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Abstract—Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is
partly due to the availability of data acquired from non-euclidean domains or features extracted from euclidean-space data that reside
on smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance
matrices that are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of
symmetric positive definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we
present a novel theoretical framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We
also present a novel architecture to realize this theory and call it the ManifoldNet. Analogous to vector spaces where convolutions are
equivalent to computing weighted sums, manifold-valued data ‘convolutions’ can be defined using the weighted Fréchet Mean (WFM).
(This requires endowing the manifold with a Riemannian structure if it did not already come with one.) The hidden layers of ManifoldNet
compute wFMs of their inputs, where the weights are to be learnt. This means the data remain manifold-valued as they propagate
through the hidden layers. To reduce computational complexity, we present a provably convergent recursive algorithm for computing
the wFM. Further, we prove that on non-constant sectional curvature manifolds, each wFM layer is a contraction mapping and provide
constructive evidence for its non-collapsibility when stacked in layers. This captures the two fundamental properties of deep network
layers. Analogous to the equivariance of convolution in euclidean space to translations, we prove that the wFM is equivariant to the
action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the performance of
ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.

Index Terms—Weighted fréchet mean, equivariance, group action, riemannian manifolds

1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have attracted
enormous attention in the past decade due to their signifi-
cant success in Computer Vision, Speech Analysis and other
fields. CNNs pioneered by [1] have gained much popularity
since their significant success on Imagenet data reported in [2].
CNNs have traditionally been restricted to dealing with data
residing in vector spaces. There has been a growing interest in
the past several years to generalize CNNs and deep networks
in general to data that reside in smooth non-euclidean spaces.
Before embarking on a literature review, it would be useful to
categorize the data space into the following classes: (i) Data
that are samples of real-valued functions defined on a mani-
fold and (ii) data that are manifold-valued and hence are sam-
ple points on a manifold. In this paper we will consider
problems involving the latter category, namely, when the input
data are sample points on known Riemannian manifolds, e.g.,
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the manifold of symmetric positive definite (SPD) matrices,
SPD(n), the n-sphere, S", the special orthogonal group,
SO(n), and the Grassmannian, Gr(p,n). More precisely, the
domain of interest is an n-dimensional grid of manifold-valued
data: a function of the form f: U — M where U C Z" is the
image domain and M is a smooth Riemannian manifold.

We are not aware of much prior work on deep neural net-
works (DNNs) that can cope with the data-type described in
(ii) above with the exception of [3], [4], [5], [6]. In [3], authors
presented a deep network architecture for classification of
hand-crafted features residing on a Grassmann manifold that
form the input to the network. In [4], the authors presented a
DNN architecture for data on SPD(n). In both of these works
[3], [4], authors are not dealing with manifold-valued images
as input data but simply a collection of features (derived from
images) which are manifold-valued. Thus, the architecture
does not involve the use of any convolution or equivalent
operations for Gr(p, n) or SPD(n). Further, they do not use the
natural invariant metric or intrinsic operations on the Grass-
mannian or the SPD(n) in the network blocks. Using intrinsic
operations within the layers guarantees that the result
remains on the manifold and hence one does not require any
projection operations to ensure the result lies in the same
space. Work in [5] addresses the issue of generalizing the con-
cept of batch normalization to neural network architectures
described in [3], [4]. Although, their batch-normalization gen-
eralization can be applied to our situation of manifold-valued
fields/images as well. In [6], authors develop a local convolu-
tion layer which constraints the weight mask to be SPD by
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learning unconstrained weights and taking the matrix inner
product of such weight matrices and adding a fudge factor
(scaled identity matrix) to guarantee the SPD property of the
weight mask. Their convolution operation is the standard
euclidean space convolution and doesn’t involve proving
equivariance to symmetry group actions admitted by the
SPD(n) manifold.

There are several deep networks reported in the literature
to deal with cases when data reside on 2-manifolds encoun-
tered in Computer Vision and Graphics for modeling shapes
of objects. Some of these are based on graph-based representa-
tions of points on the surfaces in 3D and a generalization of
CNNs to graphs [7], [8]. For more on Graph CNNs, we refer
the reader to a recent comprehensive survey [9]. There is also
recent work in [10] where the authors presented a deep net-
work called geodesic CNN (GCNN), where convolutions are
performed in local geodesic polar charts constructed on the
manifold. These approaches fall in the category of functions
on a manifold (the first category above) and hence are funda-
mentally distinct from our work reported here.

In this paper, we present a novel DNN framework called
ManifoldNet. This is a potential analog of a CNN that can
cope with input data are manifold-valued images i.e., the
value set belongs to a Riemannian manifold. The motivation
in defining the analog relies on the equivariance property.
Note that convolution of functions in vector spaces are
equivariant to translations. Further, it is easy to show that
traditional convolutions of functions are equivalent to com-
puting the weighted mean [11]. For the case of manifold-
valued data, we can define the analogous operation of a
weighted Fréchet mean (WFM) and prove that it is equivar-
iant to the action of I(M). This will be presented in a subse-
quent section. A preliminary conference version of this
work was published in [12]. In [12], we presented manifold
operations that allows for the generalization of CNN’s to
non-constant sectional curvature manifold valued data. In
this article, we extend the framework to the case of constant
sectional curvature manifolds as well and present a new
architecture for the same. In comparison to our preliminary
work in [12], in addition to the aforementioned significant
extension, this paper contains an expanded theory section
with more detailed analysis along with a detailed section on
the network architecture and many more experiments perti-
nent to both computer vision and medical imaging.

Our key contributions in this work are: (i) we define the
analog of convolution operations for manifold-valued data to
be one of computing the wFM for which we present a prov-
ably convergent, efficient and recursive estimator. (ii) A proof
of equivariance of WFM to the natural action of I (M), general-
izing a fundamental property of CNN's. (iii) We prove that on
non-constant sectional curvature manifolds, each wFM layer
is a contraction mapping and provide constructive evidence
for its non-collapsibility when stacked in layers. Further, a
proof of collapsibility for the case of constant sectional curva-
ture manifolds. (iv) A novel deep architecture involving the
Riemannian counterparts to the conventional CNN units. (v)
Several experiments involving the application of ManifoldNet
to both computer vision and medical imaging data sets. In
computer vision, we present experiments on video classifica-
tion and image reconstruction (using an auto-encoder
+decoder setting). In medical imaging, we present experiments

on (a) regression between changes in diffusional structure—
captured in the Cauchy deformation tensor obtained via non-
rigid registration of the ensemble average propagator
(EAP) field computed from the patient scan to the EAP
control atlas—and function in movement disorder
patients. (b) An experiment on classification of Parkinson
Disease (PD) patients and Controls (normal subjects) from
diffusion magnetic resonance brain scans.

