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Complex Background Information Slows Down Parallel Search Efficiency
by Reducing the Strength of Interitem Interactions

Andrea Yaoyun Cui, Alejandro Lleras, Gavin Jun Peng Ng, and Simona Buetti
Department of Psychology, University of Illinois at Urbana-Champaign

In the laboratory, visual search is often studied using uniform backgrounds. This contrasts with search in
daily life, where potential search items appear against more complex backgrounds. In the present study,
we examined the effects of background complexity on a parallel visual search under conditions where
objects are easily segregated from the background. Target—distractor similarity was sufficiently low such
that search could unfold in parallel, as indexed by reaction times that increase logarithmically with set
size. The results indicate that when backgrounds are relatively simple (sandy beach with water elements),
search efficiency is comparable to search using a solid background. When backgrounds are more complex
(child bedroom or checkerboard), logarithmic search slopes increase compared to search on solid back-
grounds, especially at higher levels of target—distractor similarity. The results are discussed in terms of dif-
ferent theories of visual search. It is proposed that the complex visual information occurring in between
distractors slows down individual distractor rejection times by weakening the strength of interitem
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interactions.

Public Significance Statement

We compare how quickly human observers search through objects in an environment while manipulat-
ing the complexity of the background surfaces on which those objects rest. Our results demonstrate that,
when the search task is relatively easy, the complexity of the visual information that is present in between
objects can significantly slow down the speed at which observers search through that environment, even
when those objects are easily distinguishable from the backgrounds on which they appear. These results
suggest that future studies should study more carefully the perceptual interactions between nontarget
objects, and the factors that impact the strength of those interactions.
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In daily life, we search for objects in different contexts, such as
when searching for car keys on a counter or searching for a carton
of milk of a certain brand on the supermarket shelf. Most of the
time, these objects are embedded in more complex backgrounds
than the ones used in classic laboratory search paradigms, which
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are typically uniform in color (e.g., Alexander & Zelinsky, 2011;
Farmer & Taylor, 1980; Rosenholtz et al., 2004; Wang et al.,
2017). Backgrounds have been shown to impact search performance
on several fronts. For instance, backgrounds can reduce the visibility
of objects (camouflaging effect), which can slow down search dra-
matically (e.g., Boot et al., 2009; De Vries et al., 2013; Geisler &
Chou, 1995; Neider et al., 2010).

Background information can also guide attention, impacting search
behavior. Torralba et al. (2006; see also Pereira & Castelhano, 2019)
famously proposed a new model of guidance that combines both con-
textual guidance (i.e., prior knowledge of the likely locations of objects
in daily scenes) with a more traditional bottom-up salience analysis of
the scene. Torralba et al.’s model predicts eye fixations of participants
searching for targets on real-life images to a greater extent than salience
alone. For example, when searching for a painting, the model predicts
that people will inspect vertical surfaces where paintings are typically
hung, whereas when searching for a coffee mug, it predicts people will
inspect kitchen counters or tables. More recently, Wolfe’s Guided
Search 6.0 (2021) incorporates a “nonselective pathway” that enables
visual awareness of the entire field of view and allows for the rapid
extraction of scene gist and ensemble statistics without requiring selec-
tive attention. The nonselective pathway carries much of the informa-
tion responsible for scene guidance effects such as scene meaning
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(e.g., Henderson & Hayes, 2017), consistent object—scene location
associations (e.g., Torralba et al., 2006), and consistent object—object
associations (Vo, 2021).

In addition to potential camouflaging and semantic/context guid-
ance effects, background information might also impact search behav-
ior by altering the type and/or quality of the perceptual representations
that the visual system has access to when searching. Indeed, in recent
years, there has been a growing realization that visual search theories
ought to better incorporate the known processing characteristics of
peripheral vision into their mechanistic accounts of guidance in com-
plex scenes (e.g., Hulleman & Olivers, 2017; Lleras et al., 2022;
Rosenholtz, Huang, & Ehinger, 2012). The most sophisticated
account of peripheral vision’s impact on search is the texture
tiling model (TTM) put forward by Rosenholtz and colleagues
(Chang & Rosenholtz, 2016; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, et al., 2012; Zhang et al., 2015). TTM pro-
poses that in the periphery, processing unfolds in a pooled fashion:
some 30 or so visual properties are computed over regions that
increase in area as their eccentricity increases. These statistical prop-
erties computed over that region are the ones used by Portilla and
Simoncelli (2000) in their model of textural effects in the vision.
The statistics range in complexity from fairly simple ones (like
mean, variance, and range of luminance in the patch) to increasingly
more complex ones (such as autocorrelations, magnitude correlations,
and relative phase statistics; for more, see Balas et al., 2009). The key
point here is that perceptual representations in the periphery are not
“object” or “feature” centered necessarily, but rather represent statis-
tics computed over the entirety of each pooling region. Rosenholtz,
Huang, Raj, et al. (2012) demonstrated that visual search efficiency
for any target—distractor pair of stimuli can be predicted by the visual
system’s ability to discriminate peripheral patches that contain the tar-
get (plus some distractor stimuli) from those that only contain
distractors.

One current unknown regarding the TTM is that the model was
developed based on data from experiments with uniform back-
grounds; thus, it is difficult to know what the model would predict
would happen when objects are placed in complex backgrounds.
Does the computation of pooled statistics in the periphery blend,
in a way, the visual characteristics of the search stimuli with that
of the background? If so, one can make the prediction that the pres-
ence of complex visual signals in the background will necessarily
slow down search, if for no other reason that these features will basi-
cally decrease the target signal, or in TTM’s terminology, back-
ground will decrease the discriminability between pooling regions
contain the target (+background and potentially some distractors)
from those that only contain distractors (+background).

Alternatively, it is possible that the pooled statistics in TTM might be
computed after figure/ground segmentation has occurred or that, at the
very least, some subset of visual properties that describe the objects is
sufficiently distinct from the corresponding subset that is present in the
background image that search might still be able to unfold guided by
information along these subsets of complex features. If so, background
information might in fact not have much of an impact on search, pro-
vided that the objects in the scene have features that do not overlap
much with those in the background (i.e., that there is no camouflage).
Is there reason to believe that such a result might obtain? That is, is
there any empirical evidence that searching for a target in a complex
scene might unfold with identical efficiency when objects are presented
over complex backgrounds compared to uniform, simple backgrounds?

There is. Wolfe et al. (2011) first examined the impact of backgrounds
on visual search using easily visible (noncamouflaged) objects occur-
ring in real-life scenes. The stimuli consisted of photos of real-life
scenes, annotated to count the number of itemsand with labels for
each object in the scene. In Experiment 5, the authors compared perfor-
mance across three main background conditions: (a) the original back-
ground (indoor scenes), (b) the black background (where the individual
objects in the scene were maintained and the background surfaces were
cut out and replaced by a black uniform surface), and (c) the noise back-
ground condition (where the background surfaces were replaced with a
black-and-white phase-scrambled version of the scene). Participants
were asked to find an object in the scene. Somewhat surprisingly, the
results indicated that the background manipulation did not impact
search performance: reaction times (RTs) were the same irrespective
of the background condition. Furthermore, the search was efficient
across several experiments using these types of real-world scenes, sug-
gesting observers can search in parallel through complex scenes without
there being much cost associated with the information content in the
background (or variations therein).

While Wolfe et al. (2011) was a great first study of search in real-life
environments, there are several limitations that impact the generaliz-
ability of the results. First, there was no attempt at characterizing
whether contextual guidance was at play in these scenes because
only naturally occurring object arrangements were used. It is likely
that many contextual cues were present in every search scene (e.g.,
Torralba et al., 2006; Vo, 2021). For instance, a desktop computer
was presented on a desk where it would typically be found. Perhaps
the background had no effect and the search was very efficient in
these scenes due to very strong scene guidance effects. Second,
because the search scenes were images of real-life environments, dis-
tractor set size could not be easily manipulated within a given scene/
target combination. Therefore, the main measure in the study was
overall RT rather than search efficiency, which is the true index of
search performance. Third, the similarity relations between the target
and all the other objects in the scene were difficult to establish. Thus, it
is also possible that the search may have been overly easy simply
because the chosen targets might have been extremely visually differ-
ent from all distractors. This would also reduce the likelihood of
observing any background effects on search performance.

