

Suppression of Spin Pumping at Metal Interfaces

Youngmin Lim^{1,a)}, Bhuwan Nepal², David A. Smith^{1,b)}, Shuang Wu^{1,c)}, Abhishek Srivastava², Prabandha Nakarmi², Claudia Mewes², Zijian Jiang¹, Adbhut Gupta¹, Dwight D. Viehland³, istoph Klewe⁴, Padraic Shafer⁴, In Jun Park⁵, Timothy Mabe⁵, Vivek P. Amin⁵, Jean J. Heremans¹, Tim Mewes², Satoru Emori^{1,*}

1. Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

2. Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487, USA

3. Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

4. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

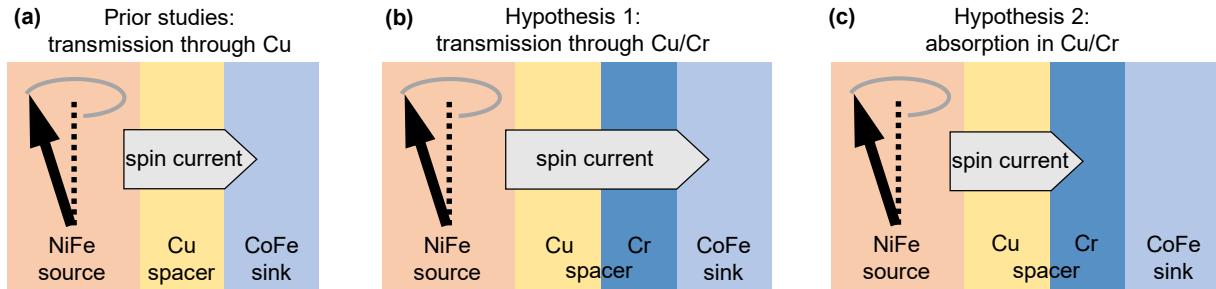
5. Department of Physics, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
46202, USA

a) Present address: Micron Technology, Boise, Idaho 83716, USA.

b) Present address: HRL Laboratories, Malibu, California 90265, USA.

c) Present address: Western Digital Corporation, San Jose, California 95119, USA.

*Author to whom correspondence should be addressed: semori@vt.edu


Abstract

An electrically conductive metal typically transmits or absorbs a spin current. Here, we report on evidence that interfacing two metal thin films can suppress spin transmission and absorption. We examine spin pumping in spin-source/spacer/spin-sink heterostructures, where the spacer consists of metallic Cu and Cr thin films. The Cu/Cr spacer largely suppresses spin pumping – i.e., neither transmitting nor absorbing a significant amount of spin current – even though Cu or Cr alone transmits a sizable spin current. The antiferromagnetism of Cr is not essential for the suppression of spin pumping, as we observe similar suppression with Cu/V spacers with V as a nonmagnetic analogue of Cr. We speculate that diverse combinations of spin-transparent metals may form interfaces that suppress spin pumping, although the underlying mechanism remains unclear. Our work may stimulate a new perspective on spin transport in metallic multilayers.

31 **I. Introduction**

32 The flow of spin angular momentum, i.e., spin current, plays key roles in spintronic phenomena. In
 33 particular, *pure* spin currents – which are not accompanied by net charge flow – may enable novel devices
 34 that surpass the limitations of spin-polarized charge currents [1,2]. It is especially crucial to understand the
 35 fundamentals of pure spin currents in metallic multilayers (heterostructures) comprising practical spintronic
 36 devices [2,3].

37 Spin pumping is an oft-used method to study pure spin currents [4,5] – for instance, in spin-valve-like
 38 heterostructures consisting of a spin source, spacer, and spin sink [Fig. 1]. In this method, microwave-
 39 driven ferromagnetic resonance (FMR) excites the magnetization in the spin source, which pumps an ac
 40 pure spin current that propagates into the adjacent layer. Prior spin pumping experiments have often been
 41 performed on heterostructures with a Cu spacer [6–9], as illustrated in Fig. 1(a). In this case, the spin current
 42 is transmitted through the spacer with practically no decay, due to the long spin diffusion length of $\gg 100$
 43 nm in Cu [10,11]. The transmitted spin current is then absorbed in the spin sink, leading to a nonlocal loss
 44 of spin angular momentum from the spin source. This loss manifests in *spin-pumping damping* [4,5], an
 45 enhanced damping $\Delta\alpha$ over the intrinsic Gilbert damping parameter α_0 of the ferromagnetic source.

46 FIG 1. Simple schematics of spin-valve-like heterostructures, in which FMR in the NiFe source pumps a pure spin
 47 current. (a) Transmission of the pumped spin current through the Cu spacer, which is well-established from such prior
 48 studies as Refs. [6–9]. The spin current is absorbed quickly in the ferromagnetic CoFe sink. (b,c) Two hypothesized
 49 scenarios for spin transport in heterostructures incorporating an additional Cr layer in the spacer: the spin current may
 50 be (b) transmitted through the Cu/Cr spacer or (c) absorbed in the Cu/Cr spacer (or Cr layer). Neither of these
 51 hypotheses turns out to match our experimental results.

53 Our present study aims to reveal how spin pumping is affected by incorporating a thin layer of another
 54 elemental metal – such as Cr – in the spacer of a heterostructure. Cr is an interesting choice, in part because
 55 it is a well-known elemental antiferromagnet with a rich assortment of magnetic order [12,13]. From this
 56 viewpoint, our study was originally intended to contribute to the growing discipline of antiferromagnetic
 57 spintronics, which had investigated spin transport in antiferromagnetic alloys and compounds [14–19].
 58 Studying Cr-based heterostructures is also timely for spin-orbitronics [2,20], as several groups have
 59 reported significant spin and orbital Hall effects in Cr [21–27].

60 More crucially, spin transport in Cr is intriguing because contradictory findings have been reported. On one
 61 hand, an experimental study reports a spin diffusion length of ≈ 13 nm in Cr [21], which – though much
 62 shorter than in Cu – is several times greater than in other transition metals (e.g., W, Ta, Pt) [28–30] and
 63 metallic antiferromagnets (e.g., IrMn, FeMn) [14–18]. Considering Cr's low electrical resistivity (bulk
 64 room-temperature value $\approx 13 \mu\Omega \text{ cm}$) and low atomic number ($Z = 24$, hence presumably weak spin-orbit
 65 coupling to decohere spins), it appears reasonable that spin currents can be transmitted over a $\gtrsim 10$ -nm
 66 length scale in Cr. On the other hand, a separate study reports a much shorter spin diffusion length of ≈ 2

67 nm in Cr [22]. In this case, even ultrathin Cr should efficiently absorb a spin current. Thus, how an
68 additional thin Cr layer affects spin transport in magnetic heterostructures [Fig. 1(b,c)] remains an open
69 question. Moreover, spin transport in Cr could be anisotropic – e.g., dependent on the propagating spin
70 polarization with respect to a certain crystallographic axis [31]. It is then instructive to examine how the
71 crystalline structure of Cr influences spin pumping.

72 Here, we investigate pure-spin-current transport in magnetic multilayers incorporating thin-film Cr of
73 thickness $\lesssim 10$ nm. We primarily study spin pumping in spin-valve-like heterostructures, illustrated in Fig.
74 1, each consisting of a NiFe spin *source*, a Cu/Cr *spacer*, and a CoFe spin *sink*. We initially hypothesized
75 two scenarios:

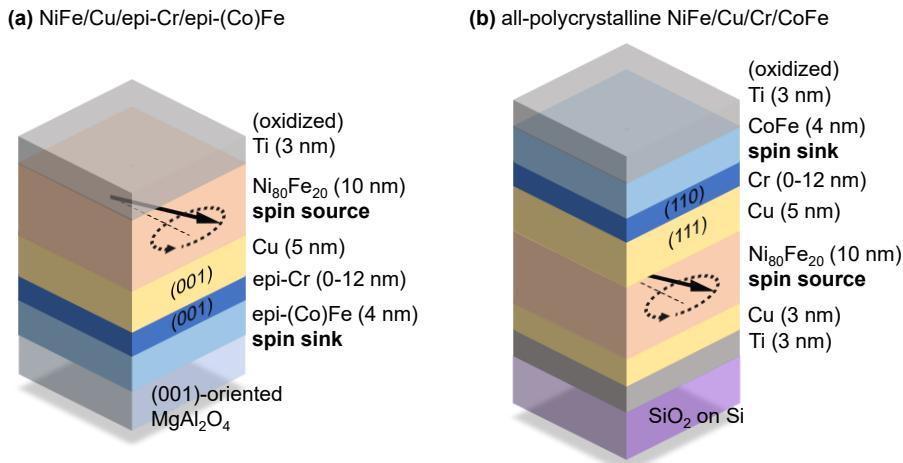
76 *Hypothesis 1* [Fig. 1(b)]: The spin current is transmitted through the Cu/Cr spacer and is absorbed in
77 the CoFe sink. The spin absorption results in spin-pumping damping.

78 *Hypothesis 2* [Fig. 1(c)]: The spin current is absorbed in the Cu/Cr spacer. The spin absorption in this
79 case also results in spin-pumping damping, even without the CoFe sink – because Cu/Cr effectively
80 behaves as a sink.

81 As it turns out, our experimental observations do not match either of these hypothesized scenarios. In fact,
82 inserting even an ultrathin (~ 1 nm) layer of Cr *suppresses* spin pumping – i.e., most of the spin current is
83 *neither transmitted nor absorbed* in the Cu/Cr spacer. This finding is rather surprising, especially as we
84 verify that Cr alone (not interfaced with Cu) transmits the spin current. Thus, we deduce that the suppression
85 of spin pumping emerges from the Cu/Cr interface. We also find that the suppression of spin pumping does
86 not require antiferromagnetic order in Cr; similar suppression is observed with Cu/V spacers without any
87 antiferromagnetism. Hence, this peculiar effect of suppressed spin pumping may arise from the interfaces
88 of other nonmagnetic metals. Our findings have the potential to cultivate a new fundamental perspective
89 on spin transport across metal interfaces.

