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Abstract

Optimal treatment regimes (OTRs) have been widely employed in computer science and
personalized medicine to provide data-driven, optimal recommendations to individuals. How-
ever, previous research on OTRs has primarily focused on settings that are independent and
identically distributed, with little attention given to the unique characteristics of educational
settings, where students are nested within schools and there are hierarchical dependencies. The
goal of this study is to propose a framework for designing OTRs from multisite randomized
trials, a commonly used experimental design in education and psychology to evaluate educa-
tional programs. We investigate modifications to popular OTR methods, specifically Q-learning
and weighting methods, in order to improve their performance in multisite randomized trials.
A total of 12 modifications, 6 for Q-learning and 6 for weighting, are proposed by utilizing
different multilevel models, moderators, and augmentations. Simulation studies reveal that all
Q-learning modifications improve performance in multisite randomized trials and the modifica-
tions that incorporate random treatment effects show the most promise in handling cluster-level
moderators. Among weighting methods, the modification that incorporates cluster dummies
into moderator variables and augmentation terms performs best across simulation conditions.
The proposed modifications are demonstrated through an application to estimate an OTR of
conditional cash transfer programs using a multisite randomized trial in Colombia to maximize
educational attainment.

Keywords: Optimal treatment regimes, Optimal treatment rules, Personalized learning, Q-
learning, Weighting, Multilevel data, Clustered data, Conditional cash transfer

1 Introduction

Treatment effect heterogeneity has emerged as a critical concern in the social sciences when
subpopulations exhibit differential gains from treatments. Treatment effects can differ from one
subject to another and vary across subgroups. To address this heterogeneity from randomized
control trials or observational studies, researchers in education and psychology have explored
different approaches, including interactions, random effects, and finite mixture models (Feller &
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Gelman, 2015; Raudenbush & Schwartz, 2020). More recently, machine learning methods have
been increasingly employed to estimate heterogeneous treatment effects or conditional average
treatment effects (CATESs) (e.g., Chernozhukov et al., 2018; Hill, 2011; Wager & Athey, 2018).
While these various methods allow researchers to detect and estimate effect heterogeneity, there
is limited research on how to utilize heterogeneous treatment effects to make informed decisions
about optimal treatment allocation, especifically in the fields of education and psychology. The
overarching goal of this paper is to propose a framework for designing optimal, data-driven
educational policies by incorporating recent advances in personalized medicine and adapting
them to multisite educational contexts.

Currently, data-driven, personalized recommendations have been popular in fields outside
of education and psychology, notably in computer science, personalized medicine, public policy,
and, most recently, criminal justice reform (e.g., Agniel et al., 2020; Murphy, Lynch, et al.,
2007; Murphy, Oslin, et al., 2007; Nabi et al., 2019). In particular, in personalized medicine,
there is now a widely accepted belief that every individual can benefit more from a data-driven,
personalized treatment plan informed by vast amounts of historical patient data rather than a
one-size-fits-all treatment plan for every patient (Tsiatis et al., 2019). A popular data-driven,
recommendation model in personalized medicine is based on optimal treatment regimes (OTRs).
OTRs use the observed effect heterogeneity (e.g., CATE estimates) under different treatment
plans to find a decision rule that maximizes an outcome of interest (Chakraborty & Moodie,
2013; Murphy, 2003); see Section 3 for more details.

As a concrete example, suppose we are interested in developing an optimal regime for a
conditional cash transfer (CCT) program to maximize students’ attendance in school and we
want to decide whether to recommend them for two students, say Emma and Peter, who come
from economically disadvantaged backgrounds (Barrera-Osorio et al., 2011a). A decision rule
can recommend both Emma and Peter to receive the CCT program, irrespective of their char-
acteristics like age, grade, or family income, given the overall positive impact of the program,
but the rule may not be optimal. In an optimal decision rule, Emma may be recommended
to attend the CCT program because she is expected to show a strong positive effect given her
characteristics, whereas Peter may be recommended not to receive the CCT program because of
a potential negative effect. A critical feature of a personalized CCT program is that it considers
each student’s characteristics and finds an optimal decision rule that maximizes student attain-
ment in school. But unfortunately, there is little research on translating OTRs to educational
settings based on the potential effect heterogeneity and developing methodologies specifically
tailored to the context of education and psychology.

In contrast, the field of personalized medicine has led to significant methodological advances
in designing optimal recommendations. Common methods for OTRs include Q-learning (Q
denoting “quality”; Murphy, 2005; Watkins & Dayan, 1992) and weighting methods (e.g.,
Chen et al., 2017; Qian & Murphy, 2011; Zhang et al., 2012; Zhao et al., 2012). Q-learning
is based on outcome regression and involves two steps for constructing an optimal regime. In
contrast, a weighting approach uses the treatment model and a part of outcome regression,
while also directly searching for an OTR; see Section 3 for more information on Q-learning and
weighting. These OTR methods have been designed for what we call single-level data, where
study units are assumed to be independent and identically distributed (i.i.d.). When applied to
clustered or multilevel data, there is no guarantee that they will produce consistent estimates
for the OTR. Therefore, existing OTR methods may need to be modified to account for the
underlying clustering or multilevel structures and to yield more precise and consistent estimates
of the OTRs in multilevel studies. However, it remains an open question as to how to exactly
make such modifications for different types of OTR methods.

The main goal of this paper is to investigate how to modify Q-learning and weighting meth-
ods to estimate an OTR robustly from multisite randomized trials that are frequently employed
to evaluate programs or policies in education and psychology. Briefly, multisite randomized



trials involve randomization of individuals into treatment and control groups within clusters.
We define a total of 12 modifications—6 modifications for Q-learning and 6 modifications for
weighting—by using different multilevel models, different sets of moderators (i.e., variables that
interact with treatment), or different augmentations. Briefly, the proposed multilevel OTR
methods based on Q-learning use different multilevel outcome models, such as fixed effects mod-
els, random effects models, or hybrid models. The proposed weighting methods for multilevel
OTRs are fine-tuned by adding cluster dummies to moderator variables and/or augmentation
terms; see Section 4 for details. We evaluate the performance of these modified OTR methods
in comparison to their counterparts without modifications by measuring several performance
criteria including accuracy and F1 score, which are used for binary classification. Finally, we
demonstrate the modified OTR methods by designing an optimal regime for CCT programs us-
ing data from a multisite randomized trial in Colombia. We hope that multilevel OTR methods
will aid in the design of more accurate, data-driven, optimal policies for individuals in education
and the social sciences.

The remainder of the paper is organized as follows. Section 2 presents the setup, and Section
3 reviews the definition and estimation methods of OTR in i.i.d data settings. In Section 4,
we discuss our proposed modifications for OTRs in multisite randomized studies. Section 5
outlines the design of our simulation study and presents its results. Section 6 demonstrates our
proposals in empirical data about CCT programs. Finally, we provide discussion and conclusions
in Section 7.

2 Setup

2.1 Notation, Decision Rule, and Potential Outcomes

Consider an i.i.d. sample of n study units, indexed by ¢ =1,2,...,n from a randomized study.
Let T; € T = {0, 1} denote the treatment where T; = 1 indicates that individual i was treated
and T; = 0 indicates that individual 7 was untreated. Let Y; denote the observed outcome for
individual i, where larger values are assumed to be preferable without loss of generality. We
denote X; € X as finite-dimensional observed covariates available on individual i. To keep the
notation simple, we define the first element of X; to be 1 (denoted as Xy; = 1 for all i), so X;
can account for the intercept. A decision rule d € D is a function that maps an individual’s
covariates X; to a treatment option in 7 (Tsiatis et al., 2019), ie., d: X = T, X; — d(X;).
Here, D denotes the collection of all possible treatment rules/regimes d. As an example, consider
a decision rule of the form d(X) = I(age < 18 and income < 380000), where I(+) is the indicator
function. Under this rule, an individual is given the treatment if their age is less than 18
years old and their income is less than 380,000 pesos, and otherwise, they are assigned to the
control group. In practice, decision rules are often restricted by researchers’ desire for them
to be interpretable and easy to implement, while still being rich enough to encompass complex
decision-making processes. In this paper, we denote a restricted subset of D as Dg where (3 is a
finite-dimensional parameter that parameterizes the subset of decision rules considered by the
investigator.

