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Abstract

We investigate how a principal’s knowledge of agents’ higher-order beliefs impacts their ability to ro-
bustly implement a given social choice function. We adapt a formulation of Oury and Tercieux (2012): 
a social choice function is continuously implementable if it is partially implementable for types in an initial 
model and “nearby” types. We characterize when a social choice function is truthfully continuously imple-
mentable, i.e., using game forms corresponding to direct revelation mechanisms for the initial model. Our 
characterization hinges on how our formalization of the notion of nearby preserves agents’ higher order 
beliefs. If nearby types have similar higher order beliefs, truthful continuous implementation is roughly 
equivalent to requiring that the social choice function is implementable in strict equilibrium in the initial 
model, a very permissive solution concept. If they do not, then our notion is equivalent to requiring that 
the social choice function is implementable in unique rationalizable strategies in the initial model. Truthful 
continuous implementation is thus very demanding without non-trivial knowledge of agents’ higher order 
beliefs.
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1. Introduction

The literature on Robust Mechanism Design, starting with the seminal work of Bergemann 
and Morris (2005) studies settings where the designer does not perfectly understand the infor-
mation structure among agents. It investigates the design of mechanisms that perform robustly 
well across various information structures among agents that the principal considers possible. In 
this paper, our aim is to isolate how a desire for robustness impacts a principal who is solely 
unsure about agents’ higher-order beliefs, i.e. beliefs of agents about each other’s beliefs etc. 
Distinguished contributions in the game theory literature inform us that predictions in a given 
strategic situation can be very sensitive to agents’ higher-order beliefs (e.g. Rubinstein (1989) or 
Weinstein and Yildiz (2007)). Our question thus concerns how these higher-order beliefs play a 
role when the principal can design the game among the agents.

We start from a standard Bayesian implementation setting: there are finite sets of agents, 
states and alternatives, and there is a commonly known information structure that describes the 
information of the agents. The planner would like to (partially) implement a given social choice 
function, i.e. a function from profiles of types to alternatives. In this case, any Bayesian incentive 
compatible social choice function can be partially implemented with a direct revelation mecha-
nism. But what if the principal is unsure about the exact information structure among agents, but 
would nevertheless like the social choice function to be partially implemented “close to” a ref-
erence information structure? Formally, we adapt the formulation of Oury and Tercieux (2012)
and revisit the question of when a social choice function is continuously implementable.1

Our main results characterize when a social choice function is truthfully continuously im-
plementable, i.e., using game forms corresponding to direct revelation mechanisms for the initial 
model. One way to interpret our restriction is that it formalizes conditions under which a principal 
who believes a baseline information structure and therefore uses a direct revelation mechanism 
is nevertheless able to implement his desired social choice function when he is “slightly” wrong. 
Under this interpretation, our notion of truthful continuous implementation is a robustness check 
to the standard revelation principle—we build on this interpretation by presenting results on the 
set of continuously implementable social choice functions. An alternate interpretation is that by 
limiting the message space, we rule out “detail-free” mechanisms that simply elicit these details 
from the agents and then proceed akin to standard mechanism design. Such mechanisms, it may 
be argued, obey the letter but not the spirit of a robustness exercise.2

Intuitively, the characterization depends on the underlying topology with respect to
which we demand continuity. We study two well understood topologies in this setting. The 

1 Our paper substantially builds off their work, we defer a fuller discussion of the details of their work, the closely 
related characterization of Oury (2015), and other related papers to Section 6, after we have formally stated our own 
results.
2 Of course, a principal may opt for a different “simple” mechanism rather than a direct revelation mechanism. To that 

end, note that while our results are formally stated for direct revelation mechanisms, our proof techniques apply to any 
mechanism where the equilibrium in the baseline is full-range, i.e. for every message available to any agent, there is some 
type of agent in the baseline information structure which sends that message. We expand on this observation below after 
presenting our formal results.
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first, the product topology, only preserves lower order beliefs. It is the topology studied in Oury 
and Tercieux (2012) (also, the topology implicitly used in Rubinstein (1989) and explicitly ap-
pealed to in Weinstein and Yildiz (2007)). The second is the uniform-weak topology of Chen 
et al. (2010), which preserves higher-order beliefs. The latter is studied for two reasons. Firstly, 
we would argue, this is of independent interest: being a finer topology, continuity with respect to 
this topology captures a weaker notion of robustness. Conceptually, one can argue that these cap-
ture two disparate ways an information structure can be close to a given information structure: 
the latter involves agreement at all arbitrarily higher-order beliefs, while the former topology 
only constrains lower-order beliefs. Second, at a more technical level, our results in the latter 
are a building block for our results in the former—we detail this further below in Section 1.1. In 
Section 5, we develop an example of a standard government natural resource auction setting to 
motivate these topologies.

At a high level, our findings can be summarized thus: settings like the latter, where despite 
not knowing the exact information structure, the principal has information about the agents’ 
higher-order beliefs, are not much more constraining than the baseline of exact knowledge of the 
information structure. By contrast, if the agents’ higher-order beliefs may be arbitrary, then the 
principal is severely restricted.

Further, we show that a “revelation principle” applies for the latter notion. In that setting, 
if a social choice function can be continuously implemented, it can be truthfully continuously 
implemented by a direct revelation mechanism. A revelation principle does not obtain in the 
more general setting. Requiring this stronger notion, therefore, may necessitate the use of more 
complex mechanisms to continuously implement some social choice functions (in particular, 
mechanisms containing messages that are not sent by any type in equilibrium in the baseline 
information structure considered by the principal). Further, we provide a partial characteriza-
tion of continuous implementation in this setting, and thus explain the gap between continuous 
implementation and truthful continuous implementation.

1.1. Model and results

Let us now describe the setting and our results more formally. There are finite sets of agents, 
states and alternatives.3 There is given a social choice function of interest. There is a baseline 
information structure that the principal considers. The actual information structure that obtains 
among agents is unknown to the principal. We wish to understand when the social choice func-
tion can be truthfully continuously implemented: i.e. in any (epistemic) model that embeds the 
baseline model, there is an equilibrium of the direct revelation mechanism such that the baseline 
types report their types truthfully (resulting in the desired social choice function), and further the 
strategy of closeby types converges. We term this requirement truthful continuous implementa-
tion (the additional modifier of “truthful” to the notion of Oury and Tercieux (2012) reflecting 
our restriction to the truthful equilibrium of a direct revelation mechanism).

We study continuity with respect to two topologies on types. The first, the product topol-
ogy, places no restrictions on agents’ higher-order beliefs. We show that under this topology, 
truthful continuous implementation is equivalent to requiring that the social choice function be 
implementable with a mechanism such that, in the baseline model, each agent has a unique ra-
tionalizable action, and the desired alternative of the social choice function obtains if each agent 

3 Throughout, we assume a richness condition on the environment: see Section 2.3 for details.
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plays this unique rationalizable action (Theorem 1). The second, the uniform-weak topology, 
(see e.g. Monderer and Samet (1989) and Chen et al. (2010)) is roughly a topology that preserves 
higher-order beliefs. We show that under this topology, a social choice function is truthfully con-
tinuously implementable if and only if it can be implemented in Strict equilibrium in the baseline 
model (Theorem 2).

Finally, we shed some light on the gap between continuous implementation and truthful con-
tinuous implementation. We show that a social choice function is continuously implementable 
with respect to the uniform-weak topology if and only if it is truthfully continuously imple-
mentable with respect to the uniform-weak topology (Theorem 3). Therefore a revelation prin-
ciple holds for continuous implementation with respect to the uniform-weak topology. However, 
we show that one does not get a revelation principle with respect to the product topology.4 In 
particular, our methods show something stronger—if a social choice function is not truthfully 
continuously implementable, but is continuously implementable, then the implementing mecha-
nism must necessarily have messages that are not being sent at the baseline.5

At a technical level, we would like to highlight our characterization results in the product 
topology. To get some intuition for this result, recall the work of Weinstein and Yildiz (2007). 
They consider a given game of incomplete information. They assume a form of richness: for each 
player, and each action of that player, there exists a “crazy type” whose preferences make that 
action strictly dominant. Their main result is to show that for any action a that is rationalizable 
for a (normal) type in the game, there exist close-by types in the product topology for whom that 
action is the unique rationalizable action. The possibility of aforementioned crazy types is used 
to start a contagion process, with the strict dominance used to break ties. In an implementation 
setting, this assumption of crazy types is not well grounded, since the game form is chosen by 
the planner and therefore not fixed a priori. Further, we are after a partial equilibrium result, i.e. 
there exists one equilibrium of the game with the desired properties.6

Instead our result in the product topology builds off of our result in the uniform-weak topol-
ogy. Closeness in the uniform-weak topology implies closeness in the product topology. By our 
results in the former, we know that the social choice function must be implementable in Strict 
Bayes-Nash Equilibrium. Recall further that we are considering implementation with DRMs, i.e. 
for every message an agent could send there is a corresponding type: in other words, the equi-
librium has full range. Strict equilibrium implies that for that type it is a strict best response for 
him to send the corresponding message. We use these types as a substitute for the crazy types 
described above—these are sufficient since we are indeed arguing the existence (or lack thereof) 
of a single equilibrium.

Take any rationalizable strategy si for a player i. We construct a sequence of types that con-
verge to the baseline type in the product topology for which this strategy is the unique best 

4 We can give a partial characterization of continuous implementation with respect to the product topology: we show 
that any continuously implementable social choice function must be strictly rationalizable implementable. The converse 
need not be true.
5 Formally, we show a setting with two possible types in the baseline for each agent where the direct-revelation mecha-

nism (which, by definition, has two messages per agent) is not continuously implementable (i.e., the desired social choice 
function is not truthfully continuously implementable). However, we show by construction an indirect mechanism with 
three messages for each agent which does continuously implement the desired social choice function. In particular, each 
of the two baseline types for each agent has a unique rationalizable action in this mechanism, so for each agent, there is 
a message that is not sent in equilibrium by any baseline type.
6 In this sense, there is a tighter connection between our results and those of Weinstein and Yildiz (2004), we discuss 

the details after we introduce our formal results. See also Weinstein and Yildiz (2011).
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response, in a manner similar to Weinstein and Yildiz (2007) (and also Weinstein and Yildiz 
(2004): see discussion after the proof of the theorem). Roughly, put most of the mass of i′s beliefs 
on the fact the others will play the strategies that rationalize si , and a small probability of the type 
corresponding to the strategy si . The latter makes this a strict best response. Therefore, at any
Bayes-Nash Equilibrium of the incomplete information game in this model, these constructed 
types must be playing the rationalizable strategy si . From the fact that the social choice function 
is continuously implementable, therefore, we have rationalizable implementation as desired.