Current Study

The present study focuses on evaluating the impact of scene back-
grounds on search efficiency under easy-to-segregate and arbitrarily
positioned conditions. Indeed, in daily life, there are many situations
where objects are not camouflaged by the background and are also
randomly placed in the environment. For instance, imagine search-
ing for an easily visible toy in a child’s bedroom. The toy might
appear at many possible locations, such as on shelves, furniture, or
on the ground, with little systematicity. In such situations, contextual
guidance will not direct the observers toward the target, and only
knowledge of the target features can guide the search.

To expand on the findings in Wolfe et al. (2011) findings, the pre-
sent work examined the effects of background complexity under more
controlled conditions. Like Wolfe et al. (2011), we focused on a rel-
atively efficient search. In that study, search efficiency was estimated
to be in the range of 3—10 ms/item in experiments with backgrounds,
which are values traditionally associated with efficient search. To have
a better estimate of search efficiency, we directly manipulated set size
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BACKGROUND COMPLEXITY IMPACTS PARALLEL SEARCH

(as opposed to trying to infer its value in a natural scene). We also
directly varied target—distractor similarity to evaluate search efficiency
at various levels of processing efficiency.

Finally, we utilized two types of background complexity: an
unstructured background (sandy beach) in Experiments 1A, 1B, and
2, and a structured background (child bedroom) in Experiments
3A-C. The results from these two experiments suggested a new
hypothesis regarding the role background information plays during
efficient search, which was tested in a final experiment (Experiment
4) with a new background (checkerboard).

We must acknowledge that the stimuli we chose to occupy a mid-
point between traditional, simple geometric motifs more typically
associated with the search and attention literature (e.g., searching
for a red triangle among blue circles on a white background) and
the naturalistic photo scenes used in Wolfe et al. (2011). The back-
ground scene in Experiments 1 and 2 was a picture of a beach,
slightly edited, and the background scene in Experiment 3 was a
child’s bedroom with furniture generated in a 3D environment.
The scene respected perspective rules, but the furniture was not pho-
torealistic. The search stimuli themselves also varied in terms of
complexity (see Figure 1). In Experiments 1 and 2, we used colorful
images of small turtles, and in Experiments 3 and 4, we used photos
of small toys. With both sets of stimuli, we had a titrated similarity
manipulation that would ensure that the search would unfold in an
efficient manner (at least in the uniform background condition)
because we had used them successfully in past studies (e.g., Lleras
et al., 2019; Wang et al., 2017). Thus, we knew participants
would be able to use peripheral vision and perform a search in par-
allel to the scene with these stimuli.

In sum, the stimuli and scenes in the current study live somewhere
in between the real and the artificial. Yet, they clearly represent a step

Figure 1
Stimuli Used in the Study

Low-similarity High-similarity
distractors distractors
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Note. The top row shows the stimuli used in Experiments 1A-B and 2. The
target was a green turtle pointing either to the left or right. Participants
reported the direction of the target. The distractors in the low similarity con-
ditions were back turtles and the distractors in the high similarity condition
were yellow—greenish turtles. The distractors were manipulated between-
subjects in Experiment 1 (1A: low similarity condition; 1B: high similarity
condition) and within subjects in Experiment 2. The bottom row shows the
stimuli used in Experiments 3 and 4. The target was a teddy bear with a red
dot on the left or right side, and participants reported the side of the red dot.
The distractors in the low similarity conditions were white reindeers and the
distractors in the high similarity conditions were red dolls. The distractors
were manipulated between-subjects in Experiments 3A and 3B (3A: low
similarity condition; 3B: high similarity condition) and within-subjects in
Experiments 3C and 4. See the online article for the color version of this
figure.

Target
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up from traditional lab studies in terms of image complexity/realism.
They also allow us to effectively manipulate several variables of inter-
est (set size and target—distractor similarity). And finally, the scenes
and stimuli were chosen such that we could pretty much place the
objects almost anywhere in the background (with some minimal con-
straints in Experiment 3), allowing us to sidestep the potential prob-
lems associated with strong contextual guidance effects that might
be evident when using real objects presented in the location where
they are most expected (e.g., a computed being presented on a
desk). Overall, the aim was to build on the findings in Wolfe et al.
(2011) to get a more precise characterization of the impact of back-
grounds under efficient search conditions. The study of the impact
of backgrounds on inefficient search was not examined here.

Different patterns of results were possible in these experiments. On
the one hand, search might unfold at a processing stage that happens
sometime after figure-ground segmentation in the scene has been com-
pleted, particularly given that we had chosen search stimuli that were
easily segregated from the background (i.e., a noncamouflage condi-
tion). If this is the case, search might unfold with identical efficiency,
irrespective of the background information. It is also possible that, if
our stimuli somehow tap into the same mechanisms that allowed search
to be efficient and unaffected by the background as was observed in
Wolfe et al. (2011), then, again, we might fail to find much of an
impact of background information on search efficiency. On the other
hand, there is also an a priori reason to expect an effect. Indeed,
with this type of stimulus, it is known that some low-level effects
like crowding (Madison et al., 2018) and stimulus size (Wang et al.,
2018) impact search efficiency. Thus, one might expect that back-
ground information to be yet another such low-level factor that
might, for instance, slow down the rate of evidence accumulation for
items presented in the periphery. This would be akin to complex back-
ground information decreasing the signal quality at each location
where an object appears compared to solid background information.
Such a result would certainly be consistent with a TTM account,
whereby pooled statistic representations would be less discriminable
when complex backgrounds are used. Finally, it is possible that the
effect (if one is found) might lie at yet a different level of processing:
one important factor that determines search efficiency is our visual sys-
tem’s ability to notice that nearby items are similar to one another (i.e.,
that they perceptually group together, e.g., Duncan & Humphreys,
1989; Lleras et al., 2019). Indeed, when nearby distractors are similar
to each other, rejection of those distractors is multiplicatively faster
than when nearby distractors are different from one another (Lleras
et al., 2019). Thus, it is possible that the presence of complex visual
information in the space in between items might make it more difficult
for our visual system to ascertain that Object 1 at location [x1, y1] is the
same as Object 2 at nearby location [x2, y2]. If that were to occur,
search efficiency would suffer compared to conditions with little or
no intervening visual information simply because nearby identical dis-
tractors would be less able to facilitate each other’s rejection. The cur-
rent results will eventually lead us to favor this latter possibility.

Experiment 1

In Experiment 1, we evaluated the effects of an unstructured back-
ground with little visual or semantic structure on search efficiency. A
sandy beach scene with water elements was used as the background,
and participants searched for a green turtle among black turtles (low
similarity distractors, Experiment 1A) or among yellowish—green
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turtles (high similarity distractors, Experiment 1B). Search effi-
ciency for the same target and distractors was also evaluated with
two other backgrounds. A solid background was created by averag-
ing the RGB values of the naturalistic background scene. This back-
ground condition provided us with a baseline for searching for the
same items when no scene information is present, which is also
the most often encountered condition in laboratory studies of search.
Finally, a phase-scrambled background was created from the natural-
istic beach background (e.g., Caddigan et al., 2017). This back-
ground maintained similar first-order image statistics as the beach
background but scrambled the recognition of the elements in the
scene (sand, wave, water), which allowed us to evaluate the effect
of low-level features on search efficiency.