We use the potential outcomes framework to measure the quality of a decision rule. (Neyman,
1923; Rubin, 1974). Let Y;(t) be the potential outcome that would be achieved if individual
i were to receive treatment option ¢ € T. Specifically, Y;(1) denotes the potential treatment
outcome if they were treated (7; = 1) and Y;(0) denotes the potential control outcome if they
were untreated (7; = 0). In practice, only one of the potential outcomes is observed, Y; =
T;Yi(1)+ (1 —-1T;)Y;(0), where the relation assumes the Stable Unit Treatment Value Assumption
(SUTVA; Rubin, 1986); see more explanation of SUTVA below. Also, under a given regime d,
we define the potential outcome that an individual would achieve if the treatment were assigned
according to regime d as: Y;(d) = d(X;)Yi(1) + {1 — d(X;)}Y;(0) (Tsiatis et al., 2019).
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2.2 Treatment Effects and Benefit Scores

We define CATEs and benefit scores related to the decision rule. The CATE is the average linear
contrast of potential outcomes between the treated and untreated groups among subgroups
determined by X;, and is denoted as A(x) (Chen et al., 2017; Huling & Yu, 2021; Imbens &
Rubin, 2015), i.e.,

A(x) = E{Yi(1) = Yi(0) | X; = x}. (1)

In the context of a CCT program, consider a scenario where X; includes a student’s sex Xjy;
(0O=males, 1=females) and age X9; measured in years as well as the intercept term Xo; = 1. Here,
the CATE (i.e., A(x)) represents the causal effect of the CCT program on school attendance for
a specific subgroup of individuals, defined by the values of X1; and Xy;. For example, A(1,9)
is the CATE of the CCT program on school attendance for females who are nine years old,
while A(0,10) is the CATE for males who are 10 years old. Using these CATEs, researchers
can develop a decision rule, where the treatment is recommended if the CATE is positive, and
otherwise, the control is recommended, i.e., d(X;) = I{A(X;) > 0}.1

The observed effect heterogeneity can be represented by benefit scores, which are a monotonic
transformation of A(X;) (Chen et al., 2017; Huling & Yu, 2021). A benefit score is defined
to be any mapping f(X;) that meets the following two properties: i) it is monotone in the
treatment effect A(X;) and ii) it has a known cutpoint value ¢ such that f(X;) > ¢ indicates
that the treatment is more beneficial than the control. Examples of benefit scores include
f(X;) = A(X;)/2 and f(X;) = exp{A(X;)}. Continuing with the above example, one can
design a decision rule based on benefit scores, e.g., d(X;) = I{f(X;) > 0}.

2.3 Causal Assumptions

The typical assumptions for identifying A(X;) or f(X;) are the SUTVA, conditional ignorability,
and positivity (Chakraborty & Moodie, 2013; Chen et al., 2017; Tsiatis et al., 2019). The
SUTVA means that (i) individual i’s potential outcomes are independent of others’ treatment
assignments and (ii) there is only one version of the treatment. In this paper, we assume
SUTVA holds. Also, the conditional ignorability assumption i.e., {Y;(1),Y;(0)} L T;|X; is
satisfied by design because this paper focuses on randomized trials and randomization ensures
the treatment status 7; is independent of the potential outcomes Y;(1),Y;(0) and covariates
X;. Lastly, the positivity assumption states that the propensity score, which represents the
probability of T; = 1 given the covariates X;, falls between 0 and 1. Formally, it can be
expressed as 0 < 7(X;) := Pr(T; = 1|X;) < 1. In the context of randomized experiments,
the positivity assumption is met by design because the propensity score is typically known and
free of X;. For more details on the causal assumptions, see Chapter 2 of Tsiatis et al. (2019),
Chapter 2 of Chakraborty and Moodie (2013), and Chen et al. (2017).

3 Review: Optimal Treatment Regimes

3.1 Definitions

An OTR aims to find the “best” decision rule d°?! € D that maximizes the value function V(d),
and formally, it is written as (Tsiatis et al., 2019):

doPt = ar%Er%aX V(d). (2)

!The CATE is similar to the optimal blip to zero function (Robins, 2004) comparing the expected
outcomes between the control option and a particular treatment option of interest.
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Typically, the standard value function is V(d) = E{Y(d)} = E[E{Y:i(d(X;))|X;}]. In the
observed data, an OTR d°" is characterized formally as (Tsiatis et al., 2019):

dP'(x) = argmax E(Y; | X; = x,T; = 1), (3)
teT

when the aforementioned causal assumptions hold and the standard value function is used.
That is, an optimal rule assigns treatments to individuals in a way that maximizes the average
outcomes across the population (Chen et al., 2017; Tsiatis et al., 2019).

3.2 Q-learning

As mentioned above, Q-learning for estimating OTRs is an outcome regression approach. Let
Q(x,t;8) = E(Y; | X; = x,T; = t;3) be an outcome regression model posited by a researcher
with a finite-dimensional parameter 3. If the posited outcome regression value under treatment
is larger than that under control, ie., Q(x,1;8) > Q(x,0;8), it indicates that units with
covariates x would have a larger outcome if treated. In other words, given 3, the optimal policy
based on Q-learning is equivalent to the sign of the differences between two outcome regression
values under treatment and control, i.e., d(x; 3) := I{Q(x, 1; 3) — Q(x,0; 3) > 0}. Therefore, to
find the optimal treatment rule, it suffices to compare only decision rules d(x;3) over possible
values of 3. We formally define this comparison as a decision space for Q-learning, i.e.,

Dy = {d(x; B)|d(x: B) = [{Q(x, 1; 8) — Q(x,0: 8) > 0} }. (4)

Here, the parameter for @) function, 3, also parameterizes the decision rule, and this suggests
that a simple substitution estimator for the decision rule can be constructed within the Q-
learning framework.

To estimate an optimal rule based on Q-learning, researchers first need to estimate 3 by
using appropriate parametric estimation techniques such as (quasi-)likelihood-based methods,
M-estimation methods, or the generalized estimating equations (GEE) (e.g., Liang & Zeger,
1986; Stefanski & Boos, 2002; Tsiatis et al., 2019; van der Vaart, 2000). Then, they can
construct a plug-in Q-learning estimator for the optimal decision rule using (4) as the basis.
This Q-learning estimator, denoted as cig’t, is defined as:

ciont(X) = I{Q(x,1; 8) — Q(x,0; 8) > 0} = I{A(x) > 0}. (5)

In words, the rule conpt(x) is 1 if Q(x, 1;3) is larger than Q(x, O;B) (i.e., A(x) > 0); otherwise,
Jont(x) is 0. Therefore, an alternative representation of J‘)th(x) is given by

A~

g’ (x) = argmax Q(x, t; B), (6)
teT

which means that using the rule (4) maximizes the expected value of the outcome regression.

To illustrate the procedure of Q-learning more concretely, consider a simple example where Y;
is continuous, 7; is binary, and there is only one measured covariate X1;. A linear outcome model
is Q(X;,T3;8) = Po + B1Xi + B2T; + B3 X1;T;. We first estimate B using ordinary least squares
(OLS) estimation, and we then construct an optimal decision rule based on the CATE estimates,
Bs + B3X1;. A bit more formally, from (5), the optimal rule is a%m(Xl) = I{A(Xy;) > 0}
=1 (Bg + BgXM > 0). This rule ensures that the highest expected outcome is achieved as
discussed in (6). For more details on Q-learning methods, see Chapter 3 of Tsiatis et al. (2019)
and Chapter 6 of Kosorok and Moodie (2015).



