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Abstract

Different agents need to make a prediction. They observe identical data, but have different models :
they predict using different explanatory variables. We study which agent believes they have the best
predictive ability—as measured by the smallest subjective posterior mean squared prediction error—
and show how it depends on the sample size. With small samples, we present results suggesting
it is an agent using a low-dimensional model. With large samples, it is generally an agent with a
high-dimensional model, possibly including irrelevant variables, but never excluding relevant ones.
We apply our results to characterize the winning model in an auction of productive assets, to argue
that entrepreneurs and investors with simple models will be over-represented in new sectors, and to
understand the proliferation of “factors” that explain the cross-sectional variation of expected stock
returns in the asset-pricing literature.
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1 Introduction

The value that individuals assign to a choice often depends on how well they believe they
can predict unknown variables. How much an entrepreneur is willing to pay for a company,
or whether they choose to enter a new market, depends on their belief in their own ability
to predict and respond to future conditions, like market demand, costs, and competition.
Households are more likely to invest in financial assets if they believe they can predict future
market values.

In this paper, we study how individuals’ assessments of their own predictive ability in-
teracts with the models they use and the available sample size. Our agents are Bayesian
and observe the same data, but their predictions are based on different models: some agents
believe only a few covariates matter for predictions, while others believe that many more
do. We ask: What are the characteristics of the model of the agent who, after observing
the data, believes they have the best predictive ability, as measured by the smallest subjec-
tive posterior mean squared prediction error (subjective MSPE)? Colloquially, a candidate
who believes they have the best predictive ability may be described as the most “confident.’’
Similarly, if the subjective MSPE is below the (unknown) objective MSPE of their model,
they may be described as “overconfident.” In what follows, we refer to the agent’s assessment
by subjective MSPE, but in our applications we expand on this confidence/ overconfidence
interpretation to deliver novel implications to the behavioral literature on overconfidence.

We show that the answer depends on the model’s dimension and the sample size. With
small samples, agents with the smallest subjective MSPE use a low-dimensional model, using
only a few covariates, regardless of the true data generating process (DGP). In contrast,
with large samples, agents with the smallest subjective MSPE use a high-dimensional model,
possibly including irrelevant covariates, but never excluding relevant ones. In single-agent
decision problems, this results in novel comparative statics: the dimension of agents’ models
and the dataset’s sample size influence the value they assign to each action, holding fixed
other standard considerations (e.g., risk aversion, outside options, etc.). In settings where
agents compete and relative subjective expected prediction error matters, model dimension
and sample size determine the winning model.

Our model. As a concrete example, consider a second-price auction where a productive
asset is sold to the highest bidder. The new owner of the asset will choose an action a, and
her payoff will be given by M − (a − y)2, where M is a known positive quantity and y is a
random variable. Thus, the value of the asset depends on how well the agent can predict y.

There are multiple interesting economic issues in such a setting. Bidders may have
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different payoff functions, different actions sets, or different information. We abstract from
all those issues and focus on the impact of using priors that involve a simpler as compared
to a more complex relationship between explanatory variables and the variable of interest
y. Specifically, suppose all agents agree that y is a linear function of a number of covariates
{xj}j∈{1,...,k} plus a noise term, i.e., y =

∑
βjxj + ε. Both the βj’s and the variance of ε are

unknown, and agents may have different prior distributions on them. In particular, some
agents may believe that only a subset of the covariates matters for predicting y.

All agents are given the same data: n independent draws of x and y, according to an
unknown process. Agents are Bayesian but have different priors—as in Harrison and Kreps
(1978) or Morris (1994). Thus, each agent computes a posterior distribution of βj’s and
the variance of ε, and will use these posterior distributions to solve for their optimal action.
Notice that there is no winner’s curse in this setup, as winning the auction has no effect
on the winner’s posterior distribution. Therefore, the auction has the usual equilibrium in
dominant strategies where each agent bids her expected value of the asset if she becomes
the owner and gets to choose a. The winner is the agent with the lowest subjective MSPE.
As everything else is equal, this is a competition among models. We ask: What are the
characteristics of the model that, after observing the data, has the lowest subjective MSPE?

Note that there is a trivial reason why certain models may have lower subjective MSPE:
their priors may contain less uncertainty about the world. The most extreme case is when
an agent is dogmatic and she has a (right or wrong) deterministic model. That agent would
believe she has no prediction error and would always bid M in the auction described above.
To focus on more interesting effects, we prove all our results under the assumption that,
absent data, all agents have the same expected loss.

Results. Our first result, Lemma 1, characterizes the subjective MSPE of an agent as a
function of their prior and observed data. We prove a subjective/ Bayesian variant of a
standard decomposition to show that subjective MSPE can be written as the sum of two
components, which we term 1) model fit : the agent’s posterior expectation of the variance
of the regression residual, ε; and 2) model estimation uncertainty : the agent’s degree of
uncertainty about the coefficients in her regression model. Crucially, we show that the latter
depends on the model’s dimension. This implies that, while our Bayesian agents use their
posteriors to compute the best action and do not explicitly care about the dimension of their
model, the dimension affects their subjective MSPE.

This characterization has two immediate implications, depending on the size of the
dataset. Our first set of results pertains to the case of small samples. Here we show that
“model estimation uncertainty” plays a critical role. While agents who use only a few covari-
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ates may have a lower model fit, they will also have a lower model estimation uncertainty,
since they have fewer parameters to estimate. One complication with small samples is that
the actual realized dataset matters, not just the agent’s prior. Assuming that priors take a
convenient conjugate form typical in Bayesian linear regression, we show how small sample
sizes favor small models—even assuming that all agents have the same prior expectation
about their prediction error. First, Proposition 1 shows that when the dataset consists of a
single datapoint, the lowest subjective MSPE is of a model that contains a single covariate
(regardless of the realized data, the true DGP, or the parameters of the prior). Second,
Proposition 2 shows that for any fixed sample size and for any true data generating process,
lower-dimensional models have a lower subjective MSPE with high probability, as long as
the prior on the variance of ε is high enough. Intuitively, with small samples, uncertainty
about the parameters of the model plays a crucial role. Smaller models have an advantage
since uncertainty about the parameters decreases faster as data accumulates. Even if these
smaller models are misspecified, if the sample is small their model fit will not be much lower,
meaning that they will have the lowest subjective MSPE. Third, we show that smaller mod-
els also have a smaller subjective MSPE when agents all believe they know the variance of
the error and this variance is common. Finally, we show that this is also true when agents
need to compute their future expected subjective MSPE before data is realized, but knowing
that a data set of size n, for any n, is going to be revealed before the action is chosen.

Next, we consider the case of large sample size. Here, model estimation uncertainty
vanishes: agents will have no uncertainty about their fitted parameters, even if they are
using the wrong model. Subjective MSPE is therefore based solely on model fit. Proposition
3 then shows that models that omit a covariate that is relevant for prediction never prevail.
At the same time, we also show that high-dimensional models—those that contain additional
covariates irrelevant to the true DGP—may continue to win, even asymptotically. Even
though these high-dimensional models will converge to the true DGP, for any finite sample
they remain strictly different. We show that the probability of winning for high-dimensional
models remains strictly above zero, even asymptotically. In turn, this shows that the role of
priors does not vanish asymptotically: it continues to affect a model’s probability of winning,
even with arbitrarily large samples.

Applications. In the main body of the paper, we discuss the case of an auction of a
productive asset as a leading example. In Section 6, we present two additional applications.
First, we consider a simple model of entry in which returns depend on prediction error: for
example, the decision of an entrepreneur to enter a new sector, or the decision of a household
to invest in a risky asset. Conditional on entry, the agent must make further choices. For
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example, as in classic organizational economics models, the entrepreneur must choose a
strategy a that fits the (predicted) state of the world y and the loss function is the quadratic
difference between a and y, as in, e.g., Marschak and Radner (1972), Milgrom and Roberts
(1992) or Alonso et al. (2008). Alternatively, the investor must predict price movements
to profitably buy/sell the asset. Agents may have simple or complex models: they make
their forecasts using few or many covariates). The results of this paper provide a novel
comparative static: in new sectors/asset classes, we should observe an over representation
of investors with “simple” models, even when reality is “complex.” We connect this to the
literature on overconfidence of entrepreneurs and investors.

Second, we use our framework to understand the proliferation of “factors” that explain the
cross-sectional variation of expected stock returns in the asset-pricing literature. We argue
that the increase in the number of test portfolios used to compute the popular Fama-French
cross-sectional regressions mechanically favors asset-pricing models with several factors. Our
empirical analysis on the evolution of the “factor zoo” can be viewed as a particular instance
of a simple model of scientific progress. Early models (when there is little data available) may
be overly simple relative to the truth, and become more complicated as samples accumulate.

Related Literature. Our results sit within the large and growing body of work in eco-
nomic theory on agents with misspecified models; we defer a full discussion to Section 7.
One key difference is that in most of the literature, misspecified models are evaluated using
their objective performance. Our paper, along with a few contemporaneous or subsequent
ones (Eliaz and Spiegler, 2018; Levy et al., 2019; He and Libgober, 2020), focuses instead on
agents’ subjective perception of their prediction error, the key metric in our applications.

Our results may also, at a high level, be reminiscent of model-selection methods in Statis-
tics and Machine Learning, with one big difference: our results emerge as the outcome of
competition among Bayesian decision makers using different models. By contrast, the model
selection literature proposes and studies techniques to explicitly penalize high-dimensional
models. The Bayesian statisticians in our paper cannot discard covariates.

Outline. The remainder of the paper is organized as follows. Section 2 outlines the formal
model, and characterizes the subjective MSPE of a single agent, the foundation of our results.
Section 3 illustrates the key trade-offs under competition with a simple numerical simulation.
Section 4 then presents formal results for the case where the size of the dataset, n, is small,
while Section 5 considers the case where n is large. Section 6 studies the applications
described above. Section 7 discusses the related literature, and Section 8 concludes.
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2 Model and Single-Agent Problem

Agents want to predict a real-valued variable y. There are k real-valued covariates (or
explanatory variables) x ∈ Rk.

Data and Data Generating Process. Before making a prediction, agents observe a
common data set, denoted Dn, composed of n i.i.d. draws of y and x. We denote the data
as Dn = (Y,X), where Y ∈ Rn and X ∈ Rn×k. The assumption that all agents observe
the same data will be relevant for our applications (for example, in an auction setting, this
avoids winner’s curse).

A true Data Generating Process (DGP), denoted P, determines the joint distribution
of the random variables y and x. Most of our results assume only that true distribution of
covariates has finite moments of all orders (and a positive definite matrix of second moments).

Statistical Models. Agents do not know P but work with a statistical model : a family of
plausible joint distributions for y and x. In particular, agents posit a linear relation between
y and the covariates x ∈ Rk, i.e., conditional on x:

y = x′β + ε, where ε|x ∼ N1(0, σ2), β ∈ Rk, (1)

that is, agents assume y|x is a homoskedastic linear regression with Gaussian errors and
parameters (β, σ2) ∈ Rk × R+.1,2

Agents also assume that the covariates follow a distribution P which belongs to some
parametric family.3 This may or may not be the correct distribution. We assume that, for
any element in this family, the matrix EP [xx′] is positive definite and that the random vector
x has finite moments of all orders.4

Together, P , β, and σ2 fully define a joint distribution over y and x, which we denote by
Qθ, with parameter θ := (β, σ2, P ).