The paper is organized as follows. Section 2 defines the model. Section 3 characterizes truthful 
continuous implementation. Section 4 studies the original continuous implementation of Oury 
and Tercieux (2012) in this setting and the gap between the two. Section 5 develops an application 
in the context of natural resource auctions and explains the implications of our results. Section 6
discusses the related literature and connections.

2. Model

There is a state of the world θ ∈ �, unknown to the planner. There is a set of alternatives A. 
Unless otherwise stated, both A and � are finite. There is a finite set of I agents. Agent i has 
a utility function ui : A × � → R. Sometimes, we might refer directly to the implied ordinal 
preferences over alternatives, with the standard notations �i,θ for the strict part of the preference 
of agent i at state θ , ∼i,θ for indifferences, and �i,θ for weak preference.

2.1. Epistemic preliminaries

A model T is a pair (T , κ) where T = T1 × T2 × · · · × TI is a countable type space and 
κti ∈ � (� × T−i ) denotes the associated beliefs for each ti ∈ Ti .

Given a type ti in a model (T , κ), we can compute the first-order belief of ti (i.e., his belief 
about �) by setting t1i equal to the marginal distribution of κti on �. We can also compute the 
second-order belief of ti (i.e., his belief about 

(
θ, t1
)
) by setting

t2i [E]= κti

[{
(θ, t−i ) :

(
θ, t1i , t1−i

)
∈ E
}]

, ∀E ⊂ � × (�(�))I .

We can compute the entire hierarchy of beliefs 
(
t1i , t2i , . . . , tki , . . .

)
iteratively.

Now, write X0 = � and for each k ≥ 1: Xk = [� (Xk−1
)]I × Xk−1. Observe that tki ∈

� 
(
Xk−1
)
for every k ≥ 1. Let d0 be the discrete metric on � and d1 be the Prohorov distance on 

1st-order beliefs (� (�)).7 Then, recursively, for any k ≥ 2, endow � 
(
Xk−1
)
with the Prohorov 

distance dk where Xk−1 is endowed with the sup-metric induced by d0, d1, . . . , dk−1. Mertens 
and Zamir (1985) construct the universal type space T ∗

i ⊂ ×∞
k=0� 
(
Xk
)
. The universal type space 

has the property that ti = (t1i , t2i , . . .) ∈ T ∗
i if there exists some type t ′i in some model such that ti

and t ′i have the same n-th-order belief for every n. Endowed with the product topology, T ∗
i is a 

compact metrizable space and admits a homeomorphism κ∗
i : T ∗

i → �(� × T ∗−i ).

7 For a metric space (X, ρ), the Prohorov distance between any two μ, μ′ ∈ � (X) is

inf{γ > 0 : μ′(E) ≤ μ(Eγ ) + γ for every Borel set E ⊆ X},
where Eγ = {x ∈ X : inf

y∈E
ρ(x, y) < γ }.
5
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We say that a sequence of types 
{
ti,n
}∞
n=1 converges uniform-weakly to a type ti if:

duw
i

(
ti,n, ti
)≡ sup

k≥1
dk
i

(
tki,n, t

k
i

)
→ 0.

Moreover, write duw (tn, t) → 0 if duw
i

(
ti,n, ti
)→ 0 for each i.8 Similarly, a sequence of types {

ti,n
}∞
n=1 converges in the product topology to a type ti if

d
p
i

(
ti,n, ti
)≡ ∞∑

k=1

2−kdk
i

(
tki,n, t

k
i

)
→ 0.

Again, write dp (tn, t) → 0 if dp
i

(
ti,n, ti
)→ 0 for each i.

Following Oury and Tercieux (2012), for two models T = (T , κ) and T ′ = (T ′, κ ′), we will 
write T ⊃ T ′ if T ⊃ T ′, and for ti ∈ T ′

i : κti [E] = κ ′
ti
[(� × T ′−i ) ∩ E] for any measurable E ⊂

� × T−i .
The principal considers a baseline model which we denote by T = (T ,κ

)
. We assume that 

the baseline model is finite, i.e., 
∣∣T ∣∣ < ∞; and nonredundant, i.e., no distinct types ti and t ′i in 

T i induce the same hierarchy of beliefs. For instance, this includes as a special case the standard 
mechanism design setting with a common prior over payoff-relevant types. More precisely, we 
may set � = ×i∈I�i , Ti = �i , and each κti is induced from a common prior μ ∈ � (�) such 
that marg�i

μ [θi] > 0 for each θi , i.e., κti

[
(θi, θ−i , t−i )

]= 1{θi=ti ,θ−i=t−i

}μ (θ−i |θi).

2.2. Mechanisms and notion of implementation

There is a subset of types T 0 ⊆ T that the principal cares about. A social choice function 
(SCF) is a mapping f : T 0 → A. In general T 0 = T , but in some examples we may have strict 
containment. Assume also that {ti} × suppκti ⊂ T 0 for every ti ∈ T i (the reason for this sup-
port condition is so that social choice function is well-defined for every profile that every type 
considers possible).

A mechanism, denoted M = (M,g) is a message space Mi for each player i, with M ≡
×iMi , and an outcome function g : M → A. A countable (respectively, finite) mechanism is one 
where the message space M is countable (respectively, finite) in cardinality. Given a mechanism 
M and a model T , we write U(M, T ) for the induced incomplete information game. A Bayes-
Nash Equilibrium (BNE) is a strategy profile (σi)i∈I with σi : Ti → � (Mi) such that for ti ∈ Ti , 
each message mi ∈ supp σi (ti) maximizes the expected payoff of agent i with respect to the 
opponents’ strategy profile σ−i .

A direct revelation mechanism is defined as is standard, i.e. the message space of every player 
equals the set of types the principal considers possible in the baseline model, and the outcome 
function is denoted g : ×iT i → A. We can now define truthful continuous implementation in this 
setting:

Definition 1. We say f is truthfully continuously implementable w.r.t. metric d if there is a direct 
revelation mechanism g such that for any model T ⊃ T , there is a (possibly mixed) BNE σ in 
the game U (g,T ) such that for every t ∈ T 0:

8 See Chen et al. (2010) for further details about this topology.
6
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a. g(t) = f (t), and,
b. for any sequence {tn} ⊂ T with d (tn, t) → 0, σ (tn) → δt .9

Definition 1 is directly comparable to the definition of continuous implementation of Oury 
and Tercieux (2012) (Definition 2 in their paper)—see Definition 2 below for their definition in 
our notation. Note that truthful continuous implementation is more demanding than continuous 
implementation in two ways. Firstly, it fixes the form of the mechanism used: the former restricts 
attention to direct revelation mechanisms where the latter considers general mechanisms. Sec-
ondly, it demands robustness of a specific equilibrium of this mechanism (i.e., the truth-telling 
equilibrium), whereas the latter focuses on outcomes.10

Definition 2. Given any SCF f , mechanism M = (M,g), and model T = (T , κ) with T ⊃ T , 
say that a mixed-strategy Bayes-Nash Equilibrium (BNE) σ continuously implements (resp. 
strictly continuously implements) f in U (M,T ) w.r.t. a metric d if

a. σ |T is a pure-strategy Bayes-Nash Equilibrium (resp. strict Bayes-Nash equilibrium) in 
U
(
M,T

)
;

b. For any t ∈ T 0, g (σ (tn)) → f (t) for any sequence of type profiles {tn} ⊂ T with 
d (tn, t) → 0.

We say that f is continuously implementable (resp. strictly continuously implementable) w.r.t. 
metric d if there is a mechanism M = (M,g) such that for any model T ⊃ T , there is an 
equilibrium which continuously implements (resp. strictly continuously implements) f w.r.t. d
in U (M,T ).

2.3. Reduced normal forms and a richness assumption

A recurring issue in our setting is breaking indifferences, since we have no transfers. To get 
results within a classical implementation setting we therefore need a richness assumption.11 In 
order to introduce our assumption, first consider the following standard definition of strategic 
equivalence adapted to our setting.

Definition 3. For a DRM g, we say ti is strategically equivalent to t ′i for an agent i if agent i is 
indifferent between the two reports regardless of the state and others’ reports, i.e.:

∀t−i , θ : g(ti , t−i ) ∼i,θ g(t ′i , t−i ).

In light of this we can define the reduced normal-form of a DRM, again, in line with standard 
terminology.

9 Note that the space of messages is finite, and so convergence is in the standard e.g. Euclidean topology in the finite 
dimensional simplex.
10 We discuss this further in Section 6.
11 Our assumption serves the same technical role as the assumption of costly messages in Oury and Tercieux (2012)
and local payoff uncertainty in Oury (2015). We discuss those assumptions when we compare to the related literature in 
Section 6. At a high-level though, the difference is conceptual—our assumption is one that can be verified in the context 
of the baseline model considered by the principal. Their assumptions are richness assumptions on the elaborations of 
their model with respect to which continuous implementation is desired.
7
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Definition 4. A reduced normal-form of a DRM g, denoted g̃, is a mechanism in which all 
the strategically equivalent messages are identified. For each ti , let t̃i denote the message in g̃
corresponding to the set of messages strategically equivalent to ti in g.

It is possible in the original mechanism g that two messages are strategically equivalent for 
some agent i but deliver different outcomes at some profile of messages from other agents, i.e. 
the mechanism g̃ is not well defined. The following assumption rules this out.

Assumption 1. We say that a DRM g admits a reduced normal-form if g̃ is well defined, i.e., for 
an agent i and any two messages ti and t ′i which are strategically equivalent, g(ti, ·) = g(t ′i , ·).

