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Abstract. We investigate the structure of rank-to-rank elementary embeddings at successor rank,
working in ZF set theory without the Axiom of Choice. Recall that the set-theoretic universe is
naturally stratified by the cumulative hierarchy, whose levels Vy, are defined via iterated application
of the power set operation, starting from Vo = @, setting V41 = P (Vy), and taking unions at limit
stages. Assuming that
J i Vat1r = Vot

is a (non-trivial) elementary embedding, we show that V,, is fundamentally different from Vy41:
we show that j is definable from parameters over Vy 41 iff @ + 1 is an odd ordinal. The definability
is uniform in odd @ + 1 and j. We also give a characterization of elementary j : Vy42 — Vy42in
terms of ultrapower maps via certain ultrafilters.

For limit ordinals A, we prove that if j : V) — V) is X;-elementary, then j is not definable
over V from parameters, and if 8 < A and j : Vg — V) is fully elementary and €-cofinal, then
j is likewise not definable.

If there is a Reinhardt cardinal, then for all sufficiently large ordinals «, there is indeed an ele-
mentary j : Vo — Vg, and therefore the cumulative hierarchy is eventually periodic (with period 2).

Keywords. Large cardinal, Reinhardt cardinal, rank-to-rank, elementary embedding, definability,
periodicity, cumulative hierarchy, Axiom of Choice

1. Introduction

The universe V' of all sets is the union of the cumulative hierarchy (Vy)geor. Here OR
denotes the class of all ordinals, and the sets V,, are obtained by iterating the power set
operation X +— & (X) transfinitely, starting with Vo = @, setting V41 = P (Vy), and
Vi = Ug<y Ve for limit ordinals 7.

Before Cantor’s discovery of the transfinite ordinals, mathematicians typically consid-
ered only sets within the first few infinite levels of the cumulative hierarchy (below V45
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say). Since then our understanding much higher in the hierarchy has deepened exten-
sively. In a sense to be clarified, however, most research has been focused below a certain
threshold, due to its interaction with the Axiom of Choice. This paper investigates certain
features of the hierarchy which first appear just beyond this threshold.

After some distance, finite intervals in the cumulative hierarchy have the appearance
of uniformity: for large infinite limit ordinals y and large natural numbers n and m, one
might expect not to find natural set-theoretic properties which differentiate between V), 1,
and V) ;,,: one might expect V) 1313, for example, to be essentially structurally indistin-
guishable from V) 1g14. But the key result of this paper shows that assuming y is very
large — so large, in fact, that the Axiom of Choice must be violated — V, yg13 and V), 514
display fundamental structural differences. More generally, the properties of V), , depend
on the parity of n.

Exactly how large must y be for these differences to arise? To answer this question
requires introducing some basic concepts from the theory of large cardinals, one of the
main areas of research in modern set theory. The simplest example of a large cardinal’
is an inaccessible cardinal. An uncountable ordinal « is inaccessible if every function
from V, to k where o < k is bounded strictly below k.>*> So inaccessible cardinals are
“unreachable from below”, and form a natural kind of closure point of the set-theoretic
universe. If k is inaccessible then V. models all of the ZF axioms, as does V,, for unbound-
edly many ordinals o < k. So by Godel’s Incompleteness Theorem, inaccessible cardinals
cannot be proven to exist in ZF, and inaccessibility somehow “transcends” ZF. (The
Zermelo—Fraenkel axioms, denoted ZF, are the usual axioms of set theory, without the
Axiom of Choice AC. And ZFC denotes ZF augmented with AC.)

Inaccessibles are just the beginning. Further up in the hierarchy, large cardinals are
typically exhibited by some form of non-identity elementary embedding

jiV-M

from the universe V of all sets to some transitive* class M C V. Elementarity demands
that j preserve the truth of all first-order statements in parameters between V and M (see
§1.1 for details). One can show that there is an ordinal x such that j(x) > «, and the least
such ordinal is called the critical point crit(j) of j; if ZFC® holds then such a critical
point is known as a measurable cardinal. The critical point of an elementary embedding
is inaccessible, and in fact there are unboundedly many inaccessible cardinals < k. So

I'There is no general formal definition of “large cardinal”.

2 An ordinal « is formally equal to the set of ordinals 8 < &, so if 7 : X — «, then 7 is bounded
strictly below « iff there is & < « such that 7 (8) < « forall 8 € X.

3 Assuming the Axiom of Choice AC, inaccessibility is usually defined slightly differently, but
under AC, the definitions are equivalent. The definition we give here is the appropriate one when
one does not assume AC.

4That is, for all x € M, we have x C M.

SUnder ZFC, this notion is equivalent to measurability, but the notions are not equivalent in
general under ZF alone.
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such critical points transcend inaccessible cardinals. Critical points are transcended by
still larger large cardinals.

Large cardinal axioms are some of the most widely accepted and well-studied prin-
ciples extending the standard axioms of set theory.® One of the main reasons for this is
the empirical fact that large cardinal axioms are arranged in an essentially linear hierar-
chy of strength, with each large cardinal notion typically transcending all the preceding
ones.” There is no known example of a pair of incompatible large cardinal axioms, and
the linearity phenomenon suggests that none will ever arise.

The strength of a large cardinal notion j : V' — M depends in large part on the extent
to which M resembles V' and contains fragments of j. So taking the notion to its logical
extreme, William Reinhardt suggested in his doctoral dissertation taking M = V; that is,
a (non-identity) elementary embedding

j:V =1V

The critical point of such an embedding became known as a Reinhardt cardinal. But
Kunen proved in [12] (see also [6] and [9]) that, under ZFC, such embeddings do not
exist. In fact, suppose j : V' — M is elementary where M C V is a transitive class and j
is not the identity. Let kg = crit(j) and k,4+1 = j(ky); then because j is order-preserving
on ordinals (an easy consequence of elementarity),

Ko <Kl <‘vor <Ky <-oo+

Let their supremum be A = sup,, _, k. Write k,(j) = k, and k4, (j) = A. Kunen proved
in [12] (from ZFC) that V1 € M, and in fact that j*“A ¢ M. He also proved that there
is no ordinal A and elementary embedding

JVata = Vago.

Following Kunen’s discovery (and in the primary AC context), set-theorists turned their
focus to embeddings just below this level (and continued investigating others further
below), with the upper echelons including j : V3 4; — Vi4; withi =0 ori = 1 (these
axioms are known as I3 and I; respectively). Much detailed structure in the hierarchy of
large cardinals is now understood, and continuing to be revealed, but because of Kunen’s
result, AC enforces a rather abrupt upper limit.

Now it has remained a mystery whether AC is actually needed to prove there can be no
elementary j : V — V. Suzuki [20] showed in ZF alone that such a j cannot be definable
from parameters over V. Recall that a class is some collection C € V/, and j is such.
But what exactly is permitted as a class? In the most restrictive formulation, classes are
all definable from parameters, so in this setting, Suzuki’s result rules out an elementary

6 An example of a large cardinal axiom is the assertion that there is an inaccessible cardinal or
the assertion that there is a critical point cardinal. While there is no formal definition of the term
“large cardinal axiom”, there is little controversy over which principles qualify as large cardinal
axioms.

"This is a bit of an oversimplification.
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j 1V — V from ZF alone, and the matter is settled (not the k : V) 1, — V4, matter,
although a variant of Suzuki’s argument will give key information about such k).* But
one can also formulate classes more generally, and appropriately formulated, there is no
known way to disprove the existence of j : V' — V without AC. For the most part in this
paper, we focus anyway on embeddings of set size, so the precise definition of classes is
not so important for us here.’

One can state Kunen’s result from a different angle: if j : V — V is elementary
and A = k4 (j), then there is a failure of (the axiom of) choice within V5. In this
sense, very strong elementary embeddings limit the extent of validity of choice, and set
theory under choice can be seen as focusing on sets inside V, below the threshold where
choice breaks down. There is, however, another natural mathematical interpretation which
seems reasonable: choice holds (all throughout V'), but there are inner models M C V
such that M models ZF + “There is an elementary j : V)41, — V31,7, or stronger. The
latter is indeed analogous to a common view of the relationship between the Axiom of
Determinacy and choice.

In the last few years, there has been growing interest in investigating large cardinals
without choice, particularly with notions like j : V' — V and beyond (often augmented
with fragments of AC).!” This paper sits within that line of investigation, just beyond the
level which violates choice, focusing on elementary, or at least X;-elementary,'' embed-
dings of the form

J Ve —>Vy
with o an ordinal. Generalizing some standard terminology, we call these rank-to-rank
embeddings,12 because V,, is a rank initial segment of V.

We primarily consider the following question, with ZF as background theory. Let o
be an ordinal and j : V,, — V, be elementary. Is j definable from parameters over V,,?
That is, we investigate whether there is p € V,, and some formula ¢ in the language of set
theory (with binary predicate symbol € for membership) such that for all x, y € V,,, we
have

jX)=y <= VakEo(p.x.y),
where = is the usual model-theoretic truth satisfaction relation.

It turns out that there is a very simple answer to this question, generalizing Suzuki’s
theorem, but with a twist. We say that an ordinal « is even iff « = n 4 2n for some n < w,
with 71 = 0 or n a limit ordinal. Naturally, odd means not even.

81t will be used to show that k cannot be definable from parameters over V)42 foreven A.

In §1.1 we discuss the theory ZF(A); one can formulate j : V — V formally in ZF(j).

108ee for example [1-5,8, 10, 16, 18-21].

UThat is, Vy |= ¢(¥) iff Vg = @(j(¥)) for all £ formulas ¢ and ¥ € V<.

121n the ZFC context, by Kunen’s Theorem, the only rank-to-rank embeddings in this strict sense
arek : V) — Vy ork : V)41 — V4 where A = A(k) (his proof does rule out a ¥1-elementary
k : V42 = Vig2). The Ig embeddings j : L(V)4+1) — L(V) 1) are also traditionally known as
rank-to-rank embeddings, even if the terminology does not seem to quite match reality in that case.
We adopt the same rank-to-rank terminology for X 1-elementary j : Vy — V,, in general because
itis very natural.
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Theorem 1.1."° Let j : Vi, — Vy be fully elementary, with j # id. Then j is definable
Jfrom parameters over Vy iff o is odd.

The proof appears at the end of §3, and then a second, slightly different proof is
sketched in Remark 4.8.

So if there is an elementary j : V4184 — V34184 (and hence an elementary embed-
ding from Vj 4183 to V1183, namely j [Vy1183), then V4153 and Vy4184 are indeed
different (but V413> is analogous to V4134, etc.). The proof will also yield much infor-
mation about such embeddings, and demonstrate strong structural differences between
those at even and odd levels. A consequence of Theorem 6.1 will be that if there is a
Reinhardt cardinal, and j : V' — V is an elementary embedding witnessing this, then
for all ordinals n > k,(j) there is an elementary j : V;; — V3, and so this periodicity
phenomenon holds from A onward.

One further point should be noted. Periodicity phenomena (with period 2) are of
course a familiar feature of logical quantifiers: Vxo3dyoVx13y; ... They are pervasive
in descriptive set theory (in particular in the Periodicity Theorems, see [15]). But in such
cases, which arise in the analysis of complexity classes and so forth arising from quanti-
fier alternation, the periodicity is built into the definitions in the first place. This particular
instance of periodicity shows up more subtly in inner model theory, in particular regarding
the canonical inner model M,, with n Woodin cardinals, where n is finite;'* Woodin car-
dinals are beyond measurables, but well below those we consider in this paper. It turned
out that n Woodin cardinals corresponds tightly to n alternations of quantifiers over real
numbers, and this has the consequence that many important features of M, depend on the
parity of n. However, the basic definition of M}, (and similarly for » measurable cardinals,
etc.) does not have any obvious dependence on parity built into it. The periodicity present
in Theorem 1.1 is in this sense analogous to the case of M,,. The periodicity in the V,,’s
also seems to manifest certain “V/3” features, although the full nature of this is probably
as of yet not understood.

