J. Math. Log. 2022.22. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ BERKELEY on 11/03/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Journal of Mathematical Logic

Vol. 22, No. 2 (2022) 2250005 (41l pages) \\ World Scientific
© World Scientific Publishing Company W~ www.worldscientific.com

DOI: 10.1142/50219061322500052

Strong compactness and the ultrapower axiom I:
The least strongly compact cardinal

Gabriel Goldberg

Evans Hall, University Drive
Berkeley, CA 94720, USA
ggoldberg@berkeley. edu

Received 16 October 2018

Revised 23 September 2020

Accepted 2 November 2021
Published 22 June 2022

The Ultrapower Axiom is a combinatorial principle concerning the structure of large
cardinals that is true in all known canonical inner models of set theory. A longstanding
test question for inner model theory is the equiconsistency of strongly compact and
supercompact cardinals. In this paper, it is shown that under the Ultrapower Axiom,
the least strongly compact cardinal is supercompact. A number of stronger results are
established, setting the stage for a complete analysis of strong compactness and super-
compactness under UA that will be carried out in the sequel to this paper.
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1. Introduction

How large is the least strongly compact cardinal?® Keisler-Tarski [19] asked whether
it must be larger than the least measurable cardinal, and Solovay later conjectured
that it is much larger: in fact, he conjectured that every strongly compact cardinal
is supercompact.” His conjecture was refuted by Menas [15], who showed that the
least strongly compact cardinal that is a limit of strongly compact cardinals is
not supercompact. Still, Tarski’s original question was left unresolved until in a
remarkable pair of independence results, Magidor showed that the size of the least
strongly compact cannot be determined using only the standard axioms of set
theory (ZFC). More precisely, it is consistent with ZFC that the least strongly
compact cardinal is the least measurable cardinal, but it is also consistent that the
least strongly compact cardinal is the least supercompact cardinal. Since Magidor’s

2See Definition [2.55.
bSee Definition [2.36]
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result, an extensive literature has sprung up concerning what Magidor termed the
“identity crisis” for the first strongly compact cardinal, showing that there is essen-
tially nothing one can prove about the size of the first strongly compact cardinal
in ZFC.

The relationship between strongly compact cardinals and supercompact cardi-
nals in terms of consistency strength remains a complete mystery, and in fact, one
of the most prominent open questions in set theory is whether the existence of a
strongly compact cardinal is equiconsistent with the existence of a supercompact
cardinal. There are good reasons to believe that this question cannot be answered
without generalizing inner model theory to the level of strongly compact and su-
percompact cardinals. One reason is that there are many analogous equiconsistency
results lower in the large cardinal hierarchy, and all of them require inner model the-
ory: for example, the equiconsistency of weakly inaccessible cardinals and strongly
inaccessible cardinals, of weakly compact cardinals and the tree property, of Jons-
son cardinals and Ramsey cardinals [16], of tall cardinals and strong cardinals [4].
In fact, almost every nontrivial equiconsistency theorem in set theory involves inner
model theory.

While there is a great deal of evidence that inner model theory is required for a
solution to the equiconsistency problem, this evidence does not bear on whether the
equiconsistency actually holds. There are a number of striking similarities between
the theories of strong compactness and supercompactness that seem to provide
some evidence that there is some deeper connection between the two concepts. But
there are plenty of similar analogies between large cardinal notions that are not
equiconsistent.

The main theorem of this paper roughly shows that in any canonical inner
model built by anything like today’s inner model theoretic methodology, the least
strongly compact cardinal is supercompact. This suggests that strong compactness
and supercompactness really are equiconsistent: with perhaps a few exceptions, the
consistency order on large cardinal axioms coincides with the size of their least
instance in a canonical inner model.©

The precise statement of our theorem involves a combinatorial principle called
the Ultrapower Axiom (UA). This principle holds in all known canonical inner
models and is expected to hold in any canonical inner model built in the future.
We prove:

Theorem [5.17 (UA). The least strongly compact cardinal is supercompact.

“For example, Woodin cardinals exceed strong cardinals in consistency strength, and accordingly
the least ordinal that is strong in a Mitchell-Steel extender model is strictly smaller than the least
ordinal that is Woodin in a Mitchell-Steel extender model (even though in V, the least Woodin
cardinal is smaller than the least strong cardinal: the existence of a Woodin cardinal is equivalent
to a Yp-sentence and if k is strong, then V; <5, V). A possible counterexample: by a theorem of
Shelah-Mekler [14], the consistency strength of a cardinal every stationary subset of which reflects
is strictly less than a weakly compact, even though a theorem of Jensen [9] states that in the
constructible universe, all such cardinals are weakly compact.
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To say more about the Ultrapower Axiom, we must discuss the fundamental
theorem of inner model theory: the Comparison Lemma. The key to inner model
theory at the level of Woodin cardinals is a fine structural analysis of models of
a weak set theory approximating the inner model under construction, which for
obscure reasons, are known as mice. There is a natural way to attempt to form
iterated ultrapowers of mice, and a mouse is said to be iterable if this process
never breaks down. The class of mice is constructed by recursion and analyzed by
induction. To verify that the mice constructed so far are canonical, and to analyze
them well enough to keep the induction going, one must prove the Comparison
Lemma. Very roughly, this is the statement that any two iterable mice My and M;
have iterated ultrapowers Ny and Nj such that either Ng € N; or N3 € Ny. From
this lemma and its variants flow all the other structural properties of mice. The
inner model one produces is the union of a proper class of mice. The known inner
model constructions are best viewed as an attempt to produce models that contain
large cardinals and satisfy the Comparison Lemma. The tension between these two
constraints is the driving force behind the whole subject.

The Ultrapower Axiom is an abstract form of the Comparison Lemma that
can be stated without reference to the fine structural details of a particular inner
model construction. UA roughly asserts that any two wellfounded ultrapowers of
the universe of sets have a common wellfounded ultrapower. More precisely, UA
states that for any pair of countably complete ultrafilters Uy and Uj, there are
linear iterations (Uy, Wy ) and (Uy, W7) such that the associated iterated ultrapowers
Ult(ULt(V, Up), Wy) and Uls(Ult(V, Uy), W1) are equal and the associated iterated
ultrapower embeddings jw, o ju, and jw, o ju, coincide. Obviously this is formally
similar to the Comparison Lemma, and in fact there is a very general argument
[6, Theorem 2.3.10] showing that UA follows from the Comparison Lemma. Any
canonical inner model that can be constructed and analyzed using anything like
the current methodology of inner model theory will therefore satisfy UA.

The inner models that have been constructed to date cannot contain supercom-
pact cardinals. Whether canonical inner models with supercompact cardinals exist
has been one of the main open problems in inner model theory for almost half a
century. Given the intractability of this problem, it is natural to wonder whether the
existence of a supercompact cardinal is compatible with the Comparison Lemma.
Having formulated the Ultrapower Axiom, one can state a perfectly precise version
of this question.

Question 1.1. Is the Ultrapower Axiom consistent with the existence of a super-
compact cardinal?

This paper and its sequel show that the Ultrapower Axiom has fairly deep
interactions with supercompactness. The coherence of the theory developed so far
suggests that the answer to Question [L.1]is yes. It seems unlikely, however, that
a positive answer can be established without extending inner model theory to the
level of supercompact cardinals. We are optimistic that studying the consequences
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of UA with a supercompact cardinal will shed some light on how this can be done
(or else lead to a proof that it is impossible).

Finally, let us mention two stronger theorems we will prove here, and some
further results that will appear in the sequel to this paper. For any cardinal &, 7,
denotes the least ordinal o such that for any 3, there is a k-complete ultrafilter U
such that jy(«) > B. (The cardinal 7, is a hybrid of Hamkins’s notion of a strongly
tall cardinal [8] and Bagaria-Magidor’s compactness principles [2].)

Theorem [5.18 (UA). The cardinal 7, is supercompact.
Finally, we prove a very local form of Theorem [5.17

Theorem [5.14] (UA). If a successor cardinal A carries a countably complete uni-
form ultrafilter, then there is some k < X that is A-supercompact.

In fact, the easiest proof we know of Question [L.I] necessarily establishes this
stronger theorem. If A is a regular limit cardinal, it is open whether the theorem
remains true.

Of course this raises an obvious question: what about the other strongly com-
pact and supercompact cardinals? This is the subject of the sequel to this paper, in
which it will be shown that under UA, every strongly compact cardinal is either su-
percompact or a limit of supercompact cardinals, which by Menas’s theorem is best
possible. The techniques leading to this result enable the analysis of many large car-
dinal notions beyond supercompactness under UA. One also obtains some powerful
consequences of UA for the general theory of countably complete ultrafilters.

This paper is fairly self-contained. Section 2l contains many standard definitions
and self-explanatory notions from the theory of ultrafilters and some less well-
known material. It is intended to be used as a reference and need not be read from
beginning to end. Section[3 contains a number of the author’s results on the general
theory of countably complete ultrafilters under UA that are used in the analysis
of strong compactness. The reader can skim this, and start in earnest with Sec. [4,
which contains a proof that the least strongly compact cardinal is supercompact
under a technical assumption about the size of the least strongly compact cardinal.
This assumption is proved in Sec. [§] completing the proof.

2. Preliminaries
2.1. Ultrapowers

Suppose N is a model of set theory (which the reader may assume to be transi-
tive) and X € N. An N-ultrafilter over X is a maximal filter on the partial order
PN (X) under inclusion. The ultrapower of N by U, denoted M,JJV, consists of mod
U equivalence classes of those functions of IV that are defined U-almost everywhere.
If f € N is defined U-almost everywhere, [f]} denotes the equivalence class of f
modulo U.

The class M{]V is endowed with the structure of a model of set theory under
the relation €y defined by setting [f]} €uv (g} if {z € X : f(x) €V g(z)} € U.
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Los’s Theorem states that MY F o([fi]u, ..., [fa]v) if and only if {z € X : N F
o(f1(x),..., fo(z))} € U. The ultrapower embedding of N associated to U, denoted
J& + N — M}, is the embedding defined by j& (a) = [ca]u, where ¢, : X — {a} is
the constant function. This embedding is elementary as an immediate consequence
of Los’s Theorem.

If M, []]V is wellfounded (as it almost always will be in this paper), we adhere to the
standard set-theoretic convention of identifying M} with its transitive collapse. We
also adopt two nonstandard conventions in order to declutter our notation. First,
we omit the superscript “N”s whenever they can be inferred from context, writing,
for example, My instead of M, [],V . Second, we make the following definition.

Definition 2.1. If U is an N-ultrafilter, ay = [id]%.

Suppose N is a model of set theory. We say U is an wltrafilter of N if U is an
N-ultrafilter that belongs to N. We say j : N — P is an ultrapower embedding
and P is an ultrapower of N if for some N-ultrafilter U, there is an isomorphism
k : My — P such that j = ko jy; wesay j : N — P is an internal ultrapower
embedding if one can find such an N-ultrafilter U that in addition belongs to V.

In the case of interest, when N and P are transitive, j : N — P is an ultrapower
embedding of N if and only if j = jy for some N-ultrafilter U.

Not every elementary embedding is an ultrapower embedding, but the derived
ultrafilter construction reduces many “local” properties of elementary embeddings
to properties of ultrapowers.

Definition 2.2. Suppose j : N — P is an elementary embedding, X € N, and
a € j(X). Then the N-ultrafilter over X derived from j using a is the N-ultrafilter
{Ae PN(X):acj(A)}.

Lemma 2.3. Suppose j : N — P is an elementary embedding, X € N, and a €
J(X). The N-ultrafilter over X derived from j using a is the unique N -ultrafilter
U such that there is an elementary embedding k : M,JJV — P such that k Ojg =j
and k(ay) = a.

Sketch. The embedding k is defined by k([f]v) = 7(f)(a). It is routine to check
that k is well-defined and elementary. O

We call the (unique) embedding k of Lemma 2.3 the canonical factor embedding
associated to the derived ultrafilter U.

There is an ultrafilter-free characterization of (internal) ultrapower embeddings
that helps establish some of their basic properties. An elementary embedding j :
M — N is said to be cofinal if for all a € N, there is some X € M such that
a€ j(X).

