674 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 4, DECEMBER 2022

Neural Estimation of the Rate-Distortion Function
With Applications to Operational Source Coding

Eric Lei

Abstract—A fundamental question in designing lossy data com-
pression schemes is how well one can do in comparison with
the rate-distortion function, which describes the known theo-
retical limits of lossy compression. Motivated by the empirical
success of deep neural network (DNN) compressors on large, real-
world data, we investigate methods to estimate the rate-distortion
function on such data, which would allow comparison of DNN
compressors with optimality. While one could use the empirical
distribution of the data and apply the Blahut-Arimoto algorithm,
this approach presents several computational challenges and
inaccuracies when the datasets are large and high-dimensional,
such as the case of modern image datasets. Instead, we re-
formulate the rate-distortion objective, and solve the resulting
functional optimization problem using neural networks. We apply
the resulting rate-distortion estimator, called NERD, on popular
image datasets, and provide evidence that NERD can accu-
rately estimate the rate-distortion function. Using our estimate,
we show that the rate-distortion achievable by DNN compres-
sors are within several bits of the rate-distortion function for
real-world datasets. Additionally, NERD provides access to the
rate-distortion achieving channel, as well as samples from its
output marginal. Therefore, using recent results in reverse chan-
nel coding, we describe how NERD can be used to construct
an operational one-shot lossy compression scheme with guaran-
tees on the achievable rate and distortion. Experimental results
demonstrate competitive performance with DNN compressors.

Index Terms—Generative models, lossy compression, neural
compression, rate-distortion theory, reverse channel coding.

I. INTRODUCTION

RIVEN by advances in deep neural network (DNN)
Dcompression schemes, rapid progress has been made
in finding high-performing lossy compression schemes
for large, high-dimensional datasets that remain practical
[11, [2], [3], [4]. While these methods have empirically shown
to outperform classical compression schemes for real-world
data (e.g., images), it remains unknown as to how well they
perform in comparison to the fundamental limit, which is given
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by the rate-distortion function. To investigate this question, one
approach is to examine a stylized data source with a known
probability distribution that is analytically tractable, such as
the sawbridge random process, as done in [5]. This allows
for a closed-form solution of the rate-distortion function; one
can then compare it with empirically achievable rate and dis-
tortion of DNN compressors trained on realizations of the
source. However, this approach does not evaluate DNN com-
pressors on true sources of interest, such as real-world images,
for which architectural choices such as convolutional layers
have been engineered [6]. Thus, evaluating the rate-distortion
function on these sources is paramount to understanding the
efficacy of DNN compressors on real-world data.

Furthermore, a class of information-theoretically designed
one-shot lossy source codes with near-optimal rate-distortion
guarantees, which fall under the area of reverse channel
coding [7], [8], [9], [10], [11], [12], [13], [14], [15], can pro-
vide a one-shot benchmark for DNN compressors, which are
typically one-shot. However, these schemes require the rate-
distortion-achieving conditional distribution (see (1)), which is
generally intractable for real-world data, especially when the
data distribution is unknown and only samples are available.
Having the ability to recover the rate-distortion function’s opti-
mizing conditional distribution only from samples, in addition
to the rate-distortion function itself, would allow for imple-
mentation of reverse channel codes even without access to the
full data distribution.

Consider an independent and identically-distributed (i.i.d.)
data source X ~ Py, where Py is a probability distribution
supported on alphabet X'. Let ) be the reproduction alphabet,
and d : X x Y — R™ be a distortion function on the input
and output alphabets. The asymptotic limit on the minimum
number of bits required to achieve a distortion D is given by
the rate-distortion function [16], [17], [18], defined as

R(D) = inf

I(X;Y), (D
Pyix:Epy ,[dX.1)]<D

Any rate-distortion pair (R, D) satisfying R > R(D) is achiev-
able by some lossy source code, and no code can achieve a
rate-distortion less than R(D). It is important to note that R(D)
is achievable only under asymptotic blocklengths, whereas
DNN compressors are typically one-shot, as compressing
ii.d. blocks for real-world datasets may not be feasible.
However, the one-shot achievable region is known to be within
log(R(D) + 1) + O(1) bits of R(D) [7], and thus even in the
one-shot setting, R(D) remains an appropriate measure of the
fundamental limits.
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There are several immediate challenges when computing
R(D) (and its optimizing conditional distribution) for large-
scale data. Even when the distribution of Px is known, the
analytical form of the rate-distortion function has been diffi-
cult to evaluate, and has been characterized only on specific
sources. This prohibits an analytical derivation using a den-
sity estimate of Py (which are also not sample-efficient in high
dimensions) in most cases. Computational methods such as the
Blahut-Arimoto (BA) algorithm seem to be better suited for
our setting; however, as will be shown, BA provides inaccurate
estimates and fails to scale with large datasets.

A. Blahut-Arimoto Fails to Scale

Let Dk (u|lv) be the Kullback-Leibler (KL) divergence,
defined as E,[log ’2—’:] when the density fi—’: exists and +oo
otherwise. Due to the convex and strictly decreasing proper-
ties [18] of R(D), it suffices to fix some g > 0, and solve the
following double optimization problem.

Lemma 1 (Double-Minimization Form, cf. [18, ch. 10],
[19]): The minimizers P%(, Qg,ﬁ) of

RD(B) := inf inf Dk (Px.y||Px ® Qy) + B E [d(X, V)],
Qv Prix Px.y

2

yield a unique point Rg = DKL(PXP%(IIPX ® Q;ﬂ)) and

Dg = ]EP pB) [d(X, Y)] on the positive-rate regime of the
Xy x

rate-distortion curve, i.e., R(Dg) = Rg, such that Dg < Dpax
where R(Dpax) = 0.

The Blahut-Arimoto (BA) solves (2) by alternating steps
on Pyx and Qy until convergence. In discrete settings, the
optimizers take the following closed form:

r(y)e # Ay
ZSJG:)/ r@)e*ﬁ d.3)’
ry) =Y px(@pGlx), Vyey )

xeX

Even though BA requires knowledge of the source distribution,
one can use the empirical distribution P, = ,1721'1:1 dx; as a
proxy. This, however, does not scale in the case of modern
datasets. Consider the setting when & = R is continuous.
Applying BA requires discretization of the input and output
alphabets. In many cases, this would require acute knowledge
of how to discretize R™ to form an appropriate reconstruction
alphabet )/, and even if one could, it might result in computa-
tional complexity that grows, potentially exponentially, with m.
One would need to store a n x |)/| matrix for the conditional
PMFs and a |)|-sized vector for the output marginal PMF,
which may not fit in memory depending on the number of
data points or the choice of discretization. For example, in
image compression, where we assume each X; € R™ to be
a single image realization, )V € R™. Even for 8-bit grayscale
images, full precision quantization would require 28 -m points,
and although one could provide better discretization schemes,
they may still require an intractable number of points.

