THEME ARTICLE: TOP PICKS FROM THE 2022 COMPUTER

ARCHITECTURE CONFERENCES

There'’s Always a Bigger Fish: A Clarifying

Analysis of a Machine-Learning-Assisted
Side-Channel Attack

Jack Cook ® and Jules Drean ®, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Jonathan Behrens @, Microsoft, Redmond, WA, 98052, USA

Mengjia Yan ., Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Machine learning has made it possible to mount powerful attacks through side channels
that are otherwise challenging to exploit. However, due to the black-box nature of
machine learning models, these attacks can be difficult to interpret correctly. Models
that simply find correlations cannot be used to analyze the various sources of
information leakage behind an attack. This article highlights the limitations of relying on
machine learning for side-channel attacks without completing a comprehensive security
analysis. We show that a state-of-the-art website-fingerprinting attack powered by
machine learning was only partially analyzed. Its authors were misled into believing

their attack exploited a cache-based side channel when it actually exploited an
interrupt-based side channel. We demonstrate this through a comprehensive analysis, in
which we run controlled experiments to rule out alternative hypotheses about the
attack’s primary source of leakage, and ultimately instrument the attack’s code to prove

our hypothesis.

odern applications rely on underlying system
M hardware and software to remain isolated
from one another. However, achieving this
isolation is challenging due to the existence of side
channels. In a side-channel attack, an adversary moni-
tors “side effects” generated by a victim's execution
patterns in order to decode a secret. These “side
effects” can be observed by the adversary because of
contention over resources it shares with the victim,
such as caches, branch predictors, and DRAM.
Side-channel attacks are widely effective and have
been used to leak cryptographic keys, website browsing
activity,"? and user behavior.*>* Some recent attacks
have employed machine learning techniques, which
can simplify development and improve robustness. For
relatively complicated applications such as website fin-
gerprinting, document fingerprinting, and acoustic side

0272-1732 © 2023 |IEEE

Digital Object Identifier 10.1109/MM.2023.3273457

Date of publication 9 May 2023; date of current version
29 June 2023.

channels, the relationship between the observed “side
effects” and the victim’s secret can be difficult to iden-
tify. However, machine learning models make it possi-
ble to solve this problem with relatively high accuracy.
This has led to major improvements for many side-
channel attacks.>>6789

Nevertheless, correctly applying machine learning in
these settings can be tricky. Machine learning models
are good at finding correlations, which enables them to
be used regardless of one's understanding of the side
channel being exploited. This can lead to the develop-
ment of powerful attacks that are poorly understood.
Without this deeper understanding, the community is
left unable to develop effective countermeasures or
mechanisms to close the underlying side channels.

In this article, we explore the limitations of using
machine-learning techniques in side-channel attacks.
Specifically, we show that a recent machine-learning-
powered side-channel attack proposed by Shusterman
et al,” known as a cache-based sweep-counting attack,
was not properly analyzed, leading to an incorrect con-
clusion about the attack’s primary cause. While this

28 Authorized licersee waeckiited to: MIT Libraries. Downlgsidsiten hipvember@32033mt 26 Hs¢eeTC from IEEE Xplore. Restrighighgiapply.2023

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

attack was believed to be powered by cache contention,
we show that the attack's machine learning model pri-
marily leverages information leaked through system
interrupts.

A Mysterious Source of Leakage

At a glance, it may seem unclear why system interrupts
would leak any information at all. Due to the complex-
ity of machine-learning-powered side-channel attacks,
it took us some time to reach this conclusion. We
started with multiple hypotheses about the attack’s
main source of leakage and ran a series of controlled
experiments to disprove them one by one. Once we
reached our conclusion about system interrupts, we
instrumented the attack’s code to prove they were the
main source of leakage. In this article, we turn this
approach into a framework which can be used to
analyze future machine-learning-powered side-channel
attacks.

In each of our controlled experiments, we used a
modified version of the cache-based sweep-counting
attack’s code that is stripped of memory accesses. We
show that when memory accesses are removed, the
attack’s accuracy increases in nearly every case, effec-
tively disproving the attack’s reliance on the cache. We
call this new attack a loop-counting attack and evalu-
ate it extensively. Each experiment we run with this
new attacker is designed to test one potential hypothe-
sis about the primary source of leakage behind both
attacks. This careful approach is necessary due to
the opacity of machine-learning models, which discover
correlations between “side effects” and secrets without
yielding any insights into the signals being exploited.