Lemma 2.4. A cofinal elementary embedding j : N — P is an ultrapower embed-
ding if and only if there is some a € P such that every element of P is definable in
P from a and parameters in j[N].
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Proof. For the forwards direction, fix an N-ultrafilter U such that ;7 = jy. Then
for all appropriate f € N, [f]lu = j(f)(av), and hence [f]y is definable in P from
J(f) and ay.

Conversely, suppose every element of P is definable in P from a and parameters
in j[N]. Let U be the N-ultrafilter derived from j using a. Let k : My — P be the
canonical factor embedding. Then j[N]U {a} C k[My], so in fact, P C k[My]. In

other words, k is an isomorphism. Hence j = k o jy is an ultrapower embedding.
O

Thus, an ultrapower of N is a finitely generated elementary extension of N.

Definition 2.5. An elementary embedding j : N — P is close to N if for all a € P,
1
j 'la] € N.

Obviously any elementary embedding that is definable over IV is close to IV, so
in particular, internal ultrapower embeddings are close embeddings.

Lemma 2.6. An ultrapower embedding j : N — P is internal if and only if it is
close.

Lemma 2.7. An elementary embedding j : N — P is close to N if and only if j
is cofinal and every N -ultrafilter derived from j belongs to N.

Proof. For the forwards direction, assume j is close. Then for any X € N and
a € j(X), the N-ultrafilter derived from j using a is equal to j~![p,] where p, =
{A€ P(§(X))NP:ae A}. Obviously p, € P, so j~'[p.] € N by closeness. To see
that j is cofinal, fix @ € P. Let Y be the set of elements of P that have rank less
than or equal to that of a. Then j71[Y] € N. Let X = j7'[Y]. Then a € j(X).
For the converse, assume j is cofinal and every derived N-ultrafilter of j belongs
to N. Fix a € P, and we will show that j~![a] € N. Since j is cofinal, there is some
X € N suchthat a € j(X). Let U be the N-ultrafilter derived from j using a, and let
k: M{]V — P be the canonical factor embedding. Then jy : N — MUP is an internal
ultrapower embedding, ko jir = j and k(ay) = a. Therefore, j~'[a] = j;'[av] € N,
as desired. O

Lemma [2.6] follows immediately from Lemma 2.7

Proof of Lemma [2.6l Note that U is the N-ultrafilter derived from jy using
ay, so if jy is close, then U € N, and so jy is an internal ultrapower embedding.
Conversely, if U is an internal ultrapower embedding, then My C N and jy is
definable over N, so obviously j;;'[a] € N for every a € My. O

These ultrafilter-free characterizations make various properties of ultrapowers
completely transparent.

Lemma 2.8. Suppose M N L Poare elementary embeddings and j ot is an
ultrapower embedding. Then j is an ultrapower embedding.
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Proof. This is an immediate consequence of Lemma [2.4] since j o i[M] C j[N].
O

Our next lemma follows directly from the definition of a close embedding.

Lemma 2.9. Suppose N Jyp Q@ are elementary embeddings and ko j is a
close embedding. Then j is close to N.

Lemmas 2.9 and [2.6] lead to a useful criterion for an elementary embedding to
be an internal ultrapower embedding.

Corollary 2.10. Suppose M N Lpky Q@ are elementary embeddings, joi
is an ultrapower embedding, and k o j is a close embedding. Then j is an internal
ultrapower embedding.

One also easily obtains that compositions of (internal) ultrapower embeddings
are again (internal) ultrapower embeddings.

Lemma 2.11. The composition of two ultrapower embeddings is an ultrapower
embedding.

Proof. Fix ultrapower embeddings M — N 25 P.

Fix b € N such that every element of IV is definable in N from b and parameters
in i[M]. By elementarity, every element of j[N] is definable in P from j(b) and
parameters in j o i[M].

Fix ¢ € P such that every element of P is definable in P from ¢ and parameters
in j[N]. Thus, every element of P is definable from ¢, j(b), and parameters in
joi[M]. It follows from Lemma [2.4] (with a = (5§(b),¢)) that j o ¢ is an ultrapower
embedding. O

Again the following lemma is immediate from the definition of a close
embedding:4

Lemma 2.12. The composition of two close embeddings is a close embedding.
Applying Lemmas 2.6 2.11] and [2.12] we obtain:

Corollary 2.13. The composition of two internal ultrapower embeddings is an
internal ultrapower embedding.

dThe lemma is originally due to Woodin, who took Lemma [2.7] as the definition of a close embed-
ding, so that Lemma [2.12]is not as obvious.
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2.2. Uniform and fine ultrafilters

This section defines two different ways in which an ultrafilter can be said to con-
centrate on large sets. The first is a constraint on cardinality.

Definition 2.14. An ultrafilter U over a set X of cardinality A is uniform if for
all AeU, |Al =\

Given an ultrafilter U over a set X, there is always some Y € U such that
UnN P(Y) is uniform: let A = min{|A| : A € U} and let Y be any set in U of
cardinality A. The ultrafilters U and U N P(Y") are essentially the same object, so
in a sense, uniform ultrafilters are just as “general” as ultrafilters are. Since there
is no canonical choice of Y, however, there are often good reasons for considering
ultrafilters that are not uniform.

The second notion is a constraint on cofinality.

Definition 2.15. An ultrafilter ¢ over a family of sets X is fine if for all z € |J X,
{loeX:zeo}eld.

The only fine ultrafilters that are important in this paper are the fine ultrafilters
over ordinals. As in the case of uniform ultrafilters, for any ultrafilter U over an
ordinal 7, there is an ordinal § such that U N P(d) is a fine ultrafilter: let § =
min, <, a € U.

Lemma 2.16. Suppose U is an ultrafilter over an ordinal §. Then the following
are equivalent:

o U is fine.
o FEvery set in U is cofinal in .
e § is the least ordinal such that juy(8) > ay.

Both uniformity and fineness amount to the requirement that an ultrafilter
extend a certain filter naturally associated to its underlying set: an ultrafilter U
over a set X of cardinality A is uniform if and only if it extends the generalized
Fréchet filter over X defined by {A C X : | X\A| < A}, while an ultrafilter U over
a family of sets X is fine if and only if it extends the tail filter over X, generated
by sets of the form {o € X : x € g} for z € [ JX.

Take, for example, the class of principal ultrafilters.

Definition 2.17. Suppose X is a set and a is an element of X. The principal
ultrafilter over X concentrated at a is the set p,[X] ={AC X :a € A}.

We write p, instead of p,[X] when the choice of X is obvious or irrelevant, as
is almost always the case. If & < § are ordinals, then the principal ultrafilter p,[g]
is fine if and only if 8 = a + 1.

By Lemma [2.16] fineness and uniformity coincide at regular cardinals.

Lemma 2.18. An ultrafilter over a regular cardinal is fine if and only if it is
uniform.
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We briefly discuss weakly normal ultrafilters.

Definition 2.19. A uniform ultrafilter U over a regular cardinal § is weakly normal
if for any function f such that f(a) < a for U-almost all ordinals «, there is some
v < ¢ such that f(a) < v for U-almost all a.

In other words, U is weakly normal if every U-regressive function is U-bounded.
Weak normality can be expressed in terms of the ultrapower.

Lemma 2.20. If U is a uniform ultrafilter over a regular cardinal §, then U is
weakly normal if and only if ay = sup ju[d].

We will use the following lemma, which follows easily from Lemma [2.20]

Lemma 2.21. Ifj: V — M is an elementary embedding and sup j[0] < j(4), then
the ultrafilter U derived from j using sup j[d] is weakly normal.

2.3. Pushforwards and limits

We now turn to the concept of a pushforward ultrafilter and the more general
concept of a limit of ultrafilters.

Definition 2.22. Suppose U is an ultrafilter over a set X and f : X — YV is a
function. Then the pushforward of U by f is the ultrafilter

f(U)={ACY : A €U}

Equivalently, f.(U) is the ultrafilter generated by sets of the form f[A] where
AeU.
Pushforwards are closely related to derived ultrafilters.

Lemma 2.23. Suppose U is an wultrafilter over a set X and f : X — Y is a
function. Then f.(U) is the ultrafilter D derived from jy using [f]u. The canonical
factor embedding k : Mp — My is given by k([g]p) = [go flu-

We now turn to ultrafilter limits.

Definition 2.24. Suppose U is an ultrafilter over a set X and (W, : z € X) is
a sequence of ultrafilters over a set Y. Then the U-limit of (W, : € X) is the
ultrafilter
U—lieII}(Wz:{AQY:{xEX:AEWz}EU}.
If U is an ultrafilter over X and f : X — Y is a function, then the pushforward
f«(U) is the U-limit of the principal ultrafilters (py)[Y]: z € X).
We now generalize Lemma [2.23] to ultrafilter limits.

Lemma 2.25. Suppose U is an ultrafilter over a set X and (W, : x € X) is a
sequence of ultrafilters over a set Y. Then U-limgex W, = jgl[W*] where W, =
[LL' — Ww]U
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The proof is straightforward. There is also an analog of the canonical factor
embedding (Lemma [2.3]).

Definition 2.26. Suppose j : N — P is an elementary embedding, W is an V-
ultrafilter over a set Y € N, and W, is a P-ultrafilter such that W = j=1[W.].
Then the associated shift embedding is the embedding k : My — My, defined by

k([fIw) = [5()]w..

The following lemma is a special case of the shift lemma from the theory of
iterated ultrapowers.

Lemma 2.27. Suppose j : N — P is an elementary embedding, W is an N-
ultrafilter over a set Y € N, and W, is a P-ultrafilter such that W = j=1[W,].
Then the associated shift embedding k : My — My, is a well-defined elementary
embedding satisfying k o jw = jw, oJj and k(aw) = aw, .

2.4. Completeness, supercompactness and Kunen’s theorem

In this section, we exposit the basic results involving x-complete ultrafilters, al-
though the reader is likely familiar with them. We also discuss the concept of
supercompactness and its relationship with completeness.

Definition 2.28. Suppose « is a cardinal. An ultrafilter U is k-complete if for all
v < K, for any sequence (Aq)a<y with A, € U for all a < 7, ﬂa<,y A, € U.

We will say an ultrafilter U is countably complete if it is wi-complete.
Definition 2.29. If j : N — P is a nontrivial elementary embedding, then the
critical point of 7, denoted crit(j), is the least N-ordinal o such that j(«) # jla].

If N is illfounded, then j may have no critical point. (This issue does not come
up here.) Every nontrivial elementary embedding of a wellfounded model of ZFC
has a critical point.

Theorem 2.30 (Scott). Suppose U is an ultrafilter. Then crit(ju) is the largest
cardinal k such that U is k-complete.

This inspires some obvious notation.

Definition 2.31. If U is an ultrafilter, the completeness of U, denoted crit(U), is
the largest cardinal x such that U is k-complete.

The completeness of an ultrafilter turns out to have an intimate relationship
with the closure properties of its ultrapower.

Lemma 2.32. Suppose j : V — M is an elementary embedding and X\ is a cardinal.
Then the following are equivalent:

(1) For some set X of cardinality \, j|X] € M.
(2) For any set X of cardinality at most \, j|X] € M.
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If j is an ultrapower embedding, one can add to the list:
(3) M is closed under \-sequences.
As a consequence of Theorem [2.30] one obtains the following fact.

Proposition 2.33 (Scott). Suppose U is a k-complete ultrafilter. Then My is
closed under y-sequences for all v < K.

Proof. If v < k, then jy(y) = ju[y] by Theorem [2.30l In particular, juy[y] € My,
so My is closed under ~-sequences by Lemma [2.32] O

A model of set theory that is closed under countable sequences is necessarily
wellfounded, which yields the most important corollary of Proposition [2.33

Corollary 2.34. An ultrafilter is countably complete if and only if its ultrapower
is wellfounded.