In §4 we present a different perspective on elementary j : Voo — V42, relating
such elementary embeddings to ultrapower embeddings via associated ultrafilters, and
sketch the proof of Theorem 1.1 for successor ordinals again, from this new perspective.
We also establish a characterization of such j in terms of ultrapower embeddings.'> The
results here also demonstrate that, although j : V4> — Vy4» is incompatible with AC,

13This theorem is also proved in [8], where the theorem is then applied in generalizing Woodin’s
o theory. In the present paper, we focus on Theorem 1.1 and closely related results, some of which
are lemmas toward its proof, and some of which extend it. There is more discussion of those at the
end of this introduction.

14 My is just Godel’s constructible universe L.

15There is an important subtlety here. We will identify a certain ultrafilter U and form the ultra-
power U = Ult(Vy42,U), and define i : V42 — U to be the ultrapower map. We will show that
i = j,ie., these maps have the same graph. If o + 2 is even, we will also show U = V45. Butif
a+2isodd, then U & Vyqo.
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the existence of such embeddings does actually imply certain weaker choice principles
(see Remark 4.11).10
In §5 we prove some more general results in the limit case; in particular:

Theorem (5.7,5.9). Let B < & be limit ordinals and j : Vg — Vs be Z1-elementary and
e-cofinal, and suppose that either B = 8, or j is fully elementary. Then j is not definable
over Vg from parameters.

Note that the 8 < § case of this theorem applies to embeddings which are compatible
with choice, in fact just around the level of extendible cardinals.

Finally, in §6, we discuss a folklore result: if there is a Reinhardt cardinal, then there
is an ordinal A such that for every @ > A, there is an elementary j : V, — V,,. So above A,
Theorem 1.1 applies, showing that the cumulative hierarchy (and correspondingly, the
power set operation) is eventually periodic in nature.

§1.1 and §2 cover background material.

We note some history on the development of the work. The results on the limit case
in §3.1 and §5 are due to the second author, and most of that material appeared in the
informal notes [17] (Theorems 5.7 (2), and 5.9 came later). The analysis of embeddings
J : Vagn = Vyqyn for limit A and n = 2 in terms of Reinhardt ultrafilters, in §4, was
discovered in some form by the first author in 2017, and he communicated this to the sec-
ond author shortly after the release of [17]. The first author then discovered Theorem 1.1,
and used this to generalize Woodin’s /y-theory to higher levels (see [8]). A few months
later, also attempting to generalize the first author’s analysis of embeddings to n > 2, the
second author rediscovered Theorem 1.1. Our two proofs of non-definability in the even
successor case (Theorem 3.12) were different; the one we give here is that due to the
second author. The original one, due to the first author, can be seen in [8].

1.1. Terminology, notation, basic facts

We will assume the reader is familiar with basic first-order logic and set theory. But much
of the material, particularly in the earlier parts of the paper, does not require extensive
background in set theory, so we aim to make at least those parts fairly broadly accessible.
Therefore we do explain some points in the paper which are standard, and summarize in
this section some basic facts for convenience; the reader should refer to texts like [13] for
more details.

The language of set theory is the first-order language with the binary relation sym-
bol €.!” The Zermelo—Fraenkel axioms are denoted by ZF, and ZFC denotes ZF + AC,
where AC is the Axiom of Choice. We sometimes discuss ZF(A), where A is an extra
predicate symbol; this is just like ZF, but in the expanded language with both € and A,

16This is analogous to the fact that the Axiom of Determinacy, while inconsistent with AC, also
implies certain weak choice principles.
17This is informal. Formally, the language has a binary relation symbol &, and a model of the

language is of the form M = (M, €), where € € M x M is the interpretation of €. Write € = eM,
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and incorporates the Collection and Separation schemata for all formulas in the expanded
language. A model of ZF(A) has the form (V, €, A), abbreviated (V, A), where V is the
universe of sets and A C V. In the interesting case, A is not already definable from param-
eters over V.

We write 39 = [y = Ay for the class of formulas (in the language of set theory)
in which all quantifiers are bounded, meaning of the form “Vx € y” or “dx € y”. Then
X,+1 formulas are those of the form “Ix1, ..., x, ¥ (x1,..., X, y)” where ¥ is I1,, and
I1,,4+ formulas are negations of X, 4. A relation is A, if expressed by both 3,1 ; and
IT,,+1 formulas.

Given structures M = (M, R1,R3,...,Ry) and N = (N, S1, S3,. .., S,) for the same
first-order language ., with universe M and N respectively, a map 7w : M — N (as a
function, 7 : M — N) is elementary, just in case

ME9(X) <= N o(r(X) (L1

for all first-order formulas ¢ of .Z and all finite tuples X € M <%. Here M <® denotes the
set of finite sequences of elements of M.

We can refine this notion by considering formulas of only a certain complexity: We
say 7 is X, -elementary iff line (1.1) holds for all X € M <% and X,, formulas ¢. (From
now on we may blur the distinction between a structure M and its universe M .)

An elementary substructure is of course the special case of this in which 7 is just the
inclusion map. We write M < N for a fully elementary substructure, and M <, N for
Y, -elementary.

Given X € M and p € M, X is definable over M from the parameter p iff there is a
formula ¢ € £ such that for all x € M, we have

xeX < ME¢(x,p).

This can also be refined to X, -definable from p, if we demand ¢ be a ¥, formula, and
likewise for I1,. We say that X is definable over M without parameters if we can take
p = 9. We say X is definable over M from parameters if X is definable over M from
some p € M.

Recall that a set M is

— transitive iff Vx € M Vy € x [y € M],
— extensional iff Vx,ye M [x A y=>3JzeM[zex & z ¢ ]];

note these notions are Ag. The Mostowski collapsing theorem asserts that if M is a set
and E a binary relation on M which is wellfounded and (M, E) satisfies E-extensionality

But most of the time we will blur the distinction between the symbol and the relation, and just
write €.

We follow the convention that first order languages all contain the equality symbol =, which is
automatically interpreted by the true equality relation over the universe of a structure. Some authors
do not follow this convention.
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(thatis, Vx,y e M [x #y = 3z € M [zEx & —zEY]]), then there is a unique transitive
set M, and a unique map 7 : M — M, such that 7 is an isomorphism

n:(M,e) — (M, E);

here M is called the Mostowski or transitive collapse of (M, E), and 7 the Mostowski
uncollapse map. The most important example of transitive sets in this paper are the seg-
ments V, of the cumulative hierarchy.

A key fact for transitive sets is that of absoluteness with respect to A truth: Let M be
transitive. Then Ag formulas are absolute to M, meaning that if ¥ is Ag and X € M <%,
then'®

Y(X) <= [MEy@)].

Here the blanket assertion “y (X)” on the left implicitly means “V = v (X)” where V is
the ambient universe in which we are working. This equivalence is proven by induction
on the formula length. It follows that if ¥ is Ag then

M =3y y(y.X)] = By v(».X)]

(in fact any witness y € M also works in V'), so conversely,

Vy v(y,X)] = [ME Yy y(y,X)]

We write OR for the class of all ordinals. Ordinals ¢, 8 are represented as sets in
the standard form: 0 = @, @ + 1 = o U {«}, and we take unions at limit ordinals 7. The
standard ordering on the ordinals is then « < 8 < « € 8, and this ordering is wellfounded.
Being an ordinal is a Ag-definable property, because x is an ordinal iff x is transitive and
(the elements of) x are linearly ordered by €. Therefore being an ordinal is absolute for
transitive sets, and preserved by X-elementary embeddings between transitive sets. That
is, if M, N are transitive and x € M then

x is an ordinal <= M k= x is an ordinal,
andif j : M — N is also Xy-elementary then

M = x isan ordinal <= N [ j(x) is an ordinal,

18 Actually we are ignoring a technical point here. There are formally two versions of first order
language to be considered. One is the usual one, which occurs in the meta-theory, involving formu-
las one can write down on paper, etc. (meaning that their length is a standard integer). The second
is a formalized version of language(s) which appear inside the universe of ZF under consideration.
The meta-theory formulas all have formal representations inside the model, but the converse need
not be true (and is not precisely if the model contains non-standard integers). When we write, for
example, M = ¢, this might be referring to either one of these notions, and we have not made
explicit which. We leave it to the reader to determine which is the relevant notion where. But if the
reader is not already familiar with the distinction, then they will not lose much by identifying the
two notions.
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and therefore,
x is an ordinal <= j(x) is an ordinal.

So this will hold in particular for the elementary embeddings j : Vi, — Vj that we con-

sider. Note that transitivity of sets is also a Ag-definable property, so absolute. Note that

if M is a transitive set then OR N M is also an ordinal, in fact the least ordinal not in M.
If N is a model of ZF (possibly non-transitive), we write

ORN ={a e N: N = “a € OR"}.
Similarly, if « € ORY we write

VN = the unique v € N such that N = “v = V,”.

o

We use analogous superscript- N notation whenever we have a notion defined using some
theory 7' and N |= T'. So superscript-N means “as computed/defined in/over N”.

Given a set x, the rank of x, denoted rank(x), denotes the least ordinal & such that
X C Vg. (The Axiom of Foundation ensures that rank is well-defined.)

Given a function f : X — Y, dom( f) denotes the domain of f, rg( /) the range, and
given A C X, f[A] or f“A denotes the pointwise image of A.

Let j : V — M be elementary, where M C V and j is non-identity. (When we
say this, we mean implicitly that j, M are classes of V; this can be taken to mean that
(V, (M, j)) models ZF(M, j).) An argument by contradiction can be used to show that
there is an ordinal « such that j(k) > «, and the least such is called the critical point of j,
denoted crit(j ). The same holds much more generally, for example if j : Vo — Vg is X1-
elementary. Similarly, if M is a transitive set or class and j : M — M is ¥;-elementary
and j is surjective, then j = id.

If j : M — N is ¥;-elementary between transitive sets M, N, then M =rg(j) <1 N,
and rg(j) is a wellfounded extensional set, and therefore the Mostowski collapsing theo-
rem applies to it. The transitive collapse is just M, and j is the uncollapse map. So from
j we can compute rg(j) (and M = dom()), and from rg(j) we can recover M, j.

Given j : M — N where M, N are structures for a language including the binary
relation symbol E, we say that j is E-cofinal iff for every y € N, there is x € M with

(v, j(x)) € EV.

2. Non-definabilityof j : V — V

Suzuki proved the following theorem. We will use variants of its proof later, and the proof
is short, so for expository purposes we include it as a warm-up. Everything in this section
is well known.

Theorem 2.1 (Suzuki, [20]). Assume ZF.'"> Then no class k which is definable from
parameters is a non-trivial elementary embedding k : V — V.

19That is, we are assuming that the universe V = ZF. We often use this language and then make
statements which are to be interpreted in/over V.
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Here when we say simply “definable from parameters”, we mean over V. Of course,
the theorem is really a theorem scheme, giving one statement for each possible formula ¢
being used to define k (from a parameter). In order to give the proof, we need a couple
of lemmas. The first is a little easier to consider in the case that « in the proof is a limit
ordinal, but the proof goes through in general.

Lemma 2.2. Let j : Vs — V) be X1-elementary. Then j(Vy) = Vi) foralla < 6.

Proof. Fix a < §. Note that Vs satisfies the following statements about the parameters o
and V,:20

— “V, is transitive.”

