
THEME ARTICLE: TOP PICKS FROM THE 2022 COMPUTER
ARCHITECTURE CONFERENCES

There’s Always a Bigger Fish: A Clarifying
Analysis of a Machine-Learning-Assisted
Side-Channel Attack
Jack Cook and Jules Drean , Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Jonathan Behrens , Microsoft, Redmond, WA, 98052, USA

Mengjia Yan , Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Machine learning has made it possible to mount powerful attacks through side channels
that are otherwise challenging to exploit. However, due to the black-box nature of
machine learning models, these attacks can be difficult to interpret correctly. Models
that simply find correlations cannot be used to analyze the various sources of
information leakage behind an attack. This article highlights the limitations of relying on
machine learning for side-channel attacks without completing a comprehensive security
analysis. We show that a state-of-the-art website-fingerprinting attack powered by
machine learning was only partially analyzed. Its authors were misled into believing
their attack exploited a cache-based side channel when it actually exploited an
interrupt-based side channel. We demonstrate this through a comprehensive analysis, in
which we run controlled experiments to rule out alternative hypotheses about the
attack’s primary source of leakage, and ultimately instrument the attack’s code to prove
our hypothesis.

Modern applications rely on underlying system
hardware and software to remain isolated
from one another. However, achieving this

isolation is challenging due to the existence of side
channels. In a side-channel attack, an adversary moni-
tors “side effects” generated by a victim’s execution
patterns in order to decode a secret. These “side
effects” can be observed by the adversary because of
contention over resources it shares with the victim,
such as caches, branch predictors, and DRAM.

Side-channel attacks are widely effective and have
been used to leak cryptographic keys, website browsing
activity,1,2 and user behavior.3,4 Some recent attacks
have employed machine learning techniques, which
can simplify development and improve robustness. For
relatively complicated applications such as website fin-
gerprinting, document fingerprinting, and acoustic side

channels, the relationship between the observed “side
effects” and the victim’s secret can be difficult to iden-
tify. However, machine learning models make it possi-
ble to solve this problem with relatively high accuracy.
This has led to major improvements for many side-
channel attacks.1,2,5,6,7,8,9

Nevertheless, correctly applying machine learning in
these settings can be tricky. Machine learning models
are good at finding correlations, which enables them to
be used regardless of one’s understanding of the side
channel being exploited. This can lead to the develop-
ment of powerful attacks that are poorly understood.
Without this deeper understanding, the community is
left unable to develop effective countermeasures or
mechanisms to close the underlying side channels.

In this article, we explore the limitations of using
machine-learning techniques in side-channel attacks.
Specifically, we show that a recent machine-learning-
powered side-channel attack proposed by Shusterman
et al.,1 known as a cache-based sweep-counting attack,
was not properly analyzed, leading to an incorrect con-
clusion about the attack’s primary cause. While this

0272-1732 © 2023 IEEE
Digital Object Identifier 10.1109/MM.2023.3273457
Date of publication 9 May 2023; date of current version
29 June 2023.

28 IEEE Micro Published by the IEEE Computer Society July/August 2023Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

attack was believed to be powered by cache contention,
we show that the attack’s machine learning model pri-
marily leverages information leaked through system
interrupts.

A Mysterious Source of Leakage
At a glance, it may seem unclear why system interrupts
would leak any information at all. Due to the complex-
ity of machine-learning-powered side-channel attacks,
it took us some time to reach this conclusion. We
started with multiple hypotheses about the attack’s
main source of leakage and ran a series of controlled
experiments to disprove them one by one. Once we
reached our conclusion about system interrupts, we
instrumented the attack’s code to prove they were the
main source of leakage. In this article, we turn this
approach into a framework which can be used to
analyze future machine-learning-powered side-channel
attacks.