Based on previous findings on efficient search, we expected to
observe a logarithmic relationship between RTs and set size
(Buetti et al., 2016; Lleras et al., 2020; Madison et al., 2018; Ng
et al., 2018; Wang et al., 2018). We also expected the logarithmic
slopes to be sensitive to the similarity relationship between the target
and distractors. Specifically, the slopes should be steeper in the high
similarity than in the low similarity search condition.

Regarding the effect of background on search performance, there
are several possible ways in which background could impact search
performance. With respect to search-related processes, it is possible
that backgrounds will have no meaningful effects on search effi-
ciency (see Wolfe et al., 2011). As mentioned earlier, it is also pos-
sible that complex backgrounds might slow down search efficiency,
similar to how crowding and stimulus size have been shown to
impact search efficiency (Madison et al., 2018; Wang et al., 2018).
This would result in inflated logarithmic slopes in the more complex
background conditions compared to the solid background condi-
tions. If recognition of the elements that make up the background
image drives this effect, the increase in the logarithmic slopes should
only be observed in the beach but not in the phase-scrambled back-
ground because, by design, the phase-scrambled image has no rec-
ognizable visual elements. If it is the presence of more complex
visual features that drives the effect, then the increase in slopes
should be observed with both backgrounds.

It is also possible that background impacts nonsearch-related pro-
cesses, such as the overall time required to identify the target in the
absence of any distractors. These types of effects will be observed at
the level of the intercepts of the logarithmic functions fitted to each
participant’s performance. Of note, the analyses of the intercepts
closely correspond to analyses of the RTs in the target-only condi-
tion. This follows because in the equation, RT =a+b x In (Set
Size) when Set Size =1 (as in the target-only condition), In(1) =
0. As a result, RT(target-only) = a. The key to remember is that
moving forward, analyses of the intercept of the search function
will be indexing the impact of the various backgrounds on
nonsearch-related processes (e.g., encoding, response preparation,
response execution), whereas analyses of the logarithmic search
slopes will be indexing the impact of the various backgrounds on
search-related processes (e.g., distractor rejection processes).

Method
Participants

Experiment 1 was preregistered on Open Science Framework
(Ballew et al., 2019; https://doi.org/10.17605/0SF.IO/NAFE2).

Note that because of the COVID-19 pandemic, all experiments
were run online instead of in the laboratory. Participants in
Experiments 1A and 1B were recruited from the subject pool at
the University of Illinois at Urbana-Champaign and were given
course credits for their participation. Only participants who self-
reported to have normal or corrected-to-normal vision and normal
color vision were allowed to take part in the experiment. The sample
size had to be adapted because of the increased noise associated with
online data collection, as described below. A power analysis per-
formed on the data collected in Experiment 1A revealed that 31 par-
ticipants would be required to detect a within-subject effect size of
ni, =.065 for the main effect of background at 80% power, with
the variability observed in online data collection. So, in general,
we tried to reach a sample size of 31 participants, but because of
the nature of online data collection, we often ended up collecting a
few more participants.

Thirty-seven participants completed Experiment 1A (26 female, 10
male, 1 other; M,e. = 20); 36 participants completed Experiment 1B
(25 female, 11 male; M,z = 20.7).

The criteria for inclusion were based on accuracy, and analyses
were conducted on correct trials only. Trials in which the wrong but-
ton was pressed (incorrect trials), no response was provided after
2.5 s (time-out trials), or with RTs that exceeded two standard devi-
ations (SDs) of the mean RT for that participant in each condition
were excluded.

After data collection, participants’ data were excluded if the time-
out rate was greater than 15% or if overall accuracy (including incor-
rect trials but not time-out trials) was lower than 90%. Four partici-
pants were excluded from Experiment 1A (three of them were
excluded because of low accuracy and one because of a high time-
out rate) and three from Experiment 1B (two of them were excluded
because of low accuracy and one because of a high time-out rate).
The data analysis included 33 participants in Experiment 1A and
33 participants in Experiment 1B.

Stimuli and Materials

Due to COVID-19, participants completed the experiments online
using their own devices. All experiments were programmed in
JavaScript and conducted on Pavlovia. Using information about
each participant’s screen resolution and pixel width, search items
were designed to cover approximately 0.8 cm x 1 cm and were
placed on a 19.5 cm x 14.5 cm background. In Experiments 1A
and 1B, the search stimuli were placed randomly with jitter (the jitter
was randomly generated, with a maximum being 25 pixels horizon-
tally or vertically from the standard grid positions) within a 6 x 6
rectangular grid that occupied an area of 14.7 cm x 10.5 cm. This
size was chosen to make sure participants who have screens as
small as 12.5 in. could see the full display.

In Experiments 1A and 1B, the stimuli were turtles (Figure 1) pre-
sented on one of three backgrounds that varied in complexity and
meaning. The three backgrounds were a naturalistic scene of a
beach with sand and water, a solid color background obtained by
averaging the RGB values of the naturalistic background scene,
and a phase-scrambled version of the naturalistic background
scene (Figure 2). All three backgrounds had equal mean RGB val-
ues, which ensured the same low-level salience across the different
backgrounds. In Experiment 1A, the color similarity between the tar-
get and distractors was low. The target was a green turtle, and the
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distractors were black turtles. In Experiment 1B, the color similarity
between the target and distractors was high. The target was a green
turtle, and the distractors were yellow—greenish turtles. The turtle’s
head could point to the left or right, and participants reported the ori-
entation of the target turtle. The stimuli in Experiments 1A and 1B
were placed in a subset of the 32 evenly spaced locations within the
6 x 6 grid (the four central locations around the fixation point were
left empty, Figure 2).

Design and Procedure

The similarity between target and distractors was manipulated
between subjects. Backgrounds were manipulated within subjects
and presented in a random fashion. The set size was the number of
objects against the background and included the target item. There
were four different set sizes: 1, 5, 10, 20. The experimental session
was expected to last approximately 45 min. There were 50 trials per
condition. Thus, across the three backgrounds and four different set
sizes (including one target-only condition), there were a total of 600
trials. A mandatory rest period took place after every 150 trials.

Each trial proceeded as follows. In Experiments 1A and 1B, there was
a practice block of 6 trials before each experiment. There was a white
fixation cross in the center of the screen before the search display pre-
sented for 500 ms. Participants were asked to search for the target and
report which side (left or right) the target turtle was heading by pressing
the left or right arrow key on their keyboards, respectively. Each display
was presented for 2.5 s or until the participants pressed the response key.
A visual feedback statement (“Correct!” or “Wrong!”’) was given after
each trial. In all experiments, the trial ended with a black background
shown for a random interval lasting 0.5 s.

Transparency and Openness

We reported how we determined our sample size, all data exclu-
sions, all manipulations, and all measures in this and later experi-
ments, and we followed JARS (Kazak, 2018) on methods, data
availability, and prospective power analysis. The data, materials,
and code for this and later experiments are publicly available on
OSF (https://osf.io/n4s85/). Data were analyzed using R Version
4.1.2 (R Core Team, 2021) and the package ggplot2, Version
3.3.6. Experiment 1 and Experiment 3 were preregistered on Open
Science Framework (Ballew et al., 2019). The data in this and
later experiments were collected between 2020 and 2022.

Analyses

In all experiments, analyses were performed on the correct trials
only and were conducted in R (Version 4.0.2). For each participant,
we computed a logarithmic slope for each background and similarity
condition. A two-way analysis of variance (ANOVA) with back-
ground as a within-subject factor and target—distractor similarity as
a between-subject factor was then conducted on the logarithmic
slope value. We also conducted an ANOVA with background as a
within-subject factor on the intercepts of the logarithmic functions
to evaluate the overall baseline differences.

Results

The data analysis included 33 participants in Experiment 1A (group
accuracy = .963, SD = .034) and 33 participants in Experiment 1B
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(group accuracy = .958, SD = .027). Figure 3A and B show the results
from Experiment 1. The results from Experiment 1 are shown in
Figure 3A and B. Only RTs in correct trials were included in the sub-
sequent analyses.

