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Neural Estimation of the Rate-Distortion Function

With Applications to Operational Source Coding
Eric Lei , Graduate Student Member, IEEE, Hamed Hassani , and Shirin Saeedi Bidokhti

Abstract—A fundamental question in designing lossy data com-
pression schemes is how well one can do in comparison with
the rate-distortion function, which describes the known theo-
retical limits of lossy compression. Motivated by the empirical
success of deep neural network (DNN) compressors on large, real-
world data, we investigate methods to estimate the rate-distortion
function on such data, which would allow comparison of DNN
compressors with optimality. While one could use the empirical
distribution of the data and apply the Blahut-Arimoto algorithm,
this approach presents several computational challenges and
inaccuracies when the datasets are large and high-dimensional,
such as the case of modern image datasets. Instead, we re-
formulate the rate-distortion objective, and solve the resulting
functional optimization problem using neural networks. We apply
the resulting rate-distortion estimator, called NERD, on popular
image datasets, and provide evidence that NERD can accu-
rately estimate the rate-distortion function. Using our estimate,
we show that the rate-distortion achievable by DNN compres-
sors are within several bits of the rate-distortion function for
real-world datasets. Additionally, NERD provides access to the
rate-distortion achieving channel, as well as samples from its
output marginal. Therefore, using recent results in reverse chan-
nel coding, we describe how NERD can be used to construct
an operational one-shot lossy compression scheme with guaran-
tees on the achievable rate and distortion. Experimental results
demonstrate competitive performance with DNN compressors.

Index Terms—Generative models, lossy compression, neural
compression, rate-distortion theory, reverse channel coding.

I. INTRODUCTION

D
RIVEN by advances in deep neural network (DNN)

compression schemes, rapid progress has been made

in finding high-performing lossy compression schemes

for large, high-dimensional datasets that remain practical

[1], [2], [3], [4]. While these methods have empirically shown

to outperform classical compression schemes for real-world

data (e.g., images), it remains unknown as to how well they

perform in comparison to the fundamental limit, which is given
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by the rate-distortion function. To investigate this question, one

approach is to examine a stylized data source with a known

probability distribution that is analytically tractable, such as

the sawbridge random process, as done in [5]. This allows

for a closed-form solution of the rate-distortion function; one

can then compare it with empirically achievable rate and dis-

tortion of DNN compressors trained on realizations of the

source. However, this approach does not evaluate DNN com-

pressors on true sources of interest, such as real-world images,

for which architectural choices such as convolutional layers

have been engineered [6]. Thus, evaluating the rate-distortion

function on these sources is paramount to understanding the

efficacy of DNN compressors on real-world data.

Furthermore, a class of information-theoretically designed

one-shot lossy source codes with near-optimal rate-distortion

guarantees, which fall under the area of reverse channel

coding [7], [8], [9], [10], [11], [12], [13], [14], [15], can pro-

vide a one-shot benchmark for DNN compressors, which are

typically one-shot. However, these schemes require the rate-

distortion-achieving conditional distribution (see (1)), which is

generally intractable for real-world data, especially when the

data distribution is unknown and only samples are available.

Having the ability to recover the rate-distortion function’s opti-

mizing conditional distribution only from samples, in addition

to the rate-distortion function itself, would allow for imple-

mentation of reverse channel codes even without access to the

full data distribution.

Consider an independent and identically-distributed (i.i.d.)

data source X ∼ PX , where PX is a probability distribution

supported on alphabet X . Let Y be the reproduction alphabet,

and d : X × Y → R+ be a distortion function on the input

and output alphabets. The asymptotic limit on the minimum

number of bits required to achieve a distortion D is given by

the rate-distortion function [16], [17], [18], defined as

R(D) := inf
PY|X :EPX,Y [d(X,Y)]≤D

I(X; Y), (1)

Any rate-distortion pair (R, D) satisfying R > R(D) is achiev-

able by some lossy source code, and no code can achieve a

rate-distortion less than R(D). It is important to note that R(D)

is achievable only under asymptotic blocklengths, whereas

DNN compressors are typically one-shot, as compressing

i.i.d. blocks for real-world datasets may not be feasible.

However, the one-shot achievable region is known to be within

log(R(D) + 1) + O(1) bits of R(D) [7], and thus even in the

one-shot setting, R(D) remains an appropriate measure of the

fundamental limits.
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There are several immediate challenges when computing

R(D) (and its optimizing conditional distribution) for large-

scale data. Even when the distribution of PX is known, the

analytical form of the rate-distortion function has been diffi-

cult to evaluate, and has been characterized only on specific

sources. This prohibits an analytical derivation using a den-

sity estimate of PX (which are also not sample-efficient in high

dimensions) in most cases. Computational methods such as the

Blahut-Arimoto (BA) algorithm seem to be better suited for

our setting; however, as will be shown, BA provides inaccurate

estimates and fails to scale with large datasets.

A. Blahut-Arimoto Fails to Scale

Let DKL(µ||ν) be the Kullback-Leibler (KL) divergence,

defined as Eµ[log
dµ
dν

] when the density
dµ
dν

exists and +∞

otherwise. Due to the convex and strictly decreasing proper-

ties [18] of R(D), it suffices to fix some β > 0, and solve the

following double optimization problem.

Lemma 1 (Double-Minimization Form, cf. [18, ch. 10],

[19]): The minimizers P
(β)

Y|X , Q
(β)
Y of

RD(β) := inf
QY

inf
PY|X

DKL

(

PX,Y ||PX ⊗ QY

)

+ β E
PX,Y

[

d(X, Y)
]

,

(2)

yield a unique point Rβ = DKL(PXP
(β)

Y|X||PX ⊗ Q
(β)
Y ) and

Dβ = E
PXP

(β)
Y|X

[ d(X, Y)] on the positive-rate regime of the

rate-distortion curve, i.e., R(Dβ) = Rβ , such that Dβ < Dmax

where R(Dmax) = 0.

The Blahut-Arimoto (BA) solves (2) by alternating steps

on PY|X and QY until convergence. In discrete settings, the

optimizers take the following closed form:

p(y|x) =
r(y)e−β d(x,y)

∑

ỹ∈Y r(ỹ)e−β d(x,ỹ)
, ∀x ∈ X , y ∈ Y (3)

r(y) =
∑

x∈X

pX(x)p(y|x), ∀y ∈ Y (4)

Even though BA requires knowledge of the source distribution,

one can use the empirical distribution P̂n = 1
n

∑n
i=1 δXi as a

proxy. This, however, does not scale in the case of modern

datasets. Consider the setting when X = Rm is continuous.

Applying BA requires discretization of the input and output

alphabets. In many cases, this would require acute knowledge

of how to discretize Rm to form an appropriate reconstruction

alphabet Y , and even if one could, it might result in computa-

tional complexity that grows, potentially exponentially, with m.

One would need to store a n × |Y| matrix for the conditional

PMFs and a |Y|-sized vector for the output marginal PMF,

which may not fit in memory depending on the number of

data points or the choice of discretization. For example, in

image compression, where we assume each Xi ∈ Rm to be

a single image realization, Y ⊆ Rm. Even for 8-bit grayscale

images, full precision quantization would require 28 ·m points,

and although one could provide better discretization schemes,

they may still require an intractable number of points.