In each of our controlled experiments, we used a
modified version of the cache-based sweep-counting
attack’s code that is stripped of memory accesses. We
show that when memory accesses are removed, the
attack’s accuracy increases in nearly every case, effec-
tively disproving the attack’s reliance on the cache. We
call this new attack a loop-counting attack and evalu-
ate it extensively. Each experiment we run with this
new attacker is designed to test one potential hypothe-
sis about the primary source of leakage behind both
attacks. This careful approach is necessary due to
the opacity of machine-learning models, which discover
correlations between “side effects” and secrets without
yielding any insights into the signals being exploited.

A System-Interrupt Side Channel
This process led us to find that information is primarily
leaked through system interrupts in both attacks. Sys-
tem interrupts are used by all modern computers to
perform essential tasks asynchronously, such as send-
ing and receiving data on a network, or interacting with
devices such as a keyboard or a GPU. They are specific
to each process, meaning interrupts related to one
application should not be observed by another. With
this in mind, how could they be used to mount a side-
channel attack?

Intuitively, when an interrupt is triggered, it needs
to be handled by an interrupt handler, a piece of kernel
code that can run on the same core as the attacker’s
program. The attacker program will then be inter-
rupted, and its instruction throughput should decrease.
Figure 1 shows this process in action. In the white
regions, the victim and attacker programs are both

able to execute freely on separate cores. However,
when the victim accesses a shared resource, such as a
network card or graphics card, it generates an interrupt
that is processed on the attacker’s core. In the yellow
region, the attacker is preempted as the interrupt is
processed, and the attacker’s instruction throughput
decreases. A particularly attentive attacker may record
the time and notice a small jump, equal to T2� T1,
once the interrupt has been processed. Observing
many of these jumps over time effectively allows the
attacker to monitor the victim’s execution patterns,
and ultimately decode the victim’s secrets.

To prove the connection between system interrupts
and information leakage in both attacks, we finally
instrument the Linux kernel. In our analysis, and for the
first time in the literature, we find that nonmovable
interrupts, such as softirqs and rescheduling interrupts,
play a crucial role in leaking application information.
This finding is important as nearly all prior research3,10

studying interrupt-based side channels focuses on
movable interrupts such as graphics and network inter-
rupts. Linux provides convenient interfaces to block
information leakage due to movable interrupts by iso-
lating them from potential attackers. However, prevent-
ing leakage due to nonmovable interrupts may require
major system redesigns.

Our work highlights the importance of thoroughly
analyzing side-channel attacks, especially those assis-
ted by machine-learning techniques. We hope this work
raises awareness about the limitations of machine
learning as a tool and motivates the community to
develop better methods for analyzing side channels.

THE LOOP-COUNTING ATTACK
In this section, we build an attacker program that is
almost identical to the sweep-counting attack1 but
does not perform any memory accesses. We call our
new attack a loop-counting attack. We show that the
profiles of the traces collected by the two attackers
are highly correlated, suggesting that only a small

T1: an interrupt
arrives at the core

T2: finish executing
interrupt handler

victim
process

Time

attacker
process

 hardware devices

FIGURE 1. Example interrupt-based side channel.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

July/August 2023 IEEE Micro 29Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

amount of information is lost when foregoing cache
accesses.

Attack Description
We show pseudo-code for a sweep-counting attacker
in Figure 2(a) and our loop-counting attacker in Fig-
ure 2(b). In both algorithms, the attacker takes a period
length P as input. It then constructs a trace, where
each element in the trace measures how many itera-
tions of the inner-most loop were executed every P

ms. In the sweep-counting attack’s code, the loop body
contains an increment operation, memory accesses to
a large buffer, and a call to the time() function. Note
that the buffer’s size matches the size of the last-level
cache so that one completion of the inner loop sweeps
the entire last-level cache. The counter value can thus
be used to infer how many of the accessed cache lines
reside in the cache. Conversely, in the loop-counting
attack’s code, we make no memory accesses inside
the inner-most loop, but instead only have an incre-
ment instruction and a call to the time() function.

Since the sweep-counting attack’s code [in Figure
2(a)] measures the throughput of memory accesses, it
was previously believed that the resulting trace was a
good proxy for memory throughput and cache occu-
pancy over time. However, in addition to cache hits
and misses, the throughput of memory instructions
can be affected by many other factors, including inter-
rupts, which have been overlooked by previous work.

