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1 Identifying critical transfer zones to coordinate transit with on-demand services 

2 using crowdsourced trajectory data

3
4 Abstract 
5 This study develops a data-driven approach for identifying critical transfer zones in the city to facilitate the 
6 coordination of transit and emerging on-demand services. First, the methods convert the trajectories into a 
7 3D grid with an optimal cube size. Built upon that, we zoom in and study the trajectory density of each 
8 mode in a cube and present the results by heatmaps. After that, we zoom out and aggregate those cube 
9 information fragments through the clustering algorithms to explore two critical patterns: the ridesharing 

10 swarm (RS) zones where many ridesharing trips go through, and the “sandwich pattern” zones where a 
11 transit trajectory dominant zone is sandwiched by two ridesharing trajectory dominant zones. Our 
12 numerical analysis confirms that these RS zones are well correlated to the promising areas/corridors for 
13 integrating transit and on-demand services; the “sandwich patterns” help discover first/last mile (FLM) 
14 zones. Last, we further develop a two-channel deep learning network to predict the variation of the FLM 
15 gaps so that adaptive services can be planned. A case study based on the field data of the second ring region 
16 of Chengdu, China confirms the effectiveness and capability of our analysis approach.   
17 Keywords: trajectory data, ridesharing, transit, on-demand services, first/last mile.

18 Introduction
19 The benefits of coordinating transit systems and emerging on-demand services, such as microtransit, 
20 micro-mobility, ridesharing services, and ride-hailing, have been recently recognized (Boarnet et al., 2017; 
21 Koffman, 2004). The potential schemes seek to integrate flexibility into the current transit service to better 
22 meet dynamic travel demands. To date, even though much research (Aldaihani et al., 2004; Fu, 2002; J.-Q. 
23 Li et al., 2012; X. Li & Quadrifoglio, 2010; Quadrifoglio & Li, 2009) has focused on how to manage and 
24 operate such hybrid mobility services, little attention has been paid to identifying critical transfer locations 
25 and times for the better coordination (Velaga et al., 2012). Specifically, it is about discovering the most 
26 appropriate zones or locations in a city (a.k.a., hotspots, critical corridors/connections (see Figure 1)) where 
27 on-demand services can best supplement to given transit services. Clearly, it is not trivial to narrow down 
28 all those critical locations in a big city. This unique niche involves two types of mobility services with 
29 different service flexibility and demand variations. Therefore, it calls for new research co-considering the 
30 mobility patterns associated with both modes.
31 Most existing studies only investigated the service and predicted passenger demand of a single mode 
32 (either transit or on-demand services). For example, using the transit ridership data, demographic survey, 
33 and land use data, many studies (Boyle, 2006; Hashemian, 2002; Huang, 1996; Nazem et al., 2011; Roberts, 
34 1985; Sung et al., 2014; Trépanier et al., 2007) estimated transit demands only at some candidate locations 
35 for planning transit routes, and these estimations mainly reflected long-term trends but not short-term 
36 changes like weekly or monthly. Even though it has been recommended that transit network redesign should 
37 consider how the emerging modes can complement the transit services (Johnson et al., 2020), we still lack 
38 efficient methods to identify the candidate zones and then develop efficient operations. On the other hand, 
39 extensive ridesharing1 trajectory data have been well collected and used as valuable data to predict the 
40 dynamic ad hoc demands (Faghih et al., 2019; Liu et al., 2019; Xu et al., 2017; K. Zhang et al., 2019), 
41 mainly for improving ridesharing services, i.e., Uber and taxi. Overall, the state-of-the-art literature 
42 indicates that the transit and ridesharing service data are often individually analyzed with separate 
43 objectives for the respective modes. Thus, existing studies have not provided a comprehensive 
44 understanding of the critical zones that are suitable for integrating public transit and on-demand services. 
45 Given the above issues, this study proposes a data-driven approach using large-scale crowdsourced 
46 transit and ridesharing trajectory data to identify the spatiotemporal service gaps (also called critical transfer 

1 The existing study (https://www.ecolane.com/blog/ride-hailing-vs.-ride-sharing-the-key-difference-and-why-it-
matters) shows that TNC such as Uber and Lyft provide ridesharing services, but majority of the trips are ride-
hailing services. Therefore, this study uses ridesharing to broadly cover carpool and ride-hailing services. Later, 
you will see that our study focuses on analyzing the trajectory of the ridesharing trips from the supply side. A 
carpool service will be separated into multiple trips, each with different origin and destination, while a ride-
hailing corresponds to one trajectory. Therefore, we do not differentiate this terminology (ridesharing or ride-
hailing) hereafter in this study. 
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1 zones in this paper) for implementing new transfer mobility services to promote the cooperation between 
2 public transit and on-demand services. To do that, this study thinks that the competition and/or complement 
3 between transit and ridesharing services indicate a strong correlation between their services reflected by 
4 their routes. Therefore, this trajectory data generated from a large scale of transit and ridesharing services 
5 represent the crowdsourced data, which can be used to detect those critical transfer zones for their 
6 cooperation. For example, by jointly analyzing many pick-up and drop-off locations of ridesharing services 
7 and the distribution of transit stops and schedules, we can find some critical zones where a high volume of 
8 ridesharing orders is present but with low transit services. Then, these zones are the critical candidate 
9 hotspots for setting up on-demand services such as microtransit (Xu et al., 2017) for strengthening the 

10 connection to the nearby transit network. More importantly, by uniting and then analyzing large-scale 
11 trajectories generated by the services of both ridesharing and transit vehicles (e.g., bus and metro), we 
12 expect to find some critical corridor zones involving multiple roads, which are densely passed by 
13 ridesharing vehicles but not transit vehicles. Then, we can conjecture that those corridors are good candidate 
14 zones to set up new transit connections/links in transit network redesign. In short, we think that uniting and 
15 then analyzing large-scale ridesharing and transit trajectory data will help discover those critical zones (see 
16 Figure 1), which are promising candidates to be considered by planners for cooperating transit and on-

17 demand services. 
18 However, the proposed data analysis is not trivial. It raises new research difficulties. For example, the 
19 transit trips and ridesharing trajectories are collected with different spatiotemporal resolutions. When we 
20 put them in a spatiotemporal (3D) space, those data are non-additive and deter many quantitative 
21 approaches to start directly. More importantly, even though the pick-up and drop-off data are relatively 
22 easy to be aggregated to passenger demand, it is not apparent to infer critical transfer/corridor zones from 
23 trajectory curves, given existing literature does not accurately define their features yet. We will develop 
24 novel approaches to address these issues. 
25 Overall, this study develops a new data analysis approach to analyze the large-scale crowdsourced 
26 trajectory data collected from ridesharing and transit services, aiming to find the critical transfer zones for 
27 cooperating emerging on-demand services with transit services. Specifically, we contribute the main 
28 methods as follows. (i) This study develops a new data presentation approach, which meshes the trajectory 
29 curves within an optimal 3D grid. The size of the cubes is determined by the optimization models which 
30 balance the data resolution and computation load in further data analysis. (ii) This study develops an 
31 innovative approach to analyze entire trip data beyond their pick-up and drop-off information. Specifically, 
32 we employ pattern recognition to discover the critical zones shown in the heatmaps (i.e., trajectory intensity 
33 map) generated from the 3D representation, and then learn the FLM (first-and-last) mile zones evolution. 
34 (iii) In particular, we investigate two interesting and unique patterns reflected by the large-scale trajectory 
35 data: RS zones and “sandwich” patterns. They both present great values to infer the critical transfer zones 
36 for integrating transit and on-demand services. (iv) We analyze a set of field trajectory data collected from 
37 Chengdu city in China and validated the effectiveness of our approaches. Note that the results found by our 
38 approaches can be further sharpened by integrating land-use data, demographic data, micro-mobility data, 
39 etc. To the best of our knowledge, we are one of the first studies working on united trajectory data collected 
40 from different modes. This is also a pioneering study investigating the critical transfer zones for the 
41 cooperation of public transit and on-demand services. More importantly, the crowdsourced data analysis 
42 approach can be extended to study other trajectory data, such as bike-sharing and private vehicle trajectory 

Backbone transit
Transit stops

On-demand services

Local areas with low transit 
services (hotspots)

Connections between two areas 
with many ridesharing trips but 
low transit services (critical 
corridors)

Backbone transit

Transit stops

Figure 1. Hotspots and critical corridors.
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1 data, to provide a thorough understanding of mobility services over a city network. These contributions 
2 together benefit the development and operations of hybrid mobility services in urban areas.
3 The efforts of this study are organized by the following structure. The next section reviews the most 
4 relevant literature and highlights the unique contribution of this study. Following that, we formally define 
5 the problem, and develop our methods to analyze the crowdsourced trajectory data. We further conduct the 
6 case study to validate the effectiveness of our approach, and then summarize the entire study in the 
7 conclusion section.

8 Literature review
9 Given the scope of our study, we will review the literature about data-driven transit and ridesharing 

10 demand prediction and service design. We first review the relevant studies on transit demand prediction. 
11 Boyle shows that few studies use large-scale trajectory data as the crowdsourced data from its competitive 
12 modes to infer transit service needs (Boyle, 2006), even though various data has been analyzed, including 
13 transit ridership (Fang et al., 2018; Noursalehi et al., 2018), demographic (Nazem et al., 2011; Roberts, 
14 1985), land use (Hashemian, 2002; H. Huang, 1996; Jun et al., 2015; Sung et al., 2014)  and O-D survey 
15 data (Chatterjee & Venigalla, 2004). For example, Nazem et al., (Nazem et al., 2011) analyzed the travel 
16 patterns of different demographic classes to understand the relationship between transit ridership and 
17 demographics. Sung et al., employed spatial regression analysis to investigate the impact of land use on the 
18 rail transit ridership in the city of Seoul (Sung et al., 2014). Jun et al., applied a multinomial logit model to 
19 analyze how land use and demographic characteristics affect transit ridership (Jun et al., 2015). In recent 
20 years, the ridership data collected by the Automated Fare Collection (AFC) system has been used to capture 
21 the variation of the transit demand, especially for railway systems (Fang et al., 2018). For example, based 
22 on AFC data, Noursalehi et al., developed the state-space model to predict the real-time subway demand, 
23 considering the impact of special events (Noursalehi et al., 2018). Even though those data are directly 
24 oriented towards passengers' features and mobility needs, and can help predict transit demand at some 
25 locations well, they provide limited insights for the integration of transit with other mobility services.  
26 The review recognizes that extensive studies have analyzed the ridesharing data with various purposes, 
27 such as predicting ridesharing demand, providing optimal routes (Yuan et al., 2010), predicting traffic 
28 conditions (Castro et al., 2012), rebuilding routable city road map (Cao & Krumm, 2009), or detecting 
29 urban planning flaws (Zheng et al., 2011). We briefly discuss several of them working on predicting 
30 ridesharing service needs. Based on Uber pick-up data, Faghih et al., applied the Least Absolute Shrinkage 
31 and Selection Operator (LASSO) spatial-temporal autoregressive model to predict the Uber demand 
32 (Faghih et al., 2019). Xu et al., fed the taxi pick-up and drop-off data in New York City into a long short-
33 term memory (LSTM) neural network to forecast the future taxi requests (Xu et al., 2017). Zhou et al., 
34 employed the convolutional LSTM (ConvLSTM) to capture the spatiotemporal relationship of taxi and 
35 bike-sharing demand data in New York for a short-term demand prediction (Zhou et al., 2018). Zhang et 
36 al., developed an end-to-end multi-task learning temporal convolutional neural network to predict the short-
37 term ridesharing demand and compared its performance with the state-of-the-art deep learning approaches 
38 (K. Zhang et al., 2019). It should be noted that none of the above studies focus on inferring potential critical 
39 transfer zones suitable to connect transit routes with on-demand services. This study seeks to fill in this 
40 gap. 
41 We also notice that many studies develop data-driven approaches to estimate mobility demand for the 
42 transit service design by using the data outside of transit systems such as taxi GPS data, mobile phone GPS 
43 data and bikesharing GPS data. For example, Chen et al., analyzed taxi GPS traces to uncover the areas 
44 with dense pick-up/drop-off orders as candidate bus stops (Chen et al., 2013). Wang et al., designed a taxi-
45 sharing and subways (TSS) system. By solving a matching model upon the taxi GPS data, the route plan of 
46 TSS is determined to maximize the number of participants (Wang et al., 2021). Bastani et al., applied an 
47 agglomerative clustering algorithm to cluster taxi trips based on their origin/destination and then developed 
48 a routing algorithm to identify optimal routes for a flexible mini-shuttle that connects multiple taxi trip 
49 clusters (Bastani et al., 2011). Berlingerio et al., developed a system, AllAboard, to extract origin-
50 destination flows and sequential travel patterns from mobile data (Berlingerio et al., 2013). Then, new 
51 routes were added to an existing transit network to accommodate the identified O-D flows. Hadjidimitriou 
52 et al., used mobile data to estimate the potential time-variant O-D flows and then compared it with the field 
53 transit service so that they could identify the unmatched demands and propose new transit routes 
54 (Hadjidimitriou et al., 2020). Shu et al., proposed a data-driven method and used bikesharing data to design 
55 shuttle services to improve the efficiency of last mile transportation (Shu et al., 2021). The above review 
56 shows that most of these data-driven approaches analyzed the pick-up and drop-off data rather than the 
57 entire trajectories. Therefore, the collective information involved in the trips of the ridesharing services is 
58 not well investigated. Given trajectory data are non-additive and more complicated as compared to the pick-
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1 up and drop-off data, this study contributes new analysis approaches to address this difficulty.    
2 From the application view, this study can narrow down the searching space for those candidate critical 
3 zones, which should be considered in the transit redesign for integrating transit systems with emerging on-
4 demand services. The concept of the hybrid system has been proposed for over decades and many operation 
5 models have been proposed to show its merit (Berrada & Poulhès, 2021; Maheo et al., 2019; Mounce et al., 
6 2018; Rahimi & Dessouky, 2001; Stiglic et al., 2018; Teal, 1994). For example, Luo and Nie found that the 
7 hybrid system that mixes ride-pooling and fixed-route services can improve the overall system efficiency 
8 while maintaining the economy of scale in transit design (Luo & Nie, 2019). Grahn et al, simulated daily 
9 operations for an existing first-mile last-mile mobility service and indicated that added flexibility of the 

