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Joint angle estimation using accelerometer
arrays and model-based filtering

Cole Woods, Student Member, IEEE, and Vishesh Vikas, Member, IEEE

Abstract— Measurement of joint angles is an important element
for control of robotic systems and monitoring human gait. This
has been traditionally approached through use of contact sensors,
e.g., optical or magnetic encoders, and Inertial Measurement Units
(IMUs). IMUs fuse data from accelerometers, gyroscopes and mag-
netometers to estimate the orientation of the body. However, micro-
electro-mechanical system (MEMS) gyroscopes are prone to drift,
and magnetometers are susceptible to electromagnetic interfer-
ence. In contrast, MEMS accelerometers have stable bias and are
resilient to external electromagnetic disturbances. Consequently,
an all-accelerometer non-contact sensor can mitigate these prob-
lems. In context of two links connected at a joint, the acceleration
at this common point are equivalent irrespective of the coordinate
system of either of the links. The research presents the use of an
array of two or more accelerometers (non-contact sensors) and the
knowledge of the acceleration equivalence at the joint to construct
a dynamic model where the states correspond to angular velocities
of the joints and the joint angle. The joint angle is estimated using
three approaches - analytical, Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF). The analytical approach estimates
the joint angle while the model-based filtering approaches (EKF
and UKF) also estimate the link angular velocities. Simulations are
performed using two to ten accelerometers on each link to compare
the performances of the three methods and investigate placement
of accelerometers along the links. The simulation results indicate
superior performance of the model-based filtering approaches over the analytical. The analysis also concludes that the
best physical placement of the accelerometers is toward the ends of the link for minimizing estimation error. Additionally,
the lower bound of the estimation error is dictated by the maximum ratio of mean to relative accelerometer length between
the two links. The algorithms are experimentally validated using three different accelerometers ADXL345, ADXL357, and
BNO055. Four different canonical movements of slow and fast periodic, ramp and impulse, are examined. The experiment
results corroborate better performance of the model-based filters over the analytical approach.

Index Terms— Joint angle estimation, accelerometer array, extended kalman filter, unscented kalman filter.

I. INTRODUCTION

MEASUREMENT and estimation of joint angles has
been of interest to researchers in the domains of biome-

chanics, rehabilitation, wearables, robotics and manufacturing
[1]–[11]. For example, wearable devices for rehabilitation
track a patient’s range of motion of desired joints. Given the
nature of applications, the term joint angle refers to the angle
between two links joined by a one degree-of-freedom revolute
(or hinge) joint, e.g., knee, manipulator links.

The joint angles can be measured and estimated using
contact (e.g. encoders) or non-contact sensors (e.g. accelerom-
eters, gyroscopes). Contact sensors are directly placed at the
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joint and provide high accuracy measurement. However, for a
lot of applications, it is difficult to place an encoder without
disturbing the integrity of the joint. For example, when dealing
with the integration of encoders in wearable systems, they
can be uncomfortable and burdensome. Recently, there has
been research into soft wearable sensors [12], however, they
potentially interfere with the dynamics of the system. In
contrast, non-contact sensors are placed on the links and away
from the joint, providing design flexibility and wearability
comfort without interfering with the system dynamics. Non-
contact sensors comprise of gyroscopes, accelerometers, mag-
netometers and their combination, Inertial Measurement Units
(IMUs). Gyroscopes measure angular velocity, however, the
sensor bias of micro-electro-mechanical system (MEMS) gy-
roscopes is prone to drift over time. Similarly, electromagnetic
interference has an adverse effect on MEMS magnetometers.
MEMS accelerometers have stable bias and are resilient to
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external electromagnetic disturbances. However, they cannot
differentiate between gravity and dynamic acceleration [13].

Several methods have been explored for estimating joint
angles using non-contact sensors. IMUs fuse sensor data from
accelerometers, gyroscopes and magnetometers using different
filtering approaches including Kalman and complementary
filters [14]–[18]. Another technique estimates the absolute
knee angle and angular velocity by using accelerometers to
offset errors that occur from the integration of the angular
velocity from the gyroscope [5]. The common-mode-rejection
(CMR) uses two accelerometers that are mounted on adjacent
links to estimate the joint angle. CMR with gyro-integration
(CMRGI) uses the angular velocity from a gyroscope to help
estimate and update the angle. CMR with gyro-differentiation
(CMRGD) also uses the angular velocity from a gyroscope,
but it differentiates the angular velocity to get the angular ac-
celeration which is used to estimate the angle. The last method,
the distributed CMR (DCMR) uses two asymmetrically placed
accelerometers on each link to estimate the joint angle [19].
Building off of these methods is the Vestibular Dynamic
Inclinator (VDI) and the planar Vestibular Dynamic Inclinator
(pVDI) which use two symmetrically placed accelerometers
and a gyroscope to measure inclination and joint parameters
[20]. This research contributes to this area by formulating the
system dynamics by using equivalence of acceleration at the
joint, i.e., the acceleration of the joint is same in coordinate
systems of both the links.