A System-Interrupt Side Channel

This process led us to find that information is primarily
leaked through system interrupts in both attacks. Sys-
tem interrupts are used by all modern computers to
perform essential tasks asynchronously, such as send-
ing and receiving data on a network, or interacting with
devices such as a keyboard or a GPU. They are specific
to each process, meaning interrupts related to one
application should not be observed by another. With
this in mind, how could they be used to mount a side-
channel attack?

Intuitively, when an interrupt is triggered, it needs
to be handled by an interrupt handler, a piece of kernel
code that can run on the same core as the attacker's
program. The attacker program will then be inter-
rupted, and its instruction throughput should decrease.
Figure 1 shows this process in action. In the white
regions, the victim and attacker programs are both

hardware devices

Time
victim
process | \’ |
attacker I I |
process / \

T1: an interrupt
arrives at the core

T2: finish executing
interrupt handler

FIGURE 1. Example interrupt-based side channel.

able to execute freely on separate cores. However,
when the victim accesses a shared resource, such as a
network card or graphics card, it generates an interrupt
that is processed on the attacker's core. In the yellow
region, the attacker is preempted as the interrupt is
processed, and the attacker's instruction throughput
decreases. A particularly attentive attacker may record
the time and notice a small jump, equal to 72 —1T1,
once the interrupt has been processed. Observing
many of these jumps over time effectively allows the
attacker to monitor the victim's execution patterns,
and ultimately decode the victim's secrets.

To prove the connection between system interrupts
and information leakage in both attacks, we finally
instrument the Linux kernel. In our analysis, and for the
first time in the literature, we find that nonmovable
interrupts, such as softirgs and rescheduling interrupts,
play a crucial role in leaking application information.
This finding is important as nearly all prior research®™
studying interrupt-based side channels focuses on
movable interrupts such as graphics and network inter-
rupts. Linux provides convenient interfaces to block
information leakage due to movable interrupts by iso-
lating them from potential attackers. However, prevent-
ing leakage due to nonmovable interrupts may require
major system redesigns.

Our work highlights the importance of thoroughly
analyzing side-channel attacks, especially those assis-
ted by machine-learning techniques. We hope this work
raises awareness about the limitations of machine
learning as a tool and motivates the community to
develop better methods for analyzing side channels.

In this section, we build an attacker program that is
almost identical to the sweep-counting attack' but
does not perform any memory accesses. We call our
new attack a loop-counting attack. We show that the
profiles of the traces collected by the two attackers
are highly correlated, suggesting that only a small

July/Authoszediieensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE=Xplorgic Restrictions apply.

amount of information is lost when foregoing cache
accesses.

Attack Description
We show pseudo-code for a sweep-counting attacker
in Figure 2(a) and our loop-counting attacker in Fig-
ure 2(b). In both algorithms, the attacker takes a period
length P as input. It then constructs a trace, where
each element in the trace measures how many itera-
tions of the inner-most loop were executed every P
ms. In the sweep-counting attack’s code, the loop body
contains an increment operation, memory accesses to
a large buffer, and a call to the time() function. Note
that the buffer's size matches the size of the last-level
cache so that one completion of the inner loop sweeps
the entire last-level cache. The counter value can thus
be used to infer how many of the accessed cache lines
reside in the cache. Conversely, in the loop-counting
attack’s code, we make no memory accesses inside
the inner-most loop, but instead only have an incre-
ment instruction and a call to the time() function.
Since the sweep-counting attack’s code [in Figure
2(a)] measures the throughput of memory accesses, it
was previously believed that the resulting trace was a
good proxy for memory throughput and cache occu-
pancy over time. However, in addition to cache hits
and misses, the throughput of memory instructions
can be affected by many other factors, including inter-
rupts, which have been overlooked by previous work.
Intuitively, within a given period of time, if the
program is preempted by an interrupt handler, the
attacker spends less time executing the loop and thus
fewer iterations can be completed, leading to smaller

int Trace[T+1000]; int Trace[T+1000];

loop {
count = 0;
t_begin = time();

do {
// count iterations
count++;
// memory accesses
for (i=0; i<N; i++) {
tmp = buffer[i+64];