To demonstrate, we attempt to apply discretized BA to

MNIST digits in Fig. 1, and plot its estimated curve in compar-

ison to rate-distortion (with squared-error distortion) achieved

Fig. 1. Inaccuracy of discretized Blahut-Arimoto in comparison to our

method, R̂�(D)n, for computing the rate distortion curve on the MNIST
dataset. DNN compressors provide codes that lie in the achievable region.
See text for details.

by DNN compressors. Specifically, our source is the empiri-

cal MNIST distribution P̂n, and we discretize Y to be exactly

the support of our data, i.e., Y =
⋃n

i=1{Xi}. While this

scheme should converge to the true rate-distortion function

as n → ∞ [20], we see that even for n = 60, 000, this fails to

capture the general trend of the DNN compressors. Finally, the

distortion corresponding to R = 0, known as Dmax, that BA

estimates is far from the optimal given by EPX

[

‖X − µX‖2
2

]

–

see Section IV for more details. This showcases the inaccuracy

of BA in estimating the rate-distortion function even with rela-

tively large number of samples. In contrast, our method, which

provides the estimate R̂�(D)n, does not exhibit these failures

and is able to generalize to the true MNIST distribution for a

significant portion of the rate-distortion function.

B. Related Work

There have been several recent works that attempt to esti-

mate R(D) on real-world image data. Aside from the classical

works of Arimoto [21] and Blahut [22], the first work that uses

neural networks to estimate rate-distortion is [23], who param-

eterize the QY|X channel using restricted Boltzmann machines

and study small synthetic sources. More recently, there have

been works such as [24], [25], [26], in which the authors

bound the rate-distortion function on real-world data. The

authors of [24] provide sandwich bounds on R(D), where the

upper bound is variational and proved to be tight. In con-

trast, this work, which was independently developed around

the same time, provides an estimate of R(D) by replacing a

class of distributions that R(D) minimizes over with a param-

eterized set of distributions, leading to a natural upper bound.

Additionally, the works in [8], [24], [27] discuss the potential

of reverse channel coding applied to image compression; our

work directly implements reverse channel coding using the

rate-distortion achieving QY|X channel learned from our R(D)

estimate. In [20], the authors analyze theoretical properties of

the plug-in estimator for R(D), but do not provide a method

that can be applied to real-world datasets.

A related area of work lies in the generative modeling lit-

erature, where the rate-distortion trade-off is often used to

evaluate generative models and unsupervised learning algo-

rithms. The most relevant work is [28], where the authors

take a rate-distortion perspective to evaluate the performance
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of generative adversarial networks (GANs) and variational

autoencoders (VAEs). In their formulation, they assume the

trained generative model is the output Y-marginal of the

rate-distortion objective, and find an upper bound on the rate-

distortion needed to reproduce the generative model, not the

true rate-distortion function of the source. Much of the other

work in this area [29], [30], [31] use variational bounds on

the rate-distortion for the purposes of representation learning,

and lack a direct connection to fundamental limits of lossy

compression.

C. Contributions

As opposed to the aforementioned approaches in Section I,

we take a step back and reformulate the rate-distortion objec-

tive into a min-max objective using duality, building on results

from [32]. As will be shown, this alleviates many of the issues

plaguing previous methods, and allows for practical implemen-

tation of lossy compression schemes based on reverse channel

coding, solely from samples. Our contributions are as follows.

• We propose an estimator of R(D) based on neural

networks, called NERD, which we show is strongly con-

sistent, and provide a corresponding algorithm to compute

the estimate from samples for a broad class of distortion

measures.

• We empirically show that these methods provide accu-

rate estimates of R(D) on synthetic as well as real-world

datasets, and that DNN autoencoder compressors achieve

a rate-distortion within a few bits of our estimate.

• We demonstrate how the optimal conditional distribution

(or channel) of R(D) can be approximately recovered

from NERD, and applied to reverse channel coding

schemes, which result in an operational one-shot lossy

compression scheme.

• We experimentally show that on real-world data, this

scheme performs competitively with DNN compressors

while also satisfying guarantees on the achievable rate

and distortion.

• We provide evidence that the gap between the one-shot

DNN compressors and the estimated rate-distortion func-

tion could be minimized by using DNN compressors that

perform block coding.

D. Notation

We use E [ ·] and P(·) to denote expectation and probability,

respectively. In general, we use subscript letters to denote a

probability measure’s respective space, e.g., QY for a distribu-

tion supported on Y . The distribution PX refers to the source

(or data) distribution, supported on X . For a measure µ, we use

f∗µ to denote the pushforward measure of µ through a func-

tion f . We use ⊗ to denote product measures, e.g., µ⊗ ν. We

assume logarithms to be taken base 2. d(·, ·) represent a dis-

tortion measure, DKL(·||·) is the Kullback-Leibler divergence,

and Wp(·, ·) is the p-Wasserstein distance.

II. PROBLEM FORMULATION

Our goal is to estimate the rate-distortion function R(D) of

some source PX . However, we only have access to n samples

X1, . . . , Xn drawn i.i.d. from PX , and do not assume any other

knowledge about its distribution.

As opposed to BA, which solves the double minimization

problem (2) in closed form, we use a dual form of the rate-

distortion function. We first note that the constrained version

of the inner minimization problem in (2) is known as the rate

function in the literature [20], [32], i.e.,

R(QY , D) := inf
PY|X :

EPX,Y [d(X,Y)]≤D

DKL

(

PX,Y ||PX ⊗ QY

)

, (5)

which exhibits the following dual characterization.

Lemma 2 (Rate Function Duality, [32, Sec. 2]): The rate

function can be equivalently expressed as follows.

R(QY , D) = sup
β̃≤0

β̃D − EPX

[

logEQY

[

eβ̃ d(X,Y)
]]

(6)

Therefore, R(D) is equivalent to infQY R(QY , D) and can be

expressed as a min-max problem,

R(D) = inf
QY

sup
β̃≤0

β̃D − EPX

[

logEQY

[

eβ̃ d(X,Y)
]]

, (7)

which can be estimated from samples, since we can approxi-

mate expectations with empirical averages for both PX , QY

independently. Furthermore, the inner problem is concave,

scalar, and has a unique solution. To solve the inner max,

first-order stationary conditions yield [32, Sec. 2.2]

D = EPX⊗QY

⎡

⎣d(X, Y)
exp

(

β̃ d(X, Y)

)

EY ′∼QY

[

exp
(

β̃ d(X, Y ′)

)]

⎤

⎦, (8)

which can be solved for β̃∗ via the bisection method. In the

next section, we use the dual formulation to derive an estimator

that uses neural networks to parametrize QY .