3.3 Weighting

Unlike Q-learning, a weighting method proposed by Chen et al. (2017) aims to estimate the
treatment effect or its transformation only, using the propensity score, without having to fully
specify an outcome regression. Let Z; represent a set of moderators that interact with the
treatment, where Z; C X;. Let T; = 2T;—1and T = {—1,1}, where 1 indicates treated units and
-1 indicates untreated units. Note using T = {—1,1} provides some aesthetic advantages, such as
working with only the sign of f and directly using 7" instead of 27'—1. (Kosorok & Moodie, 2015).
An outcome model with T; can be divided into two parts, E(Y; | X;,T;) = m(X;) + T, A(Z;),
where the main effect of covariates m(X;) = 0. S5{E(Y;|T; = 1,X;) + E(Y;|T; = —1,X;)} and
the treatment effect A(Z;) = 0.5{E(Y;|T; = 1,Z;) — E(Y;|T; = —1,Z;)}. A primary goal of the
weighting method is to estimate A(Z;) (or its transformation f(Z )) without estimating m(X;).
Formally, it minimizes the following objective function with respect to f(Z;):

M(Y;, T f(2))
Tim(x) + (1 - T5)/2

f(z) = argmin E
f

where 7(x) represents the propensity score. In observational studies, the propensity score needs
to be estimated from the data, and in randomized trials, one can use the known propen-
sity score or the estimated propensity score by computing the proportion of treated units.
M(y, v) represents a convex function with respect to v for each y, e.g., the squared error loss,
M(y,v) = (y —v)2. The choice of a loss function generally does not depend on the distributions
of outcomes. For instance, when working with a continuous outcome, the squared error loss is a
commonly used choice, but alternative loss functions such as the hinge loss can also be utilized.
Furthermore, one must make modeling choices for the form of f. The form of f can be simple,
such as linear forms, or it can be more flexible, such as regression trees and smoothing splines
(Chen et al., 2017; Huling & Yu, 2021). Unlike Q-learning, estimator (7) directly maximizes
a value function; see Chen et al. (2017) for more details on their internal value function and
methods.
An optimal decision rule based on the estimated benefit score f (z) is formalized as:

A% (z) = sign{f(z)} for T ={-1,1}, (8)

where the rule d7F(z) = 1 if f(z) is larger than 0; otherwise, d (z) = 0.

As a concrete example, suppose Y; is continuous, 7; is binary, and there is one measured
covariate X1;. The true benefit score model f(X;; @) = a1 + a2Xj; and the known propensity
score is 0.5 for every student. To design an optimal regime, we first choose a form of the benefit
score model, and here, we assume a linear form: f(X;;a) = XZ-Ta. We then estimate the benefit
score f using (7) with 7(X;) = 0.5 and a valid loss, say the squared error loss. After that, we use
the estimated benefit score f in (8) to make optimal decisions. We remark that & obtained from
weighting methods will not be exactly the same as B used for the decision rule in Q-learning
due to different underlying estimation procedures employed in each method.

3.4 Comparison Between Q-learning and Weighting

We end this section by comparing Q-learning and weighting methods. First, the vanilla Q-
learning method can be understood as a two-step approach. In the first step, we obtain an
estimate of the outcome regression () that can be parametric, nonparametric, or semi-parametric.
The aforementioned Q-learning is a special case where the working model is based on parametric
models. In the second step, we determine an optimal decision rule LZOth in a way that maximizes
the estimated outcome regression obtained from the first step. This procedure does not directly
search for an optimal rule over Dg (which is considered to be a collection of “good” decision
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rules), and thus, Q-learning is often called an indirect method. A problem of Q-learning is that
it can be sensitive to misspecification of the outcome model. In the extreme case, Qian and
Murphy (2011) revealed that although dgt belongs to Dg, an optimal rule from Q-learning can
be inconsistent due to a misspecified outcome model, e.g., fitting a linear model when the true
outcome model is appropriate for logistic regression. It should also be noted that evaluating
whether the outcome model is misspecified is not the primary goal for OTRs and it is often
more challenging than finding an optimal rule.

The weighting method, on the other hand, is a type of direct method, and it searches for an
OTR by directly maximizing the value function. Moreover, unlike Q-learning, it is not necessary
to estimate the model for the main effects of covariates, i.e., m(X;) in the weighting method
because m(X;) is a nuisance component (Zhao et al., 2012). Therefore, the weighting method is
more robust to the potential misspecification of m(X;). This is an important advantage because
in practice there are often many covariates used in m(X;), but far fewer treatment moderators
for A(Z;). Also, while the weighting method does not require fitting a full outcome regression
model, the function m(X;) can be augmented into the weighting method to improve efficiency.
Even if the augmented outcome model is misspecified, it does not affect the consistency of the
estimated optimal rules (Chen et al., 2017); see details of the augmentation in Section 4.2.
While both Q-learning and weighting methods are valid methods for estimating an OTR, how
the current Q-learning and weighting methods work in data that have multilevel structures and
what modifications are the most effective in such settings have not been well-explored so far.

4 Optimal Treatment Regimes with Multisite Randomized Studies

In this section, we consider a multisite randomized study with n individuals. We use the index
j=1,...,J torepresent J clusters of units, and ¢ = 1,...,n; to represent individual units within
cluster/site j. All variables now possess a subscript ij, indicating individual 7 in cluster/site j.
For example, Y;; represents the observed outcome for individual 7 in cluster j. We also assume
the SUTVA, conditional ignorability, and positivity, discussed in Section 2.3, to identify CATEs
or benefit scores. In multilevel settings, specifically, the first condition of the SUTVA implies
the absence of interference both within clusters and between clusters.

A multisite or multilevel structure in observed data can have a significant impact on treat-
ment effect estimation (Raudenbush & Schwartz, 2020) and more specifically, in this paper, the
estimation of OTRs. One potential issue is the presence of clustering effects, where individuals
within a cluster share similar characteristics, leading to a non-negligible intraclass correlation
coefficient (ICC) in the outcome or propensity score model. This is commonly observed in ed-
ucation data, where students are nested within schools, and such school effects can affect OTR
estimation through Q-learning or weighting methods. Another potential issue is that decision
rules may be influenced by both individual-level and cluster-level covariates, and unmeasured
cluster-level moderators may alter treatment decisions. In our data analysis of CCT programs,
there were no school-level covariates available, and thus, if school-level covariates acted as mod-
erators that made treatment effects heterogeneous, OTRs from default Q-learning and weighting
methods would be inconsistent. Therefore, to address these issues and produce more robust es-
timates of OTRs using data from multisite randomized trials, we propose modifications using
different multilevel models, different sets of moderators, or different specifications of augmen-
tations. Specifically, we use a total of 12 modifications, including 6 for Q-learning and 6 for
weighting.

4.1 Modifications for Q-learning

For Q-learning, we provide six modifications based on three different types of multilevel outcome
models: the fixed effects model, random effects models, and (hybrid) models with de-meaned



variables; see Algorithm 1 for a summary. Let V;; denote a subset of X;; that interacts with
the treatment where the first element of V;; is 1 to account for the main treatment effect. The
fixed effects outcome model for Q-learning, denoted as Q-fe, is written as:

Qre(Xij. Tij) = poj + X[,Bz + TiVEBu,  A(Vij) = VLB, 9)

where the term pg; is the cluster-level main effect term and absorbs the effects of both mea-
sured and unmeasured cluster-level covariates. Q-fe will remove the cluster-level impact on the
outcome without requiring knowledge of cluster-level covariates and can be fitted by adding a
J — 1 cluster dummy matrix, S;, that indicates individual i’s cluster membership in one of the
J — 1 clusters. This modification is motivated by the econometrics or causal inference literature
(e.g., Suk & Kang, 2022a, 2022b; Wooldridge, 2010) where unobserved cluster-specific effects
are often modeled as fixed effects.