2 GRouP AcCTION EQUIVARIANT NETWORK
FOR MANIFOLD-VALUED DATA

In this section we will define the primary operations for
extending deep learning architectures to manifold-valued
images. Input data will be of the form f:U — M for
U C Z" the image domain and M a Riemannian manifold,
i.e., a field of M-valued data. We replace the key blocks of a
standard CNN architecture as follows: (a) Standard convo-
lution replaced by a moving window of wFM (Section 2.1).
(b) ReLU replaced by G-transport/ G-expansion (see
Section 2.2). (c) Standard fully connected layer is replaced
by an invariant final layer (see Section 2.3). In subsequent
subsections, we will present a detailed description of each
of these basic operations before moving on to a detailed
description of the architecture we propose.

2.1 wFM on M as a Generalization of Convolution
We will begin by defining a convolution type operation for
inputs sampled from a Riemannian manifold M. This opera-
tion will slide a moving window of weights over the input
points but replace the usual weighted sum (i.e., inner product)
operation with a weighted Fréchet mean (WFM [13]).

Let {w;} | be weights satisfying a convexity constraint, i.e.,
w; > Oforalliand >, w; = 1. Then, the WFM is defined as,

N
WFM({X;}, {w}) = argmin » _ w;d*(X;, M). 1
MeM i=1

This definition works in any metric space, although the exis-
tence and uniqueness properties will vary. For Riemannian
manifolds, these properties have been well characterized, and
will introduce some relevant limitations on our architecture.
Specifically, [14] has shown that the input points must lie in a
ball of radius 7. (M) to ensure the WFM exists and is unique.
Defining rcyx (M) requires some background, which we detail
in appendix (a), which can be found on the Computer
Society Digital Library at http:/ /doi.ieeecomputersociety.org/
10.1109/TPAMI.2020.3003846, for completeness.

We can use this operation for our goal of constructing a
convolution operation on manifold-valued fields. Suppose
f:Z" - M and w:Z" — R are a manifold-valued field
and a weight filter, respectively. Then we can define a con-
volution operation as

(f xw)(y) = WEM,zx (f(x), w(x —y)). @

For the rest of the paper, we will assume that the input
samples on M lie inside an open ball U = B, (M). This
will ensure the existence and uniqueness of the wWFM as
defined in Equation (1). We specify the value of rcyx (M)
for specific manifolds of interest in Section 3.
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What About Equivariance?. Clearly Equation (1) generalizes
the notion of euclidean mean to manifolds, but this is hardly a
justification for its utility inside a deep network architecture.
We will now show that the wFM operation generalizes a fun-
damental property of convolutions in euclidean space i.e.,
isometry equivariance. To this end we will now show that the
WFM is equivariant to the action of the natural group of isome-
tries of M. First we formally define equivariance and the
isometry group of a manifold M.

Definition 1 (Equivariance). Let X and Y be sets acted
upon by G, i.e., G-sets [15]. Then, F': X — Y is said to be
G-equivariant if Vg € G, Yz € X, F(g.x) = g.F ().

Definition 2 (Group of isometries of M). We say a diffeo-
morphism ¢ : M — M is an isometry if d(¢(z),d(y)) =
d(z,y) for all xz,y € M. Note that d is the distance induced by
the Riemannian metric (see appendix (a)), available in the online
supplemental material. The isometries of M form a group under
composition. We denote this group by 1(M) and for g € I(M)
we denote the result of applying gtox € M by g - x.

Clearly M is a G-set, where G = I(M). Now we are
ready to prove the main theorem of this subsection, the
equivariance of the wFM operation to the action of the isom-
etry group I(M). This result is intuitive, since, as can be
noted from Equation (1), the wFM operation is fundamen-
tally a metric space operation, and thus should be equivar-
iant to isometric transformations.

Theorem 1. Given {w;} satisfying the convex constraint, let
F:P—U be a function defined by {X;} — wWFM({X;},
{w;}). Then, F is I(M)-equivariant.

Proof. Let g € I(M) and {X;}' € P. We want to show that,
g9- WEM{Xi}, {wi}) = wFM({g - Xi}, {w;}). @)
Set M = wFM({g- X;}, {w;}). Then,

N N
Zwidz (g . Xi7 M) = Zwid2(
i=1 i=1

So that WFM({X;}, {w;}) =g ! - M. Applying g to both
sides we get Equation (3), completing the proof.

Xi,971 . M)

Now that we have defined the convolution type opera-
tion as the wFM for manifold-valued data and have shown
its equivariance to the natural isometry group action admit-
ted by the manifold M, we present a computationally efficient
estimator for the wFM that will allow us to use it many times
over within the wFM layers of a deep ManifoldNet.

How to Compute WFM Efficiently?. We will now define an
efficient estimator of the wFM and state a statistical consis-
tency theorem. To state and prove the statistical consistency
we will need to interpret the samples X; as being drawn from
an unknown distribution over the continuous, manifold val-
ued random variable X. Further, we will use the continuous
counterpart of WFM, i.e., the weighted Frechet expectatlon
(WFE) in the statement of Proposition 1. Given {X;}Y c U
and {w; := w(X;)}, such that Vi,w; > 0, the nth estimate,
M, of WFM({X,}, {w;}) is given by the following recursion:

M, = X M, =T% (Y ) 4
1 1 1 M, _ 1<Z;L 1w]> ( )

Where I'} : [0,1] — U is the shortest geodesic curve from X
to Y.! This gives us an efficient inductive/recursive way to
define convolution operation on M who's complexity is lin-
ear in the number of points.

We have the following theorem, showing statistical con-
sistency of the proposed estimator (4). See appendix (b),
available in the online supplemental material, for the defini-
tion of the WFE and the proof.

Proposition 1. Let {X;}" | be i.id. samples drawn from px on
M. Let the WFE be finite. Then, My converges a.s. to WFE as
N — oo.

Coming back to the proposed convolution operation in
Equation (2), we will use this estimator ), to compute an
approximate WFM within each window. Proposition 1 means
that as the kernel size increases (or equivalently, as the sam-
pling rate of the underlying continuous image increases), the
estimator converges to the true weighted Frechet Expectation
of the sample distribution in the window (see appendix 5,
available in the online supplemental material).