— “Forevery X € V, andevery Y C X, wehaveY € V,.”

— “V, satisfies ‘For every ordinal 8, Vj exists’.””!

The first statement here is X (in parameter V), the second is I1;, and the third Ay, so V)
satisfies the same assertions of the parameter j(V,). It follows that j(V,) = Vg for some
B < A.But also @ = V N OR, another fact preserved by j (again by X;-elementarity),
so j(a) = j(V4) NOR, s0 B = j(). [

The following is [11, Proposition 5.1] (though it is stated under the assumption that
M, N are transitive proper class inner models there). We will also use a generalization
of this result later, due to Gaifman (and note he mentions in [7, Remark 2, p. 55] that
Lemma 2.3 was already known, but is not attributed).

Lemma 2.3. Let (M, M), (N, eN) be models of ZF. Let j : M — N be X -elementary
and €-cofinal. Then j is fully elementary.

Note that we do not need to assume that M and/or N are wellfounded.

Proof of Lemma 2.3. We just write “€”, instead of “€™” and “e™”. We prove by induc-
tion on n < w that j is X,-elementary.

Because j is ¥-elementary, we have j (VaM )= Vj](\fx ) for each «; the proof is essen-
tially the same as that for the previous lemma.

Suppose j is Xj,-elementary where n > 1. Let C,, C ORM be the M-class of all «
such that VaM <n M. (Note that C,, is as defined over M, without parameters.) ZF proves
(via standard model-theoretic methods) that C;, is unbounded in OR.

20When we write “Vy” in the 3 statements, we refer to the object x = Vj, as a parameter, as
opposed to the object defined as the «cth stage of the cumulative hierarchy. But note that the “f” and
“Vg” are quantified variables, and here Vg does refer to the Bth stage of the cumulative hierarchy.

21The reader might notice that this needs to be formulated appropriately, because if « = g + 1,
then the standard definition of (V) ), < is the function f : 8 + 1 — V where f(y) =V, and if we
are using the usual representation of functions f  as the set of ordered pairs (x, y) = {{x}, {x, y}}
such that f(x) = y (which we are until mentioned otherwise), then f ¢ V. But it is straightforward
to reformulate things appropriately. For the case in which j : V5 — Vg and § is a limit, one can also
get around these things in other ways, since we can just talk about elements of V, instead of literally
talking about something that 1, satisfies.
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Let o € C,. We claim that j(a) € CN (with CN defined analogously over N; see
§1.1). Indeed, suppose N = ¢(x) where x € V][(\;) and ¢ is ¥, but V]](\fl) E —@(x). The
existence of such an x is a X, assertion about the parameter I/}](\; ) satisfied by N, so M
satisfies the same about V¥ (by ¥,-elementarity of j). But @ € C,, a contradiction.

Now suppose that N = ¢(j(x)), where ¢ is ¥,.1. Then by the e-cofinality of j and
the previous remarks, we may pick a € C, such that x € V,M and V]](\;) E ¢(j(x)). But
then VM k= ¢(x), and since o € C, it follows that M = ¢(x), as desired. L]

Proof of Theorem 2.1. Suppose that k : V' — V is elementary and there is a ¥, formula
¢ and p € V such that for all x, y, we have

k(x) =y < o(p.x,y).

Given any parameter ¢, attempt to define a function j; by

jl](x) =)y — (p(q,X,y).

Say that g is bad iff j, : V — V is a ¥;-elementary, non-identity map. Because j, is
defined using the fixed formula ¢ and we only demand X;-elementarity, badness is a
definable notion (without parameters). And p above is bad.

By Lemma 2.3 above, if ¢ is bad then j, is in fact fully elementary.

Now let k¢ be the least critical point crit(j,;) among all bad parameters g. Note then
that the singleton {k¢} is definable over V, from no parameters. (So there is a formula
such that ¥ (x) < x = Ky, for all sets x.)

Let go witness the choice of k. As mentioned above, jg, is in fact fully elementary,
and we have crit(jz,) = ko. So jg, (ko) > ko, whereas j,, (o) = o for all ¢ < kg. Since
Jqo 18 order-preserving, ko ¢ rg(jq,)- But by the (full) elementarity of j,, : V — V and
definability of {ko}, we must have j , (ko) = ko € 1g(jq,), a contradiction. |

We remark that Suzuki [20, Theorem 3.1] is actually more general, considering ele-
mentary embeddings of the form j : M — V where M C V is transitive and contains all
ordinals, and (j, M) is definable from parameters.

3. Definability of rank-to-rank embeddings

3.1. The limit case

Most investigations of rank-to-rank embeddings to date have focused on elementary
embeddings j : Vo — Vy where @ = k4, (j) or @ = k() + 1, since assuming Choice,
these are the only rank-to-rank embeddings there could possibly be. The following very
simple fact turns out to play a central role in these investigations: if A is a limit ordinal,
an elementary embedding from V) to V), extends in at most one way to an elementary
embedding from V) to V) 4.

Definition 3.1. For a structure M, &(M ) denotes the set of all elementary embeddings
j:M—>M.
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Definition 3.2. Let A be a limit ordinal and j € &(V)). The canonical extension of j is
the function j* : Vj 11 — Vg defined jH(X) = Uy<; J(X N Vo).

The canonical extension j ¥ is a function V3, — Vi 4. However, it is well known
that it can fail to be elementary. (For example, let x be least such that there is an elemen-
tary j : V3 — V; with crit(j) = «, and show that j ¥ is not elementary.) But if j does
extend to some i € &(V)41), or even just to a Xq-elementary i : V) 1 — Vj41, then
clearly i (V) = Vy andi = jT.

Let A be a limit ordinal. It follows that every j € & (V) +1) is definable over V) 41 from
parameters, in fact, from its own restriction j [V} . (Since V), is closed under ordered pairs,
Jj Vi € Vy41.) However, j is not definable over V41 from any element of V), and no
j € &(V)) is definable from parameters over V) :

Theorem 3.3. Let § be an ordinal, j € &(Vs) and p € Vs, with j definable over Vs from
the parameter p. Then § = B + 1 is a successor and p ¢ Vg (so rank(p) = ).

Remark 3.4. Richard Matthews independently proved a result related to Theorems 3.3
and 3.12 in the context of AC; see [14, Theorem 5.4].%

Proof. Suppose not. We adapt the proof of Suzuki’s theorem. Fix (k, ¢, 8) such that
k < w, ¢isa Xy formulaand 8 < §, and for some p € Vg we have j, € &(Vs) where

Jp =1(x,y) € Vs x V5 : Vs = o(p, x, y)}.

Say that g € Vg is w-bad iff j; € &(Vs).

Let po be the least critical point among all such (fully elementary) embeddings j,
(minimizing over all w-bad parameters q). Let pg € Vg witness this, so j,, € &(Vs) and
crit(jpy) = Mo-

For n < w, say that ¢ € Vg is n-bad iff j; : Vs — Vs and is X, -elementary. Let
An = {q € Vg : qisn-bad}. So A, € Vs and note that A4, is definable over Vs from
the parameter .

Since j = jp, is fully elementary, j(A,) N Vg = A, (note j(B) > B). Let A =
(p<e An, s0 A € Vs. Note that j, € &(Vs) for every g € A.

The sequence (A, ), <e can easily be coded by a set in Vs (with methods as in the next
section; if § is a limit then it is in fact literally in Vj), and therefore

JA) = [ jAn).
n<w
so po € j(A). Therefore Vs =“Jg € j(A) such that crit(j;) < j(uo)” (as witnessed
by po). Pulling this back with the elementarity of j yields Vs |=“dg € A such that
crit(j;) < po.” This contradicts the minimality of jig. |

22Matthews considers elementary j : V' — V assuming (V, j) = ZEC™, hence giving informa-
tion about embeddings j : Hy4+ — H,+ under choice. But in the choiceless context, we cannot
assume that Collection holds in the analogue of H + (a natural variant of V4 ;; see [8]). And we
also consider Vy for limit §.
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3.2. A flat pairing function

If § is a limit ordinal then Vj is closed under pairs {x, y}, and hence, ordered pairs (x, y),
represented in the standard fashion as (x, y) = {{x}, {x, y}}. But this fails in the succes-
sor case, at least when we use this standard representation: For example, V5 € Vs but
{Vs, 0} ¢ Vsyq. It is therefore useful to employ a different representation or coding of
ordered pairs with the property that for every infinite ordinal «, for all x, y € V,, the code
[x, y] for the pair (x, y) is an element of V. In this case, the function (x, y) — [x, y] is
called a flat pairing function.

There are many different flat pairing functions, and which one we use will not really
be relevant in our applications. All we will really require of the pairing function is that it
be a Yy-definable injection ® : V x V — V such that ®“(Vy x V) C V,, for all infinite
ordinals o.

Nevertheless, let us define the Quine—Rosser pairing function, which is officially the
pairing function we employ below. The basic idea is to code a pair (x, y) by a labeled
disjoint union of x and y. Somewhat more precisely, we will take two disjoint copies Vj
and V7 of the universe V and bijections fy : V — Vy and f; : V — Vi, which are both
rank-preserving over all sets of rank > . The ordered pair (x, y) is then coded by the set
[x,y]= fo"x U fi*y.

To implement this idea without leaving V', let Vy be the class of sets that do not contain
the empty set and let V7 be the class of sets that do. Let s : V' — V be defined by setting
s(ny=n+ 1foralln < wand s(u) = u forallu ¢ w. Thenlet fo : V — Vj be defined
by fo(X) =s“X and f1 : V — V] be defined by f1(u) = (s“X) U {@}.

Definition 3.5. For sets x,y € V, let

|—X, y] = fO“X U fl“yv
where fy and f] are as defined above. The set [x, y] is the Quine—Rosser pair coding
(x. y).

The Quine—Rosser pairing function (x, y)+> [x, y] establishes a bijection from V x V'
to V whose inverse is the function z > (f;'[z], f;7'[z]). It is easy to show that for any
set u, rank( fo(u)) and rank( f1 (1)) are bounded by 1 + rank(u), which implies

rank([x, y]) < 1 4+ max {rank(x), rank(y)}.

In particular, for any infinite ordinal o, the Quine—Rosser pairing function restricts to a
bijection from V,, x V,, to V,,. Moreover, this function is ¥(-definable over the structure
Vg, €).7

From now on, we shift notation, and whenever we talk about ordered pairs, we mean
Quine—Rosser pairs, and whenever we talk about binary relations R on V,, (where o > w)
we will literally mean that R is a set of Quine—Rosser pairs, and similarly for n-ary rela-

23To be clear, the definability means there is a £ formula ¢ of three variables such that
[x,y] =z < @(x,y,z). (Note this can be written without presupposing any coding of 3-tuples
(x.y.2).)
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tions. Therefore R € Vy41. Moreover, note that there is a X formula in the language
of set theory such that for any such « and binary relation R on V;, and x,y € V,, we
have xRy iff Vy41 E ¢(R, x, ). This will be used in particular for (partial) functions
f iV = V.

3.3. The successor case

Our observations so far suggest the following natural questions. Let £ be an ordinal and
Jj € &(Veq2). Then (i) can j be definable over Vg, from some parameter (by Theorem
3.3, necessarily of rank £ 4 1)? And more specifically, (ii) can j be definable over Vg,
from j | Vg41? Note here that, because we are using Quine—Rosser pairs, j [ Ve € Veyo.

Using Theorem 3.3, we can easily answer question (ii) in the case that £ is a limit
ordinal: In this case j is not definable from the parameter j 'V over Vg, (thus giving
the first evidence of periodicity). For suppose otherwise. Then j is in fact definable from
J Ve over Ve, since j }Verr = (j 'Ve)™T, and the canonical extension operation is
itself definable. But j | V¢ has rank § < & 4 1, contradicting Theorem 3.3.