III. NEURAL ESTIMATION OF THE

RATE-DISTORTION FUNCTION

We propose to parametrize the output marginal distribution

QY using architectural choices similar to those used in the

GAN literature [33]. Specifically, let PZ be some simple base

distribution over Z and let G : Z → Rm be a function belong-

ing to a function class G. Then, representing distributions QY

with the pushforward G∗PZ , we can optimize over functions

in G, and arrive at

RG(D) := inf
G∈G

sup
β̃≤0

β̃D − EPX

[

logEPZ eβ̃ d(X,G(Z))
]

. (9)

The equivalence of this (under certain assumptions on PZ)

with R(D) is justified in [34]. In practice, we only have access

to samples X1, . . . , Xn drawn i.i.d. from PX , and must esti-

mate (9) from the empirical distribution P̂
(n)
X := 1

n

∑n
i=1 δXi .

Leveraging the expressive power of neural networks, we

choose G to be the class of functions parametrized by neural

networks, and arrive at the following estimator (NERD).

Definition 1 (Neural Estimator of the Rate-Distortion

Function (NERD)): Let G := {Gθ }θ∈� be a class of functions
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Algorithm 1 Neural Estimator of the Rate-Distortion Function

(NERD)

Input: Distortion constraint D, batch size B, number of

steps T , learning rate η

Initialize generator neural network Gθ : Z → Y

for t = 1, 2, . . . , T do

Sample {xi}
B
i=1

i.i.d.
∼ PX

Sample {zj}
B
j=1

i.i.d.
∼ PZ

Define κi,j(β̃, θt):= exp
(

β̃ d(xi, Gθt(zj))

)

Solve D = 1
B

∑B
i=1 d(xi, G(zi))

B·κi,i(β̃,θt)
∑B

j=1 κi,j(β̃,θt)
for β̃∗

θt+1 ← θt − η∇θ

(

− 1
B

∑B
i=1 log 1

B

∑B
j=1 κi,j(β̃

∗, θt)

)

end for

parametrized by a neural network. NERD is given by

R̂�(D)n := inf
θ∈�

sup
β̃≤0

β̃D − E
P̂

(n)
X

[

log E
PZ

[

eβ̃ d(X,Gθ (Z))
]

]

(10)

= inf
θ∈�

sup
β̃≤0

β̃D −
1

n

n
∑

i=1

log E
PZ

[

eβ̃ d(Xi,Gθ (Z))
]

(11)

The next theorem shows that NERD is a strongly consistent

estimator for the rate distortion function. The proof is provided

in Appendix A.

Theorem 1 (Strong consistency of NERD): Suppose the

alphabets are X = Y = Rm, PZ is supported on Z ∈ Rl, and

PZ is absolutely continuous with respect to Lebesgue measure.

Also, suppose that the distortion measure d is Ld-Lipschitz in

both arguments. Then the NERD estimator in (11) is a strongly

consistent estimator of R(D), i.e.,

lim
n→∞

R̂�(D)n = R(D) almost surely. (12)

Note that while NERD satisfies strong consistency, this may

not necessarily apply to settings encountered in practice. In

practice, we use stochastic gradient descent to search over the

function class � which may not necessarily find the minimum,

and the expectation over PZ is estimated using Monte-Carlo

methods.

To use NERD, following (11), one can simply sample

batches from PX and PZ , solve the inner max of (7) by

solving (8) for β̃∗, and take a gradient step over the DNN

parameters. The full algorithm is given in Algorithm 1. The

code is available online.1

A. Numerical Estimation Challenges

Note that although NERD is strongly consistent, the method

suffers from estimation inaccuracies for large rates, which mir-

ror similar estimation challenges of mutual information from

samples [35]. The issues stem from the log expectation over

PZ , logEPZ

[

eβ̃ d(Xi,Gθ (Z))
]

, requiring at least 2R samples to

estimate accurately with a sample mean at rate R. To see this,

note that the inner minimization in the min-max form in (7) is

equivalent to the Donsker-Varadhan (DV) lower bound [36].

1https://github.com/leieric/NERD-RCC

From [32], if β̃∗ is the inner problem’s maximizer, then

sup
β̃≤0

β̃D − EPX

[

logEQY

[

eβ̃ d(X,Y)
]]

(13)

= E
PX

[

E
Q∗

Y|X(·|X)

[

β̃∗ d(X, Y)

]

− log E
QY

[

eβ̃∗ d(X,Y)
]

]

(14)

= E
PX

[

sup
f :Y→R

E
Q∗

Y|X(·|X)

[

f (Y)
]

− logEQY

[

ef (Y)
]

]

(15)

= E
PX

[

DKL

(

Q∗
Y|X(·|X)||QY

)]

(16)

= I∗(X; Y) + DKL

(

Q̄Y ||QY

)

, (17)

where
dQ∗

Y|X=x

dQY
(x, y) = eβ̃∗ d(x,y)

EY′∼QY

[

eβ̃∗ d(x,y)
] , the optimizing f is

given by f ∗(y) = β̃∗ d(x, y), I∗(X; Y) is the mutual information

of the joint PXQ∗
Y|X , and Q̄Y is the Y-marginal2 of the joint

PXQ∗
Y|X . Hence, if we use an empirical distribution for QY ,

say with M samples, then

I∗(X; Y) + DKL

(

Q̄Y ||QY

)

≤ H
(

Q̄Y

)

+ DKL

(

Q̄Y ||QY

)

(18)

= −EQ̄Y

[

log dQY(y)
]

(19)

= −EQ̄Y

[

log
1

M

]

(20)

= log M (21)

Additionally, the authors in [35] show that the DV

lower bound as well as any other M-sample estimate of

a distribution-free high-confidence lower bound of mutual

information is at most O(log M). Therefore, we can expect

NERD to estimate R(D) for rates up to log2 M. In practice,

we set M = 40, 000 for 32 × 32 images.

On a separate note, the authors in [24] provide an empirical

lower bound of R(D) which can be estimated from samples.

They note that the lower bound always struggles to achieve

rates greater than O(log M). The above explanation on esti-

mating lower bounds of mutual information may help explain

that phenomenon. Since NERD provides an exact estimate of

the mutual information of the rate-distortion achieving joint

distribution, it is estimating the tightest lower bound.

IV. EXPERIMENTAL RESULTS: NERD

In our experiments, we use synthetic data (i.e., Gaussian),

MNIST digits, and Fashion MNIST (FMNIST) images to rep-

resent our source X ∼ PX . We use squared-error distortion

for all cases, i.e., d(x, y) = ‖x − y‖2
2. In all cases, we have

n = 60, 000 i.i.d. samples from PX . We set the base distri-

bution as PZ = N (0, Imz) and parametrize Gθ :Rmz → Rm

with a fully connected neural network for the Gaussian case,

and a deep convolutional architecture similar to the genera-

tor architecture used in DCGAN [37] for the image data. For

the DNN compressors, we use the nonlinear transform cod-

ing framework outlined in [4]. More architectural details are

provided in Appendix C.

2Note that from the Blahut-Arimoto equations (3) and (4), the Y-marginal
Q̄Y coincides with QY only at optimality, when they both equal the optimal
reproduction distribution Q∗

Y . In other words, PXQ∗
Y|X is a coupling between

PX and QY only at optimality.
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Fig. 2. Estimated R̂�(D)n (NERD) on Gaussian data (m = 20, σ 2
k

=

4e
− 1

16
k
) compared with DNN compressors.

