
Algorithmica (2023) 85:2395–2426
https://doi.org/10.1007/s00453-023-01102-6

Improved Merlin–Arthur Protocols for Central Problems in
Fine-Grained Complexity

Shyan Akmal1 · Lijie Chen1,2 · Ce Jin1 ·Malvika Raj2 · Ryan Williams1

Received: 30 June 2022 / Accepted: 30 January 2023 / Published online: 17 February 2023
© The Author(s) 2023

Abstract
In aMerlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from
Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close
to 1. The running time of such a system is defined to be the length of Merlin’s proof
plus the running time of Arthur. We provide new Merlin–Arthur proof systems for
some key problems in fine-grained complexity. In several cases our proof systems
have optimal running time. Our main results include:

• Certifying that a list of n integers has no 3-SUM solution can be done in Merlin–
Arthur time Õ(n). Previously, Carmosino et al. [ITCS 2016] showed that the
problem has a nondeterministic algorithm running in Õ(n1.5) time (that is, there is
a proof system with proofs of length Õ(n1.5) and a deterministic verifier running
in Õ(n1.5) time).

• Counting the number of k-cliques with total edge weight equal to zero in an n-node
graph can be done in Merlin–Arthur time Õ(n�k/2�) (where k ≥ 3). For odd k, this
bound can be further improved for sparse graphs: for example, counting the number

Supported by NSF CCF-1909429, NSF CCF-2127597, and NSF CCF-2129139. Shyan Akmal was
partially supported by a Siebel Scholarship. Lijie Chen was also partially supported by an IBM Fellowship.
Malvika Raj was supported by a Fano Undergraduate Research and Innovation Scholarship at MIT.

B Ce Jin
cejin@mit.edu

Shyan Akmal
naysh@mit.edu

Lijie Chen
lijieche@mit.edu

Malvika Raj
malvika@berkeley.edu

Ryan Williams
rrw@mit.edu

1 MIT, Cambridge, USA

2 UC Berkeley, Berkeley, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01102-6&domain=pdf

2396 Algorithmica (2023) 85:2395–2426

of zero-weight triangles in an m-edge graph can be done in Merlin–Arthur time
Õ(m). Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund
and Kaski [PODC’16] could only count k-cliques in unweighted graphs, and had
worse running times for small k.

• Computing theAll-Pairs ShortestDistancesmatrix for ann-node graph can be done
in Merlin–Arthur time Õ(n2). Note this is optimal, as the matrix can have �(n2)
nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that
this problem has an Õ(n2.94) nondeterministic time algorithm.

• Certifying that an n-variable k-CNF is unsatisfiable can be done in Merlin–
Arthur time 2n/2−n/O(k). We also observe an algebrization barrier for the previous
2n/2 · poly(n)-time Merlin–Arthur protocol of R. Williams [CCC’16] for #SAT:
in particular, his protocol algebrizes, and we observe there is no algebrizing pro-
tocol for k-UNSAT running in 2n/2/nω(1) time. Therefore we have to exploit
non-algebrizing properties to obtain our new protocol.

• Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur
time 24n/5 · poly(n). Previously, the only nontrivial result known along these lines
was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some
of Arthur’s coins) running in 22n/3 · poly(n) time.

Due to the centrality of these problems in fine-grained complexity, our results have
consequences for many other problems of interest. For example, our work implies that
certifying there is no Subset Sum solution to n integers can be done in Merlin–Arthur
time 2n/3 · poly(n), improving on the previous best protocol by Nederlof [IPL 2017]
which took 20.49991n · poly(n) time.

Keywords Merlin–Arthur protocols · fine-grained complexity · proof systems ·
algebraic methods

1 Introduction

Fine-grained complexity has identified core problems that act as bottlenecks to obtain-
ing faster algorithms for various tasks in computer science. Perhaps themost prominent
problems among these are Satisfiability (SAT),Orthogonal Vectors (OV), 3-SUM, and
All-Pairs Shortest Paths (APSP). The hypotheses that the known algorithms for these
problems are essentially optimal have led to far-reaching consequences for the exact
complexity of many problems of interest (see for example the survey by Vassilevska
Williams [53]). There is now a vast web of “fine-grained” reductions among computa-
tional tasks, which has led to large equivalence classes of problems [3, 10, 19, 23, 44,
48, 55], many of which a priori look unrelated. For each of these equivalence classes,
solving one problem in the class faster means that all problems in that class have more
efficient algorithms.

Recently there has been growing interest in obtaining efficientMerlin–Arthur (MA)
proof systems for problems studied in fine-grained complexity. Recall that in aMerlin–
Arthur proof system, the probabilistic verifier (Arthur) always accepts valid proofs
(from the proverMerlin), and rejects invalid proofs with probability arbitrarily close to

123

Algorithmica (2023) 85:2395–2426 2397

1.Williams [58] shows (among other results) that theOV problem1 for sets of n vectors
with dimension d can be solved by a Merlin–Arthur protocol in near-optimal Õ(nd)

time,2 achieving a nearly quadratic speedup compared to the fastest known algorithms
for OV [7, 20]. One consequence of this result is the refutation of the Merlin–Arthur
Strong Exponential-Time Hypothesis, which could be viewed as evidence against
the Nondeterministic Strong Exponential-Time Hypothesis (NSETH) proposed by
Carmosino et al. [16].3

The main technical component in Williams’ work is a “batch evaluation” protocol
for low-degree arithmetic circuits, with which Merlin can quickly convince Arthur of
the outputs of a circuit C on a set of points a1, . . . , aK , faster than evaluating C inde-
pendently on each point ai . This protocol can be used to obtain efficientMerlin–Arthur
protocols for various other problems, such as #SAT, counting dominating pairs of vec-
tors, and counting Hamiltonian cycles [58]. Building on Williams’ batch-evaluation
protocol and employing additional algebraic techniques, Björklund and Kaski [11]
obtained improved Merlin–Arthur protocols4 for more problems, such as #k-Clique,
Graph Coloring, and Set Cover. For many of these problems, the obtained Merlin–
Arthur protocols achieve quadratic speedup compared to the fastest known algorithms.
Variants of these protocols have been used as Proofs of Work based on fine-grained
hardness assumptions [14], which have led to further work in fine-grained cryptogra-
phy and average-case fine-grained complexity [8, 13, 21, 27, 30, 33, 43]. In [28, 29],
doubly efficient proof systems for #k-SUM, #k-Clique, and APSP were constructed,
in which the prover runs in polynomial time (for constant k) and the verifier runs in
“almost linear” time (i.e., N 1+o(1) time, where N is the input length).5 Efficient batch
verification using interactive protocols with a constant (but greater than two) num-
ber of rounds has also been developed for problems with polynomial-time verifiable,
unique witnesses [49] and problems which can be solved by algorithms with small
space complexity [50]. A different line of work in the stream verification setting has
developed sublinear space protocols for various graph problems [15, 17].

Given the interest in fine-grained complexity and proof systems, a natural question
is to understand the Merlin–Arthur time complexity of core problems in fine-grained
complexity. How efficiently can solutions to these problems be verified, with a ran-
domized verifier? As seen above, such questionsmay have cryptographic applications,
and in general theymay give insight into the structure of these problems.Williams [58]
already showed that OV admits near-optimal Merlin–Arthur protocols. In this work,
we present improved Merlin–Arthur protocols for 3-SUM, APSP, and many more core

1 The OV problem is the following: Let d = ω(log n); given two sets A, B ⊆ {0, 1}d with |A| = |B| = n,
determine whether there exist a ∈ A and b ∈ B so that

∑d
i=1 ai · bi = 0.

2 We use Õ(f (n)) to hide polylog(f (n)) factors.
3 Informally, NSETH says that unsatisfiable CNFs on n variables require proofs of length at least 2n−εn

for all ε > 0. More formally, NSETH states that for every ε > 0 there exists k such that unsatisfiability of
k-CNF formulas cannot be decided in nondeterministic 2(1−ε)n time.
4 Björklund and Kaski [11] actually work in amore restricted setting they call “Camelot algorithms,” where
Merlin’s proof can be prepared efficiently by a parallel algorithm.
5 The protocols for #k-SUM and #k-Clique have O(k log n) rounds (or O(k/ε) rounds at the cost of
making verifier running time n1+ε) and the protocol for APSP has constant rounds. We also remark that in
our Merlin–Arthur protocols from Theorems 1.1 and 1.5, the prover runs in polynomial time for constant
k as well.

123

2398 Algorithmica (2023) 85:2395–2426

computational tasks. For several of these problems our protocols yield optimal running
times (up to polylogarithmic factors) for the verifier.

1.1 Our Results

In this section, we describe our new results and compare them with previous work.

Faster Protocols for k-SUM and Related Problems. In the k-SUM problem, we
are given n integers from [−nc, nc] for some constant c (only depending on k), and
wish to determine if some k of them sum to zero. The unparameterized version of this
problem is the Subset Sum problem, in which we are given n positive integers less
than or equal to 2cn , for some constant c, and a target integer t , and must decide if
some subset of the input integers sums to t .

Our first result is aMerlin–Arthur protocol for certifying there is no k-SUM solution,
which is significantly more efficient than the best known nondeterministic algorithm
[16] for the same task, which runs in Õ(nk/2) time.6

Theorem 1.1 For any fixed integer k ≥ 3, certifying that a list of n integers has no
k-SUM solution can be done in Merlin–Arthur time Õ(nk/3).

In particular, our protocol for 3-SUM runs in near-optimal Õ(n) time. As an imme-
diate corollary, we obtain a faster Merlin–Arthur protocol for certifying a Subset Sum
instance has no solution.

Corollary 1.2 Certifying that a list of n integers has no Subset Sum solution can be
done in 2n/3 · poly(n) Merlin–Arthur time.

The previous best Merlin–Arthur protocol for Subset Sumwas presented by Nederlof
in [45] and takes 20.49991n · poly(n) time.7 Note that Subset Sum can be solved
deterministically in O(2n/2) time [32].

In the MinPlus Convolution problem, we are given two integer arrays

a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1),

and want to compute the array c whose entries are defined by taking

ck = min
i+ j=k

{ai + b j } (for 0 ≤ k ≤ 2n − 2).

The best known algorithm for MinPlus Convolution takes n2/2�(
√
log n) time [9, 20,

59]. It is known that MinPlus Convolution has a fine-grained reduction to 3-SUM
[18, 48, 54]. We observe that these reductions combined with Theorem 1.1 imply a
near-linear time Merlin–Arthur protocol for MinPlus Convolution.

6 Carmosino et al. [16] gave a co-nondeterministic algorithm for 3-SUM running in Õ(n3/2) time. It
is straightforward to extend their algorithm to nondeterministically certify an instance of k-SUM has no
solution in Õ(nk/2) time for all k ≥ 3.
7 In the arXiv version of [45], it was claimed that combining [4, 58] would yield a Merlin–Arthur protocol
in 20.3113n · poly(n) time. The author later confirmed that this claim had a bug [46].

123

Algorithmica (2023) 85:2395–2426 2399

Corollary 1.3 MinPlus Convolution can be solved in Merlin–Arthur time Õ(n).

