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Abstract. Can we use sparse tokens for dense prediction, e.g., segmen-
tation? Although token sparsification has been applied to Vision Trans-
formers (ViT) to accelerate classification, it is still unknown how to per-
form segmentation from sparse tokens. To this end, we reformulate seg-
mentation as a sparse encoding — token completion — dense decoding
(SCD) pipeline. We first empirically show that naively applying existing
approaches from classification token pruning and masked image modeling
(MIM) leads to failure and inefficient training caused by inappropriate
sampling algorithms and the low quality of the restored dense features. In
this paper, we propose Soft-topK Token Pruning (STP) and Multi-layer
Token Assembly (MTA) to address these problems. In sparse encoding,
STP predicts token importance scores with a lightweight sub-network
and samples the topK tokens. The intractable topK gradients are approx-
imated through a continuous perturbed score distribution. In token com-
pletion, MTA restores a full token sequence by assembling both sparse
output tokens and pruned multi-layer intermediate ones. The last dense
decoding stage is compatible with existing segmentation decoders, e.g.,
UNETR. Experiments show SCD pipelines equipped with STP and MTA
are much faster than baselines without token pruning in both training (up
to 120% higher throughput) and inference (up to 60.6% higher through-
put) while maintaining segmentation quality. Code is available here:
https://github.com/cvlab-stonybrook/TokenSparse-for-MedSeg

Keywords: Token Pruning - Multi-layer Token Assembly - Medical Im-
age Segmentation.

1 Introduction

Vision Transformers (ViT) [6] for dense prediction [29,20] have achieved im-
pressive results in tasks including medical image segmentation [8]. In general,
high-resolution features [26] preserving details are always desirable for precise
segmentation. However, because of the quadratic computation complexity in self-
attention [25], doubling the resolution per dimension in a 3D volume can lead to
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an 8% longer sequence and hence 64 x more computation. This growing comput-
ing burden can quickly surpass limited computation budgets. Considering ViT’s
flexibility and great potential in masked image modeling [9,14], we explore ac-
celeration algorithms based on the standard ViT. Recently, token sparsification
[21,15,16] has been proposed to accelerate inference in ViT for classification by
dropping less important tokens. However, to the best of our knowledge, there are
no ViT token sparsification approaches for segmentation. This leads us to ask
the question: Can we use sparse tokens for dense prediction, e.g., segmentation?

To answer the question, we reformulate segmentation as a sparse encoding
— token completion — dense decoding (SCD) pipeline. Unlike a standard dense
encoding — dense decoding (DD) pipeline, sparse encoding and token completion
are required in SCD. Sparse encoding requires learning a sparse token represen-
tation for speed and token completion is needed to restore the full set of tokens
for dense prediction. We first examine a naive realization of sparse encoding and
token completion by applying existing approaches. Specifically, we adapt sam-
pling methods in classification, e.g., EVIiT [15] and DynamicViT [21], to sparse
encoding, and masked image modeling (MIM) [9,2] to token completion. How-
ever, we observe significantly inferior results in this SCD pipeline (See Table 1).
Next, we provide more insight into the problems of existing methods.
Problems in Sparse Encoding. There are two steps in this step, i.e., token
score estimation and token sampling. We show that EViT’s token score estima-
tion is inappropriate for segmentation and DynamicViT’s token sampling leads
to training inefficiency: i) EVIT [15] uses the attention weights between spatial
tokens and the [CLS] token to estimate scores. While this is sound for clas-
sification since [CLS] is used for prediction, it is sub-optimal for segmentation
because [CLS] is deprecated in the segmentation decoder. #) DynamicViT [21]
estimates token scores with a sub-network. DynamicViT frames token sampling
as a series of independent binary decisions to keep or drop tokens. This does not
guarantee a fixed number of sampled tokens for each training input. To fit in
batch training, DynamicViT keeps all tokens in memory and masks self-attention
entries, leading to training inefficiency.
Problems in Token Completion. Previous sparse token classification mod-
els [21,15] do not require token completion. Thus, we borrow the design from
MIM. MIM reconstructs full tokens from a partial token sequence by padding
it to full length with learnable mask tokens and then hallucinating the masked
regions from their context. While MIM is useful for pre-training, it cannot ac-
curately restore detailed information, resulting in inferior segmentation results.