} while(time()—t_begin
< P);

Trace[t_begin] = count;

loop {
count = 0;
t_begin = time();

do {
// count iterations
count++;

No memory

accesses

} while(time()—t_begin
< P);

Trace[t_begin] = count;

(@)

(b)

FIGURE 2. Pseudocode for both attacks. (a) Sweep-counting
attack. (b) Loop-counting attack.

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

trace values. Therefore, traces can capture a large
amount of timing information from system interrupts.

Trace Examples

In Figure 3, we present loop-counting traces generated
using the algorithm from Figure 2(b) on three victim web-
sites (nytimes.com, amazon.com, and weather.com).

Each trace is collected while a victim is browsing
potentially sensitive websites in a different tab. The
JavaScript attacker repeatedly calls performance.now()
to measure the time, which is returned at a low preci-
sion and often with some added noise, depending on
the browser being used. We generally pick a value for
the period length P that is larger than the timer resolu-
tion provided by the browser in order to accurately
measure throughput. For consistency, if not explicitly
stated otherwise, we set P to 5 ms.

We collect each trace by running the loop-counting
attack code from Figure 2(b) for 15 s while the browser
loads and renders a website in another tab. The shades
in the trace correspond to counter values ranging
from approximately 21,000 to 27,000. Darker shades
represent smaller counter values, indicating that the
attacker is preempted by interrupts and paused for
more time.

We observe that traces for the same website are
similar to each other, while traces for different web-
sites are quite different. For example, according to the
traces in Figure 3, we can infer that amazon.com per-
forms much of its activity in the first 2 s, with spikes in
activity around 5 and 10 s. Visual cues such as these

nytimes.com
0T 1 T | | feroo0
MINN T T |
I T T W
amazon.com

25000

M TTTIOTTT TN |
[T [T T 2o
T T T |

23000

weather.com
UNUEUART T T 0
22000
ILAETIRARY
21000

FIGURE 3. Example loop-counting traces collected over 15 s.
Darker shades indicate smaller counter values and lower

instruction throughput.

30 Authorized licensgg Bsellimpised to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Resfrigtignsiapply.2023

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

nytimes.com
100 A promp—— e — N —— —
e AP rasy — T g
Ml
75 11
9
~ amazon.com
S 100 — BT ——
=2 T ——— s
> f’b
o ‘
g 751t
?1;) h
Z 100 weather.com
1 N RO S————— g
iaad .f)4
75 L !‘ T \; T T T T
0 3 6 9 12 15
Time (s)

—— Our attacker Sweep-counting attacker

FIGURE 4. Normalized trace values averaged over 100 runs
while loading three websites. Traces collected with both
attackers are strongly correlated with each other.

indicate that loop-counting traces can be used as fin-
gerprints to distinguish different websites.

Comparing Attacker Traces

In Figure 4, we compare the behavior of traces collected
by the loop-counting and the sweep-counting attackers.
Each plot depicts averaged traces over 100 runs from its
respective website, which were then normalized by
dividing each value by the maximum iteration count
observed by that attacker. This maximum count was
about 27,000 loop iterations for our attacker, and 32 for
the sweep-counting attacker. The averaged traces from
each attacker are strongly correlated with each other,
with a correlation coefficient of r =0.87 for nytimes.-
com, 0.79 for amazon.com, and 0.94 for weather.com,
suggesting that traces collected by the sweep-counting
attacker are shaped by the same system events as
those collected by the loop-counting attacker.

In this section, we demonstrate that the sweep-
counting attack by Shusterman et al.' does not primar-
ily rely on cache-based side channels. Specifically, we
evaluate our loop-counting attack against a state-of-
the-art cache-based website-fingerprinting attack? and
find that our attack outperforms it in all but one experi-
mental configuration.