The All-Numbers k-SUM problem is a seemingly harder version of k-SUM, where
we want to decide for every input integer whether or not it belongs to a set of k inputs
that sum to zero. It is known that All-Numbers k-SUM and k-SUM are fine-grained
equivalent [55, Theorem 8.1] in the sense that one of the problems can be solved in
O(n�k/2�−ε) time for some ε > 0 if and only if the other problem can also be solved in
that running time, but with possibly a different ε. We observe that our k-SUM protocol
can be extended to solve All-Numbers k-SUM in the same running time.

Corollary 1.4 For any fixed integer k ≥ 3, the All-Numbers k-SUM problem can be
solved in Merlin–Arthur time Õ(nk/3).

Counting zero-weight cliques. In the #Zero-Weight k-Clique problem, we are given
a simple undirected graph G on n vertices and m edges with integer edge weights
from [−nc, nc] for a positive constant c, and are tasked with counting the number
of k-cliques in G whose edge weights sum to zero. The easier #k-Clique problem is
equivalent to the special case of #Zero-Weight k-Clique where all edge weights in
the input graph are zero.

These two problems have been extensively studied in fine-grained complexity. The
trivial brute-force algorithm for both problems runs in O(nk) time. The #k-Clique
problem can be solved faster using fastmatrixmultiplication [36, 47]. For the detection
versions of these problems, it has been conjectured that Zero-Weight k-Clique cannot
be solved faster than nk−ε, and that k-Clique cannot be solved faster than nkω/3−ε

(where 2 ≤ ω < 2.373 denotes the matrix multiplication exponent [5, 42, 52]), for
any constant ε > 0 [1, 44]. Some recent works employ even stronger conjectures
about the hardness of k-Clique for integers k not divisible by 3 [2]. For k = 3, the
Zero-Weight k-Clique problem is simply the Zero-Weight Triangle problem, and it is
known that any truly subcubic algorithm for this problem would refute both the APSP
conjecture and the 3-SUM conjecture [54, 55].

It is known that #k-Clique can be solved faster using Merlin–Arthur proto-
cols. Williams [58] showed that #k-Clique can be solved in Merlin–Arthur time
Õ(n	k/2
+2). This was later improved by Björklund and Kaski’s [11] protocol which
solves #k-Clique (for integers k divisible by 6) in Merlin–Arthur time Õ(nkω/6),
achieving a quadratic speedup compared to the best known algorithm in Õ(nkω/3)

time [36, 47].
We present an improved Merlin–Arthur protocol for the harder #Zero-Weight k-

Clique problem.

Theorem 1.5 For any fixed integer k ≥ 3, #Zero-Weight k-Clique on a graph with
n nodes and m edges can be solved by a Merlin–Arthur protocol with proof length

Õ(n	k/2
) and verification time Õ
(
n�k/2� · (

m/n2
)	(k+1)/4
 + n	k/2
).

For even integers k ≥ 4 the protocol has proof length and verification time Õ(nk/2),
and for odd k ≥ 3 the protocol has proof length Õ(n(k−1)/2) and verification time

Õ(n(k+1)/2 ·
(
m/n2

)	(k+1)/4
 + n(k−1)/2) ≤ Õ(m�k/4� + n(k−1)/2).

123

2400 Algorithmica (2023) 85:2395–2426

Two notable cases are k = 3 and k = 4, for which Theorem 1.5 shows that #Zero-
Weight 4-Clique can be solved in Merlin–Arthur time Õ(n2) which is near-optimal
for dense graphs, and #Zero-Weight Triangle can be solved with proof length Õ(n)

and verification time Õ(m), which is near-optimal for graphs of any sparsity. Applying
known reductions [55] immediately implies quadratic time Merlin–Arthur protocols
for the following problems, which we define later in Sect. 4.

Corollary 1.6 MinPlus Product,APSP, and#Negative Triangle can be solved inMerlin–
Arthur time Õ(n2).

Unsatisfiability of k-CNFs. We give a Merlin–Arthur protocol for certifying the
unsatisfiability of a k-CNF (i.e., solving the k-UNSAT problem), which runs faster
than the previously known 2n/2 · poly(n)-time protocol.

Theorem 1.7 There is a universal constant δ > 0 such that for all sufficiently large
integers k > 0, we can verify any unsatisfiable n-variable m-clause k-CNF with a
Merlin–Arthur protocol running in 2n(1/2−δ/k) · poly(n,m) time.

Previously,Williams [58] had shown it is possible to count the number of satisfying
assignments to CNFs on n variables and m clauses with a Merlin–Arthur protocol in
2n/2 · poly(n,m) time. We find Theorem 1.7 intriguing, not just because it runs more
efficiently, but also because the result provably must not algebrize (in the sense of [6,
34]). In particular, we observe that

• Williams’ Merlin–Arthur protocol for #SAT algebrizes, and
• there is no algebrizing protocol for k-UNSAT running in 2n/2/nω(1) time.

More formally, we have the following two theorems:

Proposition 1.8 [Williams’ protocol algebrizes] For every oracle A, #CNF-SATA on
formulas with n variables and size poly(n) can be computed in Merlin–Arthur time
2n/2 · poly(n) with oracle access to the multilinear extension of A over any field of
characteristic greater than 2n (and order at most 2poly(n)).

Proposition 1.9 [Follows from [6]] There is an oracle A such that there is noMerlin–
Arthur protocol running in 2n/2/nω(1) time for 1-UNSATA, even for protocols with
oracle access to the multilinear extension of A (over any field of order 2poly(n)).

Therefore the properties exploited in the protocol of Theorem 1.7 (which applies an
earlier reduction of [35] from fine-grained complexity) are provably non-algebrizing.
We are hopeful that further study of such results may lead to new progress in lower
bounds via algorithms.

Quantified Boolean Formulas. A Quantified Boolean Formula in prenex normal
form (QBF), is a formula

(Q1x1) · · · (Qnxn) F(x1, . . . , xn),

consisting of a propositional formula F of size m over n variables, preceded by
quantifiers Qi ∈ {∃,∀}. Deciding whether a given QBF is true is a canonical PSPACE-
complete problem.

123

Algorithmica (2023) 85:2395–2426 2401

Williams [58] gave a 3-round interactive protocol (i.e., an AMA protocol) for true
QBFs that runs in 22n/3 · poly(n,m) time. The same work [58] raised the question
of whether there is a Merlin–Arthur (two-round) protocol for deciding true QBFs
which runs in 2(1−ε)n · poly(n,m) time for some constant ε > 0. We resolve this open
problem in the affirmative:

Theorem 1.10 True Quantified Boolean Formulas (TQBF) with n variables and size
m ≤ 2n can be certified by a Merlin–Arthur protocol running in 24n/5 · poly(n,m)

time.

1.2 Organization

In Sect. 2 we provide definitions and some useful known results. In Sect. 3 we present
Merlin–Arthur protocols for the k-SUM problem and several related problems. In
Sect. 4 we present a Merlin–Arthur protocol for counting zero-weight k-cliques, and
show that it implies near-optimal protocols for many related fine-grained problems
such as APSP. In Sect. 5 we present a Merlin–Arthur protocol for certifying unsat-
isfiability of k-CNFs. Then, in Sect. 6 we describe two barriers for obtaining better
Merlin–Arthur protocols. In Sect. 7 we present a Merlin–Arthur protocol for the True
Quantified Boolean Formulas problem. Finally we concludewith some open questions
in Sect. 8.

2 Preliminaries

We assume basic familiarity with computational complexity and algorithms. The fol-
lowing notions will be particularly important for this paper.

Merlin–Arthur Protocols.We say that a function f : {0, 1}� → {0, 1} has aMerlin–
Arthur protocol (or proof system) running in T (n) time with proofs of length P(n)

if there is a probabilistic algorithm V such that for all binary strings x with |x | = n:

• If f (x) = 1, then there is a y ∈ {0, 1}P(n) such that V (x, y) accepts in T (n) time,
with probability 1.

• If f (x) = 0, then for every y ∈ {0, 1}P(n), V (x, y) rejects in T (n) time, with
probability at least 2/3.

Concretely, we assume Arthur’s verification algorithm V runs in the word-RAM
model with words of length log(n). We only consider protocols where the proof length
P(n) is bounded above by the verification time T (n). We often refer to T (n) as the
Merlin–Arthur time of the protocol. If we say a problem can be “solved in Merlin–
Arthur time T (n),” we mean it has a Merlin–Arthur protocol running in time T (n).

Williams’ Multipoint Evaluation Protocol.We will use Williams’ protocol [58] for
the Multipoint Circuit Evaluation problem, defined as follows.

Definition 2.1 [58, Definition 1.1]] TheMultipoint Circuit Evaluation problem: given
an arithmetic circuit C on n variables over a finite field F, and a list a1, . . . , aK ∈ F

n ,
output (C(a1), . . . ,C(aK)) ∈ F

K .

123

2402 Algorithmica (2023) 85:2395–2426

Theorem 2.2 [Williams [58, Theorem 3.1]] For every prime power q and ε > 0,
Multipoint Circuit Evaluation for K points in (Fq)

n on an arithmetic circuit C of n
inputs, s gates, and degree d has an MA-proof system where:

• Merlin sends a proof of O(Kd · log(Kqd/ε)) bits, and,
• Arthur tosses at most log(Kqd/ε) coins, outputs (C(a1), . . . ,C(aK)) incorrectly
with probability at most ε, and runs in time (K · max{d, n} + s · poly(log s)) ·
poly(log(Kqd/ε)).

Fast Polynomial Evaluation and Interpolation.
We need the following classical results on algebraic algorithms. We write [n] =

{1, 2, . . . , n} to denote the set of the first n positive integers.

Theorem 2.3 [Fast multipoint evaluation [22], multivariate version] Let k be a fixed
positive integer. Given a k-variate polynomial p(x1, x2, . . . , xk) ∈ F[X1, . . . , Xk]
with each variable having individual degree less than n, presented as at most nk coef-
ficients, and given kn points α j,i ∈ F (1 ≤ j ≤ k, 1 ≤ i ≤ n), we can compute
p(α1,i1 , α2,i2 , . . . , αk,ik) for all (i1, . . . , ik) ∈ [n]k in Õ(nk) additions and multipli-
cations in F.

Theorem 2.4 [Fast interpolation [31], multivariate version] Let k be a fixed positive
integer. Given kn points α j,i ∈ F (1 ≤ j ≤ k, 1 ≤ i ≤ n), together with the
values of p(α1,i1 , α2,i2 , . . . , αk,ik) ∈ F for all (i1, . . . , ik) ∈ [n]k , we can output the
coefficients of the unique such polynomial p ∈ F[X1, . . . , Xk] in which every variable
has individual degree less than n, in Õ(nk) additions and multiplications in F.

The original references for these two theorems only proved the univariate case
(k = 1), but one can easily prove the multivariate versions above by applying the
univariate algorithms to each variable one by one. Here we provide a sketch of the
reduction from multivariate interpolation to univariate interpolation.

