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Species distribution models (SDMs) are increasingly used in

ecology, biogeography, and wildlife management to learn about

the species–habitat relationships and abundance across space

and time. Distance sampling (DS) and capture-recapture (CR)

are two widely collected data types to learn about species–

habitat relationships and abundance; still, they are seldomly

used in SDMs due to the lack of spatial coverage. However, data

fusion of the two data sources can increase spatial coverage,

which can reduce parameter uncertainty and make predictions

more accurate, and therefore, can be used with SDM. We de-

veloped a model-based approach for data fusion of DS and CR

data. Our modeling approach accounts for two common miss-

ing data issues: 1) individuals that are missing not at random

(MNAR) and 2) partially missing location information. Using a

simulation experiment, we evaluated the performance of our

modeling approach and compared it to existing approaches that

use ad-hoc methods to account for missing data issues. Our

results show that our approach provides unbiased parameter

estimates with increased efficiency compared to the existing

approaches. Finally, we demonstrated our approach using data

collected for Grasshopper Sparrows (Ammodramus savannarum)

in north-eastern Kansas, USA.
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. Introduction

Species distribution models (SDMs) are widely used in ecology, biogeography, and wildlife man-
gement to learn about species–habitat relationships and estimate abundance across geographic
pace and time. Inference and predictions from SDMs are increasingly used to inform conservation
anagement (Araujo and Guisan, 2006; Kéry and Royle, 2015; Hefley and Hooten, 2016; Koshkina

et al., 2017). For example, conflicts between sustaining human activities and preserving biological
diversity can be understood by identifying species–habitat relationships across space and time (e.g.,
Hefley et al., 2015). The SDMs are fitted to geo-referenced observations on species such as presence-
only, presence-absence, count, distance sampling, and capture-recapture data. Spatially referenced
covariates such as elevation, rainfall, soil properties, and vegetation characteristics are used in SDMs
to enable statistical inference on species–habitat relationships and obtain spatially heterogeneous
abundance estimates (Kéry and Royle, 2015).

Distance sampling (DS) and capture-recapture (CR) are two classic types of planned surveys that
collect geo-referenced observations on species. The DS data are collected by recording distances
to an individual in the study area from a point or transect (Burnham et al., 1980; Burnham and
Anderson, 1984; Buckland et al., 2001). The CR data are collected by capturing an individual in the
study area, which involves physically capturing the individual using a trap (e.g., mist nets) or taking
a picture (e.g., camera traps; Otis et al., 1978; Seber, 1982; Pollock et al., 1990). The CR data often
contain individual identification where DS data do not. There is a long history of collecting these
two types of high-quality planned survey data in the field of ecology and wildlife management.
However, DS and CR data are seldomly used in SDMs due to the large amount of effort and cost
required to collect data that densely covers a large study area (McShea et al., 2016). These two
data sources alone may suffer from the lack of spatial coverage, but fusion of the two data sources
can increase spatial coverage, which can reduce parameter uncertainty (see section 25.1 in Hooten
and Hefley, 2019). Therefore, it appears that a fused SDM of DS and CR can provide more precise
statistical inference and predictions regarding the species distribution and abundance than using
any of the data sources alone (see section 25.1 in Hooten and Hefley, 2019).

Construction of an adequate fused data SDM for DS and CR data relies upon accounting for
missing data issues that are unique to each source of data. Failure to properly account for missing
data issues may lead to misleading inferences and predictions from the SDMs (Little, 1992; Kéry,
2011; Dorazio, 2012; Hefley et al., 2013). For example, missing or partially missing data can produce
biased parameter estimates that may invert the inferred species–habitat relationship, which is
a critical consequence when making decisions in conservation management (Hefley et al., 2014,
2017). Missing data literature is well equipped with the statistical theory and tools to account for
missing data issues which can be applied to SDMs (Rubin, 1976; Little, 1992; Mason et al., 2012;
Little and Rubin, 2019), but such tools are rarely explicitly employed in SDM literature (Hefley et al.,
2013), and approaches to properly account for missing data issues in SDMs are lacking.

Two of the common missing data issues in DS, and CR data are individuals that are missing
not at random (MNAR) (Little and Rubin, 2019) and partially missing location information. The
MNAR individuals can occur because of two reasons: (1) limited spatial coverage of the data
due to limited accessibility, large amount of effort and cost, researcher preferences, or previous
knowledge regarding the locations of individuals, or (2) the individuals in a sampled geographic
region being unobserved due to the distance to the individual from the point, transect or the trap,
observer’s experience level, or environmental or geographical features that may obstruct detections
or captures. The partially missing location information occurs when DS and CR only record partial
information of the locations of individuals in contrast to complete location information (e.g., the
exact geographic coordinates of the locations of the individuals). Such partially recorded location
information makes spatial covariates unrecoverable because the spatial covariate values are usually
obtained from a geographic information system that requires the individuals’ exact locations. For
example, DS surveys only record the point or the transect from which the individual was detected
and the distance from the point or the transect to the individual, but do not record the exact
location of the individual. As another example, CR surveys often use tools to attract the individuals

to the trap, which results in the original, natural locations of the individuals being unrecoverable

2



N.M. Mohankumar, T.J. Hefley, K.M. Silber et al. Spatial Statistics 55 (2023) 100756

b

M
r
b
b
a
c
w
e
i
s

i
S
p
e
s

ecause only the locations of the traps are recorded (Gerber et al., 2012; Williams and Boyle, 2018).
Therefore, the spatial covariate values at the locations of the individuals that may influence the
species distribution cannot be obtained.