This is reminiscent of the non-bossiness assumption of Satterthwaite and Sonnenschein 
(1981), which is often invoked in social choice/allocation settings. Roughly, it requires that if 
an agent changing his report (all else equal) changes the selected alternative, then the agent can-
not be indifferent between the two alternatives. However, non-bossiness is standardly defined 
only for private-value settings, so we do not expound further.

This assumption is novel and therefore perhaps not well understood. Observe that the follow-
ing simple richness assumption implies that Assumption 1 is always satisfied: in particular this 
assumption is purely on the environment rather than Assumption 1 which is on the environment 
and the desired social choice function f .

Assumption 2. For every agent i and any two alternatives a, a′ ∈ A, there is some θ such that 
agent i is not indifferent between a and a′ under θ .

This latter assumption may not be appropriate for some settings of interest. For example, in a 
private-good allocation setting, agents may be always indifferent between alternatives that only 
differ in the allocations of other agents. Even here, however, the desired social choice function 
f may be such that Assumption 1 is satisfied, even though the environment does not satisfy 
Assumption 2 (note that the latter assumption does not depend on the social choice function f ).

To see this consider the following private-good, private-value allocation setting. There are 
three agents 1, 2, 3, and three alternatives 1, 2, 3, with each alternative to be thought of as 
the corresponding agent getting the good. Each agent i has a type ti ∈ [0, 1] which is their 
value for receiving the good, and an outside option of 0 for not receiving the good, with 
θ = (t1, t2, t3), � = [0, 1] × [0, 1] × [0, 1]. Observe first that in this setting, Assumption 2 is 
not satisfied—e.g. agent 1 is always indifferent between alternatives 2 and 3. However, note that 
the social choice function which assigns the good efficiently, f (t1, t2, t3) = argmaxi (t1, t2, t3)
is such that any DRM g that implements it must satisfy Assumption 1—an agent’s report will 
sometimes affect her own allocation. In fact, in this example, there are no strategically equivalent 
messages.

In what follows, we invoke the weaker Assumption 1. The reader may mentally substitute the 
stronger Assumption 2 if they prefer. Either way, we emphasize that either of these assumptions 
are directly verifiable on the primitives of the model.

3. Characterizing truthful continuous implementation

Our main result in this section is a characterization of the set of truthfully continuously im-
plementable social choice functions in the product topology. The following definition of interim 
correlated rationalizable messages (cf. Dekel et al. (2007)) will be useful:
8



Y.-C. Chen, M. Mueller-Frank and M.M. Pai Journal of Economic Theory 201 (2022) 105422
Definition 5. Let R∞
i (ti ,M) denote the set of interim correlated rationalizable messages of 

type ti in M defined as follows:
Let R0

i (ti ,M) = Mi . Inductively, for each k ≥ 1, a message mi ∈ Rk
i (ti ,M) iff there is some 

μ ∈ � (� × T−i × M−i ) such that

R1: mi ∈ argmaxm′
i

∫
�×M−i

ui

(
m′

i ,m−i , θ
)
marg�×M−i

μ 
[
dθ,m−i

]
;

R2: marg�×T−i
μ = κti ;

R3: μ 
({

(θ, t−i ,m−i ) : m−i ∈ Rk−1
−i (t−i ,M)

})
= 1.

Then, R∞
i (ti ,M) ≡ ∩∞

k=1R
k
i (ti ,M).

We can now define implementation in unique rationalizable action profile:

Definition 6. Let g be a DRM that admits a reduced normal-form. We say f is implementable 
in the unique rationalizable action profile in the reduced normal-form g̃ if for every t ∈ T , 
R∞ (t, g̃) = {t̃}.

Note that this definition is slightly stronger than rationalizable implementation: the latter only 
requires that every rationalizable action profile results in the desired alternative, while in addition, 
we require that the implementing mechanism have a unique rationalizable strategy for each type.

Theorem 1. Suppose that Assumption 1 holds. An SCF f is truthfully continuously imple-
mentable w.r.t. dp by a DRM g if and only if it is implementable in unique rationalizable action 
profile in g̃.

Since this proof is fairly involved, a high level overview may be useful to help orient the 
reader. Sufficiency is fairly straightforward—if g̃ implements f in unique rationalizable action, 
then g truthfully continuously implements f—this follows straightforwardly from the upper 
hemicontinuity of the rationalizable correspondence.

The nontrivial direction is therefore necessity, i.e. to show that if an SCF f is truthfully 
continuously implementable (in the product topology) then f must be implementable in the 
unique rationalizable action in the sense of Definition 6.

As a key building block we use our characterization of truthful continuous implementation in 
uniform-weak topology below (Theorem 2). Combined with Corollary 1 this tells us that an SCF 
f is truthfully continuously implementable w.r.t. the uniform-weak topology if and only if it is 
implementable in Strict Bayes-Nash Equilibrium in the “reduced normal form.”12 From this fact, 
and the fact that the uniform-weak topology is finer than the product topology, we have that if f
is truthfully continuously implementable (in the product topology) then f is implementable in 
Strict Bayes-Nash Equilibrium.

Recall further that we are considering implementation with DRMs, i.e. for every message an 
agent could send there is a corresponding type: in other words, the equilibrium has full range. 
Strictness implies that for the type corresponding to a particular message it is a strict best re-

12 Note that the latter is well-defined by Assumption 1. As we discussed earlier, one could have invoked the stronger, 
but easier to verify Assumption 2.
9
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sponse for him to send the corresponding message. We use this fact as a substitute for the costly 
messages of Oury and Tercieux (2012) or the local payoff uncertainty of Oury (2015).

Take any type t ′i which is a rationalizable report for a player i of type ti ∈ T i . We can construct 
a sequence of types tni that converge to ti in the product topology for which reporting t ′i is the 
unique best response, in a manner similar to Weinstein and Yildiz (2007) (and also Weinstein and 
Yildiz (2004)). Roughly, put most of the mass of i′s beliefs on the fact the others will play the 
strategies that rationalize ti , and a small probability that the type is t ′i . The latter makes reporting 
t ′i a strict best response. Therefore, at any Bayes-Nash Equilibrium of the incomplete informa-
tion game in this model, these constructed types must be playing the rationalizable message t ′i . 
Since the social choice function is continuously implementable, therefore, we have rationalizable 
implementation as desired.

3.1. Uniform-weak topology

We now introduce our characterization of truthful continuous implementation in the uniform-
weak topology. As we pointed out above, this is useful as a stepping stone to the characterization 
in the product topology. Since continuity with respect to the uniform-weak topology captures a 
weaker notion of robustness, these results may be of independent interest. To state and prove our 
characterization, we introduce two more terms. We say that DRM g strictly rewards truth-telling
at type ti over type t ′i for agent i if∑

(θ,t−i )∈�×T −i

[
ui (g(ti , t−i ), θ) − ui

(
g(t ′i , t−i ), θ

)]
κti

[
(θ, t−i )

]
> 0.

We say that (reporting) ti always weakly dominates t ′i for agent i in DRM g if

∀ (θ, t−i ) ∈ � × T −i : ui (g(ti , t−i ), θ) − ui

(
g(t ′i , t−i ), θ

)≥ 0.

The following lemma is key to our characterization.

Lemma 1. If an SCF f is truthfully continuously implementable by a DRM g with respect to 
duw, then, for every agent i and any pair of agent i’s types ti and t ′i , either g strictly rewards 
truth-telling at ti over t ′i ; or ti always weakly dominates t ′i in g.

Suppose there exists an agent i and a pair of types ti and t ′i such that g neither strictly rewards 
truth-telling at ti , nor does ti always weakly dominate t ′i . This in particular means that there is 
some state θ ′ and some profile of other agents’ reports t ′−i at which agent i strictly prefers to 
report t ′i over ti . We show that there exists a sequence of perturbations which converges to ti
in the uniform-weak topology, such that each type in this sequence uniquely prefers to report t ′i
in the DRM. Roughly speaking, these are types that put a small mass on the state that the type 
is θ ′ and the other agents’ types are t ′−i , but are otherwise identical to ti . Thus the conditions 
described in Lemma 1 are a necessary condition for truthful continuous implementation in this 
setting.

Our main characterization of truthful continuous implementation follows:

Theorem 2. An SCF f is truthfully continuously implementable by a DRM g with respect to duw

if and only if g(t) = f (t) for all t ∈ T 0 and, for every agent i and any pair ti and t ′i , either g
strictly rewards truth-telling at ti over t ′; or ti is strategically equivalent to t ′ for agent i.
i i

10



Y.-C. Chen, M. Mueller-Frank and M.M. Pai Journal of Economic Theory 201 (2022) 105422
The proof of this theorem is easy to describe. The necessity of our condition is straightforward 
in light of Lemma 1. If g does not strictly reward truth-telling at ti over t ′i , then by the condition 
of the Lemma, ti must always weakly dominate t ′i . But then g cannot strictly reward truth-telling 
at t ′i over ti either. This must imply that t ′i also always weakly dominates ti , which implies that ti
and t ′i are strategically equivalent. We show the sufficiency of our condition constructively.

Corollary 1. Suppose that Assumption 1 holds. f is truthfully continuously implementable in duw

if and only if the reduced normal-form DRM g̃ implements f in truthful strict BNE in U
(
M,T

)
, 

i.e. if truthtelling is a strict Bayes-Nash equilibrium in the game U
(
M,T

)
.

As an aside we should note that similar permissive results would be achieved if we considered 
closeness in the strategic topology of Dekel et al. (2006). This follows from a result of Chen 
et al. (2010) who show that the two topologies are equivalent around finite types (recall that by 
assumption the baseline model was finite).

4. A revelation principle for continuous implementation?

So far, we have only studied truthful continuous implementation. We now recall the defini-
tion of continuous implementation in this setting and consider the relation between continuous 
implementation and truthful continuous implementation for both topologies.

We begin with a positive result, i.e. that if requiring continuous implementation with respect 
to the uniform-weak topology, we have a revelation principle.