Contributions: The research uses an all-accelerometer sen-
sor array on each link comprising of two or more accelerom-
eters for joint angle estimation. The system dynamics is
constructed using equivalence of acceleration at the joint
where the three-dimensional state vector is the joint angle and
angular velocities of the two links. The estimation is performed
by using an analytical approach, Extended Kalman Filter
(EKF) through linearization of the dynamics, and Unscented
Kalman Filter (UKF) through deterministic sampling. The
simulations compare these three approaches and investigate
the sensor placement strategies. The estimation error is shown
to be proportional to the mean distance of the sensors, and
inversely proportional to the relative distance between them.
The research investigates the optimal physical placement and
number of sensors on each link that minimize the estimation
error. For a given link, the optimal physical placement of the
sensors is towards its ends. Additionally, it is most desirable
to have near-identical sensor placement on both links. The
experiments are conducted using three different sensors for
four different canonical movements of slow and fast periodic,
ramp and impulse.

II. DYNAMIC MODEL

Let two links a, b be joined by revolute joints at O, Fig. 1(a).
For the link j = {a, b}, let the link reference frame with
coordinate system {xj , yj , zj} (zj out of the plane and xj

along the link) rotate with angular velocity and acceleration of
ωj , αj . Without loss of generality, the origin of both coordinate
systems is assumed to be O. Assume Nj ≥ 2 accelerometers
are placed along the link j at ri, i = 1, · · · , Nj , Fig. 1(b-c). It

Fig. 1: (a) Two links a, b with joint angle θab and coordinate
system where the x-axes is along the links. (b) An accelerom-
eter array is placed on each link and (c) comprises of Nj ≥ 2
accelerometers.

is desired to estimate the joint angle θab given the placement
of the accelerometers from the joint O.

Theoretically, the acceleration ai ∈ R2×1 of accelerometer
Ai∀i ∈ [1, Nj ] is

ai = aO +α× ri + ω × (ω × ri)

= aO +D(ri)y (1)

D(r) =

[
−r1 −r2
−r2 r1

]
, y =

[
ω2

α

]
(2)

where r = [r1, r2]
T , and aO is the acceleration of point O.

This matrix representation of acceleration of two points on a
rigid body is detailed in Appendix I.

A. Sensor Array

Let an array of Nj ≥ 2 accelerometers be placed on a link
j. The ith accelerometer Ai is placed at ri and measures a′

i

such that

a′
i = ai + ei, E

[
eie

T
i

]
= Qi (3)

where ei, Qi are the sensor noise and covariance matrices
respectively. In context of the sensor array, we define accel-
eration a, accelerometer measurement a′ and noise e column
vectors, and the noise covariance matrix Q

a′ =
[
a′
1
T
,a′

2
T
, · · · ,a′

Nj

T
]T

, a =
[
aT
1 , · · · ,aT

Nj

]T
e =

[
eT1 , e

T
2 , · · · , eTNj

]T
, a′,a, e ∈ R2Nj×1

Q = E
[
eeT

]
= diag

(
Q1, · · · , QNj

)
, Q ∈ R2Nj×2Nj

(4)

Let the mean of a set of vectors vk∀k ∈ [1, Nj ] be denoted

using an over-bar, v =
1

Nj

Nj∑
k=1

vk. We define matrices
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Fm, F,G ∈ R2×2Nj , E ∈ R2Nj×2Nj , D̃ ∈ R2Nj×2

Fm =
1

Nj

[
12

×Nj· · · · · ·
]
, s.t. a = Fm(a′ − e) (5)

E = 12Nj −

Fm

...
×Nj

 , s.t. ã = E(a′ − e)

and ã =
[
(a′

1 − a)T , (a′
2 − a)T , · · · , (a′

Nj
− a)T

]T (6)

D̃ =


D (r1 − r)
D (r2 − r)

...
D

(
rNj−1 − r

)
 , s.t. ã = D̃y (7)

G = D̃+E =

[
Gω2

Gα

]
, s.t. y = G(a′ − e) (8)

F = Fm +D(r̃O)G, s.t. aO = F (a′ − e)

where r̃O = rO − r
(9)

where 1n is the identity of dimension n×n, and D̃+ denotes
the pseudoinverse of D̃. The reader may also refer to Appendix
II for derivations of these matrices. The sensor array must
comprise of a minimum of two non-coincident accelerometers
to calculate vector y to ensure that matrix D(r), (2), is full
ranked. The reader may refer to [21] for a generic proof for
requirement of minimum accelerometers in an array.