10 hybrid service (using shuttles and TNCs) improved service performance by 7.7% (Grahn et al., 2022). 
11 However, existing studies show that only a small percentage of transit agencies (Potts et al., 2010) adopted 
12 the hybrid service. One of the key obstacles is that we lack efficient approaches to find when and where 
13 (i.e., zones) we should build the connections between the services with different levels of flexibility (Qiu 
14 et al., 2014; Velaga et al., 2012). This study seeks to partially make up this research gap in the literature. 
15 In short, the above review indicates several research gaps that this study tries to make up by developing 
16 new methods. First, even though the benefits of coordinating transit systems and emerging on-demand 
17 services have been recognized, we still lack efficient approaches to find those critical transfer locations and 
18 times for the better coordination. Next, even though various data, including ridership data (i.e., transit smart 
19 card data or ridesharing pick/drop data), taxi data, and mobile data, combined with the demographic and 
20 land-use features have been extensively studied to explore transit or ridesharing service gaps and design, 
21 few studies have investigated crowdsourced trajectory data collected from both transit and ridesharing 
22 services. The potential ability of such informative data has not been well explored in the literature. 
23 Moreover, the trajectory data involving two mobility service modes are big data presenting non-additive 
24 curves spanning in a local network during a time period. Existing approaches, such as various choice models 
25 and regression analysis, which have been successfully used to analyze ridership, land use, and demographic 
26 data, cannot be directly applied to study the trajectory data. It calls for new data analysis approaches, for 
27 which we formally define the problem and introduce our methodology in the following sections. 
28

29 Problem description
30 This study is devoted to developing an innovative crowdsourced data analysis approach to help identify 
31 potential critical transfer zones, which are proper candidates for coordinating transit routes and on-demand 
32 services to promote hybrid mobility services. To do that, we noticed that the ridesharing services are highly 
33 correlated with transit services. Accordingly, investigating their trajectory data will help reveal the 
34 interaction between these two types of mobility services and further identify the good candidate zones to 
35 coordinate them by proper schemes. Along with the above thought, this study considers these trajectory 
36 data collected with a general format as follows. 
37 Specifically, this study considers that each trip is formed by a pick-up and drop-off ridesharing service 
38 from its origin to its destination and the route it goes through. Similarly, each transit (bus/metro) service 
39 running from its first stop to its last stop along its planned route is considered one transit trip. Two transit 
40 services occur on the same route, but different schedules are considered two transit trips. Accordingly, we 
41 work on  number of ridesharing trips and  number of transit trips. The trajectory of a ridesharing service 𝑉 𝐵
42 during each trip v is updated at discrete time stamps , according to the 𝑛 ∈ 𝒩𝑣 = {0,1,…,𝑁𝑣}, ∀𝑣 ∈ 𝑉
43 updating frequency of the ridesharing vehicle’s GPS, while the trajectory of a transit during each trip  is 𝑏
44 updated at discrete time stamps  corresponding to the transit vehicle 𝑚 ∈ ℳ𝑏 = {0,1,…,𝑀𝑏}, ∀𝑏 ∈ 𝐵
45 arrival time at the stops of the -th transit trip. Please note that transit and ridesharing trajectory data are 𝑏
46 often updated with different rates. To mathematically present the trajectory data, we use superscripts  and 𝒮
47  to differentiate ridesharing and transit trajectories. Accordingly, the trajectory of the ridesharing trip  is 𝒯 𝑣
48 denoted as , where , abbreviated as , is the 𝒵𝒮

𝑣 = {𝒛𝓢
𝒗,𝒏(𝒙,𝒚),𝑛 ∈ 𝒩𝑣}, ∀𝑣 ∈ 𝑉 𝒛𝓢

𝒗,𝒏(𝒙,𝒚) 𝒛𝒗,𝒕𝒏(𝒙,𝒚)
49 coordinates of the ridesharing vehicle in trip  at the -th timestamp (i.e., at time ). Particularly, we denote 𝑣 𝑛 𝑡𝑛
50 the tuple of  as the origin and destination location of the -th ridesharing trip. Then, we (𝑜𝑣,𝑑𝑣),∀𝑣 ∈ 𝑉 𝑣
51 denote the trajectory of transit trip  as , where  is the 𝑏 𝒵𝒯

𝑏 = {𝒛𝓣
𝒃,𝒎(𝒙,𝒚),𝑚 ∈ ℳ𝑏}, ∀𝑏 ∈ 𝐵 𝒛𝓣

𝒃,𝒎(𝒙,𝒚)
52 coordinates of the transit at the -th time stamp in -th transit trip. We mark  as the departure time at the 𝑚 𝑏 𝑡0
53 first stop and  is the arrival time of the transit at the following stops in -th transit trip. 𝑡𝑚, 𝑚 ∈ ℳ𝑏 𝑏
54 Built upon the above trajectory data, this study will develop our data analysis approach, and then 
55 conduct a case study to validate the effectiveness of the proposed data analysis approaches. Specifically, 
56 the validation involves the analysis of the land-use data, which is the point-of-interest (POI) data indicating 
57 whether a location point on the map is commercial/residential or other use types. 
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5

1 Given a very general trajectory data format is considered, our data analysis approaches can be applied 
2 to analyze the trajectory data collected from other modes, such as the trip GPS data of bike-sharing services 
3 and private vehicles. To facilitate understanding our mathematical formulations, we summarize the 
4 important notations in Table 1, even though each of them will be introduced again in the context in the 
5 following sections.
6 Table 1: List of notations

Notation Explanation
1. Notations in data description

𝑉 Number of ridesharing trips.
𝐵 Number of transit (bus/metro) trips.

𝒩𝑣 = {𝑛}𝑁𝑣
𝑛 = 0 Set of timestamps that the trajectory of the -th ridesharing trip is collected.𝑣

𝒛𝓢
𝒗,𝒏(𝒙,𝒚) The vehicle location coordinates of the -th ridesharing trip at time stamp , 𝑣 𝑛

abbreviated as .𝒛𝒗,𝒕𝒏(𝒙,𝒚)

ℳ𝑏 = {𝑚}𝑀𝑏
𝑚 = 0 Set of the transit arrival timestamps at stops of the -th transit trip.𝑏

𝒛𝓣
𝒃,𝒎(𝒙,𝒚) The vehicle location coordinates of the -th transit trip at time stamp . (transit stop 𝑏 𝑚

coordinates)
2. Notations in data presentation and discretization

𝑇 Data analysis horizon.
𝐼 = {𝑖}𝐼𝑖 = 0 Set of time intervals by time discretization.  is also used as the maximum number 𝐼

of time intervals.
𝐾 = {𝑘}𝐾𝑘 = 0 Set of pixels by spatial discretization.  is also used as the maximum number of  𝐾

pixels.
𝑉𝑖 Set of ridesharing trips during -th time interval.𝑖
𝜏 Continuous variable represents the length of the time interval.

ℤ𝜏
𝑣,𝑖 Set of vehicle location coordinates of the -th ridesharing trip during the time 𝑣

interval  with time interval length .[𝑖𝜏,(𝑖 + 1)𝜏] 𝜏, ∀𝑖 ∈ 𝐼
𝒛𝒗,𝒕(𝑥,𝑦) Vehicle location coordinates of the -th ridesharing trip at time .𝑣 𝑡
𝒛𝒗,𝝉(𝒙,𝒚) The averaged vehicle location coordinate of the -th ridesharing trip during the th 𝑣 𝑖

time interval with width .𝜏
𝑁𝒮

𝑘,𝑖 Number of ridesharing trips that going through the pixel  during the -th time 𝑘 𝑖
interval.