Proof. The forwards direction follows from Proposition 2.33l For the converse,
suppose U is an ultrafilter and assume My is wellfounded (or just w™ = w).
Obviously for all n < w, j(n) = j[n]. Therefore, ju(w) = jylw] since any n €
Ju(w)\ju[w] would be nonstandard. It follows that crit(jy) > w, and so U is w-
complete by Theorem [2.300 O

From Corollary [2.34] we can deduce a strengthening of Proposition [2.33]

Theorem 2.35 (Scott). Suppose k is an uncountable cardinal and U is a k-
complete ultrafilter. Then My is closed under k-sequences.

Proof. Corollary 2.34 implies My is wellfounded, and so we identify it with its
transitive collapse, which is an inner model. Then for all v < &, ju[y] = ju(y) is
an ordinal, and hence ju (k] = U, ., ju[7] is an ordinal. Since My contains every
ordinal, jy[k] € My, and hence My is closed under x-sequences by Lemma [2.32] 00

It is natural to wonder whether the converse to Theorem [2.33] is true: if U is
an ultrafilter such that My is closed under A-sequences, must U be A-complete?
Clearly this is true when A = X; or when A is the first measurable cardinal.® At the
level of a supercompact cardinal, this implication breaks down.

Definition 2.36. A cardinal k is A-supercompact if there is an elementary embed-
ding j : V — M with critical point & such that j(k) > X\ and M* C M. If k is
A-supercompact for all cardinals A, then k is said to be supercompact.

©This is best possible. Let k be the least measurable cardinal. By an unpublished theorem of
Woodin (later generalized by Apter |1, Theorem 1]), it is consistent that there is an ultrafilter U
such that My is closed under xT-sequences but U is not x1-complete.
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Even granting the consistency of supercompact cardinals (which we do), one
can still prove a partial converse to Theorem [2.35] This is a corollary of the Kunen
inconsistency theorem.

Theorem 2.37 (Kunen). Suppose M is an inner model and j : V. — M is
a nontrivial elementary embedding. Then j[A] ¢ M where X is the least ordinal
strictly larger than crit(j) such that j[\] C .

Note that since an elementary embedding from V' to an inner model is continuous
at ordinals of cofinality w, in the context of Theorem .37 ) is also the least fixed
point of j above crit(j). Moreover, A = sup,, ., 7™ (crit(5)).

Here is the partial converse to Theorem [2.35]

Corollary 2.38. Suppose U is an ultrafilter and X is an infinite cardinal such that
My is closed under §-sequences for all § < A. If ju[A\] C A, then U is A-complete.

Proof. Assume not. Without loss of generality, we may assume A is the least ordinal
strictly larger than crit(jy) such that jy[A] € A. By the remarks above, A has
countable cofinality. Since My is closed under w-sequences and §-sequences for all
0 < A, in fact, My is closed under A-sequences, contrary to Theorem [2.37] O

2.5. Indecomposable ultrafilters

Keisler and Prikry [17] introduced a spectrum of cardinals associated to an ultra-
filter U generalizing the notion of completeness.

Definition 2.39. Suppose v is a cardinal and U is an ultrafilter over X. Then a
~-decomposition of U is a function f : X — « such that |f[A]| = v for all A € U.
The ultrafilter U is said to be y-decomposable if there is a y-decomposition of U.

The completeness of U is the least element of its decomposability spectrum.

Lemma 2.40. For any ultrafilter U, the completeness of U is the least cardinal k
such that U is k-decomposable.

In general, the decomposability spectrum of an ultrafilter U consists of those
cardinals over which U projects to a uniform ultrafilter.

Lemma 2.41. Suppose U is an ultrafilter over a set X and 7y is a cardinal. Then
U is y-decomposable if and only if there is a function f : X — ~ such that f.(U)
is a uniform ultrafilter over v; in fact, for any cardinal 7y, a function f : X — v is
a y-decomposition of U if and only if f.(U) is a uniform ultrafilter over ~.

For regular cardinals v, y-indecomposability has a simple ultrapower theoretic
characterization.

Proposition 2.42. Suppose v is a reqular cardinal and U is an ultrafilter over a
set X. Then U is vy-indecomposable if and only if ju(y) = sup july].
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Sketch. Using the regularity of 7, one shows that a function f : X — ~ is a
~-decomposition if and only if jy(a) < [f]v for all o < 7. |

There is also a combinatorial characterization of indecomposability in terms of
partitions.

Lemma 2.43. An ultrafilter U over a set X is y-indecomposable if and only if for
every partition (A¢ : & < v) of X, there is some S C ~ with |S| < v such that
U&eS Ag eU.

One can also characterize y-indecomposable ultrafilters as those that are closed
under intersections of descending y-sequences. The following definition generalizes
this observation.

Definition 2.44. Suppose U is an ultrafilter and x < A are cardinals. Then U is
(k, A)-indecomposable if for all v < A, if (4, : a < ) is a collection of sets with
Naco Aa € U for all o € Pi(y), then N, ., Ao € U.

a<ly

Proposition 2.45. An ultrafilter U is (k, \)-indecomposable if and only if U is
y-indecomposable for every cardinal v such that k < v < .

Proof. Note that U is y-indecomposable if and only if ﬂa<,y A, € U for any
(Ao © a < 7y) such that (., Aa € U for all ¢ € P,(y). The proposition follows
immediately. O

In Sec. Bl we analyze the class of cardinals carrying uniform countably complete
ultrafilters. For this, the following theorem is quite useful.

Theorem 2.46 (Prikry-Kunen, [11]). Suppose X is a regular cardinal and U is
a uniform ultrafilter over X*. Then U is A-decomposable.

The corresponding fact is not true for singular cardinals A. For example, if s
is KT+l strongly compact then k+t«*! carries a uniform x-complete ultrafilter U,
which, being countably complete, cannot be xT*-decomposable. (A A-decomposable
ultrafilter is always cf(\)-decomposable, while countable completeness is equivalent
to Ng-indecomposability.) There is, however, a reasonable generalization of The-
orem [2.46] that one might hope to prove (Conjecture [2.53). This generalization
involves the concept of a regular ultrafilter (Definition [2.47)), so it will be discussed
at the end of the following section.

2.6. Regular ultrafilters

Definition 2.47. Suppose k < A are cardinals. An ultrafilter U is (k, A)-regular if
every subset of My of cardinality at most A is contained in an element of My of
My-cardinality less than jy (k).
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Given Lemma [2.47] the following proposition shows that (x, A)-regularity is the
analog of «-decomposability in which uniform ultrafilters are replaced by fine ones.

Proposition 2.48. An ultrafilter U over X is (k, A)-regular if and only if there is
a function f: X — P.(\) such that f.(U) is a fine ultrafilter.

Combining this with Lemmas[2.18 and [2.41] if 7 is a regular cardinal, U is (v, 7)-
regular if and only if U is y-decomposable. (On the other hand, if + is singular,
(7, 7v)-regularity neither implies vy-decomposability nor follows from it.)

The following proposition is an immediate consequence of the definition of (k, \)-
regularity.

Proposition 2.49. Suppose k < k' < XN < X are cardinals. If U is a (k, \)-regular
ultrafilter, then U is (', \)-regular.

Corollary 2.50. Suppose U is (k, A)-regqular. Then U is vy-decomposable for every
reqular cardinal v in the interval [k, \].

Proof. By Proposition[2.49] U is (vy,)-regular for all v in the interval [k, A]. If v
is regular, our comments above imply that U is y-decomposable. O

The following lemma is in spirit due to Ketonen, but the proof we give is based
on an argument due to Woodin that we learned from [3].

Lemma 2.51. Suppose § is a cardinal, j : V. — M is an elementary embedding,
and X\ is an M -cardinal. Then the following are equivalent:

(1) For some set X of cardinality d, there is some Y € M such that j[X] CY and
VM < A

(2) For any set A of cardinality at most ¢, there is some B € M such that j|A] C B
and |B|M < \.

If 6 is regular and M is wellfounded, then one can add to the list:
(3) cfM(supj[d]) < A.
If j is a wellfounded ultrapower embedding, one can add to the list:

(4) Every subset of M of cardinality at most § is contained in a set in M of M-
cardinality less than A.

Proof. (1) implies (2): Fix a set X of cardinality ¢ and a set Y € M such that
j[X] C Y and |[Y|™ < X Fix a set A of cardinality at most 6. We must find
B € M such that j[A] C B and |B|M < X. Let f: X — A be a surjection. Then
B = j(f)[Y] is as desired.

(2) implies (1): Trivial.
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(2) implies (3): Take B € M such that j[§] C B and |B|™ < . Then BNsup j[6]
is a cofinal subset of sup j[d] that belongs to M and has M-cardinality less than \,
so sup j[0] has M-cofinality less than A.

(3) implies (1) assuming § is regular: Let Y € M be a closed unbounded subset
of sup j[d] of M-cardinality less than . Note that ¥ Nj[0] is an w-closed unbounded
subset of sup j[d]. Letting X = j71[Y], it follows that X is an w-closed unbounded
subset of §. Since § is regular, this implies that X has cardinality §. Since j[X] C Y,
this establishes (1).

(4) implies (2): Trivial.

(2) implies (4) assuming j is an ultrapower embedding: Fix a set S C M of
cardinality at most . We must show that there is some T' € M of M-cardinality
less than A such that S C T.

Since M is an ultrapower embedding, there is some a in M such that every
element of M is of the form j(f)(a) for some function f. One can therefore find a
set of functions F' of cardinality at most A such that S = {j(f)(a) : f € F}. Fix
G € M such that j[F] C G and |G|™ < \. Without loss of generality we may assume
that G consists only of functions that are defined at a. Setting T' = {g(a) : g € G},
we have S C T and |T|M < ), as desired. |

The wellfoundedness assumptions in Lemma[2.51] are unnecessary, although this
is not clear from the proof above. Ketonen’s proof [10] works assuming only that
sup j[0] exists.

Corollary 2.52 (Ketonen). Suppose k is a cardinal and X is a regular cardinal.
A countably complete ultrafilter U is (k, A)-regular if and only if

of™ (sup ju[\) < ju (k).

Therefore, a countably complete weakly normal ultrafilter over X is (k, A)-regular if
and only if it concentrates on the set S = {a < X : cf(a) < k}.

Returning to the question of generalizing Theorem [2.46] to singular cardinals,
we consider the following conjecture of Lipparini.

Conjecture 2.53 (Lipparini, [12, Conjecture 2.12]). Suppose X is a cardinal
and U is a uniform ultrafilter over A\T. Must one of the following hold?

o U is (k,A\T)-regular for some k < \.
e U is A-decomposable.

There is an approximate answer to this question that will be quite important
in our analysis of strongly compact cardinals under UA. Recall that if W is an
ultrafilter over X and Z is an ultrafilter over Y then

WoZ={ACXxY :YWa vy (x,y) € A}.

Theorem [3.24. Suppose X is a cardinal and U is a uniform ultrafilter over \T.
Then either U is (k, \T)-reqular for some k < X or else U @ U is A-decomposable.

2250005-15



J. Math. Log. 2022.22. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ BERKELEY on 11/03/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

G. Goldberg

If ) is regular, then U is A-decomposable if and only if U ® U is A-decomposable.
(This is obvious from Proposition [2.42]) Therefore, Theorem [3.24] generalizes
Prikry’s Theorem (Theorem [2.46). Lipparini pointed out in personal correspon-
dence that Theorem [3.24] follows from results of [13]. We will give a more direct
proof at the end of Sec. [3.4]

2.7. Compactness principles

In this subsection, we define various strong compactness principles: classical strong
compactness, due to Tarski [19], and a number of variants introduced by Bagaria-
Magidor [2].

Definition 2.54. Suppose 6 < k < A are cardinals. Then & is (§, A)-strongly com-
pact if for some inner model M, there is an elementary embedding j : V — M
with critical point at least ¢ such that every subset of M of cardinality at most A
is contained in an element of M of M-cardinality less than j(x).

This principle is degenerate in the sense that if x is (0, A)-strongly compact,
then all cardinals in the interval [, A] are (d, A)-strongly compact.

Definition 2.55. Suppose § < x < \ are cardinals.

e k is (8, 00)-strongly compact if it is (8, y)-strongly compact for all cardinals v > &.
e K is A-strongly compact if it is (k, A)-strongly compact.
e k is strongly compact if it is (k, 00)-strongly compact.