The original univariate versions of these theorems were also used in Williams’
protocol [58].

Proof Sketch of Theorem 2.4 Wewill show how the univariate version [31] of the inter-
polation algorithm easily implies the k-variate case.

We prove the result by induction on k. Recall that the n points on the xk coordinate
are αk,1, αk,2, . . . , αk,n . Consider the (k − 1)-variate polynomials

q j (x1, . . . , xk−1) := p(x1, . . . , xk−1, αk, j)

for all 1 ≤ j ≤ n, obtained from substituting xk = αk, j into the original k-variate poly-
nomial p. Since for each 1 ≤ j ≤ n we know the values of q j (α1,i1 , . . . , αk−1,ik−1) on
all (i1, . . . , ik−1) ∈ [n]k−1), by the induction hypothesiswe know that the {q j } j∈[n] are
uniquely determined and can be computed by running the (k−1)-variate interpolation
algorithm in Õ(n · nk−1) = Õ(nk) total time. Finally, for each tuple

(d1, . . . , dk−1) ∈ {0, 1, . . . , n − 1}k−1

123

Algorithmica (2023) 85:2395–2426 2403

of degrees, the coefficients of themonomials xd11 · · · xdk−1
k−1 in the polynomials {q j } j∈[n]

taken together uniquely determine the coefficients of xd11 · · · xdk−1
k−1 x

d
k in the polynomial

p for all 0 ≤ d ≤ n − 1. These coefficients can again be recovered by the univariate
interpolation algorithm, taking in Õ(n) time for each tuple. ��

3 An ImprovedMerlin–Arthur Protocol for k-SUM

Let k be a positive integer. In the k-SUM problem, we are given n integers a1, . . . , an
with magnitude at most nc for some constant c, and are tasked with determining if
there exist indices i1, . . . , ik (not necessarily distinct) such that

ai1 + · · · + aik = 0.

We call a list of indices i1, . . . , ik satisfying the above equation a k-SUM solution. We
remark that another popular version of k-SUM from the literature, which we call k-
SUM-Distinct, additionally requires the indices i1, . . . , ik in the solution to be distinct.
Here, for convenience and consistency with the definition used in [16], we focus on the
k-SUM problem, and later in Sect. 3.1 note how k-SUM-Distinct can be easily reduced
to k-SUM.

In the Merlin–Arthur setting, it is trivial to verify a k-SUM solution exists since
Merlin can just send Arthur a solution. Certifying that no k-SUM solutions exist is
much more challenging. Our protocol for this problem is based on the following
protocol for quickly computing a coefficient in a product of polynomials.

Lemma 3.1 Let F1(x), . . . , Fk(x) be univariate polynomials overFq each of degree at
most d, for some prime q. Let M be the total number of nonzero coefficients appearing
among these polynomials. Then given any integer t and error rate δ ∈ (0, 1), there is
a Merlin–Arthur protocol for determining the coefficient of xt in the product

P(x) =
k∏

i=1

Fi (x)

with proof size Õ
(
(k

√
d)(log q)

)
and runtime Õ

(
(M + k

√
d)(log q)(log(1/δ))

)
.

Proof We may assume that 0 ≤ t ≤ kd, since otherwise the coefficient of xt in P is
zero. Let

P(x) =
kd∑

�=0

p�x
�

be the product of all the Fi polynomials.
Set m = 	√d
. The protocol works as follows.

123

2404 Algorithmica (2023) 85:2395–2426

1. For each nonnegative integer � ≤ kd with � ≡ t (mod m), Merlin sends Arthur
some c� ∈ Fq . Each such c� term isMerlin’s claim for the value of the corresponding
coefficient p� in P(x).

2. Arthur takes an integer h such that qh ≥ kd/δ and then samplesw ∈ Fqh uniformly
at random. To construct the field Fqh , Arthur just needs a polynomial of degree h
irreducible over Fq . As noted in [58], we can do this efficiently by having Merlin
send such a polynomial, and then havingArthur verify the polynomial is irreducible
in asymptotically

h1+o(1)(log q)2+o(1) = ((log(kd) + log(1/δ)) (log q))1+o(1)

time using known irreducibility tests [40, Section 8.2].
For the rest of this protocol, Arthur performs all computations over Fqh .
For each polynomial

Fi (x) =
d∑

�=0

fi,�x
�

of degree at most d, we say its reduced form is the polynomial

Gi (x) =
m−1∑

b=0

(
∑

�≡b mod m

w� fi,�

)

xb, (1)

formed by reducing the polynomial Fi (wx) modulo xm − 1.
Arthur first constructs the reduced forms Gi of Fi for each 1 ≤ i ≤ k, in Õ(M)

time. Then, using fast polynomial multiplication, Arthur computes the product

R(x) =
k∏

i=1

Gi (x) =
k(m−1)∑

�=0

r�x
�

in Õ(km) time. By adding the coefficients of this polynomial and appealing to the
definition of the reduced polynomials in Eq. (1), Arthur can compute the quantity

∑

�≡t mod m

r� =
∑

b1+···+bk≡t mod m
�i≡bi mod m ∀i∈[k]

w�1+···+�k

k∏

i=1

fi,�i

=
∑

�≡t mod m
�1+···+�k=�

w�
k∏

i=1

fi,�i =
∑

�≡t mod m

p�w
�. (2)

In the second summation above, we are summing over a subset of k-tuples
(�1, . . . , �k) with the property that 0 ≤ �i ≤ d for each i . We define bi to be
the residue of �i modulo m for each i , and only consider those k-tuples in the sum

123

Algorithmica (2023) 85:2395–2426 2405

if the sum of their residues modulo m is congruent to t modulo m. In the transition
from the second to the third summation above, we note that this is equivalent to
summing over all k-tuples (�1, . . . , �k) such that 0 ≤ �i ≤ d for each i and the
sum of the �i is congruent to some integer t modulo m.
After computing the sum from Eq. (2), Arthur also computes

∑

�≡t mod m

c�w
� (3)

in Õ(M) time using the values Merlin sent. If this sum and the value of the sum
from Eq. (2) agree over Fqh , then Arthur accepts and returns ct as the coefficient
of xt in P(x). If the sums disagree, then Arthur rejects the proof.

In the above protocol, if Merlin sends integers with c� = p� for all � ≤ kd with
� ≡ t (mod m), then the values from Eqs. (2) and (3) will agree. If this happens,
Arthur will accept and correctly determine pt as the value of the desired coefficient.

The only way for Arthur to accept an incorrect value for the coefficient is if qt �= pt .
In this case,

Q(x) =
∑

�≡t mod m

p�x
�

and

C(x) =
∑

�≡t mod m

c�x
�

are distinct polynomials over Fq of degree at most kd. This means they agree on at
most kd points. So, for uniform random w ∈ Fqh , we have Q(w) �= C(w) with
probability at least

1 − kd

qh
≥ 1 − δ

by our choice of h. Thus with probability at least 1 − δ, Arthur rejects an incorrect
proof. ��
Remark 3.2 Recall that in the Subset Sum problem, we are given input integers
a1, . . . , an , and must decide if some collection of the inputs sums to a given target
integer t . Although framed somewhat differently, Nederlof’s Merlin–Arthur protocol
for Subset Sum from [45] employs a similar tactic, and can be recovered by applying
Lemma 3.1 to check if the coefficient of xt in the product

(1 + xa1)(1 + xa2) · · · (1 + xan)

is nonzero or not.

123

2406 Algorithmica (2023) 85:2395–2426

Reminder of Theorem 1.1 For any fixed integer k ≥ 3, certifying that a list of n
integers has no k-SUM solution can be done in Merlin–Arthur time Õ(nk/3).

Before proving Theorem 1.1, we first informally describe the three primary ideas
underlying our Merlin–Arthur protocol.

First, solving k-SUM corresponds to checking the coefficient of some product of
polynomials, where the degree of the polynomials is related to themagnitudemaxi |ai |
of the input integers. This is hard in general since these magnitudes could be large
polynomials in n, but could be made more efficient if there was a simple way to reduce
the sizes of the inputs.

The second idea comes from the conondeterministic algorithm of [16, Lemma 5.8]
for k-SUM: we have Merlin send a small prime p such that “few” sums of the k input
integers vanish modulo p. Given p, Arthur can easily count the number of these sums
(intuitively, because Arthur can replace each ai with its residue modulo p to reduce
the size of the input integers). If Merlin then sends all the k-tuples of inputs that sum
to zero modulo p, Arthur can check that the number of tuples sent matches the count
computed, and then scan through the list to verify that none of the given sums equal
zero over the integers.

The third and final idea is to employ the protocol for fast polynomial multiplication
from Lemma 3.1.

We now describe the protocol.

Proof of Theorem 1.1 Supposeweare given a k-SUM instanceonn integersa1, . . . , an ∈
[−nc, nc] for some constant c > 0.

Merlin first sends a prime p = 	̃(n2k/3). Let

S = {
(i1, . . . , ik) | ai1 + · · · + aik ≡ 0 (mod p)

}

be the the set of k-tuples whose sums vanish modulo p. Merlin additionally sends a
set T of k-tuples of indices such that |T | ≤ Õ(nk/3) and claims that T = S.

Now, for each i ∈ [n] let bi be the residue of ai modulo p. Define the polynomial

B(x) =
n∑

i=1

xbi .

The coefficients of the kth power of this polynomial encode information that will
help us solve the k-SUM problem. In particular, we leverage the following simple
observation.

Claim 3.3 The sum of the coefficients of x0, x p, . . . , and x (k−1)p of the polynomial

B(x)k

is equal to the number of k-tuples (i1, . . . , ik) ∈ [n]k such that

ai1 + · · · + aik ≡ 0 (mod p).

123

Algorithmica (2023) 85:2395–2426 2407

Proof We can expand

B(x)k =
(

n∑

i=1

xbi

)k

=
∑

i1,...,ik

xbi1+···+bik =
k(p−1)∑

�=0

s�x
�

where s� denotes the number of k-tuples (i1, . . . , ik) ∈ [n]k such that

bi1 + · · · + bik = �.

Now, since each bi is the residue of ai modulo p, we know that

ai1 + · · · + aik ≡ 0 (mod p)

precisely when

bi1 + · · · + bik ≡ 0 (mod p).

Because 0 ≤ bi ≤ p − 1 for each index i , we know that

bi1 + · · · + bik ≡ 0 (mod p)

if and only if

bi1 + · · · + bik ∈ {0, p, . . . , (k − 1)p} .

Combining these observations, we get that

s0 + sp + · · · + s(k−1)p

is equal to the number of k-tuples (i1, . . . , ik) ∈ [n]k such that

ai1 + · · · + aik ≡ 0 (mod p),

which proves the desired result. ��
Returning to the protocol, Merlin and Arthur run k instances of the protocol from

Lemma 3.1 in parallel,8 for a field of size q, for some prime q > nk , with error rate δ =
1/(kn), to determine the coefficients sp� of x p� in B(x)k for all � ∈ {0, 1, . . . , k − 1}.
Arthur rejects if Merlin fails to convince him of the values of any of these coefficients.