To demonstrate, we attempt to apply discretized BA to
MNIST digits in Fig. 1, and plot its estimated curve in compar-
ison to rate-distortion (with squared-error distortion) achieved

pylx) = VxeX,yely (3)
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Fig. 1. Inaccuracy of discretized Blahut-Arimoto in comparison to our
method, Rg(D),, for computing the rate distortion curve on the MNIST
dataset. DNN compressors provide codes that lie in the achievable region.
See text for details.

by DNN compressors. Specifically, our source is the empiri-
cal MNIST distribution 13,,, and we discretize ) to be exactly
the support of our data, ie., VY = Ule{X,-}. While this
scheme should converge to the true rate-distortion function
as n — oo [20], we see that even for n = 60, 000, this fails to
capture the general trend of the DNN compressors. Finally, the
distortion corresponding to R = 0, known as Dy, that BA
estimates is far from the optimal given by EPX[HX — ,uXH%] -
see Section IV for more details. This showcases the inaccuracy
of BA in estimating the rate-distortion function even with rela-
tively large number of s&nﬂes, In contrast, our method, which
provides the estimate Rg(D),,, does not exhibit these failures
and is able to generalize to the true MNIST distribution for a
significant portion of the rate-distortion function.

B. Related Work

There have been several recent works that attempt to esti-
mate R(D) on real-world image data. Aside from the classical
works of Arimoto [21] and Blahut [22], the first work that uses
neural networks to estimate rate-distortion is [23], who param-
eterize the Qy|x channel using restricted Boltzmann machines
and study small synthetic sources. More recently, there have
been works such as [24], [25], [26], in which the authors
bound the rate-distortion function on real-world data. The
authors of [24] provide sandwich bounds on R(D), where the
upper bound is variational and proved to be tight. In con-
trast, this work, which was independently developed around
the same time, provides an estimate of R(D) by replacing a
class of distributions that R(D) minimizes over with a param-
eterized set of distributions, leading to a natural upper bound.
Additionally, the works in [8], [24], [27] discuss the potential
of reverse channel coding applied to image compression; our
work directly implements reverse channel coding using the
rate-distortion achieving Qyx channel learned from our R(D)
estimate. In [20], the authors analyze theoretical properties of
the plug-in estimator for R(D), but do not provide a method
that can be applied to real-world datasets.

A related area of work lies in the generative modeling lit-
erature, where the rate-distortion trade-off is often used to
evaluate generative models and unsupervised learning algo-
rithms. The most relevant work is [28], where the authors
take a rate-distortion perspective to evaluate the performance
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of generative adversarial networks (GANs) and variational
autoencoders (VAEs). In their formulation, they assume the
trained generative model is the output )Y-marginal of the
rate-distortion objective, and find an upper bound on the rate-
distortion needed to reproduce the generative model, not the
true rate-distortion function of the source. Much of the other
work in this area [29], [30], [31] use variational bounds on
the rate-distortion for the purposes of representation learning,
and lack a direct connection to fundamental limits of lossy
compression.

C. Contributions

As opposed to the aforementioned approaches in Section I,
we take a step back and reformulate the rate-distortion objec-
tive into a min-max objective using duality, building on results
from [32]. As will be shown, this alleviates many of the issues
plaguing previous methods, and allows for practical implemen-
tation of lossy compression schemes based on reverse channel
coding, solely from samples. Our contributions are as follows.

« We propose an estimator of R(D) based on neural
networks, called NERD, which we show is strongly con-
sistent, and provide a corresponding algorithm to compute
the estimate from samples for a broad class of distortion
measures.

o We empirically show that these methods provide accu-
rate estimates of R(D) on synthetic as well as real-world
datasets, and that DNN autoencoder compressors achieve
a rate-distortion within a few bits of our estimate.

« We demonstrate how the optimal conditional distribution
(or channel) of R(D) can be approximately recovered
from NERD, and applied to reverse channel coding
schemes, which result in an operational one-shot lossy
compression scheme.

« We experimentally show that on real-world data, this
scheme performs competitively with DNN compressors
while also satisfying guarantees on the achievable rate
and distortion.

« We provide evidence that the gap between the one-shot
DNN compressors and the estimated rate-distortion func-
tion could be minimized by using DNN compressors that
perform block coding.

D. Notation

We use E[-] and PP(-) to denote expectation and probability,
respectively. In general, we use subscript letters to denote a
probability measure’s respective space, e.g., Qy for a distribu-
tion supported on ). The distribution Px refers to the source
(or data) distribution, supported on X'. For a measure p, we use
S« to denote the pushforward measure of p through a func-
tion f. We use ® to denote product measures, e.g., 4 ® v. We
assume logarithms to be taken base 2. d(-, -) represent a dis-
tortion measure, Dk (-||-) is the Kullback-Leibler divergence,
and W,(-, ) is the p-Wasserstein distance.

II. PROBLEM FORMULATION

Our goal is to estimate the rate-distortion function R(D) of
some source Px. However, we only have access to n samples
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X1, ..., X, drawn i.i.d. from Py, and do not assume any other
knowledge about its distribution.

As opposed to BA, which solves the double minimization
problem (2) in closed form, we use a dual form of the rate-
distortion function. We first note that the constrained version
of the inner minimization problem in (2) is known as the rate
function in the literature [20], [32], i.e.,

inf
Py|x:
Epy y [d(X,V)]<D

R(Qy,D) = Dk (Px.ylIPx ® Qy), (5)

which exhibits the following dual characterization.
Lemma 2 (Rate Function Duality, [32, Sec. 2]): The rate
function can be equivalently expressed as follows.

R(Qy.D) = sup AD — Epy[logEq, [*** V]| (©)
B=<0
Therefore, R(D) is equivalent to infp, R(Qy, D) and can be
expressed as a min-max problem,
R(D) = inf sup BD —Epy [log Eo, [eﬁd(x’y)]], @)
Y B=<0
which can be estimated from samples, since we can approxi-
mate expectations with empirical averages for both Py, Qy
independently. Furthermore, the inner problem is concave,
scalar, and has a unique solution. To solve the inner max,
first-order stationary conditions yield [32, Sec. 2.2]

exp(ﬁ dix, Y))
Ey~oy [exp(ﬁ d(X, Y’))]

D =Epygoy | dX. V) 8)

which can be solved for B* via the bisection method. In the
next section, we use the dual formulation to derive an estimator
that uses neural networks to parametrize Qy.