There are many alternate characterizations of strong compactness.

Theorem 2.56 (Solovay, Ketonen). Suppose § < k < X\ are cardinals. Then the
following are equivalent:

(1) & is (8, \)-strongly compact.
(2) There is a 6-complete fine ultrafilter over the set Po(A\) = {oc C X\ :|o| < k}.
(3) There is a 6-complete (k, \)-regular ultrafilter.

If cf(N\) > &, one can add to the list:

(4) Ewery k-complete filter generated by A sets extends to a §-complete ultrafilter.
(5) Ewery regular cardinal v with k < v < X carries a d-complete uniform ultrafilter.

If X\ is regular, one can add to the list:

(6) There is a §-complete weakly normal fine ultrafilter over \ concentrating on the
set S2 = {a < \:cf(a) < K}.

Finally, we will use Solovay’s theorem that the Singular Cardinals Hypothesis
holds above a strongly compact cardinal in the following form.
Theorem 2.57 (Solovay, [18]). Assume k < X are cardinals, cf(\) > k, and & is
A-strongly compact. Then A<F = \.
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A proof of this local form of Solovay’s theorem in the case that A is regular
appears in the author’s thesis [6, Theorem 7.2.16], although of course it is not due
to the author. The case that cf(\) > & follows since A<* = sup;_, 6<" if A is a
limit cardinal and cf(\) > k.

3. The Ultrapower Axiom

In this section, we state the Ultrapower Axiom and prove some basic results from
the general theory of countably complete ultrafilters under UA that are required to
prove the supercompactness of the least strongly compact cardinal.

Since we never consider countably incomplete ultrafilters, we will only be inter-
ested in wellfounded ultrapowers, so we adopt the following convention.

Convention 3.1. All the models of set theory under consideration are from now
on assumed to be transitive.

3.1. Comparisons and the Ultrapower Axziom

By Corollary 2.13] ultrapowers of V' form a category under internal ultrapower
embeddings.

Definition 3.2. The category of internal ultrapowers is the category whose ob-
jects are ultrapowers of the universe of sets! and whose morphisms are internal
ultrapower embeddings.

Our next definition is standard in model theory.

Definition 3.3. A category C has the Amalgamation Property if for all morphisms
jo : P — My and j; : P — M of C there exist morphisms ig : My — N and
i1 : My — N of C such that ig o jo = i1 0 j;.

Definition 3.4. The Ultrapower Aziom states that the category of internal ultra-
powers has the Amalgamation Property.

Let us put down an equivalent formulation of the Ultrapower Axiom which the
categoraphobic among us may take as the definition.

Definition 3.5. Suppose My and M; are models of set theory. We say

(io,il) : (Mo,Ml) — N
is a comparison of (Mo, My) if ig : My — N and 43 : My — N are elementary
embeddings. If P is a model of set theory jo : P — My and j; : P — M are
elementary embeddings, we say (ig,i1) : (Mo, M1) — N is a comparison of (jo, j1)-

fBut only transitive ultrapowers; see Convention [3.1]
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We will say a comparison is an internal ultrapower comparison if its constituent
embeddings are internal ultrapower embeddings.

Lemma 3.6. The Ultrapower Axiom holds if and only if every pair of ultrapower
embeddings of the universe of sets admits an internal ultrapower comparison.

Proof. The forwards direction is clear. For the converse, suppose P, My, M are
ultrapowers of V and jo : P — My and j; : P — M; are internal ultrapower
embeddings. To verify the Amalgamation Property, we must show that there exists
an internal ultrapower comparison (ig, 1) : (Mo, M1) — N such that igojo = i1 0.
Thus, the only difficulty is that P may not be equal to V.

Note however that the statement that every pair of ultrapower embeddings of
the universe of sets admits an internal ultrapower comparison is equivalent to a
first-order statement in the language of set theory. Therefore, since P = V, P
satisfies that every pair of ultrapower embeddings of the universe of sets admits
an internal ultrapower comparison. But in P, jo : P — My and j; : P — M; are
ultrapower embeddings of the universe of sets since jy and j; are internal. It follows
that in P there is an internal ultrapower comparison (ig,%1) : (Mg, My) — N such
that ig o jo = i1 0 j1. The fact that (ig,41) is an internal ultrapower comparison of
(Jo, J1) is easily upwards absolute, so in fact (ig, 1) really is an internal ultrapower
comparison of (jo, 1), and this completes the proof. O

3.2. The Ketonen order

One of the most important structural consequences of the Ultrapower Axiom is the
existence of a natural wellorder of the class of countably complete fine ultrafilters
over ordinals. The order coincides with a partial order introduced in a somewhat
restricted setting by Ketonen [10]. Ketonen’s definition of this order was expressed
in terms of limits of ultrafilters (Definition [2.24)).

Definition 3.7. Suppose U and W are countably complete ultrafilters over ordinals
e and §. Then the Ketonen order is defined by setting U < W (respectively,
U<y W)ifU=W-limy<s U, for a sequence (U, : a < §) of countably complete
ultrafilters over € such that aNe € U, (respectively, (a+1)Ne € U,) for W-almost
all a.

A complete exposition of the basic theory of the Ketonen order appears in [7].
Here we will just state some facts and sketch some easy proofs.

Lemma 3.8. Suppose U and W are countably complete ultrafilters over ordinals €
and §. Then the following are equivalent:

(1) U <g W (respectively, U < W).
(2) For some ultrafilter U, of Mw over jw (€), ji (U] = U and aw N jw(€) € Us
(respectively, (aw + 1) N jw () € U.).
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(3) There is a comparison (k,0) : (My, Mw) — N of (ju,jw) such that ¢ is close
to My and k(ay) < £(aw) (respectively, k(ay) < l(aw)).

Proof. We prove the lemma for the strict Ketonen order <j; the proof for <y is a
trivial modification.

The equivalence of (1) and (2) is an immediate application of Lo§’s Theorem
and Lemma [2.25

(2) implies (3): Assume (2). Let k : My — My, be the associated shift em-
bedding (Definition 2.26)), and let ¢ : My — My, be the ultrapower embedding
associated to U,. Then by Lemma 2.27] (k,¢) is a comparison of (jy, jw). Since ¢
is an internal ultrapower embedding, ¢ is close to Myy .

Finally, we show k(ay) < €(aw). First note that k(ay) = ay, by Lemma 2.27
Since aw N jw(€) € U, ay, € Llaw) NL(jw(€)), and in particular ay, < (aw).
Therefore, k(ay) = ay, < l(aw), as desired.

(3) implies (2): Assume (3), and let U, be the Myy-ultrafilter over jw (€) derived
from ¢ using k(ay). Since £ is close to My, Lemma 2.7 implies that U, € M.
Since k(ay) < £(aw ), we have £(aw) N jw (€) € U,. Finally,

Jw (U] = 3ot 0 pra))] = 3o & Priao) )] = di Paw] = U. O

The following is the first place where countable completeness is used in the
theory of the Ketonen order.

Proposition 3.9. <y is a wellfounded preorder.

The preorder <y is almost antisymmetric.

Lemma 3.10. Suppose U and W are countably complete ultrafilters over ordinals
e and §. Then U <x W and W <y U if and only if there is an ordinal o € UNW
such that UN P(a) = W N P(a).

Corollary 3.11. The restriction of the Ketonen order to fine ultrafilters, or to
ultrafilters over a fized ordinal, is antisymmetric.

The relationship between <y and <y is simple.

Lemma 3.12. IfU and W are countably complete ultrafilters, then U <x W if and
only if U <y W and W £, U.

The following lemma allows us to view the Ketonen order as an extension of
the natural wellorder of the class of ordinals to the class of countably complete
ultrafilters over ordinals.

Lemma 3.13. If U and W are countably complete ultrafilters over ordinals and
min(OrdNU) < min(Ord N W), then U <x W.

Lemma [3.13] implies that for any ordinals a and S, po <k pg if and only if
a < . Moreover, for any countably complete ultrafilter U, U <y p,, if and only if
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U concentrates on a. In particular, the set of fine ultrafilters below p, is precisely
the set of fine ultrafilters over ordinals less than «.
The following theorem is the fundamental consequence of the Ultrapower Axiom.

Theorem 3.14 (UA). The Ketonen order wellorders the class of countably com-
plete fine ultrafilters over ordinals.

Proof. Given PropositionB.9and Lemmal3.10] it suffices to show that the Ketonen
order is total, meaning that for any countably complete fine ultrafilters U and
W, either U <x W or W <y U. To see this, let (k,¢) : (My, Mw) — N be an
internal ultrapower comparison of (ju, jw). If k(av) < £(aw), then (k, ) witnesses
U <x W by Lemma [3.8] Otherwise, {(aw) < k(av) so (¢, k) witnesses W <y U by
Lemma [3.8] m|

3.3. Translation functions

In this section, we sketch the proofs of some slightly deeper structural consequences
of UA for countably complete ultrafilters.
The irreflexivity of the Ketonen order yields the following useful lemma.®

Lemma 3.15. Suppose U is a countably complete ultrafilter over an ordinal and
1o and i1 are elementary embeddings from My to a common model N such that iq
is close to My and ig o ju = i1 0 ju. Then ig(ay) > i1(ay).

Proof. Otherwise by Lemma[3.8] (i9,41) : (My, My) — N witnesses that U <i U,
contradicting the wellfoundedness of the Ketonen order. O

Using Lemma [B.15] we obtain a key consequence of UA.

Theorem 3.16 (UA). Suppose j : V — M is an ultrapower embedding and U is
an ultrafilter over an ordinal §. Let U, € M be a countably complete M -ultrafilter
over j(8) such that j7'[U, = U. Let k : My — My, be defined by k([f]v) =
[1(N]u.- Then the following are equivalent:

(1) Uy is < -minimal among all countably complete ultrafilters U' of M over j(4)
such that j7[U'] = U.
(2) k is an internal ultrapower embedding of My .

Recall that the shift lemma (Lemma [2.27)) implies that the embedding k defined
above is elementary. Moreover, Lemmas 2.8 and 2.11] imply that k is an ultrapower
embedding. (We do include the details in the proof of Theorem B.16l) Therefore,
all that is in question in (2) is whether k is internal.

&We make two unrelated comments. First, the lemma does not actually require the hypothesis
that U is countably complete. Second, a significant strengthening of this lemma appears as [6,
Theorem 3.5.11]: given two inner models M and N and elementary embeddings ig,41 : M — N,
if 41 is definable over M from parameters, then ig(a) > i1 () for every ordinal .
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My

V%M

Fig. 1. The proof of Theorem [3.16]

Proof of Theorem [3.16. (1) implies (2): Let (¢,4.) : (My,My,) — N be an
internal ultrapower comparison of (jy, ju, © j).

The main claim is that i, o k = 4. Since every element of My is definable in My
from parameters in jy[V] U {ay}, it suffices to show that i, o k and ¢ coincide on
JjulV]U{au}. By the definition of a comparison,

1o0ju =10y, 0j =i, 0kojy
80 i, o k and i coincide on jy[V].

We finish the proof of the main claim by showing i, o k(ay) = i(ay). To see
ix o k(ay) > i(ay), notice that i, o k and i are elementary embeddings from My to
a common model N, 7 is close to My and i, o k o jy =i o jy. Therefore, applying
Lemma [3.15] with ig = i, o k and ¢; = 4, we can conclude that i, o k(ay) > i(ay).
On the other hand, the minimality of U, implies that i, o k(ay) < i(ay). To see

this, let U’ be the M-ultrafilter derived from i, o jy+ using i(ay). We claim that
j7U’] = U: indeed, for any A C §,

J(A) e U & i(ay) € ix o ju-((A))
& i(av) € i(ju(4))
& ay € ju(A)
s Ael.

The second equivalence follows from the fact that iojy = .0y« 0j by the definition
of a comparison.

By the minimality of U,, U, <p U’ in M. Let ¢’ : My, — N be the canonical
factor embedding associated to the derived ultrafilter U’, so i’ o jy = i, o jy= and
i'(ays) = i(ay) by Lemma [23] Then (¢/,i.) : (My,, My,) — N is a comparison
of (jur,ju,) and i, is internal to My, . Therefore, since U, <y U’, we must have
ix(ay,) < i'(ays) But ix(ay,) = i« o k(ay) and ¢'(ay/) = i(ay), so this implies
ix o k(ap) <'i(ay), as claimed.