Intuitively, within a given period of time, if the
program is preempted by an interrupt handler, the
attacker spends less time executing the loop and thus
fewer iterations can be completed, leading to smaller

trace values. Therefore, traces can capture a large
amount of timing information from system interrupts.

Trace Examples
In Figure 3, we present loop-counting traces generated
using the algorithm from Figure 2(b) on three victimweb-
sites (nytimes.com, amazon.com, and weather.com).

Each trace is collected while a victim is browsing
potentially sensitive websites in a different tab. The
JavaScript attacker repeatedly calls performance.now()
to measure the time, which is returned at a low preci-
sion and often with some added noise, depending on
the browser being used. We generally pick a value for
the period length P that is larger than the timer resolu-
tion provided by the browser in order to accurately
measure throughput. For consistency, if not explicitly
stated otherwise, we set P to 5 ms.

We collect each trace by running the loop-counting
attack code from Figure 2(b) for 15 s while the browser
loads and renders a website in another tab. The shades
in the trace correspond to counter values ranging
from approximately 21,000 to 27,000. Darker shades
represent smaller counter values, indicating that the
attacker is preempted by interrupts and paused for
more time.

We observe that traces for the same website are
similar to each other, while traces for different web-
sites are quite different. For example, according to the
traces in Figure 3, we can infer that amazon.com per-
forms much of its activity in the first 2 s, with spikes in
activity around 5 and 10 s. Visual cues such as these

int Trace[T*1000];
loop {
count = 0;
t_begin = time() ;

do {
/ / count iterations
count++;
/ / memory accesses
for (i=0; i<N; i++) {
tmp = buffer[i *64];

}
} while(time()−t_begin

< P);

Trace[t_begin] = count;
}

(a)

int Trace[T*1000];
loop {
count = 0;
t_begin = time() ;

do {
/ / count iterations
count++;

No memory
accesses

} while(time()−t_begin
< P);

Trace[t_begin] = count;
}

(b)

FIGURE 2. Pseudocode for both attacks. (a) Sweep-counting

attack. (b) Loop-counting attack.

nytimes.com

amazon.com

weather.com

0 3 6 9 12 15
Time (s)

21000

22000

23000

24000

25000

26000

27000

FIGURE 3. Example loop-counting traces collected over 15 s.

Darker shades indicate smaller counter values and lower

instruction throughput.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

30 IEEE Micro July/August 2023Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

indicate that loop-counting traces can be used as fin-
gerprints to distinguish different websites.

Comparing Attacker Traces
In Figure 4, we compare the behavior of traces collected
by the loop-counting and the sweep-counting attackers.
Each plot depicts averaged traces over 100 runs from its
respective website, which were then normalized by
dividing each value by the maximum iteration count
observed by that attacker. This maximum count was
about 27,000 loop iterations for our attacker, and 32 for
the sweep-counting attacker. The averaged traces from
each attacker are strongly correlated with each other,
with a correlation coefficient of r¼ 0:87 for nytimes.-
com, 0:79 for amazon.com, and 0:94 for weather.com,
suggesting that traces collected by the sweep-counting
attacker are shaped by the same system events as
those collected by the loop-counting attacker.

COMPARING THE TWO ATTACKS
In this section, we demonstrate that the sweep-
counting attack by Shusterman et al.1 does not primar-
ily rely on cache-based side channels. Specifically, we
evaluate our loop-counting attack against a state-of-
the-art cache-based website-fingerprinting attack2 and
find that our attack outperforms it in all but one experi-
mental configuration.

Evaluation Setup
To compare the two attacker programs, we use website
fingerprinting as a benchmark. Specifically, we compare

our work to the state-of-the-art “cache-occupancy”
attack presented by Shusterman et al.2 To make a fair
comparison, we closely follow their methodology, includ-
ing experimental configurations, data collection meth-
ods, machine learningmodel, and hyperparameters.