III. NEURAL ESTIMATION OF THE
RATE-DISTORTION FUNCTION

We propose to parametrize the output marginal distribution
Qy using architectural choices similar to those used in the
GAN literature [33]. Specifically, let Pz be some simple base
distribution over Z and let G : Z — R" be a function belong-
ing to a function class G. Then, representing distributions Qy
with the pushforward G.Pz, we can optimize over functions
in G, and arrive at

Rg(D) = inf sup fD — Ep, [log Ep, eﬂd“G(Z))]. 9)
GegG g<0

The equivalence of this (under certain assumptions on Pz)
with R(D) is justified in [34]. In practice, we only have access
to samples Xi, ..., X, drawn i.i.d. from Py, and must esti-
mate (9) from the empirical distribution IA’;") = %Z?:[ dx;.
Leveraging the expressive power of neural networks, we
choose G to be the class of functions parametrized by neural
networks, and arrive at the following estimator (NERD).

Definition 1 (Neural Estimator of the Rate-Distortion
Function (NERD)): Let G := {Gyp}oco be a class of functions
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Algorithm 1 Neural Estimator of the Rate-Distortion Function
(NERD)
Input: Distortion constraint D, batch size B, number of
steps T, learning rate n
Initialize generator neural network Gy
fort=1,2,. T do

Sample {xl}l 1 X "Px
Sample {z,}j S ‘Pz
Define /c,-j(ﬁ 0;):= exp(B d(x;, Gy, (Zj)))

BKll(ﬂ 6r)
Solve D = B Zz 1 d(x,, G(Z,))m

Or+1 < 0 — Vg (_§ Z,‘=1 10g B Zj:l Kl,j(,g*s 91))
end for

2 =Y

for B*

parametrized by a neural network. NERD is given by

R@(D)n = 01nf sup BD — I(E |:10g E[ Ed(X’G(’(Z))]] (10)
p=0

d(X;,Go(Z
= égggup BD — —ZlogE[ B dXi.Go ))] an
B=0 i=1

The next theorem shows that NERD is a strongly consistent
estimator for the rate distortion function. The proof is provided
in Appendix A.

Theorem 1 (Strong consistency of NERD): Suppose the
alphabets are X =) = R™, Py is supported on Z € R/, and
Py is absolutely continuous with respect to Lebesgue measure.
Also, suppose that the distortion measure d is Lq-Lipschitz in
both arguments. Then the NERD estimator in (11) is a strongly
consistent estimator of R(D), i.e.,

lim mn = R(D) almost surely. (12)
n—oQ

Note that while NERD satisfies strong consistency, this may
not necessarily apply to settings encountered in practice. In
practice, we use stochastic gradient descent to search over the
function class ® which may not necessarily find the minimum,
and the expectation over Pz is estimated using Monte-Carlo
methods.

To use NERD, following (11), one can simply sample
batches from Py and Pz, solve the inner max of (7) by
solving (8) for B*, and take a gradient step over the DNN
parameters. The full algorithm is given in Algorithm 1. The
code is available online.'

A. Numerical Estimation Challenges

Note that although NERD is strongly consistent, the method
suffers from estimation inaccuracies for large rates, which mir-
ror similar estimation challenges of mutual information from
samples [35]. The issues stem from the log expectation over
Pz, logEp, [eﬁd(xf’G"(Z))], requiring at least 28 samples to
estimate accurately with a sample mean at rate R. To see this,
note that the inner minimization in the min-max form in (7) is
equivalent to the Donsker-Varadhan (DV) lower bound [36].

1https ://github.com/leieric/NERD-RCC
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From [32], if ﬂ~* is the inner problem’s maximizer, then
sup BD — Ep, [log Eo, [eﬂ d(X’Y)]] (13)
p=<0
—E| E [fdx,v)|-logE[F XD (14
Px_ ;‘,lx(.|X)['B ( )] ng[ ] (14)
=E| su E [f(Y)] —logEg, | (15)
Pr| pyw Q’;.x<-|X)[ ]~ log QY[ ]
— [ * .
= E[De (001107 | (16)
=TI"(X; Y) + Dk (Or11Qy). (17)

where 2 Y 'X‘X x,y) = L(Y:), the optimizing f is
Eygy [ £* d(x.y) ]
given by f*(y) = B+ d(x, ¥), I (X; Y) is the mutual information

of the joint PXQY|X’ and Qy is the Y-marginal® of the joint
PXQ’;‘X. Hence, if we use an empirical distribution for Qy,
say with M samples, then

I*(X; Y) + Dk (Ovl1Qy) < H(Oy) + Dk (Ovl1Qy) (18)

= —Ep, [logdOy ()] (19)
1

= — EQy [log A—4i| (20)

= logM 2n

Additionally, the authors in [35] show that the DV
lower bound as well as any other M-sample estimate of
a distribution-free high-confidence lower bound of mutual
information is at most O(log M). Therefore, we can expect
NERD to estimate R(D) for rates up to log, M. In practice,
we set M = 40, 000 for 32 x 32 images.

On a separate note, the authors in [24] provide an empirical
lower bound of R(D) which can be estimated from samples.
They note that the lower bound always struggles to achieve
rates greater than O(log M). The above explanation on esti-
mating lower bounds of mutual information may help explain
that phenomenon. Since NERD provides an exact estimate of
the mutual information of the rate-distortion achieving joint
distribution, it is estimating the tightest lower bound.

IV. EXPERIMENTAL RESULTS: NERD

In our experiments, we use synthetic data (i.e., Gaussian),
MNIST digits, and Fashion MNIST (FMNIST) images to rep-
resent our source X ~ Px. We use squared-error distortion
for all cases, i.e., d(x,y) = |lx — y||%. In all cases, we have
n = 60,000 i.i.d. samples from Px. We set the base distri-
bution as Pz = N(0,1,,) and parametrize Go:R"™: — R™
with a fully connected neural network for the Gaussian case,
and a deep convolutional architecture similar to the genera-
tor architecture used in DCGAN [37] for the image data. For
the DNN compressors, we use the nonlinear transform cod-
ing framework outlined in [4]. More architectural details are
provided in Appendix C.

_ 2Note that from the Blahut-Arimoto equations (3) and (4), the Y-marginal
Qy coincides with Qy only at optimality, when they both equal the optimal
reproduction distribution Q}. In other words, PXQ’;| x is a coupling between
Px and Qy only at optimality.
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Fig. 3. Estimated @)n (NERD) of SVHN images vs. DNN compressors.