Also, we propose two modifications for Q-learning based on random effects outcome models,
and the models are written as:

Qri(Xij. Tij) = poj + X8z + TiVEBu, poj ~N(0,03), A(Vij) = VZ-Tij (10)
Qrs(Xij, Tij) = poj + X3;Be + TijViBo + Tijprg,  pj ~ N(0,%), (11)
A(Vy) = ViTij + 115

where the cluster-level main effect 119; requires two assumptions: (i) o, is normally distributed
with mean 0 and common variance of and (ii) po; is independent of measured covariates.
tj = {poj, 157 represents a 2 x 1 matrix that contains the cluster-level main effect po; and
the cluster-level treatment effect 111; where the respective means are zero and a 2 x 2 covariance
0'3 70,1

o U%] Importantly, model (10) assumes the main treatment effect to be

matrix ¥ = [
constant across clusters, while model (11) allows for random variation of the treatment effect
across clusters. The motivation behind these modifications is that in the literature, cluster-
specific effects are often modeled through cluster random effect terms (e.g., Lee et al., 2021;
Raudenbush & Bryk, 2002; Suk et al., 2021). In the multilevel modeling literature, model (10),
denoted as Q-ri, is often called the random intercept model, and model (11), denoted as Q-rs, is
often called the random slope model (Raudenbush & Bryk, 2002). If the additional assumptions
made in Q-ri and Q-rs hold, they can reduce the impact of (unmeasured) cluster-level covariates
on the outcome, and in particular, Q-rs can capture a cluster-specific component in a decision
rule.

Moreover, we provide three modifications based on de-meaned variables where Y@j =Y —
ny ' Yl Yig, Ty = ny ' i Ty, Xiy = Xy —ny ' 3002, Xij, and (T V)j; = T Vi —

ij
]_1 Zz:l T;jVij. The proposed outcome models based on de-meaned variables are written as

follows:

Qdm( 17 ) = X%Tﬁw + (Ejvij)*Tﬁva 8(‘fz]) = V;‘jB\va (12)
Qum-ri(Xij, Tij) = poj + X;] Bz + (Ti;Vij)  Bu,  poj ~ N(0,08), A(Vij) =VLBy, (13)
Qdm—rs( R sz) = Hoj + Xz'j ﬁa: (vazg) ﬁv j,U/lja My~ N(O, 2#)7 (14)

A(Vij) = VB + Tyjin;.

Model (12) uses the de-meaned outcome Y%, de-meaned covariates, and de-meaned treatment to
estimate regression coefficients in outcome regression. The motivation for the three modifications
is rooted in the idea that by subtracting cluster means from the original variables, we can create
variables that are locally orthogonal to cluster-specific components in the original variables
(as demonstrated in previous research by Athey et al. (2019) and Suk and Kang (2022b)).

This is important because when unmeasured cluster-level covariates are present, they remain



in the subspace that has cluster-specific variations only. By utilizing de-meaned variables that
are locally orthogonal to this subspace, we can produce more robust estimates of OTRs from
multilevel data faced with unmeasured cluster-level covariates. When we estimate A(V;;), we
use the original moderator variables V;; so that the scale of A(V;;) is not changed. Note
that under the identity link, the estimates of 8, are identical between Q-fe and Q-dm, thus
yielding the same decision rule and the same benefit scores. In contrast, Q-dm-ri and Q-dm-rs
use the original outcome (i.e., Yjj), de-meaned covariates, de-meaned treatment, and cluster-
level random effect terms. The two models are often referred to as “hybrid models” (Firebaugh
et al., 2013; Raudenbush, 2009) because they encompass the features of fixed effects models and
random effects models. Hybrid models offer the fixed effects advantage of eliminating the effects
of unmeasured cluster-level covariates. At the same time, like random effects models, they allow
for estimating the impact of individual-level and cluster-level predictors, as well as estimating
the random coefficients. Specifically, the estimates from Q-dm-ri are similar to those from Q-fe
and Q-dm, but the hybrid models are robust to the violation of the underlying independence
assumption made in random effects models.

Algorithm 1 summarizes the steps of Q-learning methods using data from multisite ran-
domized trials. The cutoff value c is set to 0 by default. For implementation, we provide a
function named Qlearn to run six outcome regression estimators in Algorithm 1 and the base-
line outcome model with the OLS estimation. R codes for our modifications are available in
the supplementary materials and can also be found at the first author’s GitHub repository
(https://github.com/youmisuk/multisiteOTR).

Algorithm 1 Q-learning methods with multisite randomized studies

Input: Outcome Y;;, Treatment T;;, covariates X;;, moderators V;;, cluster dummies S;
Input: Cutoff value ¢ =0
Input: Modification of Q-learning methods in {Q-fe, Q-ri, Q-rs, Q-dm, Q-dm-ri, Q-dm-rs}

1: Estimate the chosen outcome regression (Q(x,t) with a decision rule parametrized by

regression coefficients 3.

2: Predict the outcome for the control Q(x, 0; B) and that for the treatment Q(x, 1; B)

3: Compute A(x) = Q(x,1; 8) — Q(x,0; 3)

4: Make treatment decisions based on A(
Output: A(x) and doP!(x)

) and the cutoff: d°P!(x) = I{A(x) > 0}

4.2 Modifications for Weighting

We provide six modifications for the weighting approach to robustly estimate an OTR with
multisite randomized studies. For interpretable models, we assume that f is linear with respect
to a finite-dimensional parameter a. The first modification, denoted as W-noaug, is written as

M (Y, Tij f(v; )
Tijpj + (1 —Ti)/2

Vij =V, Vij C Xz‘j. (15)

where f(v;a) indicates that the benefit score is a function of moderators V;; C X;;. Treatment
prevalence, p; = nj_l er] I(T;; = 1), is used as the propensity score. This modification allows
us to account for potentially different propensity scores between clusters in multisite randomized
trials. Note that researchers could additionally include measured covariates in the propensity
score model to remove finite-sample differences between the treatment and control groups.

We also study two other variations with augmentation to improve the performance of W-
noaug by employing the augmented loss function M(y,v) = M(y,v) + g((X),v) instead of
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M(y, v) in (15); the second term in the augmented loss function represents a loss for the main
effects of covariates (Chen et al., 2017; Huling & Yu, 2021).2 The basic idea of augmentation
is to fit an outcome model for the main effects of covariates and shift the outcome based on
the estimated main effects. The motivation behind modifications with augmentation is that
the augmented loss function M(y,v) does not change the optimality of the resulting decision
rule and it potentially provides efficiency gains (Chen et al., 2017). This is because using the
weighting estimator with the shifted outcome can be more efficient than using the original
outcome (Huling & Yu, 2021).

Specifically, two augmentation models we use are: (i) augmentation with linear main effect
terms of covariates m(X;;) = ng’yw, denoted as W-aug, and (ii) augmentation with linear main
effect terms of covariates and cluster dummies m(X;;,S;) = XlTj’ym + S]Tfys, denoted as W-auglD.
We use W-aug to check if a simple form of augmentation can improve the performance of W-
noaug in our setting, and we study W-auglD to examine if there is any additional gain from
including cluster dummies in the augmentation. When an augmentation is added, we use the
augmented loss function M(y, v) in (15) instead of the original loss function to estimate benefit
score fiy.

Moreover, among other three modifications, we extend the space of the moderator by adding
cluster dummies S;, i.e., V;; C {X;;,S;}. denoted as Ws-noaug, is written as:

ll/I(YijaTijf(‘i; «))
Tijpj + (1 —Ty5)/2

fWS(V) = f(v;&), @ =argmin K

Vij = V] , Vij C {Xij, Sj}. (16)

We add this modification because using an additional set of cluster dummies in moderator vari-
ables can help detect a decision rule driven by clusters, in particular, if there are no cluster-level
covariates available. We also provide two more modifications with augmentation to potentially
improve the performance of Wg-noaug with respect to efficiency. Specifically, we use one modi-
fication augmented with linear main effect terms of covariates, denoted as Ws-aug, and another
modification augmented with linear main effect terms of covariates and cluster dummies, denoted
as Ws-auglD.