Like Shusterman et al., we leverage machine learn-
ing to create an attack consisting of two phases: an off-
line training phase and an online attack phase. In the
offline training phase, the attacker collects a dataset
composed of labeled traces, annotated with their cor-
responding websites, and uses the dataset to train a
machine learning classifier. This step is performed on a
machine under the attacker’s control. In the online
attack phase, the attacker collects a trace while the
victim visits an unknown website. The attacker then
uses the trained classifier to predict which website
was visited by the victim.

We perform our evaluation under two setups: a
closed-world setup and an open-world setup. In the
closed-world setup, the attacker knows the complete
set of websites that the victim will visit. In our experi-
ments, the attacker aims to distinguish the victim’s
accesses of 100 different websites. By contrast, in the
open-world setup, the attacker does not have full
knowledge of the websites that will be visited by
the victim. Instead, the victim will access a set of
“sensitive” and “nonsensitive” websites. The attacker
only knows the set of sensitive websites and aims to
precisely identify the victim’s access to these websites.
When the victim visits a nonsensitive website, the
attacker should simply report “nonsensitive.”

Evaluation Results
In Table 1, for each combination of web browser and
operating system, we report our attack’s accuracy in
our closed- and open-world setups. We evaluate our
attack on four commercial web browsers: Chrome,
Firefox, Safari, and Tor Browser.

Tor Browser is a modified version of Firefox with
additional security features intended to block local side
channel attacks. Due to these security features, it takes
noticeably longer to load a page on Tor Browser. We
use 15-s traces when attacking Chrome, Firefox, and
Safari, and 50-s traces when attacking Tor Browser.

Closed-World Results
In the closed-world setup, our attack predicts which
website was visited out of 100 possible websites. We
directly compare the accuracy of our attack to the
accuracy of the cache-based sweep-counting attack
from Shusterman et al.2 Note that website content has
changed since Shusterman et al. published their work,2

75

100
nytimes.com

75

100

A
ve

ra
ge

V
al
ue

(%
)

amazon.com

0 3 6 9 12 15
Time (s)

75

100
weather.com

Our attacker Sweep-counting attacker

FIGURE 4. Normalized trace values averaged over 100 runs

while loading three websites. Traces collected with both

attackers are strongly correlated with each other.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

July/August 2023 IEEE Micro 31Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

and we perform our work on newer operating systems
and web browsers. We bold the accuracy for experi-
ments where our attack achieves higher accuracy.

When attacking Chrome, our attack is stronger for
both experimental setups. For example, when attack-
ing Chrome running in Windows in a closed-world
setup, our attack achieves an accuracy of 92.5%, while
the cache-based attack only achieves a success rate
of 80.0%. Notably, our attack is still effective on Tor
Browser, though with significantly reduced accuracy.
In the closed-world setup, our attack’s accuracy is
49.8%, and the top-five accuracy, the rate at which the
correct website is one of the model’s top-five predic-
tions, is 86.4%.

Open-World Results
In our open-world setup, we add 5000 “nonsensitive”
traces to our existing collection of 10,000 “sensitive”
closed-world traces to make a complete dataset of
15,000 traces. We then train a new model with 101 clas-
ses: one for each sensitive website, and an additional
“nonsensitive” class with all 5000 open-world traces.
This experimental design is identical to the design
used by Shusterman et al.2

We report the base accuracy and standard devia-
tion of this model for each experiment in the “loop-
counting attack” column of Table 1, along with the
respective accuracy from Shusterman et al.2 We
bold the accuracy for experiments where our attack
achieves higher accuracy and note that our attack is
stronger in all experiments except for Tor Browser, in
which we achieve the same accuracy.

Interpretation
The results we report in Table 1 show that our loop-
counting attacker, which makes no memory accesses,
consistently outperforms the state-of-the-art website-
fingerprinting attack. This finding demonstrates that
side channels that do not leverage the cache can be

exploited to create a powerful attack. This leads us to
believe that the sweep-counting attack may already be
using other sources of information leakage. We analyze
this possibility in depth in the next section.

