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ABSTRACT

Formal methods refer to rigorous, mathematical approaches
to system development and have played a key role in estab-
lishing the correctness of safety-critical systems. The main
building blocks of formal methods are models and specifica-
tions, which are analogous to behaviors and requirements in
system design and give us the means to verify and synthesize
system behaviors with formal guarantees.

This monograph provides a survey of the current state of the
art on applications of formal methods in the autonomous
systems domain. We consider correct-by-construction syn-
thesis under various formulations, including closed systems,
reactive, and probabilistic settings. Beyond synthesizing sys-
tems in known environments, we address the concept of
uncertainty and bound the behavior of systems that employ
learning using formal methods. Further, we examine the syn-
thesis of systems with monitoring, a mitigation technique
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for ensuring that once a system deviates from expected be-
havior, it knows a way of returning to normalcy. We also
show how to overcome some limitations of formal methods
themselves with learning. We conclude with future directions
for formal methods in reinforcement learning, uncertainty,
privacy, explainability of formal methods, and regulation

and certification.
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Introduction

This monograph is about a class of formal methods that verify systems
properties we care about, such as “bad things never happen” (safety)
and “good things will eventually happen” (liveness), for autonomous
system analysis and synthesis. Unlike traditionally engineered systems,
autonomous systems need to readily react to changing environments and
operational situations, often by coordinating and adapting. This ability
of autonomous systems makes them both valuable and challenging to
certify simultaneously. For example, compared to traditional industrial
control systems where the operational contexts are static, autonomous
systems must behave acceptably in various environments, often partially
unknown (Bakirtzis et al., 2022b).

Finding design bugs that occur at the interaction of subsystems is par-
ticularly challenging (Bakirtzis et al., 2022a). In traditionally engineered
systems testing and simulation are often forms of sufficient certification.
However, these techniques are inadequate in ensuring the absence of
design bugs in autonomous systems. Formal methods applied to au-
tonomous systems bound the uncertainty arising from the unknown
physical environments they deploy in and, therefore, assure that they

3



4 Introduction

will not misbehave.

Standard systems engineering goes through multiple steps of iteration
to produce a system. Late in the lifecycle, system designs go through
verification & validation. It is at verification & validation where formal
methods provide proof of correct behavior for autonomous systems.
The most significant barrier to certifying systems is ensuring that
the assumptions made at the previous stages of systems engineering
agree with the formal model. In subsequent sections, we introduce
some of these models in increasing levels of expressivity. From simple
to complex, system designers use these different models based on the
system’s expected behavior and deployment context. Therefore, applying
formal methods to autonomous system design is not merely picking the
most expressive model but, rather, the most appropriate one for a given
application.

The impact of formal methods can be twofold. First, they provide
provable guarantees that the system satisfies the desired properties
(Baier and Katoen, 2008; Holzmann, 2004; Holzmann, 1994). This
is the usual way we use formal methods, and it requires that both
the system and the properties we are trying to prove are well-defined
within a formalism. In addition, provable guarantees relate to the model
and not the actual system. In the past, the congruence between the
actual system and its model was done manually in an ad-hoc manner.
Today, synthesis methods exist that automatically output the assured
behavior of the system under examination from a formal model with
provable guarantees. Second, we use formal methods to interrogate our
assumptions for the system design (Lamport, 2002; Newcombe et al.,
2015). Often, it is more useful to think about a design problem formally
and use formal models as decision guides for the rest of the development
of the system. This way of using formal methods is done from the early
lifecycle all the way up to deployment. The expectation is not that
the system contains provable guarantees via formal methods but that
the system developers are informed about potential issues they need
to address at the design phase, e.g., clashing requirements and beyond,
modeling the open world environments we deploy autonomous systems.
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Figure 1.1: A typical architecture of autonomous vehicles.

1.1 Autonomous Systems

While the public! is most familiar with misbehavior in the context of au-
tonomous vehicles, similar inconsistencies arise in a range of applications
of autonomous systems.