Fig. 3. Estimated R̂�(D)n (NERD) of SVHN images vs. DNN compressors.

A. Synthetic Data

We first verify the NERD estimator on Gaussian data.

Specifically, PX = N (0, 
) is a multivariate Gaussian with

m = 20 dimensions. Let 
 = Vdiag(σ 2
1 , . . . , σ 2

m)V� be the

eigendecomposition of 
, with V orthogonal. In this case, the

rate-distortion function of PX has an analytical form and is

given by [18]

R(D) =

⎧

⎨

⎩

∑

i∈[m]:

σ 2
i >λ

1
2

log
σ 2

i

λ
, D ≤

∑m
i=1 σ 2

i

0, o.w.

(22)

where λ > 0 satisfies the reverse water-filling condition

λ

∣

∣

∣

{

i : σ 2
i > λ

}∣

∣

∣
+

∑

i∈[m]:σ 2
i ≤λ

σ 2
i = D. (23)

To evaluate NERD, we choose σ 2
k = 4e− 1

16 k, and pick an

orthogonal matrix V to form 
. We generate samples from

N (0, 
) and apply Alg. 1. As shown in Fig. 2, for this choice

of PX , NERD can accurately estimate R(D) for rates below

10 bits. For higher rates, the estimate suffers from numerical

instability as discussed in the previous section. We also provide

a second Gaussian example in the Appendix, shown in Fig. 15.

B. Real-World Data

We apply NERD to MNIST and FMNIST datasets, which

are single-channel images, as well as SVHN (Street View

House Numbers) [38] which contain color RGB images. We

plot the estimated rate-distortion curves in Fig. 1 for MNIST,

Fig. 16 for FMNIST, and Fig. 3 for SVHN. In all cases, the

curve appears to satisfy the convex and strictly decreasing

properties of the rate-distortion function. Using our estimate

of R(D), we can use DNN compressors of the autoencoder

type [1], [2], [3] with quantization to see how they per-

form compared to the fundamental limits. Additionally, we

see that DNN compressors closely follow the same trend as

the estimated rate-distortion function, and are within several

bits of optimality inside the achievable region. However, it

remains difficult to conclude in this case whether or not DNN

compressors are optimal on these datasets. The gap of sev-

eral bits could be potentially attributed to the fact that the

DNN compressors are one-shot, whereas R(D) is achievable

only under asymptotic blocklengths. While one-shot achiev-

able regions of R > R(D) + log(R(D) + 1) + 5 are known [7],

lower bounds tighter than R(D) for general sources PX are

not as clear. Either way, it remains to be seen whether other

computationally feasible source codes could be designed to

perform closer to the rate-distortion limit. In later sections,

we discuss learning-based block codes on real-world data that

empirically perform closer to R(D) for certain regimes of the

rate-distortion tradeoff.

C. Comparison With Blahut-Arimoto

We compare solving (11) to a baseline scheme that uses

Blahut-Arimoto on discretized input and output alphabets. On

low-dimensional input alphabets, Blahut-Arimoto will perform

accurately. But for high-dimensional alphabets, it is unclear

how to discretize the continuous space. For image datasets,

which are high-dimensional, we have X = {X1, . . . , Xn ∈

[0, 1]m} and let the source PMF be 1
n

∑n
i=1 δXi(x) and choose

a discretization for Y ⊆ [0, 1]m to define an output marginal

PMF for Blahut-Arimoto. We attempt to choose the dis-

cretization for Y to be the same as the source, i.e., Y =

{X1, . . . , Xn ∈ [0, 1]m} is exactly the support of the samples.

Such a scheme should converge to the true rate-distortion func-

tion as n → ∞ assuming the true continuous alphabets are

both [0, 1]m. However, we demonstrate that Blahut-Arimoto

fails when the number of samples is finite. Firstly, we are

limited by the number of samples (60,000 at most with both

datasets). Even with a large number of samples, we see that,

given in Fig. 1 and 16, doing so does not work particularly

well, and the trend is completely off compared to NERD and

the DNN codes. It fails to extrapolate to the true rate-distortion

function of the true source, and traces the rate-distortion curve

for the discrete uniform empirical distribution which we see

achieves zero distortion at R = H(P̂
(n)
X ) = log2 n. As n grows

larger, we would expect the curve traced by this scheme to

“rotate” clockwise to the true rate-distortion curve (which

requires infinite rate at zero-distortion for continuous sources),

but this scheme can only rotate to where the zero-distortion

rate reaches log2(60, 000) ≈ 15.87. In contrast, NERD is

able to follow the same trend of the operational rate-distortion

curve estimated by DNN compressors, and matches known

characteristics of R(D) as described in the next section.

D. Comparison With Empirical Sandwich Bounds

This section provides comparisons with other neural

network-based bounds on R(D); namely, those provided
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Fig. 4. Samples from trained Y-marginal Q∗
Y (MNIST). As R → 0, Q∗

Y
generates the mean image, achieving D = Dmax.

Fig. 5. Samples from trained Y-marginal Q∗
Y (SVHN). As R → 0, Q∗

Y
generates the mean image, achieving D = Dmax.

Fig. 6. NERD vs. empirical sandwich bounds [24] on MNIST.

in [24]. It is important to note that NERD itself is an upper

bound of R(D). This can be seen since the inner maximization

simply computes the mutual information between QY and QY|X

in closed form. The outer minimization restricts the search

over distributions QY to those parameterized by the neural

network function class. Thus, any fixed QY parameterized by

a neural network directly yields an upper bound of R(D). In

Fig. 6 we show how the sandwich bounds provided in [24]

compare to NERD on the MNIST dataset. Indeed, it can be

seen that on certain parts of the rate-distortion curve, NERD

matches up with the upper bound from [24], indicating that

the tightness of their bound is likely achieved for these rate

points. For the lower bounds, there is a gap when compared

to the NERD estimate. However, we encountered instability

from the implementation provided from [24], when comput-

ing the lower bound. It is interesting to note that NERD’s

formulation is very similar to the lower bound [24, eq. (4)],

which suggests two things. First, NERD chooses a simpler

parameterization to solve R(D). Second, our discussion from

Section III-A explained why any lower bound of R(D) requires

sample complexity exponential in the rate, which corroborates

the analysis and results of the lower bound in [24], who strug-

gled to bring the lower bound above log of the number of

samples used.

E. Samples From the Optimal Reproduction Distribution

We now illustrate generated samples from the (approxi-

mately) optimal reproduction distribution Q∗
Y , parametrized

by the trained neural network Gθ∗ , where θ∗ neural network

parameters that are the minimizers of NERD. In other words,

Q∗
Y = Gθ∗∗PZ , the pushfoward of PZ through Gθ∗ . We show

that it indeed aligns with the behavior of the rate-distortion

function. Let Dmax := miny∈Y EPX [ d(X, y)] be the distortion

achievable at zero rate [19, ch. 9], i.e., R(Dmax) = 0. This is

the best distortion that can be possibly achieved when there

is no information about the source, where the reproduction is

simply the best constant estimate of X. When d is squared-

error, and X = Y , the best constant estimate is the mean

µX = EPX [X], with Dmax = EPX

[

‖X − µX‖2
2

]

. In the MNIST

case, the samples generated from the generator neural network

at R = 0.28, shown in Fig. 4(a), consistently generate the

“mean image”. Computing Dmax with an empirical average

turns out to be ≈ 55 (under mild preprocessing of the MNIST

dataset), which matches the zero-rate point in Fig. 1. In con-

trast, samples generated from a trained generator at higher

rate, shown in Fig. 4(b), appear more similar to the original

MNIST images and produce more modes of the distribution.