B. System Dynamics
Proposition 1: For two links {a, b} joined by a revolute

joint where each link has an accelerometer sensor array, the
continuous-discrete time dynamical model with states x =[
ωa, ωb, θab

]T
is

ẋ = f(x) +w

z = h(x) + v

s.t. f(x) = (Ax+Bâ)

(10)

A =

0 0 0
0 0 0
1 −1 0

 , B =

Ga
α 0
0 Gb

α

0 0

 , w = Bê

z = Zâ, Z =

Ga
ω2 0
0 Gb

ω2

F a 0

 , v = V ê

V =

Ga
ω2 0
0 Gb

ω2

F a −R(x3)F
b

 , h(x) =

 x2
1

x2
2

R(x3)F
ba′b


(11)

where â =
[
(a′a)T , (a′b)T

]T
, ê =

[
(ea)T , (eb)T

]T ∈
R4Nj×1 and z, h(x) ∈ R3×1. The superscripts denote the
quantity corresponding to link a or b.

Proof: The vector y from (8) contains information about
angular acceleration and the square of angular velocity. For the
state x

ẋ =

 αa

αb

ωa − ωb

 =

Ga
α(a

′a − ea)

Gb
α(a

′b − eb)
ωa − ωb

 = Ax+Bâ︸ ︷︷ ︸
f(x)

+ Bê︸︷︷︸
w

The three rows of the measurement vector correspond to the
square of the angular velocities (ωa)

2
,
(
ωb

)2
and the equiv-

alence of the acceleration at the joint, i.e., aa
O = R(θab)a

b
O.

Consequently,

z1 = Ga
ω2a′a = (ωa)2 +Ga

ω2ea

z2 = Gb
ω2a′b = (ωb)2 +Gb

ω2eb

F a(a′a − ea)︸ ︷︷ ︸
aa

O

= R(θab)F
b(a′b − eb)︸ ︷︷ ︸

ab
O

⇒ z3 = F aa′a = R(θab)F
ba′b +

(
F aea −R(θab)F

beb
)

⇒ z = Zâ = h(x) + V ê

III. JOINT ANGLE AND ANGULAR VELOCITY ESTIMATION

We examine joint angle and angular velocity estimation
using three approaches: analytical, EKF and UKF.

A. Analytical Joint Angle Estimate
For a vector v, the rotation matrix (Lie group of joint angle

θab) defines the relationship between its representation in two
coordinate systems {a, b}

va = R(θab)v
b, s.t. R(θ) =

[
cθ sθ
−sθ cθ

]
and θab = atan2

(
va1v

b
2 − va2v

b
1, v

a
1v

b
1 + va2v

b
2

) (12)

where superscript denotes the coordinate system of representa-
tion and atan2 is the two-argument arctangent. Geometrically,
(12) is the cross product (sine) and dot product (cosine) of the
two vectors. For the current scenario, the acceleration at the
joint O is the vector v in (12) that is calculated using the sensor
arrays on the links using (9). However, this approach will be
adversely affected by the noise from the accelerometers. This
approach is similar to CMR discussed in [19].

B. Extended Kalman Filter
The continuous-discrete time system is discretized and

linearized to construct the EKF. We use the [22] notation to
enable ease of understanding

xk = xk−1 + f(xk−1)∆T +wk−1 (13)
= (13 +A∆T )xk−1 +∆TBâ+∆TBê

zk = h(xk) + vk (14)
= h(xk) + V ê

where ∆T is the sample time and the Jacobians and the noise
covariance matrices are

H(x) =
∂h(x)

∂x
=

2x1 0 0
0 2x2 0

0 0 R′(x3)F
ba′b

 (15)

F (x) =
∂f(x)

∂x
= 13 +A∆T (16)

Qk = E[wk−1w
T
k−1] = ∆T 2BQ̂BT (17)

Rk = E[vkv
T
k ] = V Q̂V T (18)
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Variable Description Dimension

Nj Number of accelerometers on link j Z

a′ or a′j Cumulative measured accelerations of link j R2×2Nj

â Cumulative measured accelerations of links a and b R2×2(Na+Nb)

Sensor Q̂ Cumulative covariance of accelerometers on links a and b R2(Na+Nb)×2(Na+Nb)

Array D̃ Cumulative relative displacement matrix D R2Nj×2

G Accelerometer-angular parameter transformation matrix R2×2(Nj)

F Accelerometer-joint acceleration transformation matrix R2×2(Nj)

