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REGULARIZATION OF THE HILL FOUR-BODY
PROBLEM WITH OBLATE BODIES

EDWARD BELBRUNO, MARIAN GIDEA, AND WAI-TING LAM

ABSTRACT. We consider the Hill four-body problem where three oblate,
massive bodies form a relative equilibrium triangular configuration, and
the fourth, infinitesimal body orbits in a neighborhood of the smallest
of the three massive bodies. We regularize collisions between the infin-
itesimal body and the smallest massive body, via McGehee coordinate
transformation. We describe the corresponding collision manifold and
show that it undergoes a bifurcation when the oblateness coefficient of
the small massive body passes through the zero value.

1. INTRODUCTION

We consider the Hill approximation of the circular restricted four-body
problem with oblate bodies, on the motion of an infinitesimal body under
the gravitational influence of three massive bodies of oblate shapes; the
three bodies are assumed to be in a relative equilibrium triangular config-
uration, and the motion of the infinitesimal body is assumed to take place
in a neighborhood of the smallest of the three bodies, which we think of as
an asteroid. See [BGCG™20]. The resulting gravitational field in the Hill
approximation contains a non-Newtonian term which depends on the oblate-
ness coefficient of the asteroid. We use McGehee coordinates to regularize
collisions between the infinitesimal body and the asteroid, which amounts to
blowing up the collision set to a manifold that captures the dynamics in the
singular limit. (Note that, due to the non-Newtonian term in the potential,
the Levi-Civita regularization does not apply to this setting.) We describe
the collision manifold and the regularized dynamics in a neighborhood of it.
We show that each collision solution is branch regularizable, and each ex-
tension of a collision solution is a reflection. We also show that the collision
manifold is not block regularizable. Moreover, we show that the collision
manifold undergoes a double saddle-node bifurcation as the oblateness coef-
ficient of the asteroid passes through the zero value. When the shape of the
asteroid becomes prolate, no collisions between the infinitesimal body and
the asteroid are possible.

The four body system that we consider here can be viewed as a model for
the Sun-Jupiter-Hektor-Skamandrios system; Hektor is a Jupiter’s trojan
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asteroid, and Skamandrios is a moonlet of Hektor. Hektor’s shape can be
approximated by a dumb-bell figure and has one of the largest oblateness
coefficients amongst objects of similar size in the solar system [Des15]. The
moonlet Skamandrios appears to have a complicated orbit, which is close to
1:10 and 2:21 orbit/spin resonances; a small change could potentially eject
the moonlet or make it collide with the asteroid [MDCR™*14]. This justifies
our interest in understanding collision orbits.

McGehee coordinate transformation was introduced in [McG81] to reg-
ularize collisions in a central force field of the form U(x) = |[x|™%, where
x € R? and o > 0. He also introduced the concept of branch regularization.
A solution is branch regularizable if it has a unique real analytic extension
past the collision. Branch regularization concerns the extension of indi-
vidual solutions. The concept of block regularization considers collective
extensions of solutions; it was introduced by Easton in [Eas71] who referred
to it as ‘regularization by surgery’. A flow is called block regularizable if it
is diffeomorphic to the trivial parallel flow in a deleted neighborhood of the
collision set.

McGehee transformation has been applied to show the existence of ejection-
collision orbits, which start and end at a collision. Llibre showed analytically
the existence of ejection-collision orbits in the restricted three-body problem
[L1i82], Lacomba and Llibre showed numerically the existence of transverse
ejection-collision orbits in the Hill problem for some value of the energy
[LL88], while Delgado-Fernandez showed analytically the existence of such
orbits for all sufficiently small energies in [Fer88]. Other related works in-
clude [Dev81, Pin95, ORS18, ARBMO21].

McGehee regularization can also be applied to quasi-homogeneous central
force fields of the form U(x) = ~1|x|™* + 1 |x|~*2, with vy, 72, a1, 9 > 0;
see [SSMO00]. Belbruno used McGehee transformation to regularize colli-
sions with a black hole in [BP11] in order to establish the relationship be-
tween the null geodesic structure of the Schwarzschild black hole solution,
and the corresponding inverse-cubic Newtonian central force problem. Bel-
bruno and collaborators also used the McGehee transformation to study
the regularizability of the big bang singularity, including the case when
random perturbations modeled by Brownian motion are present in the sys-
tem [Bell3, XB14, BX18]. Other applications of related interest include
[DMS00, GM14, EIB09, ORS22].