A. Synthetic Data

We first verify the NERD estimator on Gaussian data.
Specifically, Px = N(0, ¥) is a multivariate Gaussian with
m = 20 dimensions. Let ¥ = Vdiag(olz, ...,cj,%l)V—r be the
eigendecomposition of X, with V orthogonal. In this case, the
rate-distortion function of Py has an analytical form and is
given by [18]

1. 0 mo 2
Dieiml: 3 log 5=, D <37, 0
o >A
0, o.W.

R(D) = (22)

where A > 0 satisfies the reverse water-filling condition

fiza?2=a[+ > a2=p

ie[ml:o? <

(23)

To evaluate NERD, we choose akz = 4e’Tl6k, and pick an
orthogonal matrix V to form X. We generate samples from
N (0, ¥) and apply Alg. 1. As shown in Fig. 2, for this choice
of Py, NERD can accurately estimate R(D) for rates below
10 bits. For higher rates, the estimate suffers from numerical
instability as discussed in the previous section. We also provide
a second Gaussian example in the Appendix, shown in Fig. 15.

B. Real-World Data

We apply NERD to MNIST and FMNIST datasets, which
are single-channel images, as well as SVHN (Street View
House Numbers) [38] which contain color RGB images. We
plot the estimated rate-distortion curves in Fig. 1 for MNIST,
Fig. 16 for FMNIST, and Fig. 3 for SVHN. In all cases, the
curve appears to satisfy the convex and strictly decreasing

properties of the rate-distortion function. Using our estimate
of R(D), we can use DNN compressors of the autoencoder
type [1], [2], [3] with quantization to see how they per-
form compared to the fundamental limits. Additionally, we
see that DNN compressors closely follow the same trend as
the estimated rate-distortion function, and are within several
bits of optimality inside the achievable region. However, it
remains difficult to conclude in this case whether or not DNN
compressors are optimal on these datasets. The gap of sev-
eral bits could be potentially attributed to the fact that the
DNN compressors are one-shot, whereas R(D) is achievable
only under asymptotic blocklengths. While one-shot achiev-
able regions of R > R(D) +1og(R(D) + 1) + 5 are known [7],
lower bounds tighter than R(D) for general sources Py are
not as clear. Either way, it remains to be seen whether other
computationally feasible source codes could be designed to
perform closer to the rate-distortion limit. In later sections,
we discuss learning-based block codes on real-world data that
empirically perform closer to R(D) for certain regimes of the
rate-distortion tradeoff.

C. Comparison With Blahut-Arimoto

We compare solving (11) to a baseline scheme that uses
Blahut-Arimoto on discretized input and output alphabets. On
low-dimensional input alphabets, Blahut-Arimoto will perform
accurately. But for high-dimensional alphabets, it is unclear
how to discretize the continuous space. For image datasets,
which are high-dimensional, we have & = {X1,...,X, €
[0, 17"} and let the source PMF be % Z?:l 8x;(x) and choose
a discretization for ) C [0, 1]™ to define an output marginal
PMF for Blahut-Arimoto. We attempt to choose the dis-
cretization for ) to be the same as the source, ie., )V =
{X1,...,Xn € [0, 17} is exactly the support of the samples.
Such a scheme should converge to the true rate-distortion func-
tion as n — oo assuming the true continuous alphabets are
both [0, 1]™. However, we demonstrate that Blahut-Arimoto
fails when the number of samples is finite. Firstly, we are
limited by the number of samples (60,000 at most with both
datasets). Even with a large number of samples, we see that,
given in Fig. 1 and 16, doing so does not work particularly
well, and the trend is completely off compared to NERD and
the DNN codes. It fails to extrapolate to the true rate-distortion
function of the true source, and traces the rate-distortion curve
for the discrete uniform empirical distribution which we see
achieves zero distortion at R = H (f’gfn)) = log, n. As n grows
larger, we would expect the curve traced by this scheme to
“rotate” clockwise to the true rate-distortion curve (which
requires infinite rate at zero-distortion for continuous sources),
but this scheme can only rotate to where the zero-distortion
rate reaches log,(60,000) ~ 15.87. In contrast, NERD is
able to follow the same trend of the operational rate-distortion
curve estimated by DNN compressors, and matches known
characteristics of R(D) as described in the next section.

D. Comparison With Empirical Sandwich Bounds

This section provides comparisons with other neural
network-based bounds on R(D); namely, those provided
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(a) R = 0.28 bits, D = 54.95.
§3739 6 | 29
(b) R = 16.82 bits, D = 10.

Fig. 4. Samples from trained Y-marginal Q3 (MNIST). As R — 0, Oy
generates the mean image, achieving D = Dmax.

(a) R = 1.37 bits, D = 60.55.
(b) R = 11.80 bits, D = 26.60.

Fig. 5. Samples from trained Y-marginal O} (SVHN). As R — 0, Oy
generates the mean image, achieving D = Dmax.

Fig. 6. NERD vs. empirical sandwich bounds [24] on MNIST.

in [24]. It is important to note that NERD itself is an upper
bound of R(D). This can be seen since the inner maximization
simply computes the mutual information between Qy and Qy|x
in closed form. The outer minimization restricts the search
over distributions Qy to those parameterized by the neural
network function class. Thus, any fixed Qy parameterized by
a neural network directly yields an upper bound of R(D). In
Fig. 6 we show how the sandwich bounds provided in [24]
compare to NERD on the MNIST dataset. Indeed, it can be
seen that on certain parts of the rate-distortion curve, NERD
matches up with the upper bound from [24], indicating that
the tightness of their bound is likely achieved for these rate
points. For the lower bounds, there is a gap when compared
to the NERD estimate. However, we encountered instability
from the implementation provided from [24], when comput-
ing the lower bound. It is interesting to note that NERD’s
formulation is very similar to the lower bound [24, eq. (4)],
which suggests two things. First, NERD chooses a simpler
parameterization to solve R(D). Second, our discussion from
Section III-A explained why any lower bound of R(D) requires
sample complexity exponential in the rate, which corroborates
the analysis and results of the lower bound in [24], who strug-
gled to bring the lower bound above log of the number of
samples used.
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E. Samples From the Optimal Reproduction Distribution

We now illustrate generated samples from the (approxi-
mately) optimal reproduction distribution QF, parametrized
by the trained neural network Gy+, where 6* neural network
parameters that are the minimizers of NERD. In other words,

v = Go++Pz, the pushfoward of Pz through Gg+. We show
that it indeed aligns with the behavior of the rate-distortion
function. Let Dax = minycy Ep, [d(X, y)] be the distortion
achievable at zero rate [19, ch. 9], i.e., R(Dmax) = 0. This is
the best distortion that can be possibly achieved when there
is no information about the source, where the reproduction is
simply the best constant estimate of X. When d is squared-
error, and X = ), the best constant estimate is the mean
px = Epy [X], with Diax = Epy [IX — ux|13]- In the MNIST
case, the samples generated from the generator neural network
at R = 0.28, shown in Fig. 4(a), consistently generate the
“mean image”. Computing Dp,x with an empirical average
turns out to be ~ 55 (under mild preprocessing of the MNIST
dataset), which matches the zero-rate point in Fig. 1. In con-
trast, samples generated from a trained generator at higher
rate, shown in Fig. 4(b), appear more similar to the original
MNIST images and produce more modes of the distribution.
A similar phenomenon occurs with SVHN and FMNIST as
well, shown in Fig. 5 and 18. In comparison, Blahut-Arimoto
does not produce this phenomenon and fails to intersect the
D-axis at Dpax.