Z Acceleration-measurement transformation matrix R4×2(Na+Nb)

xk State vector R3

zk Measurement vector R4

System F (xk) State transition matrix R3×3

Dynamics B Input matrix R3×2(Na+Nb)

h(xk) Measurement model R4

H(xk) Jacobian of the measurement model R4×4

V Measurement error matrix R4×2(Na+Nb)

Qk State noise covariance matrix R3×3

Rk Measurement noise covariance matrix R4×4

Filter Pk Estimation error covariance matrix R3×3

Parameters Kk Kalman gain R3×4

Pxk,zk Cross covariance matrix R3×4

Pzk,zk Innovation covariance matrix R4×4

TABLE I: Summary of nomenclature of the system and filter parameters.

where

Q̂ = E
[
êêT

]
= diag

(
Qa, Qb

)
where Qj = E

[
(ej)(ej)T

]
∀j = {a, b}

(19)

The EKF is implemented in a recursive fashion assuming
P0, x0 at t = 0. For every time step k ≥ 1,

1) Time update

x−
k = f (xk−1)

P−
k = F (xk−1)Pk−1F (xk−1)

T +Qk

2) Measurement update

Kk = P−
k H(x−

k )
T (H(x−

k )P
−
k H(x−

k )
T +Rk)

−1

xk = x−
k +Kk

(
z − h(x−

k )
)

Pk = (I −KkH(x−
k ))P

−
k

The Kalman Filter makes the assumption of uncorrelated
process-measurement noise [22]. Here, it is easy to observe
that the assumption does not hold true for this case where
E[wvT ] ̸= 03×4. However, process dynamics can be modified
to

ẋ = f̃(x) + w̃,

where f̃(x) = f(x)− L(z − h(x)),

w̃ = w − Lv, s.t. E[w̃vT ] = 0

⇒ L =
(
E[wvT ]

) (
E[vvT ]

)−1

(20)

C. Unscented Kalman Filter

In the previously described EKF, the Gaussian Random
Variable (GRV) is analytically propagated through first-order
linearization of the nonlinear system dynamics. This may
introduce large errors in the mean and covariance of the
posterior. The Unscented Kalman Filter (UKF) addresses this
problem by using a deterministic sampling approach [23], [24].
The proposed approaches by [23], [24] completely capture the
mean and covariance accurately to the 3rd order (Taylor series
expansion) for any nonlinearity. The number of points sampled
are (2n + 1) where n is the dimension of the state vector,
here, n = 3. For a given mean µ̄ and covariance Σ the seven
sampled points χi = sampleSigmaPoints(µ̄,Σ) are

χ0 = µ̄

χi,n+i = µ̄± coli

(√
(n+ λ)Σ

)
, ∀i = 1, · · · , n

(21)

where λ is the scaling parameter. The associated mean and
covariance weights, w

[m]
i and w

[c]
i , corresponding to each

sigma points are

w
[m]
0 =

λ

n+ λ
, w

[c]
0 = w[0]

m + (1− α2 + β)

w
[m]
i = w

[c]
i =

1

2(n+ λ)
∀i = 1, · · · , 2n

β = 2, α ∈ (0, 1], λ = α2(n+ κ)− n s.t. κ ≥ 0

(22)

Here, the UKF can be tuned using different values of κ and α
with optimal β = 2 for Gaussian distributions. Similar to the
EKF, the UKF is implemented in a recursive manner assuming



WOODS et al.: JOINT ANGLE ESTIMATION USING ACCELEROMETER ARRAYS AND MODEL-BASED FILTERING 5

P0, x0 at t = 0 and using (13), (14), (17), (18). For every time
step k ≥ 1,

1) Time update

χ−
i = sampleSigmaPoints (xk−1, Pk−1)

x−
k =

2n∑
i=0

w
[m]
i g

(
χ−
i

)
, where g(x) = x+ f(x)∆T

P−
k =

2n∑
i=0

w
[c]
i

(
g
(
χ−
i

)
− x−

k

) (
g
(
χ−
i

)
− x−

k

)T
+Qk

2) Measurement update

χi = sampleSigmaPoints
(
x−
k , P

−
k

)
hk =

2n∑
i=0

w
[m]
i h(χi),

Pzk,zk =
2n∑
i=0

w
[c]
i (hk − h(χi)) (hk − h(χi))

T
+Rk

Pxk,zk =
2n∑
i=0

w
[c]
i (χi − x−

k )(h(χi)− zk)
T ,

xk = x−
k +Kk(zk − hk), Kk = Pxk,zkP

−1
zk,zk

Pk = P−
k −KkPzk,zkK

T
k

Concisely, the process samples the data points during both
the time and measurement update and does not require cal-
culation of the Jacobians Fk, Hk. The system dynamics are
modified using (20) when the process-measurement noise is
correlated. Tab. I summarizes the nomenclature for the system
and filter parameters along with their respective dimensions.