We will henceforth denote the above estimator the induc-
tive WFM estimator (iFME). Note that in [16], [17], [18], the
authors present recursive algorithms for FM computation
on the hyper-sphere, Stiefel and SPD(n) manifolds respec-
tively. These specific algorithms are special cases of our for-
mulation since the WFM approach presented is applicable to
any Riemannian manifold.

Take-Home Message. To summarize, the WFM (computed
using the above recursive estimator) naturally generalizes the
traditional convolution operation in vector spaces to smooth
manifolds and possesses the fundamental group-equivariance
property of convolutions. We extend this to a complete
moving-window convolution-type operation in Section 3.

2.2 Nonlinear Operations Between Layers
Traditional deep network models use intermediate pointwise
non-linear functions between convolutional layers (e.g.,
ReLU). There are at least two properties shared by all such
functions: they are all (a) non-linear and (b) contractive. In
light of the first property these functions are commonly called
“non-linearities”. The need for the first property is obvious:
without a non-linear intermediate operation there is no “deep”
learning, since the composition of linear layers will collapse to
a single linear layer. The reasons for the second property are
more complicated [19] but also important. This section will
address both properties of non-linearities between layers. We
will show that the wFM defined above is actually a contractive
operation in its own right. This leaves us with the problem of
non-linearity, which will be addressed on a case by case basis
for non-constant and constant sectional curvature manifolds
respectively.

The Contraction Property. We will begin by addressing the
second point, namely, the contraction property. Formally, let
F be a mapping from U to V. Assume U and V' are metric
spaces equipped with metrics dy and dy respectively. Then F'
is a contraction mapping iff 3¢ < 1 such that Vz,y € U,

1. Observe that, in general WFM is defined with Z _,w; =1, but in
above definition, Z\ L w; # 1. We can normalize {wl} to get {w;} by
H}, = w,/(z :), but then Eq. (4) will not change as w,/(>_}_, w;) =

oy
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dy(F(z), F(y)) < cdy(z,y), and F is a non-expansive map-
ping [19] iff dv (F(x), F(y)) < dy(z,y).

One can easily see that the popular choices for nonlinear
operations like ReLU and sigmoid are indeed non-expansive
mappings. We will now show that the function wWFM as
defined in Equation (1), is a contraction mapping for any non-
trivial choice of weights. Let {X; }N1 and {Y] }M be two sets
of samples on M. Without loss of generahty assume N < M.
We consider the set " = U x --- x U. Clearly {Y;} 111 cuM

M times
and we embed {X;} in¢" as follows: we construct (XM
from {X;}Y, by defining X; = X _1ymodn+1- Let us denote
the embeddmg by «. Now, define the distance on U as
d{ X3, {Y}M ) = max; ;d(X;,Y;). We say the choice of
weights for WFM is trivial if one of the weights is 1 (hence all
others are 0).

Proposition 2. Assume that all {X;}Y  and Y} _, are not
same. Then, for all nontrivial choices of {«;},_, and {/3]}
satisfying the convexity constraint, 3¢ < 1 such that,

a(wPM (XY e ) wPM ({3 {80 )
<ec d(t({Xz}f\:1)v {YJ}Fl)

Note that, the above proposition holds for the particular
choice of d.

Necessity for Non-Linearity. As mentioned before, the non-
linearities between layers prevent the deep neural networks
from collapsing to a single fully connected layer. The analo-
gous question in the ManifoldNet framework is: do composi-
tion of WFM operations collapse to a single WFM operation
(possibly with different weights)? The answer depends on the
geometry of the manifold. In the case of constant sectional
curvature manifolds, the answer is yes, and in the case of
non-constant sectional curvature manifolds the answer is
most likely no (see conjecture below). We now state both
results here and provide a rigorous proof for the former and
then present a numerical experiment why the latter might
be true in appendix (c), available in the online supplemental
material.

Theorem 2. The multi-layer ManifoldNet is equivalent to the
single layer Manifold-Net for data on Riemannian manifolds
with constant sectional curvature.

Conjecture 1. The multi-layer ManifoldNet is not equivalent to
the single layer ManifoldNet for data on Riemannian manifolds
with non-constant sectional curvature.

The above statements have important implications. An
implication of Theorem 2 is that the wFM operation is not
sufficient on its own for the constant curvature manifold
case. This is not necessarily a limitation, since it is analogous
to the euclidean convolution case, but it requires the devel-
opment of some intermediate non-linearities. To overcome
this, we propose several choices of non-collapsible point-
wise operations that could be used in between the wFM
layers. We emphasize that these operations are only neces-
sary in the case where the manifold of interest is of constant
curvature and in general these operations will not maintain
equivariance across layers.

In contrast, Conjecture 1 states that for non-constant sec-
tional curvature manifolds, the wFM is not only a contraction
(as was shown before) but also a “non-linearity”. Note that
the term “non-linearity” is being abused here. It is possible in
theory for the WFM to be non-linear yet be collapsible, mean-
ing that several WFM layers are equivalent to a single one. The
important property demonstrated by the Conjecture 1 is that
WFM layers are most likely non-collapsible on non-constant sec-
tional curvature manifolds. Moving forward, we occasionally
use the term “non-linearity” regardless to maintain the anal-
ogy with the standard CNN case. Note that the degree of non-
linearity provided by the wFM operation will depend on the
curvature of the manifold, so that manifolds with non-con-
stant but slowly varying sectional curvature may not provide
much non-linearity in the wFM. A future avenue of work is to
find the explicit relationship between the rate of change of
sectional curvature and the degree of non-linearity in the
WFM operation.

Choices of Non-Linearities. We now discuss some non-lin-
ear operators on M.

e-Transport. After each layer of convolution (WFM), we can
learn an element g € G to transport on M. Given N as the out-
put of a wFM layer, we define the G-transport operator G|, as a
learnable function defined as follows: G, (N; g) = g.N, where,
g € G is learnable. This operator is equivariant to the action of
(. But notice that, for manifolds with constant sectional curva-
ture, this layer does not prevent the collapsibility issue as men-
tioned in Theorem 2. This motivates a more general non-linear
operator defined below.

G-Expansion Operator. Let {X;},C M be the points to
which we want to apply the convolution operation. We
define the expansion operator G, as a learnable function
defined as follows:

Gex({Xi}s {wi}, {gi})

where, {g;} C G are learnable. Notice that, this expansion
operator does not preserve the equivariance but does prevent
the collapsibility problem for manifolds with constant sec-
tional curvature. An important point to note is that this
operation may map the points to a geodesic ball greater
than the convexity radius of M. This would be an issue
since the next WFM would not be well defined. To prevent
this, we can explicitly check that the result of the G-expan-
sion operation lies within a ball of convexity radius, and if
not, revert to the initial input. A more principled approach
to this issue will be addressed in future work.