As a reminder, we analyzed two different parameters obtained
from search performance evaluation: intercepts and search slopes
of the logarithmic search functions that were fitted to each individual
participant in each search condition. The intercept indexes the time
taken to complete nonsearch-related processes, whereas the search
slope indexes the efficiency at which search processes unfold.
Intercept and search slope should be influenced by different factors.
For example, manipulations that impact the target-response mapping
ought to uniquely impact the intercept: on all search trials, irrespec-
tive of search difficulty, and irrespective of the number of distractors,
eventually participants will find the target, and once they do, they
will have to identify which response maps to its identity on the cur-
rent trial. Some mappings might be easier than others, leading to
faster response decisions and thus smaller intercepts. In contrast,
manipulations like target—distractor similarity should only impact
the efficiency at which the search unfolds but not the intercept.
That is because lower levels of target—distractor similarity make it
easier to determine that a distractor is not the target, speeding up
how search unfolds compared to when target—distractor similarity
is comparatively higher. That said, in both cases, once distractors
have been rejected and the target has been found, our attention is
fully engaged with the target, and the processes for choosing the cor-
rect response should be identical from that moment on.

Intercept Analysis. The results from the ANOVA with back-
ground as within-subject the intercepts revealed a significant main
effect of background, F(2, 128)=23.62, p <.001, nf, =.270.
Intercepts were smaller with the solid background (694 ms), fol-
lowed by the phase-scrambled background (707 ms) and by the
beach background (717 ms). Follow-up paired ¢ tests revealed that
the intercepts differed significantly between any two of the back-
grounds, beach vs. phase-scrambled background: #(65)=2.79,
p=.007, 95% CI: [2.69, 16.32]; beach vs. solid background:
1(65) =7.64, p <.001, 95% CI: [16.61, 28.36]; phase-scrambled
vs. solid background: #(65) = 3.61, p < .001, 95% CI: [5.81, 20.15].

Slope Analysis. The results from the two-way ANOVA with
background as a within-subject factor and similarity as a between-
subject factor on the logarithmic slope revealed a significant main
effect of similarity, F(1, 64) =185.197, p <.001, rﬁ) =.743. The
slopes observed for low similarity distractors were significantly shal-
lower than the slopes for high similarity distractors (23 vs. 75 ms/log
unit of set size, see Figure 3B). The main effect of the background
was not significant, F(2, 128) =2.30, p =.10, nﬁ: .035, but the
interaction between background and similarity was significant,
F(2, 128)=3.37, p=.038, né: .050. A follow-up ANOVA on
each experiment separately indicated that the effect of background
was not significant in the low similarity group (Experiment 1A),
F(2,64)=2.23,p=.116, ng =.065, and was marginally significant
in the high similarity group (Experiment 1B), F(2, 64)=3.02,
p=.056, n; = .086.

Discussion

Experiment 1 showed that the different backgrounds impacted
nonsearch processing times, as indicated by the significant effect
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Figure 2
Hllustration of the Backgrounds and Stimulus Placement in Experiments 14

Note. Total set size was varied across trials (1, 5, 10, 20) and the target was always present. Background was manipulated within-subjects
and the different background types were intermixed during the experiment. In Experiment 1 (Panel A), three backgrounds were used: a nat-
uralistic scene of a beach with sand and water (left); a solid color background, obtained by averaging the RGB values of the naturalistic
background scene (middle); and a phase-scrambled version of the naturalistic background scene (right). In Experiment 2, only the beach
and solid backgrounds were used (Panel A, left and middle). In Experiments 3A and 3B (Panel B), three backgrounds were used: a
child bedroom scene (left), a phase-scrambled version of the bedroom (middle), and an upside-down version of the bedroom (right). In
Experiment 3C (Panel C), the bedroom and solid backgrounds were used. In Experiment 4 (Panel D), a checkerboard (left) and semisolid
backgrounds (right) were used as backgrounds. For illustration purposes, the second image on each panel visualizes all possible stimuli
locations in these scenes, but note that in the experiments, the highest set size was 20, so during the experiments, there were
many empty locations on every search display, with the majority of trials containing no more than 10 stimuli (set size conditions 1, 5,
and 10). See the online article for the color version of this figure.

of background on the intercepts, with the more complex back- The results also showed that, compared to a solid background,
grounds delaying the most detection of the target. unstructured backgrounds (beach and phase-scrambled) had a very

Furthermore, the pattern of the data confirmed that as target—dis- small effect on search performance, with a larger impact when tar-
tractor similarity increases, search efficiency is reduced (Duncan & get—distractor similarity was high compared to low. This result sug-

Humphreys, 1989; Lleras et al., 2020). gests that the presence of a more visually complex background might
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reduce search efficiency to a modest extent. However, it is possible
that the between-subject design might have introduced noise making
it difficult to truly evaluate the similarity by background interaction.
To better evaluate the presence of this background by similarity
interaction, we reran this experiment using a within-subject design.

Experiment 2

In Experiment 2, we tested the impact of background on search
processes within subjects to increase statistical power. Given the
absence of a difference between the beach and phase-scrambled
backgrounds in Experiment 1 and given the time constraints to run
the experiment (50-min limit), in Experiment 2, we only tested
two levels of target—distractor similarity (low vs. high) and two lev-
els of background (solid vs. beach).

Participants

Participants in Experiment 2 were recruited from the subject pool
at the University of Illinois at Urbana Champaign in the same way as
Experiments 1A and 1B. Forty-four participants completed
Experiment 2 (33 female, 10 male, 1 other; Mg = 19.48). Only par-
ticipants who self-reported to have a normal or corrected-to-normal
vision and normal color vision were allowed to take part in the exper-
iment. The criteria for data inclusion were identical to those in
Experiments 1A and 1B. After data collection, two participants
were excluded from Experiment 2 (because of low accuracy).
Thus, the data analysis included 42 participants in Experiment 2.

Design and Procedures and Analyses

The same design and procedure as in Experiment 1 were used,
except that at the beginning of the experiment, participants were
asked to rescale an image of a credit card to match the size of a credit
card in real life (for a similar procedure, see Li et al., 2020). This scal-
ing procedure was used in all subsequent experiments as well. This
procedure allowed us to make sure that the search stimuli had the
same physical size irrespective of the display size. Search items were
0.8 cm x 1 cm and were placed on a 21.8 cm x 17.5 cm background.
The same analyses as in Experiment 1 were conducted. Experiment 2
was identical to Experiment 1 except that here we aimed to compare
search performance within subjects across two different backgrounds
(solid vs. beach) and two levels of similarity (low vs. high).

Results

As a reminder, in design, the data analysis included 42 partici-
pants in Experiment 2 (group accuracy =.952, SD =.039). The
results from Experiment 2 are shown in Figure 3C and D.

Intercept Analysis

The results from the ANOVA with the background as within-
subject on the intercepts revealed a significant main effect of back-
ground, F(1, 41)=11.78, p=.0014, nf) =.223. Intercepts were
smaller in the solid (680 ms) than in the beach (697 ms) condition.

Slope Analysis

The two-way ANOVA with background and similarity as
within-subject factors on the logarithmic slope revealed a

significant main effect of similarity, F(1, 41) =375.68, p <.001,
nﬁ =.902. The slopes in the low similarity condition were
significantly shallower than the slopes in the high similarity con-
dition (24 vs. 68 ms/log unit of set size, see Figure 3D). The slopes
did not vary significantly as a function of background, F(1,41)=
0.85, p = .36, nf) =.020. The interaction between background and
similarity was not significant, F(1, 41)=0.18, p=.67,
N =.0044.

Discussion

Experiment 2 confirmed that the complexity of the background
impacted target detection times but did not produce a significant
slowdown in search efficiency. Thus, we can conclude that search
times are only minimally affected when unstructured images with lit-
tle visual or semantic structure are used as background. On the other
hand, we confirmed that the more complex background was associ-
ated with larger search intercepts, suggesting that this more complex
background makes it harder for participants to figure out which
direction (left or right) the target turtle is pointing, once the target
has been found. This is a clear example of manipulation only impact-
ing nonsearch-related processes.