1Because covariates in x can be correlated, our framework allows the agents to consider a wide family of
non-linear relations. For example, the non-linear process y = 3

x3
1√
x5

+ ε, can be accommodated by defining a

new observable equal to x3
1√
x5
. While not all non-linear processes can be expressed this way, especially since

we assume finitely many covariates, good approximations can always be achieved.
2We use the notation Nk(µ,Σ) to denote a multivariate normal distribution of dimension k with mean µ

and covariance matrix Σ. See p. 171 of Hogg et al. (2006) for a textbook reference on this convention.
3A family of distributions P is said to be parametric, if its elements are indexed by a finite-dimensional

vector. One example is x ∼ Nk(0,Σ), where Σ is an unknown positive definite matrix.
4Positive definiteness of the matrix rules out the case in which one covariate is a linear combination of

some of the others.
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Different Explanatory Variables. Different agents may consider different explanatory
variables in x as relevant for their prediction. We assume that agents consider at least one
explanatory variable in their models. The following notation will be useful. If {1, 2 . . . , k}
label the explanatory variables in x, we denote by J ⊆ {1, 2 . . . , k} the subset that an agent
considers possibly relevant for prediction. For a given vector β, the subvector consisting
solely of the components in J ⊆ {1, . . . , k} denote by βJ . Let xJ be the analogous subvector
of x, and XJ the corresponding submatrix of X.

Misspecification. An agent who considers the variables in the set J has the statistical
model {QθJ}θJ∈ΘJ . Here ΘJ is the set of parameters corresponding to variables J , i.e.,
θJ := (βJ , σ

2, P ). This model is said to be misspecified if there is no θJ ∈ ΘJ for which
QθJ = P (and it is correctly specified otherwise). In words, a statistical model is misspecified
if it does not contain the true DGP (Kleijn and Van der Vaart, 2012). When the true DGP
P is also a Gaussian linear regression model as in (1) (which we will assume for some of our
results), let J0 denote the covariates with non-zero βs in the true DGP. Then, note that the
model associated with any set of variables J for which J0 6⊆ J is necessarily misspecified.5

Priors. Agents are Bayesians. An agent who considers variables J as relevant for prediction
has a prior π over ΘJ . It will be convenient to denote by J(π) the set of variables that an
agent with prior π considers relevant for prediction. Formally, let πj denote the marginal
distribution over βj corresponding to prior π. If δ0 denotes a Dirac measure at zero, then

J(π) := {j ∈ 1, . . . , k : πj(βj) 6= δ0}.

In a slight abuse of terminology, we sometimes use J ⊆ {1, . . . , k} to refer to a model, which
should be understood as the set of explanatory variables that are not exactly equal to zero
under the prior π. Strictly speaking, though, a statistical model refers to the collection of
distributions over data given parameters as we have defined above; see McCullagh (2002).

Actions, Utility, and Optimal Prediction. Agents make a prediction of y given covari-
ates x. Formally, they construct a prediction function f that maps x into y, i.e., f : Rk → R.
They minimize a standard quadratic loss function, equal to the square of the difference be-
tween the true y and their forecast f , i.e., (y− f)2. Denote by L(f, θ) the agent’s loss under

5At first glance, it might seem reasonable to say that a model y = β1x1 + ε need not be misspecified when
the model is truly y = β1x1 + β2x2 + ε′, as long as the distributions of ε and β2x2 + ε′ coincide. But this
is ruled out by the assumption that error distributions are restricted to be Gaussian, centered at zero, and
independent of covariates.
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prediction function f if the true DGP is Qθ, i.e.,

L(f, θ) := EQθ [(y − f(x))2]. (2)

If π is the agent’s prior over θ and Dn is the observed data, then characterizing the optimal
prediction f ∗ is a standard problem. The agent chooses f to minimize Eπ[L(f, θ)|Dn], which
can be rewritten as

Eπ[σ2|Dn] + Eπ
[
EP [(x′β − f(x))2] |Dn

]
. (3)

The first term does not depend on f . The second term involves the average error incurred
in predicting x′β using f(x).6 With standard arguments (i.e., exchanging the order of inte-
gration and taking first-order conditions), we can see that this is minimized by

f ∗(π,Dn)(x) := x′ Eπ[β|Dn] = x′J(π)Eπ[βJ(π)|Dn]. (4)

Thus, a Bayesian decision maker with a posterior π|Dn, model J(π), and a square loss
function, forecasts y at x as her Bayesian posterior mean of x′β. This is a standard result.

The agent’s posterior loss, conditional on her using the optimal prediction function char-
acterized above, is denoted L∗(π,Dn). We refer to it as the subjective posterior mean-squared
prediction error (subjective MSPE).

2.1 Decomposing Subjective MSPE

We now characterize an agent’s subjective MSPE, our key dimension of interest. The key
forces at play will already be evident from the following lemma.

Lemma 1. Suppose that βJ(π) is independent of P under the posterior distribution. The
agent’s subjective MSPE can be decomposed as:

L∗(π,Dn) = Eπ
[
σ2|Dn

]︸ ︷︷ ︸
Model Fit

+ tr
(
Vπ[βJ(π)|Dn] Eπ

[
EP [xJ(π)x

′
J(π)] |Dn

])︸ ︷︷ ︸
Model Estimation Uncertainty

, (5)

where V(·) is the variance-covariance operator, and tr is the trace operator.

This lemma is reminiscent of standard decompositions of mean-squared prediction error
in frequentist linear regression models (e.g., Hansen, 2021, Theorem 4.8), except that in this
case it characterizes the subjective MSPE of the agent using their own prior. The lemma
shows that the agent’s subjective MSPE, L∗(π,Dn), is the sum of two components. The

6The inner expectation averages over values of x. The outer one averages over the values of β and P .
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first, the posterior expectation of σ2
ε , is the agent’s estimate of the irreducible noise in the

system. We interpret this term as a measure of model fit, i.e., how well the model explains
the data (as all unexplained variation must be ascribed to noise).

The second term, tr (Vπ[βJ |Dn] Eπ [EP [xJx
′
J ] |Dn]), is the trace of the variance-covariance

matrix of the coefficients of the model (adjusted by the posterior mean of EP [xJx
′
J ]). We

interpret this term as a measure of how uncertain the agent is in her estimation of the
parameters of the model according to her own prior, capturing model estimation uncertainty.
To illustrate why, consider the simpler case in which the posterior mean of EP [xJx

′
J ] is the

identity matrix. Then, the second term reduces to tr (Vπ[βJ |Dn]), i.e.,
∑

j∈J Vπ[βj|Dn];
this is simply the sum of the posterior variances of the parameters βj, indeed a measure of
model estimation uncertainty. In the next section we will show that this decomposition has
immediate implications for which model leads to the lowest subjective MSPE.

Remark 1. The independence of βJ and P under the posterior distribution will hold under
general assumptions. For example, it holds when agents know the distribution of covariates,
or if we consider statistical models in which P does not enter the parametric model of y|x
and (β, σ2) does not affect the distribution of x.

3 Competing Models: A First Look

Suppose agents participate in a mechanism that selects the agent with the lowest subjective
MSPE. A leading example, discussed in the introduction, is that of a second-price auction of
a productive asset. In this scenario, the winner of the productive asset will choose an action
a and her payoff will be given by M − (a− y)2, where M is a known positive quantity and y
is the variable agents aim to predict. Thus, the value of the asset depends on how well the
agent can predict y. Assuming that different priors are the only dimension of heterogeneity
among participants, and noting that there is no winner’s curse, the auction will select the
agent with the lowest subjective MSPE. Applying Lemma 1, we immediately derive that this
is the agent with the best trade-off between model fit and model estimation uncertainty.

Before we dive into formal results, we present a simple simulation to illustrate the key
forces at play and our main findings. Suppose that there are six covariates, {x1, . . . , x6}, of
which only the first five are relevant for prediction in the true DGP, i.e., y =

∑5
j=1 βjxj + ε,

and ε|x ∼ N (0, σ2). For simplicity, assume that each nonzero regression coefficient, βj, is
equal to 1, as is σ2. Also assume that x ∼ N(0, I6) under the true DGP.

Considering all subsets of covariates, there are 63 agents with linear regression models,
one for each nonempty subset of {x1, . . . , x6}. By construction, 61 are misspecified, one has
the exactly correct model, and one has a model of higher dimension compared to the true
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Figure 1: Winning probabilities on 5, 000 simulated datasets of size n = 1, . . . , 50.

DGP. For the simulation, we assume that agents’ priors belong to a well-behaved family,
common in Bayesian linear regression, and parametrize them so that all agents have the
same subjective MSPE before seeing any data.7

Figure 1 plots the frequency of the size of the model of the agent with the lowest subjective
MSPE for datasets of size n ∈ {1, . . . , 50}. Two patterns emerge.

First, when n is small, low-dimensional models tend to win despite being misspecified. In
fact, when n = 1, we can see in Figure 1 that the winner is a model with a single covariate.

Second, as n grows large, misspecified models never win. At the same time, the high-
dimensional model that includes the redundant variable x6 continues to win with relative
frequency that appears to converge to a steady state close to 0.3—strictly above 0.

We will now show that both patterns hold more generally.
7Specifically, the agents are assumed to have the following parametric model for their covariates: xJ ∼

N|J|(0,ΣJ) where ΣJ is an unknown, positive definite matrix. Further, we assume that the priors over the
β,σ2 and ΣJ belong to the Normal-Inverse-Gamma-Inverse-Wishart family of Definition 1 below. In this
simulation we set a0 = 2, b0 = 10, and γ0 = .001.
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4 The Winner with Small n

We begin with the case in which the number of observations n is small. For tractability, we
focus on a special class of priors, widely used in Bayesian linear regression.

Definition 1. A prior has the Normal-Inverse-Gamma-Inverse-Wishart form with hyper-
parameters (a0, b0, γ0), with (a0, b0, γ0)� 0 and a0 > 1, if

βJ |σ2 ∼ N|J |

(
0,

σ2

γ0|J |
I|J |

)
, σ2 ∼ Inv-Gamma(a0, b0),

xJ ∼ N|J |(0,ΣJ), ΣJ ∼ Inv-Wishart(γ0|J |I|J |, 2|J |+ 1)

where Inv-Gamma(a0, b0) is the Inverse-Gamma distribution with parameters a0 and b0, and
Inv-Wishart(γ|J |I|J |,2|J | + 1) is the Inverse-Wishart distribution with J × J scale matrix
γ|J |I|J | and degrees of freedom 2|J |+1.8 The prior on ΣJ is assumed independent of (β, σ2).

The Normal-Inverse-Gamma-Inverse-Wishart priors are conjugate priors for the Gaussian
linear regression model and the posterior can be expressed in a closed form as a function of
the data—see Appendix A.3 for details. All results in this section have analogs in the setting
where the distribution P on covariates is assumed to be known (not necessarily Gaussian)
and EP [xx′] = Ik.

One convenient feature of this family of priors, readily checked, is that they imply that
all agents have the same subjective MPSE when no data is released, i.e., when n = 0.
Differences in subjective MSPE arise therefore only from the fact that the subjective MSPE
evolves differently for models of different dimensions.

Using this family of priors allows us to further simplify the expression for subjective
MSPE in Lemma 1.