F. Generality of Distortion Function

In this section we demonstrate that the method reliably
works for general distortion functions. In order for the back-
propagation operation to function correctly, the only require-
ment is that the distortion function be differentiable in its
arguments. To demonstrate this, we estimate the rate-distortion
function of the same Gaussian source as described previously,
but instead of squared-error distortion, we now apply general
squared ¢7 distances d,(x,y) = |lx — y||[2,. Due to the fact that
Ivll, < llvlg when 0 < g <p < oo, we have that

inf IX;Y) < inf
Pyx: Pyx:
Epy o [0,(X.1)]<D Epy y[dy(X.1)]<D

IX:Y). 4

We show the rate-distortion function of the Gaussian source
using dj (x, y), d2(x, y), and d3(x, y). Since an analytical form
of the Gaussian rate-distortion function is not known for d;
and d3, we only plot the NERD-estimated rate-distortion func-
tions here. As observed in Fig. 7, the inequality in (24) is
reflected in the 3 rate-distortion curves.

V. ONE-SHOT OPERATIONAL LOSSY SOURCE CODES

Now that we have the capability to calculate the fundamen-
tal limit of lossy source coding, and also recover an approxi-
mately optimal reproduction distribution Q} parametrized by a
neural network, a natural question to ask is whether it is possi-
ble to use Q} to construct an operational compressor. Indeed,
we will see in this section that Q} can be used to construct
a compression scheme with guarantees on the achievable rate
and distortion, and empirically perform similar to those of
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Fig. 7. Gaussian rate-distortion function for d,(x,y) = [lx — yHl% for p =
1,2,3.
Qv|x
U
M
x ~ Px——Enc—Dec— ¥ ~ Qy|x=z
Fig. 8. Diagram of reverse channel coding, or channel simulation. Given

x ~ Py, the goal is to generate y ~ Qy|x=y, effectively simulating the
channel Qy|x, by transmitting some information M with minimal description
length E[L(M)]. Common randomness U between the encoder and decoder
is assumed.

DNN compressors. We first discuss reverse channel coding,
which is the technique that underlies the lossy compression
scheme, unlike DNN compressors which directly model the
encoder and decoder with neural networks.

A. Reverse Channel Coding

The one-shot reverse channel coding (RCC) problem,
described in [8], consists of reproducing a sample x ~ Py but
allowing it to be corrupted by some noise. It is also known
as the channel simulation problem and has been investigated
previously in [7], [9], [10], [11], [12], [13], [14], [15] and
references therein. Precisely, given a realization x ~ Py, the
sender wishes to reproduce a sample y at the receiver such that
it follows a prespecified conditional distribution Qy|x—y, as if
the realization x had gone through a channel Qyx (see Fig. 8).
The sender communicates a message M which the decoder
uses to reproduce y, with the goal of ensuring y ~ Qy|x—, and
that the expected description length [E [L(M)] per source sym-
bol, known as rate, communicated from the sender to receiver
is minimal. In our setting, we assume that the sender and
receiver share unlimited common randomness, denoted as U.

The relationship to lossy source coding is as follows. In
lossy source coding, we wish to approximately represent some
sample x ~ Px with y such that both expected description
length and expected distortion are minimized. While RCC is
not explicitly concerned with distortion, it is clear that if one
has a RCC scheme for channel Qy|x with rate [E[L(M)] <R,
then the expected distortion incurred is prQle [dX, D].
Hence, such a RCC scheme would yield a lossy one-shot code
that achieves a rate of R and distortion Epyq,, [d(X, ¥V)].

Furthermore, suppose that Q;IX is the channel that mini-
mizes the rate-distortion function (1) at distortion level D.
Any RCC scheme on Q’{,lX achieves an expected distortion
]EPXQ; X [d(X, Y)] < D. What about the rate? It turns out that
there are RCC schemes [7], [8] on Q’{/IX that are guaranteed
to achieve rates

E[LM)] < R(D) 4+ log(R(D) + 1) + 5, (25)

which we now describe.

1) PFR: Suppose we have a channel Qy|x. The Poisson
functional representation (PFR), proposed by Li and
Gamal [7], is one such RCC scheme with guarantees on the
rate required. In particular, in order to transmit a sample
x ~ Py, both the encoder and decoder (assuming shared com-
mon randomness U) first sample a marked Poisson process
(T3, )}, such that Ty — Tiy "~ Exp(1) and ¥; =" 0y,
where Qy is the marginal of Y over the joint distribution
(X, Y) ~ PxQy|x. The encoder then computes an index

dQy
dQyx(-|x)
and encodes it using a lossless source code. The decoder recov-

ers K, and outputs Yk, which is distributed with Qy|x—,. This
scheme has the guarantee that

K = argminT; - (26)

ieN

Yy,

HEK) <I(X;Y) +log(I(X; Y) + 1) + 4. Q7

In practice, one can encode K using a Huffman code-
book designed for the Zipf distribution with PMF ¢g(k)
J—(+1/UGY)+e oge+D) | which guarantees a rate equivalent
to the rate in (27) plus 1 bit [7]. Applying PFR to the
rate-distortion optimal channel Q’{,lX thus achieves the rate
guarantee in (25).

One potential issue in the practical implementation of the
PFR is solving (26), which requires solving a discrete and
infinite optimization problem. To practically implement this,
one must use a finite number of samples, but as described
in [8], the guarantee on the rate in (27) does not necessarily
hold when a finite number of samples is used.