We propose Soft-topK Token Pruning (STP) and Multi-layer Token Assem-
bly (MTA) to implement sparse encoding and token completion. i) In sparse
encoding, STP predicts token importance scores with a sub-network, avoiding
the limitation of [CLS] in segmentation. STP then samples topK-scored tokens
instead of making binary decisions per token separately, accelerating training
by retaining only the sampled tokens in memory and computing. Motivated by
subset sampling [28,12,5], the intractable gradients of the topK operation are
approximated through a perturbed continuous score distribution. i) In token
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completion, the MTA restores a full token sequence by assembling both sparse
output tokens and pruned intermediate tokens from multiple layers. Compared
to MIM that fills the pruned positions with identical mask tokens, MTA produces
more informative, position-specific representations. For dense decoding, the SCD
pipeline is compatible with existing segmentation decoders, such as UNETR.

We evaluate our method on two relatively sparse 3D medical image segmenta-
tion datasets, the CT Abdomen Multi-organ Segmentation (BTCV [11], N=30)
dataset and the MRI Brain Tumor Segmentation (MSD BraT$S [1], N=484)
dataset. On both tasks, STP+MTA+UNETR matches the UNETR baseline while
providing significant computing savings with large token pruning ratios. On
BraTS, STP+MTA+UNETR accelerates segmentation inference/training through-
put by 60.6%/120% and achieves the same segmentation accuracy. On BTCV,
STP+MTA-+UNETR increases inference/training throughput by 24.1%/97.36%
while maintaining performance. In summary, our contributions are:

— To the best of our knowledge, we are the first to use token pruning/dropping
for ViT-based medical image segmentation.

— Based on subset sampling, our proposed Soft-topK Token Pruning (STP)
module can be flexibly incorporated into a standard ViT to prune tokens
with greater efficiency while maintaining accuracy.

— We propose Multi-layer Token Assembly (MTA) to recover a full set of to-
kens, i.e., a dense representation, from a sparse set. MTA preserves high-
detail information for accurate segmentation.

— We show that STP+MTA+UNETR maintains performance compared with
UNETR with much less computation on two 3D medical image datasets.

2 Methodology

Generally, a segmentation model consists of an encoder and a decoder. Our goal
is to accelerate the ViT segmentation encoder. To this end, we reformulate seg-
mentation as a sparse encoding — token completion — dense decoding (SCD)
pipeline. Sparse encoding learns a sparse token representation for acceleration;
token completion restores the full tokens for dense prediction; dense decoding
predicts the segmentation mask from dense features. We first recap Vision Trans-
formers and then illustrate the three components in the SCD pipeline.

Preliminary: Vision Transformers. Vision Transformers treat an image/vol-
ume as a sequence of tokens. In the case of 3D medical images, a 3D vol-
ume x € RHXWXDxCin i first reshaped to a sequence of flattened patches
X, € RN (P°xCin) where H x W x D is the spatial size, Cy;, is the input channel,
P x P x P is the patch size, and N = HW D/P?3 is the sequence length, i.e., the
number of patches. All the patches are then projected linearly to a C-dimensional
token space, with position embeddings added to the projected patches. These
patch tokens, together with a learnable prepended [CLS] token, are denoted as
2o € RUTNIXC 5 are further processed by L Transformer blocks sequentially.
Each block consists of a multi-head self-attention (MSA) module and an MLP.
We denote the tokens output from the sth Transformer block as z; € RA+N)xC,
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Fig.1: Sparse Token Segmentation Pipeline. We reformulate segmentation
as a sparse encoding — token completion — dense decoding pipeline. In sparse
encoding, we design a Soft-topK Token Pruning (STP) module. In the forward
pass, STP performs topK sampling on perturbed scores. In the backward pass,
STP approximates the intractable gradient with a continuous Gumbel Softmax
estimation. In token completion, we propose Multi-layer Token Assembly (MTA)
to assemble both the output sparse tokens and the pruned intermediate ones to
restore the complete tokens. In dense decoding, we avoid the intermediate sparse
tokens by taking all inputs from the output of MTA. In this simplified figure, we
visualize token pruning as dropping the last token. However, in practice pruned
tokens are selected according to predicted scores.