A contribution of our work is that we perform McGehee regularization of
collisions in a four-body problem (rather than in a central force field), where
the non-Newtonian part of the gravitational potential is owed to the shape
of the body. As a matter of fact, our work assumes a more general setting, of
a Hill four-body problem with a general quasi-homogenous potential, which
includes the oblateness effect as a particular case. Another contribution is
that we perform a bifurcation analysis as the oblateness coefficient varies,
with the surprising conclusion that collisions cease to occur as we switch
from oblate to prolate shape.



2. SETUP AND MAIN RESULT

2.1. Hill four-body problem with oblate bodies. In this section we
describe the Hill approximation of the circular restricted four-body problem
with oblate massive bodies. This problem concerns the dynamics of an infin-
itesimal body (particle) moving in a plane under the gravitational influence
of three oblate bodies of masses m; > mo > mg, but without influencing
their motion. We refer to these three bodies as primary, secondary, and ter-
tiary, respectively. We express the gravitational potential of each body in
terms of spherical harmonics truncated up to second order zonal harmonic,
that is,

(21)  Vi(ai, 0, 23) = mT + mT <]:”i>2 <C220> (3 (%)2 - 1>

where 7 = (22 + 23 + 23)'/2, R; is the average radius of the i-th body, and

the gravitational constant is normalized to 1. The dimensionless quantity
Ci, is the coefficient of the zonal harmonic of order 2, with C%, < 0 for an
oblate body, C%, = 0 for a spherical body, and C%, > 0 for a prolate body.
Further, we denote C; = C},R?/2.

For the circular restricted four-body problem, the assumption is that the
three massive bodies are in a relative equilibrium configuration, that is,
they move on circular orbits around their center of mass while preserving
their mutual distances constant over time. In the case when the bodies
have no oblateness, the only non-collinear relative equilibrium configuration
is the Lagrangian equilateral triangle. When the bodies are oblate, the
gravitational potential is no longer Newtonian, and the relative equilibrium
is no longer an equilateral triangle. It has been shown in [BGCG™20] that
there is a unique relative equilibrium which is a scalene triangle. Such
triangle has the property that the body with the larger C; is opposite to the
longer side of the triangle. We normalize the units of distance so that the
distance between my and ms is set to 1, and we let u; be the distance from
m1 to mg, and uo be the distance from ms to mg. See Fig. 2.1. The sides
u1 and ug are uniquely determined by the implicit equations

i B 3C13 1 3C%3
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(2.2) 1-3C) =

where we denote C;; = C; + Cj.

Given such a relative equilibrium configuration, the motion of the particle
in a vicinity of the tertiary is described by the Hamiltonian of the circular
restricted four-body problem (see, e.g., [BGCG'20]). However, the corre-
sponding Hamiltonian equations are difficult to treat analytically. Therefore
we consider below the Hill approximation of the circular restricted four-body
problem. This is derived by rescaling the distances by a factor of mé/ 3,
writing the associated Hamiltonian in the rescaled coordinates as a power



EDWARD BELBRUNO, MARIAN GIDEA, AND WAI-TING LAM

A

,
Y
up
,
/

Y

FIGURE 1. Scalene triangle relative equilibrium.

series in m:l,)/ ?, and neglecting all the terms of order O(m:l,)/ 3) in the expan-
sion. The oblateness coefficient C; also gets rescaled to ¢;

This procedure yields an approximation of the motion of the particle in an
1

O(mg/ 3)—neighborhood of the tertiary, while the primary and the secondary
are ‘sent to infinity’. We obtain a much simpler Hamiltonian than the one
for the circular restricted four-body problem, for which the contribution of
the primary and of the secondary to the gravitational potential is given by

a quadratic polynomial. Specifically, the Hamiltonian of the Hill four-body
problem relative to some convenient co-rotating frame is given by

(2.3)

1
H =2y + 43 + 3) + may1 — 219
(1—p)e 23\ 2 JUC2 73\ 2
| — 3\ —) 1) - |—= 31—) —1
Uy ul 5 ug
7 1 7 c3 33:% 9
(2 + 22+ 2D)V2 (22 + 22 + 22)3/2 \2? + 23 + o3 '
where p = m:j-inw and A; and A9 are given by the following formulas
nol(p 2o 2p 30 -p) 3p 3 &
2 ub ul u3 us  uwlud ’
(2.4) 1 2 1 2 1U2
Az:l Q_M_%+M+3_M+ 3 \/Z
2 u? ug u:{’ u% u?u% ’
where

A= (pui+ (1= p)ud)? — p(1— purug (—ut — u3 + 2ui + 2uj + 2ufuj — 1).

my 2/3C§0R22 /2.
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When we restrict to the planar problem (z3 = 0) the Hamiltonian becomes

1 1—) 11—
Hz(y%+y§)+$2y1—x1y2+( 2>x%+< 1>$§

2 2 2
2.5
(2.5) 1 N o
(22 + 23)V2 (2% + 23)3/2
where the constant terms (11@)61 and ’:% were dropped, as they do not
1 2

appear in the Hamiltonian equations. We note that in the planar problem
the oblateness of the primary and the secondary plays no role.
We denote by My, the 3-dimensional energy manifold

(2.6) M), = {H = h}.