Tangent ReLU. Let {X;}', C M be input points and set
uw=FM({X;}), the unweighted Fréchet mean. Then we
define the TReLU operation by

tReLU(X;) = Exp,, (rl (ReLU(t (Exp;1 (Xf,)))) :

where Exp, and Exp;1 are the Riemannian exponential and
inverse exponential (log) maps centered at j, respectively
(see Appendix (a), available in the online supplemental
material, for definitions). Let ¢ : 7, M — R be an isomor-
phism from tangent space at . to R™, where m is the dimen-
sion of M. Explicitly, we lift the data points to the tangent
space at the Fréchet mean, apply ReLU in the tangent space,
and then map back to the manifold using the Riemannian
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Fig. 1. Left: Schematic diagram of a ManifoldNet; Right: (2 x 2) ManifoldNet conv. example.

exponential map. This expansion operator does not preserve
equivariance but does prevents the collapsibility problem for
manifolds with constant sectional curvature.

Take-Home Message. For manifolds with constant sectional
curvature, the presence of an intermediate non-linearity is
essential to prevent collapsibility while for manifolds with
non-constant sectional curvature, it is not strictly required.

2.3 The Invariant (Last) Layer

We will form a deep network by cascading multiple sliding
WFM windows each of which acts as a convolution-type layer,
possibly with a point-wise non-linearity operation in-between
in the case of manifolds with constant sectional curvature. Each
convolutional-type layer is equivariant to the group action, and
hence at the end of the cascaded convolutional layers, the out-
put is equivariant to the group action applied to the input of
the network. Let d be the number of output channels. Each
channel will be equivariant to the isometry group action. But in
order to build a network that yields an output which is invariant
to the group action we would like the last layer (i.e., the ana-
logue of a linear classifier) to be invariant to the group action.
This is accomplished in traditional CNNs using a combination
of pooling layers and the last fully connected (FC) layer. We
define a final layer which is explicitly invariant.

Construction of the Last Layer. The last layer is thus con-
structed as follows: Let {Z;}}_,C M be the output of d chan-
nels and M, = FM({Z;}_ )= wFM({Z}"_,,{!/4}}) be the
unweighted FM of the outputs {Z;}?_,. Then, we construct a
layer with d outputs whose ith output o; = d(M,, Z;). Let c be
the number of classes for the classification task, then, an FC
layer with inputs {o;} and ¢ output nodes is used. Finally, a
softmax operation is then used at the c output nodes to obtain
the outputs {y;};_;.

Invariance of the Last Layer. In the following proposition,
we claim that this last layer with {Z;}?_, inputs and {y,}¢_,
outputs is group invariant.

Proposition 3. The last layer with {Z;}{_, inputs and {y;}_,
outputs is group invariant.
Proof. Using the above construction, let W € R™“ and

b € R be the weight matrix and bias respectively of the
FC layer. Then,

y=F(W'o+b)=FW"d(M,, 2)+b), (7

where, F'is the softmax function. In the above equation, we
treat d(M,,Z) as the vector [d(M.,,Z),...,d(M,,Z,)]".
Observe that, g.M,, = FM({ gZ7}§l:1) As each of the d chan-
nels is group equivariant, Z; becomes g.Z;. Because of the
invariance property of the distance under group action,
d(g.M,,g9.7;) = d(M,, Z;). Hence, one can see that if we
change the inputs {Z;} to {g.Z;}, the output y will remain
invariant. d

Take-Home Message. Analogous to the standard CNN, the
presence of an invariant last layer is crucial to make our pro-
posed ManifoldNet invariant to the action of G.

In Fig. 1 we present a self-explanatory schematic of the
ManifoldNet depicting the different layers of processing the
manifold-valued data as described above in Sections 2.1, 2.2,
and 2.3. A self-explanatory schematic diagram to explain the
concepts of equivariance and invariance is shown in Fig. 2.

3 ARCHITECTURE

We now present the basic building blocks of the ManifoldNet
architecture for both the non-constant and constant sectional
curvature cases. Note that in both cases we can describe the
input as an N-dimensional finite grid of manifold valued
points, explicitly, a function f: U — M where U C Z" and
M is a suitable manifold. For the purposes of exposition we
will consider the case of a manifold-valued image,i.e., N = 2.

3.1 ManifoldConv and ManifoldFC

We begin by defining the ManifoldConv layer, a generaliza-
tion of the convolutional layers in CNNSs. In direct correspon-
dence to the convolutional layer in CNNSs, this layer involves
moving/sliding a learnable weight kernel over the spatial
dimensions of the image, but replaces weighted sums with

d(g.X1,9.M)

M
P e N
LIS LN PN A N ) YR
. £y p
MR I A &
Eqivariance Tnvariance

d(g.X;, g.M) =d(X,, M)

Fig. 2. Schematic of equivariance and invariance where {X,;} ¢ M, M is
the wFM and g € G is the group element.
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weighted Fréchet Means. Explicitly, if f:Z* — M is the
layer input and w : Z* — R is the learned weight filter, then
the ManifoldConv layer maps f to

(f xw)(y) = WFM, 22 (f(x), w(x = y))- ®)

We will henceforth use the notation f * w to denote Mani-
foldConv convolutions, where the manifold M is implicit in
the functions. Note that traditional convolution layers in
CNN s are (up to a scale factor) obtained as a special case
when M = R. Hence, the ManifoldConv layer is a direct
generalization of traditional convolution layers in CNNs.

From an implementation perspective there are several
important points to mention:

1) As in the traditional convolution layers in CNNSs, the
weight kernel w : Z*> — R is taken to be non-zero only
in some neighborhood of the origin, i.e., the kernel size.

2) The weight kernel needs to satisfy the convexity con-
straint, i.e., ) 2 w(x) =1 and w must be strictly
positive. We enforce this by learning an uncon-
strained set of underlying weights and then normal-
izing them to satisfy the convexity constraint before
each forward pass.

3)  The ManifoldConv layer can deal with multiple input
and output channels using the same methods as tra-
ditional CNN’s. This can be used to increase model
capacity by learning multiple weight masks within
each layer.

4) The wFM exists and is unique if all input points
reside inside a geodesic ball of radius 7iyj(M), the
injectivity radius of the manifold (see Section 2). We
will address this condition on a case by case basis for
each manifold below.