The missing individuals that are MNAR are implicitly addressed by many DS and CR model
developments using thinned point process models (e.g., Johnson et al., 2010; Borchers et al., 2015;
Fletcher et al., 2019; Farr et al., 2020; Sicacha-Parada et al., 2021). Many of these developments
use an inhomogeneous Poisson point process (IPPP) which can accommodate spatial inhomo-
geneity (Diggle et al., 1976; Cressie, 1993; Kéry and Royle, 2015) and enable inferences on the
species–habitat relationship and abundance (Warton and Shepherd, 2010; Renner et al., 2015;
Hefley and Hooten, 2016). However, the crux of applying existing IPPP-based approaches for DS and
CR data is that they may not explicitly address the missing data issues that are unique to DS and CR
data. For example, the approaches may require complete location information of the individuals;
however, DS and CR data often contain only partial location information. In practice, researchers
use ad-hoc methods to circumvent the limitation of partially recorded locations of individuals and
fit the models. For example, Fletcher et al. (2019) transformed the DS data to presence-absence
data at sampling sites using change of support and fitted the model to the transformed data. For
another example, Farr et al. (2020) treated DS data as count data by defining sampling sites and
counting the number of detected individuals in each site and fitted the model to count data. Both
of these approaches do not require complete location information, because the models are fitted to
spatially aggregated DS data, which are presence-absence or count data at sampling sites. As another
example, Borchers et al. (2015) proposed an IPPP-based unified model for DS and CR data, where
they used a homogeneous point process in all of their applications, but not an inhomogeneous
point process. The homogeneous case contains a constant intensity function, therefore, not having
complete location information of the individuals is not an issue. The (Borchers et al., 2015) model,
however, is not designed to map a species distribution because of the constant intensity function.
To model the species distribution, the model needs to be implemented using an inhomogeneous
point process. However, the intensity function in an inhomogeneous point process typically depends
on spatially referenced covariates, where the complete location information of the individuals is
critical. Therefore, it is critical to account for the partially recorded location information of the
individuals in the data. Hefley et al. (2020) proposed a model-based approach to account for the
partially recorded location information in DS data and fit an IPPP-based model to the data. However,
their model is merely constructed for DS data, and a subsequent model that accounts for the partial
location information in CR data is lacking.

In addition to properly accounting for missing data issues, constructing a fused data SDM
requires adequate model representations for DS and CR data that facilitate data fusion. A fused
data SDM utilizes information from multiple data sources to reduce the uncertainty associated with
limitations in each data source, hence improving the model predictions and inferences (Dorazio,
2014; Fithian et al., 2015; Koshkina et al., 2017; Fletcher et al., 2019; Hooten and Hefley, 2019;
iller et al., 2019; Farr et al., 2020; Isaac et al., 2020; Martino et al., 2021). However, the model

epresentations for DS and CR data presented in existing IPPP-based modeling approaches cannot
e adequately used for data fusion of DS and CR data. For example, the unified model proposed
y Borchers et al. (2015) represented the model for DS data based on the locations of the individuals
nd represented the model for CR data based on home range centers which are hypothetical
entroids for individuals’ activity. The locations of home range centers in CR data are irreconcilable
ith the locations of the individuals in DS data. For example, the model fitted for CR data would
stimate the intensity of home range centers, and the model fitted for DS data would estimate the
ntensity of the locations of the individuals. Therefore, building a fused data SDM where both data
ources share parameters in the underlying IPPP targeting the same inference is not achievable.
The existing IPPP-based modeling approaches for data fusion largely use spatial aggregation of

ndividual-level data, so that explicit model representations for each data source are not required.
patial aggregation involves partitioning the study area into nonoverlapping partitions (i.e., sam-
ling sites) and transforming the locations of the individuals to counts or presence-absence data in
ach of the partitions (e.g., Fletcher et al., 2019; Farr et al., 2020). However, a significant drawback of
patial aggregation is determining the spatial resolution for the partitions. The data collected from
3
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he surveys should be a representative sample of these partitions, and if the spatial resolution of
he partitions does not adequately represent the sampled regions from the surveys, the model may
ield biased parameter estimates.
We propose a hierarchical modeling framework that provides adequate model representations

or DS and CR data that share parameters in the underlying IPPP targeting equivalent inference
egarding species–habitat relationship and abundance; therefore facilitating data fusion of the two
ata sources. We use theory and tools from the missing data literature to build models for the
issing data mechanism and account for the missing data issues that are unique to each data
ource. Our modeling framework can be viewed as a unified framework that can be extended
o many other data sources (e.g., presence-only data) and a fusion of them to address critical
ssues with missing data. In our work, we propose two fused data SDMs for DS and CR data, one
DM incorporating the recorded distances from DS data and the other SDM without incorporating
he recorded distances. We compare the two SDMs and investigate the efficiency gain of the
stimated parameters by incorporating recorded distances, which provide additional information
egarding the observed locations of the individuals. We conduct a simulation experiment to evaluate
he performance of our two SDMs compared to existing IPPP-based approaches that use spatial
ggregation. We assess the accuracy and the efficiency of the estimated parameters for the species–
abitat relationship and obtain an estimate for the expected abundance in the study area. Finally,
e demonstrate the approaches using data collected for Grasshopper Sparrows (Ammodramus
avannarum) in north-eastern Kansas.

. Materials and methods

.1. Hierarchical modeling framework

Our proposed fused data SDM relies on a hierarchical modeling framework that is based on an
PPP. The models for the observed DS and CR data are conditioned on a common underlying IPPP
hat represents the underlying point pattern of individuals in the study area.