But the foregoing argument does not seem to answer question (i) when £ is a limit, nor
generalize to higher successor levels at all. In this section, we look further into these ques-
tions, and answer them. In the end, most of the results from the limit case do generalize
to the case of arbitrary even ordinals.

At first glance, it seems that the definition of the canonical extension operation (Defi-
nition 3.2) makes fundamental use of the assumption that A is a limit ordinal. In particular,
this definition exploits the hierarchy (V,,)q <4 stratifying V) ; this hierarchy seems to have
no analog at the successor even levels. But on further thought, we could have defined
JT(X) for X € Vy4 as follows:

FT(X) :U{j(a):a eVyanda C X}

Thus j *(X) is the union of the image of j on all the subsets of X that belong to V.
At successor ordinals we must generalize this slightly, instead taking the union of the
image of j on all the subsets of X that are coded in V).

Definition 3.6. Suppose a and b are sets. For any set x, let (@), denote the set {y :
[x,y] €a},andlet (a | b) = {(a)x : x € b}.

Thus for a,b € V), (a | b) is the subset of V) whose elements are the sections
(a)x € V), of the binary relation coded by a that are indexed by some x € b. Say a set
X C Vyiscodedin V) if X = (a | b) for some a,b € V). For A a limit ordinal, every set
coded in V) belongs to V), but if A is a successor ordinal, then the sets coded in V) are
precisely those X C V) such that there is a partial surjection from V,_; onto X. (Given
f 1 Vao1 — Vi, leta C V) be the set of all pairs [x, y| where x € V)_y and y € f(x).)

Definition 3.7. Suppose A is an ordinal. For any function j : V) — V), the canonical
extension of j is the function j ¥ : V341 — Vi defined by

JTX) = (U@ | j®):a.beV,and (a]|b) S X}.
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While j T is well-defined for any function j, it is not of much interest unless j has
the property that (j(a) | j(b)) = (j(a’) | j(b')) whenever (a | b) = (a’ | b’).

Suppose a,b € V), X € V)41, and (a | b) € X. The fact that (a | b) is included in
X is a first-order expressible property of a, b, and X in V)41, so for any k € &(V341),
(k(a) | k(b)) € k(X). It follows that (k }V3)1(X) C k(X), whether A is even or odd.
The reverse inclusion, however, will be true if and only if A is even.

Definition 3.8. Suppose A is an ordinal. An embedding j : V) — V) is cofinal if for any
set ¢ € V), there exist sets @, b € V) such thatc € (j(a) | j(b)).

Equivalently, j : V3 — Vj is cofinal if j (V) = Vj. It follows immediately that if
k € &(Vy;1) and k = (k | V)™, then k | V3 must be cofinal. The converse is also true:

Lemma 3.9. Suppose k € &(Vy41) and k }'V)_ is cofinal. Then k = (k }'V;)™T.

Proof. Fix X € V;_41. Our comments above show that (k }'V3)"(X) € k(X). For the
reverse inclusion, fix ¢ € k(X). We will show ¢ € (k V)1 (X).

Since k 'V}, is cofinal, there are sets a, b € V) such that ¢ € (k(a) | k(b)). Let b’ =
{xeb:(a)y € X},sothat (a | ') = (a | b)) N X. Now

¢ € (k@) | k(®) Nk(X) =k((a|b)NX) =k (a|b') (k)" (X).
This shows k(X) C (k | V3) T (X), completing the proof. [
The periodicity phenomenon is driven by the following lemma:

Lemma 3.10. Suppose j : Vi — Vj i, is an elementary embedding such that (j V)™
= j MWit1. Then j is cofinal.

Proof. Fix j : V345 — Vy4p and C € V)4 ,. We must show that there exist A, B € V)4,
such that C € (j(A) | j(B)). Let B consist of those sets x € V341 such that the binary
relation {(a, b) : [a,b] € x} coded by x is the graph of a function f : V) — V,. By
elementarity, j(B) = B.

Now define A = {[x,y] € B x Vy41: fi7(¥) € C}. In other words, for each x € B,
(A)x = (/)VC). Now

J(A) ={[x,y]1 € BxViy1: [ (y) € j(O)}.
Letw = {[a, j(a)] :a € V,},sothat f,, = j V). Then w € B and
G A)w = (LD THO] = (G VDO = G V) O] = C.
Therefore C = (j(A))w € (j(A) | B) = (j(A) | j(B)), as desired. L]

Theorem 3.11. Suppose A is an even ordinal and j : V) — V) is an elementary embed-
ding. Then j is cofinal. Suppose in addition that j extends to an elementary embedding
k- V,{+1 — VA+1. Then k = j+.

Proof. We have already established the theorem with respect to limit ordinals A. We now
proceed by induction. So let A be an even successor ordinal and assume that the theorem



G. Goldberg, F. Schlutzenberg 16

holds for all ordinals less than A. Applying this at A — 2, we have j }V3_; = (j | Va_o) T,
so j is cofinal by Lemma 3.10. Since j is cofinal, Lemma 3.9 implies that if j extends to
an elementary embedding k : V311 — Vii1, then k = j*. This completes the proof. m

The requirement that A be even in the previous theorem is unusual, but one can show
that the theorem fails whenever A is odd. The proof given here is an elaboration on that of
Theorem 3.3 (and recall Remark 3.4).

Theorem 3.12. Suppose « is an ordinal, j € &(Vy), and a,b € Vy. Then j is not defin-
able over Vy from parameters in (j(a) | j(b)).

Proof. Suppose towards a contradiction that the theorem fails. Then there is a formula
©(vg, v1, v2) and a parameter p € (j(a) | j(b)) such that

j) =w = Vo o w, p)

for all u, w € V,. For g € V,, define a relation

jq = {(M,U)) € Vocz : Va ': (p(u,w, q)}

Forn < w, say q € Vy isn-bad if j, : Vo — V4 is a non-trivial X,-elementary embed-
ding and there exist a’, b’ € V, such that g € (jz(a’) | j4(b)).

So p is w-bad. Let k = min {crit(j,) : g is w-bad}. Fix an w-bad parameter r such
that crit(j,) = «.

Fix c,d € Vo withr € (jr(c) | jr(d)). Foreachn < w, let

dy, ={x €d :(c)y is n-bad}.
By the elementarity of j,,
Jr(dn) ={x € jr(d) : (jr(c))x is n-bad}.

Lete = {[n,x] : x € dp}, so that (), = dy. Since dy, = (), -, (€)n, we have j,(dy) =
Mn<oUr@)n = Ny<e Jr(dn). It follows that

Jr(de) ={x € jr(d) : (jr(c))x is w-bad}.
In particular, r € (j,(c) | jr(dw)) and every g € (jr(¢) | jr(dw)) is w-bad, so
min {crit(jg) : ¢ € (jr(c) | jr(dw))} = k.

Therefore letting i = min {crit(j,) : ¢ € (c | do)}, we have j, (i) = «, which contradicts
that « is the critical point of j,. ]

Putting everything together, we can now prove Theorem 1.1; that is, if j € &(V}) is
non-trivial, then j is definable from parameters over V) iff A is odd:

Proof of Theorem 1.1. Suppose A is even. Then by Theorem 3.11, j is cofinal, which
means that every p € V) belongs to (j(a) | j(b)) for some a, b € V. Therefore by The-
orem 3.12, j is not definable from any parameter in V).
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On the other hand, if A is odd, then j = (j | V4_;)" by Theorem 3.11, and therefore
j is definable over V) from j |V}, or more precisely from the set {[x, j(x)] : x € V) _1},
which belongs to V. ]

4. Reinhardt ultrafilters

Solovay’s discovery of supercompactness in the late 1960s marked the beginning of the
modern era of large cardinal theory. In the context of ZFC, supercompactness has both
a combinatorial characterization in terms of normal ultrafilters and a “model-theoretic”
characterization in terms of elementary embeddings j : V' — M where M is an inner
model. In the choiceless context, however, the equivalence between the usual character-
izations is no longer provable, and instead supercompactness splinters into a number of
inequivalent but interrelated concepts.

The rank-to-rank embeddings j : Vs — Vj studied here exhibit features reminiscent
of supercompactness. In this section we evidence this via a characterization in terms of
normal ultrafilters in the case that § = a + 2.* But since these embeddings force us
into the choiceless realm, we must deal with the subtleties this brings. A key issue in this
regard is that one needs to be more careful regarding L.0$’s theorem for ultrapowers, given
the role of choice in its usual proof.

4.1. Ultrapowers and L.os’s theorem

In this section we give a quick review of some standard background. We assume familiar-
ity with (ultra)filters, which can be found in standard texts. If .% is a filter over a set X (so
X € %) and ¢ is some property, say that ¢(x) holds for .7 -almost all x (or just almost
all x)iff {x € X : p(x)} € Z.

We first recall the definition of ultrapowers in our context. Let y, B € OR and let .7
be any ultrafilter over V). Let % denote the set of all functions f : V,, — V. We define
a binary relation over % by

frzg = {xeVu: f(x) =g(x)} € F.

Because .7 is a filter, it is easy to see that ~ & is an equivalence relation; let [ f ]I;f be the
equivalence class of f, where we just write [ f] if there is no ambiguity. We also define
the relation
fezg = {xel: f(x)eglx)) e 7.

Then € & respects ~ . The ultrapower Ult(Vg, F) of Vg by .Z is the structure (U, €¥),
where U = {[f]: f € %}, and €V is the binary relation on U induced by €. The
ultrapower embedding i;" : Vg — U is defined by i;ﬁ (x) = [cx] where ¢x € % is the
constant function with constant value x.

241 this section we assume familiarity with ultrapowers as used in set theory; the reader familiar
with supercompactness measures should be fine.
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Now let us say that X, -£os’s theorem for U holds iff for all X, formulas ¢ (in the
language of set theory) and functions fi, ..., f, € %, we have

UEo(fil.....[/n) < Vs E o(fi(x)..... fu(x)) for almost all x € V.

We just say Los’s theorem holds for U if ¥,-Lo$’s theorem holds for all n < w. For
atomic formulas ¢(u, v) (“u = v”” and “u € v”) the stated equivalence holds by definition.
Assuming AC it holds for all formulas, as proved by induction on formula complexity. The
only step that uses AC is that for quantifiers: suppose for example that

o € Z andforall x € 0 we have Vg = Jw p(w, f(x)).

Then we want U = 3w ¢(w, [ f]), which needs some w € % with U = ¢([w], [f]). So
we need w : V), — Vg and by induction, we need some o’ such that

o' € .Z and forall x € o', we have Vg = ¢(w(x), f(x)).

Using AC, we can in fact take 6/ = ¢ and w to be an appropriate choice function. But it
is important here that we do not actually require 6’ = o; so even if AC fails and there is
no choice function with domain o, there might be one with a smaller domain o’ € .%.

If £.o$’s theorem holds for U then the ultrapower embedding i : Vg — U is elemen-
tary. (However, a key point is that U need not be wellfounded in general: consider for
example non-principal ultrafilters over V,.) If U is wellfounded and extensional, then by
Mostowski’s theorem, it is isomorphic to its (transitive) Mostowski collapse, and follow-
ing the usual convention in this case, we then identify these two. But we will at times need
to deal with ultrapowers without knowing that these properties hold.