2) ORC: To alleviate this issue, Theis and Yosri [8] pro-
pose ordered random coding (ORC). Rather than weighting
the density ratios in (26) by Poisson arrival times, ORC
weights them with sorted exponential random variables. The
two RCC methods, PFR and ORC, can be summarized as
follows [8, Th. 3]. Fix some number of samples N. Sample
XY, S Bxp(1), and (vi}Y, " 0y, where Qy is defined
as above. Then, the encoder generates the cumulative weights
(Wi}, defined to be

Zl:—l X, if PFR
A e . (28)
i { ZJ{Z] N_—]}]-ij’ if ORC
The encoder sends
d
K = argmin Wi - —22 (v, (29)
1<i<N dQyx (-x)

and the decoder outputs Yg. In contrast with PFR, ORC can
be shown to achieve the same rate as PFR (given in (27))
[8, Corollory 1], but the rate guarantee still holds for some
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finite N [8, Th. 3]. This guarantees the rate in (27) even in prac-
tical usage, and so applying ORC to Q“;lX will again achieve
the rate in (25).

B. Lossy Compression Scheme via Reverse Channel Coding

For any expected distortion tolerance D, let Q’{,lX be the
rate-distortion achieving channel, and Q7 be the rate-distortion
achieving reproduction distribution (simply the Y-marginal of
the joint Qf,‘XPX). Applying PFR or ORC to Q’{,lx achieves
a rate no more than R(D) + log(R(D) + 1) + 5 and expected
distortion no more than D. The following proposition exem-
plifies a nice interpretation when the rate-distortion achieving
distributions are used for RCC.

Proposition 1: When using Q*;,‘ v and Oy for RCC to
compress x ~ Py, the encoder computes the index

K = arg min{d(x, Yy — (%) 'In Wi} (30)
l

where B* < 0 is the slope of R(D) at the point D =

EPxQ’;‘X [d(X, Y)], and W;’s are generated via (28).

Remark 1: Prop. 1 can be interpreted as the encoder search-
ing for the sample Y; that is closest to x under distortion
measure d, while simultaneously regularizing the size of the
index used (and therefore its entropy). The amount of reg-
ularization is proportional to the tradeoff between rate and
distortion in the rate-distortion function R(D). i

Proof: We have that K = argmin; WideQﬁ(Yi). Let

YIX
Pxy = Q’{,lXPx be the joint measure. The optimal density
ratio is then given by [32] as

Q X( |x) dPxy
— () = () (31)
dQy dQ dPx
B Ay
= 32
e ) I
where g* = argmax;_, gD — ]pr[log]EQ;[egd(x’y)]].
Hence, using (29), we have that
Q*
K = argmin W,——————(Y)) (33)
i dQ |X( |x)
Eyr-gy[ef41]
= arg imln W; o dw ) (34)
—t inlh—__ (35
= argmln AT —arglmln neﬂ*d(x,Yz) (35)
= arg mln{ln W; — B* d(x, Yi)} (36)
i
= argmin{d(x, ¥) - (6%) "' Wi} (37)
i
where in the last step we have rescaled by —% > 0. |

Therefore, given n samples from Py, one can design a lossy
one-shot code with (approximately) rate (25) and distortion D
as follows:

1) Apply NERD to the samples from Py, which returns a
trained neural network Gy« and slope B* as solutions
of the min-max problem in (11). Form an approxima-
tion to QF as the pushforward of Pz through Gy, i.e.,
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Algorithm 2 Lossy Encoding Scheme via RCC

Input: Optimal Y-marginal distribution Q7, rate-distortion
slope parameter B < 0, rate parameter C, number of
samples N, random seed r, sample to compress x
Generate welghts { Wi i, according to (28)

Sample {Y}l 1 k) " Qy using r

Let K = argmin,_; _y{d(x, Y;) — B~ InW;)

Encode K using a Huffman code for the distribution with
mass g(k) o k—(1+1/(C+e™ logeD) into a bit string b
return b

Algorithm 3 Lossy Decoding Scheme via RCC

Input: Optimal Y-marginal distribution Q7, rate parameter
C, number of samples N, random seed r, bit string b
Decode K using the Huffman code for the distribution with

mass g(k) « f—(+1/(C+e™ oge+1))

iid. .
Sample {Y;} | LS 0% using r
return Yk

Gp*4Pz. Sampling from this distribution can be done by
first sampling Z ~ Pz, and outputting Gy=(Z).

2) To compress x ~ Py, apply Alg. 2 with Gy=.Pz, slope
parameter 8%, rate parameter as the estimate of the rate-
distortion function Rg(D),, and some random seed r.
This returns a bit string b.

3) To decompress, apply Alg. 3 with the same parameters
as the previous step.

We will refer to the above learned compression procedure as
NERD-RCC.

C. Experimental Results: NERD-RCC

We evaluate the RCC schemes on synthetic Gaussian,
MNIST, and FMNIST data.

In the m-dimensional Gaussian case, we let the source
be Py = N(0,diag(o?,...,02)) where 0} = 4e 16K,
We can find the rate-distortion achieving channel Q;‘,IX and
output marginal distribution Q} in closed form [18]. Let
A={k: crk2 > A}, with A defined in (23). Then the channel and
output marginal are both factorized as Qyx = [T Ovixi
and 0} = []i, 0Oy, where for k € A, Qy,x=x = N(x, L)
and Qy, = N(0,07 + 1), and for k ¢ A, Qy, and Oy, x,=x
assign probability 1 to 0. We compare the RCC schemes
(implemented using these known Q} and QT’I x) With a one-
shot DNN compressor trained on realizations from Py, and
show the results in Fig. 9. As can be seen, PFR and ORC
achieve comparable rate-distortion to each other, and are sev-
eral bits below the rate guarantee (25). DNN compressors,
interestingly, are also several bits within (25) and seem to
perform better than the RCC methods for lower rates but
worse at higher rates. In Fig. 19, we show the same com-
parison with the rate-distortion achieved by RCC methods via
the O} learned from NERD. It can be seen that they closely
mirror the performance of the RCC methods achieved using
the exact Q5.
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Fig. 9. Gaussian source.

30
—
05 I8 —— Re(D),
N — ——
. - Ro(D)y +log (Ba(D)y +1) +5
20 b 3 —e— DNN Compressor
N
*\\\ e PFR Zipf Huffman
15 ORC Zipf Huffman

10 N g e
5,
0 ‘ ‘ ‘ ‘
20 30 40 50
D

Fig. 10. PFR and ORC on MNIST images.