Otherwise, Arthur checks that

s0 + sp + · · · + s(k−1)p = |T |. (4)

8 By running k protocols in parallel, we mean that Merlin concatenates the k messages he would send
Arthur in each protocol, and Arthur verifies each message independently.

123

2408 Algorithmica (2023) 85:2395–2426

He also checks that for each (i1, . . . , ik) ∈ T , we have

ai1 + · · · + aik �= 0

over the integers. If both these checks pass, Arthur accepts. Otherwise, he rejects.
We now explain why this Merlin–Arthur proof system is correct.
First, suppose that no k of the ai sum to zero. We show that Merlin has a proof

which always convinces Arthur to accept.
By the prime number theorem, there exists some constant C such that there are at

least n2k/3 distinct primes in the interval I = [n2k/3,Cn2k/3 log n]. Now, by assump-
tion, each sum

ai1 + · · · + aik (5)

is a nonzero integer with magnitude at most knc, and thus has at most c(log n+ log k)
distinct prime divisors. Thus by the pigeonhole principle, there exists a prime in the
interval I which divides at most

nk · c(log n + log k)

n2k/3
≤ Õ(nk/3)

of the nk sums of the form presented in Eq. (5).
So, Merlin can send a prime p satisfying the desired properties to Arthur. He also

sends T = S, the list of sums of the form given in Eq. (5) which are divisible by
p, which has |T | ≤ Õ(nk/3) by the choice of p. If Merlin sends the correct values
for s0, sp, . . . , s(k−1)p, then Eq. (4) will hold by Claim 3.3, and Arthur accepts. Now,
suppose that some k of the ai do in fact sum to zero. In this case, we show that with
high probability Arthur will reject.

First, if the set T which Merlin sends contains a k-tuple corresponding to a list of
k inputs whose sum does not vanish modulo p, or a sum which sums to zero over the
integers, then Arthur will automatically reject. Otherwise, by assumption, the set T is
missing some tuple (j1, . . . , jk) such that

a j1 + · · · + a jk = 0.

Reducing the above equation modulo p, we see that

b j1 + · · · + b jk ≡ 0 (mod p).

Then by Claim 3.3, if Merlin and Arthur have decided on the correct coefficients of
B(x)k , we have

s0 + sp + · · · + s(k−1)p < |T |

123

Algorithmica (2023) 85:2395–2426 2409

and Arthur will reject. By union bound and Lemma 3.1, Arthur correctly rejects with
probability at least

1 − kδ = 1 − 1

n
.

��

3.1 Implications of the k-SUM protocol

We now show the implications of our k-SUM protocol.
We first consider the k-SUM-Partitioned problem, where we are given k input lists

A(1), A(2), . . . , A(k) each consisting of n integers from [−nc, nc] for some constant c,
and want to determine if there exist indices i1, . . . , ik such that A(1)

i1
+ A(2)

i2
+ · · · +

A(k)
ik

= 0 (this problem has also been called k-SUM’ [25] and Colorful k-SUM). We
note there is a deterministic reduction from k-SUM-Partitioned to k-SUM, extending
the case of 3-SUM [25].

Corollary 3.4 For any fixed integer k ≥ 3, certifying that a k-SUM-Partitioned instance
has no solution can be done in Merlin–Arthur time Õ(nk/3).

Proof Sketch Let M = �10knc�. We create a k-SUM instance as follows. For every
1 ≤ i ≤ k and every integer a from the input list A(i), we include the integer

{
2i · M + a if 1 ≤ i ≤ k − 1,

−(2 + 4 + · · · + 2k−1) · M + a if i = k

in the k-SUM instance. A solution to the k-SUM-Partitioned immediately implies a
solution of the new k-SUM instance. Conversely, it can be shown that any k-SUM
solution must recover a solution of the k-SUM-Partitioned instance.

Hence, applying the protocol from Theorem 1.1 to this k-SUM instance of kn
integers can solve the original k-SUM-Partitioned instance. ��
Recall that in the k-SUM-Distinct problem, we are given n integers a1, . . . , an with
magnitude at most nc and need to determine if there exist k distinct indices i1, . . . , ik
such that ai1 + · · · + aik = 0. We will use a folklore deterministic reduction from
k-SUM-Distinct to k-SUM-Partitioned.

Corollary 3.5 For any fixed integer k ≥ 3, certifying that a list of n integers has no
k-SUM-Distinct solution can be done in Merlin–Arthur time Õ(nk/3).

Proof Given a k-SUM-Distinct instance a1, a2, . . . , an , we will deterministically cre-
ate (log n)O(1) many instances of k-SUM-Partitioned in which the k input lists are
disjoint subsets of {a1, . . . , an}, so that every possible k distinct indices i1, . . . , ik ∈ [n]
are isolated at least once. Then the k-SUM-Distinct instance has no solution if and only
if none of these k-SUM-Partitioned instances have solutions, and the statement then
follows from Corollary 3.4.

123

2410 Algorithmica (2023) 85:2395–2426

Take any k distinct indices i1, . . . , ik ∈ [n] and consider their binary expansions

bin(i1), . . . ,bin(ik) ∈ {0, 1}log n .

Observe that there must exist a set of coordinates C ⊆ [log n] of size |C | ≤ k − 1,
so that the projections bin(i1)|C , . . . ,bin(ik)|C are still distinct. Hence, for every
possibility of

(bin(i1)|C , . . . ,bin(ik)|C) = (v1, v2, . . . , vk) ∈
(
{0, 1}k−1

)k
,

we create a k-SUM-Partitioned instance (A(1), . . . , A(k)) where A(j) = {ai : i ∈
[n],bin(i)|C = v j }. The total number of instances created is at most ck · (log n)k−1

for some constant ck . ��
By another folklore reduction, our protocol for the 3-SUM-Partitioned problem

immediately implies an improved protocol for the Subset Sum problem.

Reminder of Corollary 1.2 Certifying that a list of n integers has no Subset Sum
solution can be done in 2n/3 · poly(n) Merlin–Arthur time.

Proof Supposewehave an instanceof Subset Sum consistingofn inputsa1, a2, . . . , an
and a target integer t . We partition the set [n] into the disjoint union of three subsets
A, B,C ⊆ [n], each with size at most �n/3�, and define the sets

X =
{

∑

i∈S
ai | S ⊆ A

}

, Y =
{

∑

i∈S
ai : S ⊆ B

}

, Z =
{

−t +
∑

i∈S
ai : S ⊆ C

}

.

Then there exists a subset S ⊆ [n] such that
∑

i∈S ai = t if and only if there exist
x ∈ X , y ∈ Y , z ∈ Z such that x + y+ z = 0, which is a 3-SUM-Partitioned instance.
Note that X ,Y , Z each have at most 2�n/3� elements. Applying Corollary 3.4 solves
the problem in 2n/3 · poly(n) time. ��
Reminder of Corollary 1.4 For any fixed integer k ≥ 3, the All-Numbers k-SUM
problem can be solved in Merlin–Arthur time Õ(nk/3).

Proof For every index i such that ai is part of a k-SUM solution, Merlin simply sends
a witnessing solution to Arthur. Let S ⊆ [n] be the set of remaining indices, which do
not participate in any solution. It remains to verify that S is correct.

DenotingM := maxi∈[n] |ai |, construct a k-SUM instancewith input integers A∪B,
where

A := {10M + ai : i ∈ [n]} and B := {−10(k − 1)M + ai : i ∈ S}.

By our choice of M , every k-SUM solution in this new instance must use exactly one
integer from B, and hence corresponds to a k-SUM solution in the original instance
that uses ai for some i ∈ S. So it suffices to use the protocol from Theorem 1.1 to
prove that this new k-SUM instance has no solution. ��

123

Algorithmica (2023) 85:2395–2426 2411

Reminder of Corollary 1.3MinPlus Convolution can be solved inMerlin–Arthur time
Õ(n).

Proof Sketch Merlin first sends the correct values of ck , each accompanied with a
witness pair (i, j) such that i + j = k and ai +b j = ck . Then it remains to verify that
ai +b j ≥ ci+ j for all i, j , which is equivalent to theMaxConv UpperBound problem
defined in [18].

In [18, Appendix A], it was shown (using the techniques from [54, Theorem 3.3])
that MaxConv UpperBound can be deterministically reduced to the 3-SUM Convolu-
tion problem. In this problem, we are given three integer arrays a, b, c and want to
decide whether there exists a pair of indices (i, j) such that

ai + b j = ci+ j .

The 3-SUM Convolution problem easily reduces to the 3-SUM-Partitioned problem
on lists {a′

i }, {b′
j }, {c′

k} defined as a′
i = iM + ai , b′

j = jM + b j , c′
k = −kM − ck for

large enough M , which can be solved by the near-linear-time Merlin Arthur protocol
from Corollary 3.4. ��

In the Zero-Weight Triangle problem, we are given an undirected graph G on n
vertices and m edges with weights from [−nc, nc] for some positive constant c, and
are tasked with determining if G contains a triangle whose edge weights sum to zero.

Corollary 3.6 Certifying that a given graph has no zero-weight triangles can be done
in Merlin–Arthur time Õ(m).

Proof Sketch We first make the graph directed by replacing each edge connecting
vertices u and v with two arcs, one going from u to v and the other going from v to
u. Then by making three copies of the original graph, we may assume without loss of
generality that the graph is tripartite with three parts A, B,C , and edges are oriented
from A to B, B to C , and C to A.

We use the reduction described in [37]. Merlin first assigns integer node labels
0 ≤ �(u) ≤ poly(n) to each node u in the graph. For each edge (u, v) of weight w,
insert an integer �(u)− �(v)+w to the 3SUM instance. Then it is easy to see that any
zero-weight triangle (a, b, c) would lead to a 3SUM solution

(�(a) − �(b) + w(a, b)) + (�(b) − �(c) + w(b, c)) + (�(c) − �(a) + w(c, a)) = 0.

On the other hand, if the graph does not contain a zero-weight triangle, then a simple
probabilistic argument implies the existence of a way to pick the node labels so that
the resulting 3-SUM instance has no solution. ��

In the next section we will see that we can actually count the number of zero-
weight triangles by a different Merlin–Arthur protocol with essentially the same time
complexity.

123

2412 Algorithmica (2023) 85:2395–2426

4 Counting Zero-Weight Cliques

In this section we present the Merlin–Arthur protocol for #Zero-Weight k-Clique and
prove Theorem 1.5, which is restated below. We assume the input graph is a simple
undirected graph with n nodes and m weighted edges, where m ≥ �(n) and all edge
weights are in [−nc, nc] for some constant c.

Reminder of Theorem 1.5 For any fixed integer k ≥ 3, #Zero-Weight k-Clique can
be solved by a Merlin–Arthur protocol with proof length Õ(n	k/2
) and verification

time Õ
(
n�k/2� · (

m/n2
)	(k+1)/4
 + n	k/2
).