For the segmentation task, before feeding the output zy of the encoder to the
decoder, we drop the [CLS] token and project the non-[CLS] token sequence
z[Ll:N] € RV*C back to the original 3D feature map x;, € RH/PXW/PxD/PxC.

2.1 Sparse Encoding: Soft-topK Token Pruning (STP)

We build our sparse encoder on a ViT without modifying the self-attention
module. Instead, we propose a learnable plug-and-play Soft-topK Token Prun-
ing (STP) module. Compared to EViT & DynamicViT, our STP, as shown in
the lower half of Fig. 1, estimates token scores more effectively and can be trained
efficiently. STP can be inserted between two Transformer blocks TF; and TF; ;.
Receiving as input the token sequence z; € RY:*¢ from TF;, STP prunes tokens
with a ratio r and passes the remaining tokens z/ € RLA=MNIXC 6 TF; 1. In
particular, STP consists of token-wise score estimation and token sampling. To
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be concise, we change the notation of number of tokens from N; to n.

Token Score Estimation. To decide which tokens to keep or prune, we intro-
duce a lightweight sub-network sg : R"*¢ — R™ to predict the token importance
scores s, where 6 are the network parameters. The architecture of sy is designed
to aggregate both the local and global features, similarly to [21]. The global
feature is simply obtained by average pooling over all the tokens.

s = sg(z) = Sigmoid <MLP2 ([z, Angool(MLPl(z))])> (1)

Straight-through Gumbel Soft TopK Sampling. Given a token pruning
ratio r, STP needs to select K = |(1 — r)n] tokens out of n to keep. After
predicting the scores s, we re-interpret each score value s; as the probability
of the i-th token ranking in the topK. We formulate this process as sampling
a binary policy mask M € {0,1}" from the predicted probabilities where M
is subject to sum(M) = K. M; = 1 indicates keeping the i-th token while
M, = 0 indicates pruning. However, such discrete sampling is non-differentiable.
To overcome the problem, we relax the sampling of discrete topK masks to a
continuous approximation, the Gumbel-Softmax distribution:

approx .~ eXp((IOg(Sz)+gl)/T)
M, = Liopic(108(s1) + g:) €22 M, = =5 @
ol S, exp((log(s,) + 9,)/7)
backward

where liopk is an indicator function of whether the input perturbed score is
among the topK of all n perturbed scores, {g}, are i.i.d samples from the
Gumbel(0, 1) distribution®. While training, we forward STP to sample the topK
tokens based on the discrete M but backward with the gradient approximated by
the continuous M. We call this Straight-through (ST) Gumbel Soft TopK Sam-
pling. During inference, we perform normal topK selection based on predicted
scores without Gumbel noise perturbation for deterministic inference.

2.2 Token Completion: Multi-layer Token Assembly (MTA)

The output of the STP-ViT encoder is sparse. Thus, before passing the output
to the decoder, we need to first restore the complete tokens. A straightforward
solution can be obtained from Masked Image Modeling (MIM) [2,9]. MIM re-
constructs an image from random partial image patches. It first pads the sparse
token set with learnable [MASK] tokens up to its full length. Then the padded
tokens are forwarded through Transformer blocks to reconstruct the masked re-
gions. However, MIM is mostly utilized for pre-training which focuses more on
semantic hallucination rather than accurate detail restoration. Thus, it is sub-
optimal for segmentation tasks that require assigning labels to pixels accurately.