90

91 II. FILM GROWTH AND STRUCTURE


92 A. Rationale for the Heterostructures

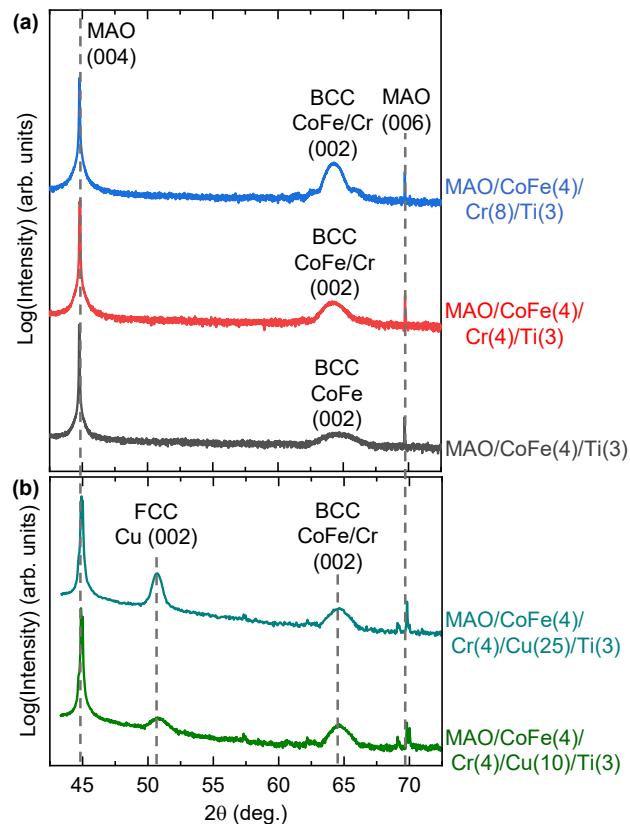
93 To examine the influence of crystalline structure on spin transport, we have grown two series of
94 NiFe/Cu/Cr/(Co)Fe heterostructures:

- 95 (1) those incorporating (001)-oriented *epitaxial* Cr, grown on top of epitaxial (Co)Fe on (001)-oriented
96 single-crystal MgAl₂O₄ (MAO) [Fig. 2(a)], and
- 97 (2) those incorporating (110)-textured *polycrystalline* Cr, grown on top of other polycrystalline film
98 layers on Si substrates with SiO₂ native oxide [Fig. 2(b)].

99 These samples were grown by dc magnetron sputtering with a base pressure of $\lesssim 5 \times 10^{-8}$ Torr and an Ar
100 sputtering gas pressure of 3 mTorr. In all heterostructures, the composition of the NiFe spin source is
101 Ni₈₀Fe₂₀ (permalloy). The (Co)Fe spin sink is Co₂₅Fe₇₅ in most cases, but we also use elemental Fe for a
102 few samples. The factor of ≈ 2 greater saturation magnetization for (Co)Fe compared to NiFe results in a
103 large separation between the FMR conditions of the two ferromagnets. As such, we can readily extract the
104 FMR linewidth of the NiFe spin source that is well distinguished from the FMR spectrum of the (Co)Fe
105 spin sink.

106 Figure 2(a) depicts the heterostructure incorporating epitaxial Cr interfaced with epitaxial (Co)Fe. The
 107 MAO substrate is well lattice-matched to BCC-(Co)Fe to within $\approx 0.4\%$ [32]. After pre-annealing the MAO
 108 substrate at 600 °C for 2 hours to drive off surface contaminants, the 4-nm-thick (Co)Fe layer was deposited
 109 at a substrate temperature of 200 °C. The Cr layer of thickness 0-12 nm was grown on top of (Co)Fe at
 110 150 °C; the somewhat lower substrate temperature was intended to decrease intermixing between the
 111 (Co)Fe and Cr layers. Then, the substrate was cooled to room temperature; during this cooling process, the
 112 background pressure in the deposition chamber was $\lesssim 5 \times 10^{-8}$ Torr. Finally, the Cu (5 nm), NiFe (10 nm),
 113 and Ti (3 nm) layers were deposited. The Ti capping layer protects the underlying stack from oxidation
 114 when the sample was taken out of the deposition chamber for measurements at ambient conditions. We
 115 remark that having the NiFe spin source at the bottom would have been preferable to minimize extrinsic
 116 FMR linewidth broadening [33,34], e.g., caused by film roughness propagated from the underlying layers.
 117 Yet, in this samples series [Fig. 2(a)], the NiFe spin source must be on top to allow for the epitaxial growth
 118 of (Co)Fe and Cr. We find negligible extrinsic FMR linewidth broadening in the NiFe spin source so long
 119 as NiFe is grown on Cu on top of the epitaxial (Co)Fe/Cr underlayers, thereby permitting reliable
 120 characterization of spin pumping.

121
 122 FIG 2. Schematics of heterostructures primarily investigated in this work (a) based on epitaxial Cr and (Co)Fe grown
 123 on (001)-oriented single-crystal MAO and (b) comprised entirely of polycrystalline layers grown on SiO₂ on Si. The
 124 out-of-plane crystallographic orientations of the Cu/Cr spacers are indicated.

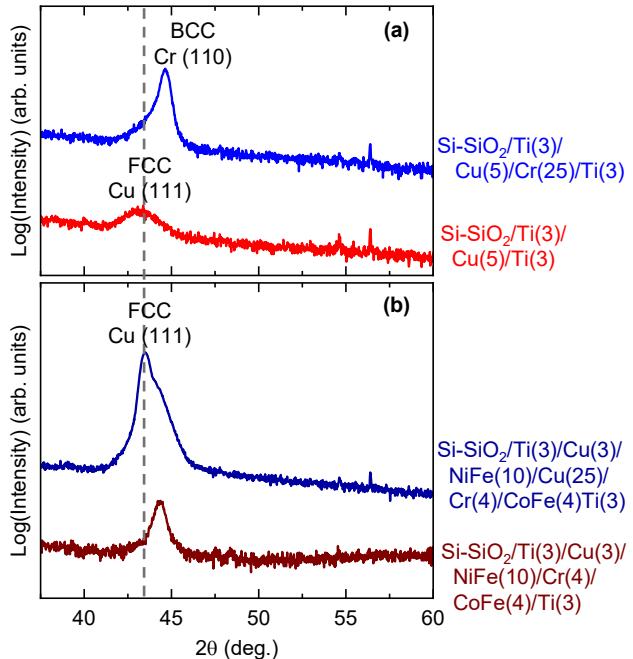

125 Figure 2(b) depicts the heterostructure in which all constituent layers are polycrystalline. These all-
 126 polycrystalline stacks were grown with the Si-SiO₂ substrate at room temperature. Since this sample series
 127 [Fig. 2(b)] does not involve the epitaxial growth of Cr, the NiFe spin source was grown on the bottom side
 128 of the heterostructure to reduce the possible influence from underlayer roughness. The NiFe layer was
 129 seeded by Ti(3 nm)/Cu(3 nm) to minimize extrinsic FMR linewidth broadening [35]. As in the epitaxial
 130 series, each film stack in the polycrystalline series was capped with 3-nm-thick Ti for protection against
 131 oxidation.

132 In both sample series illustrated in Fig. 2, the NiFe source and Cr are separated by a 5-nm-thick spacer of
 133 diamagnetic Cu. The Cu spacer eliminates potential complications that might arise from directly interfacing
 134 Cr with NiFe, such as proximity-induced magnetism [36-38] or magnon coupling between NiFe and
 135 antiferromagnetic Cr [39-41]. NiFe grown directly on top of epitaxial Cr shows indication of anisotropic
 136 two-magnon scattering [42,43], which complicates quantification of spin-pumping damping. By contrast,
 137 two-magnon scattering is largely absent in NiFe seeded by Cu.

138 In principle, (Co)Fe could be used as the spin source and NiFe as the spin sink. However, spin pumping
 139 measurements become complicated with a (Co)Fe source, due to pronounced non-Gilbert contributions to
 140 the FMR linewidth [33,34]. In 4-nm-thick (Co)Fe, we observe a large zero-frequency linewidth (e.g., $\gtrsim 1$
 141 mT), sometimes accompanied by a nonlinear frequency dependence of the linewidth, varying from sample
 142 to sample. Such complicated behavior may arise from two-magnon scattering from magnetic
 143 inhomogeneity [44,45], perhaps underpinned by non-uniform strain or interfacial roughness. We were thus
 144 unable to quantify the Gilbert damping parameter for the thin (Co)Fe layers reliably. In contrast, we find
 145 negligible zero-frequency linewidths of only ~ 0.1 mT and a linear trend of linewidth vs frequency for NiFe
 146 layers (especially those grown on top of Cu). That is, the FMR linewidths of such NiFe layers are less
 147 vulnerable to the spurious two-magnon scattering contribution, likely because the small magnetostriction
 148 of $\text{Ni}_{80}\text{Fe}_{20}$ reduces magnetic inhomogeneity. In this study, we exclusively focus on NiFe as the spin source,
 149 as it permits straightforward quantification of Gilbert damping that is essential for probing spin pumping.

150

151 B. Crystallographic Orientations of the Heterostructures



152

153 FIG 3. XRD spectra for (a) samples with 0-, 4-, and 8-nm-thick Cr grown on top of epitaxial CoFe and (b) samples
 154 with 4- and 10-nm-thick Cu grown on top of epitaxial CoFe/Cr. In both (a) and (b), the (001)-oriented MAO substrate
 155 allows for epitaxial growth of CoFe, and the 3-nm-thick Ti capping layer protects the underlying films from oxidation.
 156 Also note that (a) was acquired with a Panalytical high-resolution diffractometer, whereas (b) was acquired with a
 157 Bruker powder diffractometer, hence resulting in different backgrounds in the XRD spectra.

158 We have compared the crystallographic orientations of Cr in the epitaxial and polycrystalline series through
 159 $2\theta-\omega$ x-ray diffraction (XRD) measurements. Figure 3 summarizes our XRD results for epitaxial Cr, along

160 with the Cu layer interfaced with it. We confirm that 4-nm-thick BCC CoFe is (001)-oriented, as evidenced
 161 by the (002) film diffraction peak [Fig. 3(a)]. With the addition of Cr on top of CoFe, the (002) film peak
 162 becomes taller, indicating that the BCC Cr layer is also (001)-oriented. This is unsurprising considering the
 163 similar bulk lattice parameters of BCC $\text{Co}_{25}\text{Fe}_{75}$ (≈ 0.287 nm) and BCC Cr (≈ 0.291 nm). In Fig. 3(b), we
 164 show XRD spectra for samples with Cu deposited at room temperature on top of epitaxial CoFe/Cr. A
 165 diffraction peak corresponding to the (002) plane of FCC Cu is evident. Thus, the Cu layer develops a (001)
 166 orientation on top of (001)-oriented epitaxial Cr, despite the large difference in lattice parameter between
 167 FCC Cu (≈ 0.361 nm) and BCC Cr.

168

169 FIG 4. XRD spectra for all-polycrystalline samples. (a) Comparison of the crystallographic texture for Cu and Cr. (b)
 170 Verification of the (111) texture of Cu grown on top of NiFe. Note that these all-polycrystalline samples are seeded
 171 by Ti/Cu on Si substrates with native SiO_2 , and capped by Ti. The large Cr and Cu thicknesses of 25 nm in (a) and
 172 (b), respectively, facilitates disentangling the Cr and Cu diffraction peaks from the rest of the film stack.

Figure 4 shows XRD results that reveal the structures of Cu and Cr in our polycrystalline samples. In Fig. 4(a), we see that the polycrystalline Cr layer has a (110) texture when deposited on top of (111)-textured Cu. Figure 4(b) further confirms that a Cu layer grown on a Ti/Cu/NiFe stack maintains a (111) texture. The polycrystalline film layers grown on amorphous SiO₂ (without any templating from a single-crystal substrate) favor closest-packed planes: (111) for FCC Cu and (110) for BCC Cr.