5)  Onmany manifolds there exists no closed form expres-
sion for the wFM, so its naive computation involving
gradient descent applied to the weighted Fr’'echet
functional can be computationally rather expensive. A
network with just a few layers may have to compute
millions of wFM'’s just for one forward pass. To make
this efficient we use the inductive Fréchet Mean esti-
mator presented in Section 2. The inductive Fréchet
Mean estimator transforms the wFMcalculation into a
series of geodesic function evaluations, so assuming
M has a tractable closed form geodesic, this computa-
tion will be fast. Again, we elaborate on this for some
specific manifolds below.

Each ManifoldConv layer also inherits some important

properties from the wFM operation.

1)  The ManifoldConv layers inherit equivariance to the
natural action of (M), the isometry group associated
with the manifold. Specifically, if Z € I(M) then
(Z- f)yxw=Z-(f*w), where the action Z on a func-
tion is defined by the pointwise action on the output
points, i.e., (Z- f)(x) = Z - (f(x)). This extends a key
property that has made convolution layers in tradi-
tional CNNs so powerful: equivariance to an underly-
ing group of isometries. Further, just like in the
traditional CNNs, the ManifoldConv layer is equivar-
iant to translations of the domain. In CNNs, it is well
known that the network layers are equivariant to

translations in the domain as well as range (for exam-
ple adding a constant brightness to boost all of the
image pixel values). In analogy to adding a constant
brightness to all the pixel-values of an image we have,
an application of the same group action to all the mani-
fold-valued pixels in the manifold-valued image set-
ting. Thus, what we need in this case is equivariance to
the isometry group admitted by the manifold where
the pixels take their values from. This group action
equivariance was what was shown in Theorem-1 for
the ManifoldNet. We can summarize these two prop-
erties by saying that w« (Z- foT)=Z-(wx f)oT
where T : Z" — Z" is a translation in the domain.

2)  Since the wFM operation is a contraction and, in the
case of non-constant sectional curvature manifolds is
non-collapsible, the ManifoldConv layer also inherits
these properties. These are the two fundamental
motives of the non-linearities in traditional CNNs.
Therefore, the ManifoldConv layer acts as its own “non-
linearity” in the case of non-constant sectional curva-
ture manifolds, and, crucially, ManifoldConv layers can
be stacked without intermediate ReLU type layers.
Note that for the case of constant sectional curvature
manifolds, we do have collapasibility and thus will
require a “non-linearity” between the layers.

In classification tasks we would like the the output class to
be invariant to some natural group action on the inputs. The
ManifoldConv layers defined above give us equivariance to the
isometry group action, so if we define a final layer that is
invariant to the isometry group action then the entire network
will be invariant. To achieve this we use the invariant final
layer defined in Section 2.3. This layer maps the output activa-
tion of our ManifoldConv layer g : U — M to a real valued vec-
tor, which is then easily fed through one or several (traditional)
fully connected layers and finally through a softmax function
for classification. We call this entire map from final activation
to classification the ManifoldFC layer.

We now present some specific instances of the general
theory and architecture that has been developed for mani-
folds of interest.

3.2 Non-Positive Sectional Curvature
Example: M = SPD(n)

The manifold SPD(n) of symmetric positive define matrices
with the GL(n)-invariant metric is commonly encountered
in computer vision and medical imaging applications. For
e.g., in the former, for metric learning problems, covariance
tracking etc. and in the latter, diffusion tensor imaging, elas-
tography etc. For more on the use of covariance matrices in
computer vision, we refer the reader to [20]. The space of
SPD matrices is a Riemannian symmetric space with non-
constant sectional curvature [21], and thus (Section 2) we
can design ManifoldNet classifiers of the form

ManifoldConv — ... — ManifoldConv — ManifoldFC.

For SPD(n) with the GL(n)-invariant metric the geodesic
' : [0,1] — SPD(n) between two points X and Y on SPD(n)
is given by [22]

t
I (t) = X (X—%YX—% ) X, )
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SPD(n) is geodesically complete. Moreover, since SPD(n)
has non-positive section curvature, a theorem of E. Cartan
(see 6.1.5 in [23]) gives that the wFM is a global operation on
SPD(n), i.e., for any points {X;} C SPD(n) and weights {w; }
satisfying the convexity constraint, wWEM({X,}, {w;}) exists
and is unique.

Note that the real valued powers of matrices in Equa-
tion (9) require eigen-decompositions for computation. We
implement the ManifoldConv and ManifoldFC operations for
SPD(n) in PyTorch.”

3.3 Constant Curvature Example: M = S"!

The hypersphere S"~' is ubiquitous across a multitude of
applications. In information geometry, the hypersphere arises
as a parametrization of statistical manifolds, i.e., manifolds of
probability densities, endowed with the Fisher-Rao metric. This
metric is natural to the manifold of densities: it is invariant to
reparametrizations of the density functions [24].

The unit Hilbert sphere identification with a statistical
manifold is obtained using the so called square root density
parametrization. For a comprehensive study of the square
root parametrization the reader is referred to [24]. Formally,
the square root parametrization is a map /: X — S",
3 < n < oo, from a statistical manifold A" to the unit hyper-
sphere. Under the square root parametrization the natural
SO(n)-
invariant geodesic metric on S" " is equivalent to the Fisher-
Rao metric, i.e., the square root parametrization /- is an
isometry.

Note that S"! is a manifold with constant sectional cur-
vature. We must thus use a “non-linearity” between succes-
sive layers (Section 2.2). We will later experiment with
several of the non-linearities presented in (Section 2). On
S"~!, geodesics take the simple form

e = (xsin ((1 — )0 + ysin (¢6)), (10)

sin (0)

where, 6 = arccos(x'y) and 7,j(S"') = 7/2, meaning that
the input points to the wFM on S"~' must lie within dis-
tance 7 of each other. The square root parametrization maps
points only onto the positive orthant of the hypersphere,
which is contained within a ball of radius /2. Hence the
wFM is a global operation on square root parametrized den-
sities, i.e., if {\/p;} C S" ! are the images of some densities
under the square root parametrization and {w;} are weights
satisfying the convexity constraint then wFM(,/p;, {w;})
exists and is unique. We implement the ManifoldConv, the
ManifoldFC operation for S"! and several choices of non-
linearities in PyTorch.’

4 EXPERIMENTS

We now evaluate the ManifoldNet framework on two each of
medical imaging and vision tasks respectively: 1) Diffusion
Tensor field classification, 2) nonlinear regression between
structure and function, 3) Video Reconstruction and 4)
Video Classification.

2. SPD(n) implementation
3.8"! implementation

805

M1-SMATT

Fig. 3. M1 template.