Evaluation Setup
To compare the two attacker programs, we use website
fingerprinting as a benchmark. Specifically, we compare

our work to the state-of-the-art “cache-occupancy”
attack presented by Shusterman et al.2 To make a fair
comparison, we closely follow their methodology, includ-
ing experimental configurations, data collection meth-
ods, machine learning model, and hyperparameters.

Like Shusterman et al., we leverage machine learn-
ing to create an attack consisting of two phases: an off-
line training phase and an online attack phase. In the
offline training phase, the attacker collects a dataset
composed of labeled traces, annotated with their cor-
responding websites, and uses the dataset to train a
machine learning classifier. This step is performed on a
machine under the attacker's control. In the online
attack phase, the attacker collects a trace while the
victim visits an unknown website. The attacker then
uses the trained classifier to predict which website
was visited by the victim.

We perform our evaluation under two setups: a
closed-world setup and an open-world setup. In the
closed-world setup, the attacker knows the complete
set of websites that the victim will visit. In our experi-
ments, the attacker aims to distinguish the victim's
accesses of 100 different websites. By contrast, in the
open-world setup, the attacker does not have full
knowledge of the websites that will be visited by
the victim. Instead, the victim will access a set of
“sensitive” and “nonsensitive” websites. The attacker
only knows the set of sensitive websites and aims to
precisely identify the victim's access to these websites.
When the victim visits a nonsensitive website, the
attacker should simply report “nonsensitive.”

Evaluation Results

In Table 1, for each combination of web browser and
operating system, we report our attack’s accuracy in
our closed- and open-world setups. We evaluate our
attack on four commercial web browsers: Chrome,
Firefox, Safari, and Tor Browser.

Tor Browser is a modified version of Firefox with
additional security features intended to block local side
channel attacks. Due to these security features, it takes
noticeably longer to load a page on Tor Browser. We
use 15-s traces when attacking Chrome, Firefox, and
Safari, and 50-s traces when attacking Tor Browser.

Closed-World Results

In the closed-world setup, our attack predicts which
website was visited out of 100 possible websites. We
directly compare the accuracy of our attack to the
accuracy of the cache-based sweep-counting attack
from Shusterman et al. Note that website content has
changed since Shusterman et al. published their work,?

July/Authoszediieensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE=Xplorgic Restrictions apply.

31

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

TABLE 1. Classification accuracy obtained with JavaScript loop-counting attacker.

Closed world Open world
Operating Loop-counting Loop-counting
Browser system attack Cache attack?t attack Cache attack?t
Chrome 92 Linux 96.6-0.8 91.4=1.2 97.2+0.3 86.4=0.3
Firefox 91 Linux 95.3+0.7 80.0+0.6 96.4=-0.8 87.4+1.2
Safari 14 macOS 96.60.5 72.6+1.3 96.7+0.6 80.5=1.0
Tor Browser 10 Linux 49.8+4.2 46.7+4.1 62.9+2.4 62.9+3.3

tWe use the same data collection method and LSTM-based model as Shusterman et al."? However, the following differences exist between our
evaluation setup and theirs: 1) Shusterman et al. performed their experiments in 2018 and thus used older operating systems and web browsers,
2) Firefox has changed its timer resolution from 2 ms in 2018 to the current 1 ms, and 3) we use different Intel CPUs.

and we perform our work on newer operating systems
and web browsers. We bold the accuracy for experi-
ments where our attack achieves higher accuracy.

When attacking Chrome, our attack is stronger for
both experimental setups. For example, when attack-
ing Chrome running in Windows in a closed-world
setup, our attack achieves an accuracy of 92.5%, while
the cache-based attack only achieves a success rate
of 80.0%. Notably, our attack is still effective on Tor
Browser, though with significantly reduced accuracy.
In the closed-world setup, our attack’s accuracy is
49.8%, and the top-five accuracy, the rate at which the
correct website is one of the model’s top-five predic-
tions, is 86.4%.

Open-World Results

In our open-world setup, we add 5000 “nonsensitive”
traces to our existing collection of 10,000 “sensitive”
closed-world traces to make a complete dataset of
15,000 traces. We then train a new model with 101 clas-
ses: one for each sensitive website, and an additional
“nonsensitive” class with all 5000 open-world traces.
This experimental design is identical to the design
used by Shusterman et al.?