This proves i, o k(ay) = i(ay), and concludes our proof of the claim that
i, o k = 1. In particular, i, o k is an internal ultrapower embedding of M. We can
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therefore apply Corollary .10 to the sequence
V2% My 2 My, 25 N
and deduce that k is an internal ultrapower embedding.

(2) implies (1): The proof does not use the Ultrapower Axiom. Suppose U’ is
another countably complete ultrafilter of M such that j7[U’] = U. We will show
that U’ 45 U..

Let (¢/,ix) : (Mys, My,) — N be a comparison of (jy,ju,) where i, is close
to My,. We must show that ¢'(ay/) > i.(ay,). Let k' : My — My be the shift
embedding defined by k' ([f]v) = [j(f)]us. Since ¢/ o k' and i, o k are elementary
embeddings from My to N such that i’ o k' o jy = i, o ko jy and i, o k is close
to My, i’ o k'(ay) > i« o k(ay) by Lemma [B.15 But i’ o k¥'(ay) = i'(ays) and
ix o k(ay) = i.(ay,), so we have shown i’'(ay+) > i.(ay, ), as desired. O

Since Theorem [3.16] comes up so often, it is useful to introduce the following
definition.

Definition 3.17 (UA). Suppose U is a countably complete ultrafilter over an
ordinal 4, M is an inner model, and j : V — M is an elementary embedding. Then
the translation of U by j, denoted t;(U), is the <2 -least ultrafilter U’ of M over j(9)
such that j='[U'] = U. If D is a countably complete ultrafilter, tp(U) = t;, (U).

Since j7j(U)] = U, t;(U) is always defined, and moreover, ¢;(U) <y j(U)
in M.

We make some comments on translation functions that are not needed in our
applications. Assuming UA it is not hard to show that for any countably complete
ultrafilters U and W over ordinals,

(Jto (wys Jew () * (Mu, Mw) — N

is a comparison of (ju,jw). This comparison is the minimum comparison of
(ju,jw) in the sense that for any other internal ultrapower comparison

(k,0) : (My, Mw) — P
of (ju,jw), there is a unique internal ultrapower embedding h : N — P such that
k= hojy, wy and £ = ho j;, ). In other words, (jt, w),jey () is the pushout of

(ju,jw) in the category of internal ultrapowers, the category theoretic analog of a
least upper bound.

3.4. The internal relation

Probably the most important application of Theorem [B.16] concerns the case in
which ¢;(W) = j(W).

Corollary 3.18 (UA). Assume j:V — M is an ultrapower embedding and W is
a countably complete ultrafilter over an ordinal. Then t;(W) = j(W) if and only if
J | Mw s an internal ultrapower embedding.
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Proof. Let k : Mw — M) be the shift embedding defined by k([flw) =
[()]jowy. By Theorem [3.I6, % is an internal ultrapower embedding of My if
and only if j(W) = £,(W). But k([flw) = [(Pljow) = 3(Uflw), 50 k = 7. The
corollary follows. O

This corollary motivates the introduction of a variant of the Mitchell order.

Definition 3.19. The internal relation is defined on ultrafilters U and W by setting
U C W if jy | Mw is an internal ultrapower embedding of My .

Corollary B.18] amounts to a computation of ¢ (W) in the case that U C W.
What about ¢y (U)?

Definition 3.20. Suppose U is a countably complete ultrafilter over a set X,
M is an inner model, and j : V — M is an elementary embedding. Then the
pushforward of U to M wia j, denoted s;(U), is the M-ultrafilter over j(X) defined
by 5;(U) = {A € j(P(X)):j [A] € U}. If W is a countably complete ultrafilter,
then sw (U) = sy, (U).

Note that j71[s;(U)] = U.

Notice that s;(U) = j.(U) N M where j.(U) denotes the pushforward of U by j
(Definition[2.22), so s;(U) really is a kind of pushforward. The following proposition
reinforces our contention that the internal relation is a variant of the Mitchell order.

Proposition 3.21. Suppose U is an ultrafilter over a set X and j:V — M is an
ultrapower embedding. Then the following hold:

(1) s;(U) is the M-ultrafilter over j(X) derived from ju | M using ju(j)(av).
(2) jé\j(U) = Jju I M.
(3) ju | M is an internal ultrapower embedding of M if and only if s;(U) € M.

Proof. Towards (1), let U’ be the M-ultrafilter over j(X) derived from jy [ M
using ju (j)(ay). Then for any A € j(P(X)),

AeU & ju(j)lav) € ju(A)
s{reX:jlx)eAteU
s Al €eU.
Thus, U’ = s;(U), proving (1).

Towards (2), let k : My, ) — ju(M) be the canonical factor embedding with
kojswy = Jju | M and k(as,w)) = ju(j)(ay). We must show that k is an
isomorphism. Since k is an elementary embedding, it suffices to show that k is
surjective.

Since j is an ultrapower embedding, Lemma [2.4] yields some a € M such that
every element of M is definable in M from a and parameters in j[V]. Hence by Los’s
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Theorem, every element of jiy (M) is definable in jiy (M) from jy(a) and parameters
in ju (j)[Mu]-

On the other hand, every element of My is definable in My from ay and param-
eters in jy[V]. Therefore by elementarity, every element of ji (j)[My] is definable
in ju (M) from ju(j)(av) and parameters in ju (j) o ju[V] = ju o j[V].

It follows that every element of jy(M) is definable in jy(M) from jy(a),
ju(j)(ay), and parameters in jy o j[V]. Therefore, every element of jy (M) is de-
finable in jy(M) from jy(7)(ay) and parameters in jy[M]. Since jy(j)(ay) €
kMg, ] and ju[M] C k[M,, )], every element of ji;(M) is definable in ji (M)
from parameters in k[Mj,)]. Since k is elementary, it follows that k[M,, ] =
ju(M). Thus, k is surjective, proving (2).

The forwards direction of (3) is an immediate consequence of (2), and the reverse
direction is an immediate consequence of (1). |

Proposition 3.22 (UA). Suppose U is a countably complete ultrafilter over an
ordinal, M is an inner model, and j : V — M is an elementary embedding. Then
Ju | M is an internal ultrapower embedding if and only if t;(U) = s,;(U).

Proof. If ¢;(U) = s;(U), then s;(U) € M, so jy | M is an internal ultrapower
embedding by Proposition [3.21}

Conversely assume s;(U) € M. Consider the shift map &k : My — M,
defined by k([f]v) = [§(f)]s, ). (This is well-defined because j~'[s;(U)] = U.) By
Proposition [3.21]

k(o) = gu () Go () (av)) = ju () ([f]v)-

Hence k = jy(j), and in particular, k is an internal ultrapower embedding of My;.
Therefore by Theorem B.16] s;(U) = t;(U). O

We now use sy(U) to prove Theorem [3.24] First, we need a lemma which is
essentially a combinatorial restatement of Proposition [3.211 For A C V x V| let
Ay ={y: (z,y) € A} and AY = {x: (z,y) € A}.

Lemma 3.23. Suppose W is an ultrafilter over X and Z is an ultrafilter over Y.
Then for any A C X XY,

AeWRZ & [y— AV]z € sz(W). (1)
Proof. The lemma is a consequence of the following computation:
AcWeZe{zeX: Ay, €eZeW
sS{reX:az €jz(A)}eWw
s{reX:(jz(x),az) €jz(A)}eW
e{reX:jz(x) €jz(A)?}eW
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s{reX:jzx)ely— AV |z} eW
Sz (ly— AYz) ew

& ly— AY]z € sz(W). O

Theorem 3.24. Suppose X is a cardinal and U is a uniform ultrafilter over \T.
Then either U is (k, \T)-regular for some k < X or else U @ U is A-decomposable.

Proof. Assume first that for some x < A, sy(U) contains a set Y of My-cardinality
less than ji (k). Let X = j;;'[Y]. Then by the definition of si(U), X € U, so since
U is uniform, | X| = AT. It follows from Lemma [2.51] that U is (x, A\*)-regular.

Assume instead that for all Kk < A, no set in sy (U) has My-cardinality less than
ju (k). Note that there is a set Y € sy (U) of My-cardinality at most jy(X): indeed,
any ordinal ¢ with jy(a) < € for all & < AT belongs to sy (U), and there is such
an ordinal ¢ strictly below jy(AT) since U is A*-decomposable (Proposition [2.42)).
Clearly, I¢[ < ju()).

Let f : ju(AT) = ju(A) be one-to-one on Y. Let g : A* — *" X be such that
[glu = f. We claim that the function F(«, ) = g(8)(a) is a A-decomposition of
U ® U. Suppose not, and fix A € U ® U such that |F[A]| < k for some x < A.
Let A% = {a : (a,B8) € A}. Then |g(B)[A%]| < & for all B < A. Hence letting
B = [B — APy, and recalling that f = [g]y, we have that |f[B]|"Y < ju(k)
by Los’s Theorem. Moreover since A € U@ U, B € sy(U) by Eq. (). Therefore,
BNY € sy(U). But f is one-to-one on BNY, and therefore |[BNY |Mv = |f[BN
Y]|Mv < jy(k), contrary to our case hypothesis. O

3.5. Commuting ultrapowers

Given the wellfoundedness of the Mitchell order, it is natural to ask whether the
internal relation is wellfounded. Kunen’s Commuting Ultrapowers Lemma shows
that it is not, and in fact, it contains 2-cycles:"

Theorem 3.25 (Kunen). Suppose U is a k-complete ultrafilter and W is an
ultrafilter over a set of size less than k. Then ju(jw) = jw | My and jw(ju) =
Jju | My . In particular U T W and W C U.

A proof appears in the author’s thesis [6, Theorem 5.5.21].

Definition 3.26. Two countably complete ultrafilters U and W are said to com-
mute if ju(jw) = jw | My and jw (ju) = ju [ Mw.

Proposition [3.22] and Corollary [3.18 combine to yield the following converse to
Theorem [3.25]

Theorem 3.27 (UA). Suppose U and W are countably complete ultrafilters. Then

hif 7 and W are fine ultrafilters over an ordinal § and U C W, then U <, W. Hence the internal
relation s wellfounded when restricted to fine ultrafilters over a fixed ordinal 4.
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the following are equivalent:

LHUCWandWCU.
(2) U and W commute.

Proof. (1) implies (2): Applying Proposition B.22] and Corollary B.18 jy (W) =
tu(W) = sy(W). Therefore, ju(jw) = jj,(w) = Jsy(w) = jw | My, where the
final equality follows from Proposition [3.21] By symmetry, this establishes (2).

(2) implies (1): Trivial. m|

One can ask whether Theorem [3.25 has a converse in another sense: if U and W
commute, must U contain a set of size less than crit(W) or vice versa? The answer
is no, and the reader can no doubt provide a counterexample with a little bit of
thought. It will be important, however, to establish a positive answer for ultrafilters
with the following property.

Definition 3.28. Suppose A is a cardinal and U is a countably complete ultrafilter.
Then U is A-internal if D C U for any ultrafilter over a set of size less than A and
U is uniformly internal if U is A-internal where A = minacy |A].

For example, a k-complete ultrafilter over x is uniformly internal.

Theorem 3.29. Suppose U and W are countably complete uniformly internal ul-
trafilters. Then the following are equivalent:

(1) U and W commute.
(2) U contains a set of cardinality less than crit(W) or W contains a set of cardi-
nality less than crit(U).

The proof requires the following fact.

Proposition 3.30. Suppose k is a strong limit cardinal and U is a countably com-
plete k-internal ultrafilter such that jy[k] C k. Then U is k-complete.

The idea of the proof of Proposition[3.30]is to show that for every ¢ < x, there is
an ultrafilter D over a set of size less than k such that jp[d] = jy[d]. Since D C U,
juld] = ip[d] € My. Now using the Kunen inconsistency theorem (Corollary [2.38]),
crit(ju) > k.