THE PRIMARY SOURCE OF
LEAKAGE

At this point, we can rule out caches and the rest
of the memory hierarchy as the primary source of leak-
age in these attacks. Now, we can investigate other
hypotheses to determine the true primary source. For
each potential side channel, we design a controlled
experiment where we add isolation to close the side
channel and observe changes in the attack’s accuracy.
Figure 5 gives an example of the process used to test
and disprove these different hypotheses.

Effects of Isolation Mechanisms
We start our analysis by looking at how different isola-
tion mechanisms affect our loop-counting attack. We
use an attacker program that implements the algo-
rithm from Figure 2(b) in Python.

Table 2 shows classification accuracy when evalu-
ating the Python attack code on Chrome in a closed-
world setup. Note that we create each configuration
by incrementally adding a new isolation mechanism in
addition to the mechanisms from the previous configu-
ration. For example, the last configuration inherits all
isolation mechanisms from previous configurations,
including disabling frequency scaling, pinning to sepa-
rate cores, removing interrupt request (IRQ) interrupts,
and running the attacker process and the victim pro-
cess in two separate virtual machines (VMs).

TABLE 1. Classification accuracy obtained with JavaScript loop-counting attacker.

Browser
Operating
system

Closed world Open world

Loop-counting
attack Cache attack2†

Loop-counting
attack Cache attack2†

Chrome 92 Linux 96.660.8 91.461.2 97.260.3 86.460.3

Firefox 91 Linux 95.360.7 80.060.6 96.460.8 87.461.2

Safari 14 macOS 96.660.5 72.661.3 96.760.6 80.561.0

Tor Browser 10 Linux 49.864.2 46.764.1 62.962.4 62.963.3

†We use the same data collection method and LSTM-based model as Shusterman et al.1,2 However, the following differences exist between our
evaluation setup and theirs: 1) Shusterman et al. performed their experiments in 2018 and thus used older operating systems and web browsers,
2) Firefox has changed its timer resolution from 2ms in 2018 to the current 1 ms, and 3) we use different Intel CPUs.

Takeaway 1: Side channels other than the cache provide

enough signal to craft a powerful website-fingerprinting

attack.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

32 IEEE Micro July/August 2023Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

Disable Frequency Scaling
Recall that the loop-counting attack code measures
instruction throughput, which can be impacted by pro-
cessor frequency scaling. Therefore, we first verify
whether the signals used by our attack are affected by
frequency scaling by running an experiment with this
feature disabled. We observe a small decrease of 1% in
the top-one accuracy, which indicates that our attack
is still highly effective even without any signal due to
frequency scaling.

Run on Separate Cores
We also investigate whether our attack is caused
by contention of CPU resources, which can happen
when the operating system schedules the attacker pro-
cess and the victim process onto the same core. We
observe a negligible decrease of 0.2% in the attack’s
accuracy, indicating that our attack does not rely on
CPU contention.

Remove IRQ Interrupts
There exist many types of system interrupts. For mov-
able interrupts, such as graphics interrupts, network
interrupts, and SATA interrupts, there is no restriction
on where these interrupts should be processed. How-
ever, nonmovable interrupts, such as timer interrupts,
softirqs, rescheduling interrupts, and translation look-
aside buffer (TLB) shootdowns, are left on the attack-
er’s core since these interrupts execute on all cores

and the operating system does not provide an inter-
face tomove them.

We observe moderate decreases of 5.8% and 1% in
the top-one and top-five accuracy, respectively. There
are two takeaways from these results. First, the timing
characteristics of device interrupts play an important
role in leaking website identity, given that different
websites trigger characteristic network and graphics
activities. Second, removing all movable interrupts is
not sufficient to mitigate the attack: the remaining
nonmovable interrupts might play an important role in
leaking the victim’s activity.