𝑁𝑘,𝑖 Number of total trips that going through the pixel  during the -th time interval.𝑘 𝑖
𝑟𝑘,𝑖 The ridesharing service ratio of the pixel  during the -th time interval.𝑘 𝑖
𝜅 Integer variable represents the total number of the pixels for each time interval.
𝑢𝑘,𝑖 Binary variable to identify whether the -th pixel in -th time interval is 𝑘 𝑖

complementary. If true, , otherwise , . 𝑢𝑘,𝑖 = 1 𝑢𝑘,𝑖 = 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼
𝑣𝑘,𝑖 Binary variable to identify whether the -th pixel in -th time interval is competitive. 𝑘 𝑖

If true, , otherwise , . 𝑣𝑘,𝑖 = 1 𝑣𝑘,𝑖 = 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼
3. Notation in heatmap analysis

𝒞 Set of clusters (patterns) on a heatmap .ℎ
𝑂𝑘 Set of the nearest neighbors of a pixel  on a heatmap .ℎ(𝑘), ∀𝑘 ∈ 𝐾 ℎ
𝒉 Set of heatmaps. , }, in which the heat of the -th pixel  is .𝒉 = {ℎ𝑖 𝑖 ∈ 𝐼 𝑘 ℎ(𝑘) 𝑟𝑖𝑘
𝐻 Aggregated heatmap from , in which the heat of the -th pixel  is 𝒉 𝑘 𝐻(𝑘) 𝑅𝑘 =

1
𝐾

.∑
𝑖 ∈ 𝐼𝑟𝑘,𝑖

𝒉 Set of averaged heatmaps for FLM zone analysis. , in which the 𝒉 = {ℎ𝜔, 𝜔 ∈ 𝒲}
heat of the -th pixel  is .𝑘 ℎ𝜔(𝑘) 𝑟𝑘,𝜔
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6

𝒉 Set of probability heatmaps of FLM-prone orders. , in which the 𝒉 = {ℎ𝜔, 𝜔 ∈ 𝒲}
heat of the -th pixel  is .𝑘 ℎ𝜔(𝑘) 𝑟𝑘,𝜔

𝑜𝑣 The origin of the -th ridesharing trip.𝑣
𝑑𝑣 The destination of the -th ridesharing trip.𝑣
𝛾𝑘 The number of FLM-prone orders in the -th pixel of heatmap .𝑘 ℎ
𝜌 The average density of transit stops over the study region.
𝑉𝜔 Set of ridesharing trips that operate during the time interval .𝜔

1 Methodology
2 This section develops our approaches to analyze the trajectory data defined above. Briefly, we first 
3 develop an optimal 3D representation approach. It enables us to zoom in and analyze the trajectory intensity  
4 and distribution at the discrete level. The analysis results are preented as the heatmaps. Next, we explore 
5 the critical transfer zones by aggregating those discrete information from individual heatmap pixels and 
6 conducting pattern recognition. These approaches integrate spatiotemporal statistical data analysis, 
7 machine learning, and optimization to provide the following capabilities: better understanding the 
8 spatiotemporal service correlation of transit and ridesharing on the local transportation network; revealing 
9 critical zones (RS zones and FLM zones) for transit and on-demand services integration.

10 Optimal 3D discrete representation

11 This study involves ridesharing large-scale GPS trajectory data and transit trajectory data collected with 
12 different rates. Specifically, the transit trips have fixed routes and schedules, while the ridesharing 
13 trajectories randomly distribute over a city during different time slots over a day. As both temporal and 
14 spatial features of the trips are considered, these two sets of data are non-additive and most of the 
15 quantitative approaches cannot be directly used to conduct the data analysis. To uncover the service pattern 
16 involved in the data, we need a good representation to support the quantitative analysis. Considering the 
17 spatiotemporal dynamics of the trajectory data, this study puts all trajectories in a 3D space spanned by 2D 
18 (x-y) spatial coordinates and time (t) dimensions. This 3D space represents the entire service space. 
19 Accordingly, each trip is presented by a 3D route in the space. See Figure 2(a) for an example, different 3D 
20 routes are labeled with different colors. 
21 Furthermore, we notice that these 3D routes intersect and then diverge at different spatiotemporal 
22 points. Some areas present very dense trips going through by both transit and ridesharing modes, but others 
23 are only sparsely visited by one of them. More importantly, the ridesharing GPS trajectory data are collected 
24 at different rates and these trajectory data are not directly addable. To analyze these 3D curves, this study 
25 discretizes the 3D service space into K×I number of uniform cubes (see Figure 2(b)), where K is the number 
26 of the pixels in spatial area, and I is the number of time intervals in the time dimension. Accordingly, we 
27 have K cubes cover a space spanned in a time interval τ over a grid area. With a slight abuse of notation, 
28 we also use I to represent the set of time intervals and K to represent a set of cubes (pixels) in one-time 
29 interval throughout the paper.

high transit 
trajectory 
density area

Ridesharing trajectory

Transit trajectory

high 
ridesharing 
trajectory 
density area

(b)(a)

Figure 2. (a) Trips in the 3D space. (b) 3D discretization and heatmap generation.
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7

1 Once the service space is discretized, we can zoom in and study the service correlation between these 
2 two modes in each cube. Specifically, we aggregate the trajectory data of a trip in each cube (see Section: 
3 Optimal length of time interval), and then we measure the trajectory density of ridesharing mode in a cube 
4 by (1) below. 

𝑅 = {𝑟𝑘,𝑖}, 𝑟𝑘,𝑖 = {𝑁𝒮
𝑘,𝑖 𝑁𝑘,𝑖 𝑁𝑘,𝑖 > 0
―1 𝑁𝑘,𝑖 = 0,  ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, (1)

5 where   and  denote the number of ridesharing trips and total trips going through the pixel  during 𝑁𝒮
𝑘,𝑖 𝑁𝑘,𝑖 𝑘

6 the -th time interval. Equation (1) indicates that  for  and we mark  if it is 𝑖 𝑟𝑘,𝑖 ∈ [0,1] 𝑁𝑘,𝑖 > 0 𝑟𝑘,𝑖 = ―1
7 an empty pixel (i.e., no trips present in the pixel). 
8 Based on this view, we formally define three types of pixels through the trajectory density defined in 
9 (1). Furthermore, we consider those X (transit or ridesharing)-trajectory dominant and trajectory even pixels 

10 as informative pixels, as a contrast to the noise pixels defined in Definition 3. Note that both  and  should 𝜂 𝜇
11 be less than 0.5 to be consistent with the meanings of these definitions.
12
13 Definition 1 – X-trajectory Dominant Pixel: A pixel is dominated by X (either ridesharing or transit 
14 trajectory), if and only if its trajectory density satisfies where 𝑟𝑘,𝑖 ∈ [0,𝜂] ∪ [𝜂,1],  𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝜂 
15  are given parameters and  .  and  𝜂 𝜂 = 1 ―  𝜂
16 An X-trajectory dominant pixel implies that under the current mobility service condition, one service 
17 mode within the defined region presents dominant trajectories, which implies this service represents a better 
18 or more approachable mobility service than the other one. On the other hand, a trajectory even pixel presents 
19 an even mobility supply from both modes. Roughly, we can say they evenly share current demands. 
20 Definition 2 – Trajectory Even Pixel: A pixel presents even trajectory density between the ridesharing 
21 and transit if and only if its ridesharing trajectory density satisfies 𝑟𝑘,𝑖 ∈ [𝜇,𝜇], 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, where 𝜇,
22  are given parameters, . 𝜇 𝜇 = 1 ―  𝜇
23 Definition 3 - Noise Pixel: A pixel cannot present a clear trajectory dominant or even relationship between 
24 the ridesharing and transit services if its ridesharing trajectory density satisfies  (i.e., 𝑟𝑘,𝑖 ∈ [𝜂,𝜇] ∪ [𝜇,𝜂]
25 unidentifiable pixel presenting neither dominant nor even relationship) or  (empty pixel), 𝑟𝑘,𝑖 = ―1 𝑘 ∈
26 ,   and  . 𝐾, 𝑖 ∈ 𝐼 𝜂 = 1 ―  𝜂 𝜇 = 1 ―  𝜇
27 This discretization and definitions enable us to understand the mobility supply of transit and ridesharing 
28 at a discrete level. Based on this knowledge, we can further infer when and where the transit and ridesharing 
29 can have a good cooperation. From this perspective, it is critical to determine the discretization resolution, 
30 e.g., a proper cube dimension (i.e., the length of the time interval and the pixel size in the spatial dimension) 
31 to ensure the success of the data analysis. We discuss our ideas in the following sections.  

32 Optimal length of time interval

33 First of all, we notice that the ridesharing GPS data is collected too frequently (per 2 – 4 seconds), which 
34 leads to unnecessary dense data to do the time dimension discretization. The dense data will lead to a huge 
35 data size, which results in a significant computation load for future analysis. Therefore, the first task of the 

36 discretization in the time dimension is to properly aggregate the data in the time dimension so that we can 
37 reduce the computation load without over sacrificing the data resolution. This section investigates how the 

(a) (b) (c) (d)

Data point of ridesharing 
trajectory

Averaged location of ridesharing 
vehicle in a time interval

Figure 3. Ridesharing trajectory data aggregation with increasing time interval size 
from (a) – (b).
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8

1 time interval of the cubes will affect the statistical analysis and then explores the optimal time interval  𝜏 ∗

2 for the cubes. 
3 Please note that with a given time interval, we locate the spatial position of a ridesharing vehicle by 
4 averaging the coordinates of multiple data points during each time interval so that we can reduce the data 
5 size. This process will compromise the accuracy of the spatial information if the vehicle trajectory is 
6 oversimplified. Take Figure 3 for example, the actual trajectory of a ridesharing vehicle may go across a 
7 wide spatial area (see Figure 3 (a)). However, if the time horizon is too small such as Figure 3 (b), even 
8 though the trajectory is well preserved, the temporal discretization leads to many time intervals with many 
9 data points. Then, the discretization results in a data set that causes an expensive computation load for the 

10 data analysis and machine learning training process. If the time horizon is too large such as Figure 3(d), 
11 then the aggregated data do not span over the space as the actual trajectory does. As a result, the resolution 
12 of the data is sacrificed. On the other hand, Figure 3 (c) presents a good time interval. It reduces the raw 
13 data size while keeping the same spatial coverage. In other words, this discretization reduces the 
14 computation load in data analysis without over sacrificing the data resolution. Therefore, we prefer a 
15 selection of time interval , which balances the computation load and information accuracy. By recognizing 𝜏
16 this point, we develop the optimization model in (2)-(5) to optimally aggregate the ridesharing trajectory 
17 data collected in the analysis horizon . More exactly, it explores the optimal time interval with the 𝑇
18 objective to minimize the information loss and the dataset size, subject to a feasible range of the value . 𝜏
19 Accordingly, the objective function uses the sample variances (the first item in (2)) to measure the loss of 
20 the location information and puts the penalty on the number of the time intervals (the second item in (2)).

 𝑷𝟏:min
 𝜏 

𝛼∑𝐼
𝑖 = 0

1
|𝑉𝑖|

∑
𝑣 ∈ 𝑉𝑖

1

|ℤ𝜏
𝑣,𝑖|
∑

𝑖𝜏 ≤ 𝑡 ≤ (𝑖 + 1)𝜏 ||𝒛𝒗,𝒕(𝒙,𝒚) ― 𝒛𝒗,𝝉(𝑥,𝑦)||2
2 +𝛽

𝑇
 𝜏 

(2)

Subject to,                                           𝜏 ≤ 𝜏 ≤ 𝜏, (3)

𝐼 = ⌊𝑇 𝜏⌋, (4)

 𝒛𝒗,𝝉(𝒙,𝒚) =
1

|ℤ𝜏
𝑣,𝑖|
∑

𝑖𝜏 ≤ 𝑡 ≤ (𝑖 + 1)𝜏𝒛𝒗,𝒕(𝑥,𝑦), ∀𝑣 ∈ 𝑉𝑖,𝑖 ∈ 𝐼 (5)

21 where , the length of the time interval, is the single decision variable and  is the input data, which 𝜏 𝒛𝒗,𝒕(𝑥,𝑦)
22 represents the vehicle location coordinates of the -th ridesharing trip at time ;  is the index for time  𝑣 𝑡 𝑖 ∈ 𝐼
23 interval;  in constraint (4) also represents the total number of time intervals, which changes according to 𝐼
24 the decision variable ;  represents the set of ridesharing trips during -th interval;  is the set of 𝜏 𝑉𝑖 𝑖 ℤ𝜏

𝑣,𝑖 ⊂ 𝒵𝑆
𝑣

25 vehicle coordinate records of -th ridesharing trip during the time interval ; specifically, 𝑣 [𝑖𝜏,(𝑖 + 1)𝜏] ℤ𝜏
𝑣,𝑖 =