A similar phenomenon occurs with SVHN and FMNIST as

well, shown in Fig. 5 and 18. In comparison, Blahut-Arimoto

does not produce this phenomenon and fails to intersect the

D-axis at Dmax.

F. Generality of Distortion Function

In this section we demonstrate that the method reliably

works for general distortion functions. In order for the back-

propagation operation to function correctly, the only require-

ment is that the distortion function be differentiable in its

arguments. To demonstrate this, we estimate the rate-distortion

function of the same Gaussian source as described previously,

but instead of squared-error distortion, we now apply general

squared �p distances dp(x, y) = ‖x − y‖2
p. Due to the fact that

‖v‖p ≤ ‖v‖q when 0 < q ≤ p < ∞, we have that

inf
PY|X :

EPX,Y [dp(X,Y)]≤D

I(X; Y) ≤ inf
PY|X :

EPX,Y [dq(X,Y)]≤D

I(X; Y). (24)

We show the rate-distortion function of the Gaussian source

using d1(x, y), d2(x, y), and d3(x, y). Since an analytical form

of the Gaussian rate-distortion function is not known for d1

and d3, we only plot the NERD-estimated rate-distortion func-

tions here. As observed in Fig. 7, the inequality in (24) is

reflected in the 3 rate-distortion curves.

V. ONE-SHOT OPERATIONAL LOSSY SOURCE CODES

Now that we have the capability to calculate the fundamen-

tal limit of lossy source coding, and also recover an approxi-

mately optimal reproduction distribution Q∗
Y parametrized by a

neural network, a natural question to ask is whether it is possi-

ble to use Q∗
Y to construct an operational compressor. Indeed,

we will see in this section that Q∗
Y can be used to construct

a compression scheme with guarantees on the achievable rate

and distortion, and empirically perform similar to those of
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Fig. 7. Gaussian rate-distortion function for dp(x, y) = ‖x − y‖2
p for p =

1, 2, 3.

Fig. 8. Diagram of reverse channel coding, or channel simulation. Given
x ∼ PX , the goal is to generate y ∼ QY|X=x, effectively simulating the
channel QY|X , by transmitting some information M with minimal description
length E [L(M)]. Common randomness U between the encoder and decoder
is assumed.

DNN compressors. We first discuss reverse channel coding,

which is the technique that underlies the lossy compression

scheme, unlike DNN compressors which directly model the

encoder and decoder with neural networks.

A. Reverse Channel Coding

The one-shot reverse channel coding (RCC) problem,

described in [8], consists of reproducing a sample x ∼ PX but

allowing it to be corrupted by some noise. It is also known

as the channel simulation problem and has been investigated

previously in [7], [9], [10], [11], [12], [13], [14], [15] and

references therein. Precisely, given a realization x ∼ PX , the

sender wishes to reproduce a sample y at the receiver such that

it follows a prespecified conditional distribution QY|X=x, as if

the realization x had gone through a channel QY|X (see Fig. 8).

The sender communicates a message M which the decoder

uses to reproduce y, with the goal of ensuring y ∼ QY|X=x and

that the expected description length E [L(M)] per source sym-

bol, known as rate, communicated from the sender to receiver

is minimal. In our setting, we assume that the sender and

receiver share unlimited common randomness, denoted as U.

The relationship to lossy source coding is as follows. In

lossy source coding, we wish to approximately represent some

sample x ∼ PX with y such that both expected description

length and expected distortion are minimized. While RCC is

not explicitly concerned with distortion, it is clear that if one

has a RCC scheme for channel QY|X with rate E [L(M)] ≤ R,

then the expected distortion incurred is EPXQY|X [ d(X, Y)].

Hence, such a RCC scheme would yield a lossy one-shot code

that achieves a rate of R and distortion EPXQY|X [ d(X, Y)].

Furthermore, suppose that Q∗
Y|X is the channel that mini-

mizes the rate-distortion function (1) at distortion level D.

Any RCC scheme on Q∗
Y|X achieves an expected distortion

EPXQ∗
Y|X

[ d(X, Y)] ≤ D. What about the rate? It turns out that

there are RCC schemes [7], [8] on Q∗
Y|X that are guaranteed

to achieve rates

E[L(M)] ≤ R(D) + log(R(D) + 1) + 5, (25)

which we now describe.

1) PFR: Suppose we have a channel QY|X . The Poisson

functional representation (PFR), proposed by Li and

Gamal [7], is one such RCC scheme with guarantees on the

rate required. In particular, in order to transmit a sample

x ∼ PX , both the encoder and decoder (assuming shared com-

mon randomness U) first sample a marked Poisson process

{(Ti, Yi)}
∞
i=1, such that Ti − Ti−1

i.i.d.
∼ Exp(1) and Yi

i.i.d.
∼ QY ,

where QY is the marginal of Y over the joint distribution

(X, Y) ∼ PXQY|X . The encoder then computes an index

K = arg min
i∈N

Ti ·
dQY

dQY|X(·|x)
(Yi), (26)

and encodes it using a lossless source code. The decoder recov-

ers K, and outputs YK , which is distributed with QY|X=x. This

scheme has the guarantee that

H(K) ≤ I(X; Y) + log(I(X; Y) + 1) + 4. (27)

In practice, one can encode K using a Huffman code-

book designed for the Zipf distribution with PMF q(k) ∝

k−(1+1/(I(X;Y)+e−1 log e+1)), which guarantees a rate equivalent

to the rate in (27) plus 1 bit [7]. Applying PFR to the

rate-distortion optimal channel Q∗
Y|X thus achieves the rate

guarantee in (25).

One potential issue in the practical implementation of the

PFR is solving (26), which requires solving a discrete and

infinite optimization problem. To practically implement this,

one must use a finite number of samples, but as described

in [8], the guarantee on the rate in (27) does not necessarily

hold when a finite number of samples is used.

2) ORC: To alleviate this issue, Theis and Yosri [8] pro-

pose ordered random coding (ORC). Rather than weighting

the density ratios in (26) by Poisson arrival times, ORC

weights them with sorted exponential random variables. The

two RCC methods, PFR and ORC, can be summarized as

follows [8, Th. 3]. Fix some number of samples N. Sample

{Xi}
N
i=1

i.i.d.
∼ Exp(1), and {Yi}

N
i=1

i.i.d.
∼ QY , where QY is defined

as above. Then, the encoder generates the cumulative weights

{Wi}
N
i=1, defined to be

Wi =

{

∑i
j=1 Xj, if PFR

∑i
j=1

N
N−j+1

Xj, if ORC
(28)

The encoder sends

K = arg min
1≤i≤N

Wi ·
dQY

dQY|X(·|x)
(Yi), (29)

and the decoder outputs YK . In contrast with PFR, ORC can

be shown to achieve the same rate as PFR (given in (27))

[8, Corollory 1], but the rate guarantee still holds for some
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finite N [8, Th. 3]. This guarantees the rate in (27) even in prac-

tical usage, and so applying ORC to Q∗
Y|X will again achieve

the rate in (25).