.1.1. The underlying IPPP
The underlying IPPP describes the random number and the locations of individuals across

he study area based on a continuous inhomogeneous intensity function, a function of spatially
eferenced covariates (e.g., elevation, temperature, soil attributes, vegetation, etc.). The intensity
escribes the expected number of individuals per infinitely small unit area and is usually defined
s λ(s) = ex(s)

′β , a non-negative integrable function, where, s represents a vector containing
coordinates of a location within the study area S , x(s) ≡ (1, x1(s), x2(s), . . . , xq(s))′, and β ≡

(β0, β1, β2, . . . , βq)′. The x1(s), x2(s), . . . , xq(s) represent the spatial covariates at the location s,
where x1(s), x2(s), . . . , xq(s) is observed for all s ∈ S. The β0 represents the intercept parameter, and
β1, β2, . . . , βq represent the regression coefficients associated with the species–habitat relationship.
Using the above notation, the probability distribution function (PDF) for the IPPP can be written
as Cressie (1993)

[u1,u2, . . . ,uN ,N|λ(s)] =
e−

∫
S λ(s)ds(

∫
S λ(s)ds)N

N!
× N!

N∏
i=1

λ(ui)∫
S λ(s)ds

, (1)

here u1,u2, . . . ,uN are the locations of all N individuals (missing and observed) in the study area
(i.e., ui ∈ S). A property of IPPP is that an estimate of the expected abundance in any sub-region
in the study area can be represented by λ̄ =

∫
B ex(s)

′βds.

.1.2. Accounting for missing individuals that are MNAR
The missing individuals that are MNAR can be accounted for by identifying and modeling the

issing data mechanism. To model the missing data mechanism, we can label the random locations
f all individuals in the study area as missing or observed (Gelfand and Schliep, 2018). We can define

′
vector m = (m(u1),m(u2), . . . ,m(uN )) , where m(ui) labels the ith individual as missing (i.e., zero)

4
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r observed (i.e., one). Employing the missing data mechanism, we can write the distribution of
(ui) as a zero-inflated Bernoulli distribution conditioned on ui.

[m(ui)|ui, q(s), r(s)] =

{
q(ui)m(ui)(1 − q(ui))1−m(ui) , if r(ui) = 1

0 , if r(ui) = 0 , (2)

here, q(ui) denote the probability of observing the individual in a sampled region, r(ui) = 1
enotes that the uith location is sampled within the study area, and r(ui) = 0 denotes that the
ith location is not sampled within the study area. The sampled region refers to a subset of the
tudy area from which the data is collected. It is assumed that any individuals present in unsampled
egions cannot be observed. The functional form of q(s) and r(s) at a location s can be defined based
n the missing data mechanism.
By using the distribution of m(ui), we can derive the PDF for the location of the ith individual

onditioned on the label m(ui) as

[ui|m(ui), λ(s), q(s), r(s)] =

{
q(ui)m(ui)(1−q(ui))1−m(ui)λ(ui)∫
S q(s)m(s)(1−q(s))1−m(s)λ(s)ds , if r(ui) = 1

0 , if r(ui) = 0
. (3)

any recent model-based approaches based on IPPP use the so-called thinned IPPP (Diggle et al.,
976; Chakraborty et al., 2011; Cressie, 1993; Kéry and Royle, 2015), an implicit representation of

the data to account for missing individuals as opposed to the complete distributional representation
in (3).

2.1.3. Accounting for partially missing location information
The distributional representation in (3) accounts for the missing individuals that are MNAR;

however, it does not account for the partially missing location information of observed individuals.
The model requires complete location information of the individuals. We propose two models to
account for the partially observed location information in data; (1) a model without incorporating
the recorded distances from DS, and (2) a model incorporating the recorded distances from DS.

The DS and CR surveys each contain a sampled region in the study area which is a region
surrounding the points, transects, or traps where the probability of detection or capture is greater
than zero. We denote this region as the detection/capture region. In our first proposed model, we
assume that the observed location of an individual is uniformly distributed in the detection/capture
region that surrounds the point, transect, or trap the individual was detected or captured. Under
this assumption, we can write the PDF of the observed location of the ith individual conditioned on
he actual location of the individual as

[yi|ui] =

{
|Aui |

−1I(yi ∈ Aui ) , if m(ui) = 1
0 , if m(ui) = 0 , (4)

where, yi denote the observed location of the ith individual, ui is the actual location of the ith
individual, Aui is the detection/capture region surrounding the point, transect or the trap where
the individual was detected or captured, and |Aui | is the area of the detection/capture region. Here,
yi and ui are different because there is uncertainty associated with the observed locations of the
individuals, and DS and CR data do not have complete location information of the individuals.

We then propose a second model by incorporating the recorded distances from DS data. We
expect that adding additional information regarding the observed locations of the individuals may
increase the efficiency of the model parameter estimates. Hefley et al. (2020) account for the partial
location information in DS data by incorporating the recorded distances. Based on their approach,
and under the assumption that the distances are recorded perfectly, we can assume that the
observed location of an individual from a transect is uniformly distributed along the parallel lines
to the transect (Lui ) with a perpendicular distance that is equal to the recorded distance di. Under
this assumption, we can write the PDF of the observed location of the ith individual conditioned on
the actual location of the individual as

[yi|ui] =

{
|Lui |

−1I(yi ∈ Lui ) , if m(ui) = 1
0 , if m(ui) = 0 . (5)

For a point, Lui is the perimeter of the circle, where the radius is equal to the recorded distance,

di. The |Lui | is the length of the lines or the length of the perimeter of the circle.