Run in Separate VMs
Finally, we evaluate how our interrupt-based side chan-
nel performs when the attacker and victim are running
in separate VMs, in addition to all isolation mechanisms
from our previous configurations. In this configuration,
we observe a slight increase of 3.4% in the top-one
accuracy. This observation contradicts our expectation,
as one would expect the stronger isolation offered by
VMs would reduce the effectiveness of our attack. One
plausible explanation for this phenomenon is that when
routing an interrupt to a core running a VM, the signal
is amplified as the interrupt needs to be processed by
both the host OS and the guest OS. For example, VM
entries and exits are generally much more expensive
than process-level context switches. This observation
has worrying implications for cloud computing environ-
ments, which rely on similar isolation mechanisms to
separate different clients.

With these results, nonmovable interrupts appear
to be the primary source of leakage in both attacks.
Because nonmovable interrupts cannot be isolated nor
deactivated, it is impossible to mount a simple experi-
ment and try to disprove this hypothesis. Instead, we

FIGURE 5. Illustration of our experimental procedure. We start at the top-left and repeatedly run new controlled experiments to

learn more about our loop-counting attack.

TABLE 2. Classification accuracy obtained with Python
loop-counting attacker under various isolation mechanisms.

Isolation mechanism
Top-one
accuracy

Top-five
accuracy

Default 95.2% 99.1%

þ Disable frequency scaling 94.2% 98.6%

þ Pin to separate cores 94.0% 98.3%

þ Remove IRQ interrupts 88.2% 97.3%

þ Run in separate VMs 91.6% 97.3%

Takeaway 2: Current isolation mechanisms are insufficient

to completely mitigate the loop-counting attack, which

monitors instruction throughput for website fingerprinting.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

July/August 2023 IEEE Micro 33Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

need to use a different method to prove that nonmov-
able interrupts are responsible for the information leak-
age in these attacks.

IDENTIFYING THE UNDERLYING
SIDE CHANNEL

In this section, we use the instrumentation functionali-
ties provided by Linux to analyze the loop-counting
attack in more detail and uncover the underlying side
channels. In particular, Linux allows setting kprobes
and tracepoints at specific points in the kernel binary.
When execution reaches these points, Linux calls into
small user-provided programs which can inspect the
current system state and record data. To ensure safety,
these programs are specified using the restricted appli-
cation programming interface of eBPF byte code.

Analysis Tool
We use eBPF to monitor system interrupts as they are
processed on each core, logging the timestamp and
root cause of each one. We then compare the timing
of each interrupt to the timings of “jumps,” or large
and sudden increases in the local time, that can be
observed by our attacker. Our attacker watches for
these jumps by repeatedly reading from Linux’s CLOCK_

MONOTONIC time source.
Reading from the monotonic clock is slower than

directly accessing the CPU timestamp counter, but still
incurs very little overhead because it is implemented
via virtual dynamic shared object (vDSO). Since eBPF
also has access to the monotonic clock, time measure-
ments are synchronized between the two programs,
and we can attribute specific interrupts recorded in
the kernel with specific gaps observed by the user-
space attacker.

Analysis Results
Figure 6 reports the average time spent in interrupt
handlers during 100 runs from three popular websites,
sample traces for which were presented in Figure 3. In
this experiment, we use irqbalance to prevent the
attacker’s core from receiving IRQs, so that almost all
observable execution gaps come from nonmovable
interrupts. Notice that the amount of time spent han-
dling interrupts closely matches the appearance of the
traces in Figure 3. For instance, most interrupt-handler
activity when loading nytimes.com happens in the first
4 s, while for amazon.com, we observe spikes at 5 and
10 s.

Different websites can even trigger different types
of nonmovable interrupts. For example, weather.com
routinely triggers rescheduling interrupts, which we

found often occur alongside TLB shootdowns. Identify-
ing the JavaScript-based mechanisms causing differ-
ent sites to trigger different types of interrupts is left
as future work.

Notably, we find that our eBPF tool confirms that
over 99% of execution gaps longer than 100 nanosec-
onds are caused by interrupts. We consider this result to
serve as a rigorous proof that our loop-counting attacker
primarily exploits signals from system interrupts.