Experiment 3

In Experiment 3, we evaluated the effects of a structured back-
ground on search efficiency. An indoor scene of a child’s bedroom
was used as background and participants searched for a target toy
(teddy bear) among other toys—white reindeer dolls (low similarity)
or red dolls (high similarity). As in Experiment 1, Experiments 3A
and 3B compared search performance across three different back-
grounds under conditions of low (Experiment 3A) and high
(Experiment 3B) target—distractor similarity. The bedroom back-
ground was compared to two additional backgrounds that allowed
us to evaluate the impact of structural and semantic information pre-
sent in the background image on search processes. First, a phase-
scrambled background obtained from the bedroom scene was used
to evaluate the effect of complex low-level features, in the absence
of structural information. Second, an upside-down version of the
bedroom was used, which maintained the low-level features and
structural information present in the image while minimizing seman-
tic effects.

Similar to Experiment 2, Experiment 3C was a follow-up to 3A
and 3B that provided us with a comparison between a solid back-
ground and the bedroom background, in a within-subject design,
and thus, with increased statistical power.

Method
Participants

Experiment 3 was preregistered on Open Science Framework
(Ballew et al., 2019). In Experiments 3A and 3B, participants
were recruited from the subject pool at the University of Illinois at
Urbana-Champaign and were given course credit for their participa-
tion. Only participants who self-reported to have normal or
corrected-to-normal vision and normal color vision were allowed
to take part in the experiment. Thirty-five participants completed
Experiment 3A (28 female, 7 male; M,z = 19.1), and 37 partici-
pants completed Experiment 3B (27 female, 9 male, 1 other;
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Figure 3
Logarithmic Slopes in Experiments 1 (Panels A and B) and 2 (Panels C and D)
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Note. Target—distractor similarity was manipulated between-subjects in Experiment 1 (1A: low similarity; 1B: high sim-
ilarity) and within-subjects in Experiment 2. Panels A and C: Search RTs increased as a logarithmic function of set size
both in Experiment 1 and 2, respectively. Error bars indicate one standard error of the mean. Panels B and D: Slope values
displayed in violin plots. Each violin plot represents the slopes (ms/log unit of set size) of all participants in that condition.
In the notched boxplots, the boxes indicate the interquartile range, the horizontal markers indicate the median, and the
white circles indicate the mean with blue lines connecting them. The dark gray circles represent individual data points
and the shaded areas show the probability density of the data. RT : reaction time. See the online article for the color version

of this figure.

Mg = 18.8). Forty-one participants completed Experiment 3C (25
female, 16 male; M, = 21.4). Out of the 41 participants, 21 were
recruited from the subject pool at the University of Illinois at
Urbana-Champaign and were given course credit for their participa-
tion. The remaining 20 participants were recruited from Prolific and
a monetary reward was given in compensation for their time ($6 for
50 min).

The criteria for data inclusion were identical to those in
Experiment 1. After data collection, one participant was excluded
from Experiment 3A (low accuracy), four participants were excluded
from Experiment 3B (two of them were excluded because of low
accuracy and the other two because of high time-out rates), and
six participants were excluded from Experiment 3C (because of
low accuracy). Thus, the data analysis included 34 participants in
Experiment 3A, 33 participants in Experiment 3B, and 35 partici-
pants in Experiment 3C.

Stimuli and Materials

At the beginning of the experiment, participants were asked to rescale
an image of a credit card to match the size of a credit card in real life. In
Experiment 3, the stimuli were toy objects positioned against one of the
three different backgrounds that varied in the degree of structural and
meaning information they carried (Figure 2). In Experiments 3A and
3B, the three backgrounds were a naturalistic (right-side-up) scene of
achild’s bedroom, a phase-scrambled version, and an upside-down ver-
sion of the same scene. All three backgrounds had equal mean RGB
values, which ensured the same low-level salience across the different
backgrounds. In Experiment 3C, we compared the bedroom back-
ground to a solid color background obtained by averaging the RGB val-
ues of the bedroom background (Figure 2).

In Experiment 3A (low target—distractor similarity condition), the
target was a teddy bear and the distractors were white reindeer dolls
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(Figure 1). In Experiment 3B (high target—distractor similarity con-
dition), the target was a teddy bear and the distractors were red-top
dolls (Figure 1). In Experiment 3C, both low- and high similarity
stimuli were shown.

The toy stimuli were shown with a red dot on either their right or left
side, and participants used the left/right location of the dot on the tar-
get stimulus as the response-defining feature. The placement of stimuli
in Experiment 3 was similar to that in Experiment 1, except that
because toys could not be placed just anywhere in the background
(the toys had to appear to be supported by a horizontal surface), the
stimuli in Experiment 3 were placed in a subset of 29 locations within
the 6 x 6 grid (Figure 2). The placement of each stimulus was
adjusted slightly along the x—y axes as needed so that the stimuli
and background objects lined up naturalistically. On the other two
background conditions, the same set of locations was used.

Design and Procedure

The design and procedure in Experiments 3A and 3B were iden-
tical to those in Experiment 1 and the design and procedure in
Experiment 3C were identical to those in Experiment 2.

Results
Experiments 3A and 3B

The data analysis included 34 participants in Experiment 3A
(group accuracy =.970, SD=.022), and 33 participants in
Experiment 3B (group accuracy =.942, SD =.034). The results
from Experiments 3A and 3B are shown in Figure 4A and B.

Intercept Analysis. The ANOVA with background as a within-
subject factor and similarity as a between-subject factor on the inter-
cepts of the logarithmic search functions indicated a main effect of
background, F(2, 130)=14.68, p <.001, ngz .184. Intercepts
were smaller in the bedroom background (769 ms), followed by
the phase-scrambled condition (772 ms) and the upside-down condi-
tion (789 ms). Follow-up paired ¢ tests revealed that the intercepts
differed significantly between the upside-down and the other two
conditions, bedroom versus phase-scrambled background: #(66) =
—0.71, p= .48, 95% CI: [—10.55, 5.02]; bedroom versus upside-
down background: #(66) =—5.36, p <.001, 95% CI: [—26.84,
—12.27]; phase-scrambled versus upside-down background:
1(66) = —4.03, p <.001, 95% CI: [-25.09, —8.48].

Slope Analysis. The two-way ANOVA with background as a
within-subject factor and similarity as a between-subject factor on
the logarithmic slope revealed a significant main effect of similarity,
F(1,65)=366.11,p <.001, nﬁ =.849. The slopes observed for low
similarity distractors were significantly shallower than the slopes for
high similarity distractors (38 vs. 98 ms/log unit of set size, see
Figure 4B). Slopes did not significantly vary as a function of back-
ground (right-side-up, phase-scrambled, and upside-down),
F(2,130)=0.90, p = 41, ng = .014. The interaction between back-
ground and similarity was not significant, F(2, 130) =1.33, p = .27,
n; = .020.

Experiment 3C

The data analysis included 35 participants in Experiment 3 (group
accuracy = .961, SD = .028). The results from Experiment 3C are
shown in Figure 4C and D.

Intercept Analysis. The ANOVA on the intercepts with back-
ground as a within-subject factor showed a main effect of back-
ground, F(1, 34)=113.47, p <.001, n,z, =.769, with intercepts
being smaller in the solid condition compared to the bedroom con-
dition (718 vs. 782 ms).