Remark 2.1. An example of a system that can be modeled by the Hill four-
body problem is the Sun-Jupiter-Hektor-Skamandrios system [BGCG™20].
Hektor is a Jupiter Trojan, which is approximately located at Lagrangian
point L4 of the Sun-Jupiter system, thus forming an approximate triangu-
lar relative equilibrium configuration with Sun and Jupiter. Hektor is the
biggest Jupiter Trojan and has one of the largest values of the oblateness
coefficients among the objects of its size in in the Solar system. Hektor’s
moonlet, Skamandrios, can be viewed as the fourth, infinitesimal body. In
this case, the constants that appear in (2.3) are c3 = —1.327161 x 1077,
p = 0.0009533386, u; = 1 — 5.94154 x 1071, uy = 1 — 1.99318 x 10712,
A1 = 0.002144, and Ay = 2.997855.

2.2. Main result. The main result of the paper is stated below, and the
proof is given in Sections 4 and 6.

Theorem 2.2. For the system (2.5) with oblate tertiary, i.e., c3 < 0, each
collision solution is branch regularizable, and each extension of a collision
solution is a reflection. The collision manifold is not block reqularizable.

At c3 = 0 the reduced system of equations associated to the collision man-
ifold undergoes a double saddle-node bifurcation. For cs = 0, the collision
manifold is branch and block regularizable.

For the system (2.5) with a prolate tertiary, i.e., cg > 0, there are no
collisions.

The collision manifold and the corresponding reduced system of equations
are described in Section 6.
3. BRANCH AND BLOCK REGULARIZATION

We give a brief review of branch and block regularization following [McG81].
For a differential equation

(3.1) % = F(x)

with F' a real analytic vector field on some open set U € R", and ~ = %.
The standard existence and uniqueness theorem for ODE’s gives for each
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initial condition x(0) € U a unique, real analytic solution x(¢) defined on
a maximal interval (¢7,¢%) with —o0 <t~ < 0 < ¢t < +o0. Solutions for
which —o0 < ¢t~ or t7 < 400 are said to have a singularity at ¢t¥ = ¢t~ or
t* = tT, respectively.

We briefly describe the concept of branch regularization.

If x;(t) and x2(t) are solutions of (3.1), with x; ending in a singularity at
time t* and x5 beginning in a singularity at t*, and there exists a multivalued
analytic complex function having a branch at ¢* and extending both x; and
X9 when we regard the time ¢ as complex, then x1, X9 are said to be branch
extensions of one another at ¢*.

A solution x(t) of equation(3.1) with a singularity at ¢* is said to be
branch regularizable at t* if it has a unique branch extension at t*. The
extension is called a ‘reflection’ if the velocity vector reverses direction at
collision, and is called a ‘transmission’ if the direction of the velocity vector
is preserved at collision. See Fig. 2 (a) and (b).

The equation (3.1) is said to be branch regularizable if every solution is
branch regularizable at every singularity.

Now, consider the motion of a single particle in a potential field given by

(3.2) U(x) = |x|~* with x € R?.

The equation of motion is given by the second order equation
x = VU(x),

or equivalently, by the first order system

X =Yy,
y = —alx|*?x.

Letﬁz%and'yzﬁzﬂ%.

We recall the following result from [McG81]:

Theorem 3.1. A collision solution for the potential (3.2) is branch requ-
larizable if and only if v = % with p < q positive integers, ged(p,q) = 1, and
q odd.

Moreover, if p is even the extension solution is a ‘reflection’, and when p
is odd the extension solution is a ‘transmission’.

In [SSMO00] this result has been extended for quasi-homogeneous poten-
tials of the form

(3.3) U(x) = 71 |x|7% + 72|x| 72 with x € R?,
where v1,7v2 > 0, ag > a1 > 0.

Theorem 3.2. A collision solution for the potential (3.3) is branch requ-
larizable if and only if both
2 min(ay, ag)

, an
2 + max(aq, a2) 2 4+ max(aq, a2)




are of the form g with p < q positive integers, gcd(p,q) = 1, and q odd.

We now describe the concept of block regularization. Denote by ¢! =
¢(-,t) the flow of (3.1).

A compact invariant set N < U is called isolated if there exists an open
set V' € U — referred to as an isolating neighborhood — such that N < V' is
the maximal invariant subset of V.