IV. SIMULATION

The simulation of movement and estimation of the joint
angle was performed to investigate the performance of the
three aforementioned approaches, and the impact of sensor
placement on the estimation error. Movement of a planar
slider-crank mechanism, Fig. 2, was modeled to simulate
dynamic movement of links a, b. The true angular velocity and
acceleration of the links, joint angle and linear acceleration
of the accelerometers were calculated using the mechanism
dynamics as detailed in Appendix III. The accelerometers were
assumed to have white Gaussian noise with power density of
400µg/

√
Hz and sampling frequency of 100Hz. Without loss

Fig. 2: Slider crank mechanism used for simulating joint angle
dynamics. Two accelerometers are placed at mean and relative
distances of lj , dj on each of the links, j = a, b.

Fig. 3: Comparison of analytical θab with smoothing over a
window.

L l = d Analytical Smooth UKF EKF(cm) (cm) Analytical

θab

30 15 9.04° 1.74 ° 1.21° 0.71°
20 10 13.69° 2.77° 1.41° 1.79°
10 5 41.42° 10.32° 3.35° 3.12°

ωa

30 15 X X 3.96°/s 0.69°/s
20 10 X X 4.10°/s 1.10°/s
10 5 X X 4.49°/s 2.21°/s

ωb

30 15 X X 2.07°/s 0.97°/s
20 10 X X 2.40°/s 1.55°/s
10 5 X X 3.49°/s 3.11°/s

TABLE II: Comparison of the RMS error in estimates for
change in the distance between the accelerometers.

of generality, two accelerometers were placed on each link at

ri =

[
li
2
, 0

]T
, rj,i = r ±

[
di
2
, 0

]T
∀i = a, b; j = 1, 2

All simulations were performed in MATLAB®. li, di are the
mean and relative lengths of the accelerometers, respectively.

The noise used for each simulation was randomized, hence,
Qk, Rk were re-evaluated for each simulation. An example
Q̂ ∈ R8×8 matrix used for calculation of Qk, Rk is

Q̂ = diag (5, 7, 2.9, 4.6, 19, 13.4, 8.8)× 10−3

Additionally, the initial state and estimation error covariance
matrices were

x0 = [0, 0, 0]
T
, P0 = 13

In the first scenario, accelerometers are placed at la = lb =
5cm and da = db = 5cm for L = 10cm,La = L,Lb =
2L long links. As evident from (12), the sensor noise has an
adverse effect on the calculation of the analytical joint angle.
This can be mitigated by smoothing the signal at the cost of
sensing delay, i.e., moving average of the data. For a window
of 25 data points, the smoothing filter provides better results,
Fig. 3. Hereafter, the smooth-analytical solution was used for
visual comparison to EKF and UKF approaches.

When comparing the three approaches, the model-based
filters (EKF and UKF) show more promise over the analytical
approach, Fig. 4. The analytical, smooth-analytical, EKF and
UKF estimate root mean square (RMS) errors for θab were
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Fig. 4: Comparison of joint angle and angular velocities
of simulated slider-crank mechanism. The analytical solution
only estimates the joint angle, while EKF and UKF approaches
also estimate the joint velocity.

41.42°, 10.32°, 3.12° and 3.35° respectively. Unlike EKF and
UKF, the smoothing operation introduces an estimation delay
depending upon the smoothing window.

The placement of the sensors, mean and relative lengths
{la, lb, da, db}, have direct impact on the estimation error.
However, the exploration of such huge parameter space is
unfeasible. For the scenario where the relative to mean length
ratios are kept constant as one, the variation in the estimation
error is tabulated in Tab. II. Here, the error decreases with
increase in the lengths d or l. The results also show that
the EKF and UKF perform better when compared to analyt-
ical (smooth). Additionally, UKF performs better as lengths
decrease, however, overall the performances are similar. Im-
portantly, unlike the analytical approach, the two estimation
algorithms also estimate angular velocity.