TABLE 1
Comparison Results on Diffusion MRI Classification

| | S | time (s) | Accuracy
| Siocel | oninearity | TN | /sample | Training Accuracy | Test Accuracy

0.973 £0.02 0.948 +£0.03

DTI-ManifoldNet
ODF-ManifoldNet
ODF-ManifoldNet
ResNet-34
CapsuleNet

~ 30K
~ 153K
~ 153K
~30M
~ 30M

None
Tangent-ReLU
G-expansion
ReLU
ReLU

~0.3
~ 0.02
~ 0.02
~ 0.008
~ 0.009

0.951 £ 0.03 0.942 +0.02
0.934 £ 0.02 0.928 £0.01

0.984 +0.04
0.63 £ 0.02

0.713 £0.02
0.62 & 0.04

4.1 Classification of Diffusion Tensor Images

From Parkinson Disease Patients and Controls
In this experiment, we use a dataset consisting of diffusion
weighted magnetic resonance (MR) images from 355 subjects
diagnosed with Parkinson’s disease and 356 control (healthy)
subjects acquired at the University of Florida. This data is
available for research use by request via the National Institute
of Neurological Disorders (NINDS) Parkinson’s Disease Bio-
marker Program (PDBP). All images were collected using a
3.0 T MR scanner (Philips Achieva) and 32-channel quadra-
ture volume head coil. The parameters of the diffusion mag-
netic resonance image acquisition sequence were as follows:
gradient directions = 64, b-values = 0 and 1000 s/ mm?2, repeti-
tion time = 7748 ms, echo time = 86 ms, flip angle = 90°, field
of view = 224 x 224 mm, matrix size = 112 x 112, number of
contiguous axial slices = 60, slice thickness = 2 mm, and
SENSE factor P = 2. Eddy current correction was applied to
each data set by using the widely used and publicly available
FSL software pacakage [25].

From these raw diffusion weighted MR images we seg-
ment 12 regions of interest (ROIs) in the sensorimotor tracts,
regions known to be affected by PD. This segmentation is
achieved by registering to SMATT [26], a probabalistic atlas
of the human sensorimotor tracts. For an example tract (M1)
in the SMATT template, see Fig. 3. Our goal is to classify
PD/Control directly from the diffusion MRI data. We test
two different ManifoldNet based approaches for doing this,
along with a traditional CNN model.

The first approach utilizes diffusion tensors, which capture
the local diffusion process within a voxel using a symmetric
positive definite matrix [27]. The second approach utilizes ori-
entation distribution functions (ODF's), a more sophisticated
representation than the diffusion tensors that captures the
radial projection of the ensemble average of the diffusion
propagator (probabality density) function [28]. It is well
known that ODFs can capture crossing fibers, a phenomenon
which diffusion tensor representation is incapable of model-
ing [29]. The final approach naively trains a CNN directly on
the raw data represented as a scalar field with several chan-
nels. Below we describe the data-processing pipeline, architec-
ture choice and results for each of the approaches considered.
These results are also summarized in Table 1.

Authorized licensed use limited to: University of Florida. Downloaded on October 30,2023 at 22:44:43 UTC from IEEE Xplore. Restrictions apply.



806 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 2, FEBRUARY 2022

e DTI Representation. After extracting 12 ROIs (corre-
sponding to 6 sensorimotor tracts in each hemisphere
of the brain) we fit diffusion tensors to the data in these
ROIs. This gives us a diffusion tensor field with 12 chan-
nels (one for each ROI). Since diffusion tensors are sym-
metric and positive definite matrices, we can represent
each channel as a field f; : U — SPD(3) for U C R®.

We use a 7-layer ManifoldNet architecture consist-
ing of 5 ManifoldConv layers followed by a Mani-
foldFC layer and finally a softmax. We utilize a cross
entropy loss function and train for 100 epochs using an
Adam optimizer with a learning rate of 0.005. Utilizing
this training procedure over a 10-fold cross-validtaion
gives a mean classification accuracy of 97.3 percent on the
training set and 94.8 percent on the test set. Inference time
for a single SMATT fiber collection is about 0.3 s on a
GTX 1080 Ti GPU.

e  ODF Representation. In this case we fit orientation dis-
tribution functions to diffusion data within each voxel
using the DiPy implementation of DSI with deconvo-
lution [30]. This gives us an ODF field with 12 channels
which, using the square root density parametrization
[31], gives us an image of (Hilbert) sphere valued data,
ie., fi:U—S> for each channel (ROI), where
U C R3. Of course, the probability density at each
voxel is discretized, so that we can actually represent
an ODF field by f; : U — SY and N < oc.

Recall that the sphere is a manifold with constant
sectional curvature, so we need to utilize some non-
linearity in between consecutive ManifoldConv layers
as described in Section 2.2. For this purpose, we test
both the G-expansion operator and the tangent ReLU
operation defined earlier. Specifically, we use 9 layers
of ManifoldConv layers, each second ManifoldConv
layer followed by a non-linearity (to increase the recep-
tive field before the non-linearity [32]). This is followed
by a ManifoldFC layer and a softmax for classification.
We use the same training and testing procedure as in
the DTI representation case, i.e., cross entropy loss
trained for 100 epochs using Adam with a learning
rate of 0.005. Using the G-expansion operator gives us
a mean classification accuracy of 93.4 percent on the train-
ing set and 92.8 percent on the testing set. Using the tan-
gent ReLU operation gives us a mean classification
accuracy of 95.1 percent on the training set and 94.2 percent
on the test set. Inference time for a single SMATT fiber
collection is about 0.02 s on a GTX 1080 Ti GPU. We
note that the relative efficiency of the recursive FM
estimator on the sphere allows us to build a larger net-
work while lowering inference time. This larger net-
work improves classification accuracy. For reference, a
5 layer ODF representation network (the same size as
the DTI case) gives a test classification accuracy of
74 percent, significantly worse than the larger network.

e  Raw Signal Representation. In this case we do not fit
any specific model to the data. Each g-space sam-
pling direction of the raw signal corresponds to a
scalar diffusion weighed image along that direction.
Thus we interpret each sampling direction as a chan-
nel of a multi-channel image which we feed into a
traditional CNN and CapsuleNet respectively.

For the CNN architecture we utilize a ResNet-34
architecture which is trained from scratch using the
training procedure described in the original paper
[33]. 10-fold cross-validation gives us a mean training
accuracy of 98.4 percent. We noted significant overfit-
ting late in training so we report both an early stop-
page test accuracy of 71.3 percent and a non-early
stoppage test accuracy of 42 percent. Note that early
stoppage was not considered for the previous two
experiments, the reported test accuracy’s are simply
those obtained at the end of the final epochs.