Algorithm 2 summarizes the steps of Wg-auglD among different weighting modifications.
We set the cutoff value ¢ to 0 by default. To implement weighting methods, we tweak functions
named fit.subgroup and propensity.func from R package personalized (Huling & Yu, 2021). Re-
garding the loss function, we use the squared error loss with lasso penalty (Tibshirani, 1996),
and we also allow the lasso penalty terms to be only applied to certain sets of covariates, say
cluster dummies. Different loss functions can be used like the hinge loss or logistic loss functions,
depending on outcome types.

5 Simulation Study

We conduct a large-scale simulation study to assess which of the proposed modifications im-
proved the performance under which conditions. Throughout the simulations, we estimate the
benefit scores and the optimal decisions using (1) our proposed modifications in Section 4, (2)
the baseline outcome regression based on the OLS (denoted as Q-base), and (3) the weighting
estimator that uses the constant propensity score (denoted as W-base). Specifically, our simu-
lation study is divided into four designs. Design 1 uses linear main effects of X in the outcome
model and assumes there is no unmeasured cluster-level moderator. Design 2 extends Design 1
by allowing an unmeasured cluster-level moderator and is intended to investigate which modi-
fications are more robust in the presence of the unmeasured cluster-level moderator. Design 3

2In Section 3.3, we denote E[Y|X,T] = m(X)+ ﬁjA(Z) and m(X) = 0.5{E(Y|T = 1,X)+
EY|T = —1,X)}. Note g(y,v) meets the same conditions required for M(y,v) (Chen et al., 2017;
Huling & Yu, 2021).
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Algorithm 2 Modification, Ws-augID

Input: Outcome Y;;, treatment T;;, covariates X,;, cluster dummies S;
Input: Treatment prevalence p;
Input: Cutoff value ¢ =0
1: Estimate f by minimizing the following objective function with ﬁ-j =2T;; — 1.

o MY Ty (v o)
ﬁ%wy_ﬂ“a)”l_m%?mEf@%ﬁ%l—ﬁﬂﬂ

Vij=v|, Vi C{Xij,S;},

where the augmented loss function
M(Yij, Ty f (vi @) = M(Yij, Ty f(vi @) + g(170(Xi5. 8), Tig f (v ).

2: Make treatment decisions based on fWS (v) and the cutoff: d°P!(v) = I{ st (v) >0}
Output: fi,(v) and dP'(v).

uses nonlinear main effects of X in the absence of an unmeasured cluster-level moderator, but
if applicable, we still fit linear main effect terms in the estimators. We include this design to
investigate the impact of model misspecification on the performance of Q-learning and weighting
methods. In Appendix A, we conducted additional simulations where the treatment prevalence
has more variation compared to Design 1. Specifically, the ICC estimate in the treatment model
in Design 1 was 16.3%, whereas the ICC in Design 4 was 40.6%. The results of this additional
design are similar to those from Design 1, and as expected, injecting cluster-level propensity
scores inside the weighting estimator provides more accuracy gains as the ICC increases.

For each of the four designs, we vary the sample size where the number of clusters J and
the cluster size n; are either 25 or 150. That is, we use four sample size conditions (J, n;): (25,
25), (150, 25), (25, 150), and (150, 150). Note that the sample size of (25, 150) is comparable
to the size of our empirical data. Combining all of the variations across the three designs
(plus the additional simulations in Appendix A), our simulation study considers 16 different
data-generating models, and we examine the performance of the proposed methods in each
data-generating model.

In each replicate, we evaluate the performance of the methods by investigating (i) accuracy
i.e., the proportion of correctly assigned optimal decisions, (ii) the F1 score (=2 (Precision x
Recall)/(Precision + Recall))?, (iii) the rank correlation between the true benefit score f(v)
with the estimate f(v), and (iv) their area under the receiver operating characteristic curves
(AUC) with respect to the true optimal decisions. Note that accuracy, Fl-score and AUC are
commonly used performance criteria for binary classification, where the original labels (also
known as ground truth labels) are compared with the predicted labels produced by a machine
learning model. A higher value of these measures indicates better performance. As a comparison
criterion, we also measure the congruence among the estimators, i.e., the proportion of being
in agreement with respect to the estimated optimal decisions. We repeat our simulation r =
1,...,500 times on independent test datasets.

5.1 Design 1: Linear Main Effects and No Cluster-level Moderator

The data-generating model is based on those from Huling and Yu (2021) and our empirical data,
and it is stated below.

3 e _ True Positive . _ True Positive
PI"ECISIOII " True Positive + False Positive’ Recall ~ True Positive + False Negative
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1. For multisite/multilevel structures, create j = 1,...,J clusters, each with n; individuals
per cluster.

2. For each individual ¢ = 1,...,n; in cluster j, generate five individual-level covariates,
Xij = (X14ij, X2ij, X3ij, Xaij, X545), and one cluster-level covariate U; that is assumed to
be unmeasured. All the covariates follow a normal distribution with a mean of 0 and
variance of 1, i.e., N'(0,1).

3. Generate individual treatment status 7T;; with cluster-specific propensity scores in the
following logistic regression.

logit(e;;) =0.8-C;, C; ~N(0,1), Tij ~ Bernoulli(e;;)

Here, e;; is the propensity score for individual ¢ in cluster j.

4. Generate the true treatment effects A(Vy;).
A(VZ]) =0.2+ 05X32J — 0-2X4ij — 0.2X5¢j + BlUj

Here, 8y represents the coefficient of the cluster-level moderator and is set to 0 in Design
1.

5. Generate the potential outcomes Y;;(1),Y;;(0) and the observed outcome Y;; from the
following linear regression model:

Y;j(t) =07+ Xlij + Xgij — 2X3ij + X4ij + 05X51] +t- A(VZ]) + 25UJ + €5,
Yij = TiYi;(1) + (1 = Ty5)Yi5(0), e ~ N(0,1)

Here, €;; represents the random error for individual ¢ in cluster j.

6. Generate the true optimal decisions: d?* = I{A(V,;) > 0}.

Figure 1 summarizes the accuracy performance of the estimators with different sample size
conditions in Design 1, placing the mean accuracy at the top of each boxplot. Each row in the
figure represents the sample size, denoted by (J,n;), with the number of clusters J and the
size of each cluster n;. For example, the first row category is a condition with J = 25 clusters
and each cluster has 25 individuals. Note that we use different ranges of the y-axis to permit a
clearer comparison of the estimators within each sample size condition in Figure 1.

Among Q-learning methods, the baseline estimator based on OLS regression (Q-base) shows
the worst performance compared to the proposed modifications across different sample sizes as
expected. Six modifications outperform the baseline estimator and increase the accuracy rates
by about 6-15%. The pattern of results suggests that if hierarchical dependencies are present,
it is necessary to account for clustering or hierarchical structures in the outcome model by
using multilevel models (e.g., random effects, fixed effects, or hybrid models) to improve the
accuracy in finite samples. When we compare Q-learning modifications, all the modifications
show similar rates of accuracy in general, but those that allow for random treatment effects
(Q-rs and Q-dm-rs) exhibit a slight loss of accuracy (92.4% to 90.8% or 90.7%) under the small
sample size condition of (25, 25). This may be due to the fact that random slopes introduce
unnecessary complexities in the outcome model under Design 1 and using the small sample size
poses additional difficulties in estimating them reliably and accurately. However, when either
the number of clusters or the cluster size increases, Q-rs and Q-dm-rs show almost the same
accuracy rates as other modifications.

Among weighting methods, not surprisingly, the baseline weighting estimator that uses the
constant propensity score without augmentation (i.e., W-base) shows the lowest accuracy rates.
Injecting cluster-specific propensity scores inside the weighting estimator (W-noaug) improves
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Figure 1: Accuracy of the estimators in Design 1.

the mean accuracy across sample size conditions. It also reduces the variability of the accu-
racy estimates, in particular, under a large cluster size of 150. In addition, including cluster
dummies in the moderator variables (Ws-noaug) generally does not provide additional accuracy
gains. This is expected given that there is no cluster-level moderator that alters treatment deci-
sions in Design 1. Moreover, adding augmentation terms into W-noaug and Wg-noaug increases
the accuracy rates and reduces the variability of accuracy estimates. Between the two types of
augmentation terms, those with both covariates and cluster dummies (W-auglD and Ws-augID)
provide more accuracy gains than those with covariates only (W-aug and Ws-aug) and show
similar accuracy rates to those from the modifications for Q-learning. This implies that when
there are non-negligible clustering effects in the outcome model, accounting for them via aug-
mentation is essential in raising the accuracy of the weighting estimator. For other performance
criteria (i.e., F1 score, correlation, and AUC), we summarize results in Appendix A, and we find
that the result patterns are generally similar to those of accuracy.