As discussed in Sec. III, the estimation approach is ap-
plicable for a sensor array comprising of more than two
accelerometers on each link, Sec. II-A. Consequently, optimal
number of accelerometers per link is investigated by varying
the number of sensors in the array. Here, the Ni accelerometers
are placed uniformly along the link i = {a, b} such that the
j-th accelerometer is at

ri =

[
li
2
, 0

]T
, rj,i = r ± (j − 1)

(Ni − 1)

[
di
2
, 0

]T
∀j = 1, · · · , Ni

Simulation is performed on a slider-crank with La = 20cm,
Lb = 25cm with the mean and relative lengths of la = lb =
da = db = 10cm. The number of accelerometers on each
link, Na and Nb, is varied from two to ten. The error in
estimation of the joint angle θab is observed for change in
Na, Nb. Fig. 5(a) plots the estimation error Na = 5 as Nb

is varied. The Fig. 5(b,c) cumulatively observe the error as
both Na, Nb are varied. Here, each line corresponds to the
number of accelerometers on the link. The simulation results
indicate that additional number of accelerometers Na, Nb > 2
is slightly beneficial for the analytical method, however, the
filtering approaches (EKF and UKF) minimally benefit from
the extra sensory information.

(a)

(b)

(c)

Fig. 5: Estimation error for change in number of accelerom-
eters (a) Na = 5 while Nb is varied, (b) cumulative plot
for Na = 2, · · · , 10 for variation in Nb. Here, each line
corresponds to Nb between two and ten. (c) cumulative plot for
all Nb as Na is varied. Each line corresponds to Na between
two and ten.

For the next scenario, the estimation error was evaluated
for change in lb, db for constant mean to relative length ratio
of link a, i.e., la/da. The remainder of the analysis was
performed on a slider-crank mechanism with link lengths
La = 20cm,Lb = 200cm with the mean and relative lengths
of la = da = 10cm. Fig. 6(a,b) plot the EKF and UKF
estimation error as the mean and relative lengths of link b
are varied. Fig. 6(c-d) are the side plots of these surface plots
where each line color corresponds to lb varying between 20cm
to 100cm. The inverse relationship between estimation error
and db for any given lb, Fig. 6(e-f), suggests that a larger
value of db is desirable. While Fig. 6(g-h) indicate a linear
relationship of the error with lb for any given db. Consequently,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: Estimation errors for (a-b) EKF and UKF as relative and mean lengths of link b are varied for la = da = 10cm.
(c-d) Side-view of the plot to observe change in error for all lb as db is varied. (e-f) The linear relationship between 1/db and
estimation error for a given lb. (g-h) Linear relationship between lb and the error for given db.
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Fig. 7: Estimation error as mean to relative length ratio for link a is varied. Each color line corresponds to lb between 20 and
100cm. The lower bound of achievable estimation error is dictated by the la/da ratio.

for a physical link of length Lb, the optimal placement of the
accelerometers, d∗b , l

∗
b , is as close to the ends of the link as

possible.

d∗a → La, l∗a =
La

2
⇒

(
la
da

)∗

→ 1

2
(23)

The effect of change in mean to relative length of link a
was examined in Fig. 7 for la/da = 0.5, 1, 2, 5. Here, each
color plot includes variation of lb from 20cm to 100cm, i.e.,
same as previous analysis but with same color rather than color
variation. The analysis indicates that irrespective of increase in
db, the lower bound of the error estimate (achievable minimum
error) is dictated by la/da ratio, the parameters of link a.
Concisely, near identical sensor placement, i.e., la/da ≈ lb/db
is most desirable between two links.

V. EXPERIMENTS AND RESULTS

The experimental setup comprised of two links of 30cm
joined by a revolute joint. A US Digital MA3 absolute
magentic shaft encoder was placed at the joint to measure the
true angle. One of the links was clamped to a solid surface
for purpose of stability. Each link had two accelerometers
mounted on it at distances of 4.75cm and 27.5cm from the
joint as visualized in Fig. 8(a). The mechatronics for acquiring
and processing the sensor data comprised of an Arduino
Mega and multiplexer serially connected to the computer. The
sensors communicated with the microprocessor through I2C
protocol.

The accelerometers were calibrated using the least squares
approach discussed in Appendix IV. The link coordinate
systems were defined such that the x-axis is along the link and
z-axis out of the plane of the paper. Seven different calibration
poses were chosen where the link x and y-axes align along ±g
of gravity, detailed in Fig. 8(b).

Four canonical movements were identified to test the al-
gorithms - ‘slow periodic’ refers to slow and continuous
back-and-forth movement, ‘fast periodic’ as fast sinusoidal
movements, ‘ramp’ for slow movement with pauses, and
‘impulse’ as fast, sudden movements with pauses. The joint
angle for the four aforementioned canonical movements is
illustrated in Fig. 9. Here, the EKF and UKF estimates are
very close, and their plots (mustard and purple lines) overlap.