We also compared the performance of the Mani-
foldNet with a CapsuleNet [34], [35] with dynamic
routing [36], again trained from scratch using the
same training procedure reported in [36] on the data
representation described above. Ten-fold cross vali-
dation yields a training accuracy of 63 percent and a test
accuracy of 62 percent.

Note that ManifoldNet significantly outperforms the tra-
ditional CNN architecture on generalization performance,
suggesting that the ManifoldNet architecture encodes better
inductive biases for the problem. Beyond this, the ODF
representation gives approximately equal accuracy to the
DTI representation. This is slightly unexpected, since the
ODF representation is more informative than the DTI repre-
sentation. We hypothesize that it is due to the differences
in architectures between the constant sectional curvature
manifold corresponding to the ODF representation and
non-constant sectional curvature manifold corresponding to
the DTI representation, although more work is needed to
conclusively determine the reasoning.

4.2 Nonlinear Regression Between Structure
and Function

This dataset contains high angular resolution diffusion mag-
netic resonance image (HARDI) scans from, 1) healthy controls,
2) patients with essential tremor (ET) and 3) Parkinson’s dis-
ease patients. This data pool contains scans from 25 controls, 15
ET and 26 PD patients. This HARDI data was acquired using
the same acquisition parameters as described in the previous
experiment. The dimension of each image is (112 x 112 x 60).
From each of these images, we identify the region of interest
(ROI) (40 voxels in size) containing the Substantia Nigra (a neu-
roanatomical structure known to be affected most by PD and
ET). In morphometric analysis, it is common to use the Cauchy
deformation tensor (CDT) field to capture changes in a patient
scan with respect to a reference template/atlas. Thus, in order
to capture changes in patient HARDI scans with respect to the
control atlas, we first non-rigidly register (see [37]) each of the
EAP (ensemble average propagator—a probability density func-
tion) fields estimated from the input HARDI scan (see [38]) to
the computed EAP atlas and obtain the CDT at each voxel in
the ROI, given by v JT.J, where, .J is the Jacobian of the non-
rigid transformation [37]. The CDT is an SPD matrix of dimen-
sion (3 x 3) in this case. Hence, for each patient we extract a
CDT field of dimension (3 x 3 x 40). In this experiment,
we seek to find the relationship between structural information
in the form of CDT and an important clinical measure using
the Movement Disorder Society’s revision of the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [39].
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The MDS-UPDRS score is widely used to follow the longi-
tudinal course of PD. These scores are obtained via interviews
and clinical observations by an expert. In this experiment,
available to us are the MDS-UPDRS scores for all the 58 sub-
jects in the population under consideration. This score is a
nonnegative natural number, with smaller values indicating
normality.

For these 58 patients, we used a 3 layer ManifoldNet to
find the relation between CDT field and MDS-UPDRS
scores. We used an MSE loss and obtained an R? statistic of
0.93, outperforming conventional manifold regression tech-
niques such as [40].

4.3 Video Reconstruction Experiment

Here we present experiments demonstrating the applicability
of the theory layed out in Section 2 to dimensionality reduc-
tion and representation learning. Autoencoder architectures
are commonly used for these purposes. This field has seen
several significant advances in the past few years, including
the introduction of denoising autoencoders [41], variational
autoencoders [42], autoregressive models (PixelCNN [43],
PixelRNN [44]), and flow-based generative models [45].
Many of these architectures are modifications of the tradi-
tional autoencoder network, which attempts to learn an iden-
tity map through a smaller latent space. In this experiment we
will modify the usual autoencoder architecture by adding a
linear dimensionality reduction layer in the latent space,
achieved using a WFM of points on a Grassman manifold.

4.3.1 Background

To compute a linear subspace using the ManifoldNet frame-
work we use an intrinsic averaging scheme on the Grassman-
nian. A point on the Grassmannian Gr(k,n) correspond to
k-dimensional subspaces of the vector space R". The Grass-
mannian is a smooth Riemannian homogeneous space [21]
and a point X' € Gr(k, n) on the Grassmannian can be specified
by an orthonormal basis X, i.e.,an (n x k) orthonormal matrix.
Hauberg ef al. [46] showed that the one dimensional principal
subspace can be computed as an average of all one dimen-
sional subspaces spanned by normally distributed data [47].
Motivated by this result, Chakraborty et al. [48] proposed an
efficient intrinsic averaging scheme on Gr(k, ) that converges
to the k-dimensional principal subspace of a normally distrib-
uted dataset in R" [48]. In the ManifoldNet framework, we can
modify this technique to learn a WFM of points on the Grass-
mannian that corresponds to a subspace of the latent space.

A traditional convolutional autoencoder performs non-
linear dimensionality reduction by learning an identity func-
tion through a small latent space. A common technique used
when the desired latent space is smaller than the output of the
encoder is to apply a fully connected layer to match the dimen-
sions. We replace this fully connected layer by a weighted sub-
space averaging and projection block, called the Grassmann
averaging layer. Specifically, we compute the WFM of the out-
put of the encoder to get a subspace in the encoder output
space. We then project the encoder output onto this space to
obtain a reduced dimensionality latent space. We call an
autoencoder with the Grassmann averaging block an autoen-
coder+iFME network, as shown in Fig. 4. In the experiments,
we compare this to other dimensionality reduction techniques,
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Fig. 4. Schematic description of autoencoder+iFME network.

including regular autoencoders that use fully connected layers
to match encoder and latent space dimensions.

4.3.2 Architecture and Results

We begin by testing on a 1000 frame color sample of video
from the 1964 film “Santa Clause Conquers the Martians” of
frame size 320 x 240. Here we use an 8 layer encoding-
decoding architecture with Conv — ELU — Batchnorm
layers, with the final layer applying a sigmoid activation to
normalize the pixel values. The encoder returns a feature
video consisting of 128 channels of size 120 for a dimension
of (1000 x 15360). We compare a fully connected layer to a
Grassmann averaging layer, both mapping to a desired
latent space of dimension (1000 x 20). The per pixel average
reconstruction error for the Grassmann block network is 0.0110,
compared to 0.0122 for the fully connected network, representing
an improvement of 10.9 percent. In general, the Grassmann
averaging layer tends to do as well or better than the fully
connected layer. Although in theory the fully connected
layer can learn the same mapping as the Grassmann averag-
ing layer, it has a much larger parameter space to search for
this solution, implying that it is more likely to get trapped
in local minima in the low loss regions of the loss function
surface. We also observe a parameter reduction of 46 percent. In
general the Grassmann averaging layer network is slower
per iteration than the fully connected network, but also
tends to exhibit faster convergence so that the time to reach
the same reconstruction error is less for the Grassmann
averaging layer. Overall, we see an improvement in all
major performance categories.