Lemma 2. Consider a prior π as in Definition 1. Then

L∗(π,Dn) = Eπ[σ2|Dn]︸ ︷︷ ︸
Model Fit

+Eπ[σ2|Dn]

(
|J(π)|

n+ |J(π)|

)
.︸ ︷︷ ︸

Model Estimation Uncertainty

(6)

Equation (6) shows that the dimension of an agent’s model enters explicitly into the
subjective MSPE via the term |J(π)| / (n + |J(π)|). As this is increasing in |J(π)|, higher-
dimensional models have a disadvantage: as they have more parameters to estimate, their

8The Inverse-Gamma is a two-parameter family of distributions on the positive real line. For parameters
a0 > 1, b0 ≥ 0 it has mean b0/a0 − 1. The Inverse-Wishart is a two-parameter family of distributions on
real-valued positive definite matrices. The first parameter (scale matrix) is a symmetric positive definite
matrix. The second is a non-negative scalar at least as large as the dimension of the scale matrix.
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model estimation uncertainty will decrease more slowly. For higher-dimensional models to
have lower subjective MSPE, therefore, they must compensate for this by a sufficiently better
model fit. Specifically, the ratio between the model fits must be such that

L∗(π,Dn) ≥ L∗(π′, Dn) ⇐⇒ Eπ[σ2|Dn]

Eπ′ [σ2|Dn]
≥

(
1 + |J(π′)|

n+|J(π′)|

)
(

1 + |J(π)|
n+|J(π)|

) . (7)

In general, however, characterizing the model fit is analytically difficult, as it depends
also on the realized data Dn, which in small samples can vary substantially. The following
results describe how lower-dimensional models have lower subjective MSPE in some cases in
which model fit is simple to analyze. First, when the sample size n = 1; we this to be the
case for a model using a single covariate. Second, it holds true when prior variance of ε of
the models is high enough relative to n. Third, it applies when either all agents believe they
know the variance of the error term, σ2, and have the same belief, or when subjective MSPE
is computed before actual data is released but the agents know that it will be released before
they must choose their action—a case that has direct applications (as we will discuss later).

4.1 One-Dimensional Models Win when n = 1

The first result shows that when n = 1, low-dimensional models have the lowest subjective
MPSE, regardless of the realized data, the true DGP, or the parameters of the prior.

Proposition 1. Suppose all priors are as in Definition 1 with shared hyper-parameters.
Suppose also that for every single covariate model, i.e., every J such that |J | = 1, there is
an agent with that model, and that all agents use at least one covariate. If n = 1, then the
agent with lowest subject MSPE is an agent with a single covariate model.

We prove this result by showing that, when n = 1, model fit is minimized by some model
that considers only a single variable. This means that there is no model with more than one
covariate that can improve the model fit of the best one-dimensional model.

4.2 Low-Dimensional Models Win when Prior Variance Is High

The sharp characterization obtained for n = 1 does not hold for other sample sizes. Indeed,
our simulations show that models with more than one covariate may have the lowest sub-
jective MSPE with positive probability for n > 1. As we have discussed, the identity of this
model depends on the trade-off between model fit and model estimation uncertainty.
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One way to capture the advantage of small-dimensional models when n is small is the
following. One characteristic of few data points is that the prior continues to play a relevant
role. This can be captured by making sure that the prior mean is large enough relative to
the amount of data. In this case, high-dimensional models cannot improve sufficiently on the
model fit term relative to lower-dimensional models (as the model fit is poor for any model).
Therefore, in this setting also, the advantage that low-dimensional models have in terms of
model uncertainty is the dominant factor.

Proposition 2. Let Π be a finite set of agents’ priors that satisfy Definitions 1 with shared
hyper-parameters (a0, b0, γ). Let |J | be the size of the smallest model in this set. Fix the size
of the dataset n. For any p ∈ (0, 1), there exists b0 large enough so

P
(
Dn : ∃π∗ ∈ argmin

π∈Π
L∗(π,Dn) s.t. |J(π∗)| = |J |

)
> p,

i.e., with probability at least p over datasets Dn, the agent with the lowest subjective MSPE
has the smallest size model among all the agents.

As an illustration of this result, let us return to the simulations in Section 3. Figure 2
reports the winning fraction of models of size 1, as we increase the shared hyper-parameter
b0 (all other simulation parameters stay the same as above). Growing b0 corresponds to a
larger prior mean for all agents.

4.3 Low-Dimensional Models Win when Error Variance Is Known

or Data Are Not Released but Expected

We conclude this analysis considering two other cases in which the model fit is easy to solve
analytically, which again show an advantage of lower-dimensional models. We present them
as two observations since they follow directly from Lemma 2 above.

Observation 1. Suppose all agents treat σ2 as a known common value, but the priors on
β|σ2 and Σ are as in Definition 1. Then, for any Dn,

L∗(π′, Dn) < L∗(π,Dn) ⇐⇒ J(π′)| < |J(π)|.

That is, if σ2 is believed to be known (possibly incorrectly), subjective MSPE is ranked by
model dimension.

This result shows that when all agents believe they know the error variance σ2, then
model dimension induces a precise ranking between models: smaller models always have
smaller subjective MSPE. This result follows directly from Lemma 2.
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Figure 2: Winning rates for models with one covariate as the shared hyper-parameter b0

increases. All other simulation parameters are the same as Figure 1.

We now turn to the case in which agents have not received any data, but know that
they will receive n data points before making their choice of action. They therefore have to
compute their expected subjective MSPE, which we denote by Eπ′ [L∗(π′, Dn)].

Observation 2. For any π and π′,

Eπ′ [L∗(π′, Dn)] < Eπ[L∗(π,Dn)] ⇐⇒ J(π′)| < |J(π)|.

This result shows that if agents have not received any data but know that they will
receive it later, again we find small-dimensional models have lower expected MSPE. This
observation also follows straightforwardly from Lemma 2: by the martingale property of
beliefs, the expected model fit is constant among models, meaning that the winner must be
a low-dimensional model.

5 The Winner with Large n

We now characterize the winner for large n. Our results will be derived for a much more
general class of priors than the previous section, but it is helpful to start by recalling Lemma
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2, which assumes Normal-Inverse-Gamma-Inverse-Wishart priors. In this case, the subjective
MSPE is

Eπ[σ2|Dn]︸ ︷︷ ︸
Model Fit

+ Eπ[σ2|Dn]
|J(π)|

n+ |J(π)|)︸ ︷︷ ︸
Model Estimation Uncertainty

.

From this formula, it is immediate to see that model estimation uncertainty vanishes as n
grows large, making the model fit the crucial aspect. This means that, because misspecified
models have worse model fit than correctly specified ones, they must therefore also have
worse subjective MPSE when n is large enough.

The comparison is, however, less straightforward between a model that uses the exact
same variables as the true DGP and another that also includes additional irrelevant covari-
ates. For both, model fit converges to the true residual variance (σ2

0), since both are correctly
specified, and model estimation uncertainty converges to zero. Which one has lower subjec-
tive MSPE depends on how quickly these converge, which in turn depends on the realized
data and on the prior. Our simulations suggest that the long-run behaviors may be such
that the larger model may continue to win, with a probability bounded away from zero even
at the limit. We will now show how this holds in general.

For this analysis, we do not need to assume that priors have a specific form as we did
in the previous section. We simplify our analysis in the body of the paper by making two
assumptions: that the true DGP is of the linear Gaussian form, which allows some models to
be identical to the true DGP (Assumption 1); and that priors over the βis have full support
with a smooth density (on the subset of relevant covariates J(π)), while priors on σ2

ε are not
degenerate (Assumption 2).

Assumption 1. There exist parameters θ0 := (β0, σ
2
0, P0) such that Qθ0 = P.

Assumption 2. Priors are characterized by a smooth and strictly positive probability density
function π(·) over (βJ(π)

′, σ2)′ ∈ R|J(π)| × R+. The prior over (βJ(π)
′, σ2)′ is independent

of the prior over P .9 In addition, for each agent, there exists n large enough for which
Eπ[σ2|Dn] <∞ almost surely.

Recall that J0 denotes the set of covariates that are relevant in the true DGP.

Proposition 3. Suppose the true DGP P satisfies Assumption 1 with parameters (β0, σ
2
0).

Let Π be a finite collection of priors that satisfy Assumption 2 and that contains π∗ with
J0 ⊆ J(π∗). If

tr
(
nVπ(βJ(π)|Dn)Eπ

[
EP [xJ(π)x

′
J(π)] |Dn

])
= OP(1), (8)

9By definition, the prior of an agent for any βκ, κ 6∈ J(π), is degenerate at 0.
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for every prior π ∈ Π, then

lim
n→∞

P
(
∃π ∈ argmin

π∈Π
L∗(π,Dn) s.t J0 * J(π)

)
= 0.

Moreover, for any π for which J0 ⊂ J(π),

lim
n→∞

P
(
L∗(π,Dn) < L∗(π0, Dn)

)
∈ (0, 1],

where π0 is any prior for which J(π0) = J0.

A crucial assumption in Proposition 3 is (8). This assumption will be verified whenever
the posterior variance of β decreases to zero at rate n. Lemma 2 already tells us that this
condition is satisfied in the special case of Normal-Inverse-Gamma-Inverse-Wishart priors.
In fact, this condition holds very generally due to the Bernstein-von Mises theorem, which
states that posterior distributions based on parametric models (misspecified or correctly
specified) will typically behave like Gaussian distributions, with a variance that decreases at
rate n.10

Proposition 3 has two takeaways. The first part tells us that a misspecified model, because
it excludes relevant variables, never wins as the sample size grows large. Any model that is
not misspecified will have lower subjective MPSE with probability approaching 1 as n grows
large. The second part shows that any model larger than the true one defeats the latter
with a probability that is strictly positive, even asymptotically.

We have already discussed the intuition for the first result. The assumptions of the
theorem, i.e. Assumptions 1 and (2) combined with (8), guarantee that model estimation
uncertainty converges to zero for all agents.

For the second result, from a technical perspective, our result is based on an asymptotic
expansion for the posterior mean of the variance parameter in the linear regression model
based on the general results in Kass et al. (1990). This is not a fairly technical result, so, for
some intuition, let us return to the case of Normal-Inverse-Gamma-Inverse-Wishart priors.
Here, when n is large, it is possible to approximate its distribution using asymptotic theory.

To this end, let β
∧

J denote the OLS estimator based on the variables listed in J , and let
σ
∧2
J be the corresponding residual variance estimator:

σ
∧2
J ≡ (Y −X ′Jβ

∧

J)′(Y −X ′Jβ
∧

J)/n.

10See the Bernstein-von Mises theorem for misspecified parametric models of Kleijn and Van der Vaart
(2012). This result can be thought of as richer versions of the classical results concerning posterior distribu-
tions of misspecified models in Berk (1970).
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A key observation in our analysis—that holds in the Normal-Inverse-Gamma model, but also
for more general priors—is that as the sample size grows large

n
(
Eπ0 [σ

2|Dn]− Eπ[σ2|Dn]
)

= n
(
σ
∧2
J0
− σ
∧2
J

)
+OP(1), (9)

where OP(1) refers to a term that is bounded with high probability under P. In the case
of Normal-Inverse-Gamma-Inverse-Wishart priors, algebraic manipulations can be used to
verify the approximation with a leading term equal to

−γβ ′0β0(|J | − |J0|).

Deriving an analogous result for other priors requires additional effort, given the lack of
closed-form solutions for the posterior distributions.11

Assumption 1, along with standard results from regression analysis—e.g., Equation 5.28
in Greene (2018) and Theorem 5.1 therein—implies n(σ

∧2
J0
−σ
∧2
J)/σ2

0 converges in distribution
to a chi-squared random variable with |J | − |J0| degrees of freedom. This means that the
probability that the larger model wins can be approximated by the probability of the event:

χ2
|J |−|J0| − γ(β′0β0/σ

2
0)(|J | − |J0|) > (|J | − |J0|).