B. Lossy Compression Scheme via Reverse Channel Coding

For any expected distortion tolerance D, let Q∗
Y|X be the

rate-distortion achieving channel, and Q∗
Y be the rate-distortion

achieving reproduction distribution (simply the Y-marginal of

the joint Q∗
Y|XPX). Applying PFR or ORC to Q∗

Y|X achieves

a rate no more than R(D) + log(R(D) + 1) + 5 and expected

distortion no more than D. The following proposition exem-

plifies a nice interpretation when the rate-distortion achieving

distributions are used for RCC.

Proposition 1: When using Q∗
Y|X and Q∗

Y for RCC to

compress x ∼ PX , the encoder computes the index

K = arg min
i

{

d(x, Yi) −
(

β∗
)−1

ln Wi

}

(30)

where β∗ < 0 is the slope of R(D) at the point D =

EPXQ∗
Y|X

[ d(X, Y)], and Wi’s are generated via (28).

Remark 1: Prop. 1 can be interpreted as the encoder search-

ing for the sample Yi that is closest to x under distortion

measure d, while simultaneously regularizing the size of the

index used (and therefore its entropy). The amount of reg-

ularization is proportional to the tradeoff between rate and

distortion in the rate-distortion function R(D).

Proof: We have that K = arg mini Wi
dQ∗

Y

dQ∗
Y|X(·|x)

(Yi). Let

PX,Y = Q∗
Y|XPX be the joint measure. The optimal density

ratio is then given by [32] as

dQ∗
Y|X(·|x)

dQ∗
Y

(y) =
dPX,Y

dQ∗
YdPX

(y) (31)

=
eβ∗ d(x,y)

EY ′∼Q∗
Y

[

eβ∗ d(x,Y ′)
] (32)

where β∗ = arg maxβ̃≤0 β̃D − EPX

[

logEQ∗
Y

[

eβ̃ d(X,Y)
]]

.

Hence, using (29), we have that

K = arg min
i

Wi

dQ∗
Y

dQ∗
Y|X(·|x)

(Yi) (33)

= arg min
i

Wi

EY ′∼Q∗
Y

[

eβ∗ d(x,Y ′)
]

eβ∗ d(x,Yi)
(34)

= arg min
i

Wi

eβ∗ d(x,Yi)
= arg min

i

ln
Wi

eβ∗ d(x,Yi)
(35)

= arg min
i

{

ln Wi − β∗ d(x, Yi)
}

(36)

= arg min
i

{

d(x, Yi) −
(

β∗
)−1

ln Wi

}

(37)

where in the last step we have rescaled by − 1
β∗ ≥ 0.

Therefore, given n samples from PX , one can design a lossy

one-shot code with (approximately) rate (25) and distortion D

as follows:

1) Apply NERD to the samples from PX , which returns a

trained neural network Gθ∗ and slope β∗ as solutions

of the min-max problem in (11). Form an approxima-

tion to Q∗
Y as the pushforward of PZ through Gθ∗ , i.e.,

Algorithm 2 Lossy Encoding Scheme via RCC

Input: Optimal Y-marginal distribution Q∗
Y , rate-distortion

slope parameter β̃ < 0, rate parameter C, number of

samples N, random seed r, sample to compress x

Generate weights {Wi}
N
i=1 according to (28)

Sample {Yi}
N
i=1

i.i.d.
∼ Q∗

Y using r

Let K = arg mini=1,...,N{d(x, Yi) − β̃−1 ln Wi}

Encode K using a Huffman code for the distribution with

mass q(k) ∝ k−(1+1/(C+e−1 log e+1)), into a bit string b

return b

Algorithm 3 Lossy Decoding Scheme via RCC

Input: Optimal Y-marginal distribution Q∗
Y , rate parameter

C, number of samples N, random seed r, bit string b

Decode K using the Huffman code for the distribution with

mass q(k) ∝ k−(1+1/(C+e−1 log e+1))

Sample {Yi}
N
i=1

i.i.d.
∼ Q∗

Y using r

return YK

Gθ∗∗PZ . Sampling from this distribution can be done by

first sampling Z ∼ PZ , and outputting Gθ∗(Z).

2) To compress x ∼ PX , apply Alg. 2 with Gθ∗∗PZ , slope

parameter β∗, rate parameter as the estimate of the rate-

distortion function R̂�(D)n, and some random seed r.

This returns a bit string b.

3) To decompress, apply Alg. 3 with the same parameters

as the previous step.

We will refer to the above learned compression procedure as

NERD-RCC.

C. Experimental Results: NERD-RCC

We evaluate the RCC schemes on synthetic Gaussian,

MNIST, and FMNIST data.

In the m-dimensional Gaussian case, we let the source

be PX = N (0, diag(σ 2
1 , . . . , σ 2

m)) where σ 2
k = 4e− 1

16 k2
.

We can find the rate-distortion achieving channel Q∗
Y|X and

output marginal distribution Q∗
Y in closed form [18]. Let

A = {k : σ 2
k > λ}, with λ defined in (23). Then the channel and

output marginal are both factorized as Q∗
Y|X =

∏m
k=1 QYk|Xk

and Q∗
Y =

∏m
k=1 Q∗

Yk
, where for k ∈ A, QYk|Xk=x = N (x, λ)

and QYk
= N (0, σ 2

k + λ), and for k /∈ A, QYk
and QYk|Xk=x

assign probability 1 to 0. We compare the RCC schemes

(implemented using these known Q∗
Y and Q∗

Y|X) with a one-

shot DNN compressor trained on realizations from PX , and

show the results in Fig. 9. As can be seen, PFR and ORC

achieve comparable rate-distortion to each other, and are sev-

eral bits below the rate guarantee (25). DNN compressors,

interestingly, are also several bits within (25) and seem to

perform better than the RCC methods for lower rates but

worse at higher rates. In Fig. 19, we show the same com-

parison with the rate-distortion achieved by RCC methods via

the Q∗
Y learned from NERD. It can be seen that they closely

mirror the performance of the RCC methods achieved using

the exact Q∗
Y .
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Fig. 9. Gaussian source.

Fig. 10. PFR and ORC on MNIST images.

The SVHN, MNIST, and FMNIST results are shown in

Fig. 11, 10, and 17 respectively. For these datasets, we

apply NERD-RCC by using the optimizers Q∗
Y and β∗ from

NERD since the rate-distortion optimizing channel and out-

put marginal cannot be found in closed form. In both cases,

NERD-RCC performs very similarly to the DNN one-shot

code. As in the Gaussian case, both DNN compressors and

NERD-RCC methods are within the rate guarantee of (25). In

the Gaussian case in Fig. 9, we have access to the true rate-

distortion optimizing channel and output marginal, so there

is no potential for reduced performance at higher rates due

to these factors. Nevertheless, the benefit of NERD-RCC is

that the rate achieved at distortion D is always guaranteed to

be within the upper bound R̂�(D)n + log
(

R̂�(D)n + 1
)

+ 5,

no matter what dataset or source samples that NERD uses.