178 Some XRD spectra in Figs. 3(b) and 4 show a small peak at $2\theta \approx 57^\circ$. Diffraction peaks near that range of
 179 2θ have been reported for Cr_2O_3 [46]. However, a peak at $2\theta \approx 57^\circ$ is still present even in Si-
 180 $\text{SiO}_2/\text{Ti}/\text{Cu}/\text{Ti}$ [Fig. 4(a)] without any Cr. Moreover, such a peak is absent for MAO/CoFe/Cr/Ti samples
 181 measured with a different diffractometer (see caption for Fig. 3). We attribute the peak at $2\theta \approx 57^\circ$ to an
 182 instrumental background, rather than oxidized Cr.

183 To summarize the above XRD results, we find different crystallographic orientations of Cu/Cr for the
 184 epitaxial series [Fig. 3] and the polycrystalline series [Fig. 4]. Namely, the spacer in the epitaxial series
 185 consists of Cu(001)/Cr(001) [Fig. 3], whereas that in the polycrystalline series consists of Cu(111)/Cr(110)

186 [Fig. 4]. The epitaxial and polycrystalline series hence provide distinct model systems to examine the role
187 of Cu/Cr structure in spin transport. Nevertheless, as shown in the following section, we find that the
188 structurally different Cu/Cr spacers both yield significant suppression of spin pumping.

189

190 III. RESULTS AND DISCUSSION

191 A. Measurement of Spin-Pumping Damping

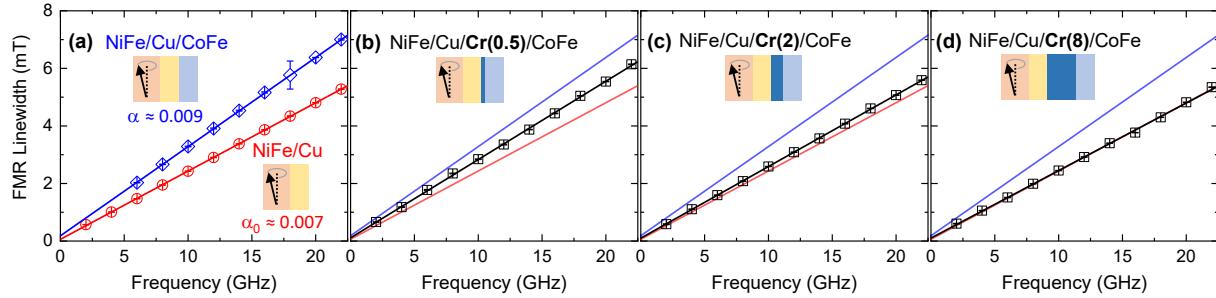
192 We employ broadband FMR spectroscopy to study spin transport in our heterostructures by monitoring
193 nonlocal damping enhancement of the spin source [4,5]. In the following discussion of spin pumping, we
194 represent each heterostructure with the notation “NiFe/spacer/sink,” such that the spin current propagates
195 from “left” (NiFe source) to “right” (sink). Unless otherwise specified, our notation omits the substrate and
196 the seed and capping layers for simplicity; Section II-A (in particular, Fig. 2) describes the constituent
197 layers of the heterostructures.

198 Our spin pumping measurements are performed at room temperature, except for those in Sec. III-F that
199 extend to 10 K. The sample is placed film-side down on a coplanar waveguide to excite resonant magnetic
200 precession in the NiFe spin source. A magnetic field from an electromagnet is applied along the film plane.
201 The magnetic precession in the NiFe spin source pumps an ac pure spin current into the adjacent layers.

202 Any spin current transmitted through the spacer is absorbed by the ferromagnetic (Co)Fe spin sink [7,47].
203 The spin absorption in the (Co)Fe sink constitutes a loss of spin angular momentum emitted by the NiFe
204 source, hence increasing Gilbert damping in the NiFe layer [4,5]. Alternatively, some of the spin currents
205 could be absorbed within the Cu/Cr spacer, which would also enhance damping in the NiFe source.
206 Therefore, the additional damping $\Delta\alpha$ from spin absorption (outside of the NiFe source) is

207
$$\Delta\alpha = \alpha - \alpha_0, \quad (1)$$

208 i.e., the difference between the total measured Gilbert damping parameter α and the baseline intrinsic
209 Gilbert damping parameter α_0 of NiFe.


210 From field-swept FMR measurements performed at frequencies $f = 2\text{-}22$ GHz (additional details available
211 in Refs. [18,48]), we extract α by linearly fitting the f dependence of the half-width-at-half-maximum FMR
212 linewidth ΔH via

213
$$\mu_0\Delta H = \mu_0\Delta H_0 + \frac{2\pi}{\gamma}\alpha f. \quad (2)$$

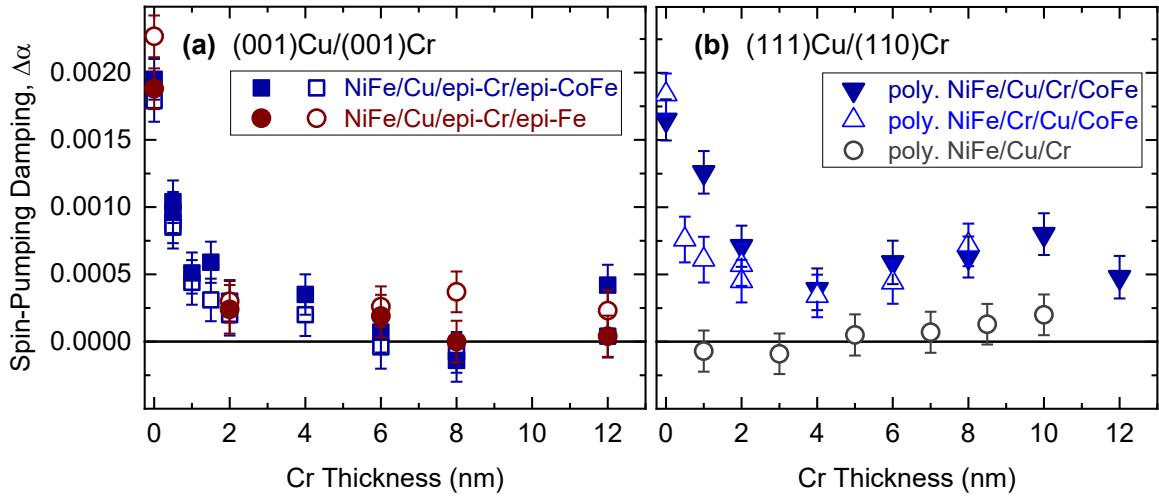
214 In Eq. (2), ΔH_0 is the zero-frequency linewidth of $\lesssim 0.1$ mT attributed to small inhomogeneous broadening
215 and $\gamma/(2\pi) = 29.5$ GHz/T is the gyromagnetic ratio typical for $\text{Ni}_{80}\text{Fe}_{20}$.

216 Figure 5 shows representative results for the frequency dependence of the FMR linewidth. NiFe without a
217 spin sink show $\alpha = \alpha_0 \approx 0.007$ [Fig. 5(a)], in good agreement with previously reported room-temperature
218 damping parameters of $\text{Ni}_{80}\text{Fe}_{20}$ [48,49]. In the following, we use $\alpha_0 = 0.00710 \pm 0.00015$ obtained by
219 averaging results on films from different deposition runs. The stack structure of these baseline samples is
220 Si-SiO₂ (substrate)/Ti/Cu/NiFe/Cu/Ti. We note that Ti and Cu contribute negligibly to $\Delta\alpha$. The spin current
221 is unable to enter 3-nm-thick Ti that is likely oxidized (leading to high resistivity $\sim 1000 \mu\Omega \text{ cm}$) by being
222 directly interfaced with the oxide substrate or ambient air. The spin diffusion length in Cu [10,11] is much
223 greater than the Cu spacer thickness here, such that spin backflow in the Cu layer cancels the spin current
224 pumped out of the NiFe source [4,10,11]. Additional baseline samples of NiFe on epitaxial underlayers (i.e.,

225 MAO (substrate)/epi-Cr/Cu/NiFe/Ti) show two-magnon scattering, but the baseline Gilbert damping
 226 parameter of these samples is also deduced to be $\alpha_0 \approx 0.0071$ [see Supplementary Material].

227 FIG 5. Frequency dependence of the half-width-at-half-maximum FMR linewidth for (a) NiFe/Cu/CoFe (with CoFe
 228 as the spin sink) and NiFe/Cu (without a spin sink), as well as NiFe/Cu/Cr/CoFe with Cr insertion layer thicknesses
 229 of (b) 0.5 nm, (c) 2 nm, and (d) 8 nm. The ferromagnet/spacer/ferromagnet heterostructures shown here are based on
 230 epitaxial CoFe grown on MAO substrates (i.e., the heterostructure illustrated in Fig. 2(a)).

231 The NiFe/Cu/CoFe sample in Fig. 5(a) exhibits a steeper slope in linewidth vs frequency, corresponding to
 232 $\alpha \approx 0.009$. Therefore, the additional damping for this sample is $\Delta\alpha \approx 0.002$. Similar values of $\Delta\alpha$ are
 233 obtained for NiFe/Cu/CoFe with epitaxial or polycrystalline CoFe, as well as for NiFe/Cu/Fe with an
 234 elemental Fe sink, as shown in Fig. 6 (Cr thickness = 0). This observation is consistent with the (Co)Fe
 235 layer acting as a spin absorber, such that a substantial spin current pumped from the NiFe source decays
 236 within (Co)Fe. In the following, we use $\Delta\alpha$ as a measure of spin-current absorption by a spin sink – or,
 237 equivalently, a measure of spin-current transmission from the spin source to the spin sink. In other words,
 238 $\Delta\alpha \approx 0.002$ observed for NiFe/Cu/(Co)Fe represents the upper bound for the spin current transmitted
 239 through the spacer and absorbed by the sink.


241

242 B. Spin Pumping in Heterostructures with Cu/Cr Spacers

243 We proceed to examine spin transport in the presence of a thin Cr layer added to the spacer. Figure 5(b-d)
 244 presents the frequency dependence of the FMR linewidth for NiFe/Cu/Cr/CoFe, in which Cr and CoFe are
 245 epitaxial. Compared to NiFe/Cu/CoFe, we observe a reduced slope in linewidth vs frequency in
 246 NiFe/Cu/Cr/CoFe, even with just 0.5 nm of Cr [Fig. 5(b)]. At greater Cr thicknesses [Fig. 5(c,d)], the slope
 247 approaches that of the NiFe/Cu sample without a spin sink. Adding a thin Cr layer to the spacer suppresses
 248 spin pumping.