To state and prove our characterization of continuous implementation, we adapt two defini-
tions to this environment. Fix a mechanism M= (M,g). For agent i’s type ti in T i and message 
m′

i ∈ Mi , we say that f strictly rewards σ i(ti) over m′
i in a (pure-strategy) BNE σ in U

(
M,T

)
if ∑

(θ,t−i )∈�×T −i

[
ui (g (σ i (ti) , σ−i (t−i ))), θ) − ui

(
g
(
m′

i , σ−i (t−i )
)
), θ
)]

κti

[
(θ, t−i )

]
> 0.

We say that σ i(ti) always weakly dominates m′
i in a (pure-strategy) BNE σ in U

(
M,T

)
if

∀ (θ, t−i ) ∈ � × T −i : ui (g (σ i (ti) , σ−i (t−i ))), θ) − ui

(
g
(
m′

i , σ−i (t−i )
)
), θ
)≥ 0.

The following lemma is again the key to our characterization of continuous implementation. 
The proof is analogous to the proof of Lemma 1.

Lemma 2. If T 0 = T and f is continuously implementable w.r.t. duw by mechanism M= (M,g), 
then there is a pure-strategy BNE σ in U

(
M,T

)
such that for each agent i, each type ti in T i and 

message m′
i ∈ Mi , either f strictly rewards σ i(ti) over m′

i ; or σ i(ti) always weakly dominates 
m′

i in BNE σ .

Lemma 2 immediately implies the following characterization (as well as revelation principle) 
for continuous implementation in duw. Denote by f̃ the reduced normal form of the DRM f .

Theorem 3. Suppose that Assumption 1 holds and T 0 = T . f is continuously implementable 
in duw if and only if the reduced normal-form DRM f̃ implements f in truthful strict BNE in 
U
(
M,T

)
.

11
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The basic idea of Theorem 3 is analogous to the proof of Theorem 2. The main difference is 
that we need Assumption 1 to ensure that the reduced normal-form is well-defined. We can then 
apply similar arguments. Comparing to Theorem 2, we therefore have that, with respect to the 
uniform-weak topology, a social choice function is continuously implementable iff it is truthfully 
continuously implementable.

Proof. (⇒) Let M = (M, g) be a mechanism such that BNE σ continuously implements f . 
Consider the direct revelation mechanism M′ = (g′, T ) defined as g′(t) = g(σ (t)) for all t ∈ T . 
By Lemma 2 and Theorem 2 such a mechanism clearly truthfully continuously implements f . 
The implication now follows from Corollary 1.

(⇐) By Corollary 1, an SCF f satisfying this condition is truthfully continuously imple-
mentable and therefore trivially, also continuously implementable. �
4.1. Product topology

In this section, we first show by counterexample that a revelation principle does not apply to 
continuous implementation with respect to the product topology. In particular, we show an exam-
ple below in which the direct revelation mechanism does not continuously implement the desired 
social choice function (in particular, since it is easily verified that this fails the characterization 
of Theorem 1). We then constructively show that there is a mechanism which contains addi-
tional messages and continuously implements the desired social choice function. The example is 
essentially due to Oury and Tercieux (2012) (working paper version).

There are 2 agents. The set of outcomes is

A = {(x,p1,p2) : x ∈ {0,1,2,3},p1,p2 ∈ {0,35,40}}.
If x = 0, the object is not given to either agent, x = 1 or 2 connotes that it was given to the 
respective agent, while x = 3 implies that neither agent gets the object and both are punished. 
The pi ’s correspond to payments from the agents to the principal. Utility functions are quasilinear 
and the object has a monetary value to each agent.

Each agent is either of type θ1 or θ2. Agent i with type θi has value 50 for the object, and 
agent i with type θj with j �= i has value 30 for the object. Finally, the agents’ utility of x = 0
is zero and the punishment outcome x = 3 is equivalent to a value of −30 to agent i if they are 
of θi , and −50 if they are of type θj for j �= i.

The baseline type space of each agent is {θ1, θ2} with a common prior P (θi, θi) = 1−ε
2 and 

P
(
θi, θj

)= ε
2 for i = 1, 2 and j �= i. Hence, type θ1 believes the other agent is of type θ1 with 

probability (1 − ε), and type θ2 with probability ε, and θ2’s beliefs are defined analogously. Let 
T i = {θ1, θ2} and T 0 = T 1 × T 2. That is, the baseline type space has a product form as we 
assume in Theorem 3. The social choice function that the principal would like to continuously 
implement is f (θi, θi) = (i, 0, 0), f (θi, θj ) = (0, 40, 40). Finally pick ε small enough that such 
that 5 × (1− ε) − 100 × ε > 0. For the two mechanisms that we present below, 5 is the minimal 
payoff difference and 100 the maximal payoff difference for distinct outcomes.

Claim 1. This social choice function is not truthfully continuously implementable with respect 
to dP .

Proof. A direct revelation mechanism in this setting has exactly two messages for each agent, 
one corresponding to each type; moreover, the outcomes are given by f :
12
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θ2 θ1
θ1 (0,40,40) (1,0,0)
θ2 (2,0,0) (0,40,40)

Observe that for i = 1, 2, the agents reporting (θi, θi) regardless of types is a strict Bayes Nash 
equilibrium. Hence, both messages are rationalizable for both types. Thus, f is not imple-
mentable in unique rationalizable action profile in the direct revelation mechanism (in which 
no strategies are strategically equivalent). Therefore the claim follows directly from the charac-
terization of Theorem 1. �
Claim 2. There exists an indirect mechanism that continuously implements f with respect to dP .

Proof. Consider an indirect mechanism where each agent has 3 possible messages, (Mine, His, 
Mine+). The outcome is given by the matrix below:

Mine His Mine+
Mine (0,40,40) (1,0,0) (2,40,35)
His (2,0,0) (0,40,40) (0,35,0)

Mine+ (1,35,40) (0,0,35) (3,0,0)

First, action “His” is strictly dominated by “Mine+” for agent 1 with type θ1. Consequently, 
“Mine” and Mine+ are strictly dominated by “His” for agent 2 with type θ1. Finally, in the third 
round, “Mine” is strictly better than “Mine+” for agent 1 with type θ1. Analogous reasoning 
follows for type θ2. Hence “Mine” is the unique rationalizable action for agent i with type θi , 
and “His” for agent i with type θj . Playing this rationalizable action results in the desired social 
choice function being implemented.

Therefore, the mechanism described above continuously implements the social choice func-
tion f w.r.t. dP because the interim correlated rationalizable correspondence is upper-hemi-
continuous (see proof of sufficiency of Theorem 1). �
4.2. A partial characterization for indirect mechanisms

Finally, we provide some results about continuous implementation with respect to the product 
topology in indirect mechanisms. We assume that T has full support, i.e., for each ti ∈ T i , we 
have suppκti = T −i . Some new definitions are now necessary. We say that mi is strategically 
equivalent to m′

i for agent i in BNE σ in U
(
M,T

)
if

∀ (θ, t−i ) ∈ � × T −i : ui (g (mi, σ−i (t−i )) , θ) = ui (g (mi, σ−i (t−i )) , θ) .

The following assumption is essentially Assumption 1 adapted to indirect mechanisms.13

Assumption 3. For any agent i and any two messages mi and m′
i which are strategically equiva-

lent for some BNE σ in U
(
M,T

)
, we have g (mi, ·) = g

(
m′

i , ·
)
.

13 We note that this assumption is somewhat more opaque—for example there is no natural analog to Assumption 2
which can be easily verified without reference to the social choice function/implementing mechanism. To that end, we 
should note that we do not consider Assumption 3 as “natural” or “desireable”—it is simply the assumption under which 
we are able to make some progress understanding continuous implementation with indirect mechanisms.
13
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Theorem 4. Suppose that Assumption 3 holds for mechanism M. Then, f is continuously im-
plementable in dp if and only if it is strictly continuously implementable in dp.

It is worth connecting our results to Oury and Tercieux (2012). Their Theorem 3 shows that 
any social choice function that is strictly continuously implementable must satisfy a form of 
monotonicity (formally, strict interim rationalizable monotonicity, see Definition 8 of that paper). 
The present theorem effectively shows that under Assumption 3, the same implication extends to 
all continuously implementable social choice functions.

Definition 7. Let T = (T , κ) be a model. Denote by W∞
i (ti ,M) the set of (interim correlated) 

strictly rationalizable messages of type ti in U (M,T ) defined as follows:
Let W 0

i (ti ,M) = Mi . Inductively, for each k ≥ 1, a message mi ∈ Wk
i (ti ,M) iff there is 

some μ−i ∈ � (� × T−i × M−i ) such that

R1: {mi} = argmaxm′
i

∑
θ,m−i

ui

(
m′

i ,m−i , θ
)
marg�×M−i

μ 
[
θ,m−i

]
;

R2: marg�×T−i
μ−i = κti ;

R3: μ−i

({
(θ, t−i ,m−i ) : m−i ∈ Wk−1

−i (t−i ,M)
})

= 1.

Then, W∞
i (ti ,M) ≡ ∩∞

k=1W
k
i (ti ,M).

We can now define implementation in strictly rationalizable action profiles:

Definition 8. We say f is implementable in strictly rationalizable action profiles by mechanism 
M if for every t ∈ T , we have g (m) = f (t) for every m ∈ W∞ (t,M).

Theorem 5. Suppose that Assumption 3 holds. An SCF f is continuously implementable w.r.t. 
dp by a finite mechanism only if f is implementable in strictly rationalizable action profiles by a 
finite mechanism.