In this section we are only actually interested in the case that the ordinal 8 above is
a successor, so from now on, we restrict to this case. In order to analyze ultrapowers and
the associated embeddings defined as above, we will observe that the coding apparatus
from §3.2 allows us to represent functions f : V), — Vg where y < B (such as those
forming the ultrapower above), and simple properties thereof, in a simple manner. That
is, although maybe f ¢ Vg, we define the code of f as

S=Alx.yl:xeVyandy € f(x)};

note f € Vg (as y < B and B is a successor). Unraveling the coding above and the flat
pairing function, it is straightforward to write a 3¢ formula v such that for all such 8, y, f
we have

VeV, VyeVailye f(x) & Vs E V(. x )

More generally:

Lemma 4.1. There is a recursive function ¢ +— V, such that for each Xg formula ¢,
Vo is a Zo formula, and for all successor ordinals B > w and ordinals y < B and all

finite tuples ]7 = (fo...., fa—1) of functions f; 1 V,, = Vg, andallx € V,, and z € Vp,

Ve E 0(fo(X)s ..y fam1(x),2) <= Vg E ¥p(for-.., f1,%,2).
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We leave the straightforward proof to the reader.

Definition 4.2. For a transitive structure M and k < w, & (M) denotes the set of all
3 -elementary maps j : M — M. So &,(M) = &(M).

Now suppose B is a successor ordinal and j € &(Vg) and j(Vy) = Vj(«) for each
o <f.Leta+ 1< fands € Vjg)+1. The ultrafilter & over Vi 11 derived from j with
seed s is defined as follows: For 0 C V1, set

0€F < sej).

Note that .% is principal iff s € rg(j).
For f : Vo41 — Vg, we need not have f € Vg = dom(; ), but we define

J) Vi1 — Vg

to be the function g such that g = j( f ).
Let U = Ult(Vg, #). Define the natural factor map = : U — Vg by

([fD) = j()s).
Then r is well-defined. For if [ f] = [g] then there is o € .% such that

Vx eo [f(x)=gX)]
so by Lemma 4.1,
Vx € j(0) [J(S)x) = j(@) )]

and since o € %, we have j(f)(s) = j(g)(s). Similarly, 7 : U — rg(s) is an isomor-
phism (with respect €V and €). In particular, in this case, U is wellfounded. However,
without AC, it is not immediate that U is extensional. That is, suppose [f] # [g]. To
witness extensionality for [ f], [¢], we need some /1 : V41 — Vg such that [h] €V [ f]iff
[h] ¢Y [g]; that is, we need o € .% such that h(x) € f(x) A g(x) for all x € o (where
A denotes symmetric difference). Because [ f] # [g], there is indeed o € .# such that
f(x) A g(x) # @ forall x € g, but it is not clear whether there is a corresponding choice
function (even on some smaller 6’ € .%).

4.2. Successor rank-to-rank embeddings as ultrapowers

In this section we sketch an alternative proof of Theorem 1.1, one which is equivalent to
that presented already, but superficially different, and maybe more standard for set theory.
We will also consider partial elementarity.

Definition 4.3. Let  be even and j € &y(Vy+2) with j(V541) = Vyp41. Then p; denotes
the ultrafilter over V; 41 derived from j with seed j | V;,.> That is,

1y =10 S Vasr 1 j MV € j(0)}.

This filter is analogous to filters considered in the study of /.

25Note that by our flat pairing convention, j My € Vit
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We will again define for all even ordinals § a canonical extension operation k +— k™,
with domain & (V), such that k™ : Vs — Vs (but k™ is not claimed to be elementary
in general), and such that k7 is the unique candidate for a $y-elementary map £ : Vs, —
Vs41 such that k € £ and £(Vs) = V;. The operation k +— kT, with domain & (V), will be
definable over V1 without parameters, uniformly in § (meaning that there is a formula ¥
such that for all even § and k € &1(Vs) and x, y € Vg1, we have

kt(x)=y < Vs Evk,x,y).

noting k € Vs by our flat pairing convention). The definition of k > k™ for k € & (Vs),
and proof of its basic properties, is by induction on n < w, where § = A + n for some
limit ordinal A.

If § is a limit, then kT is defined as in Definition 3.2.

Suppose now that § = 1 + 2 where nis even. Let j € &y(Vy42) with j(Vy4+1) = Vy415
we want to define j T and prove some facts.”® Let u = ;. Let

- U = Ult(Vy42, ) and iy, : V42 — U be the ultrapower map,

- U= Ult(Vy43, 1) and 7# Vs — U be the ultrapower map.

We will eventually show that i, = j and j C 7,, and define j* = 7,. We do not yet
know U, U are extensional/wellfounded, so these ultrapowers are at the “representation”
level (their elements are equivalence classes [ f],).

Consider the hull
H = Hull"+2(rg(j) U {j [ Vy}), (4.1)

where Hull® (X), for X € M, denotes the set of all x € M such that x is definable
over M from parameters in X . The following claim is a typical feature of ultrapowers via a
measure derived from an embedding, although part (1) only holds because j |'V; encodes
enough information, and for this it is crucial that the canonical extension (j | V;) ™ is equal
to j V341, and that this operation is definable over V;, 1, a fact we know by induction.

Lemma 4.4. Recall U = Ult(Vy 42, n) and H is defined in (4.1). We have:

(1) U is extensional and wellfounded; moreover, U = H = V;1,.

(2) iy = j, after we identify U with its transitive collapse Vy 5.

(3) j : Vygo = Vyqo is Xy-elementary.

Proof. (1) We first show H = Vj4,. As noted above, from the parameter j |V, Vy41

(and hence V,12) candefine k = (j V)t = j 'Vy41. Now let x € V;42. Then x € Vy1g
and x = k~1“j(x), and since j(x) € rg(j), this suffices.”’

26We will end up seeing that it follows that j € &) (Vy+2)-
27Note that the proof actually shows that Va2 = Hullgr;"'2 (rg(7)U{j MVy}), where Hulljgl (X)

is defined like Hull™ (X), except that it only consists of the y € M such that for some X € X <%®
and X1 formula ¢, y is the unique y’ € M such that M & ¢(X, y').
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Let 7w : U — V; 45 be the factor map n([f]Z”“) =j(f)(J | Vy).By §4.1, 7 is a well-
defined e-isomorphism U — rg(sr). But then rg(w) = Vj;4,, because given x € V42,
let

Jx 1 EVy) = Vit

be such that fy(k) = (kT)~!'“x, and note by the definability of canonical extension
over V41 (and that j € &(Vy+2) and j(Vy41) = Vy41), we have j(fx)(j [Vy) = x.
(2) We have iy, (x) = [cx]x””. But note 77 0 i, = j, because

w(lexli™?) = jlex) (G MVa) = ¢ 1 Vy) = (),

since j is Xo-elementary. But identifying U with V; 4>, we have m = id, soi;, = j.

(3)Letg be Xg and x, y € V4o with Vyin = @(j(x),y). Wehave y = j(f,)(j [ Vy)
where f), is as above. So

Va2 E Fk € Vit [o( (%), j(fy)(K))].

But since j is Xg-elementary and j(Vy4+1) = V41, it follows that

Vatz 3k € Vagr [o(x, £ (K))],
hence Vy, 42 = 3z ¢(x, z), as desired. |

Having analyzed j as an ultrapower map, we now consider extending j to V3.
Recall U = Ult(Vy13, ) and 7, = i,‘:"“.

Definition 4.5. Let R C &(V;) x V be a relation. A u-uniformization of R is a func-
tion f : &(Vy) — V such that for p-measure 1 many k € &(V5), if there is x such that
(k,x) € R then (k, f(k)) € R.

The existence of p-uniformizations is a kind of choice principle.

Lemma 4.6. We have:
(D U is wellfounded.
(2) The following are equivalent:
(a) U is extensional,
(b) j extends to a Lo-elementary £ : Vyi13 — Vi3,
(c) forall R C &(Vy) x Vyio, there is a pu-uniformization of R.

B) If L : Vyys — Vyys is a To-elementary extension of j then identifying U with its
transitive collapse, we have Vy1p S U C Vyipz and £ = iy, and £(Vy12) = Vg2 ?®

28The arXiv:v1 draft of this paper over-asserted here “U C Vy+3, and in fact p ¢ U, but this
is not immediately clear. If £ is fully elementary, it holds, by Theorem 3.12. And the analogous
statement holds with n 4 2 replaced by a limit; see Theorem 5.7.



G. Goldberg, F. Schlutzenberg 22

Proof. (1) By Lemma 4.4, the part of the ultrapower formed by functions with codomain
Vy+2 is isomorphic to V; 5. It follows that U is wellfounded.

(2) Suppose j C £ € E(Vy+3). We show £(Vy12) = Vyqo. Clearly £(Vy42) € Vita,
so we just need Vy 12 C £(Vy42). Let x € Vyqo. Then x = j(fx)(j |V3). But

Vﬂ+3 ': “fx(k) S VTI+2 forallk e g(Vyl)”,
which is a X statement of the parameters fx, V42, & (Vy), and therefore

Vars b U (K) € EVso) forall k € £E (V).

but j C £, and it follows that x = £(fx)(j [ Vi) € L(Vy+2).
We next show that i, = {. We know i,, = j already, so consider X € V43 \ V42,
s0 X C Vyyo. Letx € Vyys. Let

D ={k € &V,): fulk) € X}.

Then x E?M(X) iff D e piff j |V, € j(D) =£(D) iff (by Zp-elementarity) £( fx)(j | V5)
e LX) iff x = j(fx)(J V) € L(X).
Now let us deduce that (c) holds. Solet R € &(V;) x V42 and let E be the domain
of R, that is,
E =k e&(Vy) :3x[(k,x) € R]}.

We may assume E € u, so j 'V, € j(E).Now R € V;43 and
Vats EVk € E3dx € Vyqs [(k,x) € R].
So by Xy-elementarity and since £(V;12) € Vj42 (in fact we have equality),
Vy+s E Vk € L(E) Ix € V42 [(k, x) € £(R)],

and since E € i, we can therefore fix x € V4 with (j ['V;, x) € £(R). We claim that
fx is a p-uniformization of R. Indeed, suppose instead that

C={ke&(Vy :(k fx(k)) ¢ R} € .

Then j 'V, € j(C) = £(C), and by Zg-elementarity, (j 'V, £(fx)(J [Vy)) € £(R), so
(J M'Vy,x) ¢ £(R), a contradiction.

Now assume (c) holds (u-uniformization); we will show that U is extensional and
Yo-L.0$’s theorem holds for U , which implies that

i[L : Vﬂ+3 —U - Vﬂ+3

is Xg-elementary, and therefore in fact TM : Vs — Vi3 is Xp-elementary.
For extensionality, let f, g : &(Vy;) — V43 be such that [ f] # [g], that is,

D =tk e&(Vy): flk)#gk)} e pn.



Periodicity in the cumulative hierarchy 23

Then define the relation
R ={(k,x) € £(Vy) x Vyya : x € f(k) A g(k)}.

Note that for all k € D, there is x with (k, x) € R. So we can p-uniformize R with some
h: &(Vy) = Vy42. Since p is an ultrafilter, either (i) for jt-measure 1 many k, we have
h(k) € f(k)\ g(k), or (ii) vice versa. Suppose (i) holds. Then [h] € [f] and [h] ¢ [g],
verifying extensionality for [ f], [g].

It follows now that U is isomorphic to some subset of V13 (and we already know
Vita C U). Now observe that the assumed p-uniformization is enough for the proof of
Y.9-L08’s theorem. It follows as usual that 7, w s Xo-elementary as a map V43 — U and
hence as a map V)13 — V43, as desired.

Finally, suppose that p-uniformization as in (c) fails; we will show that U is not
extensional. Let R C &(V;) x V;42 be a counterexample to p-uniformization. We have
the constant function cg. Define f : &(V;) — V43 by

k) = {x: (k,x) € R.