Thus, we must show that an ultrafilter U can be “approximated” by ultrafilters
over smaller sets.

Lemma 3.31. Suppose I, X andY are sets, U is an ultrafilter over X, andp : I —
ju(Y) is a function. Then for some ultrafilter D over Y, there is an elementary
embedding k : Mp — My such that ko jp = ju and p[I] C k[Mp)].

Proof. Choose ¢ : I — XY so that [¢(i)]y = p(i). Define f : X — Y by f(x)(i) =
q(i)(z). Let D = f.(U) be the pushforward of U by f (Definition [2.22]), and let

2250005-26



J. Math. Log. 2022.22. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ BERKELEY on 11/03/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Strong compactness and the ultrapower axiom I

k: Mp — My be the canonical factor embedding with kojp = jy and k(ap) = [f|u
(Lemmas [2.3] and 2.23).

An easy computation shows that for any function g on Y7, k([g]p) = [g o f]u-
Note that for any i € I, q(i) = eval; o f where eval; : Y/ — Y is defined by
eval;(g) = g(7). It follows that k([eval;]p) = [eval; o fly = [¢(i)]u = p(¢). Hence
p[I] € k[Mp]. O

Corollary 3.32. Suppose M is an inner model, j : V. — M 1is an ultrapower
embedding, and k is a cardinal. Then for some ultrafilter D over a set of size 27,
there is an elementary embedding k : Mp — M such that kojp = j and crit(k) > k.

Proof. Apply Lemma B3I with Y = k41, I = k, and p : kK — j(Y) such that
k + 1 C p[k]. Then one obtains an ultrafilter D over (k + 1)* such that there is
an elementary embedding k : Mp — M with k + 1 C k[Mp], or in other words,
crit(k) > k. |

Proof of Proposition [3.30l By Corollary[3.32] for any § < , there is an ultrafil-
ter D over a set of cardinality less than x such that jp [ 6 = jy [ d. Since D C U,
juld] € My.

This shows that ji[6] € My for all § < . This contradicts the Kunen incon-
sistency theorem for ultrapowers (Corollary 2.38)), unless crit(jiy) > &, or in other
words, U is k-complete. O

Proof of Theorem [3.29. (1) implies (2): Since U and W commute, jy (crit(W)) =
crit(W). In particular crit(U) # crit(WW), so assume without loss of generality that
crit(U) < crit(W).

If U does not contain a set of size less than crit(W), then since U is uniformly
internal, U is crit(WW)-internal. But then by PropositionB.30] U is crit(WV)-complete.
This contradicts that crit(U) < crit(W).

(2) implies (1): This is a special case of Theorem [3.25 m|

4. The Least Supercompact Cardinal

In the course of the next two sections, we will prove that the least strongly compact
cardinal is supercompact (Theorem [5.17). In this section, we prove a conditional
result in this direction, a coarse version of which can be described in terms of the
following cardinal.

Definition 4.1. For every cardinal v, let 7., denote the least ordinal 7 such that for
all ordinals «, there is an ultrapower embedding j : V' — M such that crit(j) >«
and j(7) > a.

Theorem [4.13] (UA). If 7, is strongly compact, then it is supercompact.
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In Sec. Bl we will prove Theorem [5.18) which shows that 7, is supercompact.
Notice that 7., is less than or equal to the least strongly compact which is less
than or equal to the least supercompact, so if 7, is supercompact, then the least
strongly compact cardinal is supercompact.

4.1. Ketonen ultrafilters

It is quite easy to construct an example of an ultrafilter U whose associated ultra-
power embedding jy : V — My witnesses that x is strongly compact but does not
witness that x is supercompact. Therefore, to prove the supercompactness of the
least strongly compact cardinal, we will have to define special ultrafilters that do
witness supercompactness. The ultrafilters we use are called Ketonen ultrafilters.

Definition 4.2. A countably complete ultrafilter U over a cardinal A is said to
be a Ketonen ultrafilter if U is minimal in the Ketonen order among all countably
complete uniform ultrafilters over A.

In this section, we will only discuss Ketonen ultrafilters over regular cardinals,
which have a simple combinatorial characterization.

Theorem 4.3 (Ketonen). A countably complete ultrafilter U over a regular car-
dinal 0 is a Ketonen ultrafilter if and only if U is weakly normal and concentrates
on ordinals that carry no countably complete fine ultrafilter.

Proof. Let U be a Ketonen ultrafilter over §.

To see that U is weakly normal, consider the ultrafilter W over ¢ derived from
Jju using sup jy[0]. By Lemmal2.21] W is weakly normal. Let k : My — My be the
canonical factor embedding with k(aw) = sup juy[d]. Then (k,id) : (Mw, My) —
My is a comparison witnessing W <y U. Since W is uniform, the minimality of U
implies U = W. Hence U is weakly normal.

We now show that the set A of ordinals o < § carrying a countably complete
fine ultrafilter is U-null. Assume not, and for each o € A, let U, be a fine ultrafilter
over a. Let W, be the ultrafilter over ¢ induced by U,, meaning W, = {B C 0 :
Bna e U,}. Then U-limye s W, < U by definition, but clearly U-lim,ec 4 W, is a
fine ultrafilter over §.

Conversely, suppose U is weakly normal and concentrates on ordinals that carry
no countably complete fine ultrafilter. Suppose W is an ultrafilter over ¢ such that
W < U. We must show that W is not fine. By the definition of the Ketonen order,
W = U-limyg<sW, where and a € W, for U-almost all « € A. For each a < ¢,
let f(a) be the least ordinal in W,,. Since U-almost every « carries no countably
complete fine ultrafilter, f(a) < « for U-almost all a. Since U is weakly normal
and f is regressive modulo U, there is some v <  such that f(«) < v for U-almost
all a < 4. It follows that v € W, for U-almost all & < 9, and hence v € W. Since
v < 4, this means that W is not fine. O
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The key ZFC theorem on Ketonen ultrafilters is a variant of a theorem due to
Ketonen himself, which he used to prove Theorem [2.56

Theorem 4.4 (Ketonen). Suppose k is a cardinal, § is a regular cardinal, and U
is a Ketonen ultrafilter over 6. Assume that every regular cardinal in the interval
[k, 0] carries a countably complete fine ultrafilter. Then U is (k,d)-regular.

Proof. By Lemma [2.51] it suffices to show

o™V (sup ju[0]) < ju (k).
By Theorem [4.3] sup jy[d] carries no countably complete fine ultrafilter in My,
and hence cf™ (sup jy[d]) carries no countably complete fine ultrafilter in My;.
By elementarity, every My-regular cardinal in the interval [jy(k), ju(0)] carries
a countably complete fine ultrafilter in M. Thus, ¢V (sup jy[6]) does not lie

in this interval, and so since ¢f™V (supjy[0]) < ju(d), it must be the case that
cf (sup ju[0]) < ju (k). 0

4.2. The ultrafilter s

Under the Ultrapower Axiom, the Ketonen order is linear, and therefore there is at
most one Ketonen ultrafilter over any ordinal.

Definition 4.5 (UA). For any cardinal A, let J#\ denote the unique Ketonen
ultrafilter over A, if it exists.

The ultrafilter 7, is the key to understanding strong compactness and su-
percompactness under UA, especially when \ is a regular cardinal. For example,
Theorems[5.13 and [5.20] show that if § is either a successor cardinal or an inaccessi-
ble cardinal, then .75 witnesses the d-strong compactness of crit(#5) (assuming %5
exists). That is, s is (crit(%s), 0)-regular. Moreover, Corollary [5.14]shows that for
any successor cardinal §, 5 witnesses the J-supercompactness of crit(.#5); that is,
the ultrapower M y; is closed under J-sequences.

These properties of 5 trace back to the universal property of Js.

Theorem 4.6 (UA). Suppose 0 is a reqular and carries a countably complete fine
ultrafilter. Then for any wellfounded ultrapower embedding j : V- — M, the following
are equivalent:

(1) There is an internal ultrapower embedding k : My, — M such that ko ju; = j
and k(sup j;[0]) = sup j[d].
(2) supj[d] carries no countably complete fine ultrafilter in M.

Proof. (1) implies (2): Since #; is a Ketonen ultrafilter, supj;[d] car-
ries no countably complete fine ultrafilter in M ;. Therefore by elementarity,
k(sup j.;[0]) = sup j[0] carries no countably complete fine ultrafilter in M.

(2) implies (1). Let (ig,41) : (M., M) — N be an internal ultrapower compari-
son of (j, j). Since 4 is an internal ultrapower embedding of M x;, and there is no
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countably complete fine ultrafilter over sup j.z [0] in M.y, io(sup j; [0]) = supip o
J.; [0]. Similarly, i1 (sup j[0]) = sup i 0 j[6]. Therefore, io(sup jx; [0]) = i1 (sup j[4]).
Since %5 is weakly normal, every element of M ; is of the form j; (f)(sup j; [0])
for some function f: 6 — V. But ig(je (f)(sup g [0]) = i1(5(f)) (i1 (sup j[d])) €
i1[M]. It follows that ig[M ;] C i1 [M].

Let k = i7 ' oig. Since ig[M_g;] C i1[M], k : My — M is a (total) elementary
embedding. Clearly, ko jx, = j and k(sup j. [0]) = sup j[4].

It remains to show that k is an internal ultrapower embedding, but this follows
immediately from Corollary 2.10] applied to the sequence

VI Mo B M N 0

Theorem [4.6] yields a simple characterization of the internal ultrapower embed-
dings of M ;.

Theorem 4.7 (UA). Suppose § is reqular and carries a countably complete fine
ultrafilter. An ultrapower embedding h : My, — N is internal if and only if

h(sup jx; [8]) = sup b o jix; 0]

Proof. The forwards implication is trivial. For the converse, apply Theorem [4.6]
with ji = h o j; to obtain an internal ultrapower embedding k : M ; — N such
that ko ju = ho jx and k(sup ju[0]) = supk o j[d]. Since supk o j,[d0] =
sup hoj[0] = h(sup ju [0]), k(sup jug [0]) = h(sup ju; [0]). Every element of M
is of the form jz (f)(sup jug [0]) so since ko ju; = ho ju and k(supj[d]) =
h(sup j.z [0]), k = h. It follows that h is an internal ultrapower embedding. O

4.3. Supercompactness conditioned on strong compactness

The main result of this section is the following implication.

Theorem 4.8 (UA). Suppose ¢ is a regular cardinal. Let k = crit(J5). Assume
K 1is d-strongly compact. Then

o My, is closed under y-sequences for all v < 6.

o Every subset of My, of cardinality § is contained in a set in My, that has
cardinality 6 in M ;.

o My, is closed under 0-sequences unless 6 is strongly inaccessible.

Theorem .7 shows that many M x;-ultrafilters necessarily belong to M ;. The
idea behind Theorem [4.8]is that given a set S C M y;, one can try to code S by an
ultrafilter U, and if this can be done, one can attempt to use Theorem [4.7] to show
U € M ;. Since S is coded into U, one can then conclude that S € M ;.

It is open whether (4) can be generalized to the case that § is strongly inacces-
sible. The proof of (4) involves coding subsets of ¢ into ultrafilters on a cardinal
v < 0, which is impossible if § is strongly inaccessible.
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This coding of sets by ultrafilters requires some infinite combinatorics; namely,
the concept of an independent family of sets.

Definition 4.9. Suppose « is a cardinal. A family of sets F is k-independent if for
any disjoint subfamilies ¢ and 7 of F, each of cardinality less than k, there is a
point that belongs to all the sets in ¢ and none of the sets in 7.

Suppose k is a regular cardinal. Then a family of sets F is k-independent if and
only if given any disjoint subfamilies By and B; of F, there is a k-complete proper
filter G such that By C G and B1 € G* where G* denotes the ideal dual to G. For
the forwards direction, consider the family B consisting of <k-sized intersections
of sets in By and complements of sets in B;. Every set in B is nonempty since F is
independent, and since & is regular, B is closed under <k-sized intersections. There-
fore, the filter G generated by B is proper and k-complete. The reverse direction is
an easy exercise.