249 Figure 6(a) summarizes the dependence of the spin-pumping damping parameter $\Delta\alpha$ on the epitaxial Cr
 250 insertion layer thickness. We observe an approximately tenfold decrease in $\Delta\alpha$ with $\gtrsim 1$ -nm-thick epitaxial
 251 Cr. That is, there is a sharp drop in spin pumping – mostly independent of the Cr thickness – in this sample
 252 series with the Cu(001)/Cr(001) spacer [Fig. 6(a)]. This sharp suppression of $\Delta\alpha$ is observed for
 253 heterostructures with Co₂₅Fe₇₅ alloy and elemental Fe spin sinks. Similar suppression of $\Delta\alpha$ is also obtained
 254 with the field applied along the easy and hard axes of epitaxial (Co)Fe [empty and filled symbols,
 255 respectively, in Fig. 6(a)]. Thus, we observe no clear anisotropy in the suppression of spin pumping.

256 We are unable to claim *complete* suppression of spin pumping ($\Delta\alpha \equiv 0$) with Cr insertion. This is due to
 257 the sample-to-sample variation in the baseline damping α_0 , which yields an uncertainty in $\Delta\alpha$ of up to \approx
 258 2×10^{-4} (captured by the error bars in Fig. 6). Nevertheless, we emphasize that the results in Fig. 6(a)
 259 demonstrate an order-of-magnitude reduction in spin pumping with Cr added to the Cu spacer.

260

261 FIG 6. Evolution of the spin-pumping damping parameter $\Delta\alpha$ with the thickness of the Cr insertion layer in (a)
262 NiFe/Cu/Cr/(Co)Fe heterostructures based on epitaxial Cr and (Co)Fe, with a Cu(001)/Cr(001) spacer, and (b) all-
263 polycrystalline NiFe/Cu/Cr/CoFe heterostructures, with a Cu(111)/Cr(110) spacer. In (a), the filled symbols indicate
264 results obtained with the field applied along the easy axis of the epitaxial (Co)Fe spin sink ($H \parallel$ MAO[110] or
265 (Co)Fe[100]); the empty symbols indicate results obtained with the field applied along the hard axis of the epitaxial
266 (Co)Fe spin sink ($H \parallel$ MAO[100] or (Co)Fe[110]). Note that $\Delta\alpha$ is a measure of spin current lost from the NiFe spin
267 source (i.e., spin current absorbed in Cu/Cr or CoFe). $\Delta\alpha \approx 0$ for NiFe/Cu/Cr without a CoFe sink, shown in (b),
268 indicates the absence of significant spin absorption in Cu/Cr. The error bars are dominated by the uncertainty
269 (1.5×10^{-4}) in the baseline damping α_0 that is propagated to $\Delta\alpha$ [Eq. 1].

270 A few remarks are in order about the suppressed spin pumping. First, the reduction of $\Delta\alpha$ to nearly ≈ 0
271 indicates that most of the pumped spin current is not absorbed by the (Co)Fe sink. It follows that most spin
272 current is *not transmitted* through the Cu/Cr spacer. Second, any sizable absorption of the spin current (e.g.,
273 decoherence via incoherent spin-flip scattering) in the Cu/Cr spacer would result in sizable $\Delta\alpha$. The
274 suppression of $\Delta\alpha$ indicates that most of the spin current is *not absorbed* in the Cu/Cr spacer either.

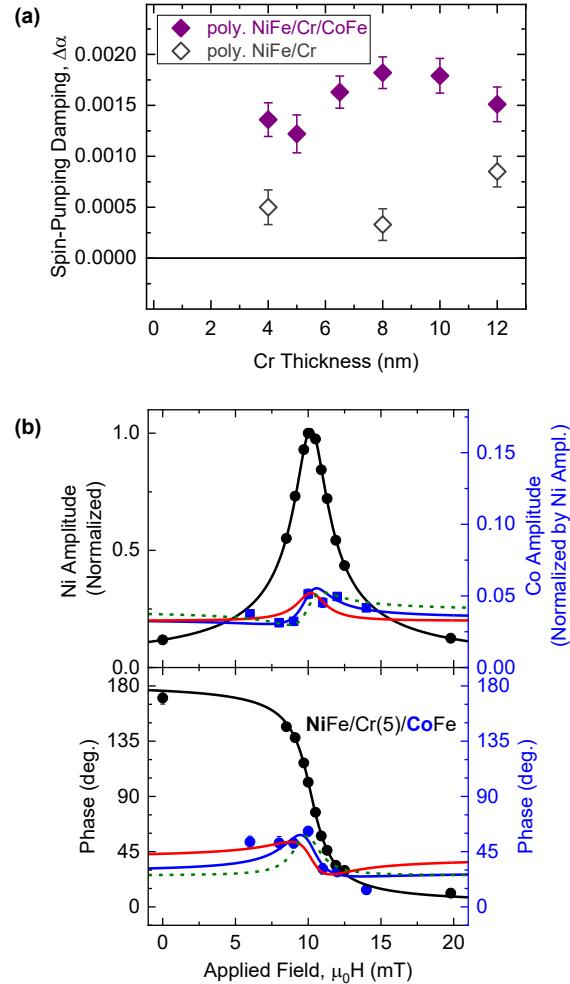
275 We investigate whether the suppression of spin pumping is unique to the NiFe/Cu/epi-Cr/epi-(Co)Fe
276 samples with Cu(001)/Cr(001) spacers [Fig. 6(a)]. In Fig. 6(b), we observe that all-polycrystalline
277 NiFe/Cu/Cr/CoFe with a Cu(111)/Cr(110) spacer also exhibits a decline in $\Delta\alpha$ with Cr insertion. Evidently,
278 spin pumping is reduced in both sample series with different crystallographic orientations.

279 Yet, the decrease of $\Delta\alpha$ for the polycrystalline series with the Cu(111)/Cr(110) spacer exhibits a more
280 gradual thickness dependence [Fig. 6(b)], in contrast to the sharp drop for the epitaxial series with the
281 Cu(001)/Cr(001) spacer [Fig. 6(a)]. At large Cr insertion thicknesses, the NiFe/Cu/Cr/CoFe series in Fig.
282 6(b) {Cu(111)/Cr(110) spacer} retains a systematically higher $\Delta\alpha$ of $\approx 5 \times 10^{-4}$, compared to the series
283 in Fig. 6(a) {Cu(001)/Cr(001) spacer}. Spin absorption in Cu(111)/Cr(110) is negligible because $\Delta\alpha$
284 remains close to zero in NiFe/Cu/Cr samples without a CoFe sink [Fig. 6(b)]. Therefore, the residual $\Delta\alpha$ of
285 $\approx 5 \times 10^{-4}$ in all-polycrystalline NiFe/Cu/Cr/CoFe is attributed to partial spin pumping into the CoFe sink.
286 Overall, we deduce that the polycrystalline Cu(111)/Cr(110) spacer is partially transparent to the spin
287 current, in contrast to the epitaxial Cu(001)/Cr(001) spacer that more strongly suppresses spin pumping.
288 Even with the partially spin-transparent Cu(111)/Cr(110) spacer, we stress that the reduction in spin
289 pumping is still large – i.e., a factor of ≈ 4 [Fig. 6(b)].

290 Our above findings reveal that Cu/Cr spacers suppress spin pumping in various NiFe/Cu/Cr/(Co)Fe
291 heterostructures. We have also tested spin pumping in heterostructures with the Cr and Cu spacer layers
292 reversed – i.e., all-polycrystalline NiFe/Cr/Cu/CoFe where the pumped spin current enters Cr first. As
293 shown in Fig. 6(b), the reversed Cr/Cu spacer yields results similar to the Cu/Cr spacer. Hence, the
294 suppressed spin pumping emerges irrespective of whether the spin current enters Cu first or Cr first, in
295 contrast to nonreciprocal spin transport reported for some heterostructures [50].

296

297 **C. Origin of the Suppressed Spin Pumping: Bulk vs Interface**


298 We now wish to address whether the suppression of spin pumping originates from the *bulk* of the Cr
299 insertion layer or the *interface* of Cu/Cr. To this end, we examine spin pumping in NiFe/Cr/CoFe samples
300 with Cu omitted from the spacer [Fig. 7(a)]. In this NiFe/Cr/CoFe series, the Cr thickness is ≥ 4 nm to
301 minimize interlayer exchange coupling between the NiFe spin source and the CoFe spin sink. We are also
302 limited to all-*polycrystalline* NiFe/Cr/CoFe samples here. As noted in Sec. II-A, NiFe grown directly on
303 top of *epitaxial* Cr exhibits pronounced two-magnon scattering that complicates the interpretation of spin
304 pumping.

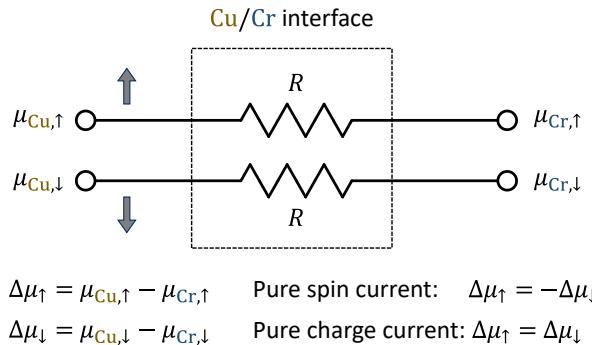
305 As seen in Fig. 7(a), the all-*polycrystalline* NiFe/Cr/CoFe series exhibits sizable spin-pumping damping of
306 $\Delta\alpha \approx 0.0015$. The NiFe/Cr samples without a CoFe sink [Fig. 7(a)] also exhibit a non-negligible $\Delta\alpha$,
307 suggesting that polycrystalline Cr interfaced directly with the NiFe source may absorb a detectable fraction
308 of the spin current. Additionally, there appears to be a slight increase in $\Delta\alpha$ with Cr thickness in Figs. 6(b)
309 and 7(a), possibly due to the onset of spin absorption in Cr as its thickness approaches the spin diffusion
310 length of $\gtrsim 10$ nm [21]. Nevertheless, the systematically greater $\Delta\alpha$ for NiFe/Cr/CoFe compared to NiFe/Cr
311 (by a factor of $\gtrsim 2$) indicates that a large fraction ($\gtrsim 50\%$) of the spin current is transmitted across the Cr
312 spacer (and absorbed in the CoFe sink).