Note that f(k) # @ for almost all k. So [ /] # [cg]. But there is no g such that [g] € [ f],
and therefore U is non-extensional with respect to [ f], [cg].
(3) We already saw these things in the proof of (2). [

Definition 4.7 (Canonical extension via ultrapowers). Let 1 be even.

For j € & (Vy42), wedefine j© : Vi3 = Vygzas j1 = 71&/’ as above.

For x € Vy42, let fx : (V) — Vyi2 be defined by fy(k) = (k)7 1x (really fy
depends on 7, but this should be clear in context).

Remark 4.8. We now reprove Theorem 1.1, by induction, using the canonical extension
T just defined. The argument is essentially as before, so we just give a sketch. Let A
be a limit and j : Viio — V4, be elementary. Let u = ;. By Lemma 4.4, V; 1, =
Ult(Vyyo, i) and j = i,‘:“z is the ultrapower map.
We claim j is not definable over V), 4, from parameters. Indeed, suppose j is definable
over Vyyp from p € Vj45. Then p € rg(j(fp)), since

p=LHLE = j() G V).

One can now argue as in the proof of Theorem 3.12 (much as in Theorem 3.3) to reach a
contradiction.

Next, if £ : V343 — Vi3 is elementary and j = £}V, 45, then £ = j T by the pre-
ceding lemmas. But € Vi+3 (u as above), and it is straightforward to see that the
ultrapower map j + =1, w =1 ,‘:“3 is definable over V) 43 from the parameter u, or equiv-
alently, from j. So £ is definable as desired.

Now suppose j : V344 — V44 is elementary. Let u = p; (the measure derived
from j with seed j ['V;5). Then since j [ V3413 = (j [ Vas2)™, the lemmas show that
Ult(Vy 44, ) = Vi44 and j is the ultrapower map, so as before, we deduce that j is not
definable from parameters, etc.
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4.3. Reinhardt ultrafilters

Let A be even. One can abstract out a notion of filter which corresponds precisely to
elementary embeddings in &' (V) 4,), and also filters which correspond to embeddings in
Ent+1(Vy42), for each n < w. The filters below are over V)41, but one could consider
instead filters over &(V}), identifying j € &(V}) with rg(j), and with a small abuse of
notation, we treat the two interchangeably.

Definition 4.9 (Reinhardt ultrafilters). Let A be even and p be an ultrafilter over V) 4.
We say that p is

(1) rank-Jonsson iff 0 = {A : A < V) and A has transitive collapse V,} € u,

(2) fineiff foreach x € V), wehavet, = {Ad:x € ACV)} e,

(3) normal iff for each (0x)xev, < 4, the diagonal intersection
Axev,0x ={A: AC V) and A € o, foreach x € A} isin p,

(4) pre-Reinhardt iff it is rank-J6nsson, fine and normal,

®) Zf"'Z-Reinhardt iff it is pre-Reinhardt and every R € V)41 X V)41 can be p-uni-
formized,

(6) Eﬁig—Reinhardt iff it is pre-Reinhardt and every R € V)41 X Vj 4, which is I1,-
definable over V) 4, from parameters can be p-uniformized,

(7) TAT2-Reinhardt iff it is Eiif—Reinhardt foralln < w.

Note that if x € V) _y;, where i < 1, then f; : &(V)) — Vj4; where f5 is as in Defi-
nition 4.7.

Lemma 4.10. Let p be a pre-Reinhardt ultrafilter over V) 11. Let U = Ult(V) 41, 1).
Then U is extensional, wellfounded and isomorphic to Vy1,. Moreover, [id],, =i,V
and [ fx], = X for each x € V1.

Proof. We start by considering V. Write [ f] = [f],.
Claim. Ult(V), ) = V) and x = [ fx] for each x € V).

Proof. Given x,y € V), we have

(/1 €” Mo xey) ad ([fA]=Y [l & x=y).

For by rank-J6nssonness and fineness, for p-measure 1 many k € &(V,), we have x,y €
rg(k), and for all such k, note fy(k) = k~!(x) and fy,(k) = k=!(y). This yields the
stated equivalences. Now let f : &(V,) — V,. We claim that there is x € V) such that
[f]1 =Y [fx]. Indeed, suppose not; then for each x € V3, defining

ox =tk € £E(V)) 1 f(k) # fx(k)},
we get oy € i. So

o=k e&WV)): fk)# fr(k)forall x € k“V)} € u,
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soo #@.Letk ecand x = f(k) € V. Let x =k(X). Then fy(k) =k~ (x) =X = f(k),
a contradiction. ]

Nowletx € V3 41\ Viand y € V3. Then [ f;] eV [ f«]iff y € x, because y € rg(k) for
w-almost every k. Note also that [ f;] ¢V [ f;]. It also easily follows thatif x’ € Vj 1 \ Vi
with x” # x then [ fx] # [ fx] (consider [ f,] for some y € x A x7).

For extensionality, let f : &(V3) — Vit and x = {y € V3 : [fy] €Y [f]}. We claim
[£1 =Y [fx]. To see this, for each y € Vy, let

oy =tk € £E(V1) : fy(k) € fx(k) & fy (k) € f(k)}.

Note 0, € u. Let 0 € u be the diagonal intersection, and note f(k) = fx(k) for each
k € 0.S0 [f] =Y [fy], as desired, and extensionality follows easily.

The fact that [id] = i,,“V} is a straightforward consequence of fineness and normality.
The rest of the lemma now follows easily. ]

Remark 4.11. We now characterize the elements of &;,11 (V) +2) as the ultrapower maps
given by Eii%-Reinhardt ultrafilters, and hence the elements of & (V) 4,) as the ultra-
power maps via Efo“-Reinhardt ultrafilters. Note that because of the p-uniformization
aspect of Reinhardt ultrafilters, the theorem shows that weak choice principles follow

from the existence of appropriate elementary embeddings.

Theorem 4.12. Let A be even and n < w. Then:

(1) If j € En1(Vaya) then i is a T F3-Reinhardt ultrafilter and j = i:j’.‘“.

(2) Let wbea Zflif—Reinhardt ultrafilter, U = Ult(Vj 42, 1) and j : Vy4o — U be the
ultrapower map j = i,i/)‘“. Then:

(a) U is extensional and wellfounded, U = V)15, p = uj, [id] = j“Vy and x =
[fx] = j(fx)(J“Va) for each x € V) 1a.
(®) J € Ent1(Vas2).

Proof. (1) Let u = u;. Rank-Jonssonness and fineness are straightforward. Consider nor-
mality, and fix 6 = (0x)xev, < i, andlet (0.)xey, = j(0).Let B = Axey, 0x. We must
see that

J“Vi € j(B) = Axey, 0.

Butif y € j“V, then y = j(x) for some x € V), and o € u,s0 j“Vy € j(ox) = 0;, as
desired.

Now let U = Ult(Vy 45, ). By Lemma 4.4, U = V34, and j = i,il”z. Let us verify
that p is E’}“—Reinhardt. Let R € Vj41 x Vyy1and D € uj be such that forall k € D,
there is x € V4 with (k, x) € R. Then by X;-elementarity and since j |V, € j(D),
there is x € V41 with (j [V, x) € j(R). Fix such an x. We have x = j(f)(j ['Vy). So
letting D’ be the set of all k € D such that (k, fx(k)) € R, we have D’ € u, so we are
done.
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Now suppose j € &,4+2(Vi+2), let ¢ be a I1,, formula, and let p € V)1, and D € u
be such that for all k € D, there is x € V), with Vi1, = ¥ (p, k, x). The assertion
“Yk € D Ax ¥ (p, k, x)” is I1,4, in parameters D, p. So by X, ,-elementarity and
since j [V € j(D), we can fix x € V)4, such that

Vitza EV(i(p), J Vi, x).

Let D’ be the set of all k € D with V15 E ¥ (p,k, fx(k)). We claim D’ € u, giving the
desired p-uniformization. So suppose otherwise. Then E = &(V;) \ D’ € u, and V1, =
Vk € E [~¥(p,k, fx(k))]. But then by X, +;-elementarity and since j 'V € j(E), we
get Viso E =¥ (j(p), j Vi, x), a contradiction.

(2)(a) By Lemma 4.10, we already know V), = Ult(V, 41, pt) (including exten-
sionality and wellfoundedness) and x = [ fy] for all x € V). Note that it follows that
U = Ult(V) 42, p) is wellfounded (though we have not yet shown extensionality).

Now p is Ef“-Reinhardt. Using this, extensionality is just as in the proof of Lem-
ma 4.6. So we identify U with its Mostowski collapse, so Vy+; € U C V) 4,. Similarly to
extensionality, £o-Lo§’s theorem holds. The X -elementarity of j : Vy4, — U follows:
if U E Jw ¢(j(x), w) where ¢ is X, then there is f with U = ¢(j(x),[f]), and by X¢-
Los, Vi1 E @(x, f(k)) for p-measure 1 many k, so V) 1, E Jw ¢(x, w). And because
lid] = j“V, by Lemma 4.10, it is easy to see that ;& = 1; (although we have not shown
that U = V) 1,, we can still define j1; as before).

To see U = V) 44, it suffices to see that [ fy] = x for each x € V) 4,, and for this,
given y € Vi1, we must see that [ f,,] €V [fi] iff y € x. To see the latter, it suffices to
show that y € rg(k™) for -measure 1 many k, because for all such k, we have y € x iff

feG) = (D7) e k)T = fi(n).

Let D be the set of all k € &(V3) such that y € rg(k™). Then since j is X-elementary
and j(Viy1) = Vag1, j(D) is the set of all k € &(V3) such that j(y) € rg(k™). But
JMWas1 = (Vo) T.s0 j Vi € j(D),so D is u-measure 1, as desired.

Finally, we already have [id] = j“V,, and x = [fx] for each x € V,_,. But then
as in the proof of Lemma 4.4, the factor map 7w : U — V) 4,, defined by 7 ([ fx]) =
J(fx)(j M'Vy), is surjective and in fact is the identity, so x = j(fx)(J MV2).

(2)(b) For n = 0, this was verified above. So suppose m < w and p is anfZ—Reinhardt;
we show j is X,,4,-elementary. Let ¢ be I1,,41 and suppose that V)15 = ¢(j(x), y).
We have y = [f;]. Let D be the set of all k € &(V}) such that V; 1, = ¢(x, f,(k)). It
suffices to see that D € u, so suppose E = & (V;) \ D € u. Let ¢ be a I1,, formula such
that

—o(u,v) < Fw ¥(u,v,w).

So Va2 = Vk € E Jw ¥ (x, f,(k), w). Since u is Efnizz—Reinhardt, there are £’ € u
and g : E' — Vj4, such that Vy4, = Vk € E' ¥ (x, f,(k), g(k)). By induction, j
is Xy 41-elementary, and as y = j(f,)(j Vi) and j [V € j(E'), we get Viio
Y (j(x),y.j(€)(J V1)), s0 Viga = —9(j(x).y)), a contradiction. =
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5. Xj-elementarity at limit rank-to-rank

It is natural to ask whether we can prove a version of Theorem 1.1 when we assume
less than full elementarity of the maps. Here we focus on the limit case; the successor
case is less clear. If we only demand X(-elementarity, then the embedding can easily be
definable, even without parameters:

Example 5.1. Assume ZFC, let i be a normal measure and j : V — Ult(V, u) be the
ultrapower map, and identify Ult(V, u) with transitive M C V. Then note that in fact,
j V=V is ¥p-elementary and definable from the parameter . There are models of
set theory in which the least measurable cardinal carries a unique normal ultrafilter, and in
this case there will be a ¥-elementary embedding from V' to V' that is definable without
parameters.