As we pointed out earlier, our proof techniques in Theorem 1 apply to any mechanism such 
that at the baseline information structure there is an equilibrium which is both full-range and 
implements our desired social choice function. The desideratum of “equilibrium continuous im-
plementation” would be defined with respect to this equilibrium, by analogy to Definition 1. It 
should be clear that our characterization of Theorem 1 continues to hold in such a case. The gap 
between Theorem 1 and Theorem 5 is that the latter allows for mechanisms that contain messages 
not sent by any type in the baseline information structure (as in the construction of Claim 2). This 
also further clarifies the trade-off between Oury and Tercieux (2012) and our paper. The trade-off 
is not that they allow indirect mechanism whereas we focus on direct revelation mechanisms. Our 
approach has more bite in the classical literature where messages are cheap talk. This enables 
us to study the robustness of the revelation principle (Assumption 3 reduces to Assumption 1
when applied to direct revelation mechanisms and truthful strategies being the equilibrium). The 
cost is that we need these kinds of “richness” assumptions to make any progress. Conversely, 
their approach needs no such richness assumption, but instead appeals to a vanishing cost of 
messages. This allows them to provide a full characterization of continuous implementation of 
a social choice function. In particular they show that continuous implementation is equivalent to 
rationalizable implementation of the social choice function in the baseline environment.
14
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We should note that Theorem 5 only provides necessary but not sufficient conditions: the strict 
rationalizable correspondence need not be upper-hemicontinuous. Therefore we cannot conclude 
that a social choice function that satisfies this condition will be continuously implementable 
with respect to the product topology. Of course, we know from Oury and Tercieux (2012) that 
rationalizable implementability of the social choice function is sufficient. There is, therefore, 
a gap between the necessary and sufficient conditions in this setting. A full characterization 
appears out of reach.

5. An example: natural resource auctions

It may be useful at this stage to develop an example to help readers appreciate the implica-
tions of our results in a classical applied mechanism design setting.14 To that end consider the 
following variant of a natural resource auction model.

There is a principal (e.g. the government) who wishes to auction a license to utilize a natural 
resource, e.g. a license to drill wells at a particular tract of land. The tract has an unknown 
quantity of oil q , which can take one of two values 0 and q (i.e. the tract either contains no oil or 
a quantity q). Instead, agents see estimates. Each estimate e ∈ E = {e, e}.

The price of oil is normalized to 1. There are 2 competing buyers. The net value to buyer i of 
winning the license to operate the tract for a license fee of l is therefore q − l.

There is a finite set of feasible bids/payments B , so the set of alternatives the principal con-
siders is A = {1, 2} × B × B , that is to say which buyer the license is allotted to and how much 
each buyer is charged.

Baseline information structure In baseline information structure, each quantity is equally likely. 
Estimates are assumed to be “correct” with probability π ∈ ( 12 , 1), i.e. a given estimate is e
in quantity state q, and analogously for e in the 0 quantity state. In the baseline information 
structure, it is common knowledge that each agent sees K estimates that are conditionally i.i.d. 
(conditional on quantity state). This baseline information structure defines a common-values 
setting.

In this baseline setting, the type of an agent can be summarized by a single number k ∈
{0, 1, . . . , K}, which is the number of high estimates they see in their K estimates.

Social choice function Define by q(ki, kj ) the posterior expected quantity of oil in the tract 
when agent i sees ki high estimates and agent j sees kj high estimates. Suppose the space of 
feasible bids B is such that B = {q(k, k) : k = 0, 1, . . . , K}. Note that q(k, k) is strictly increasing 
in k. Consider the second-price auction where the strategy space of each agent is the set of 
bids B . Note that it is a strict Bayes-Nash equilibrium for each agent with type k to bid q(k, k)

in this second-price auction (we omit the formal arguments for brevity—refer to e.g. Chapter 6 
of Krishna (2009) for a textbook treatment).

The principal’s desired social choice function is the outcome of the second-price auction when 
agents play the BNE above, i.e. if agent 1 is of type k1 and agent 2 is of type k2, then the agent 
with the larger type gets the good and pays the principal q(k, k) corresponding to the smaller 
type.

Now let us investigate two possible perturbations of this baseline information structure:

14 We thank Muhamet Yildiz for suggesting this application.
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(1) In the first, it is common knowledge that each buyer has at most K estimates, but each buyer 
places some small probability that the other has fewer estimates. As motivation, consider 
that agents are allowed by law to only sample the tract at a maximum of K locations but 
consider the possibility that their competitor sampled fewer locations.

(2) In the second, there is no upper bound on the number of estimates K . For example, each 
buyer considers that the competitor may have disobeyed the law and in fact sampled the tract 
in additional locations.

Intuitively, the former corresponds to perturbations that remain close to the baseline in the 
uniform-weak topology. The latter on the other hand is an e-mail game type structure that corre-
sponds to perturbations in the product topology. For brevity we do not describe these type spaces 
explicitly. In such a setting, our results now have the following implications:

(1) Theorem 1 tells us that the principal’s desired social choice function cannot be truthfully 
continuously implemented with respect to perturbations of type (2). Formally, this is because 
the direct revelation mechanism corresponding that implements the social choice function 
has other rationalizable strategies for the agent—for example, it is an equilibrium for one 
agent to bid q(0, 0) and the other to bid q(K, K) independent of their types.

(2) Theorem 2 tells us that the principal’s desired social choice function can be truthfully contin-
uously implemented with respect to perturbation (1)—because we have already argued that 
truth-telling is a strict BNE in the DRM.

(3) Theorem 3 tells us that expanding the class of mechanisms does not expand the set of social 
choice functions that can be continuously implemented with respect to perturbations of type 
(1).

6. Related literature

There is a large, influential literature on the connection between higher-order beliefs and 
strategic behavior, beginning with the email game paper of Rubinstein (1989) and the subse-
quent global games paper of Carlsson and Van Damme (1993), too large to comprehensively cite 
here. Indeed, within this field there are now at least two influential approaches: the ex-ante ap-
proach of e.g. Kajii and Morris (1997), and the interim approach of Weinstein and Yildiz (2004)
and Weinstein and Yildiz (2007). As we stated earlier, our approach borrows ideas from the latter.

There is also a large literature considering robustness in mechanism design. It bifurcates 
into “global” and “local” approaches.15 In global approaches (see e.g. the pioneering works of 
Bergemann and Morris (2005); Chung and Ely (2007)) the planner has no information on the 
information structure (model) that will prevail among agents. The planner wishes to implement 
the social choice function on all models she considers possible. By contrast, in the local approach 
(see e.g. Chung and Ely (2003), Oury and Tercieux (2012), Jehiel et al. (2012) or Aghion et al. 
(2012)) the planner has some specific model in mind but is not entirely confident about it. The 
requirement therefore is analogously local, i.e. that the social choice function be implemented at 
types close to the initial model. This paper falls in the latter camp so we focus our discussion on 
related works in this vein.

15 While we will not dwell on these, intermediate notions of robustness, where the principal rules out some possible 
beliefs among the agents, have also been recently formulated and characterized—see e.g. Ollár and Penta (2017).
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The formulation of a “local” approach to robustness that we use in this paper was pioneered 
by Oury and Tercieux (2012). Our results have some counterparts to theirs. We therefore first 
discuss the connection to their paper before mentioning other work.

The biggest difference in setups is that we mainly consider implementation by “direct reve-
lation mechanisms.” This assumption allows us tighter characterizations of (truthful) continuous 
implementation under the product topology. In the “forward” direction they consider the stronger 
desideratum of strict continuous implementation, and show that strict monotonicity of the social 
choice function is necessary for strict continuous implementation. To get a full characterization, 
and to study continuous implementation directly (as opposed to strict continuous implementa-
tion), they enrich the model to consider that sending various messages may involve small costs 
to the agents. By contrast, our assumptions allow us a full characterization without either (i.e. the 
strengthening of desideratum to strict continuous implementation, nor the possibility of costly 
messages). Another critical difference between our result and theirs is that our Theorem 1 is a 
characterization for the implementing DRM whereas their counterpart (Theorem 4) is a charac-
terization of implementability (i.e., the mechanism that achieves rationalizable implementation 
is different from the mechanism that achieves continuous implementation in general (and also in 
their proof)).

They do not consider the uniform-weak topology but do hint at similar results in one direc-
tion (see, e.g., Footnote 16 of their paper). Our results on the uniform-weak topology thus both 
strengthen their results, and also constitute a key intermediate step to our characterization in the 
product topology.

Another closely related paper is that of Oury (2015), who characterizes continuous imple-
mentation as equivalent to full implementation in rationalizable strategies by introducing local 
payoff uncertainty of the planner. Assumption 1 in that paper embeds the set of states � into a 
larger set of states �∗, where these additional states allow to resolve indifferences.16

At a high level then, the difference between our approach and these two papers is that they 
consider general mechanisms, and obtain their characterization by extending the model (costly 
messages in the case of Oury and Tercieux (2012), additional states in the case of Oury (2015)). 
We instead cover only direct revelation mechanisms, and look at the robustness of a specific 
equilibrium (truthful equilibrium). Conversely our richness conditions (e.g. Assumption 1 or 2) 
can be verified directly within the benchmark model T and our robustness exercise requires no 
extra payoff-relevant perturbation beyond what’s specified in the benchmark set of states �.

A recent closely related paper that takes a different approach is Takahashi and Tercieux 
(2011): they study robust equilibrium outcomes rather than robust equilibrium behaviors (recall 
our discussion after Definition 1). Formally, they look at sequential games where there is almost 
common certainty of payoffs (for our purposes, “almost” refers to being close in the uniform-
weak topology). The latter means that their results do not directly apply to our setting: Among 
other differences, our Theorem 3 requires the domain of the SCF to have a product structure, 
while almost common certainty implies the baseline type space diagonal. It is possible to con-
struct an example of an SCF which is not truthfully continuously implementable with respect to 
duw but is implementable in a generic perfect-information extensive-form mechanism. It follows 
from Corollary 2 of their paper that the SCF is implementable in robust equilibrium outcomes 

16 In our notation, the definition of local payoff uncertainty is as follows (Assumption 1)—there is a baseline model 
T , and the set of states of the world considered by types in the baseline is �. However, the principal envisages a larger 
set of states �∗, where � ⊆ �∗ and for every agent i, alternative a and state θ there exists a state θ∗(θ, a, i) such that 
ui(a, θ∗(θ, a, i) > ui(a, θ) and ui(a

′, θ∗(θ, a, i)) = ui(a
′, θ) for any other a′ �= a.
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in the sense of Takahashi and Tercieux (2011). However, we do not know whether the SCF is 
continuously implementable with respect to duw.