Let B € U be a compact set with non-empty interior, and assume that
the boundary b = 0B of B is a smooth submanifold. Define

b ={x e b|¢(x,(—¢,0)) n B =, for some ¢ > 0},
b™ ={xeb|¢(x,(0,¢)) n B =, for some ¢ > 0},
t ={x € b| ¢(x,0) is tangent to b}.

The set B is called an isolating block if bt n b~ = t.

If N is an isolated invariant set, we say that B isolates N if the interior set
Int(B) of B is an isolating neighborhood for N. For every isolated invariant
set N there exists an isolating block which isolates N. If B is an isolating
block, then there exists an isolated invariant set IN (possibly empty) which
is isolated by B. See [CET1].

The asymptotic sets to N are defined by

a® ={xeb"|¢(x,(0,+x)) c B}
a” ={xeb” |¢(x,(—x,0)) c B}
The map across the block is defined as
d:bM\at - b \a,
P(x) = o(x,T(x)),
where T'(x) = inf{t > 0] ¢(x,t) ¢ B} is the time spent inside the block.

If B is an isolating block, then the application ® is a diffeomorphism. See
[CET1].

An isolating block B is said to be trivializable if the map ¢ extends
uniquely to a diffeomorphism from b* to b™.

The theory of isolating blocks can be applied to singularities by essentially
replacing the role of an isolated invariant set N as above with the set of
singularities, as we shall see below.

In Section 4 we will see that, going through regularized coordinates and
time rescaling, the set of singularities for (2.3), which consists of the origin,
gets transformed into an invariant set, which is in fact a manifold (referred
to as a collision manifold).

Let F(x) be a vector field defined on U\N, where N is a compact set
representing the singularities of the vector field. Let B € U be compact set
with non-empty interior, such that b = ¢B is a smooth submanifold, and
with b "N = ¢&. Define the subsets b*, b~ < b in the same way as above.
Under these conditions, the definition of an isolating block is the same as
before.
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(a) (b) (¢) (d)

Ficure 2. Different types of singularities: (a) branch reg-
ularizable — reflection, (b) branch regularizable — transmis-
sion, (c) block regularizable — the sets at, a~ associated to
the block B are marked by dotted and solid lines, respec-
tively, and the set ¢ is marked by empty circles, (d) not block
regularizable — same convention as in (c).

The orbit through a point x is defined by
O(x) = {o(x,t) | p(x,t) is defined }.

That is, there are no invariant sets in B.
An isolating block B is said to isolate the singularity set N if N < Int(B)

and if O(x) ¢ B for all x € B\N.
The asymptotic sets to N are defined by

a” ={xeb"|¢(x,t) e B for all t > 0 for which ¢(x,t) is defined}
a  ={xeb | ¢(x,t) € B for all ¢t <0 for which ¢(x,t) is defined}.

We define the map across the block ® : bT\a™ — b~\a™~ as before.

The singularity set IN is said to be block regularizable if there exists a
trivializable block B which isolates N. See Fig. 2 (c) and (d).

Regarding block regularization we recall the following result from [McG81]:

Theorem 3.3. A collision set for the potential (3.2) is block regularizable
if and only if B =1 — % for n positive integer.

4. MCGEHEE TRANSFORMATION

We rewrite the Hamiltonian (2.5) in a simpler form

H =%(yf + y2) + zoy1 — 2132 + A2? + Bl
(4.1) 1 c
NG R
where ~ = %, and 1 < v < a. The corresponding potential is quasi-

homogeneous.



In the case of the potential (2.5), we have

(4.2)

1-— 1-—
v=1 a=3 A= Az A1

) B = )
2 2

)\1, )\2 >0, c=—cs.

We identify z,y € R? with the complex numbers x; + ixo, y1 + iy2, Te-
spectively. The corresponding Hamilton equations are

_aiy =
oH _ VT acx
or _‘x|u+2 B ’x‘a+2

x Yy — iz,

(4.3)

where T is the real-linear transformation given by T'(xy + ize) = 24z +
2Bxyi, and |z| = (27 + 23)'/2.

We perform a coordinate change to new real coordinates (7,6, v,w), with
r >0 and 6 € T, defined as follows

z =rYe',
4.4 )
(“.4) Yy =r775(v + iw)ew,
where
o 1 2
= — dy=—-= )
B g ANET B+1 a+2

Writing (4.4) in terms of components we have

x1 =77 cosb,

T9 =77 sin 6,

4.5
(45) y1 =r 7P (vcosh — wsinh),

yo =r P (vsin @ + wcos 0).

The new coordinates (r, 6, v, w) in terms of the old coordinates (z1, x2, y1,y2)
are given by

1
r=lz|7,
0 =arg(x),
(4.6) g(x)
v =r"%(y1 cos 0 + ya sinh),

w =r"?(—y; sin 6 + yo cos 6).