We now consider the case that § is a limit and j € &(Vs). We need some more
standard set-theoretic notions, but expressed appropriately for the ZF context.

Definition 5.2. Let x € OR. We say « is inaccessible iff whenever o < k and 7w : V, — k,
then rg(7r) is bounded in x. The cofinality cof(k) of k is the least n € OR such that there
is amap i : n — k with rg(sr) unbounded in k. We say « is regular iff cof(k) = «.

A normon aset X is a surjective function 7 : X — n for some n € OR. The associated
prewellorder on X 1is the relation R on X given by xRy iff w(x) < m(y). One can also
axiomatize prewellorders on X as those relations R on X which are linear, total, reflexive,
with wellfounded strict part (the strict part is the relation x <g y iff [xRy and —yRx]).
Note that a prewellorder naturally gives rise to a wellorder of the equivalence classes with
respect to the equivalence relation x =g y iff x RyRx. The ordertype of R is the ordertype
of this wellorder.

If k is regular but non-inaccessible, and & € OR is least such that there is a cofinal map
7 : Vo — K, then the Scott ordertype of k., denoted scot(k),”” is the set of all prewellorders
of V, whose ordertype is k.

Remark 5.3. Suppose « is regular but not inaccessible, and let @ be as above and 7 :
Vy — k be cofinal. Then rg(s) has ordertype «, as otherwise « is singular. Moreover, o
is a successor ordinal, for otherwise, by the minimality of «, we get a cofinal function
f o — « by defining f(B) = sup(w*“Vp) for B < a, again contradicting regularity.

Definition 5.4. Let § be a limit and j € &(Vs). Define jo = j and for n > 0 define
Jn+1 = j T (n). Say x € Vs is (j, n)-stable iff j,,(x) = x forallm € [n,w).

Say that j is nicely stable iff either (i) § is inaccessible, or (ii) § is singular and
Jj(cof(8)) = cof(§), or (iii) § is regular non-inaccessible and j(scot(§)) = scot(8).

For j : Vs —> Vs and A, B C Vg, say j : (Vs, A) — (Vs, B) is (X, -)elementary iff
J is (¥,-)elementary in the language &£, with A interpreted by the predicates A, B
respectively.

29This is an abbreviation of Scott ordertype. The second author thanks Asaf Karagila for sug-
gesting the terminology Scott ordertype.
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The following fact is a special case of Gaifman’s [7, Theorem IL.1, p. 54]:%

Theorem 5.5 (Gaifman). Let § € Lim and j € &,(Vs) be nicely stable. Then j € & (V).
In fact, for each A C Vg, the map

is fully elementary.

We will include a proof of Gaifman’s theorem later for self-containment. But first we

indicate how we will use it:

Theorem 5.6. Let § € Lim and j € & (Vs).?" Then:

(1) jn: Vs — Vs is Z1-elementary; in fact, j, : (Vs, A) — (Vs, j,F (A)) is Z1-elementary
for every A C V.

2) jn+1 = ]n+(]n)

(3) If x € Vs and j,(x) = x then x is (j, n)-stable.

(4) Foreach o < § thereisn < w such that «a is (j, n)-stable.

(5) Foreacha <8 and & € OR, letting P be the set of all prewellorders of V,, of length &,
there is n < w such that P is (j, n)-stable.

(6) Thereisn < w such that j, is nicely stable.

Proof. For this proof we just write j(A) instead of j*(A), and j,(A) instead of j,"(A),
for A C V. Note this is unambiguous when 4 € V.

(DLeta <dand o’ = j(a) and j' = j [ V. So j' : Vy — Vi is fully elementary.
This fact is preserved by j, by X;-elementarity. Clearly also j(j) maps Vs to Vg, and is
therefore Xg-elementary. But j(j) is also e-cofinal, hence X-elementary (with respect
to €).

For the ¥ -elementarity of j, : (Vs, A) — (Vs, ja(A)), let x € V5 and ¢ be X (in the
expanded language), and suppose

(Vs jn(A) = 3y @(jn(x). y).
Let o < § be sufficiently large that x € V,, and
Vin@» Jn(A) NV, @) 3y @(n(x). ).
Then by the X1 -elementarity of j, (justin the language with €),

Ve, AN V) =y o(x, y),

so (Vs, A) E 3y ¢(x, y) as desired.

30Gaifman’s theorem is more general, and is not specific to rank-to-rank embeddings.
31Recall that by Lemma 2.2, j(Vy) = Vi(a) foreacha < 4.
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(2) For n = 0 this is just the definition. For n = 1 note that
R2=700) =700 =0GUNGG)) = ji()-
The rest is similar.
(3 If x = j(x) then j(x) = j(j(x)) = j(/)(J(x)) = j(7)(x).
(4) Suppose not and let & < § be least otherwise. We use the argument in [18], which

is just a slight variant on the standard proof of linear iterability. For n < w let 4, =
{B<a:ju(B) =B}.Soa =, An and (An)n<w € Vs. Note j(A4n) ={B < j():

Jn+1(B) = B} and
j@ =i (U 4an) = U .
n<w n<w
But @ < j(a) by choice of @ and (3), so « € j(A,) for some n, so jy,4+1() = «,
a contradiction.

(5) By the above, there is ng such that « is (j, n¢)-stable. Now argue as in the previous
part from ny onward, and using the parameter «, define the collection P of prewellorders
of V, of the form P = Pg for some ordinal &, with £ least such that for no n € [ng, ®) is
Jjn(P) = P.Here £ > § is possible. Note that the notion of prewellorder (regarding rela-
tions R € V) is simple enough that it is preserved by our X;-elementary maps. Likewise,
the lengths of two prewellorders can be compared in a simple enough fashion, and hence
we always have j, (Pg) = Py, for some ordinal &, . In fact, £, > &, and one can now argue
for a contradiction much as before.

(6) By (4) and (5). (]

We now include a proof of Theorem 5.5 (it is essentially the same as Gaifman’s proof):

Proof of Theorem 5.5. If § is inaccessible then for every A C Vs, (Vs, A) |E ZF(A). By
Theorem 5.6 (1), j : (Vs, A) — (Vs, j(A)) is X;-elementary. Therefore a direct relativiza-
tion of Lemma 2.3 shows that j is fully elementary in the expanded language.

Claim 1. j is X,-elementary (with respect to A).

Proof. Consider first the case that § is singular and let y = cof(§). By replacing j with an
iterate of j, we may assume j(y) = y.Let A C V. We know j : (Vs, A) — (Vs, j(A))
is ¥-elementary.

Let x € Vs and ¢ be I1; and suppose that

Vs, j(A) 3y 9(j(x), y),

and let B < § be such that some y € V(g witnesses this.
Let f : y — § be cofinal and increasing. For § < y let

Be =iz e Vg : (Ve AN Vi) F ¢(x,2)}.

Then note that

J(Be) ={z € Vig) : Wicr@n. J(A) N Virey) FE (i (x). 2)}-
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Therefore y € j(Bg),soinfacty € (e, j(Be)) # 9. Asy <8, we have (Bg)g<, € Vs.
Also,

SO < S] — B‘é):1 g BEO
So the same holds of j({Bg)¢<y), and since j(y) = y, we have j“y cofinal in j(y), and
Y letting j((BE)E<y) = (Bé:)§<y,

J(ﬂ BE) = [V Bi=[)Bjey=[)iBe) #0.
g<y E<y E<y E<y

So ﬂ$<y B: # 0. But letting z € ﬂ$<y Bg, note (Vs, A) = ¢(x, z), as desired.

Now suppose instead that § is regular non-inaccessible. Define (Bg)s<s as before,
except that now f(§) = & for & < §. Like before, we just need to see that ﬂg<8 B: #0,
so assume otherwise. Then there is no £y < § such that By = Bg, for all £ € [§, §). Given
Zo,Z1 € B = U$<3 Bg, say that zo <* z; iff there is £ < § such that z; € Bg but zg ¢ Be.
Then <* is a prewellorder on B, and <* is in Vs, and by regularity, § is the ordertype
of <*. So let P = scot(§). By assumption j(P) = P, which easily implies that j(<*)
also has ordertype 8. The function z > B+ (2), with domain B, and where rank™(z) is
the <*-rank of z, is also in V. But then we can argue as before to show ﬂ$< s Be #0,
a contradiction. ]

Now suppose we have ¥ -elementarity where k > 2. Define the theory

Vs, A
T =T, =ThE"? (V)

this denotes the set of all pairs (¢, x) such that ¢ is a £;_; formula and (Vj, A) = ¢(x).
The X-elementarity of j gives

Claim 2. j(T) = Th{*/“) (1),
Proof. Given o < §, we have

(V. A) = Vx € Vy [V Zg—q formulas ¢ of £ 4 [p(x) < (¢, x) € T N V]|,

which is a ITj assertion of parameter (V,, T N V), which therefore lifts to (Vs, j(A))
regarding the parameter (V). j(T) N Vijw)- ]

So by what we have proved above, but with (A4, T') replacing A, we deduce that j is
>,-elementary as a map

J Vs, (A, T)) = (Vs (j(A). j(T))). (S.1

Now let ¢ be X_1 and suppose that

Vs, j(A) E IyVz [p(j(x),y,2)],

or equivalently

(Vs. (j(A), j(T)) E 3y Vz [(¢. (j(x), y.2)) € j(T)].
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By the X;-elementarity of j with respect to the structures in (5.1) above, we have

(Vs.(4. 7)) =3y Vz [(p. (x.y.2)) € T,
or equivalently (Vs, A) = JyVz [p(x, y, z)], as desired. |
Using the preceding theorem, we now improve on Theorem 3.3:

Theorem 5.7. Let j € &(Vs) where § € Lim. Then:
(1) j is not definable from parameters over V.
(2) Thereisno (a, f)witha € Vsand f : Vs — Vs and j(f)(a) = j.

Remark 5.8. The reader familiar with extenders will note that in the proof of (2), we are
considering Ult(Vs1, E) where E is the Vs-extender derived from j. As before, we can
represent functions f : Vs — Vs viarelations C Vs x Vs, and hence with elements of
Vsi1,and when j € & (Vs), one gets j ¥ (f) : Vs — V5.1, making sense of the statement
of (2) above.

Proof. (1) Suppose otherwise. Then by Theorem 5.6, there is n < w such that j, : Vs — Vs
is fully elementary, and since j is definable from parameters over Vs, so is j,. This
contradicts Theorem 3.3.

(2) Suppose otherwise and fix a counterexample (j, a, f). Then for each n < w,
(Jn» an, fn) is also a counterexample, where (ao, fo) = (a, f) and (ag+1, fr+1) =
(r(ar), j,:r (fx))- (Indeed, one can apply j to each initial segment of the sets corre-
sponding to the equation j T (f)(a) = j, and their union yields j;"(j T (f))(j(a)) = j1,
SO j1+ (f1)(a@1) = Jj1, etc.) So by Theorem 5.6, we may assume j is nicely stable, and
so by Theorem 5.5, j* : Vs41 — Vsi is Zo-elementary. Let .# be the set of functions
g : Vs — Vsi1. We have

Vst =1 T (®)@) : g € 7},

because if y € Vs then y = j ~1“j T (), so letting g(u) = f(u)~'*y (where j T (f)(a)
= j), we get y = jT(g)(a). It follows that j T is X;-elementary: Let ¢ be Iy and
suppose Vi1 E @(jT(x), ). Let g : Vs — Vs4q be such that jT(g)(a) = y. Then
there is b € Vg such that Vs ; = ¢(j(x), jT(g)(h)), and this can be expressed as a X
statement about j(x), j T (g), Vs (in particular dealing with the codings of functions), and
therefore there is b € Vs such that Vi1 E ¢(x, g(b)).