Proof Without loss of generality, we assume that the input graph is a k-partite graph
with k parts of nodes A1, A2, . . . , A	k/2
, B1, B2, . . . , B�k/2�, each containing n
nodes, and every edge connects two nodes coming from different parts. We identify
the nodes with integers {1, 2, . . . , kn}. We also denote

A :=
	k/2
⋃

i=1

Ai and B :=
�k/2�⋃

j=1

Bj .

We encode the edge weights in binary, and will use arrow notation to emphasize
that they are bit-vectors of length O(log n). For each node b ∈ B and node a ∈ A, let
�fb(a) be the binary encoding of the weight of edge (a, b) (if this edge does not appear
in the input graph, we simply treat its edge weight as a large enough positive number
M so that it can never participate in a zero-weight k-clique). We extend �fb(a) to a
vector polynomial �fb(x) of degree |A| = O(n). Note that �fb(x) consists of O(log n)

many scalar polynomials each corresponding to one bit in the binary encoding of edge
weights. These scalar polynomials are over the field Fp for some prime p = poly(n)

and p > nk .
Then, define a 	k/2
-variate vector polynomial �h(x1, . . . , x	k/2
), such that for

every

a1 ∈ A1, . . . , a	k/2
 ∈ A	k/2
,

the vector �h(a1, . . . , a	k/2
) encodes the total weight of the clique formed by the nodes
a1, . . . , a	k/2
. Note that �h(x1, . . . , x	k/2
) has individual degree O(n).

For nodes b1 ∈ B1, . . . , b�k/2� ∈ B�k/2�, let �w(b1, . . . , b�k/2�) denote the binary
encoding of the total weight of the clique formed by nodes b1, . . . , b�k/2�. Then, define

P(x1, . . . , x	k/2
)

:=
∑

b1∈B1,...,b�k/2�∈B�k/2�
forming a clique

Q
(�h(x1, . . . , x	k/2
), �w(b1, . . . , b�k/2�),

× �fb1(x1), �fb1(x2), . . . , �fb�k/2�(x	k/2
)
)
, (6)

123

Algorithmica (2023) 85:2395–2426 2413

where Q takes 2 + �k/2� · 	k/2
 input integers (encoded in binary), and outputs 1 if
the input integers sum to exactly zero, and outputs 0 otherwise. Hence, by definition,

∑

a1∈A1,...a	k/2
∈A	k/2

P

(
a1, . . . , a	k/2

)
(7)

equals the number of zero-weight k-cliques in the input graph.
Note that Q only involves a constant number of additions and a comparison, which

can be implemented by an AC0 circuit with O(log n) input gates and polylog(n) size.
We can convert Q into an equivalent arithmetic circuit of polylog(n) size and degree.
It then follows that P is a polynomial (over Fp) of degree at most n · polylog(n).

At the beginning of the protocol, Merlin sends the polynomial P defined in Equa-
tion (6) to Arthur, represented as Õ(n	k/2
) many coefficients. Then, Arthur can
evaluate the values of P(a1, . . . , a	k/2
) for all (a1, . . . , a	k/2
) ∈ A1 × · · · × A	k/2

in Õ(n	k/2
) time using Theorem 2.3. Then Arthur can easily compute the count of
zero-weight k-cliques using Equation (7).

To verify that P is correct, Arthur picks random r1, . . . , r	k/2
 ∈ Fp and verifies
that Equation (6) holds at the point (x1, . . . , x	k/2
) = (r1, . . . , r	k/2
). In order to
evaluate the sum in Equation (6) (with x1 := r1, . . . , x	k/2
 := r	k/2
), Arthur first
needs to perform the following preprocessing steps by interpolation:

1. Compute �h(r1, . . . , r	k/2
).
2. For every node b ∈ B, compute �fb(r1), . . . , �fb(r	k/2
).
After performing these preprocessing steps, Arthur can straightforwardly evaluate
Equation (6) at the chosen point, which involves at most m	�k/2�/2
 · n�k/2� mod 2 =
n�k/2� · (m/n2

)	(k+1)/4

summands (since (b1, b2), (b3, b4), . . . must be edges in the

input graph).
It remains to analyze the time complexity for these preprocessing steps.

• Step 1. Compute �h(r1, . . . , r	k/2
).
This can be done by straightforward interpolation in Õ(n	k/2
) time (Theorem
2.4).

• Step 2. For every node b ∈ B, compute �fb(r1), . . . , �fb(r	k/2
).
Let N (b) denote the set of neighbors of node b in A. We will show that, after
Õ(n)-time preprocessing, this step can be performed in |N (b)| · polylog(n) time
for every node b, and thus the total running time is Õ(n+∑

b∈B |N (b)|) = Õ(m).
Recall that �fb(a) encodes the edge weight of w(a, b) if a ∈ N (b), or encodes
integer M if a /∈ N (b). Since the O(log n) coordinates of the vector will be
considered separately, in the following we only need to discuss how to process
one of these coordinates. Abusing notation, we use fb(a) to indicate the value of
�fb(a) on the coordinate under consideration, and use w(a, b) and M to denote the
corresponding values on this coordinate. That is, fb(a) = w(a, b) if a ∈ N (b),
and fb(a) = M if a ∈ A \ N (b).

123

2414 Algorithmica (2023) 85:2395–2426

By Lagrange interpolation, we have

fb(x) = M +
∑

a∈N (b)

(w(a, b) − M) ·
∏

a′∈A\{a}(x − a′)
∏

a′∈A\{a}(a − a′)
.

The denominator
∏

a′∈A\{a}(a−a′) can be easily computed for all a in Õ(n) total
time (recall that the node set A is identifiedwith the integer set {1, 2, . . . , 	k/2
·n}).
For each x = ri , one can perform a simple Õ(n)-time preprocessing so that for
each a ∈ A, the numerator

∏
a′∈A\{a}(ri − a′) can be computed in constant field

operations. Then, it only takes O(|N (b)|) field operations to evaluate fb(ri).

In summary, the total time complexity for Arthur is Õ
(
n�k/2� · (

m/n2
)	(k+1)/4
 +

n	k/2
 + m
)
, and the proof length is Õ(n	k/2
). ��

We remark that the protocol of Theorem 1.5 can be also used to count cliques with
other kinds of restrictions on the edge weights, by simply modifying the predicate Q
in Equation (6). For example, our protocol can also apply to the #Negative k-Clique
problem, which asks to count the number of k-cliques whose sum of edge weights is
negative.

Corollary 4.1 Theorem 1.5 still holds if we replace #Zero-Weight k-Clique by
#Negative k-Clique.

By modifying Q in Eq. (6) we can also count the number of any 4-node (induced or
not-necessarily-induced) subgraphs in the input graph, in near-optimal Õ(n2)Merlin–
Arthur time. See [56] for the best known algorithms to detect 4-node subgraphs in the
input graph.

Corollary 4.2 For any 4-node pattern graph H, counting the number of (induced or
not-necessarily-induced) copies of H in the input graph can be done in Õ(n2)Merlin–
Arthur time.

Combining known reductions with Corollary 4.1, our protocol for #Negative Tri-
angle implies near-optimal protocols for MinPlus Product and APSP. Recall that in
theMinPlus Product problem, we are given two n×n integer matrices A, B, and want
to compute matrix C defined as Ci, j = minnk=1{Ai,k + Bk, j }.
Proof of Corollary 1.6 We first show that MinPlus Product can be solved in Merlin–
Arthur time Õ(n2). Merlin first sends to Arthur the correct product C , together
with the witness argminnk=1{Ai,k + Bk, j } for each entry Ci, j in the product. Arthur
checks the validity of these witnesses, and then verifies that Ai,k + Bk, j ≥ Ci, j

hold for all i, j, k. This task easily reduces to the Negative Triangle problem
[55] as follows: create a tripartite graph (X ,Y , Z) with edge weights defined as
w(Xi ,Yk) = Ai,k, w(Yk, Z j) = Bk, j , w(Z j , Xi) = −Ci, j , and certify that this
new graph has no negative triangles, using Corollary 4.1.

Using the Merlin–Arthur protocol for MinPlus Product, we immediately obtain an
Õ(n2) timeMerlin–Arthur protocol for APSP via the standard repeated squaring proce-
dure. In particular, Merlin can send the matrices obtained from all O(log n) repeated

123

Algorithmica (2023) 85:2395–2426 2415

squarings upfront, along with Õ(n2)-length proofs of their correctness; Arthur can
verify each squaring is correct in Õ(n2) time, one by one.

��
Given a simple undirected graph and aparameter t , the Triangle Listingproblem [12,

48, 57] asks to report min(t, z) triangles in the graph, where z denotes the total number
of triangles in the graph. Our results immediately imply a near-optimal protocol for
this task.

Corollary 4.3 Triangle Listing can be solved in Merlin–Arthur time Õ(m + t).

Proof Merlin uses Theorem 1.5 to prove that the input graph has z triangles in Õ(m)

time, and then sendsmin(t, z)many triangles toArthur,whoverifies that these triangles
are valid and distinct. ��

5 Unsatisfiability of k-CNFs

In this section, we will present a 2n−n/O(k) · poly(n,m) time Merlin–Arthur protocol
for k-UNSAT with n variables andm clauses in Theorem 1.7 (note thatm ≤ O(nk) in
a k-CNF formula). This beats the previously known protocol for k-UNSAT running
in 2n/2 ·poly(n,m) time, which follows directly from [58, Theorem 3.4]. We need the
following useful theorems.

Theorem 5.1 [Impagliazzo-Paturi [35, Lemma 2]] Let F be a k-CNF formula on m
clauses such that every satisfying assignment to F has at least δn variables set to true
for any δ > 0. For any ε > 0, there exists a k′ > 0 and F ′, which is a disjunction of
at most 2εn k′-CNFs on at most n(1 − δ/(ek)) variables such that F is satisfiable iff
F ′ is satisfiable. Moreover F ′ can be computed from F in 22εnpoly(m) time.

Theorem 5.2 [#SAT for Boolean formulas [58, Theorem3.4]]For any k > 0,#SAT for
Boolean formulas with n variables and m connectives has a Merlin–Arthur proof sys-
tem using 2n/2poly(n,m) timewith randomness O(n) and error probability 1/ exp(n).

Recall that the binary entropy function H(·) is defined by taking

H(p) = −p log p − (1 − p) log(1 − p)

for all p ∈ (0, 1). We prove the following result.

Theorem 5.3 For all δ ∈ (0, 1/2) and all sufficiently large integers k > 0, k-UNSAT
has a Merlin–Arthur protocol that runs in time

(
2n(1/2−δ/(6k)) + 2H(δ)n

)
poly(n,m).

Proof The idea behind this protocol is to handle the assignments with fewer than δn
variables set to true, and the assignments with more than δn variables set to true, sep-
arately. Once we have verified that there are no assignments with δn variables set to

123

2416 Algorithmica (2023) 85:2395–2426

true, we can make use of Theorem 5.1 to decompose the formula into formulas with
fewer variables. Formally, the protocol proceeds as follows:

Given a k-CNF F on n variables and m clauses, Merlin and Arthur certify the
unsatisfiability of F as follows:

1. Arthur enumerates over all possible O(2H(δ)n) assignments with at most δn vari-
ables set to true and verifies that none of them satisfy F .