26 ;  is the analysis horizon; 𝛼 and 𝛽 are the predefined weights normalized {𝒛𝒗,𝒕(𝑥,𝑦)│𝑖𝜏 ≤ 𝑡 ≤ (𝑖 + 1)𝜏} 𝑇
27 to make the two terms comparable in the objective function in the magnitude;  is the averaged 𝒛𝒗,𝝉(𝒙,𝒚)
28 vehicle location coordinates of the -th ridesharing trip during the -th time interval with width  (constraint 𝑣 𝑖 𝜏
29 (5)). The optimization Model  aims to find an optimal time discretization so that we can balance the data 𝑷𝟏
30 resolution and the computation load. The objective function (2) factors the data variance missing (i.e., 
31 referring to resolution loss) introduced by averaging the ridesharing trajectory coordinates and the number 
32 of time intervals resulting from the discretization (i.e., referring to the computation load). When the time 
33 interval length  is small, the location data of the vehicle  do not change much during the time 𝜏 𝒛𝒗,𝒕(𝑥,𝑦)
34 interval so that the average coordinates  well represent the location of the vehicle, see (5). 𝒛𝒗,𝝉(𝒙,𝒚)
35 Accordingly, the data variance missing as the first term of (2) is small (i.e., good data resolution) but a 
36 small  leads to many time intervals and makes the second term of (2) large (i.e., high computation load in 𝜏
37 data analysis). On the other hand, when  is too large, the trajectory is oversimplified so that the second 𝜏
38 term is small (i.e., low computation load in data analysis) but with large variance missing as a tradeoff (i.e., 
39 bad data resolution). 
40 Even though model P1 presents nonconvexity (the decision variable presents as the upper bound of the 
41 summation), it only involves one decision variable bounded by a box constraint. Thus, we can find a lower 
42 and upper bound for  in practice to limit the solution space (see more discussion in the case study). And 𝜏
43 then, we can quickly search the local optimal solution of by using the best first search (BFS) algorithm 𝜏 
44 (Dechter & Pearl, 1985) in a feasible region  (constraint (4)). [𝜏,𝜏]
45 BFS is one of the efficient sequential search algorithms in discrete optimization. It is a selected 
46 enumerated method. For completeness, we present the main idea of this algorithm as follows. The BFS 
47 maintains a list named OPEN, which is placed with nodes (possible solutions) to be expanded. Initially, the 
48 list of OPEN includes a set of integer solutions within . Then, the solutions are evaluated through the [𝜏,𝜏]
49 objective function (2). The worst solution is removed from the list and the best solution is expanded to 
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9

1 include its neighbors in the OPEN list as successors. The heuristic evaluation process is repeated until no 
2 more successors are found. The best solution that remains in the OPEN list is the optimal solution.  
3 Note that the transit trajectory data is only collected at each stop. Therefore, it is not necessary to do 
4 further aggregation in the time dimension, even though model  can be applied to transit trajectory data 𝑷𝟏
5 if they are very dense.

6 Optimal pixel size

7 This study next determines the pixel size of the cubes in the spatial dimension. Built upon the aggregated 
8 trajectory data, the spatial discretization aims to maximize the number of informative cubes in each time 
9 interval so that we can accurately uncover valuable information from the data. To do that, we notice that 

10 the size of the pixel will also affect the number of the cubes as well as the counting of the ridesharing/transit 
11 trips which is closely relevant to the trajectory density measurement occurring in each cube, see (1). Thus, 
12 it will influence the computation load as well as the interpretation of the data analysis. We use Figure 4 as 
13 an example to explain this point. We consider that the average speed of the overall traffic data is  and the 𝑣𝑎
14 average speed upper limit over the network is . With the given time interval width , if the size of the pixel 𝑣 𝜏
15 is too small, such as the length of the pixel side  in Figure 4 (a), it will very likely lead to many 𝑙 < 𝜏𝑣𝑎
16 empty pixels since the majority of vehicles can run across a pixel during a time interval . On the other 𝜏
17 hand, if the size of the pixel is too large, such as the length of the pixel side  in Figure 4 (b), it will 𝑙 > 𝜏𝑣
18 lead to the overcount since an individual vehicle will be caught more than once in the pixel.
19 The example above shows that a pixel with the length within  will facilitate the analysis better. [𝜏𝑣𝑎,𝜏𝑣 ]
20 An improper discretization will lead to either many empty cubes or overcount. It cannot provide valuable 
21 insights and will affect the statistical analysis significantly. Therefore, we seek to explore the optimal pixel 
22 size so that they can clearly present either trajectory dominant or even relationship between traffic modes. 
23 According to Definitions 1 and 2, an X-trajectory dominant pixel indicates that either the transit or the 
24 ridesharing trajectory dominates the service going through the pixel. Potentially, many adjacent and 
25 connected trajectory dominant pixels show one out of the two services dominates in this area. On the other 

26 hand, an area formed by connected even pixels shows that neither the transit nor the ridesharing presents 
27 apparent merits to attract more the trips going through it. This information is very valuable to facilitate our 
28 data analysis later. Clearly, the ratios of informative pixels (X-trajectory dominant and even) and noise 
29 pixels are affected by the schemes of the 3D discretization in the spatial dimension. We next discuss our 
30 ideas to search for the optimal discretization scheme in spatial dimension by an optimization model formed 
31 in (6)-(9). It seeks to find the optimal number of pixels ( ), so does the size of each pixel, for maximizing 𝜅 ∗

32 the total number of the informative pixels (X-trajectory dominant and even) with a given time interval 
33 width . The objective function (6) consists of  and , which are the proportion of the X-trajectory 𝜏 𝐴𝜅,𝑖 𝐴𝜅,𝑖
34 dominant and even pixels over the study region;  and  are predefined weights.𝑝 𝑞

:  𝑷𝟐  max
𝜅

∑𝐼
𝑖 = 0(𝑝𝐴𝜅,𝑖 + 𝑞𝐴𝜅,𝑖) (6)

Subject to,
 𝐴𝜅,𝑖 =

1
𝜅 ∑𝜅

𝑘 = 1𝑢𝑘,𝑖(𝜅),  ∀𝑖 ∈ 𝐼 (7)

                                                      𝐴𝜅,𝑖 =
1
𝜅 ∑𝜅

𝑘 = 1𝑣𝑘,𝑖(𝜅),  ∀𝑖 ∈ 𝐼 (8)

𝜅 ≤ 𝜅 ≤ 𝜅 (9)
35 In the model ,  is the decision variable, representing the total number of the pixels, each with a 𝑷𝟐 𝜅
36 square shape;  and  are auxiliary binary variables,  if the -th pixel in -th time interval is X-𝑢𝑘,𝑖 𝑣𝜅,𝑖 𝑢𝑘,𝑖 = 1 𝑘 𝑖

(a) (b)

Figure 4. Examples of improper pixel size. (a) , (b) when .𝑙 < 𝜏𝑣𝑎 𝑙 > 𝜏𝑣
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10

1 trajectory dominant with , and 0, otherwise;  if the -th pixel in -th time 𝑟𝑘,𝑖 ∈ [0,𝜂] ∪ [𝜂,1] 𝑣𝑘,𝑖 = 1 𝑘 𝑖
2 interval has even trajectory density with , and 0, otherwise;  and  are predefined weights. 𝑟𝑘,𝑖 ∈ [𝜇,𝜇] 𝑝 𝑞
3 Constraints (7) and (8) count the proportion of the X-trajectory dominant pixels ( ) and the even pixels𝐴𝜅,𝑖  (
4 ). Therefore, the objective function (6) seeks to maximize the proportion of the X-trajectory dominant 𝐴𝜅,𝑖
5 and even pixels over the study region. Note that for a given study area with the size , the more pixels 𝑆
6 present, the smaller the pixel size is. As a proper pixel length is within , the total number of pixels, [𝑣𝑎𝜏,𝑣𝜏]
7 , is also bounded by  (constraint (9)), where  and . 𝜅 [𝜅,𝜅] 𝜅 = [𝑆 (𝑣𝜏)]2 𝜅 =  [𝑆 (𝑣𝑎𝜏)]

2

8 Next, given  and  defined in Definitions 1-3, we notice that two of the four 𝜂 = 1 ―  𝜂 𝜇 = 1 ―  𝜇
9 parameters (e.g.  and  will significantly affect the solution of the discretization since they affect the 𝜇 𝜂)

10 value of the trajectory density ( ) used in Definitions 1-3 so do the values of  and  in the 𝑟𝑘,𝑖 𝐴𝜅,𝑖 𝐴𝜅,𝑖
11 optimization model. More exactly, this study names the interval  as an unidentifiable interval (UI). A 𝜇 ― 𝜂
12 narrow UI loosens the criteria to certify X-trajectory dominant or even pixels according to Definitions 1 
13 and 2. Accordingly, it tends to produce a discretization solution with a few pixels (i.e., a small value of ) 𝜅 ∗

14 each with a large size, which may maximize the size/number of the informative pixels but result in a low 
15 resolution, e.g., a pixel may cover some areas not presenting consistent lane-use features. On the other 
16 hand, a wide UI tightens the criteria and leads to a discretization solution with plenty of pixels (i.e., a large 
17 value of ) each with a small pixel size, which may lead to more noise pixels as the cost. The 𝜅 ∗

18 determination of the parameters is highly data orientated. Thus, this study will perform a sensitivity analysis 
19 for the UI in our case study. Combining with the land-use analysis, we suggest proper values for the 
20 parameters   and  in the case study.𝜂, 𝜂, 𝜇 𝜇
21 The optimization model  is nonlinear and nonconvex, but with a single integer decision variable  𝑷𝟐 𝜅
22 within . This study thus explores the optimal solution by using the similar best-first search (BFS) [𝜅,𝜅]
23 heuristic approach (Dechter & Pearl, 1985), which is also used in solving the model .  𝑷𝟏
24
25 Remark: The discretization in the time dimension mainly seeks to aggregate the dense trajectory data, 
26 while balancing the data resolution and computation loads. The spatial discretization aims to maximize 
27 informative cells, while balancing the computation load and data interpretation capability.  In general, the 
28 temporal and spatial discretization should be simultaneously optimized. However,  the trajectory data used 
29 in this study are collected very frequently (per 4 seconds), which is not necessary for our data analysis 
30 purpose. Accordingly, the data aggregation in the temporal dimension does not affect the spatial 
31 discretization very much, but this is not true in the other direction. Therefore, our 3D discretization 
32 approach will first determine the optimal time interval to aggregate trajectory data. Built upon that, we 
33 decide the optimal pixel size to generate sufficient informative cubes for further data analysis. 