The SVHN, MNIST, and FMNIST results are shown in
Fig. 11, 10, and 17 respectively. For these datasets, we
apply NERD-RCC by using the optimizers Q} and g* from
NERD since the rate-distortion optimizing channel and out-
put marginal cannot be found in closed form. In both cases,
NERD-RCC performs very similarly to the DNN one-shot
code. As in the Gaussian case, both DNN compressors and
NERD-RCC methods are within the rate guarantee of (25). In
the Gaussian case in Fig. 9, we have access to the true rate-
distortion optimizing channel and output marginal, so there
is no potential for reduced performance at higher rates due
to these factors. Nevertheless, the benefit of NERD-RCC is
that the rate achieved at distortion D is always guaranteed to
be within the upper bound 1@(\0),1 + log Imn +1)+5,
no matter what dataset or source samples that NERD uses.
In contrast, DNN compressors provide no such performance
guarantee. In Fig. 11(b), we demonstrate several realizations
of the source Py and the output of NERD-RCC. As can be
seen, the reverse channel coding scheme outputs a noisy, but
faithful reconstruction of the original source.

VI. DISCUSSION AND OPEN PROBLEMS
A. Lower Bounds and Block Coding for DNNs

The results in the previous two sections demonstrate that
one-shot lossy DNN compressors are close to the rate-
distortion function of real-world datasets, and competitive with
RCC schemes. However, it is difficult to conclude whether or
not DNN compressors are optimal, since a characterization
of the one-shot fundamental limits are not as clear for gen-
eral source distributions. While (25) provides an achievability

\\\ —
oo —— Re(D)»
15+ N _— _—
S b Re(D), +log(Re (D), +1) +5
~~.._/|—*— DNN Compresor

e PFR Zipf Huffman

10+ ;
o] ¢ ORC Zipf Huffman
5,
07 T T T T
30 40 50 60
D
Fig. 11. PFR and ORC on SVHN images.
(a) Original MNIST images.
(b) Decompressed MNIST images via PFR.
Fig. 12.  Visualization of Alg. 2, 3 on MNIST images.

result, lower bounds are not as clear for general sources. This
precludes any definitive answer to optimality of one-shot DNN
compressors for real-world datasets.

However, one might ask if perhaps this gap between the
estimated rate-distortion function and rate-distortion achieved
by the one-shot DNN compressors are due to the one-shot
nature of the DNNSs, and if DNN compressors that compress
blocks of M realizations at a time can help close this gap. To
test this, we use a DNN compressor with the same architec-
ture as the one-shot DNN compressor, but apply it to blocks
of M = 4 images combined together to form a larger image, in
a 2 x 2 configuration. We plot the average rate and distortion
per image sample in Figs. 13(a) and 13(b). As we can see,
for both MNIST and FMNIST, the rate-distortion achieved is
consistently better than one-shot DNN compressors as well as
the RCC algorithms for smaller rates, demonstrating that block
DNN codes on i.i.d. sources can indeed provide performance
gains. At higher rates, however, the block DNN compressor
performs worse. This can potentially be attributed to limita-
tions of the DNN architecture used, which worked well with
single images, but may not be the best for 4 images that have
been stitched together. One avenue for future work is finding
DNN architectures that work well with compressing blocks of
images, and to see how they compare to the rate-distortion
curves.

B. Computational Scaling of NERD and RCC

As noted in Section III, NERD requires a number of sam-
ples exponential in the rate required. While this is fine for
many real-world datasets such as MNIST and SVHN, this
limitation does not allow one to estimate large regimes of
the rate-distortion function for “higher entropy” datasets such
as ImageNet. Designing methods that can accurately estimate
R(D) at scale on such datasets is left for future work.
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Fig. 13. DNN block code versus RCC algorithms and DNN one-shot codes.
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Fig. 14. Effect of N on RCC methods. Example here shows PFR on Gaussian
source.

As shown in the previous section, RCC offers an alter-
native method for learning-based lossy source code design
that does not explicitly use quantization, and has guaran-
tees on the achievable rate and distortion which can be
estimated directly from data using NERD. However, one draw-
back of this approach is that the sample complexity of many
RCC algorithms is known to scale exponentially with the
amount of information communicated from the sender to the
receiver [8], [39]. Indeed, when running RCC with varying
N, the number of samples generated, the estimated rates seem
to scale logarithmic with N. An example of this is shown in
Fig. 14. In comparison, DNN compressors do not suffer from
such a runtime complexity. In order to scale to larger rates, one
potential avenue is to adapt the recently proposed A* coding
method in [39] for the similar relative entropy coding (REC)
problem to the RCC setting. The authors of [39] use A* cod-
ing to achieve sample complexity linear in the rate rather than
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exponential. Applying these methods to the RCC schemes is
left to future work.

VII. CONCLUSION

In this paper, we propose a new algorithm for computing the
rate-distortion function for real-world data. We use an alter-
native formulation of the rate-distortion objective which is
amenable to parametrization with neural networks and pro-
vide an estimator, NERD, that is sample and computationally
efficient. We empirically show that it accurately estimates the
rate-distortion function for synthetic and real-world datasets.
We show how NERD can be used to implement near-optimal
compression schemes via reverse channel coding on real-world
data, with performance guarantees, and demonstrate the poten-
tial of DNN block codes to achieve rate-distortion performance
closer to the rate-distortion function.

APPENDIX A
PROOEFS

Theorem 2 (Theorem 1 in Text): Suppose the alphabets are
X =Y =R", Pz is supported on Z € R!, and P, is abso-
lutely continuous with respect to Lebesgue measure. Also,
suppose that the distortion measure d is Lg-Lipschitz in both
arguments. Then the NERD estimator in (11) is a strongly
consistent estimator of R(D), i.e.,

nll)rrolo Imn = R(D) almost surely. (38)
Proof: Fix € > 0. Define
R(0. B) == BD — Ep, [1og Eo [eﬁ d““]] (39)
where 8 < 0 is nonpositive, and
R(Q) = maxR(Q. B) (40)

since the inner sup has a unique maximum [32]. By defini-
tion R(D) = infp, R(Qy), there exists O} such that R(Q}) <
R(D) +¢€/4. We would like to find a distribution Qg ~ Gy (2),
Z ~ Pz, parametrized by a neural network Gy, that has R (Qp)
close to R(Q’)“,).

For fixed x, the function y > ef 9 js L4 B|-Lipschitz,
since B < 0. Hence, by Lemma 3,

[Egy [e#1] — Bg, [P0 ]| < LgIBIWI (0. 0F)  41)

Let 8*, By be the maximizers of R(Q;‘,) and I~€(Q9) respec-
tively. Since log is a continuous function, there exists §; > 0
such that if W1(Qp, 0y) < then

3
Lalf T’
logBg; [¢#1D] — logBg, [ 16V]| < /8 (42)
Therefore, choosing Qg such that Wy (Qg,
|R(Q7, B*) — R(Qs, BY)| (43)
< Epy | log Eg; [¢#/® V)] ~ 10gEg, [ XV 44)
< Ep[e/8] = /8 (45)

where the first inequality holds due to Jensen’s inequality.