Let us give a simple example of a k-independent family. Suppose X is a set.
For each z € X, let A, = {0 € Po(X) :z € 0}. Then F = {A, : z € X} is a
k-independent family. Notice that |F| = | X|. Hausdorff proved that there are much
larger k-independent families.

Theorem 4.10 (Hausdorff). For any set X, there is a k-independent family of
subsets of Py(X) of cardinality 2!X!.

Proof. Let A be the cardinality of X. Since k-independence is preserved by re-
labelings of the underlying set, it suffices to exhibit a x-independent family F of
subsets of some set S such that |F| = 2* and |S| = A<*.

Let

S= [ P(P(o) ={(o.t) : t € Pu(P(0))}.
c€P.(X)

Note that for all 0 € P, (X), |P.(P(0))| < (2|o|)<n — 2<% Therefore,
S| = [Pe(N)] - sup |Pe(P(0))] = A=

oePy,

For each A C X, let
Sa={(o,t)eS:ANnc et}
and let
F={S4:ACX}.

Then |F| = 2*: the function A ~ S, is injective since z € A if and only if

({z}, {{z}}) € Sa.

To finish, we show that F is x-independent. Suppose 7y and 7; are disjoint
collections of subsets of X, each of cardinality less than k. We will find a point in
S that belongs to S4 for every A € Ty and does not belong to Sp for any B € Ty,
which clearly implies that F is x-independent.
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Choose o € P;(X) large enough that for any A € Ty and B € T;, ANo # BNo.
Now let

t={ANo:Ae€Th}.

Obviously, ANo € tif A € Ty. Moreover, BNo ¢ tif B € T; since BNo # ANo for
all A € Ty by our choice of o. It follows from the definition of S that (o,t) € Sa
for all A € Ty and (o,t) ¢ Sp for all B € T;. Thus, (o,t) is as desired. O

Lemma 4.11. Suppose k is a A\-strongly compact cardinal. Suppose M is an inner
model of ZFC with P,(\) C M. Suppose v < X is an M-cardinal of cofinality at
least ks such that A < (2)M and UNM € M for every k-complete ultrafilter U over
~. Then P(A\) C M.

Proof. We first note that x is -strongly compact in M for all M-regular cardinals
0 < ~. Indeed, since P,(y) C M, every regular cardinal 6 of M with § < ~ has
cofinality at least x in V and hence carries a x-complete fine ultrafilter W. By
assumption WNM € M, so W is a k-complete uniform ultrafilter over ¢ in M. By
Ketonen’s Theorem (Theorem [2.50]), this implies  is §-strongly compact in M for
all regular § < ~.

In particular, it follows from Solovay’s Theorem (Theorem [2.57) applied in M
that |P.(v)|™ = 7. Therefore, U N M € M for every rk-complete ultrafilter U
over Py (7).

To prove the lemma, it suffices to show that there is a set F € M such that
|FIM = X and P(F) C M.

Working in M, apply Theorem [4.10] to obtain a k-independent family F of
subsets of P, () of cardinality . Since P,,(\) € M, M contains every subfamily of
F of cardinality less than x. It follows that F is truly x-independent.

Suppose S C F. We will show that S € M. Let T = F\S. By the remarks
following Definition [4.9] there is a x-complete filter G over P, () such that S C G
and T C G* where G* denotes the ideal dual to G. Moreover, the least such
filter G is generated by A-many sets; namely, the <k-sized intersections of sets
in S and complements of sets in T'. Since k is A-strongly compact, G extends to a
k-complete ultrafilter U over P, (7). (See Theorem [2.561) By assumption U N M €
M.But S=UNF,soSeM. ]

[6, Theorem 7.3.22] generalizes Lemmald.11]in a way that clarifies the underlying
combinatorics.
We can now prove the main result of this section.

Proof of Theorem [4.8l Let j : V — M denote the ultrapower embedding asso-
ciated to 5.

We first show that for all ordinals o < §, P(a) C M. Assume towards a contra-
diction that this fails, and let  be the least ordinal such that P(y) € M. Clearly,
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v is an M-cardinal, and moreover since M is closed under x-sequences, cf(y) > &.
Since v < ¢, Theorem [4.7 implies that for all countably complete ultrafilters U over
v, U C s and hence U N M € M. Therefore by Lemma [A.11] P(y) C M. This is
a contradiction, establishing that P(«) C M for all o < 4.

Next, we show that c¢f™ (sup j[0]) = d. Suppose not, towards a contradiction.
Then for every countably complete ultrafilter U over 6, UNM € M. To see this, note
that jM ., - M — MY is continuous at cf™ (sup j[6]). Therefore by Theorem 6]
G\, is an internal ultrapower embedding of M, and hence U N M € M.

Note that in particular, £ N M € M. This is quite strange given the fact that
no countably complete ultrafilter belongs to its own ultrapower, but it is not in and
of itself a contradiction.

Since UNM € M for every countably complete ultrafilter U over §, however, we
can apply Lemma [4.11] with v = A = § to obtain that P(d) C M. Now 5 = J5 N
M € M. This contradicts that an ultrafilter never belongs to its own ultrapower,
and this contradiction proves that cf* (sup j|6]) = 6. By Lemma [2.51] it follows
that every subset of M of cardinality at most J is contained in a set in M of
M-cardinality at most §.

We now show M is closed under y-sequences for all v < § such that P(vy) C M.
By Lemma [2.32] it suffices to show that j[y] € M for all v < 6.

Assume towards a contradiction that v < § is the least ordinal such that M
is not closed under ~y-sequences. Clearly, v is a regular cardinal. By the covering
property of M established above, sup j[y] has cofinality at most ¢ in M. In fact,
since sup j[] has cofinality y in V| its cofinality in M is strictly less than §. Applying
Lemma [2.51] again, we obtain a set A € M containing j[y] such that |[A|M < 4.
Since P(|A|M) C M, P(A) C M, and so j[y] € M. Therefore, M is closed under -
sequences. This is a contradiction, establishing that M is closed under v-sequences
for all v < 6.

Finally, assume ¢ is not strongly inaccessible, and we will show that M is closed
under d-sequences. There are two cases.

Suppose first that § < v<* for some cardinal v < §. Then by Theorem [2.57]
d =~T and ~ has cofinality less than «. Since j[y] € M, j[P.(v)] = P.(j[y]) € M.
Since | P, (y)| = 6, j[6] = M. This shows that M is closed under §-sequences in this
case.

Suppose instead that v<% < § for all v < §. Let v be least such that 27 > 4.
Then since v < §, P(y) € M, and so (27)™ > §. Therefore, applying Lemma [4.11]
P(8§) € M. Since we showed that M is closed under a-sequences for all o < § such

that P(a) C M, it follows that M is closed under d-sequences in this case as well.
|

We now prove the conditional result on the cardinal 7,,, described at the begin-
ning of this section.

Theorem 4.12. Suppose T, is -strongly compact where § > 1, is a reqular
cardinal. Then crit(As) = Ty, -
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Proof. The fact that crit(J£) < 7, is a consequence of Theorem 4.4l More explic-
itly, note that since 7, is d-strongly compact, every regular cardinal in the interval
[Tw,, 0] carries a uniform countably complete ultrafilter. Applying Theorem [4.4]
this means that 5 is (7.,,,0)-regular. In particular, %5 is 7,,-decomposable (by
Corollary [2.50]), and hence crit(5) < 7,

To show that 7, < crit(.%s), we first show that for any ultrapower embedding
j: V=M, jl7,,] C 7w, . Suppose j : V — M is an ultrapower embedding and « is
an ordinal such that j(k) > 7,,. We will show x > 7,,,. We claim that for any o,
there is an ultrapower embedding i : V' — N such that i(x) > «. To see this, one
just composes j with an ultrapower embedding sending 7, above «, (The fact that
the composed embedding is also an ultrapower embedding follows from Lemma [2.11]
and Proposition[3.21]) By the minimality of 7, , it follows that x > 7, , as claimed.

In particular, j [7w,] C 7w,. But % is 7., -internal and 7, is a strong limit
cardinal, so by Proposition [3.30] crit(J45) > 7., |

Theorem 4.13. If the cardinal 7, is strongly compact, it is supercompact.

Proof. Let § > 7, be a successor cardinal. Since 7, is d-strongly compact, %5
exists. By Theorem [4.12] crit(.#5) = 7.,. Therefore by assumption, crit(J£5) is J-
strongly compact, and so we can apply Theorem [4.8 to obtain that M x; is closed
under d-sequences. This yields that 7, is J-supercompact, and so since § was an
arbitrary successor cardinal, 7, is supercompact. O

5. Strong Compactness and Uniform Ultrafilters

In this section, we study the pattern of cardinals that carry countably complete
uniform ultrafilters under UA, culminating in our main theorem.

Theorem [5.17 (UA). The least strongly compact cardinal is supercompact.

In fact, this will follow as a consequence of various stronger and more local
theorems (Corollary [5.14] and Theorem [5.21]).

5.1. Fréchet cardinals

Definition 5.1. A cardinal X is Fréchet if it carries a countably complete uniform
ultrafilter.

A cardinal X is Fréchet if and only if the Fréchet filter {4 C A : [AN\A| < A}
extends to a countably complete ultrafilter.

We will use a number of characterizations of Fréchet cardinals that are very
easy to prove.

Lemma 5.2. For any cardinal X\, the following are equivalent:

(1) X is Fréchet.
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(2) There is a countably complete ultrafilter U such that minacy |A| = .
(3) There is a countably complete \-decomposable ultrafilter.

If X\ is regular, one can add to the list:

(4) There is an elementary embedding j : V — M such that sup j[A] < j(A).

Proof. The equivalence of (1) and (2) is trivial, and the equivalence of (1) and (3)
follows immediately from Lemma[2.41] (4) follows from (1) by taking an ultrapower,
and (1) follows from (4) by considering the ultrafilter over A derived from j using
sup j[A], which is fine, and hence uniform if X is regular (Lemma [2.18)). O

Given an ordinal -y, how large is the least Fréchet cardinal above 7

Definition 5.3. For any ordinal 7, v denotes the least Fréchet cardinal above ~.

Of course, 77 may not be defined. Note that 17 is equal to the least measurable
cardinal (if there is one). On the other hand, if x is xkT-strongly compact, then

9 = gT. It is natural to conjecture that these are the only possibilities. It is

K
consistent, however, that this is not the case: for example, Gitik [5] shows that if
there are two measurable cardinals and k£ < A are the least ones, then it is possible to
build a forcing extension in which A is strongly inaccessible but not weakly compact

and k% = A. It is therefore natural to make the following revised conjecture.

Conjecture 5.4. Assuming the Ultrapower Aziom, for any ordinal 7y, either v° =
~T or 47 is measurable.

While Conjecture [5.4] remains open, we will show in Proposition [5.19 that it
holds assuming GCH. (This is by far the most important case given that our interest
is not really in arbitrary models of UA.)

The notion of an isolated cardinal naturally arises from the attempt to prove
Conjecture 5.4l

Definition 5.5. A cardinal X is isolated if X is a limit cardinal and there is some
v < A such that A =~°.

The following lemma will be quite important.

Lemma 5.6. Suppose X is a cardinal and AV is Fréchet. Either \ is Fréchet or \
s a singular limit of Fréchet cardinals.

Proof. Theorem [3.24] implies that there is a countably complete ultrafilter W that
is either A-decomposable or (x, AT)-regular for some x < A.

If W is A-decomposable, then by Lemma [5.2] A is a Fréchet cardinal. Assume
instead that W is (k, AT)-regular. Then by Corollary 2.50) W is §-decomposable
for every regular cardinal § in the interval [, AT]. If X is regular, then A itself is
a regular cardinal in the interval [k, AT], and so A is Fréchet. Otherwise, A is a
singular cardinal, so A is a singular limit of Fréchet cardinals. O
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By the following proposition, to prove Conjecture[5.4] one only has to show that
every isolated cardinal is measurable.

Proposition 5.7. Suppose v° is a successor cardinal. Then v° = 7.

Proof. Let X be the cardinal predecessor of 4. Then v > \: otherwise, Lemmal[5.6]
implies that there is a Fréchet cardinal strictly between v and 7, which contradicts
the definition of 7. Now 4% = AT < ~T, proving the proposition. O

The following corollary is the true explanation for our interest in isolated
cardinals.