34 Heatmap generation and pattern recognition

35 Built upon the 3D discretization, we can capture the trajectory distribution feature in each cube. More 
36 exactly, we present the trajectory density of ridesharing/transit in each cube during one time interval  by 𝜏 ∗

37 a heatmap, in which the heat of each pixel represents its ridesharing trajectory density. See the example 
38 shown in Figure 2, the color of each pixel demonstrates the intensity of the ridesharing/transit trajectories. 
39 A light-yellow pixel corresponds to a cube with high ridesharing trajectory density, while the dark-red pixel 
40 indicates a cube mainly gone through by transit trajectories. Applying this analysis to each interval in the 
41 3D space, we obtain a set of heatmaps , }. However, these analysis results are information 𝒉 = {ℎ𝑖 𝑖 ∈ 𝐼
42 fragments for individual cubes. They can neither demonstrate the service patterns with collective features 

Figure 5. An example of heatmap and clustering.
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11

1 nor infer critical zones over the spatiotemporal space of interests. To solve this issue, we next seek to 
2 recognize the critical patterns with collective features on a heatmap so that we can discover the converged 
3 insights. That is to find collective pixel clusters according to their colors. For example, the yellow zone 
4 involving pixels 1, 2, and 3 in Figure 5 together indicates a ridesharing trajectory dominant zone, while the 
5 red zone represents a transit trajectory dominant zone with a low ridesharing trajectory density. By 
6 analyzing these clusters, we seek to discover critical transfer zones, which suggest service gaps and indicate 
7 the need of integrating transit, microtransit, and ridesharing services. 
8 To conduct this pattern recognition, our main idea is to merge the pixels into a set of clusters  on a  𝒞
9 heatmap  (for generality, we omit the subscript  here) according to the given clustering criterion. The ℎ 𝑖

10 pixels within a cluster, such as , should exhibit the same service property, i.e., similar color, ensured 𝐶 ∈ 𝒞
11 by the clustering criterion. For example, we can gather the pixels to a cluster if the heat or the pixel’s 
12 ridesharing trajectory density,  satisfies , where  is a given threshold value. When the 𝑟𝑘 𝑟𝑘 ≥ 𝑟, ∀ℎ(𝑘) ∈ 𝐶 𝑟
13 clustering criterion is  and  is given as a big value, i.e.,  0.9, the cluster that we try to recognize 𝑟𝑘 ≥ 𝑟 𝑟 𝑟 =
14 represents a ridesharing trajectory dominant zone. On the other hand, when the clustering criterion is  𝑟𝑘 ≤ 𝑟
15 and  is a small value, i.e., 0.1, the cluster that we try to recognize is a transit trajectory dominant zone. In 𝑟
16 other words, these clusters exhibit collective and converged features regarding the relative mobility supply 
17 of transit and ridesharing services.
18 We present the clustering approach by Algorithm 1. It borrows the idea of the k-nearest neighbors 
19 algorithm (KNN), but with our development according to the problem features. Specifically, we consider 
20 all direct adjacent pixels, denoted by , as the nearest neighbor set of a pixel  be located by 𝑂𝑘 ℎ(𝑘), ∀𝑘 ∈ 𝐾
21 the index ( ) in the heatmap. Accordingly, the set  involves the eight pixels with index ( ), 𝒾,𝒿 𝑂𝑘 𝒾 ― 1,𝒿 ― 1
22 ( ), ( ), ( -1), ( +1), ( ), ( ), and ( ) (see Figure 5). The algorithm 𝒾 ― 1,𝒿 𝒾 +1,𝒿 𝒾,𝒿 𝒾,𝒿 𝒾 +1,𝒿 ― 1 𝒾 +1,𝒿 𝒾 +1,𝒿 +1
23 starts with all candidate pixel seeds, each of which satisfies  (or ), , and then repeatedly 𝑟𝑘 ≥ 𝑟 𝑟𝑘 ≤ 𝑟  ∀𝑘 ∈ 𝐾
24 has each seed clustering its nearest neighbors into one cluster according to the clustering criterion, until all 
25 pixels are merged into clusters. The pseudocode of this clustering algorithm is presented in Algorithm 1. It 
26 takes a heatmap  and a given threshold  as inputs, and returns the cluster set . The steps in line 3 – line ℎ 𝑟 𝒞
27 5 form a list of the candidate pixel seeds (CPL) by the given clustering criterion. The steps from line 7 – 
28 line 13 cluster each pixel  in CPL with its nearest neighbor pixel  by the clustering criteria. ℎ(𝑘) ℎ(𝑙) ∈ 𝑂𝑘
29 The nearest neighbor pixels set of  is updated with  and  is popped out from CPL. The ℎ(𝑘) 𝑂𝑘 ∪ 𝑂𝑙  ℎ(𝑙)
30 process is repeated until no more nearest neighbor pixel  can be clustered (line 7 – line 13). ℎ(𝑙)
31

Algorithm 1 Clusters Construction

 1     Procedure CLUSTER( , )ℎ 𝑟
 2           CPL  ← ∅
 3           for pixel  doℎ(𝑘) ∈ ℎ
 4                 if  then  # clustering criterion, can also be 𝑟𝑘 ≥ 𝑟 𝑟𝑘 ≤ 𝑟
 5                       CPL ← 𝑘
 6           CPL; 𝐶𝑘←𝑘, ∀𝑘 ∈  𝒞 = {𝐶𝑘}
 7           for CPL do𝑘 ∈  
 8                 for pixel  doℎ(𝑙) ∈ 𝑂𝑘

 9                       if  CPL and  then #  meets clustering criterion, 𝑙 ∈ 𝑙 ∉ 𝐶𝑘 ℎ(𝑙) 𝑟𝑙 ≥ 𝑟
 10                           𝐶𝑘←𝐶𝑘 ∪ 𝐶𝑙

 11                           𝑂𝑘←𝑂𝑘 ∪ 𝑂𝑙

 12                           𝐶𝑙←∅
 13                           CPL  CPL\{← 𝑙}
 14         return 𝒞

32 Applying the clustering algorithm to the heatmaps, we can recognize the service pattern over the study 
33 area during each time interval. This information further enables this study to conduct two specific heatmap-
34 based analyses, which are introduced in the following two sections.  

35 Searching Ridesharing Swarm Zones

36 We are first interested in a critical pattern: the ridesharing swarm (RS) zones in the heatmaps, which 
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1 are the zones spatiotemporally passed by a crowd of ridesharing trips, but not transit trips. Given it is a new 
2 concept introduced by this study, this section first conceptually discusses the importance of RS zones. Then, 
3 we introduce the approach to recognize RS zones on a heatmap. Later, our numerical will validate our 
4 thoughts.
5 Using Figure 6 as an illustration example, the RS zones can be the zones where either many ridesharing 
6 picked-up or dropped-off services happen, or many ridesharing trips pass by. In either situation, this study 
7 considers that these RS zones indicate promising critical transfer zones (see Figure 1), which most likely 
8 lack transit connectivity and are good candidate zones for integrating the transit and on-demand services. 
9 Below we provide a further discussion regarding this correlation and the importance of RS zones.

10 First, if there are consistent and dense ridesharing trajectories going through a pair of RS zones (please 
11 note that a zone here will cover a large area with multiple roads), this pair of RS zones indicates a potential 
12 corridor zone that has a hidden transit connection gap/need, even though it may not indicate complete routes. 
13 Adding new transit stops (or routes) in (or between) RS zones can potentially improve the connectivity of 
14 these zones to the nearby transit network and then attract more potential transit usages. Next, if an RS zone 
15 does not have sufficient passing trips with other RS zones in the map, but covers a large area surrounded 
16 by transit trajectory dominant zones in a heatmap, it indicates a good place to setup transfer connections by 
17 either microtransit or other types of on-demand services for connecting this zone to nearby transit service. 
18 It will also improve transit connectivity and potentially initiate more transit demand. Our case study 
19 confirms these thoughts above by the field examples. Both scenarios above indicate that RS zones imply 
20 promising critical zones, even though extra data and sophisticated operation studies are needed to further 
21 determine the operation decisions, which are out of the scope of this study.
22 Motivated by the above thoughts, this study develops an RS zone recognition approach upon the 
23 heatmaps generated from the ridesharing trajectory data. We introduce it as follows. Given RS zone shows 
24 valuable aggregated spatiotemporal insights, we project all heatmaps  in the study to the spatial region ℎ𝑖 ∈ 𝒉
25 to obtain a new aggregated heatmap . The heat  of the pixel  is calculated by averaging the heat 𝐻 𝑅𝑘 𝐻(𝑘)
26  over all heatmap , see (10).𝑟𝑘,𝑖 ℎ𝑖 ∈ 𝒉

𝑅𝑘 =
1
𝐾∑𝑖

𝑟𝑘,𝑖,  ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾
(10)

27 The heatmap  presents the overall service information from the study horizon, i.e., one month in the 𝐻
28 case study. We then demonstrate the RS zones recognition and its capability to uncover the hidden transfer 
29 zones with good potential to integrate transit and on-demand services. Specifically, we take ) as the (𝐻, 𝜂

30 input and recognize the RS zones (clusters) by using the algorithm CLUSTER( ), using the clustering 𝐻, 𝜂
31 criterion, . The threshold parameter  is selected according to Definition 1 in Section: 𝑅𝑘 ≥ 𝜂, ∀𝐻(𝑘) ∈ 𝐶 𝜂
32 Optimal 3D discrete representation. Mainly, the ridesharing trajectory is dominant within the area with 𝑅𝑘
33 . These RS zones are closely correlated to potential connection zones for integrating transit and on-≥ 𝜂
34 demand services. Our case study in Section: Heatmap generation and pattern recognition validates the 
35 conjecture by a case study combining land-use analysis. Note that the RS zones can only be recognized by 
36 analyzing the entire trip (trajectory) data, which highlights the value of trajectory data analysis in this study.

37 Searching First and Last Mile (FLM) Gap

38 Suffering from the limited coverage and flexibility in the current transit system, transit passengers often 

origin

destination

 RS zones

Ridesharing trip 
trajectory (data)

Figure 6. RS zones on heatmap H.
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1 meet the difficulty of the first and/or last mile (FLM) gaps. They then switch to ridesharing or private auto 
2 modes to obtain more convenient mobility services. Emerging on-demand services (such as microtransit) 
3 provide a promising solution to make up for this deficiency. However, it is very hard to find the first and 
4 last-mile gaps due to the lack of intermodal trips or relevant survey data. This study develops a new 
5 approach to infer the candidate first/last mile zones through heatmap analysis. Specifically, we notice that 
6 those “sandwich” patterns on the heatmaps, in which a transit trajectory dominant zone is immediately 
7 connected by multiple ridesharing trajectory dominant zones (see Figure 7, i.e., ), have a great A1BA2
8 potential to be the zones presenting first/last mile gaps.
9 To conceptually interpret this motivation above, we consider a large area, such as a big shopping center 

10 or residential area in reality. If there are transit stops nearby this area, the first/last mile gaps often happen 
11 if the transit stops and the shopping center are beyond walking distance. Accordingly, we are expected to 
12 see many ridesharing services there. We noticed that this scenario, in reality, is highly correlated to the 
13 “sandwich” patterns we defined above. We next present the correlation between the FLM zones and the 
14 “sandwich” pattern on the heatmaps, combining the transit stops distribution data. Taking Figure 7 as an 
15 example, the zones with yellow color (such as ,  zones) represent the ridesharing trajectory dominant 𝐴1 𝐴2
16 zones (i.e., ). The zones in red color (such as B zones) are transit trajectory dominant zones (𝑟𝑘,𝜔 ≥ 𝜂 𝑟𝑘,𝜔 <
17 . Then,  forms a “sandwich” pattern of our interests. If the transit stops density  of the 𝜂) 𝐴1 ― 𝐵 ― 𝐴2 𝜌(.)
18 zones ,  and  satisfy the relation , , we know that both  and  have a 𝐴1 𝐴2 𝐵 𝜌(𝐵) > 𝜌(𝐴1) 𝜌(𝐵) > 𝜌(𝐴2) 𝐴1 𝐴2
19 low transit coverage inside, just like the big shopping center, but plenty of transit stops nearby connecting 
20 to  zone. If we also observe many trips between  to  (i.e.,  ridesharing trip) using ridesharing 𝐵 𝐴1 𝐴2 𝐴1⇆𝐴2
21 not nearby transit services in zone ,  we conjecture that FLM gaps will most likely occur at  and  𝐵 𝐴1 𝐴2
22 zones. On the other hand, if we observe many ridesharing trips between  zone and  zone: . 𝐴 𝐵 𝐴1⇆𝐵;𝐴2⇆𝐵
23 It also implies that passengers in  and  zones may meet the difficulty to approach the transit services 𝐴1 𝐴2
24 in zone . In either case, we can see that  zones in the “sandwich” patterns demonstrate a strong correlation 𝐵 𝐴
25 to the potential FLM zones.  Our case study confirms this thought by examining field data (see Section: 
26 Searching RS zones).
27 Invoked by the above observation, we next formally develop our approach to search FLM zones by 
28 recognizing those “sandwich” patterns on the heatmaps. To do that, we first process our heatmaps. Given 
29 the FLM demand usually varies from hour to hour (Shen et al., 2018), our analysis is built upon a set of 
30 hourly aggregated heatmaps , where , each heatmap  is aggregated from  ℎ𝜔 ∈ 𝒉 𝒲 = {1,2,…,⌊ 𝐼