We propose Multi-layer Token Assembly (MTA) to restore dense features by
assembling both the outputted sparse tokens and the pruned intermediate tokens

5 Gumbel(0, 1) samples are drawn by sampling —log(—log u) where u ~ Uniform(0, 1)
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from multiple layers. Suppose we insert three STPs, {STP1, STPy, STP3}, after
different Transformer blocks in a ViT. We denote the token sets pruned by the
three STPs as {z1,Z2,23}. We concatenate these pruned tokens with the final
output z; and rearrange them to their original spatial order. Then, we add
three learnable block tokens {[BLK;], [BLKs], [BLK3]} to the corresponding pruned
tokens to indicate which block each token is pruned from. Finally, we introduce
sin-cos position embeddings E,,s to all the tokens and forward them through
Transformer blocks. The completion process can be summarized as follows:

Zcompl = TF(rearrange([z1 + [BLK:], Z + [BLK»], z3 + [BLKs], z1]) + Epos) (3)

2.3 Dense Decoding & Optimization

As our goal is to design an acceleration method that is agnostic to decoder
designs, designing a new segmentation decoder is beyond the scope of this paper.
Thus, we couple the SCD pipeline with existing segmentation decoders. However,
certain segmentation decoders, e.g., UNETR, require inputs from multiple layer
outputs from the encoder, which causes problems because intermediate features
are still sparse. Motivated by recent research on the non-hierarchical feature
pyramid [13], we use the output z¢ompr of the completion network to replace all
the intermediate features required by the segmentation head, as shown in Fig. 1.

Unlike DynamicViT, we do not introduce additional loss functions for token
pruning. We optimize all segmentation models by segmentation loss. We adopt
a combination of cross entropy and Dice loss. Both loss weights are set to 1.

3 Experiments

3.1 Dataset Description

We evaluate on two benchmark 3D medical segmentation datasets with sparse
targets. The tasks are CT multi-organ and MRI Brain tumor segmentation.

CT Multi-organ Segmentation (BTCV). The BTCV [11] (Multi Atlas La-
beling Beyond The Cranial Vault) dataset consists of 30 subjects with abdom-
inal CT scans where 13 organs were annotated under the supervision of board-
certified radiologists. Each CT volume has 85 ~ 198 slices of 512 x 512 pixels,
with a voxel spatial resolution of (0.54 x 0.98 x [2.5 ~ 5.0] mm?). For compari-
son convenience, we follow [4,3] to split the 30 cases into 18 for training and 12
for validation. Hyper-parameters are selected via 3-fold cross validation in the
training set. We report the average DSC (Dice Similarity Coefficient) and 95%
Hausdorff Distance (HD95) on 8 abdominal organs (aorta, gallbladder, spleen,
left kidney, right kidney, liver, pancreas, spleen, stomach) to align with [4].

MRI Brain Tumor Segmentation (BraTS). The Medical Segmentation
Decathlon (MSD) [1] BraTS dataset has 484 multi-modal (FLAIR, T1lw, T1-Gd
and T2w) MRI scans. The ground-truth segmentation labels include peritumoral
edema, GD-enhancing tumor and the necrotic/non-enhancing tumor core. The
performance is measured on three recombined regions, i.e., tumor core, whole
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DSC(%) on BTCV sparse encoding
(pruning ratio r = 0.9) | DynamicViT [21] EVIiT [15] STP (ours)
) MIM [2,9] | 24.35 (single run) 18.64 (single run) 44.71 (single run)
token completion yrra (ours)|  80.24 + 0.34 78.62 £ 0.10 82.18 & 0.12

Table 1: Performance of existing approaches on BTCV. We first examine
the performance of the naive combination of existing approaches. For a large
pruning ratio r = 0.9 on BTCV, MIM fails to perform segmentation effectively.
Even with our proposed MTA instead of MIM, EViT and DynamicViT still
perform worse than our STP. We report the mean and std on three random runs
unless otherwise stated. Please see Sec. 3 for more analysis.

tumor and enhancing tumor. We randomly split the dataset into training (80%),
validation (15%), and test (5%) sets. We report average DSC and HD95.