Slope Analysis. The two-way ANOVA with background and
similarity as within-subject factors on the logarithmic slope revealed
a significant main effect of similarity, F(1, 34) = 334.64, p < .001,
ng =.908. The slopes in the low similarity condition were signifi-
cantly shallower than the slopes in the high similarity condition
(40 vs. 85 ms/log unit of set size, see Figure 4D). The slopes also
varied significantly as a function of background, F(1, 34) = 32.43,
p <.001, nf, = .488, with shallower slopes in the solid than in the
bedroom background condition (55 vs. 70 ms/log unit of set size).
The interaction between background and similarity was also signifi-
cant, F(1, 34)=24.72, p <.001, nﬁ: A421. In the low similarity
group, follow-up one-sample r-tests revealed similar search slopes
in the solid and bedroom background condition (37 vs. 42 ms/log
unit of set size), #(34) = —1.83, p=.08, 95% CI: [—11.69, 0.62].
In the high similarity condition, search efficiency was significantly
faster in the solid than in the bedroom background condition (73 vs.
97 ms/log unit of set size), #(34)=-7.32, p<.001, 95%
CL: [-29.99, —16.95].

Discussion

In Experiment 3, search slopes were impacted by target—distractor
similarity in all experiments, with slopes that increased as target—dis-
tractor similarity increased. In Experiments 3A and 3B, the interac-
tion between background and similarity was not observed, indicating
that the three complex backgrounds (normal, phase-scrambled, and
upside-down bedroom) had similar effects on search efficiency.
Compared to the normal bedroom scene, the phase-scrambled
scene shared the same low-level features in the absence of any struc-
tural information and the upside-down bedroom scene shared the
same structure but did not carry the same meaning. Therefore, nei-
ther the structural nor the semantic information present in the back-
ground had a strong impact on search efficiency. In contrast, in
Experiment 3C, participants searched more efficiently on the solid
than bedroom background, and this effect was modulated by tar-
get—distractor similarity: search efficiency improved by 6 ms per
log unit in the low similarity condition and by 23 ms per log unit
in the high similarity condition when searching on the solid com-
pared to the bedroom background. Together, the results from
Experiment 3 seem to indicate that it was the mere presence of com-
plex low-level features that slowed down search efficiency in com-
plex backgrounds.

Previous research has shown that a key factor in determining search
efficiency is the degree to which nearby distractors can facilitate one
another’s rejection (Duncan & Humphreys, 1989; Lleras et al.,
2019; Xu et al., 2021). Those studies were conducted using a solid
background. When local distractor heterogeneity is low (i.e., when
all nearby distractors are identical), distractor rejection is facilitated
compared to situations where local distractor heterogeneity is high
(i.e., when nearby distractors are different from one another).
Furthermore, Lleras et al. (2019) showed that the search efficiency
in distractor-homogeneous displays (e.g., searching for the teddy
bear among reindeers or for the teddy bear among the red dolls)
was identical to the search efficiency in distractor-heterogeneous
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Figure 4
Logarithmic Slopes in Experiments 3A—C and 4
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Note. Left panels: the RTs increased as a logarithmic function of set size both in Experiment 1 and 2. Error bars indicate one standard
error of the mean. Right panels: Slopes displayed in violin plots. Each violin plot represents the slopes (ms/log unit of set size) of all
participants in that condition. In the notched boxplots, the boxes indicate the interquartile range, the horizontal markers indicate the
median, and the white circles indicate the mean with blue lines connecting them. The dark gray circles represent individual data points
and the shaded areas show the probability density of the data. RT: reaction time. See the online article for the color version of this figure.
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displays when distractors were segregated on different parts of the dis-
plays (e.g., reindeers on the right vs. red dolls on the left). In contrast,
search was significantly slowed down when the reindeer and orange
dolls were intermixed on the display. The authors concluded that
the rejection of distractors is facilitated when nearby distractors are
identical. The results from Experiment 3C seem to suggest that the
presence of visually complex information in the background between
identical distractors might weaken the strength of these local, distrac-
tor—distractor interactions in a similar way. This hypothesis was tested
in Experiment 4, using minimal manipulation of the background
information.

Finally, the findings observed at the level of the intercepts suggest
once again that differences across backgrounds continue to produce
nonsearch-related effects, with some backgrounds slowing down the
detection of the target. In Experiments 3A and 3B, the upside-down
background appears to particularly slow down overall response
times, perhaps because it is unexpected to observe a familiar back-
ground presented from an unusual perspective.

Experiment 4

In the visual search literature, there are two well-known factors
that impact search efficiency (Duncan & Humphreys, 1989, 1992;
Lleras et al., 2019). One is target—distractor similarity, which
explains why search is slowed down when the similarity between tar-
get and distractors increases. The other factor is distractor—distractor
similarity, sometimes also conceptualized as distractor heterogene-
ity. Specifically, when distractors are more visually distinct from
one another, search efficiency is reduced. In the present experiment,
we tested whether the presence of visually complex information in
the background between identical distractors slows down the pro-
cessing of those distractors compared to situations where more uni-
form visual information is present (i.e., solid background).

We manipulated the global background information in the display
while keeping the local background information surrounding each
stimulus the same across background conditions (Figure 2). In the
checkerboard condition, the background consisted of a grid of alter-
nating rectangles (that were created by adding or subtracting 50 from
the RGB value of the solid background in Experiment 3C). In the
semisolid condition, the same rectangles were organized so that
the darker rectangles were all on one side of the screen and the lighter
rectangles on the other side, creating two regions of uniform back-
ground color. This manipulation preserved the overall background
luminance in the checkerboard and semisolid conditions. The back-
grounds in Experiment 4 differ from the complex backgrounds used
in Experiments 1-3 because, in the previous experiments, the local
information surrounding each search item varied as a function of
location in the display as well as across background images.

If variation in the local background information around the stimuli
weakens the strength of the local interactions between distractors,
then search efficiency should be slowed down in the checkerboard
compared to the semisolid condition. Furthermore, in Experiment
3C, target—distractor similarity interacted with background complex-
ity, showing that the facilitatory effect of the solid background com-
pared to more complex backgrounds was substantially larger when
target—distractor similarity was high compared to when it was low.
Thus, in the present experiment, we also expected the background
manipulation to have larger effects when target—distractor similarity
is high.

Finally, we will also compare search efficiency across
Experiments 3C and 4. This will allow us to get a sense of whether
the minimal manipulation of the local background in Experiment 4
produced similar slowing effects as those observed in Experiment
3C, with much more complex background information.

Method
Participants

Participants in Experiment 4 were recruited from Prolific. A mon-
etary reward was given in compensation for their time ($6 for
50 min). Only participants who self-reported to have normal or
corrected-to-normal vision and normal color vision were allowed
to take part in the experiment. Thirty-six participants completed
Experiment 4 (11 female, 22 male, 3 other; M4 = 24.8). The crite-
ria for data inclusion were identical to those in Experiment 1. After
data collection, two participants were excluded from Experiment 4
(accuracy lower than 90%). The data analysis included 34 partici-
pants (group accuracy = .954, SD = .029).

Stimuli and Materials

The same search stimuli as in Experiment 3 (toy objects) were
used in Experiment 4. The stimuli were positioned on two back-
grounds. The checkerboard background consisted of a grid of alter-
nating rectangles. The lighter rectangles were obtained by adding 50
to the RGB value of the solid background in Experiment 3; the
darker rectangles were obtained by subtracting 50 from it. The semi-
solid background contained the same light and dark rectangles as the
checkerboard background, but they were spatially organized by
lightness on each side of the display (The lighter background was
on the left, and the darker background was on the right, Figure 2).

Design and Procedure

The design and procedure were identical to those in Experiment
3. Trials with semisolid and checkerboard backgrounds were
pseudo-randomly intermixed.

Analyses and Results

The data analysis included 34 participants (group accuracy
=.954, SD=.029). The results from Experiment 4 are shown in
Figure 4E and F.

Intercept Analysis

The ANOVA with background within-subject factors on the inter-
cepts indicated that the main effect of background was not signifi-
cant, F(1, 33)=1.00, p =.32, ngz .0294. The intercepts in the
semisolid and checkerboard conditions were 794 and 790 ms,
respectively.