𝑛𝜏⌋} ℎ𝜔 𝑛

31 number of heatmaps , corresponding to one hour time period. We also denote  as a set of ℎ𝑖 ∈ 𝒉 𝑉𝜔 ⊂ 𝑉
32 ridesharing trips that operate during the time range on a heatmap . According to the heatmaps ℎ𝜔 𝒉 =
33 , we define another set of heatmaps, , each of which has the same interval {ℎ𝜔, 𝜔 ∈ 𝒲} 𝒉 = {ℎ𝜔, 𝜔 ∈ 𝒲}
34 length as , but the heat of each pixel represents the FLM probability during time interval . In other ℎ𝜔 𝜔

35 words, those areas with high heat on the heatmaps  indicate promising FLM zones. To construct such 𝒉
36 heatmaps , we propose an FLM zones search algorithm (Algorithm 2), which takes the averaged heatmaps 𝒉
37  as input and provides the FLM probability heatmap . The pseudocode can be found in the Appendix. 𝒉 𝒉
38 Mainly, Algorithm 2 (line 2 to line 3) first applies the clustering algorithm (Algorithm 1) to the heatmap 
39  to find a set of ridesharing trajectory dominant zones  (with ridesharing trajectory density greater than ℎ𝜔 𝒜
40 ) and transit trajectory dominant zones  (with ridesharing trajectory density less than ). Then the average 𝜂 ℬ 𝜂
41 density of transit stops over the study region,  is used as a threshold value to filter out undesired zones 𝜌
42 from  and  (line 4 to line 9). For example, a potential FLM zone  should have a transit service 𝒜 ℬ 𝐴𝑘 ∈ 𝒜
43 coverage lower than the average density, while a transit trajectory dominant zone  will have 𝐵𝑘 ∈  ℬ
44 sufficient transit services (greater than the average density). Next, the algorithm recognizes the “sandwich” 

Figure 7. Schematic representation of the “sandwich” pattern.
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1 patterns (line 10 to line 15). Specifically, for each , the algorithm finds all ridesharing trajectory 𝐵𝑘 ∈  ℬ
2 dominant zones  that are connected with  and puts them in a list . Following that, we locate the 𝐴𝑘 ∈ 𝒜 𝐵𝑘 𝐵𝐴

𝑘
3 FLM zones on the “sandwich” patterns by examining the number of FLM-prone orders,  occurred for 𝛾𝑘
4 each pixel within ridesharing trajectory dominant zones . Accordingly, three types of FLM-prone 𝐴𝑘 ∈ 𝒜
5 orders are considered, of which trips are from  to  without using transit (line 16 to line 23), from  to 𝐴𝑘 𝐴𝑙 𝐴𝑘
6 the nearby areas in  to cover the first-mile with ridesharing (line 24 to line 29), and from pixels in  𝐵𝑘 𝐵𝑘
7 boundary to  to cover the last-mile with ridesharing (line 30 to line 34). Finally, the algorithm returns an 𝐴𝑘
8 FLM-prone order probability heatmap  with the heat  as the proportion of the FLM-prone orders that ℎ𝜔 𝑟𝑘,𝜔
9 pixel  receives, . ℎ𝜔(𝑘) 𝑟𝑘,𝜔 = 𝛾𝑘/∑𝑘𝛾𝑘

10 With Algorithm 2, the heatmaps from  can be fed into FLMZONES( , ) to generate 𝒉 = {ℎ𝜔, 𝜔 ∈ 𝒲} ℎ𝜔 𝜌
11 the set of FLM-prone order probability heatmaps . These two sets of heatmaps are input 𝒉 = {ℎ𝜔, 𝜔 ∈ 𝒲}
12 into a two-channel ConvLSTM model for prediction in the next section. The proposed approach identifies 
13 the potential FLM zones spatiotemporally, which allows transit agencies to efficiently incorporate flexible 
14 services, e.g. as a referenced FLM demand radar for microtransit service planning. Please note that this 
15 approach is to scope potential FLM zones. Combining more data into further investigation and validation, 
16 such as multimodal trip data and land use data, we can sharpen the results further. Our case study in Section: 
17 Inferring FLM zones will validate our findings by combining transit stop density and land-use analysis.

18 Learning Spatiotemporal Service Gaps

19 The above sections manage to discover the hidden transfer zones for integrating transit and on-demand 
20 mobility services, based upon aggregated heatmaps along with a given timeframe. They provide limited 
21 help for flexibly responding to demand variation over different timeframes since the temporal FLM demand 
22 pattern are not learned. This study is thus inspired to develop the deep learning model to learn and predict 
23 those service gaps of interest.
24 Specifically, we employ a two-channel ConvLSTM learning model using the heatmap data, i.e.,  ℎ𝜔 ∈ 𝒉
25 and  as inputs to predict the FLM zones. We justify the selection of this model by the reasons as ℎ𝜔 ∈ 𝒉
26 follows. One of the key characteristics of these data is the high spatiotemporal correlation. For example, 
27 some areas on the heatmap  may share common features, such as the areas near the metro hub attract ℎ𝜔
28 significant mobility needs, including ridesharing demand or/and FLM demand. Moreover, the heatmaps, 
29 such as  and , are the sets of time series data. It’s important to capture this spatiotemporal correlation in 𝒉 𝒉
30 the prediction model to improve accuracy. Recent advances in deep learning have enabled researchers to 
31 model complex nonlinear relationships. More exactly, a Convolutional neural network (CNN) has been 
32 used to capture complex spatial correlation (J. Zhang et al., 2016), and Long Short Term Memory network 
33 (LSTM) has exhibited outstanding performance on time series data prediction. The ConvLSTM model, a 
34 combination of CNN and LSTM (Xingjian et al., 2015), has demonstrated the satisfying performance to 
35 capture the spatiotemporal correlation in the data for weather precipitation forecast prediction. Given the 
36 spatiotemporal characteristics of heatmap data, this study, therefore, uses the ConvLSTM model (Xingjian 
37 et al., 2015) to predict the dynamics of transit service gaps. 
38 More exactly, we adopt a two-channel ConvLSTM model, with the first channel as the heatmap data ℎ𝜔
39  and the second channel as the FLM-prone order probability heatmap data, . Recall that the FLM ∈ 𝒉  ℎ𝜔 ∈ 𝒉
40 heatmap, , is generated upon the analysis of OD information and heatmaps . Therefore, the heatmaps 𝒉 𝒉
41 data,  and , are correlated with each other. This two-channel build-up maintains the correlations between 𝒉  𝒉
42 different channel data, which can accurately and simultaneously predict the heatmaps for analysing the 
43 ridesharing swarms and FLM zones. Specifically, the input data is a sequence of , two-channel S × S
44 images, or a series of tensors, . We validate the performance of the two-channel ConvLSTM 𝑋𝑡𝜖𝑅𝑆 × 𝑆 × 2

45 learning model by the case study below.

46 Case study
47 This case study validates the capability of the proposed crowdsourced data analysis approach to find 
48 the critical transfer zones for transit and ridesharing cooperation based on the field trajectory data. More 
49 exactly, we will examine if the discretization approach can efficiently support the data analysis and further 
50 validate whether critical zones we found can infer high potential needs for cooperating transit with on-
51 demand services. Please note that the hybrid mobility service is an emerging field and there are not 
52 consistent/well-accepted criteria in the literature to determine if a candidate zone must need such 
53 cooperation. It is another research gap and does not obtain enough attention in the literature yet. Therefore, 
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1 we validate our approaches and results according to the land use and limited literature. The validation 
2 focuses on showing the high possibility of correctness but not an exact yes-or-no answer.
3 The case study is built upon the testbed consisting of the transit and ridesharing services data in the city 
4 of Chengdu. It is a major city in China and has a population of 7.8 million. As shown in Figure 8, the study 
5 area is in the second ring region of the city and covers a square region with 5 miles edge length. The 
6 ridesharing service data is provided by DiDiChuxing Gaia open dataset (https://gaia.didichuxing.com). It 
7 involves about 0.2 million trips made by DiDi ridesharing services per day from November 1 to November 
8 30, 2016. The profile of the data includes the GPS trajectory data of ridesharing vehicles, which are updated 
9 2 – 4 seconds, and the ridesharing order requests, which record the pick-up and drop-off timestamps and 

10 locations. The public transit data are collected by the website of the Moovit app (https://moovitapp.com/). 
11 The data cover all bus lines and subway lines information in Chengdu city. For each line, the profile of the 
12 data includes stop names, stop locations, operation times, and transit vehicles' arrival times at each stop. 
13 Please note that the real-time trajectory data of transit vehicles are not available in this study. We will use 
14 the schedule and stop location data to format each trip. The operating time of transit services varies from 
15 line to line, but most of them start from 6 am and end at 8 pm – 10 pm. There are a total of 1226 transit 
16 stops distributed within the study area and in total and 246 transit lines passing through the study area. As 
17 the study area is 5×5 , there are about 7 transit stops per mile on average and the average transit stop 𝑚𝑖2

18 spacing is 880 ft. The case study is run on a DELL Precision 3630 Tower with 3.60GHz of Intel Core i9-
19 9900k CPU and 16 GB RAM in a Windows environment. The following sections introduce the case study 
20 for using the data analysis approach developed by the above effort.   

21 Establishing 3D Discretization

22 We first establish the 3D discretization ( ) for the ridesharing trajectory data involved in this case 𝜏 ∗ , 𝜅 ∗

23 study. To do that, we first determine the optimal time interval  by solving the model . According to 𝜏 ∗ 𝑷𝟏
24 the DiDi data collection rate of 2~4 seconds, we set . And then, we make  equal to the average DiDi 𝜏 = 4𝑠 𝜏
25 single trip service time provided. Accordingly, the initial solution in the OPEN set as [4sec, 1min, 2min, 
26 5min, 10min, ]. Even though  is a large upper bound, the exploration noticed that the objective value of 𝜏 𝜏
27 P1 keeps increasing once τ≥ 5min. This is because the increment of the information loss dominates the 
28 dataset size reduction. Given  is a minimization model, the search algorithm will discharge the solutions 𝑷𝟏
29 τ≥ 5min quickly, and reduce the search space to [4sec, 2min] only after 3 iterations. It takes the program 
30  about 1100s to obtain the solution , with which we average about 30 coordinates of each 𝑷𝟏 𝜏 ∗ = 90𝑠
31 vehicle to locate it in a time interval. Next, we explore the optimal  through the program , which needs 𝜅 ∗ 𝑷𝟐
32 to pre-determine the parameters ( . By setting , it 𝜂, 𝜇)  𝜂 = 0.1, 𝜂 = 1 ― 𝜂 = 0.9, 𝜇 = 0.4, 𝜇 = 1 ― 𝜇 = 0.6
33 takes the program  around 2500 seconds to find the optimal number of the pixels, , which 𝑷𝟐 𝜅 ∗ = 282

34 indicates a pixel size: 325m 325m for each cube.×

Transit trips

Ridesharing trips

Figure 8. The study area.
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1 Sensitivity analysis

2 According to our discussion in Section: Optimal pixel size, we justify the selection of the parameters  𝜂,
3 and  for this case study by doing the sensitivity analysis on the length of the UI, i.e., the length of . 𝜇 (𝜇 ― 𝜂)
4 Mainly, with a given time interval , we test the performance of the 3D discretization under each of the 𝜏 ∗

5 four UIs shown in Table 2, where the UI varies from 0.1 to 0.4 and each corresponds to a set of parameters 
6 selection.
7 Program  is run under each UI and generates the optimal solution  shown in Table 2. Upon each 𝑷𝟐 𝜅 ∗