Proposition 5.8. Suppose  is a reqular cardinal, U is a Ketonen ultrafilter over
d and k = crit(U). If there are no isolated cardinals A such that kK < X\ <4, then k
is 0-strongly compact and U is (k, d)-reqular.

Proof. Fix an ordinal v such that k <y < §.

Let A = 7°. We claim A = 7. Assume towards a contradiction that A > v*.
Then A is an isolated cardinal by Proposition[5.7 Since § is a Fréchet cardinal above
~v, A < §. This contradicts that there are no isolated cardinals such that kK < A < 4.

This proves that every successor cardinal in the interval (k,d) is Fréchet. By
Lemma [5.6] it follows that every regular cardinal in the interval [k, d] is Fréchet.
Therefore by Ketonen’s theorem (Theorem [4.4), U is (x,d)-strongly compact. In
particular, it follows (from Theorem [2.56] say, but essentially by definition) that x
is 0-strongly compact. |

5.2. Ketonen ultrafilters over isolated cardinals

In this section, we study £, when X\ is isolated. The key is a weak form of
Theorem 4.7,

Lemma 5.9. Suppose \ is an isolated cardinal. Then for any countably complete
ultrafilter D over a cardinal § < A, jp [ My, is an internal ultrapower embedding.

The lemma is only of interest when A is singular, since we have already proved
a much stronger result in the regular case (Theorem [4.7). In the singular case,
the assumption that A is isolated is essential, since one can show that if A\ is a
nonisolated singular Fréchet cardinal of cofinality d, then ju; [ My, is not an
internal ultrapower embedding.

Lemma [5.9] is a consequence of Corollary [3.18] our general UA technique for
proving that the restriction of an ultrapower embedding to another ultrapower is
internal. The proof also uses the following easy lemma.

Lemma 5.10. Suppose X is a cardinal, X is a set of cardinality less than X\, and
D is an ultrafilter over X . Suppose Y is a set and U, is an ultrafilter of Mp over
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ip(Y) that is (jp(7),ip(A1))-indecomposable for some v < X. Then j;'[U.] is
A-indecomposable.

Proof. Let U = j;'[U.]. Let (U, : @ € X) be a sequence of (7, AT)-indecomposable
ultrafilters such that U, = [(U, : € X)|p. Suppose (A4, : @ < A} is a partition of
Y. We must find a set S C \ of cardinality less than A such that UaeS A, eU.
For each z € X, let S; C X be a set of cardinality less than v such that
Uaes, Aa € Uz Let S =, cx Sz Since | X| < A and [S;| < v for all z, [S] < A.
Moreover, |J,cg Az € U, for all z € X since S, € S. By Los’s Theorem, this
implies that jp(lJ,cq Az) € U, or in other words, |J,.g Az € U. Therefore, S is
as desired. O

Proof of Lemma [5.9] Let U, be the <E¥D—least ultrafilter of Mp over jp(X) such
that j5'[U.] = A

We claim that U, is jp(\)-decomposable in Mp. To see this, fix v < A such
that A = ~4°. Then U, (and indeed any countably complete ultrafilter of Mp)
is (jp(v),ip(N))-indecomposable in Mp, since jp(A) is isolated in Mp. Assume
towards a contradiction that U, is jp(A\)-indecomposable. Then by Proposition[2.45]
U. is (p(7),ip(AT))-indecomposable. Therefore by Lemma [5.10, j,'[U.] = 4 is
A-indecomposable. This contradicts that J#) is a uniform ultrafilter over A.

Note that for any cardinal n, J#, is the Ketonen least fine ultrafilter that is
n-decomposable. Therefore, since U, is jp(A\)-decomposable in Mp, jp () <k U.
in Mp. Obviously U, <y jp(J), so equality holds. Hence by Corollary [B.18]
Jjp | My, is an internal ultrapower embedding. O

The following criterion for nonisolation will prove quite useful.

Lemma 5.11 (UA). Suppose A is a Fréchet cardinal and there is a countably
complete ultrafilter D such that %\ T D but D [ . Then X is not isolated.

Proof. Assume towards a contradiction that A is isolated. Assume without loss of
generality that the underlying set of D is a cardinal.

Since )\ C D, tp(#y) = sp(J£\) by Proposition B.22] Since D i %), Corol-
lary [B.18] implies that ¢tp(£)\) <k jp(J£)). Since jp(J#) is the least countably
complete uniform ultrafilter of Mp over jp(A), it follows that sp(#)) is not a
uniform ultrafilter in Mp.

Fix a set Y € sp(#) of minimal cardinality. Let ¢ be the least cardinal less
than A such that there are no Fréchet cardinals v with 6 < v < A. Then since
sp(H2) N PMo(Y) is uniform, [Y|MP < jp(5). Let X = j5'[Y]. Then X € %
since Y € sp(#)). Now applying Lemma [2.51] D is (4, A)-regular: we have found a
set X of cardinality A such that jp[X] is covered by a set Y in Mp of cardinality
less than jp(d), and so since Lemma [2.51(1) implies Lemma [2.51I(4), the (4, A)-
regularity D follows by definition. Now by Corollary 2.50] X is a limit of Fréchet
cardinals, and hence A is not isolated. This is a contradiction. O
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As a consequence, we obtain the following theorem.

Theorem 5.12 (UA). Suppose Ao < A1 are Fréchet cardinals, Ao is isolated, and
A1 s either isolated or reqular. Then Mg < crit(JEy,).

Proof. Note that 7, C %\, by Theorem [4.7 or Lemma[5.91 Since Aq is isolated,
Lemma [5.11] implies that 2y, T #,. By Theorem B.27] it follows that %\, and
Jf\, commute.

By Theorem [4.7 and Lemma [5.9] %, and J#), are uniformly internal, and so
Theorem [3.29]implies that %), contains a set of size less than crit(. 7, ). Since %,
is a uniform ultrafilter over Ag, this means that Ay < crit(J4, ). |

5.3. Strong compactness
The most important application of Theorem [5.12]is the following theorem.

Theorem 5.13 (UA). If § is a regular Fréchet cardinal that is not isolated. Let
k = crit(#5). Then k is §-strongly compact and K5 is (k,0)-regular.

Proof. Let k = crit(%5). By Theorem [5.12] there are no isolated cardinals in the
interval (k,d). Therefore by Proposition 5.8] « is d-strongly compact. O

Corollary 5.14 (UA). Suppose § is a successor cardinal that carries a countably
complete uniform ultrafilter. Then some cardinal k < § is §-supercompact.

Proof. Since successor cardinals are not isolated, this corollary follows immediately
from Theorems [4.8 and [5.13| 0

The proof of Theorem [5.13 yields two characterizations of the least J-strongly
compact cardinal.

Corollary 5.15 (UA). Suppose § is a regular Fréchet cardinal that is not isolated.
Let k be the supremum of all isolated cardinals less than 6. Let k' be the least
(w1, 9)-strongly compact cardinal. Let k" be the least d-strongly compact cardinal.
Let k"' = crit(J5). Then k = k' =" = r".

Proof. Clearly, k < k' since every cardinal in the interval [«’, d] is Fréchet, and so
no cardinal in the interval (x',d) is isolated. Trivially, x < k”. Theorem[5.13]shows
that crit(¢5) is d-strongly compact. Hence

K S fi/ S fi” S K/HI.

Since there are no isolated cardinals in the interval (k, §), the argument of Propo-
sition [5.8] shows that for any ordinal v € (x,d), v = vT. As in Proposition [5.8]
it follows that every regular cardinal in the interval [k, d] is Fréchet. Therefore by
Theorem [4.4] 75 is (k,0)-regular, and hence k" = crit(#5) < x. This proves the
corollary. O

2250005-38



J. Math. Log. 2022.22. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ BERKELEY on 11/03/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Strong compactness and the ultrapower axiom I

Corollary 5.16 (UA). For any successor cardinal §, the least (w1, §)-strongly com-
pact cardinal is d-supercompact.

Proof. This is an immediate consequence of Theorem [4.§ and Corollary[5.15l O

This immediately implies our main theorem.

Theorem 5.17. The least strongly compact cardinal is supercompact.

Proof. Indeed, the least (w;,00)-strongly compact cardinal x is supercompact.
This follows from Corollary [5.16) noting that for all 6 > k, x is the least (w1, d)-
strongly compact cardinal. (If £ < « is (w1, K)-strongly compact, then & is (w1, 00)-
strongly compact by Theorem [2.56]) O

Let us also make good on our promise to prove that the cardinal 7,,, defined at
the beginning of Sec. M is strongly compact.

Theorem 5.18 (UA). The cardinal 7, is supercompact.

Proof. The existence of 7, easily implies that there is a proper class of Fréchet
cardinals. We will show that there are no isolated cardinals above 7, .

Fix a Fréchet cardinal A > 7,,. Let k = crit(#)). Let & be the least ordinal
greater than s such that j (§) = £. Let W be the <y-least countably complete
fine ultrafilter over an ordinal such that jw (7,,) > &.

By the proof of Theorem[d.12] 7,,, < k < A. Therefore, jyw (k) > x. In particular,
it cannot be that J#, C W and W C #\: otherwise jw (i) = jx | Mw by
Theorem [3.27, and hence jw (k) = k.

We now show that 2y T W. Let W, =t (W). Let k : My — My, be the
shift embedding (Definition [2.26). Then

Jw. (G (Tr)) = k(Gw (1)) 2 Jw (Tur) > € = Girs (€)-

In M, , jou, (W) is the <g-least countably complete ultrafilter W' over j; (6) such
that jw (G (Twy)) > Jon (€), 80 Jo, (W) <y W.. It follows that ju, (W) = W,,
and therefore £, C W by Corollary [3.18] as claimed.

Since J&\, C W, we can conclude that W i J#). Therefore by Lemma [5.11] X is
not isolated.

Since there are no isolated cardinals above 7,,, it must be that 47 =~ for all
v > T, - It follows that every successor cardinal above 7, is Fréchet, and hence by
Theorem [2.46] or Theorem [8.24] every regular cardinal above 7, is Fréchet. Thus,
T, 18 the least (wy, 00)-strongly compact cardinal. By Corollary[5.16) it follows that
Tw, 1S supercompact. O
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5.4. Inaccessible Fréchet cardinals

The following proposition shows that Conjecture [5.4] follows from the Generalized
Continuum Hypothesis.

Proposition 5.19 (UA). Suppose A is an isolated strong limit cardinal. Then A
s measurable.

Proof. Let § be the strict supremum of all Fréchet cardinals less than A. Then 7, is
(6, A)-indecomposable. Since A is a strong limit cardinal, Corollary[B.32/implies that
there is an ultrafilter D on a set of size less than ¢ such that jp [ A =jx [ A. By
Lemma [5.9] it follows that j | A € My, . Therefore by the Kunen inconsistency
theorem (Corollary [2.38)), % is A-complete. Therefore, ¢, witnesses that X is
measurable. O

Using Proposition [5.19] one can generalize Theorem [5.13] to inaccessible cardi-
nals.

Theorem 5.20 (UA). Suppose X is strongly inaccessible and carries a countably
complete uniform ultrafilter. Then some cardinal Kk < X is A-strongly compact.

Proof. If )\ is isolated, then Proposition [5.19] implies that A\ is A-supercompact,
which implies the theorem. Otherwise, A is not isolated, so Theorem [5.13] yields
that some k < A is A-strongly compact. |

As a corollary of Theorem 4.8 and the proof of Theorem [5.20] one can almost
generalize Corollary [5.14] to inaccessible cardinals.

Theorem 5.21 (UA). Suppose X is strongly inaccessible and carries a countably
complete uniform ultrafilter. Then there is an elementary embedding j : V — M
with the following properties:

e The critical point of j is k and j(k) > .
e For all § < A\, M is closed under §-sequences.
o Every A C M with |A| = X\ is contained in some B € M with |B|™M = \.

Question 5.22 (UA). Suppose A is strongly inaccessible and carries a countably
complete uniform ultrafilter. Is there a cardinal x < A that is A-supercompact?
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