As we alluded to earlier, other papers have raised similar questions about “local” robust 
implementation. Chung and Ely (2003) ask about the possibility of (full) implementation in 
undominated Nash equilibrium while additionally requiring that Bayes-Nash equilibria of set-
tings with arbitrarily small uncertainty also be close to the social choice function. They show 
that monotonicity of the social choice function is a necessary condition in their setting (while 
full implementation in undominated Nash equilibrium is possible for any social choice function 
under complete information). Aghion et al. (2012) consider subgame-perfect implementation 
under similar perturbations. Jehiel et al. (2012) get a negative result similar in interpretation to 
ours, but in a different setting, where the multi-dimensionality of agents’ signals drives the result. 
Postlewaite and Wettstein (1989) pursue the idea of a feasible, continuous function that achieves 
Walrasian outcomes in an exchange economy. Continuity is with respect to small perturbations 
of the initial endowments, as a substitute to modeling incentive constraints.

Our work is also connected to the literature on informational size beginning with McLean 
and Postlewaite (2002). These papers consider settings close to complete information, and argue 
what can be thought of as continuity results—when the state is approximate common knowledge, 
small transfers are sufficient to elicit the private information of agents. Most papers in this line 
consider settings with transfers, except Gerardi et al. (2009). Our results in the uniform-weak 
topology can be thought of as complementing their findings—both suggest that in settings with 
approximate common knowledge of the information structure, a desired social choice function 
may be implemented. While they consider richer settings, they also assume a common prior 
among agents that is known to the principal.

Appendix A. Omitted proofs

Theorem 1. Suppose that Assumption 1 holds. An SCF f is truthfully continuously imple-
mentable w.r.t. dp by a DRM g if and only if it is implementable in unique rationalizable action 
profile in g̃.

Proof. (⇐): Let T be a model with T ⊃ T . Since T is countable and T is finite, a standard 
fixed-point argument implies that there is a BNE σ in the game U (g,T ). Let σ̃ be the strategy 
profile in g̃ induced from σ , i.e., for each t ∈ T , we set σ̃ (t)

[
t̃
]= σ (t)

[
t̃
]
where t̃ is the set of 

messages strategically equivalent to t in the DRM g. Since σ is a BNE in g, it follows that σ̃ is 
also a BNE in g̃.

Since R∞ (t, g̃) = {t̃} for t ∈ T , by the upper hemicontinuity of the rationalizable correspon-
dence R∞ (·, g̃) (see, e.g., Theorem 2 of Dekel et al. (2006)), there is some ε > 0 such that

d
p
i

(
t ′i , ti
)
< ε ⇒ R∞

i

(
t ′i , g̃
)= {t̃i}

Since σ̃ is a BNE in g̃, it follows that σ̃i

(
t ′i
)= δt̃i

for any t ′i ∈ Ti with dp
i

(
t ′i , ti
)
< ε. Hence, for 

any t ′i ∈ suppσi (ti), we have that t ′i is equivalent to t̃i . Define a strategy profile σ ′ in U (g,T ) as

σ ′
i

(
t ′i
)≡ { δt̃i

, if d
p
i

(
t ′i , ti
)
< ε;

σi

(
t ′i
)
, otherwise.

Since σ is a BNE in U (g,T ), that σ ′ is also a BNE. Moreover, g
(
t̃
)= f (t) for every t ∈ T and 

by construction σ ′ also satisfies requirement (b) in Definition 1.
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(⇒): Fix a DRM g that truthfully continuously implements f w.r.t. dp. Since f is truthfully 
continuously implementable by g w.r.t. dp, f is truthfully continuously implementable by g w.r.t. 
duw. By Theorem 2 and Corollary 1, f is implementable in strict BNE in g̃.

The following lemma will be useful.

Lemma 3. For each k ≥ 1 and ε ∈ (0,1), there is a countable model Tk,ε ⊃ T such that 

Ti,0,ε ≡ T i and Ti,k,ε ≡
(�ti∈T i

Rk
i (ti , g̃)

)�Ti,k−1,ε .

Fix any BNE σ̃ of the game U
(
g̃,Tk,ε

)
with σ̃ (t) = δt̃ for every t ∈ T . This model has the 

property that for each type ti,k,ε

(
t̃ ′i , ti
)
(the type in Ti,k,ε that corresponds to 

(
t̃ ′i , ti
)
such that 

t̃ ′i ∈ Rk
i (ti , g̃)),

(1) dk
i

(
tki,k,ε

(
t̃ ′i , ti
)
, tki

)
< ε;

(2) σ̃i

(
ti,k,ε

(
t̃ ′i , ti
))= δt̃ ′i .

This lemma appears a little convoluted but is at the heart of our proof. It constructs a count-
able model Tk,ε with following property: Consider any Bayes Nash equilibrium σ̃ of the game of 
incomplete information U(g̃, Tk,ε) with the property that types in T all report their type “truth-
fully.” In other words, each type ti sends the reduced normal form message t̃i in g̃ corresponding 
to the equivalence class which the type ti falls in. Further, consider any message t̃ ′i ∈ Rk

i (ti , g̃), 
i.e. any message that survives up to k rounds of iterated deletion of never best response in g̃ for 
type ti of player i.

The model Tk,ε is constructed such that there exists a type of player i, ti,k,ε

(
t̃ ′i , ti
)
that is ε-

close to ti in their k-th-order beliefs; moreover, player i of type ti,k,ε

(
t̃ ′i , ti
)
must play t̃ ′i under 

the BNE σ̃ .
Before we present the proof of Lemma 3, let us conclude the now routine proof of Theorem 1. 

Consider the countable model T where Ti =�∞
k=1 T

i,k, 1
k
and T

k, 1
k
is given as in Lemma 3.

Since f is truthfully continuously implementable w.r.t. dp, there is a BNE σ in the game 
U (g,T ) such that requirements (a) and (b) in Definition 1 hold. Again, σ induces a BNE σ̃ in g̃. 
Since σ (t) = δt̃ by requirement (b) of Definition 1, we have σ̃ (t) = δt̃ .

Thus, it follows from Lemma 3 that for each t̃ ′i ∈ R∞
i (ti , g̃), for each k, there is a type 

t
i,k, 1

k

(
t̃ ′i , ti
) ∈ Ti such that

dk
i

(
t
i,k, 1

k

(
t̃ ′i , ti
)
, tki

)
≤ 1

k
, (1)

and

σ̃i

(
t
i,k, 1

k

(
t̃ ′i , ti
))= δt̃ ′i .

It follows from (1) that dp
i

(
t
i,k, 1

k

(
t̃ ′i , ti
)
, ti

)
→ 0. Since σ satisfies requirement (b) in Defini-

tion 1, we know that it must be the case that σi

(
t
i,k, 1

k

(
t̃ ′i , ti
))→ δt̃i

. Hence, t̃ ′i = t̃i .

Finally, since t̃ ′i ∈ R∞
i (ti , g̃) is arbitrary, we conclude that t̃i is the unique rationalizable mes-

sage profile at t in g̃. �
Proof of Lemma 3. Formally, fix ε ∈ (0,1) and we prove the claim by induction. First, the claim 
trivially holds for k = 0. Now we prove the claim for k ≥ 1, assuming that it holds for k − 1. 
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Denote by T̃i the messages of agent i in the reduced-form g̃. By definition (recall Definition 5), 

each t̃ ′i ∈ Rk
i (ti , g̃) is a best response to some belief μ−i ∈ � 

(
� × T −i × T̃−i

)
such that:

marg�×T −i
μ−i = κti ,

and μ−i

({(
θ, t−i , t̃

′−i

) : t̃ ′−i ∈ Rk−1
−i (t−i , g̃)

})
= 1.

By the induction hypothesis, there is a mapping η−i,k−1,ε from each t−i ∈ T −i and t̃ ′−i ∈
Rk−1

−i (t−i , g̃) to a type t−i,k−1,ε
(
t̃ ′−i , t−i

)
such that (1) and (2) in Lemma 3 hold.

Since t̃ ′i is in the reduced form g̃ of the DRM g, t̃ ′i is the equivalent class which includes some 
t ′i ∈ T i . Then, define κti,k,ε

(
t̃ ′i ,ti
) ∈ � 
(
� × T−i,k,ε

)
κti,k,ε

(
t̃ ′i ,ti
) = (1− ε)

(
μ−i ◦ η−1

−i,k−1,ε

)
+ εκt ′i .

That is, with probability (1− ε), type ti,k,ε

(
t̃ ′i , ti
)
believes that the state and the opponents’ 

types follow a distribution that is induced from μ−i (in which each t−i,k−1,ε
(
t̃ ′−i , t−i

)
plays 

σ̃−i

(
t−i,k−1,ε

(
t̃ ′−i , t−i

))= δt̃ ′−i
by the induction hypothesis); with probability ε, type ti,k,ε

(
t̃ ′i , ti
)

has the same belief as type t ′i . Since t̃ ′i is a best response against μ−i and the strict/unique best 
response against κt ′i in g̃ (by Corollary 1), it follows that σ̃i

(
ti,k,ε

(
t̃ ′i , ti
))= δt̃ ′i . Moreover, since

dk−1
−i

(
t−i,k−1,ε

(
t̃ ′−i , t−i

)
, tk−1

−i

)
< ε,

we have that dk
i

(
tki,k,ε

(
t̃ ′i , ti
)
, tki

)
< ε. �

Lemma 1. If an SCF f is truthfully continuously implementable by a DRM g with respect to 
duw, then, for every agent i and any pair of agent i’s types ti and t ′i , either g strictly rewards 
truth-telling at ti over t ′i ; or ti always weakly dominates t ′i in g.

Proof. Suppose that f is continuously implementable w.r.t. duw by a DRM g. Consider a model 
T = (T , κ) defined as follows. Let

Tj = T j � �(
θ ′,tj ,t ′−j

)
∈�×T j ×T −j

∞�
n=1

{
t

(
tj ,θ ′,t ′−j

)
j,n

}
,

where we set κtj = κtj for every tj ∈ T j ; moreover, let

κ
t

(
tj ,θ ′,t ′−j

)
j,n

=
(
1− 1

n

)
κtj + 1

n
δ(

θ ′,t ′−j

),∀n ∈N.