313 As an additional check of spin transport through the single-layer Cr spacer, we have performed an x-ray
314 synchrotron-based spin pumping experiment [9,31,51,52] on NiFe/Cr/CoFe at Beamline 4.0.2 of the
315 Advanced Light Source, Lawrence Berkeley National Laboratory. The sample for this experiment was
316 grown on a MgO substrate to allow for luminescence yield detection of X-ray magnetic circular dichroism
317 (XMCD). The details of this experimental setup are found in Refs. [52,53]. In brief, XMCD detects the
318 magnetization dynamics (i.e., magnetization component transverse to the precessional axis) associated with
319 a specific element. For instance, we acquire the in-plane field dependence of the precessional amplitude
320 and phase for Ni in the NiFe source, driven resonantly by a 3-GHz microwave. As shown in Fig. 7(b), a
321 peak in the amplitude and a 180-degree shift in the phase are observed for Ni, consistent with the FMR of
322 the NiFe source. In addition, we detect the Co magnetization dynamics in the CoFe sink near the resonance
323 field of NiFe, indicating dynamic coupling between the NiFe source and the CoFe sink [9]. The data for the
324 Co dynamics are adequately fitted with a model based on coupled Landau-Lifshitz-Gilbert
325 equations [9,31,51,52], as shown in Fig. 7(b). This model accounts for the off-resonant microwave field
326 torque (appearing as the non-zero offset in the amplitude in Fig. 7(b)), interlayer dipolar field torque (green
327 dashed curves in Fig. 7(b)), and spin torque driven by the spin current pumped into CoFe (red solid curves
328 in Fig. 7(b)). Of particular note here is the spin torque, signifying sizable spin transmission from the NiFe
329 source to the CoFe sink [9,31,51,52]. Hence, this synchrotron-based experiment corroborates that the
330 single-layer Cr spacer is indeed transparent to the spin current.

331 Our complementary results in Fig. 7 indicate spin pumping through single-layer Cr spacers. At the same
332 time, our findings in Sec. II-B demonstrate that spin pumping is suppressed in heterostructures with bilayer

333 Cu/Cr spacers. We therefore identify the Cu/Cr interface, rather than the bulk of Cr, as the origin of the
 334 suppressed spin pumping.

335


336 FIG 7. (a) Evolution of the spin-pumping damping parameter $\Delta\alpha$ with the thickness of the single-layer Cr spacer in
 337 all-polycrystalline NiFe/Cr/CoFe (filled symbols), as well as NiFe/Cr without a CoFe sink (empty symbols). The error
 338 bars are dominated by the uncertainty (1.5×10^{-4}) in the baseline damping α_0 that is propagated to $\Delta\alpha$ [Eq. 1]. (b)
 339 Precessional amplitude and phase of the Ni and Co magnetizations in NiFe/Cr/CoFe (Cr thickness 5 nm), measured
 340 with XMCD. Accompanying the Co results (blue data points), the solid blue fit curves represent the total torque acting
 341 on the Co magnetization; the dashed green fit curves represent the contribution from the interlayer dipolar field torque,
 342 whereas the solid red fit curves represent the contribution from the spin torque, which arises from the spin current
 343 transmitted through the Cr spacer.

344

345 **D. Interpretation and Possible Mechanism of the Suppressed Spin Pumping**

346 It is quite surprising that combining Cu and Cr in the spacer suppresses spin transmission, particularly given
 347 that thin Cu and Cr by themselves are transparent to spin currents. Both Cu and Cr are electrically
 348 conductive 3d transition metals with weak spin-orbit coupling, which would be expected to permit efficient
 349 spin transmission. These points are consistent with our findings of spin pumping through a thin single-layer
 350 Cu or Cr spacer with a thickness well below the spin diffusion length. Yet, interfacing Cu with just a few
 351 monolayers of Cr drastically reduces spin pumping through the spacer [Fig. 6].

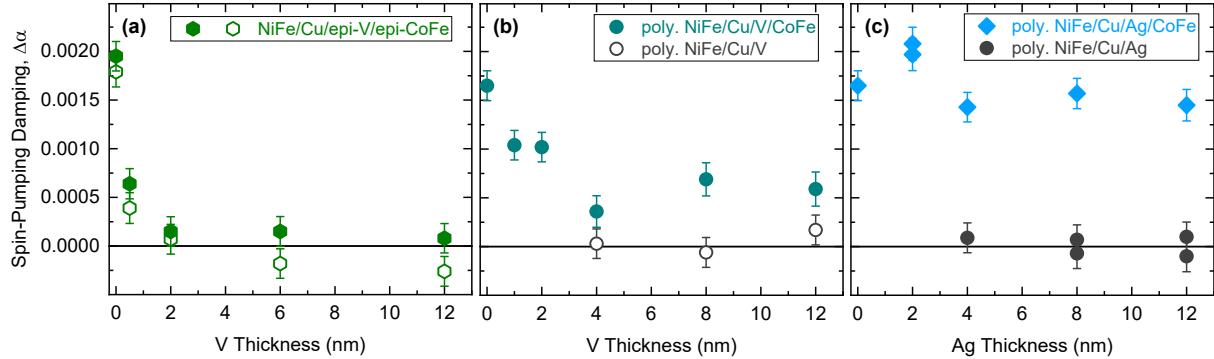
352 Explaining the suppression of spin pumping is complicated because the underlying theoretical mechanism
 353 likely extends beyond the Cu/Cr interface – even though, experimentally, this particular interface appears
 354 to cause the suppression. Here, we use a simple two-channel model in Fig. 8 to illustrate the deficiency of
 355 the theory that focuses solely on the Cu/Cr interface. In this model, $\Delta\mu_\sigma = \mu_{\text{Cu},\sigma} - \mu_{\text{Cr},\sigma}$ denotes the
 356 nonequilibrium chemical potential difference across the interface for each spin direction ($\sigma = \uparrow$ or \downarrow). R
 357 gives the interfacial resistance for each spin channel that represents carrier flow for each spin. Due to the
 358 lack of ferromagnetism at the interface, both spin channels must have an identical interface resistance R ,
 359 regardless of the presence of spin-orbit coupling or antiferromagnetism in Cr. Since a pure spin current is
 360 represented by the spin channels having equal and opposite currents (i.e., $\Delta\mu_\uparrow = -\Delta\mu_\downarrow$), pure-spin-current
 361 transport decreases only when the interfacial resistance R increases equally for both spin channels. In other
 362 words, large spin-pumping suppression in the Cu/Cr system can be replicated only under the implausible
 363 condition that the metallic Cu/Cr interface blocks electronic charge transport. Thus, the theoretical model
 364 of the Cu/Cr interface alone cannot capture the observed suppression of spin pumping.

365
 366 FIG 8. Schematic of the two-channel model of the Cu/Cr interface, consisting of spin-up and spin-down channels.
 367 Both the pure spin and charge currents are driven by a difference in the chemical potentials ($\Delta\mu_\uparrow$ and $\Delta\mu_\downarrow$) across the
 368 interface. At this interface of two non-ferromagnetic metals, the interfacial resistance R must be equal for both spin
 369 channels. To suppress spin pumping through this interface, the charge resistance at the interface must diverge – which
 370 would be an unlikely scenario for the metallic Cu/Cr interface. Therefore, this simple two-channel model of the Cu/Cr
 371 interface is unable to provide a plausible explanation for the suppression of spin pumping.

372 A possible explanation for the spin-pumping suppression is a large reduction in the spin-mixing
 373 conductance [54], e.g., that encompasses the NiFe/Cu/Cr system. Conventionally, the spin-mixing
 374 conductance $G_{\uparrow\downarrow}$ is a parameter describing a ferromagnet/non-ferromagnet (FM/NM) interface [54]; $G_{\uparrow\downarrow}$
 375 relates the transverse spin chemical potential $\vec{\mu}_t$ to the transversely-polarized spin current \vec{j}_t on the NM side
 376 of the interface ($\vec{j}_t \propto G_{\uparrow\downarrow} \vec{\mu}_t$), where “transverse” is defined relative to the magnetization in the FM. A
 377 smaller spin-mixing conductance would result in a smaller spin current (spin pumping) in the
 378 heterostructure. In the absence of spin-orbit coupling, the spin-mixing conductance depends solely on the
 379 reflection amplitudes of electrons scattering off the FM/NM interface. However, if another NM' layer is

380 inserted between the original FM and NM layer to constitute a FM/NM'/NM system (e.g., NiFe/Cu/Cr),
381 the effective spin-mixing conductance could be modified, potentially due to coherent backscattering within
382 the inserted NM' layer. The NiFe/Cu/Cr system may exhibit a much smaller effective spin-mixing
383 conductance – compared to the NiFe/Cu or NiFe/Cr system – that greatly reduces spin pumping in the
384 heterostructure. While quantitative calculations of the spin-mixing conductance are beyond the scope of
385 this present work, the large modification of spin pumping in FM/NM'/NM warrants further theoretical
386 studies.

387 Prior experimental studies [55,56] have reported modifications of the spin-mixing conductance by inserting
388 a thin additional NM' layer in a FM/NM bilayer. However, the modifications in these studies are limited to
389 a factor of ≈ 2 . With the spin-mixing conductance proportional to spin-pumping damping $\Delta\alpha$, the
390 modifications seen in our present study are far greater. In particular, Cu/Cr spacers reduce spin pumping
391 by an order of magnitude in the epitaxial samples [Fig. 6(a)] and by a factor of ≈ 4 in the all-polycrystalline
392 samples [Fig. 6(b)].


393 We note that the surface of Cr in the epitaxial heterostructure [Fig. 2(a)] is exposed to a background pressure
394 of $\sim 10^{-8}$ Torr in the deposition chamber for up to several hours while the substrate is cooled down [see Sec.
395 II-A]. Even though the XRD results show no evidence for oxidized Cr [Sec. II-B], an atomically thin layer
396 of Cr-oxide (difficult to detect with XRD) could potentially form, if sufficient residual H₂O and O₂
397 molecules could react with the Cr surface. Such a surface oxide layer might impede spin transport, perhaps
398 similar to reports of suppressed spin pumping with insertion layers of nonmagnetic insulating
399 oxides [57,58]. On the other hand, recent experiments [59] indicate that even when metallic Cr is exposed
400 to ambient air, the Cr surface does not develop a continuous oxide layer. Remarkably, Ref. [59] reports that
401 some portions of the Cr surface remain metallic even after 2 days of exposure to ambient air (1 atm). It is
402 then plausible that surface oxidation remains negligible for epitaxial Cr in the high-vacuum condition.

403 Although we cannot entirely rule out the possibility of some surface oxidation on epitaxial Cr, we
404 emphasize that the oxidation alone cannot account for the suppressed spin pumping in the Cu/Cr-based
405 systems. The suppression originates from metallic interfaces, as similar suppression of spin pumping is also
406 clearly observed for polycrystalline samples with Cu/Cr spacers free of the possible surface oxidation.
407 During the growth of these polycrystalline samples, the Cr layer was exposed to the background pressure
408 of $\sim 10^{-8}$ Torr for no more than ≈ 3 minutes, so it is reasonable to conclude negligible Cr oxidation. Indeed,
409 we have verified that the polycrystalline Cr layer by itself permits spin transmission [Sec. III-C], signifying
410 that the Cr layer remains metallic. The suppression of spin pumping emerges when metallic Cr is interfaced
411 with metallic Cu. An intrinsic mechanism encompassing metal interfaces – whose theoretical basis remains
412 to be elucidated – is likely responsible for the observed suppression of spin pumping.