We report the base accuracy and standard devia-
tion of this model for each experiment in the “loop-
counting attack” column of Table 1, along with the
respective accuracy from Shusterman et al? We
bold the accuracy for experiments where our attack
achieves higher accuracy and note that our attack is
stronger in all experiments except for Tor Browser, in
which we achieve the same accuracy.

Interpretation

The results we report in Table 1 show that our loop-
counting attacker, which makes no memory accesses,
consistently outperforms the state-of-the-art website-
fingerprinting attack. This finding demonstrates that
side channels that do not leverage the cache can be

exploited to create a powerful attack. This leads us to
believe that the sweep-counting attack may already be
using other sources of information leakage. We analyze
this possibility in depth in the next section.

Takeaway 1: Side channels other than the cache provide
enough signal to craft a powerful website-fingerprinting
attack.

At this point, we can rule out caches and the rest
of the memory hierarchy as the primary source of leak-
age in these attacks. Now, we can investigate other
hypotheses to determine the true primary source. For
each potential side channel, we design a controlled
experiment where we add isolation to close the side
channel and observe changes in the attack’s accuracy.
Figure 5 gives an example of the process used to test
and disprove these different hypotheses.

Effects of Isolation Mechanisms

We start our analysis by looking at how different isola-
tion mechanisms affect our loop-counting attack. We
use an attacker program that implements the algo-
rithm from Figure 2(b) in Python.

Table 2 shows classification accuracy when evalu-
ating the Python attack code on Chrome in a closed-
world setup. Note that we create each configuration
by incrementally adding a new isolation mechanism in
addition to the mechanisms from the previous configu-
ration. For example, the last configuration inherits all
isolation mechanisms from previous configurations,
including disabling frequency scaling, pinning to sepa-
rate cores, removing interrupt request (IRQ) interrupts,
and running the attacker process and the victim pro-
cess in two separate virtual machines (VMs).

32 Authorized licensgeg Bsetliméed to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Resfrigtignsiapply.2023

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

Observation: 95.2% accuracy > Background Research: What > Hypothesis: CPU Frequency
with memory accesses removed causes throughput to change? Scaling leaks victim data
Conclusion: Little to no signal ¢ Analyze Data: Train model — ¢ Experiment: Repeat experiment
from frequency scaling 94.2% accuracy without frequency scaling

FIGURE 5. lllustration of our experimental procedure. We start at the top-left and repeatedly run new controlled experiments to

learn more about our loop-counting attack.

Disable Frequency Scaling

Recall that the loop-counting attack code measures
instruction throughput, which can be impacted by pro-
cessor frequency scaling. Therefore, we first verify
whether the signals used by our attack are affected by
frequency scaling by running an experiment with this
feature disabled. We observe a small decrease of 1% in
the top-one accuracy, which indicates that our attack
is still highly effective even without any signal due to
frequency scaling.

Run on Separate Cores

We also investigate whether our attack is caused
by contention of CPU resources, which can happen
when the operating system schedules the attacker pro-
cess and the victim process onto the same core. We
observe a negligible decrease of 0.2% in the attack’s
accuracy, indicating that our attack does not rely on
CPU contention.

Remove IRQ Interrupts

There exist many types of system interrupts. For mov-
able interrupts, such as graphics interrupts, network
interrupts, and SATA interrupts, there is no restriction
on where these interrupts should be processed. How-
ever, nonmovable interrupts, such as timer interrupts,
softirgs, rescheduling interrupts, and translation look-
aside buffer (TLB) shootdowns, are left on the attack-
er's core since these interrupts execute on all cores

TABLE 2. Classification accuracy obtained with Python
loop-counting attacker under various isolation mechanisms.

Top-one Top-five
Isolation mechanism accuracy | accuracy
Default 95.2% 99.1%
+ Disable frequency scaling 94.2% 98.6%
+ Pin to separate cores 94.0% 98.3%
+ Remove IRQ interrupts 88.2% 97.3%
+ Run in separate VMs 91.6% 97.3%

and the operating system does not provide an inter-
face to move them.