The new coordinates are known as the McGehee coordinates [McG81]. We
rewrite the Hamiltonian equations (4.3) in the new coordinates and equate



10 EDWARD BELBRUNO, MARIAN GIDEA, AND WAI-TING LAM

the real and imaginary parts on the two sides. From
T = _’yrvflf" + irvé] e,

oH |

oy L

Y= _—ﬁ’yrfmflf(v +iw) + Tﬁﬁw(i) + W) + 7’757(1} + zw)z@] et

P (v + iw) — ir”] e,

= | =Br P (v + iw) + r P (0 + i) + 7P (v + dw)i(rw — 1)] e,
oH [ uvr? acr? Vw4 N N
—a = 7_707(1/4-2) ey L ] e —2Ar7 cosf — i2Br” sinf

= [—1/7"7(_1_”) — aer’ Y iy 4 w)r 7P

+277(—Acos? — Bsin? 6) + i2r7 (A — B) sin  cos 9] et

we obtain
=8+ 1)v,
0 =rlw— 1,
2 2
(4.7) B :BU Tw ac _ v — 2Ar cos® 0 — 2Br sin® 0,
r ry(v+2)-1
-1
:M +2(A — B)rsinf cosé.

r

In the above, after equating 2 = %—I; we obtain 7 = (8+1)v and 6 = r~lw—1,

which we substitute in the equation for 7. We also use that 1=y - B,
—vB =~ —1, and o = 28. The fact that T is real-linear transformation
but not-complex linear is taken into account when factoring out e in the
equation for —%—ZI by expressing Tx = (Txe™)e.

The equations (4.7) have a singularity at 7 = 0. We remove the singularity
by introducing a new time parameter 7 given by

(4.8) dt = rdr.

The equations (4.7) expressed in terms of the new time 7 become
' =(8 + 1)vr,
0 =w —r,

4.9
(4.9) v =(Bv? + w? — ac) — pr2=7W+2) 9 A2 052 9 — 2B7r? sin? 0,

w =(8 — 1)vw + 2(A — B)r?sinf cosf,

where’ = L. Since v < a, we have that 2—~(v+2) > 0. Thus, the obtained
differential equations have no singularity at » = 0; the singularity has been
‘removed’. We also note that the terms vr2~7#+2) —24r2 cos? § —2Br? sin” 0
and 2(A — B)r?sinf cosf tend to 0 as r — 0, so they can be neglected for
r sufficiently small.
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The energy condition H = h in the new coordinates, when we use (4.5),
becomes

1
28 (0% + w?)
2
(410) 4 2(-8) gip (v cosf — wsin ) — 71 cos B(w cos 6 + vsin §)
+ Ar? cos® 0 + Br¥'sin?0 — v — er 7 = h,
which, after multiplying both sides by r27# = 2727 yields

2 2
—2
(4.11) w —rw + TQ(A cos2 0 + B sin? 9) o T27'y(u+2) — 2727,

We define the energy manifold M, as the set of points (r, 6, v, w) satisfy-
ing (4.11). When r = 0 the energy condition (4.11) reduces to

(4.12) v? + w? — 2¢ = 0.

Remark 4.1. In the case of the potential (3.2), one obtains a system of
4-equations similar to (4.9):

' =(B8+ 1)vr,
0 =w,

(4.13) v =B(v? - 2) + w?,
w' =(8 - 1w,

This system is partially decoupled — the first two equations are determined
by the last two equations. Also, the energy manifold M projects onto
{v? + w? < 1} when h < 0, onto {v? + w? > 1} when h > 0, and onto
{v? + w? = 1} when h = 0. See[McG81].

In the case of our system (4.9) the second equation has an extra term
owed to the Coriolis effect in (2.3), the third equation has extra terms owed
to oblateness and to the effects of the primary and secondary, and the fourth
equation has an extra term owed to the effect of the primary and secondary.

Also, the system (4.9) is fully coupled, and there is no obvious relation
between the regions bounded by v? + w? = 2c in the (v, w)-plane and the
energy h.