413

414 **E. Spin Pumping in Heterostructures with Other Bilayer Spacers**

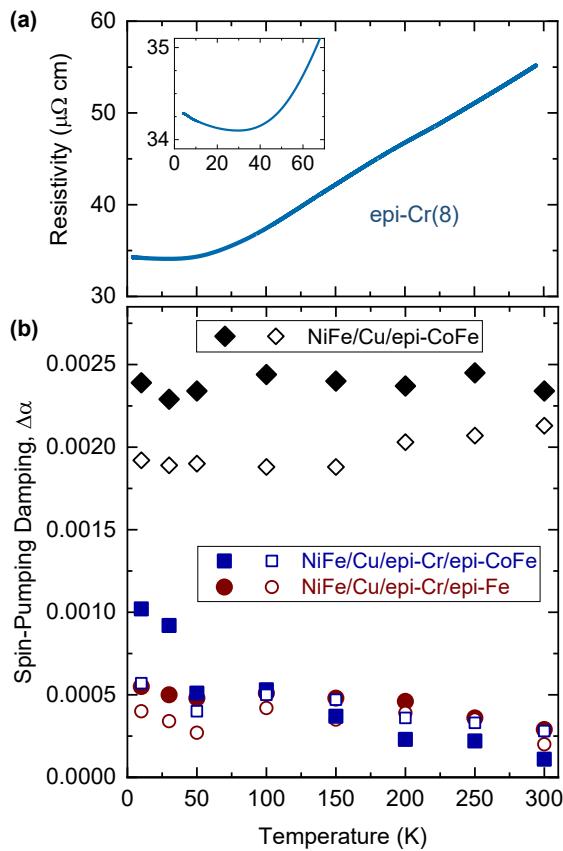
415 The initial motivation of our work was to examine the influence of elemental antiferromagnetic Cr on
416 interlayer spin transport. It is sensible to inquire whether the antiferromagnetism of Cr is responsible for
417 suppressing spin pumping at the Cu/Cr interface. To address this question, we have investigated spin
418 pumping in heterostructures with alternative Cu/X spacers where X is a nonmagnetic transition metal, i.e.,
419 V or Ag here.

420

421 FIG 9. (a,b) Evolution of the spin-pumping damping parameter $\Delta\alpha$ with the thickness of the V insertion layer in (a)
422 NiFe/Cu/V/CoFe heterostructures based on epitaxial V and CoFe and (b) all-polycrystalline NiFe/Cu/V/CoFe
423 heterostructures. In (a), the filled symbols indicate results obtained with the field applied along the easy axis of the
424 epitaxial CoFe spin sink ($H \parallel$ MAO[110] or CoFe[100]); the empty symbols indicate results obtained with the field
425 applied along the hard axis of the epitaxial CoFe spin sink ($H \parallel$ MAO[100] or CoFe[110]). (c) Evolution of the spin-
426 pumping damping parameter $\Delta\alpha$ with the thickness of the Ag insertion layer in all-polycrystalline NiFe/Cu/V/CoFe
427 heterostructures. The error bars are dominated by the uncertainty (1.5×10^{-4}) in the baseline damping α_0 that is
428 propagated to $\Delta\alpha$ [Eq. 1].

429 We first present spin-pumping results for heterostructures with Cu/V spacers in place of Cu/Cr. The
430 comparison between Cu/V and Cu/Cr is interesting because V and Cr are structurally similar. The atomic
431 number $Z = 23$ of V neighbors $Z = 24$ of Cr, and both V and Cr are BCC crystals with similar bulk lattice
432 parameters (0.303 nm and 0.291 nm, respectively). In effect, Cu/V is a non-antiferromagnetic analogue of
433 Cu/Cr.

434 Figure 9(a,b) summarizes the FMR spin-pumping results for two series of heterostructures: (1) those
435 incorporating *epitaxial* V, grown on top of epitaxial (Co)Fe on (001)-oriented MAO [Fig. 9(a)] and (2)
436 those incorporating *polycrystalline* V, grown on top of other polycrystalline film layers on Si-SiO₂ [Fig.
437 9(b)]. As seen in Fig. 9(a), the insertion of epitaxial V in the spacer sharply decreases the spin-pumping
438 damping parameter $\Delta\alpha$ to ≈ 0 . This observation resembles the sharp decline in $\Delta\alpha$ with inserting epitaxial
439 Cr in Fig. 6(a). The all-polycrystalline samples in Fig. 9(b) also show a decrease in $\Delta\alpha$ with V insertion,
440 down to $\Delta\alpha \approx 5 \times 10^{-4}$ – again, akin to the results with Cr insertion [Fig 6(b)]. We also see negligible
441 spin-pumping damping in NiFe/Cu/V (without a CoFe sink), indicating that Cu/V does not significantly
442 absorb the pumped spin current. Taken together, the observed trends here for the Cu/V-based
443 heterostructures [Fig. 9(a,b)] are remarkably similar to those for the Cu/Cr-based heterostructures [Fig. 6].
444 Our results indicate that Cr and V, when interfaced with Cu to comprise a bilayer spacer, have essentially
445 the same effect on spin transport. Antiferromagnetic Cr is not required for the suppression of spin pumping.


446 We have thus identified two bilayer spacers (Cu/Cr and Cu/V) that suppress spin pumping. It is then
447 instructive to determine whether *any* bilayer spacer of Cu/X can suppress spin pumping. To this end, we
448 have investigated heterostructures incorporating bilayer Cu/Ag spacers. As shown in Fig. 9(c), the spin-
449 pumping damping $\Delta\alpha$ is *not* suppressed with the addition of Ag to the spacer. The control series of
450 NiFe/Cu/Ag without a CoFe shows $\Delta\alpha \approx 0$, which corroborates that the large $\Delta\alpha$ in NiFe/Cu/Ag/CoFe
451 originates from spin pumping into CoFe, i.e., through Cu/Ag. That is, the bilayer Cu/Ag spacer is just as
452 transparent to the spin current as the single-layer Cu spacer. We conclude that while the suppression of spin
453 pumping is not unique to heterostructures with Cu/Cr spacers, it is not universal to all heterostructures with
454 bilayer Cu/X spacers.

455 A crystal-structure mismatch between the two metals in the bilayer spacer may be crucial for suppressing
 456 spin pumping. Namely, FCC Cu interfaced with BCC Cr or V suppresses spin pumping, whereas FCC Cu
 457 interfaced with FCC Ag does not. It is possible that the mismatch in crystal structure – hence electronic
 458 band structures – affects the effective spin-mixing conductance of the heterostructure. The difference in the
 459 Fermi energy or carrier effective mass between the two metals could impede the propagation of Bloch wave
 460 packets, which fundamentally govern electronic spin transport. Nevertheless, since our present study
 461 examines only limited combinations of metals, the possible role of crystal and electronic structure mismatch
 462 remains speculative. How a thin metallic insertion layer decreases spin pumping – e.g., by an order of
 463 magnitude – remains an open question that requires further experimental and theoretical work.

464

465 F. Temperature Dependence of Spin Pumping

466 All the above results [Secs. III-A through III-E] are obtained from experiments at room temperature. The
 467 Cr layers studied here may exhibit some antiferromagnetic order at room temperature, considering its bulk
 468 ordering temperature of 311 K. Even for the small thicknesses of Cr, the ordering temperature could remain
 469 close to the bulk limit due to the proximity to ferromagnetic (Co)Fe [60]. At lower temperatures, the
 470 antiferromagnetic order should become stronger and, particularly for crystalline Cr, may exhibit rich
 471 physics associated with spin-density waves [12,13]. Therefore, to examine the possible influence of
 472 stronger antiferromagnetic order on spin transport, we have performed variable-temperature experiments.

473

474 FIG 10. (a) Temperature dependence of the electrical resistivity of an 8-nm-thick epitaxial Cr film. Inset: uptick of
 475 the resistivity with decreasing temperature below 30 K. (b) Temperature dependence of $\Delta\alpha$ for NiFe/Cu/epi-Cr/epi-

476 (Co)Fe heterostructures, with Cr thickness 8 nm. The filled symbols indicate results obtained with the field applied
477 along the easy axis of the epitaxial (Co)Fe spin sink ($H \parallel$ MAO[110] or (Co)Fe[100]); the empty symbols indicate
478 results obtained with the field applied along the hard axis of the epitaxial (Co)Fe spin sink ($H \parallel$ MAO[100] or
479 (Co)Fe[110]).

480 While determining the antiferromagnetic configurations is beyond the scope of our present work, we are
481 able to gain partial insights into the antiferromagnetic order in Cr films through the temperature dependence
482 of electrical resistivity. Figure 10(a) presents resistivity vs temperature for an 8-nm-thick epitaxial Cr film
483 grown directly on MAO. The monotonic decrease in resistivity with decreasing temperature, down to \approx 30
484 K, is consistent with the metallic nature of Cr. However, the resistivity shows a slight uptick with further
485 reduction in temperature below \approx 30 K. This uptick can be due to several mechanisms, including: (1)
486 Anderson (strong) localization due to lattice disorder, described by the variable range hopping model [61–
487 64]; (2) Efros-Shklovskii localization, where electron-electron interactions open a gap at the Fermi
488 energy [61,63]; (3) the spin Kondo effect [65]; (4) weak-localization with a carrier dephasing time limited
489 by electron-electron quasi-elastic Nyquist scattering (Altshuler-Aronov effect) [61–64]; (5) an
490 exchange/Hartree correction to the resistivity due to effects of electron-electron interactions on the density
491 of states [61,64]; 6) resonant impurity scattering in metallic antiferromagnets, which has been reported in
492 antiferromagnetic Cr films [66]. Of these mechanisms, (6) appears the most likely. Mechanisms (1) and
493 (2) result in an exponential dependence on temperature at low temperatures in contrast to the weak uptick
494 in resistivity observed in Fig. 10(a). Mechanism (3) is unlikely since the spin Kondo effect occurs from
495 scattering of carriers by magnetic impurities typically in metals with dilutely dispersed magnetic impurities.
496 Cr in contrast has non-zero magnetic moment at each lattice atom, and a spin Kondo effect is not likely to
497 manifest in such concentrated magnetic system; Ref. [66] arrives at the same conclusion. Mechanisms (4)
498 and (5) are viable alternatives to the effects of resonant impurity scattering in antiferromagnets (6). The
499 data does not allow a fully unambiguous distinction, since various models can be fitted to reproduce the
500 data fairly well. Yet, the strong similarity between Fig. 10(a) and the data in [66] (resonant impurity
501 scattering in antiferromagnetic Cr), in shape and magnitude of the uptick in resistivity and in the
502 temperature range where it manifests, makes resonant impurity scattering the most likely explanation. Thus,
503 we deduce that Fig. 10(a) supports the evidence that the Cr thin film is indeed antiferromagnetic at such
504 low temperatures.

505 We have also conducted variable-temperature FMR spin-pumping measurements [Fig. 10(b)], employing
506 a spectrometer equipped with a cryostat, for heterostructures grown on epitaxial (Co)Fe. We use the
507 temperature dependence of the intrinsic damping parameter α_0 of NiFe (measured from a control NiFe/Cu
508 sample without CoFe or Cr) as the baseline to quantify the temperature dependence of damping
509 enhancement $\Delta\alpha$. The NiFe/Cu/CoFe sample shows a large, nearly constant $\Delta\alpha$ of \approx 0.002 across the entire
510 temperature range. For this sample, the values of $\Delta\alpha$ are systematically higher by \approx 20% for measurements
511 with the field applied along the easy axis of CoFe [filled symbols in Fig. 10(b)]. We speculate that this
512 apparent anisotropy is due to small two-magnon scattering or anisotropic spin pumping [31].