Historical roadmap

The modern development roadmap of autonomous systems can be il-
lustrated by that of modern autonomous vehicles revealing that there
are several design challenges to overcome. In particular, building and
deploying reliable autonomy requires designers and engineers to con-
sider the interactive nature between subsystems. While individually
subsystems may be well understood, their composition can give rise to
emergent behavior (Campbell et al., 2010). Briefly, most autonomous
vehicles can be modeled via two main subsystems: perception and local-
ization, and planning and control (Figure 1.1). The essential sensors can
include GPS, IMU, odometry, lidar, radar, and cameras. The perception
and localization subsystem use the measurements from these sensors
to localize the vehicle within the map, detect and track objects and
relevant features (e.g., road, lane marking, stop lines, etc.), and create
a parsable representation of the world around the vehicle. The plan-
ning component uses this information to compute a vehicle’s trajectory.
Finally, the control component sends actuation commands, including
brake, throttle, steering, gear shifting, to keep the vehicle within this
calculated trajectory.

!This section partially follows Wongpiromsarn (2020).
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One of the main key technological developments to steer the improve-
ment of autonomous system was the introduction Velodyne’s HDL-64E
sensor. This spinning lidar and its successors, including the more afford-
able models with 16 and 32 beams and the high-end models with 128
beams, are still a key component of many autonomous vehicles today.

The planning component is typically decomposed into three levels—
the mission, the behavioral, and the trajectory planners—although
naming and detail of responsibilities and algorithms varies between
implementations. Roughly, the mission planner computes a high-level
route for the vehicle to complete its mission. The behavioral planner
is responsible for making local decisions (e.g., whether to stay in lane,
proceed through an intersection, etc.) and typically is implemented
as a finite-state machine. The trajectory planner then translates the
decision into a trajectory for the vehicle to follow, using variations of
optimization-based (e.g., model predictive control (MPC)) and graph-
based (e.g., rapidly-exploring random trees (RRT) and probabilistic
roadmap (PRM)) approaches. The early controllers of this era were
typically based on pure pursuit and proportional-integral-derivative
(PID) control. More details about planning and control algorithms can
be found in Paden et al. (2016).

Similarly, to the development of modern autonomous vehicles, another
example is that of unmanned aerial vehicles, which can be perceived
as having the same components, except that the calculated dynamics
concern with flight rather than driving. Unmanned aerial vehicle software
design has improved from manual definition of state machines and ad
hoc tuning of control parameters in a fly-fix-fly fashion to automated
synthesis from verified and validated formal models, such as state
machine representations. The hardware side has also seen both an
increase in capabilities and a reduction in size, giving rise to, for example,
networked clusters of very small unmanned aerial vehicles cooperating
for common goals. Larger unmanned aerial vehicles have become more
precise, less perturbed by uncertainties in the environmental parameters,
and with faster and smaller motors.

One useful delineation for understanding modern autonomous systems
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is, therefore, the following: (1) there is increasing development in high-
precision sensors and controllers with reduced cost and (2) there are new
software synthesis techniques that can make those controllers highly
reliable and modular. In this work we will consider the second part of
the modern development of autonomous systems as it related from the
translation of formal specification to the synthesis of behavior on fabric,
abstracting away from particular implementation details in the systems
and microcontrollers.

Major Technological Challenges

The challenges associated with individual components (e.g., developing
scalable algorithms for perception, planning, control, and contingency
management) and their integration into a holistic system are further
intensified by the safety-critical nature of autonomous systems. In
particular, subtle design bugs may arise from the unforeseen interactions
among different components and manifest as undesirable behavior only
under a specific set of conditions, making them very hard to catch using
simulation and testing. For example, consider an implementation of an
autonomous vehicle that composes of the following components.

e The trajectory planner, which generated a path for the vehicle to
follow.

e The safety system, which rapidly decelerated the vehicle when it
deviated too much from the planned path and got too close to an
obstacle.

e The low-level steering controller, which limited the steering rate
at low speeds to protect the vehicle steering system.

Each of these functionalities is straightforward to implement in isolation.
However, when combined, they can leed to unsafe behavior under specific
circumstances and contexts, e.g., when the vehicle has to make a tight
turn while merging into traffic facing a concrete barrier next to the
major road. In this case, the vehicles planned path contains a sharp
turn. Accelerating from a low speed, the controller cannot execute the
turn closely due to the limited steering rate. As a result, the vehicle may
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deviate from the path and head instead towards the concrete barrier.