Slope Analysis

The two-way ANOVA with background and similarity as two
within-subject factors on the logarithmic slope revealed a significant
main effect of similarity, F(1, 33) =336.66, p <.001, ngz I11.
The slopes in the low similarity condition were significantly shal-
lower than the slopes in the high similarity condition (45.9 vs.
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108.9 ms/log unit of set size). The slopes in the semisolid condition
were significantly shallower than the slopes in the checkerboard con-
dition (68.9 vs. 85.9 ms/log unit of set size, see Figure 4F),
F(, 33)=58.11, p<.001, ng =.638. Finally, the interaction
between similarity and background was significant, F(1, 33)=
15.64, p <.001, nﬁ: .322.In the low similarity condition, search
efficiency slowed down from 41 to 51 ms/log unit of set size in the
checkerboard compared to the semisolid condition, #(33) = —4.71,
p <.001,95% CI: [-14.29, —5.67]. In the high similarity condition,
search efficiency slowed further down from 97 to 121 ms/log unit of
set size in the checkerboard condition compared to the semisolid con-
dition, #(33) = —6.99, p <.001, 95% CI: [-31.15, —17.10].

Between Experiment Comparison

To compare the patterns of results across Experiments 3C and 4,
we conducted an ANOVA on search slopes with similarity (low vs.
high) and background (simple vs. complex) as within-subjects factors
and experiment as a between-subjects factor. The results showed that
the interaction between the experiment and background complexity
was not significant, F(1, 67)=0.565, p = .455, nﬁ: .0084. This
indicated that across low and high similarity conditions, there was
no significant difference in the slowing down effect arising from
complex backgrounds between Experiment 4 (checkerboard) and
Experiment 3C (bedroom), compared to search on the simpler, uni-
form backgrounds. The results also showed that a three-way interac-
tion term “background complexity by similarity by experiment” was
not significant, F(1, 67) =0.554, p = .459, nﬁ: .0082. This indi-
cated that the two-way interaction term ‘“background complexity by
similarity” did not differ significantly between Experiment 4 (check-
erboard) and Experiment 3C (bedroom).

Finally, we ran a Bayes factors (BFs) analysis using “anovaBF”
function in the package ‘“BayesFactor” (Morey & Rouder, 2021)
to evaluate the strength of evidence in favor of the latter null hypoth-
esis, that is, that the slowdown effect arising from background com-
plexity and the two-way interaction term “background by similarity”
in both experiments was similar. Model 1 was a model consisting of
all the factors with significant effects in the above ANOVA analysis
(background complexity, distractor similarity, experiment, the inter-
action term between background complexity and distractor similar-
ity, and the interaction term between experiment and distractor
similarity). Model 2 was a model with the interaction term between
experiment and background complexity in addition to what was
included in Model 1. Model 3 was a model with a three-way inter-
action term among background complexity, distractor similarity,
and experiment, in addition to what was included in Model 2. A
model comparison between Model 1 and Model 2 should reveal
how much evidence there is in favor of Model 1 in the data. In par-
ticular, this comparison will tell us how much evidence there is to
support the absence of meaningful interaction between background
complexity and experiment. A model comparison between Model 1
and Model 3 should reveal how much evidence there is in favor of
Model 1 and, in particular, how much evidence there is to support
the absence of a meaningful three-way interaction term among back-
ground complexity, distractor similarity, and experiment. We fol-
lowed Jeffreys (1998) to interpret the strength of evidence as a
function of BF magnitude. There was moderate evidence in favor
of Model 1 over Model 2 (BF,, =4.070), indicating that the mini-
mal background manipulation in Experiment 4 (checkerboard) and

the more complex background manipulation in Experiment 3C (bed-
room) produced similar slowdown effects compared to the more uni-
form backgrounds in both low and high similarity conditions. In
addition, there was strong evidence in favor of Model 1 over
Model 3 (BF,3; = 14.348), suggesting that the three-way interaction
term (Complexity x Similarity x Experiment) was indeed meaning-
fully nonsignificant. This suggests that there is strong evidence that
the pattern of results of Experiment 3C (Figure 4D) and the pattern of
results of Experiment 4 (Figure 4F) are indeed identical. In other
words, the search slowed down to the same extent in the high simi-
larity condition compared to the low similarity condition when com-
paring search in complex versus uniform backgrounds.

Discussion

The results from Experiment 4 showed that the global background
configuration of alternating light and dark rectangles in the checker-
board condition did not impact the response time needed to identify
the target when it was alone in the display, as evidenced by nearly
identical intercepts between the checkerboard and semisolid condi-
tions. This suggests that what determines how quickly observers find
an isolated target is the visual complexity in the local region imme-
diately surrounding the target, not the global arrangement of the
background.

With regard to search-specific processes, the global configuration
of the background impacted search efficiency, as evidenced by the
slowdown in search efficiency observed in the checkerboard
arrangement compared to the semisolid background. This suggests
that when the local background alternates between nearby items, dis-
tractor rejection will occur at a slower pace than when distractors are
presented on uniform backgrounds (on each half of the display). The
pattern of results in Experiment 4 also mirrored the ones in
Experiment 3, suggesting that, in general, when visually complex
information is present in the intervening background regions
between distractors, distractor—distractor interactions are weakened.

General Discussion

The goal of the present study was to evaluate the effects of back-
ground complexity on efficient search. The target was always present
and target—distractor similarity was manipulated, along with differ-
ent types of backgrounds. We focused on conditions where all search
items were easily segregated from the background (i.e., clearly out-
side of background camouflage effects). Experiments 1 and 2 inves-
tigated backgrounds that were visually simple: They were variations
of a sandy beach image, with little visual or semantic structure.
Experiments 3 and 4 investigated more structured backgrounds
(child bedroom, checkerboard).

With respect to the intercepts of the logarithmic search functions,
the results showed that, in the absence of any distractors, it takes lon-
ger to respond to the target when the background is complex com-
pared to when a solid background is used (Experiments 1-3). In
Experiment 4, no difference in the intercepts was found when the
local complexity was matched between the simple (semisolid) and
complex (checkerboard) backgrounds, but the global complexity
varied between the two conditions. Thus, we propose that the inter-
cept effects observed in Experiments 1-3 are driven by the presence
of visual complexity in the area immediately surrounding the target
(i.e., local complexity), rather than by the complexity of the entire
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scene (i.e., global complexity). Local complexity around the target
can make it harder for participants to evaluate what the correct
response to the target is (i.e., to identify the response-defining feature
of the target).

Turning now to the results on search efficiency, we found the
expected effect of target—distractor similarity on search efficiency
across all experiments (e.g., Buetti et al., 2016; Lleras et al.,
2020). Higher target—distractor similarity conditions produced
steeper logarithmic search functions than lower target—distractor
similarity conditions. Importantly, the search functions were always
logarithmic in nature in both simple and complex backgrounds. This
indicates that background complexity does not fundamentally alter
how observers search for the target in these scenes: all search
items are processed in parallel using peripheral vision until the target
is found, with minimal serial inspection of individual objects in the
scene.

Furthermore, the results indicated that background complexity can
have an impact on search efficiency. Relatively simple backgrounds
in terms of their visual complexity do not tend to have much of an
impact on search efficiency. This was evidenced by similar search
efficiencies between the solid and the sandy beach backgrounds for
both levels of target—distractor similarity (Experiments 1-2). In con-
trast, compared to a solid background, more complex backgrounds
reduced search efficiency (Experiments 3—4), and this was more pro-
nounced when the target—distractor similarity was high. The compar-
ison between the normal bedroom scene, the phase-scrambled
version of that scene, and the upside-down background suggested
that the effect was driven by the simple presence of more complex
visual features intervening between the stimuli. Indeed, no difference
on search efficiency was found between these three types of back-
ground, indicating that it was neither structural information nor
semantic information that impacted search efficiency.