Writing the energy condition (4.11) as

2+ w? —2¢
2

1 v? + w? — 2¢
r2=2y ( 2

— 12" h 4 rw — 12 (Acos? 0 + Bsin?0) + 2702 or

1 1
- w + r?7(Acos? 0 + Bsin® ) — —,
rl=2v rvY
we see that for 7 « 1 the sign of h is the same as the sign of v? + w? — 2c.
Thus, the points in My, with A > 0 and r ~ 0 project onto {v? + w? > 2¢}
and the points in My, with h < 0 and r ~ 0 project onto {v? + w? < 2¢}.
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5. EQUILIBRIUM POINTS AND HILL REGIONS

A straightforward computations shows that (4.9) has 6 equilibrium points,
which in terms of the (r, 6, v, w)-coordinates are given by

& =(0,00, £V2¢,0),
(51) éal :(7"1,0,0,7’1), 52 = (7’1771'70,7'1),
53 :(7'2,7T/2,0,7’2)’ @@4 = (7’2,371'/2’0,7’2),

for arbitrary 6y € T', r; being the solution of

(5.2) r2(1 —24) — > 72 _ e =0,
and 79 being the solution of
(5.3) r2(1 — 2B) —vr? 7+ _ e = 0.

Note that (5.2) and (5.3) have unique solutions. The equilibrium points
&1, 8, 63,8, are the same as the z- and y-equilibrium points for the Hill
four-body problem in [BGCG™20], respectively (referred to as Ly, Lo, L3, Ly
in [BG16]). The points &1, & are of center-saddle type; the points &3, &) are
of center-center type provided that p is less than some critical value pie,. On
the other hand, &% form circles of equilibrium points. The eigenvalues at
each point of &y are

0, (8 + 1)V2¢, £28V2¢, +(3 — 1)V 2c.

The circle & has a 4-dimensional unstable manifold and the circle & has
a 4-dimensional stable manifold, which necessarily coincide.
The effective potential for the system (4.1) is

1 c
+ )
(] +23)2 (2] + 23)2/?

which, written in McGehee coordinates becomes

1
Q(.Z'l,xg) = 5 (AQ.Z'% + )\1.73%) +

1
Q(r,0) = 5 (2?7 cos®(0) + M7 sin?(0)) + 777 + er™ 7.

Then the Hill region for an energy level h, defined as the projection on the
energy manifold onto configuration space, represents the region of possible
motions, and is given by

{(r,0)19(r,0) = —h}}

which, after multiplying both sides by r2~2Y becomes
1
{(r, 0) | 5 ()\27"2 cos?(A) + A7 sin2(9)) 42D g g2 > 0}

The Hill region for the energy levels below, at, and above that of the equi-
librium points &1, &, is shown in Fig. 3.

The system (4.9) allows the study of the dynamics both near and far from
collisions. In particular, it can be used to compute families of orbits that
start far from collision and tend asymptotically to collision. For example, we
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Ficure 3. Hill region for energy levels below, at, and
above that of &1,8 in McGehee coordinates: (a) in (r,6)-
coordinates, (b) in (x,y)-coordinates.

can compute the so called ‘long’ and ‘short’ period families of periodic orbits
near &3, &y, which were studied in [BG16]. Such families of periodic orbits
were originally considered in [DJPT67] in the context of the planar circular
restricted three-body problem, where they emanate from the center-center
equilibrium points L3 and L4. Such equilibrium points do not exist in the
Hill three-body problem, but they appear in the Hill four-body problem, as
noted in [BGG15]. The long period family of orbits undergoes a bifurcation
with the short period family, and the short family approaches a collision with
the tertiary as the energy h tends to +00. An orbit from the short period
family, computed in both Cartesian and McGehee coordinates, is shown in
Fig. 4.
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FIGURE 4. Short period orbit near collision: (a) in (x,y)-
Cartesian coordinates, (b) in (z,y)-Cartesian coordinates —
magnification near the tertiary (marked by *) and the &1, &,
&3, & equilibrium points (marked by +), (c¢) in (r,0)-
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6. COLLISION MANIFOLD

From (4.12), the intersection between the energy manifold My, and the
3-dimensional hyperplane

Z={r=0}
is a 2-dimensional manifold corresponding to collisions
(6.1) N ={H =h} n {r =0}.
It is referred to as the collision manifold. Thus, from (4.12) we obtain that
(6.2) N = {(r,0,v,w)|r =0,0 € T', v* + w? = 2¢},

so the collision manifold is a 2-dimensional torus provided ¢ > 0. Note that
this torus is independent of the energy level h, and is the boundary of each
energy manifold Mjy,.

The collision manifold is an isolated invariant set for the flow of (4.9). If
a trajectory approaches the singularity, i.e., r — 0 as t — *t*, then in the
(r,0,v,w) coordinates the trajectory approaches the collision manifold N as
7(t) — Foo. The argument is the same as in [McG81].

Since r’ = 0 when r = 0, it follows that the set Z is invariant under the
solutions of the system (4.9). Thus, we can consider the restriction of (4.9)
to Z, which is given by

0 =w,
(6.3) v =pv? +w? - ac,
w' =(8 - 1)vw.