Figure 2 summarizes the congruence among the estimators in Design 1 when the sample
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size condition is equal to 25 clusters with a size of 150. Here, we focus on the sample size
condition that is the most comparable to our empirical data because the congruence results
are relatively similar across different sample size conditions. In Figure 2, the upper triangular
part of the congruence matrix displays the heatmap and the lower triangular part reports the
numerical results. To better visualize the congruence results, we list the weighting methods in
reverse order. From Figure 2, we observe that there are high congruence rates of 98% or larger
(highlighted in red) among Q-learning methods, except for Q-base; Q-base shows congruence
rates that range from 83% to 92%.

<
,06
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Figure 2: Congruence among the estimators in Design 1 when the number of clusters is 25 and
the cluster size is 150.

As for weighting methods, six modifications show higher congruence rates than W-base that
uses the constant propensity score, and in particular, augmentation types matter much. Those
without augmentation (W-noaug, Ws-noaug) exhibit at most 92% rates with other methods,
i.e., those with augmentation and Q-learning methods. In contrast, using augmentation raises
the congruence rates. Specifically, weighting methods augmented with covariates only (W-aug
and Ws-aug) show congruence rates of about 93-94% with Q-learning modifications, whereas
weighting methods augmented with both covariates and cluster dummies (W-auglD and Ws-
auglD) increase congruence rates up to about 99%.

5.2 Design 2: Linear Main Effects and a Cluster-level Moderator

Design 2 used the same data-generating model as Design 1 except that the coefficient 3 is
now set to 0.2 to investigate the potential impact of an unmeasured cluster-level moderator on
the performance of the methods. Figure 3 summarizes the simulation results under Design 2
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Figure 3: Accuracy of the estimators in Design 2.

in terms of accuracy. In this design, six modifications for Q-learning no longer show similar
rates of accuracy. Q-rs and Q-dm-rs outperform other Q-learning modifications, unlike Design
1, and the accuracy gains from Q-rs and Q-dm-rs increase as either the number of clusters or
the cluster size increases. Their superior performance is because they use random treatment
effects that potentially capture the impact of the unmeasured cluster-level moderator in the
design of OTRs. These findings indicate that incorporating the cluster-level impact through
random effects will likely lead to higher accuracy rates than using the methods that ignore it.
Among weighting methods, Ws-auglD that incorporates cluster dummies into the moderator
variables and augmentation model performs best across different simulation conditions. This
highlights the importance of incorporating multilevel considerations in weighting methods to
enhance accuracy. For other performance criteria (i.e., F1 score, correlation, and AUC), see the
summary results in Appendix A.

Figure 4 summarize the congruence results under Design 2 when the number of clusters is
25 and the cluster size is 150. Similar to Figure 2, we focus on one sample size condition due
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Figure 4: Congruence among the estimators in Design 2 when the number of clusters is 25 and
the cluster size is 150.

to similarities in the result patterns across different sample size conditions. Unlike Design 1,
Q-learning modifications no longer highly agree with each other and the modifications that share
common features (e.g., random treatment effects) show high congruence measures. Specifically,
Q-rs and Q-dm-rs show a congruence rate of 99%, but they have about 90% agreement with
other Q-learning modifications. Among weighting methods, the congruence rate between W-
auglD and Ws-auglID decreases by about 5% from the rate in Design 1. Also, Ws-augID exhibits
93% agreement with Q-rs and Q-dm-rs, the two top performers in Q-learning under Design 2,
but W-auglD shows 3% lower agreement, i.e., 90%. Given these, Ws-auglD may be a safe way to
estimate an OTR using data from multisite randomized trials potentially faced with unmeasured
cluster-level moderators.

5.3 Design 3: Nonlinear Main Effects and No Cluster-level Moderator

In Design 3, we generated multisite data similar to Design 1, except we use non-linear main
effects in the outcome model as follows:

}/z'j(t) =0.7+ Xlij + Xgij — 2X3ij + X4ij + 0.5X5ij + eXp(—O.GXlingij + 0-3Xlij)‘|‘
t- A(VU) + 25UJ + Eij
Although nonlinear main effects of covariates are present, we fit only linear main effect terms to
compare the performance of Q-learning versus weighting methods under model misspecification.

That is, under Design 3, the outcome regression models for Q-learning are misspecified, and the
augmentation models in weighting methods are misspecified.
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Figure 5 summarizes the accuracy performance of the estimators in Design 3. As expected,
the accuracy rates decrease in this design because of model misspecification. Among Q-learning
methods, we observe that the accuracy loss is large (about 9%) under the small sample sizes
(here, 25 clusters with the cluster size of 25), and the loss is reduced to about 3-5% as either the
number of clusters or the cluster size increases. We also observe that the accuracy rates of Q-rs
and Q-dm-rs are slightly smaller than those from other Q-learning methods. Such a performance
may be because model misspecification poses more difficulties in estimating random effects that
are assumed to follow normal distributions.

Q-Learning Weighting
1.004 0753 0.8|34 0.834  0.811 0.8|34 0.834  0.812 0.654 0672 0717 0745 0783 0.801 0.822
[ ] [ ] [ ] [ ]
| ] I O |
0.75 l i l ] S
— o
] N
0.50 1 § ' H § H § 'le
] g . ,., g g H ! I H
0.254
1.004 0807 0913 0913 0897 0913 0913 0897 0764 0823 0847 0876 0.889 0904 0.908
—= = B = i . i ==
W STT LT TTH*QA
°
g e H H g ® g 8 _(Mn
0.504 § @
[ ] S
® L] ° ~
0.25 A
>
5}
©
5
8 1.00- 0865 0.908 0909 0873 0908 0908 0874 0.813  0.811 0841 0.873 0.885 0.898  0.904
< L l_l—l == % f_TL|
0.75 A ‘ i i ‘ l 'l E ] a
] H ’ .
0.50 3 . 3
L] L) [] ]
0.254
0910 0955 0955 0936 0955 0955 0.937 0,8199 049|25 0.9|30 0.944 0947 0952 0954
0.9-$ i i T i i TT*‘ i i
] [} [] ] 8 4 8 :—‘;
0.7 1 § ] o
® L] ] a
S
0.54
2 @ N & Q Q & @ O o) ) ) O O
& 5 N) N) N N N
/0® 0/ O/ O-/ 0/6 S 6\/ bé\/ /‘Olb & Q & $ , 'b\)q ’b\)q
(e 0/ (}/ $ $/ $%/ $% $/ $&J/
Estimator

Figure 5: Accuracy of the estimators in Design 3.

Likewise, all the weighting methods show some accuracy losses. Including non-linear terms in
the data-generating model deteriorates the performance of modifications without augmentation
(i.e., W-noaug and Ws-noaug). Specifically, they exhibit 3-6% loss rates. But adding augmenta-
tion, while partially misspecified, into W-noaug and Ws-noaug increases accuracy rates. Similar
to Design 1, weighting methods augmented with both covariates and cluster dummies (W-auglD
and Ws-auglD) perform better or no worse than those with covariates only (W-aug and Ws-
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aug). Between the modifications without and with augmentation, W-auglD and Ws-auglID tend
to show higher loss rates of accuracy than their counterparts without augmentation, but when
the sample sizes increase to our largest sample size, i.e., (150, 150), all weighting modifications
show similar loss rates. For other criteria (i.e., F1 score, correlation, AUC, and congruence),
see Appendix A.