2. Arthur uses Theorem 5.1 with ε = 1/k2 to obtain at most t = 2n/k2 k′-CNFs
F ′
1 . . . F ′

t on n(1 − δ/(ek)) variables each.
3. Then, Merlin and Arthur run the protocol from Theorem 5.2, with Merlin sending

the proofs for each of F ′
1 . . . F ′

t and Arthur verifying their unsatisfiability, taking
2n(1/2−δ/(2ek))poly(n,m) time for each.9

Verifying unsatisfiability for all the F ′
i ’s in step 3 takes time

2n/k2 · 2n/2−δ/(2ek)poly(n,m) ≤ 2n/2−δn/(6k)poly(n,m),

where the inequality holds for sufficiently large k (for example, k ≥ 60 suffices). Thus,
the total time taken by Arthur for verification is

(
2n/2−δn/(6k) + 2H(δ)n

)
poly(n,m).

This completes the proof. ��
Reminder of Theorem 1.7 There is a universal constant δ > 0 such that for all
sufficiently large integers k > 0, we can verify any unsatisfiable n-variable m-clause
k-CNF with a Merlin–Arthur protocol running in 2n(1/2−δ/k) · poly(n,m) time.

Proof We apply Theorem 5.3 by setting δ ∈ (0, 1/2) to be small enough that H(δ) ≤
2δ log2(1/δ) ≤ 1/2 − δ/k holds for every k ≥ 1. Then, the protocol of Theorem 5.3
runs in O(2n(1/2−δ/(6k))) time for all large enough integers k. ��

6 Faster MA Protocols Require Non-Algebrizing Techniques

In this section, we observe that:

(a) Williams’ protocol for #SAT (which runs in poly(n,m) · 2n/2) algebrizes, and
(b) No algebrizing Merlin–Arthur protocol for UNSAT runs in time 2n/2/nω(1), even

for unsatisfiability of 1-CNF formulas.

We stress that both of these are observations, which do not require any significant
ideas that are not already in the literature. However, we find them striking to consider
in the context of our other Merlin–Arthur protocols such as Theorem 1.7, which beat
2n/2 time by exploiting the structure of k-CNF formulas.

First, we observe that Williams’ protocol naturally algebrizes. Let A : {0, 1}� →
{0, 1} be an arbitrary oracle. For a constant k ∈ N, we say that a k-CNFA formula is

9 Technically, Merlin speaks before Arthur in a Merlin–Arthur protocol, but note that Merlin could have
sent all of his proofs from step 3 prior to steps 1 and 2.

123

Algorithmica (2023) 85:2395–2426 2417

a k-CNF in n variables x1, . . . , xn whose atoms are either literals, or they are of the
form A(xi1 , . . . , Aik′) where k

′ ∈ [k] and each i j ∈ [n]. For example,

(x1 ∨ A(x2, x3) ∨ A(x3, x3, x5)) ∧ (¬x2 ∨ ¬x3 ∨ A(x7, x6, x7))

is a 3-CNFA formula. Recall that 3-CNF-SATA (where we are given a CNFA formula
F A and are asked if F A is satisfiable) is NPA-complete, and its corresponding counting
version #3-CNF-SATA is #PA-complete. This definition appeared in [24, 51].

Reminder of Proposition 1.8 For every oracle A, #CNF-SATA on formulas with n
variables and size poly(n) can be computed in Merlin–Arthur time 2n/2 ·poly(n) with
oracle access to the multilinear extension of A over any field of characteristic greater
than 2n (and order at most 2poly(n)).

Proof Sketch The proposition follows almost directly from the same sort of argument
used by Aaronson andWigderson [6] to show that PSPACE = IP algebrizes, applying
it to Williams’ protocol. Given a #CNF-SATA instance F A on n variables with poly(n)

size, we can think of F A as an AND of poly(n) ORs of poly(n) literals plus copies of
the oracle A which take variables as input. We convert F A into an arithmetic circuit
over Fp where p > 2n is a prime in the natural way, where the ANDs and ORs are
replaced by corresponding multilinear polynomials of degree at most poly(n), and
the copies of oracle A are replaced by calls to the multilinear extension Ã of A. This
results in an arithmetic circuit C of at most poly(n) degree that agrees with F A on
all Boolean assignments, with the property that C can be evaluated on any particular
assignment in (Fp)

n in poly(n) time, provided p < 2poly(n). Note that we are using
the fact that we have oracle access to Ã: without it, we would not necessarily be able
to evaluate C in poly(n) time.

The Merlin–Arthur protocol then divides the set of variables into two halves,
and creates a new arithmetic circuit C ′ on n/2 variables, which equals the sum of
C(x1, . . . , xn/2, �a)where �a ranges over all 2n/2 Boolean assignments to the secondhalf
of variables.Merlin tells Arthur a list of values v1, . . . , v2n/2 ∈ Fp, andwishes to prove
to Arthur that C ′(bi) = vi for all i = 1, . . . , 2n/2, where b1, . . . , b2n/2 ∈ {0, 1}n/2

is a list of all Boolean assignments to the first half of variables (if Merlin can do so,∑
i vi will equal the number of satisfying assignments to F A). This is achieved by

first defining “interpolating polynomials” Q1, . . . , Qn/2 such that for a fixed list of
2n/2 distinct elements α1, . . . , α2n/2 ∈ Fp, we have that Qi (α j) outputs the i-th bit
of the assignment b j . Note that each Qi has degree at most 2n/2. Merlin sends to
Arthur a univariate polynomial P(y) of degree 2n/2 · poly(n) representing the circuit
C ′ composed with these Qi ’s. Arthur checks P by:

(a) Picking a random point a ∈ Fp, and confirming that C ′(Q1(a), . . . , Qn/2(a)) =
P(a), in 2n/2 · poly(n) time (using the properties of our C and C ′), and

(b) Checking for all i = 1, . . . , 2n/2 that P(αi) = vi in 2n/2 · poly(n) time, using fast
univariate polynomial evaluation.

Finally, Arthur concludes that
∑2n/2

i=1 vi equals the number of satisfying assignments
to F A. ��

123

2418 Algorithmica (2023) 85:2395–2426

Definition 6.1 [DISJ] In the set-disjointness problem (DISJ), Alice and Bob get n-bit
strings x and y, respectively, and their goal is to determine whether

∑
i∈[n/2] xi · yi = 0

holds.

Recall that in a Merlin–Arthur communication protocol between Alice and Bob:
Merlin sends a proof to both Alice and Bob, and then Alice and Bob run a randomized
communication protocol given their inputs and the proof fromMerlin to decidewhether
they accept or not. The complexity of this protocol is bounded by the proof length of
Merlin plus the maximum number of bits communicated between Alice and Bob.10

Now we show that this protocol is actually optimal among those which algebrize.

Reminder of Proposition 1.9 There is an oracle A such that there is no Merlin–
Arthur protocol running in 2n/2/nω(1) time for 1-UNSATA, even for protocols with
oracle access to the multilinear extension of A (over any field of order 2poly(n)).

Proof Our proof directly follows the connection between communication complex-
ity lower bounds and non-algebrizing results that was already described in [6]. For
completeness, we give a self-contained proof.

Suppose for contradiction that for all oracles A, there is aMerlin–Arthur protocol for
instances of 1-UNSATA instance on n variables and poly(n) size that runs in 2n/2/nω(1)

time where the protocol has oracle access to Ã, the (unique) multilinear extension of A
overFq for someprimepowerq ≤ 2poly(n).Wewill show thatDISJhas aMerlin–Arthur
communication protocol with o(

√
n) communication on n-bit strings, contradicting

the known
√
n lower bound for Merlin–Arthur protocols computing DISJ [38].

Let Alice hold input x and Bob hold input y, each of length n/2 (without loss of
generality, we assume that n is a power of 2). We think of Alice as holding half the
bits of an oracle A : [n/2] × {0, 1} → {0, 1} and Bob holding the other half. More
precisely,

x = A(1, 0)A(2, 0) · · · A(n/2, 0) and y = A(1, 1)A(2, 1) · · · A(n/2, 1).

We want to compute

DISJ(x, y) =
⎡

⎣
∑

i∈[n/2]
A(i, 0) · A(i, 1) = 0

⎤

⎦ ,

where [P] takes value 1 if the statement P is true, and 0 otherwise.
Letting t = log2(n/2) and letting our formula be

F A(z1, . . . , zt) = A(z1, . . . , zt , 0) ∧ A(z1, . . . , zt , 1),

it is clear that DISJ(x, y) = 1-UNSATA(F A) (note that F A is a 1-SATA formula).

10 As in standard Merlin–Arthur protocols, there exists a proof from Merlin making them accept with
probability 1 given a yes instance, and they reject every possible proof with high probability given a no
instance.

123

Algorithmica (2023) 85:2395–2426 2419

By assumption, there is a Merlin–Arthur protocol (with access to the unique mul-
tilinear extension Ã) running in time 2t/2/tω(1) for computing 1-UNSATA(F A). Let
n1 = 2t/2/tω(1) = √

n/(log n)ω(1). By definition, the algorithm proceeds by guessing
n1 bits, randomly choosing n1 bits, and then running an n1-time algorithm that makes
at most n1 calls to Ã.

Alice and Bob compute DISJ as follows. First, they both know the formula F A

(but not necessarily the oracle A). So they just start simulating the MA protocol for
1-UNSATA(F A) separately. They can obviously simulate the Merlin and Arthur steps
in an MA communication protocol, by having “public” nondeterminism of n1 bits
followed by “public” randomness. To simulate the deterministic algorithm making
oracle calls, Alice and Bob have to communicate as follows. To handle all n1 oracle
calls, they need to make up to n1 evaluations of

Ã(a1, . . . , at , at+1)

on given tuples of points a in F
t+1
q (the tuple is determined by all the information

computed so far, which both Alice and Bob know). Note that because Ã is multilinear,
we can always write

Ã(a1, . . . , at , at+1) = at+1 · A1(a1, . . . , at) + (1 − at+1)A0(a1, . . . , at)

for some multilinear A0 and A1.
Now, what are these A0 and A1?Well, whenwe plug in at+1 = 0, Ã = A0, and note

the remaining function has a truth table equal to x . Similarlywhenwe plug in at+1 = 1,
the remaining function has a truth table equal to y, which is just A1. Therefore Alice
can actually compute A0(a1, . . . , at) by herself, and Bob can compute A1(a1, . . . , at).
So to evaluate Ã(a1, . . . , at , at+1), the two only have to exchange O(log(q)) bits (the
values of A0 and A1 on these tuples). Thus they can simulate each query to Ã using
O(log(q)) ≤ poly(t) ≤ polylog(n) bits of communication. It follows that they can
jointly computeDISJwith only n1·polylog(n) = o(

√
n) communication, contradicting

the known
√
n lower bound for Merlin–Arthur protocols computing DISJ. ��

7 Quantified Boolean Formulas

We consider Quantified Boolean Formulas (QBFs) in prenex normal form

(Q1x1) · · · (Qnxn) F(x1, . . . , xn),

where F is an arbitrary propositional formula of size m, preceded by quantifiers of
the form Qi ∈ {∃,∀}.