We observe moderate decreases of 5.8% and 1% in
the top-one and top-five accuracy, respectively. There
are two takeaways from these results. First, the timing
characteristics of device interrupts play an important
role in leaking website identity, given that different
websites trigger characteristic network and graphics
activities. Second, removing all movable interrupts is
not sufficient to mitigate the attack: the remaining
nonmovable interrupts might play an important role in
leaking the victim’s activity.

Run in Separate VMs

Finally, we evaluate how our interrupt-based side chan-
nel performs when the attacker and victim are running
in separate VMs, in addition to all isolation mechanisms
from our previous configurations. In this configuration,
we observe a slight increase of 3.4% in the top-one
accuracy. This observation contradicts our expectation,
as one would expect the stronger isolation offered by
VMs would reduce the effectiveness of our attack. One
plausible explanation for this phenomenon is that when
routing an interrupt to a core running a VM, the signal
is amplified as the interrupt needs to be processed by
both the host OS and the guest OS. For example, VM
entries and exits are generally much more expensive
than process-level context switches. This observation
has worrying implications for cloud computing environ-
ments, which rely on similar isolation mechanisms to
separate different clients.

Takeaway 2: Current isolation mechanisms are insufficient
to completely mitigate the loop-counting attack, which
monitors instruction throughput for website fingerprinting.

With these results, nonmovable interrupts appear
to be the primary source of leakage in both attacks.
Because nonmovable interrupts cannot be isolated nor
deactivated, it is impossible to mount a simple experi-
ment and try to disprove this hypothesis. Instead, we

July/Authoszediieensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE=Xplorgic Restrictions apply.

need to use a different method to prove that nonmov-
able interrupts are responsible for the information leak-
age in these attacks.

In this section, we use the instrumentation functionali-
ties provided by Linux to analyze the loop-counting
attack in more detail and uncover the underlying side
channels. In particular, Linux allows setting kprobes
and tracepoints at specific points in the kernel binary.
When execution reaches these points, Linux calls into
small user-provided programs which can inspect the
current system state and record data. To ensure safety,
these programs are specified using the restricted appli-
cation programming interface of eBPF byte code.

Analysis Tool

We use eBPF to monitor system interrupts as they are
processed on each core, logging the timestamp and
root cause of each one. We then compare the timing
of each interrupt to the timings of “jumps,” or large
and sudden increases in the local time, that can be
observed by our attacker. Our attacker watches for
these jumps by repeatedly reading from Linux’s CLOCK_
MONOTONIC time source.

Reading from the monotonic clock is slower than
directly accessing the CPU timestamp counter, but still
incurs very little overhead because it is implemented
via virtual dynamic shared object (vDS0). Since eBPF
also has access to the monotonic clock, time measure-
ments are synchronized between the two programs,
and we can attribute specific interrupts recorded in
the kernel with specific gaps observed by the user-
space attacker.

Analysis Results
Figure 6 reports the average time spent in interrupt
handlers during 100 runs from three popular websites,
sample traces for which were presented in Figure 3. In
this experiment, we use irgbalance to prevent the
attacker’s core from receiving IRQs, so that almost all
observable execution gaps come from nonmovable
interrupts. Notice that the amount of time spent han-
dling interrupts closely matches the appearance of the
traces in Figure 3. For instance, most interrupt-handler
activity when loading nytimes.com happens in the first
4 s, while for amazon.com, we observe spikes at 5 and
10s.

Different websites can even trigger different types
of nonmovable interrupts. For example, weather.com
routinely triggers rescheduling interrupts, which we

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

nytimes.com
5 -
0
g amazon.com
(0]
£ 51
-
8
20
©
T weather.com
5 -
0 P U
0 3 6 9 12 15
Time (s)

Softirq = Rescheduling Interrupt
FIGURE 6. Percentage of time spent processing interrupts

averaged over 100 runs while loading three different websites.

found often occur alongside TLB shootdowns. Identify-
ing the JavaScript-based mechanisms causing differ-
ent sites to trigger different types of interrupts is left
as future work.

Notably, we find that our eBPF tool confirms that
over 99% of execution gaps longer than 100 nanosec-
onds are caused by interrupts. We consider this result to
serve as a rigorous proof that our loop-counting attacker
primarily exploits signals from system interrupts.