In the context of our simulations—where the true DGP only included the first five co-
variates, with coefficients β = (1, 1, 1, 1, 1)′, and σ2 = 1—the probability that a model with
six variables defeats the true DGP is roughly

P (χ2
1 > 1 + 5γ).

When γ = .001, this probability is 0.3161, which is close to what we see in Figure 1. We
provide a more general formula in Appendix B.1.

It is important to remark that these results hold even if the true DGP is different from
(1). For example, the distribution of errors in the true DGP may be heteroskedastic or non-
normal with thin-enough tails, the distribution on covariates P may be misspecified as long
as it has finite second moments, and the true DGP may not be linear. Although Proposition
3 is presented under special conditions (Assumptions 1 and 2), it is possible to prove that
our results continue to hold under much weaker ones.12 We hope that the simpler framework

11We refer the reader to Lemma 3, which uses the Kaas-Tierney-Kadane expansions of posterior moments
in Kass et al. (1990) to verify the approximation.

12For example, for the expansion of Lemma 3 to hold, priors do not need to be smooth. It is sufficient
that they are differentiable up to the fourth-order.
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helps the reader understand the main forces at play in the competition among models.

Connection with the Akaike Information Criterion. A different way to understand
our results is to relate the model selection they induce to the Akaike Information Criterion
(AIC), a well-studied model selection criterion in econometrics and statistics. In what follows,
we illustrate that the loss function of an agent with Normal-Inverse-Gamma-Inverse-Wishart
prior is “close” to the AIC for the linear regression model.

Definition 2 (Akaike Information Criterion). Given a dataset Dn = (Y,X) with n data
points and k possible covariates, the AIC for linear regression evaluates a model J as

LAkaike(J, n,Dn) = ln σ
∧2
J +

2|J |
n
,

where σ
∧2
J =

1

n
min
β∈R|J|

(y −XJβ)′(y −XJβ).

The expression σ
∧2
J is the OLS estimator of the residual variance based on a model with

covariates XJ in the dataset Dn. As is well understood, the model with lower estimated
variance may not be the model with the best out-of-sample performance. This is because
selecting based on average residuals favors models that have more covariates, which may
overfit the data. The AIC compensates for this by adding a penalty term equal to 2|J |

n
, i.e.,

twice the ratio of the number of covariates in the model and the number of data points. Al-
gebra shows that, if agents have an uninformative Normal-Inverse-Gamma-Inverse-Wishart
prior, then the posterior loss is approximately equal to

ln

(
σ
∧2
J

)
+ ln

(
1 +

|J |
|J |+ n

)
.

Thus, if the sample size is large and the agents’ distribution of covariates is well-specified,
the posterior loss of an agent with prior π is approximately equal to the AIC (with a penalty
of ln(1 + |J |/(|J |+ n)) ≈ |J |/n instead of 2|J |/n).

The prevalence of larger models in the model competition can be then associated to the
“conservativeness” of the AIC for model selection. Proposition 3, however, makes clear that
the relation is only qualitative: larger models will prevail in large samples, but the probability
of a larger model being selected will continue to be affected by the prior.

Finally, it is worth reiterating that the foundations of the AIC are normative: the criterion
was proposed as a way to select models to avoid overfitting. Conversely, our analyis provides
a positive foundation for a solution similar to the AIC: we study the outcomes when Bayesian
agents compete in a way that selects the agent with the lowest subjective MPSE.
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6 Applications

In previous sections, we considered the auction of a productive asset as a leading example.
We now discuss two additional applications. The first is a simple model of entry when returns
depend on prediction error, which we connect to the literature on overconfidence. Second, we
use our framework to understand the proliferation of “factors” in the asset pricing literature.

6.1 Selection of Simple Models in Entry and Investment

We begin with an application to a single-agent decision problem. An agent is faced with
a risky entry choice—she has to choose between a risky option and a safe one that gives
her a utility normalized to 0. The utility of the risky option depends (in part) on the
agent’s ability to predict an unknown variable and take an action. This is the case of an
entrepreneur who has the option to invest in a new venture, where expected returns depend
in part on the ability to predict and adapt to future market demand, political situations, or
trade agreements. Alternatively, this could be an individual investor considering trading an
asset: returns depend on the ability of the investor to predict future price movements and
trade accordingly.

Formally, suppose that the expected utility of the risky option is

E(r) = v − L∗(π,Dn),

where v summarizes agent-specific costs and benefits that are independent of prediction
error, while L∗(π,Dn) is the component that depends on prediction error—in line with our
notation, the subjective MPSE. The prior π summarizes the agent’s prior belief about the
relationship between the unknown variable they need to predict (e.g., market demand for an
entrepreneur, price movement for an investor) and various observables they consider relevant.
The agent’s model is the set of variables they consider relevant for prediction. The data Dn is
past data about this relationship. The agent knows v and π, observes Dn, and then chooses
the risky option if its expected utility is positive.

The results of this paper directly apply. Ceteris paribus (fixing v), with few data points,
agents with “simple models” are systematically more confident in their prediction error (
L∗(π,Dn) is lower) and are, therefore, more likely to take the risky option. Crucially, this
holds whether their simple models are correct or not. This has an immediate implication that
provides a novel comparative static: entrepreneurs with simple models are over-represented in
sectors where little data has accumulated, even when the true DGP is complex. For example,
this margin of selection suggests that, ceteris paribus, the entrepreneurs more eager to invest
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in a country that just opened up to foreign investment, or in new technologies, will tend to
be those that believe they can predict future conditions using relatively few covariates—that
have a simple model—even when reality is much more complex. Similarly, investors with
simpler models are more likely to enter into new asset classes (e.g., crypto-currencies).

So far we have assumed that no new data is revealed after the investment decision. In
reality, however, new data accumulates after the initial investment/ choice to enter is made.
Entrepreneurs or investors may take this into account in their decision, expecting to be able
to refine their prediction. The discussion of Section 4.3 suggests that this only strengthens
the selection in favor of simple models. To illustrate, consider the setup above but suppose
that entrepreneurs must decide whether or not to invest before any data is revealed, but
knowing that some data will be revealed at a later stage. As we discussed in Section 4.3,
agents with simple models are more confident about how much they will be able to learn
from the yet-to-be-released data. In this case, entrepreneurs/ investors with overly simplistic
models will always be over represented.

Connections to Overconfidence. These findings connect to established empirical facts
on overconfidence and entry. Several studies have shown that entrepreneurs are, by various
measures, overconfident (Koellinger et al., 2007; Cooper et al., 1988). Similarly, a large
body of evidence shows that (especially retail) investors are often overconfident about their
knowledge and information (Odean, 1999; Statman et al., 2006). This is commonly attributed
to either incorrect beliefs, with selection favoring individuals with overly optimistic priors,
or post-decision bolstering.

Our results suggest a novel margin of selection related to model complexity in relation to
overconfidence: entry into areas with limited past data (e.g., “new” areas) are systematically
biased towards entrepreneurs or investors with models that are “simple.” As we have seen,
when the true DGP is complex, these individuals are also overconfident in their predictive
ability: their subjective MPSE is on average lower than it should be. The relevant margin
of selection may be the simplicity of the model, which generates both a higher likelihood of
entrance and overconfidence in predictive ability. Similarly, investment in new asset classes
is more common for investors who, ceteris paribus, have simple predictive models of price
movement. Our results also suggest that this margin of selection is attenuated as data accu-
mulates: entry into more established sectors/ technologies/ countries may be systematically
different from entry into “new” areas in terms of complexity of the entrepreneur’s model;
investors in established assets/ areas may be systematically different from investors in new
asset classes/ trends (e.g., crypto-currency).

Existing studies on overconfidence note also that agents often misreact, or underreact, to
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new information. For example, Odean (1999) studies the trading patterns of retail traders,
and argues that their trades are systematically incorrect: “while investors’ overconfidence in
the precision of their information may contribute to this finding, it is not sufficient to explain
it. These investors must be systematically misinterpreting information available to them.
They do not simply misconstrue the precision of their information, but its very meaning.”
This is consistent with our finding that, when the true DGP is complex and involves many
variables, entry into trading may favor agents with incorrect models, i.e., ones that exclude
covariates that are relevant for prediction and/or include irrelevant ones.

6.2 Competing Factor Models13

A large body of work in finance has studied the cross-sectional variation in asset expected
returns (i.e., why different assets earn different average returns). The classical asset-pricing
framework (Jensen et al., 1972; Fama and MacBeth, 1973) posits that, at each point in
time, asset returns are governed by a multi-factor model. The return of each asset—an
individual stock or a portfolio—is an asset-specific linear combination of these factors (with
time-invariant coefficients) plus random noise.

The search for factors to explain the cross-sectional variation of expected stock returns has
produced hundreds of potential candidates. The literature has evolved from the parsimonious
model of Fama and French (1993) using only three factors (market return, size premium,
value premium) to the factor library in Feng et al. (2020) that contains 150 risk factors.14

We use our framework to understand the proliferation of factors in this literature. We
argue that the increase in the number of test portfolios used to compute the Fama-French
cross-sectional regressions mechanically favors asset-pricing models with several factors.

To make this point, we view different collections of factors as competing models or, more
precisely, competing sets of risk factors—a terminology that has been used, incidentally, by
Fama and French (1993, 2015).15 We then take the number of test portfolios as the number
of available data points to predict the cross-section of expected returns. We consider the
different factor models as different Bayesian agents competing to predict cross-sectional
returns. Our results suggest that the winning model depends crucially on the sample size.

13We thank Stefano Giglio for useful discussions in writing this section.
14See Appendix C.2 for a description of these factors, how they are constructed, and the year in which

they were published.
15From Fama and French (1993, p. 12): “The average excess returns on the portfolios that serve as

dependent variables give perspective on the range of average returns that competing sets of risk factors
must explain.” On p. 13: “The wide range of average returns on the 25 stock portfolios, and the size and
book-to-market effects in average returns, present interesting challenges for competing sets of risk factors.”
Finally, in Fama and French (2015) “estimate the proportion of the cross-section of expected returns left
unexplained by competing models.”
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With a few test portfolios, smaller factor models will be selected. Conversely, increasing the
number of test portfolios favors high-dimensional factor models.

Let i index an asset in the cross-section. The outcome variable Yi denotes the excess
return of asset i averaged over the different time periods for which data on returns and
factors are available.16 Each asset i has an associated 150-dimensional vector of covariates,
Xi, containing the asset’s factor loadings.17 In principle, assets could be individual stocks
or portfolios. We follow the literature and focus on portfolios.18 The number of portfolios
under consideration (N) gives the sample size for the cross-sectional regressions.

We start with the 25 (5 × 5) portfolios sorted by size and book-to-market ratio as used in
Fama and French (1993).19 We then consider the larger collection of 2,875 (5 × 5) bivariate-
sorted portfolios in Feng et al. (2020).20

Competing (Factor) Models. We consider “competition” between three different models.
The first (Fama-French) uses only the original Fama-French factors (excess market return,
and the “small minus big” and “high minus low” factors). The second model (Factor Zoo) uses
all 150 factors in Feng et al. (2020). The third (FGX-DS) uses the 135 factors introduced
up until 2011, plus five additional factors obtained by the “Double Selection” approach of
Feng et al. (2020).21 For each model, we consider the same set of hyper-parameters (a0, b0),
chosen to maximize the marginal likelihood of the largest model with the largest dataset,
and set γ so that all models have the same prior subjective MPSE before any data. Details
are provided in Appendix C.1.