7)<zt vields
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We now wish to bound IR(Qy, B*) — R(Qy, Bo)|. Since the
map B — R(Qp, B) is continuous in B, there exists o > 0

such that if |8* — Byl < 82, then [R(Qy, B*) — R(Qp, Bo)| <
€/8. Define

Eg[d(X, Y)ef 9X- 1]
Bl 0T]

Q. B) = EPX|: } —-D  (46)

whose root provides the solution to R(Q). We can
apply Lemma 3 to the numerator and denominator inside
the Px expectation to conclude that with Qp satisfying
Wi(Q}, Qo) < C. Since the function xi, xy > % is contin-
uous, we can conclude that f(Q, B) is continuous with respect
to the W distance in Q since composition of continuous func-
tions are continuous. Hence there is some 83 > 0 such that
if W1(Qs, Qy) < 83, the maximizers By and B* must satisfy
|B* — Byl < 82, by the implicit function theorem.

We can thus find a neural network Gy with sufficient
complexity3 via [40] such that Qy satisfies Wi(Qp/, Q) <

min(#, 83) , yielding

|R(Q}) — R(Q9)|
< [R(Q}, B*) — R(Qor. B*)| + |R(Qpr. B*) — R(Qpr. Bo)|
<e€/4 ()]

and hence |R(D) — R(Qy/)| < €/2. Since R(Qy’) is an upper
bound of R(D), we have that

IR(D) — Re(D)| = |R(D) —eiggi?(Qe) <e€/2  (43)

Applying the strong consistency result for the parametric
pgm\em in [20], 3N € N such that for all n > N,
|Re(D),, — Re(D)| < €/2 almost/ngly, and so again by tri-
angle inequality, we have that |[Rg(D), — R(D)| < € for all
n > N, almost surely. [ |

Lemma 3: Let g : X — R be L-Lipschitz. Then for any
distributions P, Q € P(X),

|Ex~p[¢(X)] — Ex~o[gX)]| <L -Wi(P.Q)  (49)

where Wi (P, Q) = infrenp,0) Exx~x [IX — X'|I] is the
1-Wasserstein distance.
Proof: Let g'(x) = %, so that g’ is 1-Lipschitz.

|Ex~p[g' X)] — Ex~o[g' X)]| (50)

< sup Ex-p[f(X)] — Ex~o[fX)] (1)
fllflliLip=1

= Wi(P,0) (52)

where the last step is by Kantorovich-Rubinstein duality [41],

[42] and [fllLip = Supy, yex LGZ=L5DL is the Lipschitz norm
X1 #£X
of f. i n
APPENDIX B

ADDITIONAL EXPERIMENTS
In this section, we provide additional experiments to support
the main text.

3Assuming the function class ® contains fully-connected networks with
ReLU activations, with sufficient width and depth.
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Fig. 16.  Estimated Rg(D), (NERD) of FMNIST images vs. DNN
compressors and BA.

—
20 —— Ro(D)n
\ — _—
. === Ro(D), +log(Re(D), +1) +5
—e— DNN Compressor
AN e PFR Zipf Huffman
ORC Zipf Huffman

15+ N

Fig. 17. PFR and ORC on FMNIST images.

AAAAAAAA

(a) R = 0.33 bits, D = 70.

Bisalinfa

(b) R = 3.54 bits, D = 30.

Fig. 18.  Samples from trained Y-marginal Q3 (FMNIST). As R — 0, Oy
generates the mean image, achieving D = Dpax.

A. Additional Results on R(D) Estimation and RCC

Fig. 15 provides an additional example of NERD on
a different Gaussian source. Figs. 16, 17, and 18 provides
FMNIST results. Fig. 19 provides NERD-estimated Qj in
addition to exact Q} for RCC methods on the Gaussian source.
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Fig. 20.  Ablation study on generator capacity. Estimated rate-distortion
curves via NERD for different generator sizes by varying c4, which controls
the number of channel dimensions throughout the model.

B. Ablation Study on Generator Capacity

In this section, we examine the effect of the generator
capacity on the rate-distortion curves generated by NERD. In
order to do so, we restrict capacity by reducing the number
of channel dimensions in the hidden layers of the generator
G. In particular, let ¢; be the channel dimension parameter
we adjust. The input tensors to the four convolution trans-
pose layers of the generator architecture (further explained in
Section C) are of size 8¢y, 4c4, 2¢4, and c¢g4. In the main text,
all figures are generator using generators with ¢; = 32. In
this ablation study, we vary c4 € {32, 16, 8, 4}, and show the
results in Fig. 20. In all cases, the latent randomness passed to
the generator remains at 128 dimensions (before projection to a
32c4-dimensional space). Thus a minimal ¢, value of 4 ensures
that the amount of latent randomness passed to the generator is
not affected by the initial projection. We see that for small cy4
(i.e., limited capacity), the rate-distortion estimates are higher
at higher rates, and this decreases as cg increases. The esti-
mates seem to converge (at least for this rate range) for values
of ¢y at least 16.

APPENDIX C
IMPLEMENTATION DETAILS

A. NERD Generator Architecture

The generator G uses different architectures depending on
the source type. For images, we use the DCGAN [37] architec-
ture which is a fully convolutional architecture with 4 layers. It
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alternates between convolutional transpose layers with ReLU
nonlinearities, with sigmoid nonlinearity at the output layer
to scale between O and 1. Thus the total spatial upsampling
is 2*. The input to the model is a m.-dimensional vector (with
m; = 128) which is first linearly projected to a 8cy x 2 x 2
space. This is reshaped to a tensor containing 8cy channels
and a 2 x 2 spatial resolution. Each layer increases the spatial
dimension by a factor of 2 and decreases the channel dimen-
sion by a factor of 2, with the last channel dimension equalling
1 for grayscale images and 3 for RGB images. In the main
text, all NERD estimates are given using cg = 32.

For Gaussian sources, we us a fully-connected parameteri-
zation for G, with 2 hidden layers of dimension equally the
dimensionality of the Gaussian source, and ReLU nonlineari-
ties after each layer except for the last.

B. DNN Compressor Architecture

The DNN compressors used follow the nonlinear trans-
form coding (NTC) framework [4]. In this paper, we use the
soft-quantization approach where the latent elements are inde-
pendently quantized. During training, a soft quantizer with
a temperature parameter is used to back-propagate the gra-
dients, with hard quantization at inference time. We found
that the dithering-based quantization with factorized prior
performed similarly on the image datasets. Similar to the
NERD generator architectures, the encoder and decoder neural
networks are fully convolution-based for the image datasets,
and fully-connected for the synthetic sources.
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