The dynamics on Z is the skew product between the dynamics in the vari-
ables (v, w) and the dynamics in . See Fig. 5. The solution of the equation
in € is determined by the solutions of the (v, w)-subsystem, which is inde-
pendent of . We refer to the (v, w)-subsystem of (6.3) as the reduced system
associated to the collision manifold.
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FicUrE 5. The dynamics on N and Z

Define
(6.4) K = |w|*v? + w? — 2¢|*77.

We claim that K is an integral of motion for the (v, w)-subsystem of (6.3).
Indeed, using (6.3) we obtain

K' =alw|* W' |v? + w? — 2¢|'F + Jw|¥? + w? — 2¢| 7P (200 + 2ww')
—a|w|* (B — Dow|v? + w? — 2¢|*F
+ Jw]®w? + w? — 2¢ 7P (20(Bv? + w? — ac) + 2w (B — 1)vw)
=|w|* Ho? + w? — 2¢|7P(B — 1)vw [a(v® + w? — 2¢)
—2(8v? + w? — ac) — 2(8 — Dw?]
=0.

By (6.2), the collision manifold N intersects the (v, w)-plane along the 0-
level set of the integral K.

We now describe the geometry of the (v, w)-subsystem. The equilibrium
points are Sy = (++v/2¢,0) and Q4+ = (0, ++/ac). The circle

C = {v? + w? = 2¢}

is invariant under the flow of the subsystem, and passes through the points
Syt. Thus, Sy correspond to points on the collision manifold N, while @+
do not.

The circle C in the (v, w)-plane corresponds to the collision manifold N,
while the other orbits of the (v, w)-subsystem represent projections of orbits
on various energy levels onto the (v, w)-plane.

The eigenvalues of the linearized system at )+ are

+4/2(8 — 1)aec,
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and since one is positive and the other is negative, both points are saddle
points. The eigenvalues of the linearized system at Sy are

+28vV2¢, +(8 —1)V2e.

Both eigenvalues at S, are positive hence this is a source. Both eigenvalues
at S_ are negative hence this is a sink. The line w = 0 is also invariant
under the flow, where v/ < 0 for |v| < v/2c and v’ > 0 for |v| > v/2c. The
phase portrait is shown in Fig. 6.

Each point @4+ has 1-dimensional stable and unstable manifolds in the
(v, w)-plane; these manifolds are asymptotic to S+. In the full phase space,
the points Q4 lie on circular orbits ¢4 given by

r=0, 0=0)+ttyac, v=0, w==++ac, fortelR,

of energy +00. Each circle %y has 2-dimensional stable and unstable mani-
folds in Z.

The points Sy lie on the circles of equilibria & contained in N. The
circle & has a 2-dimensional unstable manifold in IN, while the circle &_
has a 2-dimensional stable manifold in N; the stable and unstable manifolds
coincide. In Z the circle & has a 3-dimensional unstable manifold, and the
circle &_ has a 3-dimensional stable manifold; these manifolds coincide as
well.

We summarize the type of orbits that appear near collision:

Orbits beginning and ending in collision: These orbits form an
open set in the phase space, representing the branch of the unstable
manifold of &, that coincides with a branch of stable manifold of
&_. Such orbits correspond to initial conditions whose projection
onto the (v, w)-plane is in {(v,w)|v? + w? < 2c}.

Orbits that only begin or only end in collision: These orbits form
open sets in the phase space, representing the branches of the un-
stable manifold of & and of the stable manifold of &_, respectively,
whose projection onto the (v, w)-plane is in {(v,w) |v? + w? > 2c}.

Asymptotic orbits than begin or end in collision: These orbits
represent branches of the stable and unstable manifolds of the hy-
perbolic invariant circles €.

Swing-by orbits: These are orbits coming from afar, passing near the
hyperbolic invariant circles %4, and then moving away.

Recall that for the system 2.5 we havev =1, a = 3, 8 = %, and v = % By
Theorem 3.2 it follows that each collision solution is branch regularizable.
Since p = 2 is even, each extension solution is a ‘reflection’.

By examining Fig. 6 we observe that the collision manifold N is not an
isolated invariant set, and therefore it is not block regularizable. This agrees
with the case of the potential (3.2), where for 5 > 1 the collision manifold
N is not an isolated set.

As ¢ — 0, the two saddles, the source, and the sink coalesce through a
double saddle-node bifurcation. See Fig. 7.
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FIGURE 6. Left: ¢ = 1. Right: ¢ = 0.1.

For ¢ = 0 the collision manifold is reduced to a point, and it is both
branch and block regularizable.