Figure 3 presents our results. It shows the subjective MSPE of each model. To make units
easier to interpret, the results are presented as a percentage relative to the worst competing
model (out of the three under consideration).

Consistent with our theorems, if we consider only the 25 (5 × 5) bivariate sorted port-
folios on size and book-to-market (as Fama and French (1993) originally did), the simple

16We follow Feng et al. (2020) and use monthly returns from July 1976 to December 2017.
17In the standard Fama-French two-pass regressions, these factor loadings are estimated from asset-by-

asset time series regressions of excess returns on factors (Bai and Zhou, 2015). For simplicity, we ignore the
estimation error and treat the estimated factor loadings as the true factor loadings. This allows us to stay
within our simple linear regression framework. The competing models are the different subsets of the factors
that different agents believe to be relevant to explain the cross-section of asset expected returns.

18There is some discussion in the literature about what is the right unit of observation to test asset-pricing
models: see the discussion in Ang et al. (2020).

19A 5 × 5 bivariate portfolio refers to the common practice of grouping stocks by the quintiles of the
cross-sectional distribution of both size and book-to-market.

20The sorting is based on size and each of the 115 factors marked with asterix in the table in Appendix
C.3. The dataset was obtained directly from the replication files provided by Feng et al. (2020).

21These are the investment and profitability factors of Hou et al. (2015), the “robust minus weak” factor
of Fama and French (2015), the intermediary risk factor of He et al. (2017), and the “Quality Minus Junk”
factor of Asness et al. (2019).
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Figure 3: Competing (Factor) Models

three-factor model achieves the best subjective MPSE (around half of the subjective MPSE
obtained with the largest models). With 2,875 (5 × 5) portfolios, however, the ranking re-
verses, and larger models now have the lowest subjective MPSE. (Appendix C.2 presents
several robustness checks with different models, sample sizes, and subsets of portfolios.)

A General Model of Scientific Progress. This discussion suggests a simple model of
scientific progress. There is public interest in predicting a variable y as a function of observed
covariates x, and there are competing scientists, each described by a prior belief about the
world; these priors differ in what covariates they think are relevant for predicting y. Data
(publicly) accumulates as i.i.d. draws from the unknown DGP.

Suppose each model’s success also depends on its subjective MSPE. Scientists who believe
their model has low prediction error would be more forceful about it, staking their career on
its predictions. Others whose subjective MSPE is high may be worried about mistakes and
damage to their reputation. Practitioners or politicians, who may cite scientific research to
justify their actions, may be more prone to adopt models with low subjective MSPE.

With these assumptions, our results suggest the following dynamic of scientific progress.
In the early stages of a field, when data is relatively scarce, overly simple models prevail—
including frameworks that exclude relevant covariates. Over time, more and more data
accumulates, and more nuanced models come into vogue, involving ever-increasing collections
of covariates. Overly-simple models are then discarded, since they are unable to fit the data
as well as larger ones; the “scientific paradigm,” understood as the collection of relevant
variables, becomes more complex. This is in line with casual observation and with dynamics
described in epistemology. For example, this aligns with what Kuhn (1962) describes as the
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path of progress of “normal” science, i.e., after a dominant paradigm has been established.22

7 Related Literature

A large body of literature has studied model misspecification in individual decision-making,
with famous examples like overconfidence and correlation neglect. A few recent theoretical
contributions to this enormous literature include Heidhues et al. (2018) and Ortoleva and
Snowberg (2015), to which we refer for further references. In misspecified learning settings,
“feedback loops” between the agents’ misspecified beliefs and the action they take add further
technical challenges—see, e.g., Fudenberg et al. (2017), Fudenberg et al. (2020), Heidhues
et al. (2020).

Recent works have studied the implications of agents with misspecified models in various
strategic settings. For instance, Bohren (2016), Bohren and Hauser (2017), Frick et al.
(2019b), and Frick et al. (2019a) study social learning when agents have misspecified models
that cause them to misinterpret other agents’ actions. Mailath and Samuelson (2019) study a
stylized prediction market where Bayesian agents have different models (defined as different
partitions of a common state space) and discuss the possibility of information aggregation.

Recent works consider specifically the outcomes when agents’ models are misspecified in
the sense we study here, i.e., there is a payoff-relevant dependent variable, and agents either
include irrelevant independent variables or exclude dependent variables. Schwartzstein and
Sunderam (2021) considers this in the context of persuasion, where competing persuaders
may “overfit” the data to better persuade a receiver. Levy et al. (2019) study a political
economy setting where there are both “simple” world views and complicated ones, and ask
whether political competition disciplines overly simplistic world views, finding instead that
they recur in dynamic settings. Finally, He and Libgober (2020) ask whether (and what
kind of) misspecifications can be evolutionarily stable. These works find reasons for why
misspecified models may survive (overfit models in the former, simple models in the case
of the latter two), although the exact mechanism is different than ours. Recent work also
considers the possibility that agents with misspecified models may be able to realize it, and
characterize the kinds of misspecifications that survive—see, e.g., Fudenberg and Lanzani
(2020), who consider an evolutionary framework, or Gagnon-Bartsch et al. (2021), who study
a setting where the agent perceives their errors through the framework of their own model.

In strategic settings, Esponda and Pouzo (2016) define a learning-based solution concept
22Changing paradigms are outside the scope of this work—see, e.g., Ortoleva (2012) for a model of a

non-Bayesian decision-maker who changes paradigm (selects a new prior) upon receiving information that is
unexpected according to their current prior.
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(“Berk-Nash Equilibrium”) for games in which agents’ beliefs are misspecified. More broadly,
solution concepts have been posited for settings where agents suffer from some sort of mis-
specification, including well-known examples like analogy-based equilibrium (Jehiel, 2005)
and cursed equilibrium (Eyster and Rabin, 2005).

Several works consider outcomes when some agents behave in a way that can be con-
strued as coming from a misspecified model. For instance, in Spiegler (2006, 2013), society
misunderstands the relationship between outcomes and the actions of strategic agents, which
affects the actions these agents take in equilibrium and resulting outcomes (studied in the
context of a market for quacks or its implications for political reforms). Levy et al. (2019)
study a dynamic model of political competition where agents have different (misspecified)
models of the world; the study uses this model to provide a foundation for the recurrence of
populism. Liang (2018) studies outcomes in games of incomplete information where agents
behave like statisticians and have limited information.23

A novel approach to modeling misspecification in economic theory is the directed acyclic
graph approach; see Pearl (2009). This is exploited in a single-person decision framework
in Spiegler (2016), which studies a single decision maker with a misspecified causal model
and large amounts of data. The paper shows that the decision maker may evaluate actions
differently than their long-run frequencies, and exhibit artifacts such as “reverse causation”
and coarse decision making. This approach is then used in Eliaz and Spiegler (2018), which
proposes a model of competing narratives. A narrative is a causal model that maps actions
into consequences, including other random, unrelated variables. An equilibrium notion is
defined, and the paper studies the distribution of narratives that is obtained in equilibrium.

Finally, the understanding that agents should be cognizant that their models may be mis-
specified has also led to new approaches in mechanism design, where the designer accounts
for misspecification in various ways. The literature on robust mechanism design (beginning
with the seminal Bergemann and Morris 2005) provides foundations for using stronger solu-
tion concepts. Madarász and Prat (2017) show that an optimal mechanism may perform very
poorly if the planner’s model is even slightly misspecified, and they identify a class of near
optimal mechanisms that degrade gracefully. Works such as Chassang (2013) and Carroll
(2015) develop optimal “robust” contracts and contrast to classical optimal contracting.

Since one natural application of our model is an auction, our results are related to Atakan
and Ekmekci (2014), who consider the competitive sale of assets whose value depends on
how they are utilized.24 The successful bidder chooses an action that determines, together

23There is a larger literature that studies the outcomes when agents are modeled as statisticians or machine
learners, e.g., Al-Najjar (2009), Al-Najjar and Pai (2014), Acemoglu et al. (2016) and Cherry and Salant
(2018).

24Bond and Eraslan (2010) study a trading environment with a similar feature.
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with the state of the world, the payoff generated by the asset. They focus on a setting
where bidders have a common prior but observe private signals. Their main result is the
possibility of (complete) failure of information aggregation. Our model is similar in that the
value of the object depends on an action taken by the agent. However, our work considers
a complementary environment where all bidders observe the same information but have
different priors. Information aggregation is ruled out by assumption, and our key theme is
model selection.

We assume that agents have different priors and are fully aware they have different priors:
that is to say, our agents agree to disagree. This assumption has been used in economic theory
at least since Harrison and Kreps (1978). We refer the reader to Morris (1995) for a discussion
of the common and heterogeneous prior traditions in economic theory. Heterogenous priors
have been used in a number of applications in bargaining (Yildiz, 2003), trade (Morris, 1994),
financial markets (Scheinkman and Xiong, 2003; Ottaviani and Sørensen, 2015), and more.

Relation to Model Selection. Large literatures in statistics, econometrics, and machine
learning study model selection methods and provide normative foundations; see Claeskens
and Hjort (2008) and Burnham and Anderson (2003) for textbook overviews. Popular ap-
proaches include, for example, the Cp criterion of Mallows (1973), the Akaike Information
Criterion (AIC) of Akaike (1974), and the Bayes Information Criterion (BIC) of Schwarz
(1978). We showed that is a connection between our large data results and the AIC intro-
duced in Akaike (1974), in particular, to the asymptotic properties of the AIC characterized
in the seminal paper of Nishii (1984).

While some of our asymptotic results are reminiscent of the model selection literature,
there are three important differences. First, the aims of this literature are very different
from ours. Ours is a positive approach of studying which model emerges from a competition
between Bayesian agents with misspecified models. The approach in the model selection
literature is instead normative : various methods of model selection are proposed and studied
with a view to avoiding over-fitting and/or selecting “good” models according to some metric.
The results we are aware of speak to the asymptotic efficiency of these techniques. Second,
not only are our results derived from a completely different setting, but they are also proven
with different techniques. Third, the connection is limited to the large-data result. We are
not aware of any analogs to our small-sample results.
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8 Discussion and Conclusion

A variable of interest is related to a vector of covariates. Different agents have different
models of this relationship: in particular they rule in/rule out different covariates as being
potentially related to prediction. All agents observe a common dataset of size n, drawn
from the true DGP. We ask: Who is the agent with the highest confidence in their own
predictive ability, in the form of the lowest mean-squared prediction error according to their
own subjective posterior? We study the relationship between sample size and the dimension
of the winning model. This applies to all cases in which confidence in predictive ability
affects selection. We show results of two kinds.

First, when n is small, models that employ few covariates may take the lead, even if the
true DGP is more complex. To establish this result formally, we use Normal-Inverse-Gamma-
Inverse-Wishart priors. Second, when n is large, misspecified models (i.e., models that rule
out an observable that is relevant for prediction) never win. However, high-dimensional
models that include irrelevant covariates (but do not exclude relevant ones) may continue to
win. Our results show that the effect of the prior on model competition does not vanish in
large samples. These results hold for a very general class of priors and true DGPs.