5
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.2. Model implementation

The distributions in (4) and (5) represent the observed location of the ith individual conditioned
on the actual location of the observed individual, ui; however, the actual location of the observed
individual is of little interest in our study. Therefore, we can remove ui from the model by
integrating the joint PDF of yi and ui. For all s ∈ S , the resulting PDFs representing the observed
location of the ith individual are

[yi|m(ui), λ(s), q(s), r(s)] =

{ ∫
Aui

|Aui |
−1λ(ui)q(ui)dui∫

S λ(s)q(s)ds , if r(ui) = 1 & m(ui) = 1
0 , otherwise

, (6)

[yi|m(ui), λ(s), q(s), r(s)] =

{ ∫
Lui

|Lui |
−1λ(ui)q(ui)dui∫

S λ(s)q(s)ds , if r(ui) = 1 & m(ui) = 1
0 , otherwise

. (7)

Moreover, our objectives in the study do not focus on estimating the locations of the unobserved
individuals. Therefore, we can retain the PDF for the observed individual locations from (6) and (7)
y setting m(ui) = 1. The resulting PDF is a simple marginal distribution that can be fitted using
likelihood-based or Bayesian approach. If practitioners are interested in estimating the locations
f unobserved individuals, they can fit the model using a Bayesian hierarchical modeling approach
rom (3–5). Details associated with deriving our models are provided in the Supplementary Material.

.3. Fused data SDM

The distributional representations in (6) and (7) can be used to construct a fused data SDM for
S and CR data. Our proposed distributional representations represent both DS and CR data based
n observed locations of the individuals; therefore, the models share parameters in the underlying
PPP that target the same inference. We assume that the observed locations in the DS and CR data
re independent across points, transects, and traps within and between the surveys. Representing
S and CR data using our proposed distributional representations and jointly modeling them leads
o the following two fused data SDMs. The distribution in (8) does not incorporate the recorded
istances from DS data, and the distribution in (9) incorporates the recorded distances.

[y1, . . . , ynds , ynds+1, . . . , ynds+ncr , nds, ncr |λ(s), qds(s), rds(s), qcr (s), rcr (s)] =

e−
∫
S λ(s)qds(s)I(rds(s)=1)ds−

∫
S λ(s)qcr (s)I(rcr (s)=1)ds

×

nds∏
i=1

∫
Aui

|Aui |
−1λ(ui)qds(ui)I(rds(ui) = 1)dui×

nds+ncr∏
i=nds+1

∫
Aui

|Aui |
−1λ(ui)qcr (ui)I(rcr (ui) = 1)dui,

(8)

[y1, . . . , ynds , ynds+1, . . . , ynds+ncr , nds, ncr |λ(s), qds(s), rds(s), qcr (s), rcr (s)] =

e−
∫
S λ(s)qds(s)I(rds(s)=1)ds−

∫
S λ(s)qcr (s)I(rcr (s)=1)ds

×

nds∏
i=1

∫
Lui

|Lui |
−1λ(ui)qds(ui)I(rds(ui) = 1)dui×

nds+ncr∏
i=nds+1

∫
Aui

|Aui |
−1λ(ui)qcr (ui)I(rcr (ui) = 1)dui,

(9)

where, nds and ncr are the number of detected and captured individuals from DS and CR respectively,
qds(·) is the probability of detection from a point or transect which depends on the distance from
the point or transect to the individual, qcr (·) is the probability of capture from a trap, rds(s) and rcr (s)

are indicator functions defining the detection/capture regions of the DS and CR data respectively,

6
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nd n = nds + ncr is the total number of observed individuals from surveys. In our study, we
efine the probability of detection for DS data by a half-normal function, that is qds(ui) = e−d2i /φ ,
here, di is the distance between the point or transect and the ith detected individual, and φ is a
cale parameter. To ensure the identifiability of the parameter estimates, the detection function is
onstrained on probability of detection being equal to one at distance of zero. The indicator function
runcating the detection region from a point or transect is defined as, rds(ui) = I(ui ∈ Ads), where
ds is the detection region surrounding a point or transect where probability of detection is greater
han zero. We define the probability of capture from a trap as qcr (ui) = θ . The indicator function
runcating the capture region of a trap is defined as rcr (ui) = I(ui ∈ Acr ), where Acr is the capture
region surrounding a trap where probability of capture is greater than zero.

In principle, including additional information regarding the observed individual locations ought
to increase the efficiency of parameter estimates from a model. Therefore, we expect the fused data
SDM in (9) to provide more efficient parameter estimates than the fused data SDM (8) since the SDM
in (9) incorporates the recorded distances from DS data. We investigate this conjecture in both the
simulation experiment and the data example that follows.

3. Simulation experiment

We conducted a simulation experiment to evaluate the performance of our two proposed fused
data SDMs and compare them to standard IPPP-based approaches that use spatial aggregation. We
assessed the performance of the models using the five scenarios listed below. Note that all the
models in the scenarios below account for MNAR individuals and we assess the performances of
the models in accounting for the partial location information.

1. The model from (3) is fitted to DS and CR data containing complete location information of
the individuals.

2. The model proposed by Farr et al. (2020) for spatially aggregated data is fitted to DS and CR
data containing partial location information of the individuals.

3. The model from (3) transformed for spatially aggregated data using change of support is fitted
to DS and CR data containing partial location information of the individuals.