Takeaway 3: Our loop-counting attack primarily exploits
signals from system interrupts.

Analysis Implications

This result highlights the robustness of our attack.
Interrupt-based side channels are universal, as inter-
rupts exist on every platform and can be detected by
many different attackers. For instance, our traces and
the trace of interrupt-handler activity are generated
using different attack code (polling CLOCK_MONOTONIC ver-
sus measuring instruction throughput with Chrome’s
reduced resolution timer) and written in different pro-
gramming languages (Rust versus JavaScript).

We additionally identify the security problems asso-
ciated with nonmovable interrupts, such as softirgs
and rescheduling interrupts, which have never before
been studied in side-channel attacks. For example, sof-
tirgs are a mechanism used by the Linux kernel to han-
dle complex interrupt-related tasks that are not critical
and can be deferred. This helps to keep the kernel

34 Authorized licenseg Bsetlimited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrigtignsigpply.2023

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

responsive and to correctly handle other time-sensitive
interrupts. This mechanism is especially helpful for
long-running tasks, such as the decryption of a net-
work packet or the launch of an operation on the GPU.
A lightweight interrupt handler will simply queue a sof-
tirg that will perform the operation at a more appropri-
ate time. The operating system can decide to allocate
this softirg to a different core, potentially moving oper-
ations onto a core shared with an attacker. Unfortu-
nately, the Linux kernel does not offer any interface to
control the dispatching of softirgs.

Truly understanding the causal relationship between
nonmovable interrupts and other system events requires
instrumenting the kernel at a further depth than allowed
by eBPF. Since it is infeasible to isolate nonmovable
interrupts from applications running on the system, our
attack highlights the fact that existing isolation mecha-
nisms are ineffective to mitigate interrupt-based side
channels. Major system redesigns are necessary to close
this side channel.

Takeaway 4: Nonmovable interrupts, such as softirgs and
rescheduling interrupts, leak information from victim
processes. Blocking information leakage from these
interrupts may require major system redesigns.

This paper highlights the importance of thoroughly ana-
lyzing machine-learning-powered side-channel attacks.
We presented a framework which can be used to ana-
lyze future side-channel attacks in depth.

We first constructed our “loop-counting” attack by
removing memory accesses from a similar cache-based
attack. We showed our attack achieves higher accuracy,
ruling out cache-based side channels as a primary
source of leakage. We then performed several con-
trolled experiments in which we closed potential side
channels, such as frequency scaling and CPU conten-
tion, and observed that our attack's accuracy was
not significantly impacted. Finally, we instrumented
the Linux kernel to prove that both attacks exploit
interrupt-based side channels. Our analysis showed that
it is virtually impossible to isolate all interrupts from a
specific CPU core, since many nonmovable interrupts
are needed for the system to function properly.

We hope this work will inspire the research commu-
nity to perform more in-depth analysis of side-channel
attacks as these are essentials to understand the
security of our system and to build efficient defense
mechanisms.

We thank our shepherd Yanjing Li and our anonymous
reviewers for helpful feedback, Peter Deutsch for
resolving issues with our machines so we could run
our experiments, Sacha Servan-Schreiber for inspiring
the title of our paper, and our friends, family, and
lab mates for their support. This work was supported
in part by NSF Grant CNS-2046359, AFOSR Grant
FA9550-20-1-0402, and the MIT-IBM Watson Al Lab.

1. A. Shusterman, A. Agarwal, S. O'Connell, D. Genkin,
Y. Oren, and Y. Yarom, “Prime+Probe 1, JavaScript 0:
Overcoming browser-based side-channel
defenses,” in Proc. 30th USENIX Secur. Symp., 2021,
pp. 2863-2880.

2. A. Shusterman et al., “Robust website fingerprinting
through the cache occupancy channel,” in Proc. 28th
USENIX Secur. Symp., 2019, pp. 639-656, doi: 10.1109/
TDSC.2020.2988369.

3. M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice,
and S. Mangard, “Practical keystroke timing attacks
in sandboxed JavaScript,” in Proc. Eur. Symp. Res.
Comput. Secur. (ESORICS), 2017, pp. 191-209,
doi: 10.1007/978-3-319-66399-9_11.