Analysis Implications
This result highlights the robustness of our attack.
Interrupt-based side channels are universal, as inter-
rupts exist on every platform and can be detected by
many different attackers. For instance, our traces and
the trace of interrupt-handler activity are generated
using different attack code (polling CLOCK_MONOTONIC ver-
sus measuring instruction throughput with Chrome’s
reduced resolution timer) and written in different pro-
gramming languages (Rust versus JavaScript).

We additionally identify the security problems asso-
ciated with nonmovable interrupts, such as softirqs
and rescheduling interrupts, which have never before
been studied in side-channel attacks. For example, sof-
tirqs are a mechanism used by the Linux kernel to han-
dle complex interrupt-related tasks that are not critical
and can be deferred. This helps to keep the kernel

0

5

nytimes.com

0

5

H
an

dl
er

T
im

e
(%

)

amazon.com

0 3 6 9 12 15
Time (s)

0

5

weather.com

Softirq Rescheduling Interrupt

FIGURE 6. Percentage of time spent processing interrupts

averaged over 100 runs while loading three different websites.

Takeaway 3: Our loop-counting attack primarily exploits

signals from system interrupts.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

34 IEEE Micro July/August 2023Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

responsive and to correctly handle other time-sensitive
interrupts. This mechanism is especially helpful for
long-running tasks, such as the decryption of a net-
work packet or the launch of an operation on the GPU.
A lightweight interrupt handler will simply queue a sof-
tirq that will perform the operation at a more appropri-
ate time. The operating system can decide to allocate
this softirq to a different core, potentially moving oper-
ations onto a core shared with an attacker. Unfortu-
nately, the Linux kernel does not offer any interface to
control the dispatching of softirqs.

Truly understanding the causal relationship between
nonmovable interrupts and other system events requires
instrumenting the kernel at a further depth than allowed
by eBPF. Since it is infeasible to isolate nonmovable
interrupts from applications running on the system, our
attack highlights the fact that existing isolation mecha-
nisms are ineffective to mitigate interrupt-based side
channels. Major system redesigns are necessary to close
this side channel.

CONCLUSION
This paper highlights the importance of thoroughly ana-
lyzing machine-learning-powered side-channel attacks.
We presented a framework which can be used to ana-
lyze future side-channel attacks in depth.

We first constructed our “loop-counting” attack by
removing memory accesses from a similar cache-based
attack. We showed our attack achieves higher accuracy,
ruling out cache-based side channels as a primary
source of leakage. We then performed several con-
trolled experiments in which we closed potential side
channels, such as frequency scaling and CPU conten-
tion, and observed that our attack’s accuracy was
not significantly impacted. Finally, we instrumented
the Linux kernel to prove that both attacks exploit
interrupt-based side channels. Our analysis showed that
it is virtually impossible to isolate all interrupts from a
specific CPU core, since many nonmovable interrupts
are needed for the system to function properly.

We hope this work will inspire the research commu-
nity to perform more in-depth analysis of side-channel
attacks as these are essentials to understand the
security of our system and to build efficient defense
mechanisms.

ACKNOWLEDGMENTS
We thank our shepherd Yanjing Li and our anonymous
reviewers for helpful feedback, Peter Deutsch for
resolving issues with our machines so we could run
our experiments, Sacha Servan-Schreiber for inspiring
the title of our paper, and our friends, family, and
lab mates for their support. This work was supported
in part by NSF Grant CNS-2046359, AFOSR Grant
FA9550-20-1-0402, and the MIT-IBM Watson AI Lab.

REFERENCES
1. A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin,

Y. Oren, and Y. Yarom, “PrimeþProbe 1, JavaScript 0:

Overcoming browser-based side-channel

defenses,” in Proc. 30th USENIX Secur. Symp., 2021,

pp. 2863–2880.

2. A. Shusterman et al., “Robust website fingerprinting

through the cache occupancy channel,” in Proc. 28th

USENIX Secur. Symp., 2019, pp. 639–656, doi: 10.1109/

TDSC.2020.2988369.