4. Our proposed fused data SDM from (8) that do not incorporate recorded distances is fitted
to DS and CR data containing partial location information of the individuals.

5. Our proposed fused data SDM from (9) that incorporates recorded distances is fitted to DS
and CR data containing partial location information of the individuals.

In our simulation experiment, we simulated a single spatial covariate, x(s) using a reduced rank
Gaussian process on a unit square study area (i.e., S = [0, 1]×[0, 1], where s ∈ S). We generated the
reduced rank Gaussian process by approximating the exponential covariance function with a low-
rank approximation, using a variance of 1 and a length scale of 0.05 as parameters. We simulated the
actual locations of the individuals using the IPPP represented by (1) with the intensity λ(s) = ex(s)

′β .
We set the parameter values as β0 = 9, β1 = 1, θ = 0.2, and φ = 0.025. We placed 15 points
and 65 traps in the study area to obtain DS and CR data, respectively (Fig. 1; panel a). We set
non-overlapping detection/capture regions to ensure the independence of the observed data across
surveys and within surveys (Fig. 1; panel c). We defined the detection region surrounding each point
by assuming that the individual has to be within a maximum distance of 0.04 from the point to be
detected. We defined the capture region surrounding each trap by defining that the individual has
to be within a maximum distance of 0.02 from the trap to be attracted to the trap and get captured.
We obtained spatially aggregated data required to fit the models in scenario 2 and scenario 3 by
dividing the study area into 100 non-overlapping partitions and counting the number of observed
individuals in each partition (Fig. 1; panel b). If a partition does not consist of a survey point or a
trap, we defined the partition as an unsampled partition.

We fitted the models described in scenarios 1–5 to 1000 simulated data sets. We used the
complete location information of the individuals in scenario 1, and the partial location information
of the individuals in scenarios 2–5. Scenario 1 acts as the benchmark scenario since the data with
7
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Fig. 1. Panel (a) displays the points (red +) and traps (blue +) placed in the study area to collect DS and CR data. Panel
(b) shows the partitioning of the study area to obtain spatially aggregated DS and CR data (for scenario 2 and scenario
3). Spatially aggregated data are obtained by dividing the study area into 100 non-overlapping partitions and choosing
the partitions that include a point or a trap. Panel (c) displays the detection and capture regions of DS and CR data (for
scenario 4). Panel (d) displays the circle’s perimeter surrounding the points, where the radius is equal to each individual’s
recorded distance (for scenario 5). Panel (d) also displays the capture regions of the traps. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

complete location information matches the process described by the fitted model. We evaluated
the performance of the models in scenarios 2–5 for data containing partial location information
and compared them to the benchmark scenario 1. For each simulated data set, we obtained the
parameter estimates for the intercept (β0), the relationship to the spatial covariate (β1), and the
xpected abundance (λ̄). We assessed the reliability of the parameter estimates by calculating
he coverage probabilities of the 95% Wald-type confidence intervals (CIs). We included side-by-
ide box plots to visually compare the empirical distributions of the parameter estimates. We
btained the relative efficiency of the parameter estimates under scenarios 2–5 with reference to
he efficiency of parameter estimates obtained under benchmark scenario. The relative efficiency
s calculated by dividing the standard deviation of the respective empirical distribution of the
stimates by the standard deviation of the empirical distribution of the estimates under scenario 1.
The integrals in the likelihood functions and the integrated intensity function are approximated

sing numerical quadrature. We used the Nelder–Mead algorithm in R to numerically maximize the
ikelihoods and obtain the parameter estimates β̂0 and β̂1. The estimate for the expected abundance
s obtained using ˆ̄λ =

∫
S ex(s)

′β̂ds. We inverted the Hessian matrix to approximate the standard
rrors of the parameter estimates β̂0 and β̂1 and then calculated the 95% Wald-type CIs for β̂0 and
ˆ . We approximated the standard error of the parameter estimate ˆ̄λ using the delta method under
1
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irst-order Taylor expansion and then calculated 95% Wald-type CI for ˆ̄λ. We provide the annotated
R code associated with the simulation experiment in the Simulation.R file in the supplementary
material.

4. Grasshopper Sparrows at Konza Prairie Biological Station, Kansas

We illustrated our proposed models and the existing IPPP-based approaches using data on
Grasshopper Sparrows (Ammodramus savannarum) from Konza Prairie Biological Station (KPBS). The
KPBS is a long-term ecological research site in northeastern Kansas, comprised of native tallgrass
prairie (Knapp et al., 1998; Williams and Boyle, 2018, 2019). Grasshopper Sparrows are a migratory
grassland songbird species that winter in the southern United States and northern Mexico and breed
throughout grasslands in the United States and southern Canada. However, the loss of prairie habitat
has contributed to a long-term population decline in Grasshopper Sparrows (Herse et al., 2018).
Therefore, identifying suitable habitats and investigating the abundance of Grasshopper Sparrow
populations is essential for directing conservation efforts.

We used observations from the 2019 breeding season for our analysis. The data consist of 72
observations from 53 transects and 160 observations from 137 mist-net locations (Fig. 2; panel
a). The transects were surveyed during the month of June as part of the long-term monitoring
efforts of birds at the Konza Prairie. Within 24 experimentally-managed pastures, one to four 300 m
long transects bisect the topographic gradients within the sampling site. A single observer slowly
walks the transect, recording the individuals seen or heard on either side of the transect, with the
distance to each individual (Boyle, 2019). The mist-nets were used to capture individuals during the
entire breeding season from shortly after the adult male birds arrive in April until nests complete in
August. The mist net locations were selected to maximize chances of capturing the adult male birds
within their territories, and the birds were attracted to nets using a small speaker broadcasting a
territorial song (Williams and Boyle, 2018).