3.2 Implementation Details

Our method is implemented in PyTorch [19] and MONAI [18] on a single NVIDIA
A100. Our encoder is based on a ViT-Base model. Three STP modules are in-
serted after the 3rd, 6th, and 9th Transformer blocks in ViT-B. We follow UN-
ETR [8] on data processing. For BTCV, we clip the raw values between -958
and 326, and re-scale the range between -1 and 1. For BraTS, we perform an
instance-wise normalization over the non-zero region per channel. For training,
we set the batch size to 2 and the initial learning rate to 1.3e-4. We use AdamW
as the optimizer and adopt layer-wise learning rate decay (ratio=0.75) to im-
prove training. For inference, we use a sliding window with an overlap of 50%.

3.3 Results

Naive Combination of EViT /DynamicViT-+MIM. We first test the straight-
forward approach of applying EViT/DynamicViT to sparse encoding and MIM
to token completion. We use UNETR as the segmentation decoder. In Table 1,
EViT/DynamicViT + MIM fails to perform dense prediction for a very high
pruning ratio » = 0.9 on BTCV. This justifies our efforts in this paper to accel-
erate sparse token segmentation models while maintaining performance.

Our Approach: STP+MTA. We evaluate the efficiency of our Soft-topK To-
ken Pruning (STP) and Multi-layer Token Assembly (MTA) on the BTCV and
BraTS datasets based on UNETR. We measure the efficiency by profiling the
throughput(image/s) and MAC number (Multiply-accumulate operations) for
each model variant. The throughput is measured on a NVIDIA A100 GPU with
batch size 1. MACs are computed by measuring the forward complexity of a
single image. We present the results in Table 2. On BraTS, with an input size
of (128 x 128 x 128), our STP+MTA-+UNETR (r = 0.75) maintains performance
while significantly increasing inference throughput by 60.8%. On BTCV, with
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MSD BraTs Encoder Throughput

Method ‘DSCT HDY95] Throughput(img/s) (img/s) MAGs(G)
UNETR 75.44  8.89 7.10 4.85 824.38
STP+MTA+UNETR 75.79 8.31 20.04 7.79 (+60.6%)  428.28
BTCV Encoder Throughput
Method DSC?t HD95] Throughput(img/s) (imgg/sl; MACs(G)
UNETR 80.78 £0.34 15.90 £1.01 30.30 16.18 273.45
STP+MTA+UNETR 82.18 £0.12 19.85+1.12 57.31 20.08 (+24.1%)  146.63

Table 2: STP+MTA+UNETR vs. UNETR performance comparison.
Based on the same ViT scale and patch size, our proposed STP+MTA+UNETR
can maintain performance while significantly reducing computation by a large
margin. We report the mean and std of three random runs on BTCV. Please
refer to Sec 3.3 for more details on the experimental setting and analysis.

an input size of (96 x 96 x 96), STP+MTA+UNETR (r = 0.9) can maintain per-
formance while the corresponding inference throughput increases by 24.1%. Our
method also increases training efficiency. The training throughput on BTCV in-
creases from 2.65 imgs/s to 5.23 imgs/s by 97.36%. The training throughput on
BraTS increases from 0.75 imgs/s to 1.65 imgs/s by 120%.