Experimental verification was performed on three different
sensors - ADXL345, ADXL357, and BNO055 as illustrated in
Fig. 9. On average the ADXL345 performed the best, however,
both BNO055 and ADXL345 had the smallest sensing range
of 2g, whereas the ADXL357 was set at sensing range of
10g. The estimation errors for the canonical movements is
tabulated in Tab. III. The experimental errors are larger than
observed for simulation. These are hypothesized to be due
to systematic errors, e.g., accelerometer calibration, sensor
placement measurement. The sensors must be calibrated more
precisely or sensors with less noise may be used for reducing
estimation errors. Between the three different sensors, 100
experiments were performed to examine the repeatability of
the proposed methods. The results were consistent where the
accelerometer calibration had direct affect on the estimation
error. This highlighted the critical nature of sensor calibration.
The EKF and UKF had very similar performances, where the
UKF algorithm did not require additional linearlization. They
marginally outperformed the analytical smoothing method and
had better results for fast movements. The Kalman filtering
algorithms bring more accuracy to the joint angle measurement
and also provide an estimate of the angular velocity that is
not available with the analytical (smooth) algorithm. The ad-
ditional computational complexity is justified for applications
where the movements are fast and there is requirement of link
angular velocities, e.g., biomechanics. However, for potential
applications where there is slow change in joint angle, the
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(a) (b)

Fig. 8: (a) Experimental setup comprised of two links joined by a magnetic encoder. The accelerometers were placed at 4.75cm
and 27.5cm from the joint. (b) The seven poses used for calibrating the accelerometers where the sensors axes align along the
positive and negative direction of gravity.

Fig. 9: Comparison of joint angle and angular velocities of experimental two-link mechanism. The analytical solution only
estimates the joint angle, while EKF and UKF approaches also estimate the joint velocity.

analytical-smooth approach may be sufficient.

Theoretically, the use of EKF or UKF is application-specific
where aspects like nonlinearity of the system dynamics,
sampling frequency need to be considered. For symbolically
complex state transition and measurement models, the UKF
is advantageous as the Jacobians need not be analytically
calculated. For the joint angle estimation application, the com-
putational complexity of both, EKF and UKF are similar given
the processing power of modern day computers. Given the
availability of symbolic Jacobian, use of EKF provides slight
advantage. However, the choice between the two methods is

not expected to provide stark differences.
Considering state-of-the-art techniques for joint angle es-

timation, researchers use gyroscopes and magnetometers in
addition to accelerometers. El-Gohary et al [6], [7] use an
EKF and UKF for joint angle estimation using three IMUs and
reduce the drift by modeling the sensor bias. Their estimation
errors are between 0.9 to 9.7 deg. Weygers et al [16] also
use an accelerometer-gyroscope combination and obtain knee
joint estimation errors of 1.85 to 3.66 deg. While Cooper et
al [17] use EKF on an accelerometer-gyroscope combination
to obtain knee joint error between 0.7 and 3.4 deg.
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Canonical Algorithm ADXL345 ADXL357 BNO055Movement

Slow Periodic
Analytical 3.61° 4.70 ° 4.00°

EKF 3.09° 4.80° 4.14°
UKF 3.03° 4.8° 4.11°

Fast Periodic
Analytical 6.41° 11.13° 9.99°

EKF 5.50° 9.45° 3.48°
UKF 5.51° 9.47° 3.5°

Ramp Analytical 4.45° 7.13 ° 2.99°
EKF 4.21° 6.87° 3.47°
UKF 4.18° 6.88° 3.45°

Impulse Analytical 11.67° 11.39 ° 17.72°
EKF 7.95° 11.42° 10.52°
UKF 7.92° 11.37° 10.51°

TABLE III: Experimental results (RMS error of the joint angle)
for the three algorithms using three different sensors.

VI. CONCLUSION

The research uses all-accelerometer sensor setup for joint
angle estimation. The presented system dynamics is valid for
an accelerometer array of two or more sensors on each link.
Three estimation approaches are presented - analytical, EKF
and UKF. Apart from the joint angle, the Kalman filtering
approaches also estimate the angular velocity of the links.
Unlike the EKF, UKF does not require linearlization and uses
deterministic sampling. The simulation is performed using
a slider-crank mechanism and proves the viability of the
approach. Here, the EKF and UKF performances were similar
and superior to the analytical (smooth). Optimal sensor place-
ment strategy is explored by varying the mean and relative
length of accelerometer positions. The analyses conclude that
for a given link, best physical placement of the sensors are
toward the end of the link. Additionally, between two links, the
higher ratio of mean to relative accelerometer position defines
the maximum achievable accuracy of the system. The optimal
number of accelerometers per link is also investigated. The
simulation results indicate that more than two accelerometers
per link may be slightly beneficial for the analytical method.
However, it has minimal influence for the filtering approaches
(EKF and UKF). Experimentally, three different sensors are
tested - ADXL345, ADXL357, and BNO055 with the three
different methods. The experiments were performed on four
unique canonical movements of slow and fast periodic, ramp
and impulse. The experiments validate the simulation results of
better EKF and UKF performance in comparison to analytical.
However, with more precise sensors and effective calibration
techniques, the accuracy of filtering estimates can be further
improved.