Male adult birds sing territorial songs from conspicuous perches in suitable habitats and actively
defend 0.5 ha territories from other male birds (Winnicki et al., 2020). Female birds select and build
nests within the territories of male birds. Their behavior is very secretive, making them difficult
to detect. Thus, both detections and captures consist of male adult birds only. Upon arrival, the
male adult birds establish breeding territories at the site. These individual male adult birds may
select territories based on many environmental cues such as vegetation, topography, location of
conspecifics, and land management (Andrews et al., 2015; Shaffer et al., 2021). To illustrate our
pproach, we use elevation as the spatial covariate.
We illustrate our approach for DS and CR data using the detections from transects and captures

rom mist-nets. We assume that the individual has to be within a maximum distance of 150 m from
he transect to be detected, which is realistic given the topography, song attenuation, and realized
istance values (Fig. 2; panel c). For captures from mist-nets, we assume that the individual has
o be within a maximum distance of 25 m to elicit a response and be attracted to the mist-net, a
istance reasonable given the speaker volume and observed behavior of the species (Fig. 2; panel c).
urthermore, we assume that the observations from the transects and the mist-nets are independent
ithin and between the surveys.
As in scenarios 2–5 in the simulation experiment, we fit the four models to the observed data:

1) the model proposed by Farr et al. (2020) for spatially aggregated data, (2) the model from (3)
ransformed for spatially aggregated data using change of support, (3) our proposed fused data SDM
rom (8) that do not incorporate recorded distances, and (4) our proposed fused data SDM from
9) that incorporates recorded distances. We obtain the spatially aggregated data by dividing the
tudy area into non-overlapping partitions and counting observed individuals in each partition. The
artitions are selected in a way that ensures they closely correspond to the sampled regions from
ransects and traps. If a partition does not consist of a transect or a mist net, we define the partition
s an unsampled partition which led to 66 non-overlapping sampled partitions (Fig. 2; panel b).
Finally, we fit the models to the data and compare the maximum likelihood estimates and the

orresponding 95%Wald-type CIs for β0, β1, and λ̄. We provide the annotated R code associated with
he data analysis in the Grasshopper_sparrows_data_example.R in the Supplementary Material.
9
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Fig. 2. Panel (a) displays the transects (red –) and mist nets (blue +) that are used to collect data on Grasshopper
parrows at Konza Prairie Biological Station (KPBS). The surveys are conducted at watershed-level (gray – in panel (a)).
anel (b) shows the partitioning of the study area (66 partitions) to obtain spatially aggregated data (dashed line) to fit the
wo models; the model proposed by Farr et al. (2020) for spatially aggregated data, and the model from (3) transformed
or spatially aggregated data using change of support. Panel (c) displays the detection and capture regions of transects
nd traps (dashed line) used for our proposed fused data SDM from (8) that do not incorporate recorded distances. Panel
d) displays the parallel lines to the transect with a perpendicular distance equal to each individual’s recorded distance,
hich is used for our proposed fused data SDM from (9) that incorporates recorded distances. Panel (d) also displays the
apture regions of the traps (dashed line). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

. Results

.1. Simulation experiment

As expected, the benchmark scenario (i.e., scenario 1) yielded an unbiased estimate for β0, with a
overage probability of the 95% CIs of 0.942. When the data contained partial location information,
cenario 2 and scenario 3 yielded biased estimates for β0, whereas scenario 4 and scenario 5 yielded
nbiased estimates (see Fig. 3 for graphical comparison). The coverage probabilities of the 95% CIs
or β0 under scenarios 2–5 were 0.190, 0.180, 0.761, and 0.925, respectively. The relative efficiencies
f estimates for β0 obtained from scenarios 2–5 were 23.204, 15.949, 13.907, and 1.007, respectively.
e noticed that the efficiency of the estimate for β0 under scenario 5, almost reaches the efficiency
btained under the benchmark scenario 1 (see Table 1).
Similar to the parameter estimate for β0, scenario 1 yielded an unbiased estimate for β1 with
coverage probability of the 95% CIs, 0.948. However, when the data contained partial location
10
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Table 1
Estimated coverage probability (CP) for the 95% confidence interval (CI) and the relative efficiency (RE) for the parameters
β0 , β1 , and expected abundance (λ̄) obtained under scenario 1, scenario 2 , scenario 3, scenario 4, and scenario 5 in the
simulation experiment. The parameter estimates are obtained by fitting the models to 1000 simulated data sets.

Scenarios β0 β1 λ̄

CP RE CP RE CP RE

Scenario 1 0.942 – 0.948 – 0.944 –
Scenario 2 0.190 23.204 0.749 1.891 0.343 265.921
Scenario 3 0.180 15.949 0.838 1.394 0.430 285.819
Scenario 4 0.761 13.907 0.942 1.089 0.783 141.896
Scenario 5 0.925 1.007 0.942 1.041 0.944 1.038

Table 2
Parameter estimates and the width of the 95% CIs for the intercept (β0), the relationship between the abundance and
levation (β1), and the log of the expected abundance (λ̄) for Grasshopper Sparrows at Konza Prairie Biological Station,
ansas. The parameter estimates are obtained from the model proposed by Farr et al. (2020) for spatially aggregated
ata (Spatially aggregated: FARR), the model from (3) transformed for spatially aggregated data using change of support
Spatially aggregated: from (3)), our proposed fused data SDM from (8) that do not incorporate recorded distances (Fused
DM: from (8)), and our proposed fused data SDM from (9) that incorporates recorded distances (Fused SDM: from (9)).