Williams [58] gave a 3-round interactive protocol (i.e., an AMA protocol) for QBFs
that ran in O∗(22n/3) time. It was asked as an open question [58] whether there is a
2-round Merlin–Arthur protocol for QBFs with O∗(2(1−ε)n) running time for some
constant ε > 0. Here we resolve this open problem:

123

2420 Algorithmica (2023) 85:2395–2426

Reminder of Theorem 1.10 True Quantified Boolean Formulas (TQBF) with n vari-
ables and size m ≤ 2n can be certified by a Merlin–Arthur protocol running in
24n/5 · poly(n,m) time.

Our new protocol follows the basic outline of Williams’ earlier AMA protocol [58,
Section 4], with several key differences we highlight in the proof.

We will prove the following lemma.

Lemma 7.1 Let

φ = (Q1x1) · · · (Qnxn) F(x1, . . . , xn)

be a QBF. Suppose there exist integers 1 ≤ k ≤ � ≤ n such that the last � quantifiers,
Qn−�+1, . . . , Qn, contain at most k universal quantifiers. Then

• ifφ is a trueQBF,we can certifyφ inMerlin–Arthur time (2n+k−�+2�)·poly(n,m),
and

• if φ is a false QBF, we can refute φ in Merlin–Arthur time (2n+2k−� + 2�+k) ·
poly(n,m).

Before proving Lemma 7.1, we show that it implies the claimed QBF protocol.

Proof of Theorem 1.10 using Lemma 7.1 Let φ = (Q1x1) · · · (Qnxn) F(x1, . . . , xn) be
a true QBF to certify. Let 0 < α < δ < 1 be two constant parameters to be determined
later. As in [58], we divide into two cases depending on the number of universal
quantifiers contained in the last δn quantifiers, (Qn−δn+1xn−δn+1) · · · (Qnxn).

• Case 1: The last δn quantifiers contain at most αn universal quantifiers.
In this case, the first item in Lemma 7.1 implies a Merlin–Arthur protocol in
(2(1+α−δ)n + 2δn) · poly(n,m) time.

• Case 2: The last δn quantifiers contain more than αn universal quantifiers.
In this case, we prove that ¬φ is false using the second item in Lemma 7.1. Since
the last δn quantifiers in ¬φ has more than αn existential quantifiers and less than
δn−αn universal quantifiers, applying Lemma 7.1 gives aMerlin–Arthur protocol
in (2(1+δ−2α)n + 2(2δ−α)n) · poly(n,m) time.

Setting α = 2/5, δ = 3/5 yields a 24n/5 · poly(n,m) time Merlin–Arthur protocol as
claimed. ��

To complete the argument, it remains to prove Lemma 7.1.

Proof of Lemma 7.1 First, we apply the same strategy as in [58]. Convert the proposi-
tional formula F to an equivalent arithmetic formula P of poly(m) degree and size,
by replacing A∧ B with A · B and replacing A∨ B with A+ B − A · B. Note that P
outputs 0 or 1 on every Boolean input. Then, we convert the subformula

φ′(x1, . . . , xn−�) = (Qn−�+1xn−�+1) · · · (Qnxn) P(x1, . . . , xn)

into an arithmetic formula P ′, by replacing each (∃xi) with a sum over xi ∈
{0, 1}, and each (∀xi) with a product over xi ∈ {0, 1}. Note that for every

123

Algorithmica (2023) 85:2395–2426 2421

a1, . . . , an−� ∈ {0, 1}n−�, P ′(a1, . . . , an−�) evaluates to a positive integer if the sub-
formula φ′(a1, . . . , an−�) is true, and evaluates to zero if φ′(a1, . . . , an−�) is false.

Note that P ′ has a depth-� binary tree structure with each leaf being a copy of P .
The size of P ′ is at most 2� · poly(m), and the degree of P ′ is at most 2k · poly(m),
since there are at most k layers of multiplication gates in this binary tree. For every
Boolean input a1, . . . , an−� ∈ {0, 1}n−�, observe that the output of P ′(a1, . . . , an−�)

is a non-negative integer no larger than (2n · m)O(2k).
Now we separately consider the two scenarios. ��
Case 1: To prove φ is true. In this case, Merlin sends Arthur a prime p from the

interval [2, 22n2 · m], such that, for every a1, . . . , an−� ∈ {0, 1} with P ′(a1, . . . an−�)

being a positive integer (over Z), P ′(a1, . . . an−�) mod p is also non-zero (over Fp).
The existence of such prime p was already proved in [58, Section 4] using a standard
argument by considering the number of prime factors of P ′(a1, . . . an−�) and applying
a union bound.

Then, Merlin and Arthur perform Williams’ [58] batch-evaluation protocol (Theo-
rem 2.2) over the field Fp: Merlin sends the correct values of P ′(a1, . . . an−�) mod p
over all a1, . . . , an−� ∈ {0, 1}, together with a proof of length Õ(2n−� · deg(P ′) ·
log(p)) ≤ 2n−�+k · poly(n,m). Then Arthur verifies the proof

Õ(2n−� · deg(P ′) + size(P ′)) · poly log(p) ≤ (2n−�+k + 2�) · poly(n,m)

time. Finally, Arthur uses these values to certify

φ = (Q1x1) · · · (Qn−�xn−�) φ′(x1, . . . , xn−�)

is true in O(2n−�) time.
The only concern is that the prime p sent by Merlin might not satisfy the

required condition: there could exist some (a1, . . . , an−�) ∈ {0, 1}n−� where
P ′(a1, . . . , an−�) is non-zero over Z but is zero over Fp, so that Arthur will be
evaluating φ = (Q1x1) · · · (Qn−�xn−�)φ

′(x1, . . . , xn−�) based on incorrect values
of φ′(a1, . . . , an−�). However, Merlin is not able to cheat by doing this, since the
value of φ is monotone increasing in the values of φ′(a1, . . . , an−�), and modifying
some of these values from true to false will never change the value of φ from false to
true.

We remark that the only difference of this protocol from the previousAMAprotocol
[58] is that we let Merlin send the prime p, whereas [58] let Arthur send a random p
(which satisfies the required condition with high probability), costing an extra round
of interaction.

Case 2: To prove φ is false.Note that the previous protocol for the “φ is true” case
no longer applies here, since Merlin would be able to cheat by picking a prime p that
makes many of the positive integers P ′(a1, . . . , an−�) vanish in Fp.

Recall that these positive integers P ′(a1, . . . , an−�) are upper bounded by (2n ·
m)O(2k). Instead of picking a single prime p for the protocol, Merlin picks s distinct
primes p1 < p2 < · · · < ps so that their product p1 p2 · · · ps is larger than this
upper bound. In this way, by Chinese Remainder Theorem we can ensure that, every

123

2422 Algorithmica (2023) 85:2395–2426

positive integer P ′(a1, . . . , an−�) is non-zero mod p j for at least one 1 ≤ j ≤ s.
Then, we can simply run the previous protocol for every p j (1 ≤ j ≤ s), in total time
s · (2n−�+k + 2�) · poly(n,m, log ps).

By choosing the smallest s primes p1 < · · · < ps such that p1 p2 . . . ps > (2n ·
m)�(2k), we can ensure the above algorithm works with parameter choices s ≤ 2k ·
poly(n logm), and ps ≤ O(s · log s) by the prime number theorem. Hence, the total
time complexity is (2n−�+2k + 2k+�) · poly(n,m). ��

8 Open Questions

There remain many interesting open problems concerning the nondeterministic and
Merlin–Arthur complexity of problems in fine-grained complexity. A few questions
which are particularly relevant to our work are highlighted below.

• Is there a faster Merlin–Arthur protocol for solving Subset Sum? Corollary 1.2
gives a 2n/3 · poly(n) time protocol using a linear-time protocol for 3-SUM. There
are deterministic algorithms which solve Subset Sum in 2n/2 · poly(n) time, so it
seems plausible (by analogy with Williams’ Merlin–Arthur protocol for counting
satisfying assignments) that one could achieve a quadratic improvement over this
speed and certify that an instance of Subset Sum has no solution in 2n/4 · poly(n)

Merlin–Arthur time.
Is there a 2n/4 · poly(n)-time Merlin–Arthur protocol for certifying that a Subset
Sum instance has no solutions? Such a protocol would exist, for example, if there
was a linear time Merlin–Arthur protocol for 4-SUM.

• Our Merlin–Arthur protocol for APSP presented in Corollary 1.6 yields near-
optimal protocols for many related graph problems on dense graphs. Can similar
improvement be achieved on sparse graphs? For example, is there a constant ε > 0
such that there exists an n2−ε-time Merlin–Arthur protocol for computing the
diameter of a graph with n nodes and O(n) edges?

• Our Merlin–Arthur protocol from Theorem 1.5 counts the number of zero-weight
5-cliques in Õ(nm) time, which could be as large as n3 for dense graphs. Is
there an Õ(n2.5)-timeMerlin–Arthur protocol for this problem (or, the problem of
certifying that no such clique exists)? Achieving the constant 2.5 in the exponent
of the runtimewould yield a quadratic improvement over the deterministic n5-time
algorithm for zero-weight 5-clique.

• Is there a 2n/2 ·poly(n)-timeMerlin–Arthur protocol for certifying TrueQuantified
Boolean Formulas? Currently, the best Merlin–Arthur protocol runs in 24n/5 ·
poly(n) time, and the best AMA protocol takes 22n/3 · poly(n) time [58].

• Suppose the Nonuniform NSETH holds (e.g., there is no infinite family of nonde-
terministic circuits {Cn} of size 1.999n that correctly solves CNF unsatisfiability
on n-variable formulas of poly(n) size). This would also imply a lower bound for
(one-round) Arthur–Merlin protocols. Would this hypothesis further imply inter-
esting Arthur–Merlin communication lower bounds? Proving non-trivial lower
bounds on two-party Arthur–Merlin communication complexity is an infamously
difficult problem; as far as we know, two-party Arthur–Merlin communication

123

Algorithmica (2023) 85:2395–2426 2423

could be very powerful (see for example [26, 39]). Perhaps an interesting lower
bound for the Disjointness problem follows from Nonuniform NSETH?

• Given a universe U = {1, . . . , n} of n elements, a family F of subsets of U , and
a target integer t , the #Set Cover problem is the task of computing how many
choices of t sets from F have the property that their union equals U . Similarly,
the #Exact Cover is the task of counting how choices of t pairwise disjoint sets
from F have their union equal to U .
Both these problems can be solved deterministically in 2n · poly(n) time. How-
ever, in the Merlin–Arthur setting, although there is a

(
2n/2 + |F |) poly(n)-time

protocol for solving #Exact Cover, the fastest known protocol for solving #Set
Cover takes 2n/2|F |·poly(n) time [11]. Is there a fasterMerlin–Arthur protocol for
#Set Cover, or is #Set Cover truly harder than #Exact Cover in the Merlin–Arthur
setting for families consisting of 2�(n) sets?