Now if § is singular, let p = cof(§), and if § is regular non-inaccessible, let p =
scot(8), and otherwise let p = @. Let ko be the least critical point of all k € &(Vs)
such that k(p) = p and k = k*(h)(c) for some ¢ € Vs and h : Vs — Vs 1. Fix jo, ho, co
witnessing the choice of k. By the preceding discussion, jo € &'(Vs) and j0+ € E1(Vs41)-
We have p € rg(j0+), but kg ¢ rg(j0+).

Let n = jo(ko). Then Vs |=“there are k, u, h, ¢ such that k € & (Vs) and crit(k) =
w<nandk(p)=pandh: Vs — Vs, and ¢ € Vs and k™ (h)(c) = k” (as witnessed
by jo, ko, ho, co)- Since jo(p, ko) = (p,n) and by the X;-elementarity of j0+, we can fix
some such u € rg(jo). But note kg < i < 1, by the minimality of k¢, a contradiction. m
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Many of the arguments applied in this section to rank-to-rank embeddings also apply
more generally, and in particular to embeddings consistent with ZFC. The following is
also analogous to Suzuki’s [20, Theorem 3.1Jon j : M — V.

Theorem 5.9. Let n < § be limit ordinals and j : Vy — Vs be i-elementary and -
cofinal. Then:

(1) If j is fully elementary then j is not definable over Vs from parameters.
(2) If p = cof(n) < nand j(u) = w then for every A C Vy, defining

j@@ =] ianvp).

B<n

the map j : (Vy, A) — j(Vs, j(A)) is fully elementary.

Proof. (2) This is also due to Gaifman [7]; the proof is very similar to that for the singular
case of Theorem 5.5.

(1) Suppose not. Then § is singular, definably from parameters over Vs, as witnessed
by j Mp:n — 6. Let u = cof(§) = cof(n). Using the elementarity of j, it easily follows
that there is n < w such that both V;, and Vj satisfy “There is a function k : © — OR
which is X, -definable from parameters, and p is least such”, and j(u) = . Note that it
also follows that p is definable over Vs without parameters.

Now fix a formula ¢ and p € Vg such that j(x) = y iff Vs &= ¢(p,x,y). Forgq € Vs
let j, = {(x,y): Vs E ¢(q,x,y)}. Say g is good iff there is a limit ’ < § such that
Jq @ Vi = Vs is X1-elementary and e-cofinal and j; (1) = p. By (2), if g is good then
Jq 1s fully elementary. Then the least critical point among all good j, is definable over Vs
without parameters, which leads to the usual contradiction. [

Of course, in the situation above, the iterates j, of j are not well-defined (at least not
in their earlier form), so we have not ruled out the possibility of j : V, — Vs which is
¥ 1-elementary and €-cofinal with j() > w, which is definable from parameters.

The following theorem, due to Andreas Lietz and the second author, shows that if a
Reinhardt cardinal exists then it is at times necessary to pass from j to j, to secure full
elementarity:>>

Theorem 5.10 (Lietz and Schlutzenberg). Suppose j € &(Vy+) where A = Kk (j). Then
for each n < w there is a limit § < A such that j*§ C § and k = j | Vs € & (Vs), but
k=koki,....kn & & (V).

Proof. Firstconsidern =0.Letk =crit(j)andd =A +«andk = j [ V5. Since j(A) = A
and j Pk =id, we have k : Vs — Vj, and clearly k is e-cofinal and Xy-elementary, hence
3;-elementary. But consider the IT, formula

9, ) =“Ya <k IE€OR[E =4 +a]"

32The second author initially noticed the #» = 1 example, then Lietz generalized this to n > 1 via
basically the method at the end of the proof, but from a stronger assumption to secure fixed points,
and then the second author observed the claim on fixed points, leading to the version here.
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Then Vit b= ¢k, A), but Vg b —0(i (), j(A); that is, Vase (i), A), since
o=k < j(k),but A + k &€ V). For this example, k1 (k) = k = cof(A + k), so ky is
fully elementary, by Theorem 5.6.

Now let n be arbitrary. Note that if n > 0, it does not suffice to replace k above with
Kkn = crit(j,), since then j“(A + k) € A + kp.

Claim. j has AT -many fixed points < A™.

Proof. Let Fy ={a <A™ : j, (o) = a}. By Theorem 5.6, AT =, -, F». The ordertypes
a, of the F,, are then either unbounded in A t, or some «,, equals AT, since otherwise one
easily constructs a surjection 7w : A — A (consider the uncollapse maps 7, : o, — Fy).
Now Fy is unbounded in A*. Indeed, suppose not, and let sup(Fy) < Bg < A™. Let g :
A — Bo be a surjection. Let 77,41 = j(7r,) and B4 =18(n+1) = j(Br). From (1) n<e
we get a surjection A — B = sup,_,, Bn. Therefore B < A, but note cof(B) = w, so
j(B) = B, contradicting the choice of By. Now oy = A*.?? Indeed, suppose not. Then
note o, +1 = Sup j “a@, = sup j,“o, (using the fact that F, is cofinal in A1). Then letting
g < n € Fy, we have o, < 7 for all n < w, a contradiction. [

Now let § be the supremum of the first crit(j,) fixed points of j which are > A.
Then j“§ € 8,50k = j Vs € &1(Vs). Let W be a wellorder of A in ordertype & (note
A <§ < AT, so W exists). Then

Vs k= “every proper segment of W has ordertype some o € OR”. (5.2)

But for m < n, k(W) is a wellorder of k., (1) = A in ordertype some §,,, and § < &/,
because (i) the ordertype of W is < that of k,, (W), and (ii) cof(W) = crit(k,), so
cof(ky (W)) = kp(crit(k,)) = crit(k,+1). Since § < §,,, Vs does not satisfy (5.2) with
W replaced by k;, (W), so k,, is not X,-elementary. |

Remark 5.11. There is a variant giving k : Vs — Vs with ko, ..., k, being ¥,,41- but
not X,,»-elementary, and k, elementary, where 1 < m < w: Suppose j : Vg — Vg
is elementary where V¢ = ZF and A = k4, (j) < &. Let y be the supremum of the first
crit(j,) fixed points of j which are > A. Let § be the yth ordinal 8 < & with Vg <, V.
Then k = j Vs : Vs — Vs works (cf. the proof of Lemma 2.3).

6. Which ordinals are large enough?

We said in the introduction that if an ordinal 7 is large enough, then V;; and V1 are very
different from each other. We have seen that there are such differences assuming there is
an elementary j : V41 — Vj41. So we could take this as the definition of “large enough”,
but then the term is not very natural, because then 7 4 1 need not be also “large enough”.

3 Note it is not obvious that AT is regular. The first author has results regarding this.
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To get a good notion of “large enough”, we assume that there is a Reinhardt cardinal. Let
then j : V — V be elementary with «, (j ) minimal; recall that «,, (/) is the supremum of
the critical sequence of j (see the Introduction).** Say 7 is “large enough” iff n > k4, ().
Recall ZF(j) was defined in §1.1. Working in ZF(j), we can assert that “j : V — V is
elementary” with the single formula “j : V' — V is X;-elementary”, by Lemma 2.3. The
following theorem was mentioned to the first author by Peter Koellner a few years ago,
but may be folklore. There are some further related things in [17]:

Theorem 6.1 (Folklore). Assume ZF(j) and j : V — V is elementary non-identity. Let
A = ke (j). Then for all « > A and all n < A, there is an elementary k : Vi, — Vi such
that crit(k) > n and k, (k) = A.

Proof. Suppose not and let (1, «) be the lexicographically least counterexample. Then
(n, @) is definable from the parameter A, and hence fixed by j. But then j(«) = «, so
JIMWa Vo = Vy,and j(n) = n < A, s0 1 < crit(j) = crit(j [ Vy), so j [V, contradicts
the choice of (7, @). |

So above A = k4 (j), the cumulative hierarchy is periodic the whole way up.

Remark 6.2. For the reader familiar with [3], note that the property stated of A = k4, ()
in the theorem above is just that of a Berkeley cardinal (see [3]) with respect to rank
segments of V (except that we have also stated it for V} itself, although A ¢ V). One could
call such a A a rank-Berkeley cardinal. Note that unlike Reinhardtness, rank-Berkeleyness
is first-order. If there is a Reinhardt, then which is less, the least Reinhardt or the least
rank-Berkeley? If j : V — V and A = k,(j) is the least rank-Berkeley, then note that
for every k : V — V with crit(k) < A, we have k, (k) = A. In particular, if k is super
Reinhardt then the least rank-Berkeley is < «. We show next that the least rank-Berkeley,
being below the least Reinhardt, has consistency strength beyond that of a Reinhardt.

Every rank-Berkeley is HOD-Berkeley. Is the least HOD-Berkeley cardinal less than
the least rank-Berkeley?

Theorem 6.3. Suppose (V, j)E ZF(j) and j : V — V, and let k = crit(j) and A =
ko (j), and suppose the least rank-Berkeley is § < A. Let j1; be the normal measure over k
derived from j. Then § < k and there is k' < § such that for |vj-measure 1 many y < k,
(Vy, Vy11) E “k’ is a Reinhardt cardinal”.

Proof. Suppose § < A is rank-Berkeley, so § < «. Then there is k : V,; — V, which is
elementary and not the identity. Let «” = crit(k). Then k is inaccessible and (Vy, Vi+1) E
ZF,+“k’ is Reinhardt, as witnessed by k™. Since x = crit(j), the theorem follows rou-
tinely. ]

34Note that the minimization of k¢ (/) need not be valid in general (why can we quantify over
such j?). But we will ignore this here; in fact the minimization is only to define “large enough”
unambiguously.
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Corollary 6.4. Suppose ZF(j) + “j : V. — V7 is consistent. Then so is
ZE(j)+ “j :V = V7 + “ku(j) is the least rank-Berkeley” .

This also shows that A = x,,(j) can be definable over V' without parameters. But there
is anyway another way to see that j : V' — V with A non-definable is stronger than just j :
V — V. Since A is a limit of inaccessibles, if A is non-definable, then V' has inaccessibles
8 > A, and taking the least such, we have j(8) = §, so we get (Vs, Vs41) E ZF,+“There
is a Reinhardt” (actually the latter holds for every inaccessible § > A, since j,(§) = 6 for
some 7).

7. Questions and related work

In §5 we ruled out the definability of ¥;-elementary embeddings j : V5 — Vs for § a
limit. Note that we also observed that for § even, X -elementary maps j : V11 — Vsiq
are always definable from the parameter j | V5. But what about partially elementary maps
Vs42 — Vs42? Can they be definable from parameters over Vs,? If so, what can one
say about the complexity of the definition in relation to the degree of elementarity?

One can also generalize the notion of “definable from parameters” to allow higher-
order definitions, such as looking in L(Vs). If § is a limit and L(Vy) E “cof(8) > w”
then L (V) has no elementary j : Vs — Vs (see [16]; the case that § is inaccessible was
established earlier by the first author). There is a little on the cofinality @ case in [16], but
this case is much more subtle.

The existence of the canonical extension j + of an embedding j : V) — Vj for limit A
is of fundamental importance to the analysis of /y; see for example [22]. But we now have
the generalization of this to all even A. It turns out that much of the I, theory generalizes
in turn, and this is one of the topics of [8]. Various stark structural differences between V),
and V) 4 are revealed there.

Of course a significant question looming over this work is whether embeddings of the
form we are considering can even exist. Some recent progress in this regard, establishing
the consistency of ZF + j : V4, — V4, relative to ZFC + Iy, is the topic of [19].
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