In words for every agent j , every baseline type tj of that agent, every state θ ′, every baseline 
type profile t ′−j of the others, and every natural number n, there is a type in model T which we 

denote t

(
tj ,θ ′,t ′−j

)
j,n . This type has a belief that is a convex combination with weight (1 − 1

n
) on the 

belief of the original baseline type tj , and weight 1
n
on the degenerate distribution corresponding 

to the state being θ ′ and the others having type profile t ′ .
−j
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Observe that since κtj = κtj for every tj ∈ T j for each agent j , each t−j ∈ T −j has 
exactly the same profile of hierarchies of beliefs as its corresponding type in T−j . Hence, 

duw
j

(
t

(
tj ,θ ′,t ′−j

)
j,n , tj

)
→ 0.

Suppose instead that for some agent i, and some pair of types ti and t ′i in T i , g neither strictly 
rewards truth-telling at ti over t ′i nor does ti always weakly dominate t ′i in g, i.e.,∑

(θ,t−i )∈�×T −i

[
ui

(
g(t ′i , t−i ), θ

)− ui (g(ti , t−i ), θ)
]

κti

[
(θ, t−i )

]≥ 0 (2)

and for some t ′−i ∈ T −i and θ ′,

ui

(
g(t ′i , t ′−i ), θ

′)− ui

(
g(ti , t

′−i ), θ
′) > 0. (3)

Hence, under σ−i , by reporting t ′i , agent i with type t
(ti ,θ

′,t ′−i )

i,n gets interim expected payoff equal 
to (

1− 1

n

) ∑
(θ,t−i )∈�×T −i

ui

(
g(t ′i , t−i ), θ

)
κti

[
(θ, t−i )

]+ 1

n
ui

(
g(t ′i , t ′−i ), θ

′) .
Then, by (2) and (3), for agent i with this type, reporting t ′i is strictly better than reporting ti for 

all n large enough. But then it cannot be the case that σi

(
t
(ti ,θ

′,t ′−i )

i,n

)
→ δti . This contradicts the 

supposition that g truthfully continuously implements f . �
Theorem 2. An SCF f is truthfully continuously implementable by a DRM g with respect to duw

if and only if g(t) = f (t) for all t ∈ T 0 and, for every agent i and any pair ti and t ′i , either g
strictly rewards truth-telling at ti over t ′i ; or ti is strategically equivalent to t ′i for agent i.

Proof. (⇒) Observe that when a DRM g strictly rewards truthtelling at ti over t ′i , then t ′i cannot 
always weakly dominate ti . Thus, it follows from Lemma 1 that if f is truthfully continuously 
implementable by a DRM g, then t ′i always weakly dominates ti if and only if ti always weakly 
dominates t ′i , i.e., they are strategically equivalent in the sense of Definition 3.

(⇐) Let g be a DRM such that for every agent i and any pair ti and t ′i , either g strictly rewards 
truth-telling at ti over t ′i ; or ti is strategically equivalent to t ′i for agent i. Further suppose that 
g(t) = f (t) for all t ∈ T 0. Fix a model T = (T , κ) and we show that g truthfully continuously 
implements f with respect to duw by constructing a BNE σ in U (g,T ).

Since T is nonredundant, it follows from Mertens and Zamir (1985) that T can be embedding 
into T ∗ such that κti = κ∗

i (ti ) for each ti ∈ T i .17 Then, for each i, and ti and t ′i in T i such that g
strictly rewards truthtelling, we have∑

(θ,t−i )∈�×T −i

[
ui (g(ti , t−i ), θ) − ui

(
g(t ′i , t−i ), θ

)]
κ∗
i (ti)
[
(θ, t−i )

]
> 0. (4)

17 More precisely, denote by hj

(
tj
) = (t1

j
, t2

j
, . . .
)
the hierarchy of beliefs of tj . If T is nonredundant, then hj is 

bijection between T j and a subset of T ∗
j
for every j . Moreover, Mertens and Zamir (1985) show that κti = κ∗

i
(hi (ti )) ◦(

I� × h−i

)−1 where I� is the identity mapping on � and h−i ≡ (hj

)
j �=i

. We abuse the notation here to write κti =
κ∗ (ti ).
i
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Again, since T is nonredundant, t ′k−1
−i �= tk−1

−i for some k whenever t ′−i �= t−i and t ′−i , t−i ∈
T −i . Since T is finite, for any k sufficiently large, t ′k−1

−i �= tk−1
−i whenever t ′−i �= t−i and 

t ′−i , t−i ∈ T −i . Let {(θ, t−i )}k−1,ε be the ε-ball around (θ, t−i ) with respect to the distance 
max
{
d0, d1, . . . , dk−1

}
. Since T is finite, we may further decrease ε such that {(θ, t−i )}k−1,ε

and 
{(

θ, t ′−i

)}k−1,ε are disjoint whenever t ′−i �= t−i .
Let T ′ = (T ′, κ∗) be the model induced by T = (T , κ) such that T ′ ⊂ T ∗ is also countable 

and each t ′′i ∈ Ti is mapped to its hierarchy of belief which we also denote by t ′′i ∈ T ′
i .

Now consider any ti ∈ T i and any type t ′′i ∈ T ′
i such that duw

i

(
t ′′i , ti
)
< ε. We show that∣∣κ∗

i

(
t ′′i
) [{(θ, t−i )}∞,ε

]− κ∗
i (ti ) [(θ, t−i ))]

∣∣≤ ε (5)

where {(θ, t−i )}∞,ε denotes the 
(
duw−i , ε

)
-ball around (θ, t−i ). Since duw

i

(
t ′′i , ti
)

< ε, we have 
dk
i

(
t ′′ki , tki

)
< ε for every k. Define

{(θ, t−i )}∗,k−1,ε ≡
{(

θ ′′, t ′′−i

) ∈ � × T ′−i :
(
θ ′′, (t ′′−i )

k−1
)

∈ {(θ, t−i )}k−1,ε
}
.

Since dk
i

(
t ′′ki , tki

)
< ε, we have

κ∗
i

(
t ′′i
) [{(θ, t−i )}∗,k−1,ε

]
= (t ′′i )k

[
{(θ, t−i )}k−1,ε

]
≥ tki

[(
θ, tk−1

−i

)]
− ε (6)

= κ∗
i (ti )
[
(θ, t−i )

]− ε,

where the equalities follow from the construction of the homeomorphism κ∗
i in Mertens and 

Zamir (1985). Likewise,

κ∗
i

(
t ′′i
)⎡⎢⎣ ⋃

t ′−i∈T −i :t ′−i �=t−i

{(
θ, t ′−i

)}∗,k−1,ε

⎤
⎥⎦

= (t ′′i )k

⎡
⎢⎣ ⋃

t ′−i∈T −i :t ′−i �=t−i

{(
θ, t ′−i

)}k−1,ε

⎤
⎥⎦

≥
∑

t ′−i∈T −i :t ′−i �=t−i

t ki

[(
θ, t ′k−1

−i

)]
− ε (7)

=
∑

t ′−i∈T −i :t ′−i �=t−i

κ∗
i (ti)
[(

θ, t ′−i

)]− ε.

Since {(θ, t−i )}k−1,ε and 
{(

θ, t ′−i

)}k−1,ε are disjoint whenever t ′−i �= t−i , we have

κ∗
i

(
t ′′i
) [{(θ, t−i )}∗,k−1,ε

]
≤ 1− κ∗

i

(
t ′′i
)⎡⎢⎣ ⋃

t ′−i∈T −i :t ′−i �=t−i

{(
θ, t ′−i

)}∗,k−1,ε

⎤
⎥⎦

≤ 1−
∑

t ′−i∈T −i :t ′−i �=t−i

κ∗
i (ti)
[(

θ, t ′−i

)]+ ε (8)

= κ∗ (t ′′) [(θ, t−i )
]+ ε
i i
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where the second inequality follows from (7). Since {(θ, t−i )}k,ε ↓ {(θ, t−i )}∞,ε as k → ∞, we 
have

κ∗
i

(
t ′′i
) [{(θ, t−i )}∞,ε

]= lim
k→∞κ∗

i

(
t ′′i
) [{(θ, t−i )}k,ε

]
. (9)

Now that (6) and (8) hold for all k sufficiently large, the right-hand side of (9) belongs to [
κ∗
i (ti) [(θ, t−i ))] − ε, κ∗

i (ti) [(θ, t−i ))] + ε
]
. Hence, (5) holds, as desired.

Since (4) and (5) hold and T is finite, pick sufficiently small ε > 0 such that for any t ′′i ∈ T ′
i

with duw
i

(
t ′′i , ti
)
< ε,∑

(θ,t−i )∈�×T−i

[
ui (g(ti , t−i ), θ) − ui

(
g(t ′i , t−i ), θ

)]
κ∗
i

(
t ′′i
) [{(θ, t−i )}∞,ε

]
> εD (10)

where

D ≡ max
i,t,t ′,θ̃

∣∣∣ui

(
g (t) , θ̃

)
− ui

(
g
(
t ′
)
, θ̃
)∣∣∣ .

Consider the agent normal-form of the game U
(
g,T ′) with the restriction that t ′′i in the (

duw
i , ε
)
-ball around ti must report ti . Denote this game with restriction by U

(
g,T ′).

Since T ′ is countable and T is finite, a standard fixed-point argument implies that U
(
g,T ′)

has a BNE σ . By construction of U
(
g,T ′), for any sequence duw (tn, t) → 0, we have σ (tn) = t

for n large enough.
Furthermore, σ is a BNE in the game U

(
g,T ′). To see this, note that for any agent i in the 

ε-ball around ti , given that all other agents −i in the ε-ball around (θ, t−i) are reporting t−i , 
the unique best response (modulo strategic equivalence) is to play ti . This follows from (10). 
Then, by Proposition 7 of Friedenberg and Meier (2017), σ ◦ h is a BNE in the game U (g,T )

where h = (hi)i∈I with hi : Ti → T ′
i mapping each t ′′i in Ti to its hierarchy of beliefs. Therefore, 

g truthfully continuously implements f with respect to duw. �
Lemma 2. If T 0 = T and f is continuously implementable w.r.t. duw by mechanism M= (M,g), 
then there is a pure-strategy BNE σ in U

(
M,T

)
such that for each agent i, each type ti in T i and 

message m′
i ∈ Mi , either f strictly rewards σ i(ti) over m′

i ; or σ i(ti) always weakly dominates 
m′

i in BNE σ .