In contrast, DNN compressors provide no such performance

guarantee. In Fig. 11(b), we demonstrate several realizations

of the source PX and the output of NERD-RCC. As can be

seen, the reverse channel coding scheme outputs a noisy, but

faithful reconstruction of the original source.

VI. DISCUSSION AND OPEN PROBLEMS

A. Lower Bounds and Block Coding for DNNs

The results in the previous two sections demonstrate that

one-shot lossy DNN compressors are close to the rate-

distortion function of real-world datasets, and competitive with

RCC schemes. However, it is difficult to conclude whether or

not DNN compressors are optimal, since a characterization

of the one-shot fundamental limits are not as clear for gen-

eral source distributions. While (25) provides an achievability

Fig. 11. PFR and ORC on SVHN images.

Fig. 12. Visualization of Alg. 2, 3 on MNIST images.

result, lower bounds are not as clear for general sources. This

precludes any definitive answer to optimality of one-shot DNN

compressors for real-world datasets.

However, one might ask if perhaps this gap between the

estimated rate-distortion function and rate-distortion achieved

by the one-shot DNN compressors are due to the one-shot

nature of the DNNs, and if DNN compressors that compress

blocks of M realizations at a time can help close this gap. To

test this, we use a DNN compressor with the same architec-

ture as the one-shot DNN compressor, but apply it to blocks

of M = 4 images combined together to form a larger image, in

a 2 × 2 configuration. We plot the average rate and distortion

per image sample in Figs. 13(a) and 13(b). As we can see,

for both MNIST and FMNIST, the rate-distortion achieved is

consistently better than one-shot DNN compressors as well as

the RCC algorithms for smaller rates, demonstrating that block

DNN codes on i.i.d. sources can indeed provide performance

gains. At higher rates, however, the block DNN compressor

performs worse. This can potentially be attributed to limita-

tions of the DNN architecture used, which worked well with

single images, but may not be the best for 4 images that have

been stitched together. One avenue for future work is finding

DNN architectures that work well with compressing blocks of

images, and to see how they compare to the rate-distortion

curves.

B. Computational Scaling of NERD and RCC

As noted in Section III, NERD requires a number of sam-

ples exponential in the rate required. While this is fine for

many real-world datasets such as MNIST and SVHN, this

limitation does not allow one to estimate large regimes of

the rate-distortion function for “higher entropy” datasets such

as ImageNet. Designing methods that can accurately estimate

R(D) at scale on such datasets is left for future work.
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Fig. 13. DNN block code versus RCC algorithms and DNN one-shot codes.

Fig. 14. Effect of N on RCC methods. Example here shows PFR on Gaussian
source.

As shown in the previous section, RCC offers an alter-

native method for learning-based lossy source code design

that does not explicitly use quantization, and has guaran-

tees on the achievable rate and distortion which can be

estimated directly from data using NERD. However, one draw-

back of this approach is that the sample complexity of many

RCC algorithms is known to scale exponentially with the

amount of information communicated from the sender to the

receiver [8], [39]. Indeed, when running RCC with varying

N, the number of samples generated, the estimated rates seem

to scale logarithmic with N. An example of this is shown in

Fig. 14. In comparison, DNN compressors do not suffer from

such a runtime complexity. In order to scale to larger rates, one

potential avenue is to adapt the recently proposed A∗ coding

method in [39] for the similar relative entropy coding (REC)

problem to the RCC setting. The authors of [39] use A∗ cod-

ing to achieve sample complexity linear in the rate rather than

exponential. Applying these methods to the RCC schemes is

left to future work.

VII. CONCLUSION

In this paper, we propose a new algorithm for computing the

rate-distortion function for real-world data. We use an alter-

native formulation of the rate-distortion objective which is

amenable to parametrization with neural networks and pro-

vide an estimator, NERD, that is sample and computationally

efficient. We empirically show that it accurately estimates the

rate-distortion function for synthetic and real-world datasets.

We show how NERD can be used to implement near-optimal

compression schemes via reverse channel coding on real-world

data, with performance guarantees, and demonstrate the poten-

tial of DNN block codes to achieve rate-distortion performance

closer to the rate-distortion function.

APPENDIX A

PROOFS

Theorem 2 (Theorem 1 in Text): Suppose the alphabets are

X = Y = Rm, PZ is supported on Z ∈ Rl, and PZ is abso-

lutely continuous with respect to Lebesgue measure. Also,

suppose that the distortion measure d is Ld-Lipschitz in both

arguments. Then the NERD estimator in (11) is a strongly

consistent estimator of R(D), i.e.,

lim
n→∞

R̂�(D)n = R(D) almost surely. (38)

Proof: Fix ε > 0. Define

R̃(Q, β) := βD − EPX

[

logEQ

[

eβ d(X,Y)
]]

(39)

where β ≤ 0 is nonpositive, and

R̃(Q) := max
β≤0

R(Q, β) (40)

since the inner sup has a unique maximum [32]. By defini-

tion R(D) = infQY R̃(QY), there exists Q∗
Y such that R̃(Q∗

Y) <

R(D)+ ε/4. We would like to find a distribution Qθ ∼ Gθ (Z),

Z ∼ PZ , parametrized by a neural network Gθ , that has R̃(Qθ )

close to R̃(Q∗
Y).

For fixed x, the function y �→ eβ d(x,y) is Ld|β|-Lipschitz,

since β ≤ 0. Hence, by Lemma 3,
∣

∣

∣
EQ∗

Y

[

eβd(x,Y)
]

− EQθ

[

eβd(x,Y)
]
∣

∣

∣
≤ Ld|β|W1

(

Qθ , Q∗
Y

)

(41)

Let β∗, βθ be the maximizers of R̃(Q∗
Y) and R̃(Qθ ) respec-

tively. Since log is a continuous function, there exists δ1 > 0

such that if W1(Qθ , Q∗
Y) <

δ1
Ld|β∗| , then

∣

∣

∣
logEQ∗

Y

[

eβ∗d(x,Y)
]

− logEQθ

[

eβ∗d(x,Y)
]
∣

∣

∣
< ε/8 (42)

Therefore, choosing Qθ such that W1(Qθ , Q∗
Y) <

δ1
Ld|β∗| yields

∣

∣R̃
(

Q∗
Y , β∗

)

− R̃
(

Qθ , β
∗
)
∣

∣ (43)

≤ EPX

[
∣

∣

∣
logEQ∗

Y

[

eβ∗d(X,Y)
]

− logEQθ

[

eβ∗d(X,Y)
]
∣

∣

∣

]

(44)

≤ EPX

[

ε/8
]

= ε/8 (45)

where the first inequality holds due to Jensen’s inequality.
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We now wish to bound |R̃(Qθ , β
∗) − R̃(Qθ , βθ )|. Since the

map β �→ R̃(Qθ , β) is continuous in β, there exists δ2 > 0

such that if |β∗ − βθ | < δ2, then |R̃(Qθ , β
∗) − R̃(Qθ , βθ )| <

ε/8. Define

f (Q, β) := EPX

[

EQ

[

d(X, Y)eβ d(X,Y)
]

EQ

[

eβ d(X,Y)
]

]

− D (46)

whose root provides the solution to R̃(Q). We can

apply Lemma 3 to the numerator and denominator inside

the PX expectation to conclude that with Qθ satisfying

W1(Q
∗
Y , Qθ ) < C. Since the function x1, x2 �→ x1

x2
is contin-

uous, we can conclude that f (Q, β) is continuous with respect

to the W1 distance in Q since composition of continuous func-

tions are continuous. Hence there is some δ3 > 0 such that

if W1(Qθ , Q∗
Y) < δ3, the maximizers βθ and β∗ must satisfy

|β∗ − βθ | < δ2, by the implicit function theorem.