5.4 Takeaways from Simulations

Our simulation study provides guidelines on how to use Q-learning and weighting methods with
multisite randomized trials. These guidelines aim to serve as useful reference points for future
empirical or theoretical analyses of OTR methods for multisite randomized trials. Our findings
suggest the following:

1. Incorporating multilevel, hierarchical structures through fixed effects models, random ef-
fects models, and hybrid models improves the accuracy of Q-learning methods. Specifically,
the modifications based on random treatment effects (Q-rs and Q-dm-rs) perform particu-
larly well when a cluster-level moderator is present.

2. Among weighting methods, the modification that includes cluster dummies in moderator
variables and augmentation terms (i.e., Ws-auglD) shows the most promise in improving
accuracy, regardless of the presence of a cluster-level moderator.

3. When the main effect terms of covariates are partially misspecified, the accuracy of Q-
learning modifications decreases. But using modifications that account for clustering still
improves accuracy compared to baselines that ignore a clustering structure.

4. When augmentation terms are misspecified, the accuracy of weighting modifications de-
creases in finite samples, but Ws-auglD still performs best.

5. Overall, Q-learning modifications perform well when the outcome model is correctly spec-
ified. But when the outcome model is misspecified, there is no guarantee that Q-rs and
Q-dm-rs will perform best and may even perform worse than the top performer in weight-
ing, Ws-auglD.

6 Empirical Example: Conditional Cash Transfer

6.1 Data and Variables

CCT programs have become a type of social assistance program aimed at assisting families
living in poverty in developing countries (Barrera-Osorio, Linden, et al., 2019). Barrera-Osorio
et al. (2011a) conducted two experiments in Bogotd, Colombia in 2005 to evaluate whether CCT
programs could have a greater impact on educational attainment for students from economically
disadvantaged backgrounds. In this paper, we focus on the data from their first experiment in
San Cristobal, one locality of Bogotd. Barrera-Osorio, Bertrand, et al. (2019) used an over-
subscription model, and the eligibility criteria required that students had completed grade 5
(i.e., they must have been in grades 6-11) and that their families were classified into the bottom
two categories on Colombia’s poverty index, known as the SISBEN. Eligible registrants were
randomly assigned between the control group, the basic treatment, and the savings treatment?,
and there were some variations in treatment proportions among schools; see Barrera-Osorio et al.
(2011a) for more details of the experiment. We categorized the treatment status into the CCT

4The basic treatment gave students US $15 per month as long as the child attended at least 80
percent of the days that month. The savings treatment gave students two thirds of the amount (i.e., US
$10) and held the remaining third in account for the purpose of preparation for the next school year.
The control group didn’t receive any of the treatments
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treatment versus control (a binary treatment) in the data analysis because basic and savings
treatments increase attendance rates to about the same extent in the experiment (Barrera-
Osorio et al., 2011a). Our goal in the analysis is to demonstrate our proposed modifications for
Q-learning and weighting methods by designing an optimal regime for the CCT program from
a multisite randomized trial where students are nested within schools.

For the data analysis, we focused on schools that had attendance data. Note that due to
budget constraints, Barrera-Osorio et al. (2011a) collected subsequent attendance data in some
schools with a large number of registered students. Further, we excluded (i) households with
more than one sibling and (ii) schools with only one student. We deleted the former cases to
eliminate spillover effects within households, and we used the household ID variable to check the
number of registered siblings. For cases with missing values on the household ID, we borrowed
the SISBEN database to identify whether any of the students had the same values for all the
household data in the SISBEN database.”> When they had identical values, we assumed that they
came from the same household and thus, we excluded those students. After sample exclusion,
our final analysis sample consisted of 3,872 students from 26 schools where the mean school size
was 148.9, ranging from 48 to 388.

In the CCT data, we used the average attendance rate as the outcome Yj;. As mentioned
above, our treatment of interest is binary with 7;; = 1 denoting that a student received a CCT
treatment and 7;; = 0 denoting that a student did not receive it. We used 20 pre-treatment
covariates, such as gender, age, household income, and grade, as well as school dummies. We
determined covariates that potentially interact with the treatment, i.e., moderators, based on
prior works from Barrera-Osorio et al. (2011a) and Barrera-Osorio, Linden, et al. (2019). These
included grade, the number of years older the child is for their grade, house possession, estrato
classification®, income categories (< 380,000 vs. > 380,000 pesos), and school dummies. For
more detail about data and variables, see Barrera-Osorio et al. (2011a) and the codebook from
Barrera-Osorio et al. (2011b).

We used our proposed modifications, which account for multilevel structures in Section 4,
to design optimal recommendations about CCT treatment for students in grades 6-11. We
compared them with the baseline estimators that ignore multilevel structures in an outcome
model and/or propensity score model (i.e., Q-base and W-base). In our empirical data, the
estimate of the average propensity score was 0.63, and the estimates of cluster-specific propensity
scores ranged from 0.57 to 0.72. Also, the ICC estimate in the outcome model was 0.05. As
for software, we used the R package personalized (Huling & Yu, 2021) for weighting methods
and our own function named Qlearn, based on the R package Imej (Bates et al., 2015), for
Q-learning methods. R codes for the data analysis are available in the supplemental materials
and the first author’s GitHub repository.

6.2 Results

Figure 6 summarizes the percentages of students who are recommended to receive the CCT pro-
gram within each estimator, and the numbers at the bottom of each bar indicate the percentage
values of the recommended group. More than 65% of the students are recommended to receive
the CCT program across all the estimators, and in particular, all the Q-learning methods rec-
ommend the CCT program to more than 72%. For weighting methods, the modifications with
augmentation recommend the CCT treatment to a larger number of students than their coun-
terparts without augmentation and behave similarly to Q-learning modifications with respect

®We use 13 variables named “s_durables”, “s_edadhead”, “s_estcivil”, “s_estrato”, “s_infraest_hh”,
“s_ingtotal”, “s.numl8”, “s_puntaje”, “s_single”, “s_tpersona”’, “s_teneviv’, “s_utilities”, and
“s_yrshead” in the codebook.

6A geographic poverty index in Colombia. The estrato numbers range from 1 (the worst streets) to
6 (the best) (Arboleda & Valverde, 2021).
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Figure 6: Percentages of recommended and not recommended groups for conditional cash trans-
fer programs

to the percentage of the recommended group.

We also investigated congruence rates across different estimators as in our simulation studys;
see Figure 7. Again, the congruence rates represent the proportions of individuals who re-
ceived the same optimal decisions between the estimators. As seen from Figure 7, there are
high congruence rates among Q-learning methods (highlighted in red). Among weighting meth-
ods, congruence rates are high within the modifications without augmentation or within those
with augmentation, but between those without and with augmentation, there are relatively low
congruence rates. When comparing Q-learning and weighting methods in our empirical data,
weighting methods with augmentation behave more similarly to Q-learning methods, as we
observe in our simulations.

We further investigated which covariates work as important moderators that affect CCT
recommendations. Figure 8 summarizes the frequencies of the recommended group by income
categories: larger than 380,000 pesos and less than or equal to 380,000 pesos (about the bottom
two income terciles). For convenience, I call them not-low income and low income, respectively.
The numbers at the bottom of each bar represent the percentage values of students from low-
income backgrounds among the recommended group. As seen from Figure 8, all the estimators
recommend the CCT treatment to students from low-income families more highly than those
from not-low-income families, and about 60% of the students among the recommended group
come from low-income backgrounds across different estimators. This allocation pattern aligns
with the intended goal of the CCT program, which is to encourage the academic participation
of students who are economically disadvantaged.