Overall, the findings on search efficiency suggest that the rejection
of identical nearby distractors is facilitated when the intervening
background between distractors is as simple as possible, as in the
solid and semisolid backgrounds we tested. This is consistent with
the results showing that search efficiency was equivalent between
solid and sandy background conditions (Experiments 1 and 2).
Indeed, the sand and water elements in the scene created a rather uni-
form and homogenous background (Figure 2). In contrast, the rejec-
tion of identical nearby distractors is slowed down when intervening
background information between distractors is varied (Experiment
4) or more visually complex (Experiment 3).

Relations to Other Theories

The present study adds to the literature on distractor rejection dur-
ing visual search. Duncan and Humphreys (1989) famously pro-
posed that search becomes harder (as indexed by search
efficiency) as distractor heterogeneity increases. This proposal was
based on comparing performance on displays with multiple types
of distractors with performance on displays with identical distrac-
tors. Duncan and Humphreys proposed a “spreading suppression”
mechanism whereby nearby identical distractors form structural
units (i.e., a type of grouping mechanism). Distractor rejection
then unfolds en masse, by rejecting structural units rather than indi-
vidual items. Duncan and Humphreys’ findings and the present
results on search efficiency can both be understood in terms of the
degree to which local “horizontal” connections between items in

the display facilitate or impede distractor rejection. Distractor rejec-
tion is facilitated (even over relatively long distances, Gilbert & Li,
2013; Ramalingam et al., 2013) when there is little to no information
in the intervening space between two identical distractors. Distractor
rejection is slowed down when there is complex visual information
in the intervening space between two identical items, be it a different
distractor or complex visual variations in the background. From the
perspective of Duncan and Humphreys, it is as if background infor-
mation modulates the strength at which spreading suppression oper-
ates, or more simply, the likelihood that identical distractors will
group into structural units.

More recently, Lleras et al. (2019) advanced our understanding of
distractor heterogeneity effects by demonstrating that identical dis-
tractors are rejected at the individual level, rather than as structural
groups. Indeed, the logarithmic nature of the response time function
supports the idea that each additional item on a display adds a cost,
even when all distractors are identical. Thus, distractors are rejected
individually and in parallel. Furthermore, Lleras et al. (2019) tested
different spatial arrangements of distractors to compare the rejection
times of individual items in distractor-heterogeneous displays to the
ones found in distractor-homogeneous displays. When two types of
distractors are present in the display but are spatially segregated such
that distractors of the same type appear on the same side of the dis-
play, individual distractor rejection times are the same as when only
one type of distractor is present in the display (i.e., a homogeneous
search condition). However, when the two types of distractors are
spatially intermixed, individual distractor rejection times are multi-
plicatively longer. In sum, we propose that search efficiency will suf-
fer (i.e., individual rejection times become longer) whenever there is
complex visual information (in the form of a different distractor or
varied background information) in the intervening space between
identical distractors.

Other possible mechanisms might underlie the slowdown in
search efficiency observed in complex backgrounds. First, it is pos-
sible that the local neighborhood around each distractor might be a
part of the representation that the visual system uses when evaluating
in parallel all the items in the scene. This possibility follows the
recent proposals by Rosenholtz and colleagues (Chang &
Rosenholtz, 2016; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, et al., 2012; Zhang et al., 2015) arguing
that visual search in the periphery is not mediated by individual
object representations but rather by summary statistic representations
that code all the visual features present inside peripheral pooling
regions. Although Rosenholtz and colleagues have not directly dis-
cussed the issue of figure-ground segmentation in their papers (i.e.,
they have only studied search with solid backgrounds), it seems that
peripheral pooling regions might not distinguish between featural
information coming from the object and that coming from the back-
ground. As a result, background features would contribute to the
summary statistics of all item-containing regions in the display,
thereby reducing the signal-to-noise ratio between the regions of
the image containing the target and those containing the distractors.
And, as the authors demonstrated, smaller discriminability between
target-present and target-absent regions is associated with slower
search (Balas et al., 2009; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, et al., 2012).

More research is needed to directly test the summary statistics
account, but there is at least one aspect of our data that casts doubt
on this account. If parallel, peripheral search was supported by
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summary pooled representations, it is difficult to understand why the
background manipulation in Experiment 4 did not produce an inter-
cept effect. Indeed, target identification times should have been
slower in the checkerboard pattern compared to the semisolid pattern
because the checkerboard pattern information ought to have
impacted the pooled representation of the target-present region,
making the target less distinguishable and producing a slower
response (much like all the complex backgrounds in Experiments
1-3). Although tentative, this observation suggests that, somehow,
search is unfolding after figure-ground segmentation is completed,
and not before, at least, at this easy level of object-background seg-
mentation (this is likely quite different than under camouflage
conditions).

A final possibility is that the slowdown in search associated with
complex backgrounds might arise from an interaction between
search and figure-ground segmentation mechanisms. Because the
manipulation of background complexity and target—distractor simi-
larity produced a statistical interaction, according to additive factors
logic (Donders, 1868; Sternberg, 1969), these two manipulations
might be affecting the same stage of information processing.
However, the nature of that interaction is unclear. The results of
Experiment 4 suggest that the effect of background complexity on
search efficiency, whatever it is, might come after figure-ground seg-
mentation is achieved. This follows because the search slowdown in
the complex background in the experiment (the checkerboard) was
observed in spite of the fact that figure-ground segmentation of indi-
vidual items was equally easy across simple and complex back-
grounds: in both conditions, search items were presented overlaid
on top of a uniform surface. And, as mentioned before, evidence
that figure-ground segmentation was equally easy across both condi-
tions comes directly from the observation that search intercepts were
identical across the two conditions. Thus, it was not harder to seg-
ment and find the target in the checkerboard compared to the semi-
solid background. That said, further research is needed at this point
to better disentangle these three possibilities.

Limits on Generalizability

First, we should acknowledge that the present study used a limited
number of backgrounds (beach and bedroom, and variations of
those, plus checkerboard). This was done because evaluating loga-
rithmic search efficiency on a given condition requires a large num-
ber of observations over multiple set sizes. Second, for the same
reason, the stimuli used are also limited in nature. As mentioned
before, our goal was to study visual search in more visually complex
contexts than those used in traditional lab studies (e.g., colored geo-
metric shapes against a uniform black background). Some of our
stimuli were photos of real-world objects and backgrounds (beach,
toys), but not all. Third, it could be argued that the bedroom search
condition in Experiment 3 was a bit artificial because we did not
titrate stimulus size to height on the plane, as would be the case in
a 3D scene. That is to say, if the toys had actually been placed inside
the scene, the toys that are placed far in the scene would have to have
a smaller physical size, to reflect that the farther an object is from the
observer, the smaller its retinal projection becomes. While this is
true, we did run a control experiment (see online supplemental mate-
rial) to evaluate whether the bedroom scene was creating an illusion
of size on the toys, such that the toys that appear higher on the plane
would be perceived as being larger (given that they have the same
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retinal size). The results showed that indeed, participants experi-
enced a size illusion, with toys appearing larger the higher in the
plane (i.e., the farther in the bedroom) they appeared. This can
also be seen by looking at Figure 2. Fourth, our results are con-
strained to parallel peripheral search with a fixed target under
easy-to-segregate conditions and arbitrarily positioned items. For
example, background complexity might not impact search when
strong contextual cues point the observer toward the direction of
the target. This might have been the case in Wolfe et al. (2011).
Indeed, if observers know that a keyboard (the target) always appears
just below a computer monitor, it is likely that the color and textures
of the walls and other objects in the scene will not impact how
quickly observers take to find the target. This form of strong contex-
tual cueing was likely present in Wolfe et al. (2011) because the
authors used photos of representative indoor scenes. Finally, there
are many instances when search unfolds in a more serial manner
due to crowding, high target—distractor similarity, or near-
camouflaged conditions. Our findings are unlikely to inform search
under these different conditions.
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