We can thus find a neural network Gθ ′ with sufficient

complexity3 via [40] such that Qθ ′ satisfies W1(Qθ ′ , Q∗
Y) <

min
(

δ1
Ld|β∗| , δ3

)

, yielding

∣

∣R̃
(

Q∗
Y

)

− R̃(Qθ ′)
∣

∣

<
∣

∣R̃
(

Q∗
Y , β∗

)

− R̃
(

Qθ ′ , β∗
)∣

∣ +
∣

∣R̃
(

Qθ ′ , β∗
)

− R̃(Qθ ′ , βθ ′)
∣

∣

< ε/4 (47)

and hence |R(D) − R̃(Qθ ′)| < ε/2. Since R̃(Qθ ′) is an upper

bound of R(D), we have that

|R(D) − R�(D)| =

∣

∣

∣

∣

R(D) − inf
θ∈�

R̃(Qθ )

∣

∣

∣

∣

< ε/2 (48)

Applying the strong consistency result for the parametric

problem in [20], ∃N ∈ N such that for all n ≥ N,

|R̂�(D)n − R�(D)| < ε/2 almost surely, and so again by tri-

angle inequality, we have that |R̂�(D)n − R(D)| < ε for all

n ≥ N, almost surely.

Lemma 3: Let g : X → R be L-Lipschitz. Then for any

distributions P, Q ∈ P(X ),
∣

∣EX∼P

[

g(X)
]

− EX∼Q

[

g(X)
]
∣

∣ ≤ L · W1(P, Q) (49)

where W1(P, Q) := infπ∈�(P,Q) EX,X′∼π [‖X − X′‖] is the

1-Wasserstein distance.

Proof: Let g′(x) =
g(x)

L
, so that g′ is 1-Lipschitz.

∣

∣EX∼P

[

g′(X)
]

− EX∼Q

[

g′(X)
]
∣

∣ (50)

≤ sup
f :‖f ‖Lip≤1

EX∼P

[

f (X)
]

− EX∼Q

[

f (X)
]

(51)

= W1(P, Q) (52)

where the last step is by Kantorovich-Rubinstein duality [41],

[42] and ‖f ‖Lip := supx1,x2∈X
x1 �=x2

|f (x2)−f (x1)|
‖x1−x2‖

is the Lipschitz norm

of f .

APPENDIX B

ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to support

the main text.

3Assuming the function class � contains fully-connected networks with
ReLU activations, with sufficient width and depth.

Fig. 15. Gaussian rate-distortion with 40 dimensions and σ 2
k

= 4e
− 1

4
k
.

Fig. 16. Estimated R̂�(D)n (NERD) of FMNIST images vs. DNN
compressors and BA.

Fig. 17. PFR and ORC on FMNIST images.

Fig. 18. Samples from trained Y-marginal Q∗
Y (FMNIST). As R → 0, Q∗

Y
generates the mean image, achieving D = Dmax.

A. Additional Results on R(D) Estimation and RCC

Fig. 15 provides an additional example of NERD on

a different Gaussian source. Figs. 16, 17, and 18 provides

FMNIST results. Fig. 19 provides NERD-estimated Q∗
Y in

addition to exact Q∗
Y for RCC methods on the Gaussian source.
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Fig. 19. RCC methods on Gaussian source with exact and NERD-
estimated Q∗

Y .

Fig. 20. Ablation study on generator capacity. Estimated rate-distortion
curves via NERD for different generator sizes by varying cd , which controls
the number of channel dimensions throughout the model.

B. Ablation Study on Generator Capacity

In this section, we examine the effect of the generator

capacity on the rate-distortion curves generated by NERD. In

order to do so, we restrict capacity by reducing the number

of channel dimensions in the hidden layers of the generator

G. In particular, let cd be the channel dimension parameter

we adjust. The input tensors to the four convolution trans-

pose layers of the generator architecture (further explained in

Section C) are of size 8cd, 4cd, 2cd, and cd. In the main text,

all figures are generator using generators with cd = 32. In

this ablation study, we vary cd ∈ {32, 16, 8, 4}, and show the

results in Fig. 20. In all cases, the latent randomness passed to

the generator remains at 128 dimensions (before projection to a

32cd-dimensional space). Thus a minimal cd value of 4 ensures

that the amount of latent randomness passed to the generator is

not affected by the initial projection. We see that for small cd

(i.e., limited capacity), the rate-distortion estimates are higher

at higher rates, and this decreases as cd increases. The esti-

mates seem to converge (at least for this rate range) for values

of cd at least 16.

APPENDIX C

IMPLEMENTATION DETAILS

A. NERD Generator Architecture

The generator G uses different architectures depending on

the source type. For images, we use the DCGAN [37] architec-

ture which is a fully convolutional architecture with 4 layers. It

alternates between convolutional transpose layers with ReLU

nonlinearities, with sigmoid nonlinearity at the output layer

to scale between 0 and 1. Thus the total spatial upsampling

is 24. The input to the model is a mz-dimensional vector (with

mz = 128) which is first linearly projected to a 8cd × 2 × 2

space. This is reshaped to a tensor containing 8cd channels

and a 2 × 2 spatial resolution. Each layer increases the spatial

dimension by a factor of 2 and decreases the channel dimen-

sion by a factor of 2, with the last channel dimension equalling

1 for grayscale images and 3 for RGB images. In the main

text, all NERD estimates are given using cd = 32.

For Gaussian sources, we us a fully-connected parameteri-

zation for G, with 2 hidden layers of dimension equally the

dimensionality of the Gaussian source, and ReLU nonlineari-

ties after each layer except for the last.

B. DNN Compressor Architecture

The DNN compressors used follow the nonlinear trans-

form coding (NTC) framework [4]. In this paper, we use the

soft-quantization approach where the latent elements are inde-

pendently quantized. During training, a soft quantizer with

a temperature parameter is used to back-propagate the gra-

dients, with hard quantization at inference time. We found

that the dithering-based quantization with factorized prior

performed similarly on the image datasets. Similar to the

NERD generator architectures, the encoder and decoder neural

networks are fully convolution-based for the image datasets,

and fully-connected for the synthetic sources.
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