Furthermore, we summarize the distributions of benefit scores by grade among four estima-
tors of interest in Figure 9. The four estimators are (i) the Q-learning estimator with de-meaned
variables (Q-dm), (ii) the Q-learning estimator that is based on Q-dm, but adds random school
effects and random treatment effects (Q-dm-rs), (iii) the weighting estimator with school-specific
propensity scores only (W-noaug), and (iv) the weighting estimator that is based on W-noaug,
but adds school dummies into the moderator variables and augmentation terms (Ws-auglD).
The numbers at the top of each boxplot represent the percentages of the recommended group in
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Figure 8: Frequencies of the recommended group by income for conditional cash transfer pro-
grams
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each grade. Across different estimators, we observe that the distributions of benefit scores vary
depending on grades and that grade-specific recommendation rates generally agree with one an-
other, except for W-noaug. There are higher benefit scores and higher rates of the recommended
group in grades 6, 9, and 11 than in other grades among the methods except for W-noaug (i.e.,
Q-dm, Q-dm-rs, and Ws-auglD), though variations in the benefit scores are relatively small in
Ws-auglD. However, W-noaug’s recommendation rates for 8-th and 11-th graders are less than
50% and significantly different from those using other modifications, which show more than
86%. This highlights the importance of including school dummies in the moderator space and
augmentation term for weighting methods to accurately reflect potential school/cluster effects.

Q - Learning Q - Learning Weighting Weighting

Q-dm Q-dm-rs W - noaug Ws - auglD

0.29 975 34.7 89.8 98.7 31.9 92.3 96.7 42.0 86.1 98.2 41.1 92.9 95.8 48.9 49.9 97.3 34.4 48.3 97.4 39.2 96.9 98.9 36.8 98.3

fostit T Suitit oyt

-0.11 i : i

Benefit Score

-0.2 1

6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11
Estimator

Figure 9: Distributions of benefit scores by grade for conditional cash transfer programs

7 Discussion and Conclusions

In this paper, we proposed different sets of modifications for Q-learning and weighting methods
to design optimal, data-driven policies from multisite randomized trials. Our simulation studies
show that incorporating multilevel structures in Q-learning methods improves performance.
Specifically, the Q-learning estimator with random treatment effects (Q-rs) and the Q-learning
estimator with de-meaned variables and random treatment effects (Q-dm-rs) perform well in
capturing cluster-specific rules if cluster-level moderators are not measured. Among weighting
methods, incorporating cluster dummies into moderator variables and augmentation terms (Ws-
auglD) is found to be the most effective in estimating an OTR from multisite randomized trials.
When the outcome model is misspecified, Q-rs and Q-dm-rs may not perform best, but under a
misspecified augmentation model, Wg-auglID is still the top performer and can be even better
than Q-rs and Q-dm-rs.

Additionally, our data analysis demonstrates the efficacy of the proposed OTR methods in
studying the optimal regime of CCT programs in Colombia. We find that all Q-learning mod-
ifications recommend the CCT program to approximately three-quarters of the students, and
weighting modifications with augmentation recommend the CCT treatment to a larger number
of students than those without augmentation. We also observe a high degree of congruence be-
tween the Q-learning modifications and weighting modifications with augmentation, and CCT
recommendations are largely influenced by income categories and grades.

When selecting between Q-learning and weighting methods, it is crucial for practitioners to
understand the strengths and limitations of each approach (as discussed in Section 3.4) and
carefully consider the characteristics of the available data. Specifically, Q-learning methods em-
ployed in this study assume the correct specification of the outcome model. Weighting methods,
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on the other hand, require larger datasets compared to Q-learning methods to achieve the same
level of accuracy, as indicated by our simulations. Therefore, if researchers are confident about
the correct model specification, Q-learning methods may be recommended. However, when
there is insufficient knowledge about the outcome model, weighting methods can be utilized.
Regardless of the chosen approach, it is important to incorporate the proposed modifications in
Q-learning and weighting methods when working with multisite randomized datasets.

In the fields of education and psychology, the proposed methods hold great potential for
various data applications that use multisite randomized designs and seek to tailer interventions
based on individuals’ differential gains from them. For example, our methods can be particularly
valuable in designing course policies within schools. Given that the effect of an advanced math
course varies among individual students, our methods can assist in determining whether to offer
the course to each student, based on the observed effect heterogeneity. Furthermore, our methods
can be effectively employed in designing optimal allocations of extracurricular activities, such as
after-school programs, by considering individuals’ heterogeneous treatment effects. By utilizing
the proposed methods, we believe that individualized education programs can be promoted,
offering a more tailored approach instead of a one-size-fits-all approach.

While our proposed methods show promise, we have some suggestions for future research.
First, the design rule Dg used in this study was limited to a parametric form and may not perform
well if the true OTR has a complex, non-linear form. Future research would explore the use
of nonparametric or semiparametric OTRs in multilevel data settings. Second, our additional
modifications for weighting were based on the squared loss function with lasso penalty, and using
other loss functions may affect the performance in clustered settings. Third, this paper focused
on randomized trials and further research is needed to examine the use of these methods in
multilevel observational studies. Fourth, researchers may want to use a within-cluster approach
that estimates an OTR within each cluster by viewing each cluster as a population. However,
the within-cluster approach requires large numbers of individuals per cluster, and the cluster-
specific OTRs from the approach cannot be generalized to new clusters in future experiments.
Fifth, the effectiveness of the proposed modifications may be diminished in small data samples,
such as the (25, 25) condition in our study. In such cases, one can consider employing a grouping
strategy that combines clusters based on treatment prevalence (Lee et al., 2021; Suk, 2023), or
Bayesian OTR estimation methods (Murray et al., 2018).

Sixth, the estimated OTR is subject to uncertainty due to the random nature of the observed
data. However, the inference of the estimated OTR is challenging due to the presence of multiple
sources of uncertainty (e.g., the propensity score, the OTR itself), making it another active area
of research (e.g., Chakraborty et al., 2013; Logan et al., 2019). Future research would investigate
the inference of OTRs in multilevel data settings. Seventh, OTR transportability depends on
the characteristics of covariates and cluster dummies, as well as our fitting models. When new
samples’ covariate distributions are not observed in training data, treatment effects by covariates
can be extrapolated or interpolated via parametric form assumptions. For new clusters, only
random effects or hybrid models allow for treatment effect extrapolation due to their normality
assumptions. The quality of extrapolation relies on these assumptions. Eighth, we assumed
SUTVA in CCT data analysis due to its plausibility, where there are no spillover effects through
interference within each school. To address interference in the same CCT data, we refer readers
to the work of Park and Kang (2022). Lastly, we did not incorporate fairness considerations into
the design of OTRs although many researchers have raised concerns about fairness-related bias
from automatic recommendations and there are some tools available that can detect and resolve
such fairness-related biases (Kim & Zubizarreta, 2023; Mitchell et al., 2021; Nabi et al., 2019;
Suk & Han, 2023). Future research would examine ways to design OTRs with multilevel data,
considering both the performance/utility and fairness aspects, where the definition of fairness
is often provided by policymakers and administrators.

Despite these limitations, our proposed modifications for Q-learning and weighting methods
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have the potential to improve the performance of their baseline counterparts in multisite ran-
domized trials. Additionally, the main ideas presented in this paper can be applied to other
methods for OTRs, such as A-learning. We hope that the proposed modifications will serve as
useful guidelines for researchers looking to revise OTR methods or apply robust techniques to
multilevel studies, with the ultimate goal of providing personalized services in education and
the social sciences.
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A Simulation Results

A.1 Design 1
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Figure 10: Performance of the estimators in Design 1: accuracy, F1 score, correlation, and the
receiver operating characteristic curve (AUC)
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A.2 Design 2
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Figure 11: Performance of the estimators in Design 2: accuracy, F1 score, correlation, and the
receiver operating characteristic curve (AUC)
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A.3 Design 3
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Figure 12: Performance of the estimators in Design 3: accuracy, F1 score, correlation, and the
receiver operating characteristic curve (AUC)
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Figure 13: Congruence among the estimators in Design 3 when the number of clusters is 25 and
the cluster size is 150.
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A.4 Design 4
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Figure 14: Performance of the estimators in Design 4: accuracy, F1 score, correlation, and the
receiver operating characteristic curve (AUC)
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Figure 15: Congruence among the estimators in Design 4 when the number of clusters is 25 and
the cluster size is 150.
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