4. Y. Oren, V. Kemerlis, S. Sethumadhavan, and
A. Keromytis, “The spy in the sandbox: Practical
cache attacks in JavaScript and their implications,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun.
Secur., 2015, pp. 14061418, doi: 10.1145/2810103.
2813708.

5. G. Hospodar, B. Gierlichs, E. De Mulder,

I. Verbauwhede, and J. Vandewalle, “Machine learning
in side-channel analysis: A first study,” J. Cryptogr.
Eng., vol. 1, no. 4, pp. 293-302, Dec. 2011, doi: 10.1007/
s13389-011-0023-x.

6. L.Lerman, G. Bontempi, and O. Markowitch, “A
machine learning approach against a masked
AES: Reaching the limit of side-channel attacks
with a learning model,” J. Cryptogr. Eng.,
vol. 5, no. 2, pp. 123-139, Jun. 2015, doi: 10.1007/
s13389-014-0089-3.

7. P. Lifshits et al., “Power to peep-all: Inference attacks
by malicious batteries on mobile devices,” in Proc.
Privacy Enhancing Technol., 2018, pp. 141-158,
doi: 10.1515/popets-2018-0036.

8. H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking
cryptographic implementations using deep learning
techniques,” in Proc. 6th Int. Conf. Secur., Privacy,
Appl. Cryptogr. Eng., 2016, pp. 3-26, doi: 10.1007/978-
3-319-49445-6_1.

July/Authoszediieensed use limited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE=Xplorgic Restrictions apply.

35

9. H. Naghibijouybari, A. Neupane, Z. Qian, and
N. Abu-Ghazaleh, “Rendered insecure: GPU side
channel attacks are practical,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 2139-2153,
doi: 10.1145/3243734.3243831.

10. X. Tang, Y. Lin, D. Wu, and D. Gao, “Towards
dynamically monitoring android applications on
non-rooted devices in the wild,” in Proc. 11th ACM
Conf. Secur. Privacy Wireless Mobile Netw., 2018,
pp. 212-223, doi: 10.1145/3212480.3212504.

JACK COOK is with the Massachusetts Institute of Technol-
ogy, Cambridge, MA, 02139, USA. His research interests
include machine learning interpretability, natural language
processing, and human-computer interaction. Contact him
at cookj@alum.mit.edu.

JULES DREAN is a Ph.D. student at the Massachusetts
Institute of Technology, Cambridge, MA, 02139, USA. His

TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

research interests include side-channel attacks and trusted

execution environments. Contact him at drean@mit.edu.

JONATHAN BEHRENS is a senior software engineer at
Microsoft, Redmond, WA, 98052, USA. His research interests
include operating systems and distributed systems. Behrens
received his Ph.D. degree from the Massachusetts Institute
of Technology. Contact him at fintelia@gmail.com.

MENGJIA YAN is an Assistant Professor in the Electrical
Engineering and Computer Science Department, Massachu-
setts Institute of Technology, Cambridge, MA, 02139, USA.
Her research interests include computer architecture and
hardware security, with a focus on side-channel attacks and
defenses. Yan received her Ph.D. degree from the University
of lllinois at Urbana-Champaign. Contact her at mengjia@
csail.mit.edu.

Carnegie Mellon University
Software Engineering Institute

(7]
o
-
-
g
>
.
m
o
(=
>
=
-y
<
>,
=

Since 1994, the SEI and the Institute of Electrical and
Electronics Engineers (IEEE) Computer Society have
cosponsored the Watts S. Humphrey Software Quality
Award, which recognizes outstanding achievements
in improving an organization’s ability to create and
evolve high-quality software-dependent systems.

Humphrey Award nominees must have demonstrated

an exceptional degree of significant, measured,
sustained, and shared productivity improvement.

TO NOMINATE YOURSELF OR A COLLEAGUE, GO TO
computer.org/volunteering/awards/humphrey-
software-quality

FOR MORE INFORMATION
resources.sei.cmu.edu/news-events/events/watts

36 Authorized licenseg Bsellisaited to: MIT Libraries. Downloaded on November 03,2023 at 20:18:16 UTC from IEEE Xplore. Restrigtighgiapply.2023