Proof. Suppose that f is continuously implementable w.r.t. duw by mechanism M= (M,g). 
Consider a model T = (T , κ) defined as follows. Let

Tj = T j � �(
θ ′,tj ,t ′−j

)
∈T j ×�×T −j

∞�
n=1

{
t

(
tj ,θ ′,t ′−j

)
j,n

}
,

where we set κtj = κtj for every tj ∈ T j ; moreover, let

κ
t

(
tj ,θ ′,t ′−j

)
j,n

=
(
1− 1

n

)
κtj + 1

n
δ(

θ ′,t ′−j

),∀n ∈N.

It is straightforward to verify that duw
j

(
t

(
tj ,θ ′,t ′−j

)
j,n , tj

)
→ 0. Since f is continuously im-

plementable w.r.t. duw by M, there is an equilibrium σ which continuously implements f in 
23



Y.-C. Chen, M. Mueller-Frank and M.M. Pai Journal of Economic Theory 201 (2022) 105422
U (M,T ). Since σ continuously implements f in U (M,T ), we have (a) σ |T is a pure-strategy 
BNE in U

(
M,T

)
; (b) g (σ (tn)) → f (t) for any sequence of type profiles {tn} ⊂ T and t ∈ T

with duw (tn, t) → 0. Since T 0 = T , it follows that

g (σ (t)) = f (t) , ∀t ∈ T , (11)

g

(
σi

(
t

(
ti ,θ

′,t ′−i

)
i,n

)
, σ−i (t−i )

)
→ f (ti , t−i ) , ∀t−i ∈ T −i . (12)

Suppose to the contrary that for some agent i, the SCF f neither strictly rewards ti over m′
i ; 

nor does ti always weakly dominate m′
i in σ (or more precisely σ ≡ σ |T in U

(
M,T

)
), i.e.,∑

(θ,t−i )∈�×T −i

[
ui

(
g
(
m′

i , σ−i (t−i )
)
), θ
)− ui (g (σi (ti) , σ−i (t−i ))), θ)

]
κti

[
(θ, t−i )

]≥ 0

(13)

and for some t ′−i and θ ′,

ui

(
g
(
m′

i , σ−i

(
t ′−i

))
), θ ′)− ui

(
g
(
σi (ti) , σ−i

(
t ′−i

))
), θ ′)> 0. (14)

First, it follows from (13) and (14) that(
1− 1

n

) ∑
(θ,t−i )∈�×T −i

ui

(
g(m′

i , σ−i (t−i )), θ
)

κti

[
(θ, t−i )

]

+1

n
ui

(
g(m′

i , σ−i

(
t ′−i

)
), θ ′)

>

(
1− 1

n

) ∑
(θ,t−i )∈�×T −i

ui (g (σi (ti) , σ−i (t−i ))), θ) κti

[
(θ, t−i )

]
(15)

+1

n
ui

(
g
(
σi (ti) , σ−i

(
t ′−i

))
), θ ′)

where the left-hand side of (15) is the interim expected payoff of agent i with type t
(
ti ,θ

′,t ′−i

)
i,n

under σ−i , by reporting m′
i .

Second, by (12) and since there are only finitely many outcomes in f , for each t−i ∈ T −i , 
there is some Mt−i

i ⊂ Mi such that for any sufficiently large n,

σi

(
t

(
ti ,θ

′,t ′−i

)
i,n

)[
M

t−i

i

]
≥ 1− 1

2
∣∣T −i

∣∣ ;
g (mi, σ−i (t−i )) = f (ti , t−i ) = g (σi (ti) , σ−i (t−i ))),∀mi ∈ M

t−i

i . (16)

Then, since T −i is finite, it follows that for sufficiently large n, we have

σi

(
t

(
ti ,θ

′,t ′−i

)
i,n

)⎡⎣ ⋂
t−i∈T −i

M
t−i

i

⎤
⎦≥

∑
t−i∈T −i

σi

(
t

(
ti ,θ

′,t ′−i

)
i,n

)[
M

t−i

i

]
− (∣∣T −i

∣∣− 1
)
> 0 (17)

Finally, by (16), under σ−i , by reporting mi ∈⋂t−i∈T −i
M

t−i

i , agent i of type t
(
ti ,θ

′,t ′−i

)
i,n gets 

the interim expected payoff equal to the right-hand side of (15). Hence, it follows from (15)
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that agent i of type t
(
ti ,θ

′,t ′−i

)
i,n can profitably deviate by re-assigning the probability placed on ⋂

t−i∈T −i
M

t−i

i to m′
i instead. This contradicts to σ being a BNE. �

Theorem 4. Suppose that Assumption 3 holds for mechanism M. Then, f is continuously im-
plementable in dp if and only if it is strictly continuously implementable in dp.

Proof. Suppose that M continuously implements f w.r.t. dp. To prove that M̃ strictly continu-
ously implements f w.r.t. dp, consider any model T ′ = (T ′, κ ′). Denote by T ′′ = (T ′′, κ ′′) the 
disjoint union of T ′ = (T ′, κ ′) and the model T = (T , κ) constructed in Lemma 2. Then, we 
must have some BNE σ which continuously implements f in U

(
M,T ′′) in dp (and there by in 

U (M,T ) in duw). It follows from Lemma 2 that σ |T satisfies the property that for each agent i, 
each type ti in T i and message m′

i ∈ Mi , we have either σ |T strictly rewards ti over m′
i ; or ti

always weakly dominates m′
i in BNE σ |T . Since T has full support, if ti always weakly dom-

inates m′
i in σ |T and σi |T (ti) is not strategically equivalent to m′

i , the message m′
i must yield 

strictly lower payoff than σi |T (ti) for type ti . Hence, it follows from Assumption 3 that σ |T is 

a strict BNE in U
(
M̃,T

)
. It follows that σ continuously implements f in U

(
M,T ′). Hence, 

M̃ strictly continuously implements f w.r.t. dp. �
Theorem 5. Suppose that Assumption 3 holds. An SCF f is continuously implementable w.r.t. 
dp by a finite mechanism only if f is implementable in strictly rationalizable action profiles by a 
finite mechanism.

Proof. Since M = (M,g) continuously implements f w.r.t. dp, by Theorem 4, we may assume 
without loss of generality that M strictly continuously implements f w.r.t. dp. We start by prov-
ing the following key lemma.

Lemma 4. For each pure-strategy strict BNE σ in U
(
M,T

)
and k ≥ 0, there is a model T σ

k ⊃ T
such that Ti,0 ≡ T i and

T σ
i,k ≡
⎛
⎝�

ti∈T i

Wk
i (ti ,M)

⎞
⎠�T σ

i,k−1.

Fix any BNE σ of the game U
(
M,T σ

k

)
such that σ |T = σ . This model has the property that 

for each type ti,k (mi, ti) (the type in Ti,k that corresponds to mi ∈ Wk
i (ti ,M)),

(1) tki,k (mi, ti) = tki ;

(2) σi

(
ti,k (mi, ti)

)= δmi
.

Consider any message mi ∈ Wk
i (ti , M), i.e. any message that survives up to k rounds of 

iterated deletion of never best response in M for type ti of player i. The model T σ
k is constructed 

such that there exists a type of player i, ti,k (mi, ti) that has the same k-th-order beliefs; moreover, 
player i of type ti,k (mi, ti) must play mi under the BNE σ .

Before we present the proof of Lemma 4, let us conclude the now routine proof of Theorem 5. 
Consider the countable model T where
25
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Ti = �
σ is a pure-strategy strict BNE in U

(
M,T

)
( ∞�

k=0

T σ
i,k

)

and T σ
i,k is given as in Lemma 4. Since M strictly continuously implements f w.r.t. dp, there 

is some BNE σ which strictly continuously implements f in U (M,T ). Hence, σ |T is a 
pure-strategy strict BNE in U

(
M,T

)
. It follows from Lemma 4 that for each k and each 

mi ∈ Wk
i (ti , M), there is a type tki,k (mi, ti) ∈ Ti such that

tki,k (mi, ti) = tki (18)

and

σi

(
ti,k (mi, ti)

)= δmi
.

It follows from (18) that dp
i

(
ti,k (mi, ti) , ti

)→ 0. Since M strictly continuously imple-
ments f , we know that it must be the case that g (σ (tk (m, t))) → f (t). Since σ (tk (m, t)) = m, 
it follows that g (m) = f (t) for every m ∈ W∞ (t,M). �
Proof of Lemma 4. First, since σ |T = σ , the claim trivially holds for k = 0. Now we prove 
the claim for k ≥ 1, assuming that it holds for k − 1. By definition, each mi ∈ Wk

i (ti ,M) is a 
strict best response to some belief μ−i ∈ � 

(
� × T −i × M−i

)
such that marg�×T −i

μ−i = κti

and μ−i

({
(θ, t−i ,m−i ) : m−i ∈ Wk−1

−i (t−i ,M)
})

= 1. By the induction hypothesis, there is a 

mapping η−i,k−1 from each t−i ∈ T −i and m−i ∈ Wk−1
−i (t−i ,M) to a type t−i,k−1 (m−i , t−i )

such that (1) and (2) in Lemma 4 holds. Define κti,k(mi ,ti ) ∈ � 
(
� × T σ−i,k

)
as

κti,k(mi ,ti ) = μ−i ◦ η−1
−i,k−1.

That is, type ti,k (mi, ti) believes that the state and the opponents’ types follow a distribution 
that is induced from μ−i (in which each t−i,k−1 (m−i , t−i ) plays m−i in BNE σ by the induc-
tion hypothesis). Since mi is a best response against μ−i , it follows that σi

(
ti,k (mi, ti)

)= δmi
. 

Moreover, since tk−1
−i,k−1 (m−i , t−i ) = tk−1

−i , we have that tki,k (mi, ti) = tki . �
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