Finally, we give two applications. First, we apply our results to a model of entry: en-
trepreneurs decide whether to enter a new market, households decide whether to invest in a
new asset class. We show that, insofar as prediction error of future variables is relevant for
profitability, our results suggest a new margin of selection: when data is relatively scarce,
agents with simpler models will be over-represented in the entry decision. Our second appli-
cation is to understand the proliferation of factors that explain the cross-sectional variation
of expected stock returns in the asset-pricing literature. We show how the increase in the
number of test portfolios used to compute the cross-sectional regressions mechanically favors
models with several factors.
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A Main Appendix

A.1 Second-price auction

Consider a second-price auction, where, like in Atakan and Ekmekci (2014), the winner of
the auction gets to choose an action that affects the value of the asset. Specifically, the
action has a value that depends on her ability to predict a given variable, as in the examples
given in the introduction. Formally, fixing the environment defined above (DGP, agents,
etc.), consider a game with the following timing:

1. Nature draws θ0 ∈ Θ;

2. All agents see a common dataset Dn drawn according to Qθ0 ;

3. Agents submit bid in a sealed-bid second-price auction;

4. The winner observes x randomly drawn according to P and chooses a real-valued action
a;

5. The winner gets a lump sum payoff ofM−(y−a)2, whereM is a large positive number.

Every bidder seeks to minimize the expected value M − (y− a)2, leading to the expected
loss function discussed above.

Because agents see a common data set, an agent with prior π has an expected value of
M −L∗(π,Dn) for winning. In the standard dominant equilibrium, the winning agent is the
one with the highest value: since M is common across agents, the winner is thus the agent
with the lowest expected loss (according to her own prior) given the observed data. Notice
that since all agents observe the same dataset, and thus there is no asymmetric information
(only heterogenous priors), winner’s-curse-type considerations do not apply.25

A.2 Proof of Lemma 1

Lemma 1. Suppose that βJ(π) is independent of P under the posterior distribution. The
agent’s subjective MSPE can be decomposed as:

L∗(π,Dn) = Eπ
[
σ2|Dn

]︸ ︷︷ ︸
Model Fit

+ tr
(
Vπ[βJ(π)|Dn] Eπ

[
EP [xJ(π)x

′
J(π)] |Dn

])︸ ︷︷ ︸
Model Estimation Uncertainty

, (5)

25Our results possibly shed light on political competition/ board meetings. While we do not develop these
formally, intuitively, these would correspond to an analogous all-pay auction. Agents have different models
of how to forecast payoff-relevant unknowns from covariates. The action taken (by the government body or
company) depends on this forecast. Agents’ willingness to lobby for their model depends on how confident
they are in their model, and the amount of effort they spend lobbying influences selection.
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where V(·) is the variance-covariance operator, and tr is the trace operator.

Proof. Fix a data set Dn. We need to analyze

Eπ
[
EP
[
(x′β − f ∗(π,Dn)(x))2

]∣∣∣Dn

]
.

Substituting f ∗ from (4), we have that this term

=Eπ
[
EP
[
((β − Eπ[β|Dn])′x)2

]∣∣∣Dn

]
.

Recalling that for a scalar a, a = tr(a), we have

=Eπ
[
EP
[
tr[((β − Eπ[β|Dn])′x)2]

]∣∣∣Dn

]
.

Then by symmetry and linearity of the trace operator, we can conclude,

=Eπ
[
EP
[
tr[(β − Eπ[β|Dn])(β − Eπ[β|Dn])′xx′]

]∣∣∣Dn

]
,

=Eπ
[
tr[(β − Eπ[β|Dn])(β − Eπ[β|Dn])′EP [xx′]]

∣∣∣Dn

]
,

=tr
[
Eπ
[
(β − Eπ[β|Dn])(β − Eπ[β|Dn])′EP [xx′]

∣∣∣Dn

] ]
,

Since β and P are independent under the posterior, we have that,

Eπ
[
(β − Eπ[β|Dn])(β − Eπ[β|Dn])′EP [xx′]

∣∣∣Dn

]
equals

Eπ
[
(β − Eπ[β|Dn])(β − Eπ[β|Dn])′

∣∣∣Dn

]
Eπ
[
EP [xx′]

∣∣∣Dn

]
.

Finally, by the definition of variance, we have the desired form

=tr(Vπ(β|Dn)Eπ [EP [xx′] |Dn]). �

A.3 Proof of Lemma 2

Before we delve into the proof, we recall a few facts about the Normal-Inverse-Gamma-
Inverse-Wishart distribution which may be useful. In particular, straightforward algebra
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shows that given a dataset Dn:

Eπ[σ2|Dn] =
2b0
n

+ 1
n
(Y ′Y − Y ′XJ(X ′JXJ + γ0|J |IJ)−1X ′JY )

2a0
n

+ 1− 2
n

, (10)

Vπ[βJ |Dn] = Eπ
[
σ2|Dn

]
(X ′JXJ + (γ0|J |)I|J |)−1. (11)

The posterior distribution of ΣJ(π) after observing the data Dn is given as:

ΣJ(π)|Dn ∼ Inverse-Wishart(X ′J(π)XJ(π) + γ|J(π)|IJ(π), n+ 2|J(π)|+ 1).

Therefore,

Eπ[ΣJ(π)|Dn] =
X ′J(π)XJ(π) + γ|J(π)|IJ(π)

n+ |J(π)|
. (12)

Lemma 2. Consider a prior π as in Definition 1. Then

L∗(π,Dn) = Eπ[σ2|Dn]︸ ︷︷ ︸
Model Fit

+Eπ[σ2|Dn]

(
|J(π)|

n+ |J(π)|

)
.︸ ︷︷ ︸

Model Estimation Uncertainty

(6)

Proof. Note that Remark 1 implies that the condition of Lemma 1 is satisfied and therefore
we the decomposition, i.e. (5):

L∗(π,Dn) = Eπ[σ2|Dn] + tr (Vπ(β|Dn)Eπ[Σ|Dn]) .

Note that for any model J(π), the mean of ΣJ(π) under the prior is γI|J(π)|, and therefore
the prior loss is

Eπ[σ2
ε ]
(
1 + tr(I|J(π)|)/|J(π)|

)
= 2Eπ[σ2].

This means all models have the same ex-ante loss prior to observing the data. Substituting
in Vπ(β|Dn) from (11), and Eπ[ΣJ(π)|Dn] from (12) into (5) we have that

L∗(π,Dn) = Eπ[σ2
ε |Dn]

(
1 +

|J(π)|
n+ |J(π)|

)
,

as desired. �
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A.4 Proof of Proposition 1

Proposition 1. Suppose all priors are as in Definition 1 with shared hyper-parameters.
Suppose also that for every single covariate model, i.e., every J such that |J | = 1, there is
an agent with that model, and that all agents use at least one covariate. If n = 1, then the
agent with lowest subject MSPE is an agent with a single covariate model.

Proof. Denote the single datapoint as D1 = (Y,X), where Y ∈ R and X ∈ R1×k (k is the
number of covariates), where X = (x1, . . . , xk). First, observe that for any agent j with a
single explanatory variable κ in his model (denoted xκ),

L∗(πj, D1) =
b0 + 1

2

(
y2 − y2x2κ

x2κ+γ

)
a0 − 1

2

(
1 +

1

2

)
,

=
b0 + 1

2
y2γ
x2κ+γ

a0 − 1
2

(
1 +

1

2

)
.

The winning agent among the single variable models will therefore clearly be the agent with
the variable κ that maximizes x2

κ. Without loss of generality, call this variable 1.
To economize on notation, now consider the full model with all the explanatory variables,

it will be clear from the logic that this argument will work for any model larger than a single
variable. For an agent j with all k variables, we know that

L∗(πj, D1) =
b0 + y2

2
(1−X(X ′X + γkIk)−1X ′)

a0 − 1
2

(
1 +

k

n+ k

)
.

We show that this model always loses to the “best” single variable model. To do this, it is
sufficient to show:

(1−X(X ′X + γkIk)−1X ′) ≥ γ

x2
1 + γ

.

Algebra shows that

(1−X(X ′X + γkIk)−1X ′) ≥ γ

x2
1 + γ

,

⇐⇒ X(X ′X + γkIk)−1X ′ ≤ x2
1

x2
1 + γ

.
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Observe thatX(X ′X+γkIk)−1X ′ is a scalar. We know that for a scalar, a = tr(a). Therefore:

X(X ′X + γkIk)−1X ′,

=tr[X(X ′X + γkIk)−1X ′],

=tr[(X ′X + γkIk)−1X ′X],

=tr

[
(

1

γk
X ′X + Ik)−1 1

γk
X ′X

]
.

Denote 1
γk
X ′X as A. Substituting

=tr[(A+ Ik)−1A].

Observe that if λ is an eigenvalue of A, then λ
1+λ

is an eigenvalue of (A + Ik)−1A. To see
this, suppose v is an eigenvector of A with eigenvalue λ. Then,

Av = λv,

=⇒ (A+ Ik)v = (λ+ 1)v,

=⇒ (A+ Ik)−1v =
1

1 + λ
v,

=⇒ (A+ Ik)−1Av =
λ

1 + λ
v.

Substituting this in, we have

tr[(A+ Ik)−1A] =
k∑
i=1

λi
1 + λi

.

Therefore we are left to show that

k∑
i=1

λi
1 + λi

≤ x2
1

x2
1 + γ

Here λi’s are the eigenvalues of 1
γk
X ′X. This implies that

∑
i λi = 1

γk

∑
i x

2
i .

Note that X ′X is not full rank, indeed, its null space is of dimension k − 1. Therefore it
has k−1 multiplicity eigenvalue of 0. The unique non-zero eigenvalue must then be 1

γk

∑
i x

2
i .
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Substituting in, we have

k∑
i=1

λi
1 + λi

=

1
γk

∑
i x

2
i

1
γk

∑
i x

2
i + 1

,

=
1
k

∑
i x

2
i

1
k

∑
i x

2
i + γ

,

≤ x2
1

x2
1 + γ

.

where the last inequality follows since we assumed that x2
1 = maxi{x2

i : 1 ≤ i ≤ k}. �

A.5 Proof of Proposition 2

Proposition 2. Let Π be a finite set of agents’ priors that satisfy Definitions 1 with shared
hyper-parameters (a0, b0, γ). Let |J | be the size of the smallest model in this set. Fix the size
of the dataset n. For any p ∈ (0, 1), there exists b0 large enough so

P
(
Dn : ∃π∗ ∈ argmin

π∈Π
L∗(π,Dn) s.t. |J(π∗)| = |J |

)
> p,

i.e., with probability at least p over datasets Dn, the agent with the lowest subjective MSPE
has the smallest size model among all the agents.

Proof. Fix any prior π ∈ Π such that |J(π)| = |J |. Let Π′ ⊂ Π be the set of priors with size
larger than |J |, i.e. Π′ = {π′ : π′ ∈ Π and |J(π′)| > |J |}.

From (7), we have that for any other prior π′ ∈ Π′:

L∗(π,Dn) ≥ L∗(π′, Dn),

⇐⇒ Eπ[σ2|Dn]

Eπ′ [σ2|Dn]
≥

(
1 + |J(π′)|

n+|J(π′)|

)
(

1 + |J(π)|
n+|J(π)|

) ,
We know from (10) that the left hand side,

Eπ[σ2|Dn]

Eπ′ [σ2|Dn]
=

2b0 + (Y ′Y − Y ′XJ(π)(X
′
J(π)XJ(π) + γ0|J |IJ)−1X ′J(π)Y )

2b0 + (Y ′Y − Y ′XJ(π′)(X ′J(π′)XJ(π′) + γ0|J |IJ)−1X ′J(π′)Y )

Therefore as b0 grows large, we have that (the left hand side) Eπ [σ2|Dn]
Eπ′ [σ2|Dn]

→P 1. However, the
right hand side is a constant that is larger than 1 by observation. Therefore, for any given
p′, there exists b0 large enough so that P(Dn : L∗(π,Dn) ≤ L∗(π′, Dn)) > p′.