Sparse Encoding: STP vs. EViT/DynamicViT. EViT [15] and Dynam-
icViT [21] were initially designed for classification. Thus, we need to adapt
EViT/DynamicViT for comparison. To constrain the pruning ratio in Dynam-
icViT, we add the ratio loss function L,q¢;,, with a weight of A4t = 2 follow-
ing [21]. In EVIT, we take the [CLS] attention weights from the Transformer
block as the token scores and use topK for sampling. As shown in Table 4a, our
STP-ViT performs the best. The inferiority of DynamicViT could be caused by
i) mismatch between the training (variable number of pruned tokens) and test-
ing phases (fixed number of pruned tokens) and i) more hyper-parameters (e.g.,
Aratio)- The performance drop in EViT indicates that the [CLS] attention scores
are not suitable for representing the true token importance in segmentation.
Token Completion: MTA vs. MIM. We implement a baseline inspired by
MIM |[2,9]. As Table 4b shows, MIM-style completion fails (44.71%) with a high
pruning ratio r = 0.9. Our results suggest that pruned token reuse in MTA plays
an important role in a highly sparse token segmentation framework.

Token Pruning Ratio in STP. We ablate the pruning ratio in Table 3. STP is
robust to a wide range of pruning ratios [0.25, 0.9]. Thus, our STP+MTA+UNETR
can adopt a high pruning ratio to reduce computation by a large margin. Al-
though our method achieves higher DSC on BTCV than UNETR, the HD95 is
worse. We speculate that HD95 is more sensitive to the boundary segmentation
results and that token pruning may lead to sub-optimal boundary prediction.
Temperature 7 in STP. We ablate temperature 7 in Eq. 2 in Table 4d. Ac-
cording to [10], a small temperature leads to a large variance of gradients and
vice versa. We tried three different 7 values {0.01,0.1,1}. Experiments show
7=0.1 and 7 = 1 perform similarly while 7 = 0.01 performs worse.

Noise Perturbation in STP. In Soft-topK Token Pruning (STP), we design a
straight-through (ST) Gumbel soft topK algorithm for sampling. STP forward
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Pruning Ratio BTCV BraTS Encoder
y DSCT HD95]  DSCT HD95] Throughput | roughput MACS(G)
baseline 80.78 £0.34 15.90+1.01 7544 8.89 7.10 4.85 824.38
0.25 81.56 £0.16 19.654+3.25 75.50 7.98 11.77 6.12 631.75
0.50 81.81+0.59 15.78 £1.01 75.02 7.40 17.34 7.35 497.97
0.75 81.95+0.18 16.37+£5.41 75.79 831 20.04 7.79 428.28
0.9 82.18+£0.12 19.85+1.12 75.32 8.04 21.63 8.04 404.14

Table 3: Ablation on the Pruning Ratio r. STP shows robustness to a wide
range of pruning ratios (0.25 — 0.9) in terms of DSC. Different datasets have
different optimal pruning ratios. Refer to Sec 3.3 for more details. We report the
mean and std of three random runs on BTCV unless otherwise stated.

Encoder DSC
DynamicViT  80.24 +0.34 Token Completion DSC
EViT 78.62 £ 0.10 MIM 44.71 (single run)
STP-ViT (Ours) 82.18 +0.12 MTA (ours) 82.18 +£0.12
(a) Comparison with DynamicViT&EVIT (b) Token Completion Methods
r DSC
Perturbation DSC 0.01 81.36 £ 0.15
No (ST TopK) 81.67 £ 0.21 0.1 82.06 4 0.22
Yes (ours) 82.18 +0.12 1 (ours) 82.18 +0.12
(¢) Gumbel Perturbation (d) Temperature 7 in STP

Table 4: Ablation studies on BTCV. In (a), we compare STP with Dynam-
icViT and EVIT. STP achieves better performance. In (b), we compare our
proposed MTA with MIM where MIM performs much worse than MTA. In (c),
we demonstrate that Gumbel perturbation is beneficial. In (d), we ablate differ-
ent 7 values. 7 = 0.1 and 7 = 1 perform similarly while 7 = 0.01 performs worse.
We report the mean and std of three random runs unless otherwise stated.

process can be split into three steps, i.e., score prediction, Gumbel perturbation,
and topK sampling. In Table 4c, we ablate the Gumbel perturbation on BTCV
by evaluating a straight-through (ST) topK variant. Note that we do not add
Gumbel noise during inference, to ensure that the model performs deterministi-
cally for inference. For the ST topK variant, we also remove the Gumbel noise
perturbation from the training phase. With a pruning ratio r = 0.9, results show
that the Gumbel perturbation is beneficial. It is worth noting that the ST topK
variant without perturbation also achieves a competitive result.