• To what extent can our Merlin–Arthur protocols be derandomized to obtain better
nondeterministc algorithms for fine-grained problems? For example, derandom-
izing our protocol for 3-SUM without a loss in the running time would imply a
nondeterministic derandomization of Freivald’s verification algorithm for Boolean
Matrix Multiplication [41, Theorem 1.1] and answer an open question raised by
[41]. Finding faster nondeterministic verifiers in this way may also lead to new
barriers in deterministic fine-grained reductions between problems [16].

For all of the problems discussed above, evidence against the existence of a better
algorithm or protocol (via conditional hardness results) would also be interesting.

Acknowledgements We thank Virginia Vassilevska Williams for offering helpful comments on early ver-
sions of our arguments.We thank JesperNederlof for answering a question about hisMerlin–Arthur protocol
for Subset Sum [46].

Author Contributions All authors contributed equally.

Funding Open Access funding provided by the MIT Libraries.

Data Availability statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Declarations

Conflict of interest statement None

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

2424 Algorithmica (2023) 85:2395–2426

References

1. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are optimal, so is Valiant’s
parser. SIAM J. Comput. 47(6), 2527–2555 (2018)

2. Abboud, A., Georgiadis, L., Italiano, G.F., Krauthgamer, R., Parotsidis, N., Trabelsi, O., Uznański,
P., Wolleb-Graf, D.: Faster algorithms for all-pairs bounded min-cuts. In: Proceedings of the 46th
International Colloquium on Automata, Languages, and Programming (ICALP 2019), pp. 7:1–7:15
(2019)

3. Abboud, A., Grandoni, F., Williams, V.V.: Subcubic equivalences between graph centrality problems,
APSP and diameter. In: Proceedings of the Twenty-Sixth Annual ACM-SIAMSymposium on Discrete
Algorithms (SODA 2015), pp. 1681–1697 (2015)

4. Austrin, P., Koivisto, M., Kaski, P., Nederlof, J.: Dense subset sum may be the hardest. In:Proceedings
of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), pp. 13:1–13:14
(2016)

5. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp. 522–539 (2021)

6. Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. ACMTrans. Comput.
Theory 1(1), 2:1-2:54 (2009)

7. Abboud, A., Williams, R., Yu, H.: More applications of the polynomial method to algorithm design.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2015), pp. 218–230 (2015)

8. Boix-Adserà, E., BrennanM.S., Bresler, G.: The average-case complexity of counting cliques in Erdős–
Rényi hypergraphs. In: Proceedings of the 60th IEEEAnnual Symposium on Foundations of Computer
Science (FOCS 2019), pp. 1256–1280 (2019)

9. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S., Pǎtraşcu,
M., Taslakian, P.: Necklaces, convolutions, and X+Y. Algorithmica 69(2), 294–314 (2014)

10. Backurs, A., Dikkala, N., Tzamos, C.: Tight hardness results for maximum weight rectangles. In:
Proceedings of the 43rd International ColloquiumonAutomata, Languages, and Programming (ICALP
2016), pp. 81:1–81:13 (2016)

11. Björklund, A., Kaski, P.: How proofs are prepared at Camelot: extended abstract. In: Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing (PODC 2016), pp. 391–400 (2016)

12. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming (ICALP 2014), Part I, pp. 223–
234 (2014)

13. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained hardness. In: Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 483–496
(2017)

14. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case assumptions. In:
Proceedings of the 38th Annual International Cryptology Conference (CRYPTO 2018), Part I, pp.
789–819 (2018)

15. Chakrabarti, A., Ghosh, P.: Streaming verification of graph computations via graph structure.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019), volume 145 of LIPIcs, pp. 70:1–70:20 (2019)

16. Carmosino, M.L., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.: Nondeterministic
extensions of the strong exponential time hypothesis and consequences for non-reducibility. In: Pro-
ceedings of the 2016 ACMConference on Innovations in Theoretical Computer Science (ITCS 2016),
pp. 261–270 (2016)

17. Chakrabarti, A., Ghosh, P., Thaler, J.: Streaming verification for graph problems: optimal tradeoffs and
nonlinear sketches. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2020), volume 176 of LIPIcs, pp. 22:1–22:23 (2020)

18. Cygan, M., Mucha, M., Węgrzycki, K., łodarczyk Michał W,: On problems equivalent to (min, +)-
convolution. ACM Trans. Algorithms 15(1), 14:1–14:25 (2019)

19. Chen, L., Williams, R.: An equivalence class for orthogonal vectors. In: Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 21–40. SIAM (2019)

20. Chan, T.M.,Williams,R.R.:DeterministicAPSP, orthogonal vectors, andmore: quickly derandomizing
Razborov–Smolensky. ACM Trans. Algorithms 17(1), 2:1-2:14 (2021)

123

Algorithmica (2023) 85:2395–2426 2425

21. Dalirrooyfard, M., Lincoln, A., Williams, V.V.: New techniques for proving fine-grained average-case
hardness. In: Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer Science
(FOCS 2020), pp. 774–785 (2020)

22. Fiduccia, C.M.: Polynomial evaluation via the division algorithm: the fast Fourier transform revisited.
In: Proceedings of the 4th Annual ACMSymposium on Theory of Computing (STOC 1972), pp. 88–93
(1972)

23. Gao, J., Impagliazzo, R., Kolokolova, A., Williams, R.: Completeness for first-order properties on
sparse structures with algorithmic applications. ACM Trans. Algorithms 15(2), 23:1-23:35 (2019)

24. Goldsmith, J., Joseph, D.: Relativized isomorphisms of NP-complete sets. Comput. Complex. 3, 186–
205 (1993)

25. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational geometry. Comput.
Geom. 5, 165–185 (1995)

26. Göös, M., Pitassi, T., Watson, T.: The landscape of communication complexity classes. Comput.
Complex. 27(2), 245–304 (2018)

27. Goldreich, O., Rothblum G.N.: Counting t-cliques: Worst-case to average-case reductions and direct
interactive proof systems. In: Proceedings of the 59th IEEE Annual Symposium on Foundations of
Computer Science (FOCS 2018), pp. 77–88 (2018)

28. Goldreich, O., Rothblum, G.N.: Simple doubly-efficient interactive proof systems for locally-
characterizable sets. In: 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pp. 18:1–18:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2018)

29. Goldreich, O., Rothblum, G.N.: Constant-round interactive proof systems for AC0[2] and NC1. In:
Computational Complexity and Property Testing - On the Interplay Between Randomness and Com-
putation, volume 12050 of Lecture Notes in Computer Science, pp. 326–351. Springer (2020)

30. Goldreich, O., Rothblum, G.N.: Worst-case to average-case reductions for subclasses of P. In: Compu-
tational Complexity and Property Testing - On the Interplay Between Randomness and Computation,
volume 12050 of Lecture Notes in Computer Science, pp. 249–295. Springer (2020)

31. Horowitz, E.: A fast method for interpolation using preconditioning. Inf. Process. Lett. 1(4), 157–163
(1972)

32. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM
21(2), 277–292 (1974)

33. Hirahara, S., Shimizu, N.: Nearly optimal average-case complexity of counting bicliques under SETH.
In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp.
2346–2365 (2021)

34. Impagliazzo,R.,Kabanets,V.,Kolokolova,A.:An axiomatic approach to algebrization. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pp. 695–704 (2009)

35. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
36. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)
37. Jafargholi, Z., Viola, E.: 3SUM, 3XOR, triangles. Algorithmica 74(1), 326–343 (2016)
38. Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In: Proceedings

of the 18th Annual IEEE Conference on Computational Complexity (CCC 2003), pp. 118–134 (2003)
39. Klauck, H.: OnArthurMerlin games in communication complexity. In:Proceedings of the 26th Annual

IEEE Conference on Computational Complexity (CCC 2011), pp. 189–199 (2011)
40. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput.

40(6), 1767–1802 (2011)
41. Künnemann, M.: On nondeterministic derandomization of Freivalds’ algorithm: consequences,

avenues and algorithmic progress. In: Proceedings of the 26th Annual European Symposium on Algo-
rithms (ESA 2018), pp. 56:1–56:16 (2018)

42. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pp. 296–303 (2014)

43. LaVigne, R., Lincoln, A., VassilevskaWilliams,V.: Public-key cryptography in the fine-grained setting.
In: Proceedings of the 39th Annual International Cryptology Conference (CRYPTO 2019), Part III,
pp. 605–635 (2019)

44. Lincoln, A., Williams, V.V., Williams, R.L.: Tight hardness for shortest cycles and paths in sparse
graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2018), pp. 1236–1252 (2018)

123

2426 Algorithmica (2023) 85:2395–2426

45. Nederlof, J.: A short note on Merlin–Arthur protocols for subset sum. Inf. Process. Lett. 118, 15–16
(2017)

46. Nederlof, J.: Personal communication (2021)
47. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carol.

26(2), 415–419 (1985)
48. Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the 42nd

ACM Symposium on Theory of Computing (STOC 2010), pp. 603–610 (2010)
49. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Efficient batch verification for UP. In: Proceedings of

the 33rd Computational Complexity Conference (CCC 2018), pp. 22:1–22:23 (2018)
50. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating com-

putation. SIAM J. Comput. 50(3), STOC16-255–STOC16-340 (2021)
51. Schöning, U.: A note on complete sets for the polynomial-time hierarchy. SIGACTNews 13(1), 30–34

(1981)
52. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th

Symposium on Theory of Computing Conference (STOC 2012), pp. 887–898 (2012)
53. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In: Proceedings of the

International Congress of Mathematicians, pp. 3447–3487. World Scientific (2018)
54. Virginia Vassilevska Williams and Ryan Williams: Finding, minimizing, and counting weighted sub-

graphs. SIAM J. Comput. 42(3), 831–854 (2013)
55. Williams, V.V., Williams, R.R. Subcubic equivalences between path, matrix, and triangle problems. J.

ACM 65(5), 27 (2018)
56. Williams, V.V., Wang, J.R., Williams, R., Yu, H.: Finding four-node subgraphs in triangle time. In:

Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2015), pp. 1671–1680 (2015)

57. Williams, V.V., Xu, Y.: Monochromatic triangles, triangle listing and APSP. In: Proceedings of the 61st
IEEE Annual Symposium on Foundations of Computer Science (FOCS 2020), pp. 786–797 (2020)

58. Williams, R.: Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of batch evalua-
tion. In: Proceedings of the 31st Conference on Computational Complexity (CCC 2016), pp. 2:1–2:17
(2016)

59. Williams, R.R.: Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput. 47(5), 1965–
1985 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Improved Merlin–Arthur Protocols for Central Problems in Fine-Grained Complexity
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Organization

	2 Preliminaries
	3 An Improved Merlin–Arthur Protocol for k-SUM
	3.1 Implications of the k-SUM protocol

	4 Counting Zero-Weight Cliques
	5 Unsatisfiability of k-CNFs
	6 Faster MA Protocols Require Non-Algebrizing Techniques
	7 Quantified Boolean Formulas
	8 Open Questions
	Acknowledgements
	References