513 For the NiFe/Cu/Cr/(Co)Fe samples, $\Delta\alpha$ mostly remains small, i.e., $< 5 \times 10^{-4}$, across the entire
514 temperature range. There appears to be a slight increase of $\Delta\alpha$ with decreasing temperature, although it is
515 difficult to discern a clear trend from the scatter in the data. The antiferromagnetic order of Cr, which
516 becomes stronger at lower temperatures, evidently has little impact on spin pumping. Yet, at the low-
517 temperature limit, we observe an abrupt increase in $\Delta\alpha$ up to \approx 0.001 for the NiFe/Cu/Cr/CoFe sample,
518 measured with the field along the easy-axis of CoFe. While the origin of this abrupt increase for that
519 particular sample (and the particular measurement geometry) is unknown, no such increase is seen for the
520 similar NiFe/Cu/Cr/Fe sample. Therefore, we conclude that the antiferromagnetic order of Cr in of itself
521 does not significantly influence spin transport in these heterostructures.

522

523 **IV. CONCLUSIONS**

524 By employing FMR spin pumping, we have studied pure-spin-current transport in metallic heterostructures
525 that incorporate the elemental antiferromagnet of Cr. We have primarily focused on heterostructures of the
526 form NiFe/Cu/Cr/(Co)Fe, where the Cu/Cr spacer separates the NiFe spin source and the (Co)Fe spin sink.
527 We find that the Cu/Cr spacer greatly reduces spin pumping – i.e., neither transmitting nor absorbing a
528 significant amount of spin current. This suppression of spin pumping is rather surprising, considering that
529 a thin layer of Cu or Cr alone permits significant spin transmission. A particularly large suppression (i.e.,
530 by an order of magnitude) emerges at the interface of epitaxial Cu(001)/Cr(001), although the interface of
531 polycrystalline Cu(111)/Cr(110) also yields a sizable reduction (by a factor of ≈ 4). Moreover, we observe
532 similar suppression of spin pumping with Cu/V spacers, where V is a nonmagnetic analogue of Cr,
533 demonstrating that the antiferromagnetism of Cr is not responsible for suppressing spin pumping. While
534 spin pumping is suppressed with FCC/BCC spacers of Cu/Cr and Cu/V, no suppression arises with
535 FCC/FCC spacers of Cu/Ag. The mismatch of crystal structure – hence electronic band structure – at the
536 interface of non-ferromagnetic metals may play a critical role in the effective spin-mixing conductance,
537 although a firm theoretical framework remains to be developed. Finally, the antiferromagnetism of Cr does
538 not appear to impact spin transport strongly in NiFe/Cu/Cr/(Co)Fe over a wide temperature range of 10-
539 300 K. Our work may stimulate a new outlook on spin transport in metallic systems, including interfaces
540 that are electrically conductive and yet spin insulating.

541

542 **SUPPLEMENTARY MATERIAL**

543 The supplementary material presents FMR data and discussion for additional reference samples of
544 MAO/epi-Cr/Cu/NiFe/Ti without a (Co)Fe spin sink.

545

546 **ACKNOWLEDGEMENTS**

547 Y.L., D.A.S., J.J.H., and S.E. were supported by the National Science Foundation (NSF) under Grant No.
548 DMR-2003914. B.N. was supported by NSF MEMONET Grant No. 1939999. C.K. and P.S acknowledge
549 support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, the
550 Microelectronics Co-Design Research Program, under contract no. DE-AC02-05-CH11231 (Codesign of
551 Ultra-Low-Voltage Beyond CMOS Microelectronics). V.P.A., T.M., and I.-J.P. acknowledge support by
552 the NSF under Grant No. DMR-2105219. This work was made possible by the use of Virginia Tech's
553 Materials Characterization Facility, which is supported by the Institute for Critical Technology and Applied
554 Science, the Macromolecules Innovation Institute, and the Office of the Vice President for Research and
555 Innovation. This research used resources of the Advanced Light Source, a U.S. DOE Office of Science User
556 Facility under Contract No. DE-AC02-05CH11231. We thank Eric Montoya and Kyungwha Park for
557 helpful discussions.

558

559 **DATA AVAILABILITY**

560 The data that support the findings of this study are available from the corresponding authors upon
561 reasonable request.

563 REFERENCES

- 564 1. A. Hoffmann and S. D. Bader, "Opportunities at the Frontiers of Spintronics," *Phys Rev Appl* **4**,
565 047001 (2015).
- 566 2. Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov,
567 M. D. Stiles, S. Emori, A. Hoffmann, J. Akerman, K. Roy, J.-P. Wang, S.-H. Yang, K. Garello,
568 and W. Zhang, "Roadmap of spin-orbit torques," *IEEE Trans Magn* 1–1 (2021).
- 569 3. C. Chappert, A. Fert, and F. N. Van Dau, "The emergence of spin electronics in data storage.," *Nat
570 Mater* **6**, 813–23 (2007).
- 571 4. Y. Tserkovnyak, A. Brataas, and G. Bauer, "Spin pumping and magnetization dynamics in metallic
572 multilayers," *Phys Rev B* **66**, 224403 (2002).
- 573 5. B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, and G. E. W. Bauer, "Dynamic
574 exchange coupling in magnetic bilayers.," *Phys Rev Lett* **90**, 187601 (2003).
- 575 6. T. Taniguchi, S. Yakata, H. Imamura, and Y. Ando, "Determination of Penetration Depth of
576 Transverse Spin Current in Ferromagnetic Metals by Spin Pumping," *Applied Physics Express* **1**,
577 031302 (2008).
- 578 7. A. Ghosh, S. Auffret, U. Ebels, and W. E. Bailey, "Penetration Depth of Transverse Spin Current in
579 Ultrathin Ferromagnets," *Phys Rev Lett* **109**, 127202 (2012).
- 580 8. C. T. Boone, H. T. Nembach, J. M. Shaw, and T. J. Silva, "Spin transport parameters in metallic
581 multilayers determined by ferromagnetic resonance measurements of spin-pumping," *J Appl Phys*
582 **113**, 153906 (2013).
- 583 9. J. Li, L. R. Shelford, P. Shafer, A. Tan, J. X. Deng, P. S. Keatley, C. Hwang, E. Arenholz, G. van
584 der Laan, R. J. Hicken, and Z. Q. Qiu, "Direct Detection of Pure ac Spin Current by X-Ray Pump-
585 Probe Measurements," *Phys Rev Lett* **117**, 076602 (2016).
- 586 10. S. Mizukami, Y. Ando, and T. Miyazaki, "The Study on Ferromagnetic Resonance Linewidth for
587 NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) Films," *Jpn J Appl Phys* **40**, 580–585 (2001).
- 588 11. T. Gerrits, M. L. Schneider, and T. J. Silva, "Enhanced ferromagnetic damping in Permalloy/Cu
589 bilayers," *J Appl Phys* **99**, 023901 (2006).
- 590 12. E. Fawcett, "Spin-density-wave antiferromagnetism in chromium," *Rev Mod Phys* **60**, 209–283
591 (1988).
- 592 13. H. Zabel, "Magnetism of chromium at surfaces, at interfaces and in thin films," *Journal of Physics:
593 Condensed Matter* **11**, 9303 (1999).
- 594 14. J. Bass and W. P. Pratt, "Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal
595 interfaces: an experimentalist's critical review," *Journal of Physics: Condensed Matter* **19**, 183201
596 (2007).
- 597 15. W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, A. Hoffmann, F. Freimuth, and Y. Mokrousov,
598 "Spin Hall effects in metallic antiferromagnets.," *Phys Rev Lett* **113**, 196602 (2014).

599 16. P. Merodio, A. Ghosh, C. Lemonias, E. Gautier, U. Ebels, M. Chshiev, H. Béa, V. Baltz, and W. E.
600 Bailey, "Penetration depth and absorption mechanisms of spin currents in Ir 20 Mn 80 and Fe 50
601 Mn 50 polycrystalline films by ferromagnetic resonance and spin pumping," *Appl Phys Lett* **104**,
602 032406 (2014).

603 17. Y. Ou, S. Shi, D. C. Ralph, and R. A. Buhrman, "Strong spin Hall effect in the antiferromagnet
604 PtMn," *Phys Rev B* **93**, 220405 (2016).

605 18. B. Khodadadi, Y. Lim, D. A. Smith, R. W. Greening, Y. Zheng, Z. Diao, C. Kaiser, and S. Emori,
606 "Spin decoherence independent of antiferromagnetic order in IrMn," *Phys Rev B* **99**, 024435 (2019).

607 19. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, "Antiferromagnetic
608 spintronics," *Rev Mod Phys* **90**, 015005 (2018).

609 20. D. Go, D. Jo, H. W. Lee, M. Kläui, and Y. Mokrousov, "Orbitronics: Orbital currents in solids,"
610 *Europhys Lett* **135**, 37001 (2021).

611 21. C. Du, H. Wang, F. Yang, and P. C. Hammel, "Systematic variation of spin-orbit coupling with d-
612 orbital filling: Large inverse spin Hall effect in," *Phys Rev B* **90**, 140407 (2014).

613 22. D. Qu, S. Y. Huang, and C. L. Chien, "Inverse spin Hall effect in Cr: Independence of
614 antiferromagnetic ordering," *Phys Rev B* **92**, 020418 (2015).

615 23. A. Bose, H. Singh, V. K. Kushwaha, S. Bhuktare, S. Dutta, and A. A. Tulapurkar, "Sign Reversal
616 of Fieldlike Spin-Orbit Torque in an Ultrathin Cr / Ni Bilayer," *Phys Rev Appl* **9**, 014022 (2018).

617 24. T. C. Chuang, C. F. Pai, and S. Y. Huang, "Cr-induced Perpendicular Magnetic Anisotropy and
618 Field-Free Spin-Orbit-Torque Switching," *Phys Rev Appl* **11**, 061005 (2019).

619 25. S. Lee, M. G. Kang, D. Go, D. Kim, J. H. Kang, T. Lee, G. H. Lee, J. Kang, N. J. Lee, Y. Mokrousov,
620 S. Kim, K. J. Kim, K. J. Lee, and B. G. Park, "Efficient conversion of orbital Hall current to spin
621 current for spin-orbit torque switching," *Commun Phys* **4**, 1–6 (2021).

622 26. S. M. Bleser, R. M. Greening, M. J. Roos, L. A. Hernandez, X. Fan, and B. L. Zink, "Negative spin
623 Hall angle and large spin-charge conversion in thermally evaporated chromium thin films," *J Appl
624 Phys* **131**, 113904 (2022).