APPENDIX I
MATRIX REPRESENTATION OF ACCELERATION OF TWO

POINTS ON A RIGID BODY

Acceleration of any two points O,P on a rigid body is [25]

aP = aO +α× ri + ω × (ω × ri)

where all the quantities are expressed in the body coordinate
system. In context of the current research, the rigid body is
the link and point P corresponds to the accelerometer position.

For a vector v = [v1, v2, v3]
T , the cross product can be written

in matrix form as

v× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0


Hence, for the planar case where ω,α are out of the plane of
the paper and rP = [r1,P , r2,P ]

T is in the x-y plane

ω× =

[
0 −ω
ω 0

]
, (ω×)

2
=

[
−ω2 0
0 ω

]
, α× =

[
0 −α
α 0

]
Consequently, the relationship between acceleration of points
O,P expressed in matrix form is

aP = aO +

[
−r1,P −r2,P
−r2,P r1,P

] [
ω2

α

]
Equivalently,

aP = aO +D(rP )y

where D(r) =

[
−r1 −r2
−r2 r1

]
, y =

[
ω2

α

]

APPENDIX II
DERIVATION FOR MATRICES D̂, E,G, F

The mean of true sensor acceleration a, placement r,
measurement a′ and noise e can be written as

v = Fmv, where v = {a, r,a′, e}

Similarly, for the ith accelerometer, the relative quantity from
the mean is defined using a tilde ṽi

ṽi = vi − v, where v = {a, r,a′, e}

Let aB denote the linear acceleration of the origin B of the
coordinate system. From rigid body mechanics, we know that

ai = aB +D(ri)y, a = aB +D(r)y ⇒ ãi = D(r̃i)y

ã =


ã1

ã2

...
ãNj

 =


D(r̃1)
D(r̃2)

...
D(r̃Nj )


︸ ︷︷ ︸

D̂

y =

1Nj
−

Fm

...
×Nj


︸ ︷︷ ︸

E

a

⇒ ã = D̂y = E(a′ − e)

⇒ y = D̂+E︸ ︷︷ ︸
G

(a′ − e)

The acceleration of point O is

ãO = D(r̃O)y ⇒ aO = (Fm +D(r̃O)G)︸ ︷︷ ︸
F

(a′ − e)
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APPENDIX III
SIMULATION OF SLIDER CRANK MOTION

The slider crank motion is simulated in the following
manner
Input : (1) Link lengths La, Lb and λ = La/Lb.

(2) θa(t) as a continuously differentiable function,
e.g., θa(t) = A sin (2πft)

Step 1: Calculate link a angular parameters

ωa =
dθa
dt

, ωa =
dωa

dt

Step 2: Calculate link b angular parameters

θb = sin−1 (−λ sin θa) , ωb = −λ

(
cos θa
cos θb

)
ωa

αb = λ

(
sin θa(ω

2
a − ω2

b )− cos θaαa

cos θb

)
Step 3: Joint angle acceleration in the two link reference

frames using (2) and θab = θa − θb

aa
O = D

([
La

0

])[
ω2
a

αa

]
ab
O =

[
cos(θab) − sin(θab)
sin(θab) cos(θab)

]
aa
O

Step 4: Calculate true acceleration ai using (2) given the
position of the accelerometers

Step 5: Calculate noisy accelerometer readings a′
i using (3)

APPENDIX IV
ACCELEROMETER CALIBRATION USING LINEAR LEAST

SQUARES

For a given sensor, the linear relationship between the
acceleration a and sensor signal v is defined using sensitivity
S and offset o

â = Sv + o

for S ∈ R3×3 and â,v,o ∈ R3×1. This is re-written as

â = V (v)y

V (v) =

vT 0 0 1 0 0
0 vT 0 0 1 0
0 0 vT 0 0 1


y = [S11, S12, S13, S21, S22, S23, S31, S32, S33, o1, o2, o3]

T

Accelerometer readings are taken from known orientations
±x,±y,±z (calibration poses). It can be observed that only
four linearly independent orientations are required for obtain-
ing the unknowns. Consequently, the calibration constants, y,
are calculated using linear least squares solution

y = V+A
A = [âT

1 , â
T
2 , · · · , âT

N ]T

V =
[
V (v1)

T , V (v2)
T , · · · , V (vN )T

]T
where A ∈ R3N×1,V ∈ R3N×12 and the superscript +
denotes the pseudoinverse of the matrix.

REFERENCES
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