38



Pick p′ such that 1− p′ ≥ 1−p
|Π′| . Therefore we have that

P (Dn : L(π,Dn) ≤ L(π′, Dn) ∀π′ ∈ Π′) > p.

Since π is s.t. J(π) = |J | by assumption, we have the desired result.
�

A.6 Proof of Lemma 3

Let the data Dn = (Y,X), Y ∈ Rn, X ∈ Rn×k consist of n i.i.d. draws of y and x. Let P
denote the true joint distribution of (y, x).

The density for Y |X corresponding to the Gaussian linear regression model postulated
by an agent with variables in J ⊆ {1, . . . , k} is:

f(Y |XJ ; βJ , σ
2) :=

1

(2π)n/2
1

σn
exp

(
− 1

2σ2
(Y −XJβJ)′(Y −XJβJ)

)
. (13)

Let
β
∧

J := (X ′JXJ)−1X ′JY, σ
∧2
J := (Y −X ′Jβ

∧

J)′(Y −X ′Jβ
∧

J)/n,

denote the Maximum Likelihood estimators of (βJ , σ
2) based on (13).

In what follows, let π denote a joint distribution over (βJ , σ
2) ∈ R|J | × R+. Let π(·|Dn)

denote the posterior density of (βJ , σ
2) based on the likelihood (13) and the prior π. Let

Eπ[σ2|Dn] denote the posterior expectation of σ2 under the posterior density.

Lemma 3. Suppose π is a four-times continuously differentiable, strictly positive density
function on (βJ , σ

2). Suppose Eπ[σ2|Dn] < ∞ almost surely, for n large enough. If X ′X/n
converges in probability to a positive definite matrix, then

Eπ[σ2|Dn] = σ
∧2
J +

1

n

(
2σ
∧4
J

{(
∂π

∂σ2
(θ
∧

J)

)
· 1

π(θ
∧

J)

}
+ σ
∧2
J(|J |+ 4)

)
+OP

(
1

n2

)
,

where θ
∧

J := (β
∧′
J , σ
∧2
J)′.

Proof. The proof has two main steps. First, we introduce some additional notation. Second,
we invoke the results of Kass et al. (1990) and apply them to approximate Eπ[σ2|Dn].
Step 0 (Additional Notation): Let θ = (β′J , σ

2)′ and

hn(θ) := − 1

n
ln f(Y |XJ); θ).
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The (i, j) component of the matrix of second derivatives of hn(θ) with respect to θ (the
Hessian of the scaled negative log-likelihood) will be denoted as hij(·). We omit the depen-
dence on n, unless confusion arises. The components of the inverse of the Hessian will be
written as hij(·). Finally, hrsj(·) denotes the partial derivative of hrs with respect to the j-th
component of θ.

Step 1 (Asymptotic Expansion of Eπ[σ2|Dn]): Kass et al. (1990) provide asymptotic
expansions for posterior moments of a real-valued function of θ in terms of the maximizers
of the likelihood used to compute the posterior.

Consider the function
g(θ) = g((β ′J , σ

2)′) = σ2.

Theorem 4 in Kass et al. (1990) implies that under the assumptions of our lemma:

Eπ[g(θ)|Dn] = g(θ
∧

J) +
1

n

∑
1≤i,j≤dim(θ)

(
∂g

∂θi
(θ
∧

J)

)
hij(θ

∧

J)

{(
∂π

∂θj
(θ
∧

J)

)
·

1

π(θ
∧

J)
− 1

2

∑
1≤r,s≤dim(θ)

hrs(θ
∧

J)hrsj(θ
∧

J)


+

1

2n

∑
1≤i,j≤dim(θ)

hij(θ
∧

J)

(
∂g

∂θiθj
(θ
∧

J)

)

+ OP

(
1

n2

)
.

See equation 2.6 in p. 481 of Kass et al. (1990).
Since

∂g

∂σ2
(θ) = 1,

and also
∂g

∂θi
(θ) = 0,
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for any i < |J |+ 1, the expansion above simplifies to

Eπ[σ2|Dn] = σ
∧2
J +

1

n

∑
1≤j≤|J |+1

h(|J |+1)j(θ
∧

J)

{(
∂π

∂θj
(θ
∧
)

)
·

1

π(θ
∧

J)
− 1

2

∑
1≤r,s≤|J |+1

hrs(θ
∧

J)hrsj(θ
∧

J)


+OP

(
1

n2

)
.

We now derive explicit formulae for the Hessian matrix, and its inverse elements. The Hessian
matrix of hn(θ) equals(

1
nσ2XJ

′XJ
1
nσ4XJ

′(Y −XJ
′βJ)

1
nσ4 (Y −XJ

′βJ)′XJ − 1
2σ4 + 1

nσ6 (Y −X ′JβJ)′(Y −X ′JβJ),

)

and the inverse elements of the Hessian evaluated at θ
∧
are:(

σ
∧2
J (XJ

′XJ/n)
−1

0

0 2σ
∧4
J ,

)
. (14)

This further simplifies the expansion to

Eπ[σ2|Dn] = σ
∧2
J +

2σ
∧4
J

n

{(
∂π

∂σ2
(θ
∧

J)

)
· 1

π(θ
∧

J)

− 1

2

∑
1≤r,s≤|J |+1

hrs(θ
∧
)hrs(|J |+1)(θ

∧

J)

+OP

(
1

n2

)
.

Algebra shows that the matrix that collects the terms hrs(|J |+1)(θ
∧

J) (which corresponds to
the derivative of the Hessian matrix with respect to σ2) equals:− 1

σ
∧4

J

(XJ
′XJ/n) 0

0 − 2

σ
∧6

J

,

 . (15)

The term ∑
1≤r,s≤|J |+1

hrs(θ
∧

J)hrs(|J |+1)(θ
∧

J),

can be written as the sum of all elements of the Hadamard product between the matrices in
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(14) and (15). This sum, in turn equals:

tr

(σ∧2
J (XJ

′XJ/n)
−1

0

0 2σ
∧4
J ,

)− 1

σ
∧4

J

(XJ
′XJ/n) 0

0 − 2

σ
∧6

J

,

′ = −|J |
σ
∧2
J

− 4

σ
∧2
J

We conclude that the Kass-Tierney-Kadane expansion of Eπ[σ2|Dn] equals

Eπ[σ2|Dn] = σ
∧2
J +

1

n

(
2σ
∧4
J

{(
∂π

∂σ2
(θ
∧

J)

)
· 1

π(θ
∧

J)

}
+ σ
∧2
J(|J |+ 4)

)
+OP

(
1

n2

)
. �

A.7 Proof of Proposition 3

Proposition 3. Suppose the true DGP P satisfies Assumption 1 with parameters (β0, σ
2
0).

Let Π be a finite collection of priors that satisfy Assumption 2 and that contains π∗ with
J0 ⊆ J(π∗). If

tr
(
nVπ(βJ(π)|Dn)Eπ

[
EP [xJ(π)x

′
J(π)] |Dn

])
= OP(1), (8)

for every prior π ∈ Π, then

lim
n→∞

P
(
∃π ∈ argmin

π∈Π
L∗(π,Dn) s.t J0 * J(π)

)
= 0.

Moreover, for any π for which J0 ⊂ J(π),

lim
n→∞

P
(
L∗(π,Dn) < L∗(π0, Dn)

)
∈ (0, 1],

where π0 is any prior for which J(π0) = J0.

Proof. Lemma 1 has shown that the (optimized) posterior mean-squared prediction error for
an agent with prior π is

L∗(π,Dn) = Eπ[σ2|Dn] + tr
(
Vπ(βJ(π)|Dn)Eπ

[
EP [xJ(π)x

′
J(π)] |Dn

])
.

Under the assumptions of Proposition 3, it follows that for any π ∈ Π:

L∗(π,Dn) = Eπ[σ2|Dn] +OP

(
1

n

)
.

Moreover, Assumptions 1 and 2 imply that the conditions of Lemma 3 are satisfied.
Consequently, for any π in the finite collection Π , the term Eπ[σ2|Dn] admits the following
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Kass et al. (1990) expansion:

σ
∧2(π) +OP

(
1

n

)
, (16)

where σ
∧2(π) denotes the Maximum Likelihood estimator of σ2

ε according to the linear regres-
sion model with covariates J(π). Therefore, for any π ∈ Π we have

L∗(π,Dn) = σ
∧2(π) +OP

(
1

n

)
. (17)

We will use this expansion to prove the two statements of Theorem 3.
Misspecified models never win: We have assumed that the collection Π contains a prior

π∗ such that J0 ⊆ J(π∗). This prior defeats any other prior π for which J0 * J(π). To see
this, note that Equation (17) implies

L∗(π,Dn)− L∗(π∗, Dn) = σ
∧2(π)− σ

∧2(π∗) +OP

(
1

n

)
.

Under Assumption 1, σ
∧2(π∗)

p→ σ2
0 (since the larger model includes the relevant covari-

ates). However, since the covariates associated to prior π exclude variables that are relevant
for prediction

σ
∧2(π)− σ

∧2(π∗),

converges in probability to a strictly positive number (the misspecified model has strictly
larger residual variance than the true model). This shows that

lim
n→∞

P
(
∃π ∈ argmin

π∈Π
L∗(π,Dn) s.t J0 * J(π)

)
= 0.

High-dimensional models win with positive probability: For the last part of the theorem,
let πL denote any prior π for which J0 ⊂ J(πL) and let π0 denote any prior for which
J0 = J(π0). From equation (16)

L∗(π0, Dn)− L∗(πL, Dn) = σ
∧2(π0)− σ

∧2(πL) +OP

(
1

n

)
.

Therefore,

P(L∗(πL, Dn) < L∗(π0, Dn)) = P(n(L∗(π0, Dn)− L∗(πL, Dn)) > 0)

= P
(
n(σ
∧2(π0)− σ

∧2(πL)) > OP(1)
)
.

where we have used the Kass et al. (1990) expansion in (16). Standard algebra of linear
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regression—e.g., Equation 5.28 in Greene (2018) and Theorem 5.1 therein—shows that

n(σ
∧2(π0)− σ

∧2(πL))/σ2
0

d→ ζ,

where ζ is a chi-squared random variable with |J(πL)| − |J0| degrees of freedom.
This shows that

lim
n→∞

P(L∗(πL, Dn) < L∗(π0, Dn)) ∈ (0, 1]. �
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B Supplementary Material

B.1 Proof of Proposition 4

Proposition 4. Suppose the conditions of Proposition 3 hold. Suppose, in addition, that for
any π for which J0 ⊆ J(π),

tr
(
nVπ(βJ(π)|Dn)Eπ

[
EP [xJ(π)x

′
J(π)] |Dn

]) p→ σ2
0|J(π)|.