4.4 Video Classification Experiment

Here we utilize the ManifoldNet architecture to design a low
parameter video classifier. We start by using the method in
[53] which we summarize here. Given a video with dimen-
sions (F' x 3 x H x W) of F frames, 3 color channels and a
frame size of (H x W), we can apply a traditional convolution
layer to obtain an output of size (F' x C' x H' x W) consisting
of C channels of size (H' x W’). Interpreting each channel as a
feature map, we shift the features to have a zero mean and
compute the covariance matrix of the convolution output to
obtain a sequence of F' symmetric positive (semi) definite
(SPD) matrices of size (C' x C). From here we can apply a
series of temporal ManifoldNet WFMs to transform the
(F' x C x C) input to a temporally shorter (F' x K x C' x C)
output, where K are the temporal WFM channels. We then
reshape this to (F"K x C' x C) and pass it through an invari-
ant final layer (Section 2.3) to obtain a vector of size F'K.

Finally, a single FC+softmax laier is applied to produce a
plore. Restrictions apply.
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TABLE 2
Comparison Results on Moving MNIST

| el | o | time (s) | orientation (°)
| ode | MPAMMS- | yepoch | 3060 | 10-15 | 10-15-20 |
SPD-TCN 738 ~27 | 1.00+0.00 | 0.99+0.01 | 0.97+0.02
SPD-SRU [49] 1559 ~6.2 | 1.00+£0.00 | 0.96+0.02 | 0.9440.02
TT-GRU [50] 2240 ~2.0 | 1.00+0.00 | 0.52+0.04 | 0.47+0.03
TT-LSTM [50] 2304 ~20 | 1.00+0.00 | 0.51+£0.04 | 0.37+0.02
SRU [51] 159862 | ~3.5 | 1.00+£0.00 | 0.75+0.19 | 0.73+0.14
LSTM [52] 252342 | ~4.5 | 0974001 | 0.714£0.07 | 0.57+0.13

classification output. We call this the SPD temporal convolu-
tional architecture SPD-TCN. In general, the SPD-TCN tends
to perform very well on video classification tasks while using
very few parameters, and runs efficiently.

We tested the ManifoldTCN on the Moving MNIST
dataset [54]. In [49] authors developed a manifold valued
recurrent network architecture, dubbed SPD-SRU, which
produced state of the art classification results on a version
of the Moving MNIST dataset in comparison to LSTM [52],
SRU [51], TT-LSTM and TT-GRU [50] networks. For the
LSTM and SRU networks, convolution layers are also used
before the recurrent unit. We will compare directly with
these results. For details of the various architectures used
please see Section 5 of [49]. The Moving MNIST data gener-
ated in [54] consists of 1000 samples, each of 20 frames.
Each sample shows two randomly chosen MNIST digits
moving within a (64 x 64) frame, with the direction and
speed of movement fixed across all samples in a class. The
speed is kept the same across different classes, but the digit
orientation differs across two different classes. For this
experiment the SPD-TCN will consist of a single WFM layer
with kernel size 5 and stride 3 returning 8 channels, leading
to an (8 x 8) covariance matrix. We then apply three tempo-
ral SPD wWFM layers of kernel size 3 and stride 2, with the
following channels 1 — 4 — 8 — 16, i.e., after these three
temporal SPD WFMs we have 16 temporal channels. This
(16 x 8 x 8) is used as an input to the invariant final layer to
get a 16 dimensional output vector, which is transformed
by a fully connected layer and softmax to obtain the output.
We summarize the 10-fold cross validation results for sev-
eral orientation differences between classes in Table 2. As
evident from this table of comparisons, the SPD-TCN yields
better results in comparison to the competing methods spe-
cifically in terms of the number of parameters as well as
accuracy for the smaller angular orientation cases.

5 DiscusSION AND CONCLUSION

In this paper, we presented a novel deep network suited for
processing manifold-valued data sets. The key distinction
between the work presented here and that presented in the
literature under the umbrella of geometric deep learning is
the type of input to the network. Here, we are interested in
finite grids of manifold-valued data, such as a finite grid
(thought of as an image) of (3,3) SPD matrices as was used in
the diffusion tensor MRI based classification experiment pre-
sented earlier. One could easily apply standard CNNs to
such data by ignoring the structure of the SPD matrices and
simply vectorizing them. This however ignores the geometry
underlying the data space and will in general lead to errone-
ous and inaccurate results. For instance, when we want to

find the mean of two points on a sphere, if we ignore the
geometry of the sphere and use the chordal distance between
the two points to find the mean, this mean will not lie on the
sphere. Thus, it is important to take the geometry of the data
space into consideration and perform intrinsic operations
admitted by the manifold on which the data lie. That said, in
this paper we defined analogs of convolutional layers (in
CNNs) called wFM layers that perform intrinsic operations
on the manifold where the data reside. The existence and
uniqueness of the WFM assumes that the data lie within a con-
vexity radius specific to the manifold. This is usually the case
in practice for the manifolds commonly encountered in appli-
cations namely, SPD(n), Gr(p,n), S" and others. However,
there might be special situations when the data does not sat-
isfy this assumption and this matter needs closer examination
in future work.

From a computational perspective, since the wFM opera-
tions need to be performed anywhere from several thousands
of times for small networks, to several millions of times for
larger networks, we presented an efficient recursive estimator
of WFM. Currently, the rate of convergence of the recursive
estimator is linear [16], [48] in the number of data points
whose WFM is being computed. There is however scope to
improve this rate of convergence by using the geometry of the
manifold in weight selection within the recursive estimator.
We will address this issue in our future work.

In summary, our key contributions in the work presented
here are: (a) A novel deep network to be perceived as a gen-
eralization of the CNN to manifold-valued data inputs
using purely intrinsic operations on the data manifold. (b)
Analogous to convolutions in vector spaces—which can be
computed using the weighted sums—we present WFM oper-
ations on the manifold and prove the equivariance of the
WFM to natural group actions admitted by the manifold. (c)
An efficient recursive WFM estimator that is provably con-
vergent. (d) Constructive evidence on the non-collapsibility
of stacked wFM layers (wihtout any intermediate nonlinear-
ities such as the ReLU) for non-constant curvature mani-
folds and a theorem proving the collapsibility in the case of
constant curvature manifolds. (e) Several experimental
results demonstrating the efficacy of the ManifoldNet for
applications in computer vision and medical imaging.
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