that the arithmetic mean is an upper
bound on the geometric mean. ■

Corollary 16.1. For iid AGN, such that σi = σ ∀ i ∈

{1, . . . , M + N}, σ̄RMS ≥ σ̄GM ≥ 1√
e

(
σ2

1−σ2

)N+M
2N .

Thus, for general multimode codes, if the number
of ancilla modes is equal to the number of data modes
(M = N), then error suppression is at most quadratic
in the initial noise σ. The performance can be fur-
ther enhanced with concatenated codes (M > N ), i.e.
σ̄GM ∼ σ1+ M

N . We find an upper bound on the break-
even point, σ⋆ ≤ 1/

√
2; see Fig. 5 of the main text.

For σ > 1/
√

2, there is no gain to be had from QEC.
This agrees with the fact that the upper bound for
the quantum capacity of the AGN channel [Eq. (136)]
vanishes as σ → 1/

√
2.

I Classical entropies for the iid Gaus-
sian channel

The differential entropy of multivariate normal dis-
tribution is [23]

S(x) = 1
2 ln

[
(2πe)K detV

]
, (138)

where K is the dimension of the random variable x.
In the case of N data modes and M ancilla modes
[K = 2(M+N)], the correlated data and ancilla noises
(just prior to corrective displacements on the data)
has a covariance matrix
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Vx = S−1
encVξS

−⊤
enc

= (Λ−1
d ⊕ Λ−1

a )
[

σ2

(
N⊕

i=1
SGi

S⊤
Gi

)
⊕ I2(M−N)

]
(Λ−⊤

d ⊕ Λ−⊤
a ),

(139)

where Λd and Λa are local symplectic transformations
on the data and ancilla, respectively. The general
form in terms of two-mode squeezing blocks, for an
arbitrary Gaussian encoding Senc, is a consquence of
Lemma 1.

Since the local symplectic transforms do not change
the determinants of the subsystems, we can easily cal-
culate all entropies of interest,

S(xd) =
N∑

i=1
ln [2πe(2Gi − 1)σ2], (140)

S(xa) =
N∑

i=1
ln [2πe(2Gi − 1)σ2] + (M − N) ln

(
2πeσ2),
(141)

S(xd,xa) = (N + M) ln
(
2πeσ2). (142)

The mutual information of the joint distribution is
then

I(xd;xa) = S(xd) + S(xa) − S(xd,xa)

= 2
N∑

i=1
ln (2Gi − 1), (143)

and the conditional differential entroy is

S(xd|xa) = S(xd,xa) − S(xa)

=
N∑

i=1
ln
(

2πeσ2

2Gi − 1

)
. (144)

In obtaining these results, we have utilized the fact
that Λd ⊕Λa does not change any of the above quan-
tities. So in the calculations, we can actually con-
sider the random variables Λdxd and Λaxa for sim-
plicity. In terms of these variables, the data modes
(and ancilla modes) are uncorrelated amongst them-
selves, and there are only two-mode correlations for
each data-ancilla mode pair. Moreover, due to the
structure of two-mode squeezing, there are only qq
and pp correlations and no qp correlations. There-
fore, the total entropy, mutual information, and con-
ditional entropy originate from: (1) two-mode pairs
(one data and one ancilla) due to two-mode squeez-
ing and (2) individual quadratures (qq or pp cor-
relations but no qp correlations). As an example,
S(xd|xa) = S(Λdxd|Λaxa) =

∑2N
i=1 S(Λdxd|Λaxa)i,

where S(Λdxd|Λaxa)i = ln
(

2πeσ2

2Gi−1

)
/2 is the condi-

tional entropy for the qq (pp) quadrature correlations
of the ith data-ancilla mode pair. Everything consid-
ered, we see that we can treat each data quadrature
independently and sum their individual contributions
to calculate global properties.

J Error from approximated states
Given the noise model for finite GKP squeezing discussed in Section 9, it is not hard to show that the error

syndrome changes to

s = R√
2π

(
M⊤Ω(ξ(1)

GKP + xa) + ξ
(2)
GKP

)
(145)

= R√
2π

(
M⊤Ωxa + δ

)
, (146)

where ξ
(1)
GKP ∼ N (0, σ2

GKP) is the GKP noise from the ancilla modes, ξ
(2)
GKP ∼ N (0, σ2

GKP) is the GKP noise
from the noisy stabilizer measurements, and δ = M⊤Ωξ

(1)
GKP + ξ

(2)
GKP. The PDF of δ is

P (δ) = g
(
σ2

GKP(M⊤M + I2M ), δ
)

. (147)
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We can show that the joint distribution of xd and the error syndrome s is

P (xd, s) =
ˆ
R4M

d
(
M⊤Ωxa

)
dδ P (xd,M⊤Ωxa)P (δ)

∑
k

δ
(
s − M⊤Ωxa − δ − k

√
2π
)

(148)

=
∑
k

ˆ
R2M

dδ g
(

(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤), (xd, s − δ − k
√

2π)
)

g
(
σ2

GKP(M⊤M + I2M ), δ
)

(149)

=
∑
k

g
(

(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤ + (02N ⊕ σ2
GKP(M⊤M + I2M ))), (xd, s − k

√
2π)
)

(150)

≡
∑
k

g(V −1
d ,xd + V −1

d Vda(s − k
√

2π))g(V −1
d|a , s − k

√
2π), (151)

where we have redefined the notation Vd,Vda,Vd|a to incorporate finite-squeezing GKP noise.
We use a moment-generating function to prove the identities (149) and (150). Let X and Y be the vectors

of independent random Gaussian variables, then

P
(
X = (xd, s − k

√
2π)
)

= g
(

(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤), (xd, s − k
√

2π)
)

, (152)

P (Y = (02N , δ)) = g
(
(02N ⊕ σ2

GKP(M⊤M + I2M )), (02N , δ)
)

. (153)

The corresponding moment generating functions are

MX(t) = exp
{

−1
2t

⊤(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤)t
}

, (154)

MY (t) = exp
{

−1
2t

⊤(02N ⊕ σ2
GKP(M⊤M + I2M ))t

}
. (155)

Let Z = X + Y . Since X and Y are independent, then

MZ(t) = MX(t)MY (t) (156)

= exp
{

−1
2t

⊤
[
(I2N ⊕ M⊤Ω)Vx(I2N ⊕ (M⊤Ω)⊤) + (02N ⊕ σ2

GKP(M⊤M + I2M ))
]
t

}
, (157)

and we have

(92) = P (Z = X + Y ) = (150). (158)

This complete the proof.
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