Pruning Policy Visualization. We visualize the pruning policy for both brain
tumors and abdominal organs in Fig. 2 under two extreme pruning ratios, the
highest one at » = 0.9 and the lowest at » = 0.25. We use shades of red to
denote the depth at which tokens are pruned. Patches (tokens in ViT) with no
red overlap are pruned by the very first STP, whereas patches with the deepest
red color are kept in ViT until the last. In Fig 2, with » = 0.9, most tokens are
dropped at a very early stage. Some tokens around the brain tumor, especially
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Framework DSCt/HD95] Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
V-Net [17] 68.81/- 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR [7] 69.77/- 74.74 53.77 72.31 73.24  94.08 54.18 89.90 45.96
U-Net(R50) [22] 74.68/36.87 84.18  62.84 7919 7120 9335 4823 8441 73.92
AttnUNet(R50) [23] 75.57/36.97 55.92 63.91 79.20 72.71  93.56 49.37 87.19 74.95
TransUNet [4] 77.48/31.69 87.23 63.13 81.87 77.02  94.08 55.86 85.08 75.62
UNETR (PatchSize=16) 78.83/25.59 85.46 70.88 83.03 82.02 95.83 50.99 88.26 72.74
UNETR (PatchSize—8) 80.78/15.90 88.59 70.97 83.38 83.76 9552 59.76 88.53 74.30
STP+MTA+UNETR (PatchSize=8) 82.18/19.85 89.23 73.60 85.66 83.65 9559 62.17 88.84 77.37

Table 5: Comparison with other methods on BTCV.

Input with GT r=0.9 r=0.25  Output (r=0.9)

1 &

| wr

[] TC
B ET

. spleen

. right kidney
B ‘et kidney
[l albladder

. liver
. stomach
. aorta

. ip pancreas
Initially pruned Not pruned

Pruning Depth

Fig. 2: Ground truth and model outputs on BraTS (first two rows) and BTCV
(last two rows). We visualize the depth at which tokens are pruned under high
(r=0.9) and low (r=0.25) pruning ratios (red shading in columns 2 and 3). To-
kens that are immediately dropped are not shaded, whereas darker red shading
indicates the pruning of tokens in later layers.

at tumor boundaries, are never pruned. When the ratio decreases to r = 0.25,
more patches are kept and still cluster around the target tumor region.
Class-wise Comparison with Others on BTCV. We show class-wise results
of UNETR, STP+MTA+UNETR, and other methods in Table 5.
STP+MTA+UNETR shows improvement over a series of methods on BTCV.
Note that current SOTA methods [30,27,24] rely on either stronger priors (win-
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dow attention) or SSL pre-training. However, our goal is accelerating standard
ViT-based segmentation instead of purely pursuing increased performance.

4 Conclusion and Future Work

We introduced a ViT-based sparse token segmentation framework for medical
images. First, we proposed a Soft-topK Token Pruning (STP) module to prune
tokens in ViT. STP can speed up ViTs in both training and inference phases. To
produce a full set of tokens for dense prediction, we proposed Multi-layer Token
Assembly (MTA) that recovers a complete set of tokens by assembling both
output and intermediate tokens from multiple layers. In our 3D medical image
experiments STP+MTA-+UNETR speeds up the UNETR baseline significantly
while maintaining segmentation performance. Accelerating the decoder, which
also plays a big role in the inference speed, is left for future work.
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