Then, for any π, π0 such that J(π0) = J0 ⊂ J(π),

lim
n→∞

P
(
L∗(π,Dn) < L∗(π0, Dn)

)
converges to the probability that a chi-squared random variable with |J(π)| − |J0| degrees of
freedom exceeds

2(|J(π0)|− |J0|) +

(
2σ2

0

{(
∂π

∂σ2
(β0, σ

2
0)

)
· 1

π(β0, σ2
0)
−
(
∂π0

∂σ2
(β0, σ

2
0)

)
· 1

π0(β0, σ2
0)

})
. (18)

Moreover, if the marginal distribution over σ2 is the same under both π and π0, the expression
in (18) simplifies to

2(|J(π0)|−|J0|)+
(

2σ2
0

{(
∂πβ|σ2

∂σ2
(β0, σ

2
0)

)
· 1

πβ|σ2(β0, σ2
0)
−
(
∂π0,β|σ2

∂σ2
(β0, σ

2
0)

)
· 1

π0,β|σ2(β0, σ2
0)

})
.

Proof. Under the assumptions of Proposition 3 and the corollary, for any π s.t J0 ⊆ π:

L∗(π,Dn) = Eπ[σ2|Dn] + σ2
0(|J(π)|)/n+OP(1).

Lemma 3 and Assumption 1 then implies that

L∗(π0, Dn)− L∗(π,Dn)

equals

= σ
∧2(π0)− σ

∧2(π)

+
1

n

(
2σ4

0

{(
∂π

∂σ2
(β0, σ

2
0)

)
· 1

π(β0, σ2
0)
−
(
∂π0

∂σ2
(β0, σ

2
0)

)
· 1

π0(β0, σ2
0)

})
+ 2σ2

0(|J(π0)| − |J |)/n+OP

(
1

n2

)
.
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As argued in Theorem 3,

n(σ
∧2(π0)− σ

∧2(πL))/σ2
0

d→ ζ,

where ζ is a chi-squared random variable with |J(πL)| − |J0| degrees of freedom. The result
in (18) then follows. To verify the last equation write:

π(β, σ2) = πβ|σ2(β, σ2) · πσ2(σ2).

Using the chain rule and the fact that the marginal distribution of σ2 is the same under both
π and π0 gives the desired result. �

C Competing Factor Models: Additional details

C.1 Prior hyper-parameters

We have assumed that each agent has a prior of the form

β|σ2
ε ∼ N (0, (σ2

ε/γk)Ik), σ2
ε ∼ Inv-Gamma(a0, b0). (19)

In this section we explain how to choose the prior hyper-parameters (a0, b0, γ). The param-
eters (a0, b0) are common for all agents, but we allow the parameter γ to depend on the
agent’s relevant covariates.

C.1.1 Choosing γ

The prior loss for an agent with prior π and model J is

Eπ[σ2
ε ]︸ ︷︷ ︸

Prior Model Fit

+Eπ[σ2
ε ]tr (EP [xJx

′
J ]) /(γk)︸ ︷︷ ︸

Prior Model Uncertainty

.

We take P to equal the empirical distribution of the covariates and set:

γ = tr (EP [xJx
′
J ]) /k. (20)

This choice of γ has two justifications. First, it guarantees that all agents have the same
prior loss—provided (a0, b0) are common among them. Second, it implies that both model
fit and model uncertainty contribute equally to the prior loss.
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C.1.2 Choosing (a0, b0)

Maximizing the marginal likelihood of the data is a common strategy for choosing hyper-
parameters in Bayesian Linear Regression; see for example Chapter 3.5 of Bishop (2006).
Let X denote the n × k matrix containing the k covariates for the n observations in the
sample. We fix this matrix and analyze the distribution of

Y |X, a0, b0, γ, (21)

Algebra shows that

Y |X, a0, b0, γ, σ
2 ∼ Nn

(
0, σ2

(
In +

XX ′

γk

))
. (22)

Since σ2|X, a0, b0, γ is Inv-Gamma(a0, b0), one can easily compute the joint distribution of
(Y, σ2)|(X, a0, b0, γ). Marginalizing σ2 in such distribution shows that the p.d.f of Y |X, a0, b0, γ

equals:
det (In +XX ′/γk)1/2

(2π)n/2
ba00

Γ(a0)

Γ(a0 + n/2)

b
a0+n/2
n

, (23)

where Γ(·) is the Gamma function and

bn = b0 +
1

2
Y ′
(
In +

XX ′

γk

)−1

Y.

Optimizing (23) with respect to (a0, b0) is equivalent to maximizing:

a0 ln(b0) + ln (Γ(a0 + n/2))− ln(Γ(a0))− (a0 + n/2) ln (bn) . (24)

The first order necessary conditions are

a0 : ln(b0) +
Γ′(a0 + n/2)

Γ(a0 + n/2)
− Γ′(a0)

Γ(a0)
− ln(bn) = 0

b0 :
a0

b0

− (a0 + n/2)

bn
= 0.

A solution to this system of equations must satisfy

a0(b0) ≡ n · b0

Y ′(In +XX ′/γk)−1Y
. (25)

We plug this equation in (24) and optimize numerically with respect to b0.
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C.2 Further Considerations

C.2.1 Alternative competing models and sample sizes

Figure 3 presented the results of a competition between three different models with two
different sample sizes. Figure 4 enriches the baseline comparison in two different dimensions.

The first dimension is to allow for six models. We add the market model (Jensen et al.,
1972); the five-factor model recently suggested by Fama and French (2015) (which, relative
to the three-factor model adds a ‘robust minus weak’ profitability factor and a ‘conservative
minus aggressive’ investment factor); and a 42-factor model selected using the recursive
double-selection procedure in Feng et al. (2020).

The second dimension is to allow for two additional sample sizes: 175 (5 × 5) bivariate-
sorted portfolios and 1,825 (5 × 5) bivariate-sorted portfolios that sort based on the subset
of the 115 factors that have at least 10 stocks on each quintile cell.26

The results of the competition are consistent with what we report in Figure 3, but with
some caveats. The low-dimensional models (3 and 5 factors) still perform better than the
high-dimensional models (139 and 150 factors) with small samples (N = 25 and N = 175).
However, the Fama and French (2015) five-factor model has a slight edge over the three
factor model and market model. This is consistent with the simulations results reported in
Figure 3 in the paper. Also, we note that with 175 data points, all the competing models
have a similar subjective posterior mean-squared prediction error.

C.2.2 Randomizing selection of portfolios

In our analysis thus far, we have used the 25 bivariate-sorted portfolios on size and book-
to-market of Fama and French (1993) as our small sample size. While this reflects the
standard choice of test assets in the literature, the superior performance of the three and five
factor models relative to high-dimensional models may be specific to the set of test assets
considered. Kozak et al. (2018) observes that the Fama and French three factors are similar
to the first three principal components of the 25 size and book-to-market portfolios. The
three and five factor models may perform well on the small sample size simply because they
adequately summarize cross-sectional variation in the 25 size and book-to-market portfolios.

To examine the robustness of our findings to the choice of test asset portfolios, we con-
struct 5,000 simulated datasets, each dataset consisting of randomly chosen portfolios up to
a given sample size. For each sample size, we then compute the fraction of times a model

26The use of the 175 (5 × 5) bivariate-sorted portfolios is standard in the literature. They are obtained
by doing bivariate sorting using size and each of the following seven variables: book-to-market ratio, Market
Beta, “robust minus weak”, “conservative minus aggressive”, 1-month momentum, 6-month momentum, and
36-month momentum.
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Figure 4: This figure shows the subjective posterior mean squared prediction error of com-
peting models relative to worst model, by number of test portfolios. FF 3 factors refer to
the excess market return, Small Minus Big, and High Minus Low factors (Fama and French,
1993), FF 5 factors refer to the FF 3 factors, Conservative Minus Aggressive, and Robust
Minus Weak factors Fama and French (2015), FGX-Recursive 42 factors are the factors se-
lected in Feng et al. (2020) (Section C) using a recursive selection procedure, FGX-DS 139
factors are the benchmark factors selected by Feng et al. (2020) using the double-selection
method, and FGX 150 factors are all the factors in the factor library of Feng et al. (2020).

achieves the lowest subjective posterior mean-squared forecast error. Figure 5 shows the
simulation results. We find that the results remain robust to the choice of test asset portfo-
lios. When n = 25, the Fama and French three-factor model prevails 90 percent of the time.
As n grows, we see “waves” of larger models performing better, with the 42 factor model
out-performing other models for sample sizes between n = 225 and 750 and with the largest
models (150 factors) prevailing when n is larger than 1, 525.

C.2.3 Competing models over time

The test portfolios used in the exercises above are all constructed by sorting on size and
some other factor. Since we have the publication data for each factor, we can easily describe
the evolution of the number of available test portfolios over time. We report this in Figure
6, starting from 1976.

We also conduct two additional exercises. First, we consider a sample of only the 25
(5× 5) bivariate-sorted portfolios, but consider competition between the three-factor model
and the factor zoo available each year. Second, we consider a similar competition, but now
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Figure 5: This figure shows winning rates for the competing models over different sample
sizes from n = 25 to 2875. For each sample size, we construct 5,000 simulated datasets by
randomly sampling portfolios without replacement up to the given sample size. The winning
rate of a model is computed as the fraction of times the model achieves the lowest subjective
posterior mean squared prediction error among all competing models.

Figure 6: This figure reports the number of 5× 5 bivariate-sorted portfolios available as test
assets each year for the sample period from 1976 to 2017, based on factors from the Feng
et al. (2020) factor library that are published up to the given year.
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we assume that the available sample consists of all portfolios published up to a given year.
With the small sample, the three-factor model consistently performs better than the factor
zoo, with relative performance improving as the size of the factor zoo increases over time.
Conversely, when evaluating the models on all available portfolios up to a given time, we
see that the factor zoo mostly performs better than the three-factor model. We note that
in 1976, both models have similar subjective posterior mean-squared prediction error, albeit
with a slight edge for the three-factor model.

Figure 7: Subject posterior mean squared prediction error of competing models relative to
the worst model, over the sample period from 1976 to 2017. For each year, we compute the
relative loss using data on returns available up to the given year. The top panel reports
the relative loss of the competing models evaluated on 25 size and book-to-market bivariate
sorted portfolios, whereas the bottom panel reports the relative loss evaluated on the size and
book-to-market bivariate sorted portfolios and 5× 5 portfolios based on factors in the Feng
et al. (2020) factor library published up given year. The FF3 model includes the market,
size, and book-to-market ratio factors. The FGX model includes the FF3 factors as well as
all other factors published up to a given year.
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C.3 Additional Tables

This table reports the filtering criteria used to select the sample of portfolios. The second
column (Number.Factors) states the number of long-short factors that can be constructed
from the selected portfolios, and the third column (Number.Portfolios) states the corre-
sponding number of portfolios chosen after the criteria is applied. Selected portfolios from
Kenneth French’s website includes 25 potfolios sorted by size and book-to-market ratio, 25
portfolios sorted by size and beta, 25 portfolios sorted by size and operating profitability, 25
portfolios sorted by size and investment, 25 portfolios sorted by size and short-term reversal
on prior (1-1) return, 25 portfolios sorted by size and momentum on prior (2-12) return, and
25 portfolios sorted by size and long-term reversal on prior (13-60) return.

Filtering criteria Number.Factors Number.Portfolios

Factor library of Feng et al. (2020) 150

Factors with 5x5 bivariate-sorted portfo-
lios available

115 2875

Factors with 5x5 bivariate-sorted portfo-
lios with at least 10 stocks

73 1825

Selected 5x5 bivariate-sorted portfolios
from Kenneth French’s website

7 175

5x5 portfolios sorted by size and book-to-
market ratio

1 25
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