625 27. G. Sala and P. Gambardella, "Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and
626 4f metallic heterostructures," *Phys Rev Res* **4**, 033037 (2022).

627 28. W. Cao, J. Liu, A. Zangiabadi, K. Barmak, and W. E. Bailey, "Measurement of spin mixing
628 conductance in Ni₈₁Fe₁₉/α-W and Ni₈₁Fe₁₉/β-W heterostructures via ferromagnetic resonance,"
629 *J Appl Phys* **126**, 043902 (2019).

630 29. E. Montoya, P. Omelchenko, C. Coutts, N. R. Lee-Hone, R. Hübner, D. Broun, B. Heinrich, and E.
631 Girt, "Spin transport in tantalum studied using magnetic single and double layers," *Phys Rev B* **94**,
632 054416 (2016).

633 30. A. J. Berger, E. R. J. Edwards, H. T. Nembach, O. Karis, M. Weiler, and T. J. Silva, "Determination
634 of the spin Hall effect and the spin diffusion length of Pt from self-consistent fitting of damping
635 enhancement and inverse spin-orbit torque measurements," *Phys Rev B* **98**, 024402 (2018).

636 31. A. A. Baker, A. I. Figueroa, C. J. Love, S. A. Cavill, T. Hesjedal, and G. van der Laan, "Anisotropic
637 Absorption of Pure Spin Currents," *Phys Rev Lett* **116**, 047201 (2016).

638 32. A. J. Lee, J. T. Brangham, Y. Cheng, S. P. White, W. T. Ruane, B. D. Esser, D. W. McComb, P. C.
639 Hammel, and F. Yang, "Metallic ferromagnetic films with magnetic damping under 1.4×10^{-3} ,"
640 *Nat Commun* **8**, 234 (2017).

641 33. B. Heinrich, "Spin Relaxation in Magnetic Metallic Layers and Multilayers," in *Ultrathin Magnetic
642 Structures III*, J. A. C. Bland and B. Heinrich, eds. (Springer-Verlag, 2005), pp. 143–210.

643 34. C. K. A. Mewes and T. Mewes, "Relaxation in Magnetic Materials for Spintronics," in *Handbook
644 of Nanomagnetism: Applications and Tools* (Pan Stanford, 2015), pp. 71–95.

645 35. E. R. J. Edwards, H. T. Nembach, and J. M. Shaw, "Co 25 Fe 75 Thin Films with Ultralow Total
646 Damping of Ferromagnetic Resonance," *Phys Rev Appl* **11**, 054036 (2019).

647 36. M. Tomaz, W. Antel, and W. O'Brien, "Orientation dependence of interlayer coupling and interlayer
648 moments in Fe/Cr multilayers," *Phys Rev B* **55**, 3716 (1997).

649 37. A. Scherz, H. Wende, C. Sorg, K. Baberschke, J. Minr, D. Benea, and H. Ebert, "Limitations of
650 integral XMCD sum-rules for the early 3d elements," *Physica Scripta T* **T115**, 586–588 (2005).

651 38. M. Caminale, A. Ghosh, S. Auffret, U. Ebels, K. Ollefs, F. Wilhelm, A. Rogalev, and W. E. Bailey,
652 "Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers," *Phys Rev B*
653 **94**, 014414 (2016).

654 39. R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, "Ferromagnetic resonance linewidth
655 in thin films coupled to NiO," *J Appl Phys* **83**, 7037 (1998).

656 40. T. Mewes, R. L. Stamps, H. Lee, E. Edwards, M. Bradford, C. K. A. Mewes, Z. Tadisina, and S.
657 Gupta, "Unidirectional Magnetization Relaxation in Exchange-Biased Films," *IEEE Magn Lett* **1**,
658 3500204–3500204 (2010).

659 41. L. Zhu, D. C. Ralph, and R. A. Buhrman, "Effective Spin-Mixing Conductance of Heavy-Metal–
660 Ferromagnet Interfaces," *Phys Rev Lett* **123**, 057203 (2019).

661 42. G. Woltersdorf and B. Heinrich, "Two-magnon scattering in a self-assembled nanoscale network of
662 misfit dislocations," *Phys Rev B* **69**, 184417 (2004).

663 43. S. Emori, U. S. Alaan, M. T. Gray, V. Sluka, Y. Chen, A. D. Kent, and Y. Suzuki, "Spin transport
664 and dynamics in all-oxide perovskite La 2 / 3 Sr 1 / 3 MnO 3 / SrRuO 3 bilayers probed by
665 ferromagnetic resonance," *Phys Rev B* **94**, 224423 (2016).

666 44. R. D. McMichael and P. Krivosik, "Classical Model of Extrinsic Ferromagnetic Resonance
667 Linewidth in Ultrathin Films," *IEEE Trans Magn* **40**, 2–11 (2004).

668 45. S. Wu, D. A. Smith, P. Nakarmi, A. Rai, M. Clavel, M. K. Hudait, J. Zhao, F. M. Michel, C. Mewes,
669 T. Mewes, and S. Emori, "Room-temperature intrinsic and extrinsic damping in polycrystalline Fe
670 thin films," *Phys Rev B* **105**, 174408 (2022).

671 46. J. Wang, P. Che, J. Feng, M. Lu, J. Liu, J. Meng, Y. Hong, and J. Tang, "A large low-field tunneling
672 magnetoresistance of CrO₂ / (CrO₂ Cr₂ O₃) powder compact with two coercivities," *J Appl Phys*
673 **97**, 73907 (2005).

674 47. Y. Lim, S. Wu, D. A. Smith, C. Klewe, P. Shafer, and S. Emori, "Absorption of transverse spin
675 current in ferromagnetic NiCu: Dominance of bulk dephasing over spin-flip scattering," *Appl Phys*
676 **Lett** **121**, 222403 (2022).

677 48. Y. Lim, B. Khodadadi, J.-F. Li, D. Viehland, A. Manchon, and S. Emori, "Dephasing of transverse
678 spin current in ferrimagnetic alloys," *Phys Rev B* **103**, 024443 (2021).

679 49. S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P.
680 Nibarger, "Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement
681 methods," *J Appl Phys* **99**, 093909 (2006).

682 50. P. Omelchenko, E. A. Montoya, E. Girt, and B. Heinrich, "Observation of Pure-Spin-Current
683 Diodelike Effect at the Au/Pt Interface," *Phys Rev Lett* **127**, 137201 (2021).

684 51. Q. Li, M. Yang, C. Klewe, P. Shafer, A. T. N'Diaye, D. Hou, T. Y. Wang, N. Gao, E. Saitoh, C.
685 Hwang, R. J. Hicken, J. Li, E. Arenholz, and Z. Q. Qiu, "Coherent ac spin current transmission
686 across an antiferromagnetic CoO insulator," *Nat Commun* **10**, 5265 (2019).

687 52. S. Emori, C. Klewe, J. M. Schmalhorst, J. Krieft, P. Shafer, Y. Lim, D. A. Smith, A. Sapkota, A.
688 Srivastava, C. Mewes, Z. Jiang, B. Khodadadi, H. Elmkharram, J. J. Heremans, E. Arenholz, G.
689 Reiss, and T. Mewes, "Element-Specific Detection of Sub-Nanosecond Spin-Transfer Torque in a
690 Nanomagnet Ensemble," *Nano Lett* **20**, 7828–7834 (2020).

691 53. C. Klewe, Q. Li, M. Yang, A. T. N'Diaye, D. M. Burn, T. Hesjedal, A. I. Figueroa, C. Hwang, J. Li,
692 R. J. Hicken, P. Shafer, E. Arenholz, G. van der Laan, and Z. Qiu, "Element- and Time-Resolved
693 Measurements of Spin Dynamics Using X-ray Detected Ferromagnetic Resonance," *Synchrotron
694 Radiat News* **33**, 12–19 (2020).

695 54. Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, "Nonlocal magnetization dynamics
696 in ferromagnetic heterostructures," *Rev Mod Phys* **77**, 1375–1421 (2005).

697 55. P. Deorani and H. Yang, "Role of spin mixing conductance in spin pumping: Enhancement of spin
698 pumping efficiency in Ta/Cu/Py structures," *Appl Phys Lett* **103**, 232408 (2013).

699 56. C. Du, H. Wang, F. Yang, and P. C. Hammel, "Enhancement of Pure Spin Currents in Spin Pumping
700 Y3Fe5O12," *Phys Rev Appl* **1**, 044004 (2014).

701 57. H. Wang, C. Du, P. C. Hammel, and F. Yang, "Spin transport in antiferromagnetic insulators
702 mediated by magnetic correlations," *Phys Rev B* **91**, 220410 (2015).

703 58. A. A. Baker, A. I. Figueroa, D. Pingstone, V. K. Lazarov, G. van der Laan, and T. Hesjedal, "Spin
704 pumping in magnetic trilayer structures with an MgO barrier," *Sci Rep* **6**, 35582 (2016).

705 59. O. Cortazar-Martínez, J. A. Torres-Ochoa, J. G. Raboño-Borbolla, and A. Herrera-Gomez,
706 "Oxidation mechanism of metallic chromium at room temperature," *Appl Surf Sci* **542**, 148636
707 (2021).

708 60. E. E. Fullerton, S. D. Bader, and J. L. Robertson, "Spin-Density-Wave Antiferromagnetism of Cr in
709 Fe / Cr(001) Superlattices," *Phys Rev Lett* **77**, 1382–1385 (1996).

710 61. P. A. Lee and T. V. Ramakrishnan, "Disordered electronic systems," *Rev Mod Phys* **57**, 287 (1985).

711 62. E. Akkermans and G. Montambaux, *Mesoscopic Physics of Electrons and Photons* (Cambridge
712 University Press, 2007).

713 63. C. Barone, H. Rotzinger, C. Mauro, D. Dorer, J. Münzberg, A. V. Ustinov, and S. Pagano, "Kondo-
714 like transport and magnetic field effect of charge carrier fluctuations in granular aluminum oxide
715 thin films," *Scientific Reports* 2018 8:1 **8**, 1–10 (2018).

716 64. A. L. Coughlin, Z. Pan, J. Hong, T. Zhang, X. Zhan, W. Wu, D. Xie, T. Tong, T. Ruch, J. J.
717 Heremans, J. Bao, H. A. Fertig, J. Wang, J. Kim, H. Zhu, D. Li, and S. Zhang, "Enhanced Electron
718 Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal
719 Nanowires by Chemical Doping," *Advanced Science* **10**, 2204424 (2023).

720 65. D. L. Cox, D. L. Cox, A. Zawadowski, and A. Zawadowski, "Exotic Kondo effects in metals:
721 Magnetic ions in a crystalline electric field and tunnelling centres," *Adv Phys* **47**, 599–942 (1998).

722 66. Z. Boekelheide, D. W. Cooke, E. Helgren, and F. Hellman, "Resonant impurity scattering and
723 electron-phonon scattering in the electrical resistivity of Cr thin films," *Phys Rev B* **80**, 134426
724 (2009).

725