3. M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice,

and S. Mangard, “Practical keystroke timing attacks

in sandboxed JavaScript,” in Proc. Eur. Symp. Res.

Comput. Secur. (ESORICS), 2017, pp. 191–209,

doi: 10.1007/978-3-319-66399-9_11.

4. Y. Oren, V. Kemerlis, S. Sethumadhavan, and

A. Keromytis, “The spy in the sandbox: Practical

cache attacks in JavaScript and their implications,” in

Proc. 22nd ACM SIGSAC Conf. Comput. Commun.

Secur., 2015, pp. 1406–1418, doi: 10.1145/2810103.

2813708.

5. G. Hospodar, B. Gierlichs, E. De Mulder,

I. Verbauwhede, and J. Vandewalle, “Machine learning

in side-channel analysis: A first study,” J. Cryptogr.

Eng., vol. 1, no. 4, pp. 293–302, Dec. 2011, doi: 10.1007/

s13389-011-0023-x.

6. L. Lerman, G. Bontempi, and O. Markowitch, “A

machine learning approach against a masked

AES: Reaching the limit of side-channel attacks

with a learning model,” J. Cryptogr. Eng.,

vol. 5, no. 2, pp. 123–139, Jun. 2015, doi: 10.1007/

s13389-014-0089-3.

7. P. Lifshits et al., “Power to peep-all: Inference attacks

by malicious batteries on mobile devices,” in Proc.

Privacy Enhancing Technol., 2018, pp. 141–158,

doi: 10.1515/popets-2018-0036.

8. H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking

cryptographic implementations using deep learning

techniques,” in Proc. 6th Int. Conf. Secur., Privacy,

Appl. Cryptogr. Eng., 2016, pp. 3–26, doi: 10.1007/978-

3-319-49445-6_1.

Takeaway 4:Nonmovable interrupts, such as softirqs and

rescheduling interrupts, leak information from victim

processes. Blocking information leakage from these

interrupts may require major system redesigns.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

July/August 2023 IEEE Micro 35Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

9. H. Naghibijouybari, A. Neupane, Z. Qian, and

N. Abu-Ghazaleh, “Rendered insecure: GPU side

channel attacks are practical,” in Proc. ACM SIGSAC

Conf. Comput. Commun. Secur., 2018, pp. 2139–2153,

doi: 10.1145/3243734.3243831.

10. X. Tang, Y. Lin, D. Wu, and D. Gao, “Towards

dynamically monitoring android applications on

non-rooted devices in the wild,” in Proc. 11th ACM

Conf. Secur. Privacy Wireless Mobile Netw., 2018,

pp. 212–223, doi: 10.1145/3212480.3212504.

JACK COOK is with the Massachusetts Institute of Technol-

ogy, Cambridge, MA, 02139, USA. His research interests

include machine learning interpretability, natural language

processing, and human–computer interaction. Contact him

at cookj@alum.mit.edu.

JULES DREAN is a Ph.D. student at the Massachusetts

Institute of Technology, Cambridge, MA, 02139, USA. His

research interests include side-channel attacks and trusted

execution environments. Contact him at drean@mit.edu.

JONATHAN BEHRENS is a senior software engineer at

Microsoft, Redmond, WA, 98052, USA. His research interests

include operating systems and distributed systems. Behrens

received his Ph.D. degree from the Massachusetts Institute

of Technology. Contact him at fintelia@gmail.com.

MENGJIA YAN is an Assistant Professor in the Electrical

Engineering and Computer Science Department, Massachu-

setts Institute of Technology, Cambridge, MA, 02139, USA.

Her research interests include computer architecture and

hardware security, with a focus on side-channel attacks and

defenses. Yan received her Ph.D. degree from the University

of Illinois at Urbana-Champaign. Contact her at mengjia@

csail.mit.edu.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

36 IEEE Micro July/August 2023Authorized licensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrictions apply.