We now discuss the case when ¢ < 0. This describes a situation when the
tertiary is a prolate body, In this case the set of (v, w) with v? + w? = 2c is
the empty set. Thus the collision set N is empty. Then the (v, w)-subsystem

v =Bv? + w? — ac,

05 w' =(8 — vw,

has the property that v > 0. The phase portrait is shown in Fig. 7. In this
case there are no collisions.

The physical interpretation is the following. Denoting ¢ = —¢ where
¢ > 0, the Hamiltonian (2.5) becomes

1
H =§(y% + y%) + xoy1 — T1Yy2 + Aﬂﬁ% + Bﬂﬁg

|$|V/2 |x|a/2'

The term _|96|+/2 in the potential corresponds to an attractive force, and the
term Im‘\%/? corresponds to a repulsive force. When the particle approaches
the tertiary, since 1 < v < « the repulsive force becomes dominating, pre-
venting collisions between the particle and the tertiary to occur. This situ-

ation is also described in [Saa74].

Remark 6.1. One can consider a simple model that takes into account the
size of the asteroid. Since v =1, a =3, 8 = %, and v = %, the powers of r
that appear in (4.9) are

P2V HY) — 45 s 2,
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FIGURE 7. Phase portrait of the (v, w)-subsystem: (a) ¢ = 0,
(b) ¢ = —1.

We can neglect the powers r* of r with k > 4/5. Then collisions correspond
to setting r = Rj, the average radius of the tertiary; in the case of Hektor,
in the normalized units R3 = 1.18716 x 10~7. Then (4.9) yields

0 =w,
(6.7) v =(Bv? + w? — ac) — l/Rg_W(”H),
w' =(8 — 1)ovw.

This system is essentially the same as the system (6.3) with the term —ac

replaced with the term —ac — VRg_'Y(VH). Then the analysis of collisions is
similar to the one above. Another possibility could be to neglect the powers
r® of r with & > 1. Of course, it is possible to consider more sophisticated
models that take into account the dumbbell shape of Hektor or more general
asteroid shapes, in which case the gravitational potential (2.1) needs to be
modeled differently, e.g., [LGZ21].

Remark 6.2. There are several moons in the Solar System that are considered
to be approximately prolate spheroids in shape, for example, Uranus’ moons
Cordelia, Cressida, Desdemona, Juliet, Ophelia, and Rosalind.

Remark 6.3. The (v, w)-subsystem of (6.3) is undergoing another bifurcation
at & = 2 when ¢ > 0 is held fixed. When a = 2 the points Q4+ lie on the
collision manifold. When a < 2, the points Q4 become centers, and the
points S4 become saddles. The phase portrait is as in Fig. 8.

Remark 6.4. In the case when ¢ = 0, the term —# in (4.1) vanishes. Then

one can perform the coordinate change (4.4) with v = ZJ% and f = 3,
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FIGURE 8. Phase portrait of the (v, w)-subsystem for o < 2
and ¢ > 0.

—
@b

FIGURE 9. Phase portrait of the (v, w)-subsystem for ¢ = 0

with the coordinate change (4.4) with v = 2%} and = 3.

as in [McG81]. The resulting collision manifold is a torus which intersects
the (v,w)-plane in a circle as in Fig. 9. Note that the phase portrait is
qualitatively the same as in Fig. 8. It contains two circles of equilibria
located at v = ++/2 and a cylinder of orbits given by w = 0 connecting the
two circles. The collision set is both branch and block regularizable. It is
interesting that this coordinate change leads to a different collision manifold
from the one in (6.2), but nevertheless its branch and block regularization
properties are the same.
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7. CONCLUSIONS

In this paper we provide an explicit McGehee coordinate transformation
to regularize collision in the planar Hill four-body problem with oblate bod-
ies. This transformation can be used to understand the behavior of collision
and near-collision orbits. In particular, our formulas can be implemented in
numerical integrators to compute orbits that pass close to an oblate Jupiter’s
trojan asteroid.

We also describe the collision manifold and show that it undergoes a
bifurcation as the oblateness coefficient of the asteroid passes through the
zero value. We note here that the bifurcation observed for this system is
very different from the one described by [McG81] for the potential energy
U(x) = |x|~® in (3.2), which undergoes a bifurcation when the parameter o
passes through the critical value a¢, = 2.

It is interesting to note that when the oblateness approaches zero (and
hence the gravitational potential becomes Newtonian), the limiting collision
manifold that we obtain is not the same as the collision manifold obtained
by applying the McGehee coordinate transformation to the Newtonian po-
tential. It would be interesting to see if there is a McGehee-type coordinate
transformation for which the limiting collision manifold is the same as in
the Newtonian case. Another interesting problem would be to extend these
results to the spatial Hill four-body problem with oblate bodies.
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