Models β0 β1 log(λ̄)

β̂0 Width of 95% CI β̂1 Width of 95% CI log( ˆ̄λ) Width of 95% CI

Spatially aggregated: FARR −4.767 6.034 0.022 0.015 12.766 6.033
Spatially aggregated: from (3) −4.751 5.616 0.012 0.015 12.669 5.619
Fused SDM: from (8) −11.669 0.486 0.011 0.015 5.742 0.463
Fused SDM: from (9) −11.663 0.484 0.010 0.015 5.743 0.463

information, scenario 2 and scenario 3 yielded biased estimates for β1, whereas scenario 4 and
cenario 5 yielded unbiased estimates for β1 (see Fig. 3 for graphical comparison). The coverage
robabilities of the 95% CIs for β1 under scenarios 2–5 were 0.749, 0.838, 0.942 and 0.942,
espectively. The relative efficiencies of estimates for β1 obtained from scenarios 2–5 were 1.891,
.394, 1.089, and 1.041, respectively (see Table 1).
Scenario 1 yielded an unbiased estimate for λ̄ with a coverage probability of the 95% CIs, 0.944.
hen the data contained partial location information, scenario 4 and scenario 5 yielded unbiased

stimates for λ̄. The coverage probabilities of the 95% CIs for λ̄ under scenarios 2–5 were 0.343,
.430, 0.783, and 0.944, respectively. The relative efficiencies of the estimates for λ̄ obtained from
cenarios 2–5 were 265.921, 285.819, 141.896, and 1.038, respectively. We noticed that scenario 5
rovides the most efficient parameter estimate for λ̄, which nearly reaches the efficiency obtained
nder benchmark scenario 1 (see Table 1).

.2. Grasshopper Sparrows at Konza Prairie Biological Station, Kansas

The estimates obtained for the intercept parameter (β0) under our two proposed models were
imilar, with narrow 95% CIs. The models that use spatially aggregated data yielded similar estimates
or β0 but with approximately 12 times wider CIs than our proposed models (see Fig. 4; panel a, and
5% CIs in Table 2). The estimates obtained for β1 under all four models yielded similar inference
egarding the relationship between species abundance and elevation; however, the estimate for
1 under the model proposed by Farr et al. (2020) was twice as large as the estimates obtained
rom the other models (see Fig. 4; panel b, and 95% CIs in Table 2). The crucial outcome from our
itted models is the estimates obtained for λ̄. The models that use spatially aggregated data yielded
nrealistic estimates for λ̄ with an approximate 163000 times wider 95% CIs than our proposed
odels (see Fig. 4; panel c, and 95% CIs in Table 2). Altogether, the parameter estimates β̂0, β̂1, and

ˆ̄ from our proposed two models were similar and yielded narrower 95% CIs.
11
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Fig. 3. The box plots display the estimates of parameters β0 (panel a), β1 (panel b), and log(λ̄) (panel c) obtained under
scenarios 1–5 for 1000 simulated data sets. The true values of the parameters (β0 = 9, β1 =1, log(λ̄) = 9.5) are shown
by the blue dash line (–). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. Panel (a), panel (b), and panel (c) display the parameter estimates and the 95% CIs for the intercept (β0), the
elationship between the abundance and elevation (β1), and the expected abundance (λ̄) for Grasshopper Sparrows
t Konza Prairie Biological Station, Kansas. The parameter estimates are obtained from the model proposed by Farr
t al. (2020) for spatially aggregated data (Spatially aggregated: FARR), the model from (3) transformed for spatially

aggregated data using change of support (Spatially aggregated: from (3)), our proposed fused data SDM from (8) that do
not incorporate recorded distances (Fused SDM: from (8)), and our proposed fused data SDM from (9) that incorporates
recorded distances (Fused SDM: from (9)). The parameter estimates are shown by the blue square ( ), and the 95% CIs
re shown by whisker ends. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

. Discussion

.1. IPPP generalization for DS and CR data that enables data fusion

A critical aspect of data fusion of multiple data sources is providing model representations
or the data types that target the same inference (i.e., have equivalent parameters). The existing
oint process models for DS data use individual location information to infer about species–habitat
elationship and abundance (e.g., Johnson et al., 2010). In contrast, the existing point process models
or CR explicitly use home range centers (e.g., Borchers et al., 2015). Modeling the distribution of
ome ranges of individuals using a particular area as its home range is different from modeling the
ndividual locations. Therefore, the shared parameters in the underlying point process for the two
ata sources do not target the same inference. This incompatibility in the underlying process model
ay explain the lack of approaches for data fusion of DS and CR data.
Our proposed approach provides a generalization of Borchers et al. (2015)’s IPPP-based model

with model representations for both DS and CR data based on the locations of the individuals.
The focus of our study is on large-scale patterns of species–habitat relationships at the population
level and the expected abundance in the study area, and not on individual movement patterns and
habitat use within a home range. Therefore, the movement of individuals within a home range is
less relevant and can be safely ignored. Our model representations for DS and CR data based on
the locations of the individuals allowed the models to share parameters in the underlying process
that target the same inference. Therefore, our approach facilitated data fusion enabling the use of
these two types of high-quality planned survey data to obtain useful statistical inference regarding
the species–habitat relationship, more accurate estimates for the expected abundance, and more
accurate spatial maps for species distributions.