8 optimal discretization scheme , the heatmaps   are generated and shown as the (𝜏 ∗ ,𝜅 ∗ ) 𝒉 = {ℎ𝑖,𝑖 ∈ 𝐼}
9 examples in Figure 9, in which the region completely dominated by transit or ridesharing trajectory is 

10 colored red and white respectively, but the regions where neither transit nor ridesharing services show are 
11 in black. Accordingly, the trajectory dominant zones are in either red (transit trajectory dominant) or white 
12 color (ridesharing trajectory dominant), even regions and unidentifiable pixels (see Definition 3) are in 
13 orange color with different intensity. In addition, Figure 9 (a) illustrates the solution of a 3D discretization, 
14 while Figure 9 (b) and (c) respectively present a heatmap (10:00:00 - 10:01:30) for the solution with  𝜅 ∗ =
15  and  with the UI equal to 0.3 and 0.2. Note that there are too many cubes to be clearly outlined 282 𝜅 ∗ = 162

16 in Figure 10 (a), we instead show the height of cubes, , along the time dimension.  𝜏 ∗

17 Table 2: Sensitivity analysis of UIs

UI (  𝛈, 𝛈, 𝛍, 𝛍) 𝛋 ∗ Total noise ratio
0.40 (0.05, 0.95, 0.45, 0.55) 342 0.62
0.30 (0.10, 0.90, 0.40, 0.60) 282 0.45
0.20 (0.15, 0.85, 0.35, 0.65) 162 0.37
0.10 (0.20, 0.80, 0.30, 0.60) 102 0.13

18
19 We evaluate the merits of the heatmaps in terms of the land-use pattern and the ratio of noise pixels 
20 over all pixels in a 3D discretization solution. The noise pixels are not very interested in our analysis 
21 because they do not offer much insightful information for the service gaps for both service modes. The 
22 results in Table 2 indicate that the UI of 0.3 is better than the UI of 0.4 since the ratio of noise pixels is 
23 decreased from 0.62 to 0.45. This ratio can be further reduced from 0.45 to 0.13 as the UI decreases from 
24 0.3 to 0.1 but with a significant loss of resolution. Specifically, we conduct the land-use analysis to examine 
25 the resolution of the heatmaps shown in Figure 9 (b) and (c). Region 1 and region 2 (marked out by the 
26 dashed outline) are chosen as the benchmark regions. The actual land-use analysis shows that region 1 is 
27 industrial land with a large waste disposal plant, several major intercity railway lines, and railway 

28 companies. Region 2 mainly consists of parks, intercity highways, and highway interchange junctions. 
29 These results indicate that both regions have few mobility needs and limited attractiveness for transit and 
30 ridesharing services. We next take a look at the heatmap results. The contours of these two regions are 
31 clearly outlined in Figure 9 (b) and they are mainly in black (i.e., no transport services provided). This is 
32 consistent with the actual land-use analysis. But, Figure 9 (c) does not demonstrate the same quality of the 

(a) (b) (c)

Figure 9. (a) Discretization of transit and ridesharing trajectory data in 3D space. Land-use 
analysis on heatmaps with different pixel numbers to evaluate resolution. (b) 10:00:00-

10:01:30 heatmap with optimal pixel number 282 (0.3 UI). (c) 10:00:00-10:01:30 heatmap 
with optimal pixel number 162 (0.2 UI).

Page 16 of 28

URL: http://mc.manuscriptcentral.com/jits  Email: GITS-peerreview@journals.tandf.co.uk

Journal of Intelligent Transportation Systems: Technology, Planning, and Operations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

1 resolution. Thus, we conclude that reducing UI from 0.2 to 0.1 significantly compromises the resolution of 
2 heatmaps. The above analysis confirms our best choice of UI (= 0.3) for this case study.  

3 RS Zones and Insights

4 According to the approach developed in Section: Searching RS zones, we project the heatmaps ℎ𝑖, 𝑖 ∈
5  to a 2D spatial plane and then get the aggregated heatmap . Built upon , we apply the Algorithm 1 to 𝐼 𝐻 𝐻
6 recognize the ridesharing swarms (RS) zones on the heatmap , with the threshold value =0.9 (the best 𝐻 𝜂
7 value of  is evaluated from the sensitivity analysis in the previous section). We find six major RS zones. 𝜂
8 Combined with the POIs (points of interest) data, we overlay the RS zones to the POIs kernel density 
9 estimation (KDE) map in Figure 10 (a), where the RS zones are marked by the black line and the 

10 background intensity represents the density of commercial and residential POIs. The commercial and 
11 residential POIs mainly consist of residence communities, office buildings, and shopping centers. We 
12 observe that these RS zones mainly cover or near commercial or residential regions, except RS zone 2, 
13 which is a big theme park in Chengdu City. An existing study (Yu & Peng, 2019) has found that the 
14 areas with these types of land uses often generate high demand for on-demand services, and hybrid mobility 
15 service will be a good mobility solution. These results echo our conjecture that RS zones and the potential 
16 critical zones for hybrid mobility service are highly correlated. 
17 Table 3: Number of trips per day between RS zones

RS zones 
pair

Mean/day Standard Deviation RS zones 
pair

Mean/day Standard 
Deviation

(1,2) 250.9 17.6 (2,6) 5.0 1.7
(1,3) 2531.4 243.5 (3,4) 2762.8 159.5
(1,4) 463.7 76.2 (3,5) 2878.5 396.2
(1,5) 215.6 49.7 (3,6) 431.7 76.2
(1,6) 26.8 7.5 (4,5) 7617.8 709.2
(2,3) 172.0 15.1 (4,6) 131.0 12.7
(2,4) 655.9 94.8 (5,6) 850.6 103.9
(2,5) 333.6 40.8

18
19 We further confirm this point by overlaying the RS zones to the transit stop density map as shown in 
20 Figure 10.  It shows that the transit stop density is smaller in RS zones than in surrounding areas. We also 
21 investigated the number of ridesharing trips passing through these major RS zones (not necessarily covering 
22 the trips’ origins and destinations) and show the results in Table 3. From the table, it is observed that a great 
23 number of daily ridesharing trips passing through RS zones 1 and 3 (2531.4 per day), RS zones 3 and 4 
24 (2762.8 per day), RS zones 3 and 5 (2878.5 per day), and RS zones 4 and 5 (7617.8 per day). These results 
25 are consistent with the land use features of these RS zones. For example, zone 4 is a residential area near 
26 the major metro hub, thus it attracts significant and stable demand from zone 3 and zone 5. Given the 
27 existing high volume of ridesharing trips, these results indicate the pair of zone 4-3 suggests the candidate 
28 corridor zone, where the current transit service is insufficient (represented by the low transit density area 
29 between the zone pair 4-3 in Figure 10 (b)). For this corridor zone, we can consider implementing flexible 
30 transit routes/connections to improve the connectivity of the transit network (see the illustration in Figure 
31 10 (b)). Moreover, the area between the pair of zone 4-5 has a high transit stop density, but has a connection 
32 gap to zone 4, which indicates the implementation of on-demand services is a potential solution for gap-
33 closing, see Figure 10 (b). Note that our analysis provides the planning guidance, and we need more data 
34 to make the final operation decisions on these candidate solutions, which is out of the scope of this study.  
35 On the other hand, our data analysis observes that the number of daily demands to zones 3 is around 
36 36,000 per day, which counts for 19.5% of total ridesharing trips of the study area. Moreover, this zone is 
37 very large with low inside transit coverage and no walking-distance transit service connections. For 
38 example, zone 3 in Figure 10 (b) is about 2.69 . Given most of its pixels are in light color, we can say  𝑚𝑖2

39 that zone 3 is of low transit trajectory density. Next, we can observe that the area adjacent to zone 3 
40 (between zone 3 and 5) has a high transit stop density. Combining the features of zone 3 and these 
41 observations, we conclude that zone 3 lacks walking-distance transit services within the zone or to the 
42 surrounding zones, even though sufficient ad hoc demands exist. Therefore, they are good candidates to 
43 implement on-demand services, e.g., microtransit, ridesharing, or mini-bus services, for connecting to the 
44 nearby transit network.  
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1 Overall, the above results indicate that investigating the RS zones is very valuable. They help the 
2 planner narrow down the critical zones in a city for cooperating transit and on-demand services. Especially, 
3 by using the entire trajectory data, we can help find those candidate corridors that can be a potential flexible 
4 transit connection or microtransit route injecting to existing transit routes, but often cannot be discovered 
5 by only analyzing pick-up and drop-off data. Accordingly, these zones often do not get enough attention 
6 from the literature. The results also confirm the efficiency of our crowdsourced data analysis approach. 
7 Please note that this study focuses on helping narrow down the potential critical zones for the planner to 
8 consider implementing new services for connecting transit networks and on-demand services. To further 
9 judge which instrument fits best or how to implement them properly is out of the scope of this study.      

10 Inferring FLM Zones

11 We next validate the correlation between the “sandwich pattern” and FLM zones. To do that, we average 
12 every 40 (which is flexible, selected according to the data) heatmaps , each in 90 seconds, to ℎ𝑖, i ∈ 𝐼
13 generate the aggregated heatmap . Therefore, each heatmap  contains the ℎ𝜔, ω ∈ 𝒲 ℎ𝜔, 𝜔 ∈ 𝒲
14 trajectory information in one hour. Upon , we apply Algorithm 2, with  and  𝒉 = {ℎ𝜔, 𝜔 ∈ 𝒲} 𝜂 = 0.9 𝜂 = 0.1
15 (values are selected from the sensitivity analysis in Section: Establishing 3D discretization) to recognize 
16 the “sandwich” patterns and output the FLM-prone order probability heatmaps  by integrating the ℎ𝜔 ∈ 𝒉
17 ridesharing O-D information and transit stop data. Figure 11 (a) presents an example of the FLM probability 
18 heatmap (9 AM to 10 AM), in which some FLM zones are marked by the yellow dash cycle. The pixel with 
19 lighter color possesses more FLM-prone orders. Since the FLM demand is limited, Figure 11 (a) is almost 

20 black. For better visualization, Figure 11 (b) presents the major FLM zones identified on the map.
21 We then examine the FLM zones founded by the “sandwich pattern”. Due to the lack of intermodal trip 
22 data, we validate these FLM zones by using the two features to characterize an FLM zone in existing 

Figure 10. (a) Identified RS zones on POIs density map. (b) Identified RS zones on bus 
stop density map.

(a) (b) (c)

Figure 11. (a) FLM-prone order probability heatmap; (b) Identified FLM zones on map; (c) 
Overlap of FLM zones and transit stops distribution heatmap.
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1 literature, (i) having mixed land-use with sufficient travel demands; (ii) low transit service coverage. 
2 With this consideration, we first compare the transit service density within the FLM zones to the 
3 surrounding areas by mapping the FLM zones to the transit stop density map, as shown in Figure 11 (c). It 
4 is observed that the identified FLM zones have higher FLM-prone orders as shown in Figure 11 (a), but 
5 have lower transit service density than the surrounding areas as indicated by Figure 11 (c). This observation 
6 is consistent with the features claimed in the literature and validates the FLM zones we found (Guo & He, 
7 2020; Mo et al., 2018).  
8 Next, we consider that a promising FLM zone should attract enough demand. This motivates us to 
9 validate the FLM zones by examining the land-use of the study region. Accordingly, we investigate the 

10 relationship between FLM-prone order probability and the percentage/number of commercial and 
11 residential POIs. The results are presented in Figure 12, in which we can observe that the number of 
12 commercial and residential POIs increases with the FLM-order probability. It indicates that the FLM zones 
13 have more commercial and residential POIs than other zones and it usually suggests a higher population 
14 and FLM demands. Moreover, compared with the Open Street map in Figure 11 (b), we can see that zones 
15 1 – 5 are located around metro lines. These land-use features reinforce our analysis that they are most likely 
16 FLM zones not well connected to the existing backbone transit lines. Therefore, the on-demand mobility 
17 service such as ridesharing or microtransit is a good complement to the backbone transit lines. Except zones 
18 1 – 5, other FLM zones are scattered within suburban areas, with low transit services and are far away from 
19 a metro line. They are typical transit deficiency zones, where new transit routes are needed to make up the 
20 service gaps. Overall, the validation shows that the FLM zones we discovered by the “Sandwich” pattern 
21 are consistent with the features claimed in the literature (Guo & He, 2020; Mo et al., 2018).  
22 Therefore, the case study demonstrates that our approach works efficiently to find potential FLM zones and 
23 provides valuable guidance to fulfil the service gaps.

24 Predicting FLM

25 We next demonstrate the performance of the machine learning model to predict the FLM zones. 
26 Specifically, the input data is a two-channel tensor and we predict the dynamics of RS zones through the 
27 first channel and the spatial change of FLM locations over time by the second channel. To do that, we 
28 implement the ConvLSTM using the framework proposed by (Xingjian et al., 2015), using the Keras API. 
29 It consists of five layers. The first and third layers are ConvLSTM with 120 size 2 2 kernels and 80 ×
30 size 3 3 kernels, respectively. The second and fourth layers are batch normalization. Finally, we used × 2
31  kernels to get the output shape. We use Mean Average Percentage Error (MAPE) and Location × 2 × 2
32 Prediction Error (LPE) to evaluate the performance of the ConvLSTM network, which are defined as 
33 follows:

𝑀𝐴𝑃𝐸 =
1
𝜅

𝜅

∑
𝑘 = 1

|𝑦𝑘
𝑖 + 1 ― 𝑦𝑘

𝑖 + 1|

𝑦𝑘
𝑖 + 1

(11)

Figure 12. Land use validation for FLM zones. Percentage/number of commercial and 
residential POIs versus FLM-prone order probability.
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𝐿𝑃𝐸 =  
1
𝜅

𝜅

∑
𝑘 = 1

|𝛿𝑘
𝑖 + 1 ― 𝛿𝑘

𝑖 + 1|
(12)

1 where ,  are the prediction and the real value of pixel k for time interval .  and  𝑦𝑘
𝑖 + 1 𝑦𝑘

𝑖 + 1 𝑖 + 1 𝛿𝑘
𝑖 + 1 𝛿𝑘

𝑖 + 1

2 take 0-1 values and respectively indicates whether pixel  is an FLM zone in the prediction or field data.  𝑘 𝜅
3 is the total number of pixels in an image. The goal of the FLM prediction is to identify where is the potential 
4 FLM zones in the near future time interval. Therefore, LPE is adopted to evaluate the performance of the 
5 FLM prediction. A smaller value of the LPE indicates a higher prediction accuracy. 
6 The training data consists of the heatmap  as the first channel input and the corresponding ℎ𝜔 ∈ 𝒉
7 heatmap  as the second channel input at each time interval . Each time interval  has ℎ𝜔 ∈ 𝒉 𝜔 ∈ 𝒲 𝜔 ∈ 𝒲
8 one-hour interval width.  The output is the two-channel prediction:  and   in the next time ℎ𝜔 + 1 ℎ𝜔 + 1
9 interval (next hour). The model is trained with the first three weeks of data. The data of last week is used 

10 for validation. The model achieves 28.42% (MAPE) for the first channel and 4.22% (LPE) for the second 
11 channel. Therefore, the model exhibits high accuracy in predicting the locations of FLM zones at future 
12 intervals, which provides a promising radar for the future FLM demand and the corresponding needs for 
13 ridesharing or microtransit services. 

14 Moreover, the prediction results also demonstrate the time-variant characteristics of the FLM demand. 
15 For example, Figure 13 (a) to (c) indicates the interesting dynamics of the FLM demand during the period 
16 covering the morning peak hour (8:00-9:00), secondary-peak hour (9:00-10:00), and evening peak hour 
17 (18:00-19:00). More exactly, it is noticed that some zones such as  on the upper-left corner presents lower 𝑐1
18 FLM demand during the morning peak hour, while other zones, such as  , have more FLM demand during 𝑟1
19 the morning and evening peak hours than that in the secondary-peak hour. Moreover, some zones, such as 
20 , consistently have high FLM demand. We further validate the rationality of these predicted dynamics by 𝑟2
21 examining the land-use patterns. We found that zone  involves a group of big shopping centers. Given 𝑐1
22 most of the shopping malls are closed from 8:00 to 9:00, it is reasonable to have less FLM demand in this 
23 time range. Both  and  are residential zones, but  has a large metro hub nearby. The predicted temporal 𝑟1 𝑟2 𝑟2
24 FLM demand pattern of  is consistent with the demand features that fewer work trips occur during non-𝑟1
25 peak hours compared with the peak hours. And the metro hub near  constantly generates significant FLM 𝑟2
26 demand, which is also consistent with the prediction. The stable FLM demand in  calls for the 𝑟2
27 improvement of transit coverage by either creating a new transit stop (inflexible service) or providing 
28 microtransit (flexible service) as feeders to the transit backbone nearby. In conclusion, our prediction is 
29 consistent with the land-use analysis, which confirms the effectiveness of the machine-learning model to 
30 predict the potential FLM demand.

31 Conclusion
32 Considering the united and large-scale transit and ridesharing trajectory data collected by many agencies 
33 as the crowdsourced data, this study developed an innovative data analysis approach to discover the critical 
34 transfer zones, where cooperating transit and on-demand services will potentially improve the mobility 
35 services. To discover this knowledge hidden in the well-collected trajectory data, we first meshed the 
36 trajectory data into an optimal 3D discretization with a uniform cube size. Then we zoomed in and 

(a) (b) (c)

Figure 13. Prediction of time-vary FLM heatmap. FLM heatmap of (a) 8:00-9:00, (b) 9:00-
10:00, (c) 18:00-19:00. Lighter pixel indicates a higher possibility of FLM demand.
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1 investigated the mobility service information in cubes in each time interval to form the heatmaps. Built 
2 upon the heatmaps, we zoomed out and discovered two important patterns, which exhibit great values to 
3 infer the critical zones for cooperating transit and on-demand services. Mainly, we examined the 
4 ridesharing swarm zones, which show a strong correlation with the promising hotspots and corridor zones 
5 needing such hybrid mobility services. Next, we investigated the “sandwich” patterns on the aggregated 
6 heatmaps to discover potential FLM zones. Further, by feeding the heatmaps into a two-channel 
7 ConvLSTM model, this analysis predicted the time-varying FLM demands and identified potential FLM 
8 zones. A case study conducted for the second ring region of Chengdu, China validated the effectiveness 
9 and capability of our analysis approach. The FLM demand prediction helps adapt the public transport 

10 system to the time-varying ad-hoc FLM demands by implementing hybrid mobility services such as 
11 microtransit. For example, it can serve as “demand radar” for microtransit schedules planning. Moreover, 
12 our data analysis approach helps find the candidate critical zones for implementing hybrid mobility service 
13 or transit network redesign in a large urban area. It benefits the transit agencies because our approach can 
14 serve as the first step to narrow down the planning zones so that the limited planning resources can be better 
15 exploited. We will explore potential future research that stems from this study in several directions. First 
16 of all, the crowdsourced data analysis approach can be extended by involving the trajectory data collected 
17 from other mobility services correlated to transit systems such as micro-mobility services and private auto. 
18 It will help discover the critical zones by fully investigating the existing mobility supply. Moreover, it is 
19 very interesting to leverage the critical zones discovered by this study in the transit operation planning and 
20 network redesign problems. Also, with our optimal discrete representation approach, we are able to 
21 understand the mobility patterns in a more spatially and temporally resolute way, which helps us to develop 
22 more effective and flexible strategies in supply management and better serve the dynamic travel demand. 
23 This future work will optimally determine what and how on-demand mobility services should be adopted 
24 at each candidate zone with the aim to maximize the system benefit. We believe the approach developed in 
25 this study can help shrink the solution searching space for the corresponding decision models. Last, we 
26 believe our analysis method can be transferred to other planning problems, such as bikesharing station 
27 planning, to account for and benefit from the integration of multiple transportation modes. 
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19  
20 Appendix
21 FLM zones search algorithm.

Algorithm 2 FLM Zones Search

    Procedure FLMZONES( , )ℎ𝜔 𝜌
1  Create the FLM probability heatmap  with the heat ℎ𝜔 𝑟𝑘,𝜔 = 0, ∀𝑘 ∈ 𝐾
    # Generate trajectory density heatmap
2     CLUSTER( , ) # clustering criterion:  𝒜 ← ℎ𝜔 𝜂 𝑟𝑘,𝜔 ≥ 𝜂
3   CLUSTER( , ) # clustering criterion:        ℬ  ← ℎ𝜔 𝜂 𝑟𝑘,𝜔 ≤ 𝜂
    # Identify “sandwich” patterns
4    for  do𝐴𝑘 ∈ 𝒜
5       if    then𝜌(𝐴𝑘) > 𝜌
6           \{𝒜←𝒜 𝐴𝑘}
7          for  do𝐵𝑘 ∈  ℬ 
8             if    then𝜌(𝐵𝑘) < 𝜌
9                 \{ℬ ←ℬ 𝐵𝑘}
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10        for  do𝐵𝑘 ∈  ℬ 
11              𝐵𝐴

𝑘←∅
12              for  doℎ𝜔(𝑙) ∈  𝐵𝑘

13                 for  do𝐴𝑘 ∈ 𝒜
14                    if  then𝑂𝑙 ∩ 𝐴𝑘 ≠ ∅
15                       𝐵𝐴

𝑘←𝐵𝐴
𝑘 ∪ 𝐴𝑘

    # Find FLM-prone orders
16        for  do𝐵𝑘 ∈  ℬ 
17           for  do𝐴𝑘 ∈ 𝐵𝐴

𝑘

18              for  doℎ𝜔(𝑚) ∈  𝐴𝑘

19                 for  do𝐴𝑙 ∈ 𝐵𝐴
𝑘

20                    for  doℎ𝜔(𝑙) ∈  𝐴𝑙

21                       for  do𝑣 ∈ 𝑉𝜔

22                          if  and  and   then                𝑜𝑣 ∈ ℎ𝜔(𝑚) 𝑑𝑣 ∈ ℎ𝜔(𝑙) 𝐴𝑘 ≠ 𝐴𝑙

23                              and 𝛾𝑚 += 1 𝛾𝑙 += 1
24        for  do𝐵𝑘 ∈  ℬ 
25           for  do𝐴𝑘 ∈ 𝐵𝐴

𝑘

26              for  doℎ𝜔(𝑙) ∈  𝐴𝑘

27                 for  do𝑣 ∈ 𝑉𝜔

28                    if  and  then𝑜𝑣 ∈ 𝐴𝑘 𝑑𝑣 ∈ 𝑂𝑙 ∩ 𝐵𝑘

29                       𝛾𝑙 += 1
30               for  doℎ𝜔(𝑚) ∈  𝐴𝑘

31                 for  doℎ𝜔(𝑙) ∈  𝐵𝑘

32                    for  do𝑣 ∈ 𝑉𝜔

33                       if  and  then𝑜𝑣 ∈ ℎ𝜔(𝑙) 𝑑𝑣 ∈ ℎ𝜔(𝑚)
34                           𝛾𝑚 += 1
    # Create FLM-prone order probability heatmap
35   for  do𝑘 ∈ 𝐾
36      𝑟𝑘,𝜔 = 𝛾𝑘/∑𝑘𝛾𝑘

37   return ℎ𝜔 

1
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