6.2. Improvement of inference regarding species–habitat relationship and estimate for the expected
abundance by properly accounting for missing data issues

Efficiently acquiring reliable parameter estimates for both β0 and β1 is of utmost importance.
However, many recent studies only attempt to improve the estimate of β1, focusing on species–
habitat relationships or relative abundance which is a measure of expected abundance relative to
other species within a community. These approaches do not improve estimates of β . In contrast
0
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t
p

o relative abundance, expected abundance plays a vital role in studying the dynamics of species
opulations, however, estimating the expected abundance depends on both β0 and β1. It is also

important to note that a small deviation of β̂0 and β̂1 from the true parameter value would
significantly affect the estimate for the expected abundance due to the exponential function in the
intensity function (i.e., λ̂(s) = ex(s)

′β̂).
Our study shows that obtaining reliable, more efficient parameter estimates for β0 and β1

crucially relies upon properly accounting for the missing data issues. Our modeling framework
explicitly acknowledges and accounts for the missing data issues unique to DS and CR data using
theory and tools from missing data literature. Our results show that when the data contain partial
location information, ad-hoc approaches such as spatial aggregation result in biased parameter
estimates with poor efficiency, whereas, our proposed models provide reliable, more efficient pa-
rameter estimates than existing approaches that use spatial aggregation (see Table 1). Furthermore,
our simulation experiment led to an important finding: the inclusion of additional information
regarding individual locations into the model, such as recorded distances, led to significant efficiency
gain in the parameter estimates. In fact, the efficiency surprisingly reaches the efficiency of the
parameter estimates obtained under the benchmark scenario which contains complete location
information.

In this paper, we present the simulation experiment for the parameter specifications β0 =

9, β1 = 1, θ = 0.2, φ = 0.025 and evaluate the performance of our modeling approach. However,
we conducted the simulation experiment using other parameter choices as well and irrespective of
the choice of the parameter values, our proposed models provided reliable, more efficient parameter
estimates than existing approaches that use spatial aggregation.

6.3. A spatio-temporal fused data SDM

Our simulation experiment utilized non-overlapping detection/capture regions to ensure the
independence of observations both within and across surveys. The independence assumption is
often valid in real-world SDM applications for DS and CR data, as these typically involve DS and
CR data collected over large, sparsely sampled spatial extents. A fused SDM involves combining
such DS data and CR data from large different study areas that are often located hundreds of miles
apart satisfying the independence assumption both within and across surveys. In our Grasshopper
Sparrows data example involving KPBS ecological research site in northeastern Kansas, we assumed
that the observations are independent across and within the surveys. However, it is worth noting
that KPBS is likely a special case as one of the most intensively studied areas on earth with a
relatively small spatial extent, and thus the observations may contain some lack of independence.
We can strengthen the independence assumption by extending our model to a spatio–temporal
model. A spatio–temporal model enables the modeling of species abundance patterns across both
time and space. By using a continuous-space discrete-time model with short time periods, we
can strengthen the independence assumption. The dependence of observations can be further
addressed by adding a spatio–temporal random effect to the spatio–temporal model accounting
for the spatio–temporal autocorrelation. Moreover, in cases where there are spatial and temporal
patterns that are not explained by the covariates, adding a spatio–temporal random effect to
the intensity function can improve the accuracy of predictions and inferences from the model.
Numerous methods have been developed in the literature on SDM to model the spatial and spatio–
temporal autocorrelation (e.g., Chakraborty et al., 2011; Renner et al., 2015; Mohankumar and
Hefley, 2021). These methods can be leveraged to incorporate a spatial or a spatio–temporal random
effect and expand our proposed modeling framework.

6.4. Detection and capture functions

In our study, we defined the probability of detection by a half-normal function of the distance
between the point or the transect and the location of the individual. We defined the probability
of capture as a constant parameter. However, the probability of detection can be defined by

other functions such as uniform, hazard-rate, negative exponential, etc. Similarly, the probability
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f capture can be defined as a function of covariates such as the observer’s experience level or
nvironmental or geographical features. Such extensions of the model enable identifying the factors
hat influence the probability of detection or capture.

It is possible that the parameters in the detection function or capture function are confounded
ith the parameters in the intensity function. For example, in a model in which the underlying

ntensity and the probability of capture are both functions of the same spatial covariate, the under-
ying point process is confounded with the capture process. For another example, if the underlying
ntensity function is a function of the distance from the transect, the underlying point process is
onfounded with the detection process. Accounting for such confounding of the underlying intensity
nd the detection/capture probability is an area that needs further research. In most situations, we
an avoid such confounding during the design of the surveys.

.5. Inclusion of the spatial and non-spatial covariates

The intensity function, probability of detection, and probability of capture can depend on many
ovariates that are spatial or non-spatial. For instance, in our Grasshopper sparrow data example,
he practitioners may want to include ‘‘effort’’ to define the probability of detection, which is a
on-spatial covariate, or they may want to include "vegetation’’, which is a spatial covariate. A
on-spatial covariate that is measured during the survey can be easily incorporated into our model.
owever, for the spatial covariate, our approach requires the spatial covariate values for the entire
tudy region. In most cases, they can be obtained from a geographical information system. However,
btaining the spatial covariate values in the entire study region can be trivial in some situations.
n such situations, we can employ an auxiliary model (e.g., kriging) to utilize the available data to
redict the spatial covariate values for the entire region and use the predicted values as the input
alues for the spatial covariate in our models.
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