Further safety systems are necessary to avoid hazardous situations like
the above, but even then the safety system may be a cause of concern
as well. By activating it may slow the vehicle down as it is taking the
sharp turn, leading to an even stricter limit on the steering rate. This
cycle can cause the vehicle to be stuck at the corner of a sharp turn,
dangerously stuttering in the middle of an intersection. The analysis
presented in Wongpiromsarn et al. (2009) reveals that the software
design was not inherently flawed. The undesirable behavior was caused
by an unfortunate choice of certain parameters relating to the geometric
properties of the planner-generated paths, compounding the challenge
of safety when deploying autonomy.

In short, the key technical challenges in autonomous systems evolved
around the following factors: uncertainties, complex tasks, and intercon-
nection of computing, communication, and physical components. The
uncertain and unstructured nature of environments lead to an unreason-
ably large number of test scenarios and give rise to the question of how
to address edge cases. The complex interaction of different components
can cause any change in one component to engender interaction faults
once integrated with others. Finally, complex tasks are primarily han-
dled by handcrafted implementations, e.g., via increasingly complicated
finite state machines, which ends up hosting several hacks to handle cor-
ner cases encountered during testing. In particular, a naive behavioral
planner architecture can be implemented as a finite state machine with
less than five states. Still, to address corner cases such state machines
at a minimum might need three interacting finite state machines, each
containing more than 20 states, making it almost impossible to analyze
or debug.

1.2 Overview of Verification and Synthesis

This article aims to explain frameworks for formal verification and
synthesis of autonomous systems to provide a formal, mathematical
guarantee of the correctness of such a system with respect to its desired
properties. These systems typically consist of both low-level (continuous)
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dynamics associated with the physical hardware and the high-level (dis-
crete) logics that govern the overall behavior of the systems. Synthesis
and verification of these systems thus require integration of reasoning
about discrete and continuous behaviors within a single framework. A
common approach to enable such integration is to construct a finite
state model that serves as an abstract model of the physical system
(which typically has infinitely many states) and apply formal verification
and synthesis to the resulting finite state model. Several abstraction
methods have been proposed based on a fixed abstraction (Kress-Gazit
et al., 2007; Conner et al., 2007; Kloetzer and Belta, 2008a; Wong-
piromsarn et al., 2012; Tabuada and Pappas, 2006; Girard and Pappas,
2009) and sampling (Karaman and Frazzoli, 2009; Castro et al., 2013;
Wongpiromsarn et al., 2021). The focus of this article, however, is on
the high-level logics and we assume that the system can be abstracted
using a finite state model.

The research presented here consists of three key components: spec-
ification, synthesis, and verification. Specification refers to a precise
description of the system and its desired properties. However, this pre-
cise description of the system does not need to capture all the details
of the actual implementation itself. To simplify the analysis of the
system, one may want to capture only the essential aspects and abstract
the actual implementation in this description. In this article, we use
the term “desired properties”, “desired behaviors”, and “requirements”
interchangably to refer to what we want the system to do.

Verification is the process of checking the correctness of the system.
Here, correctness is only defined relative to the desired properties.
Specifications of both the system and its desired properties are essential
in this process. As previously discussed, verifying the correctness of
complex systems such as autonomous vehicles can be very difficult
due to the interleaving between their continuous and their discrete
components. Although much work exists in this domain, verifying such
systems remains time-consuming and requires some level of expertise.

There has been a growing interest in the automatic synthesis of au-
tonomous systems that provide formal system correctness guarantees
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Figure 1.2: The autonomous vehicle (blue rectangle) encounters a stationary vehicle
(red rectangle) on a two-lane road with a double white lane divider. The red octagon
represents the clearance zone around the stationary vehicle.

to complement system verification. This type of automated synthesis
can potentially reduce the time and cost of the system development
cycle. It will ultimately help reduce the number of iterations between
redesigning the system and verifying the new design.

1.3 What Makes It Hard?

Autonomous systems typically feature a tight interaction between the
computing and the physical components. A combination of model-based
and data-driven approaches may be employed to design these com-
ponents. Furthermore, autonomous systems are composed of multiple
heterogeneous components whose complex interactions may cause any
change in one component to affect others in unexpected ways.

Many autonomous systems need to perform complex tasks and are safety-
critical. As a result, they are subject to strict regulations. A software
bug in these systems can lead to a violation of law and morality. The
complex tasks autonomous systems have to perform and regulatory
requirements form a set of complex rules that the system needs to
satisfy. Under certain situations, these rules may be conflicting, i.e.,
they cannot be simultaneously satisfied. That means that there can be
requirement misalignment with our values that then clash in the eventual
implementation of the system. For example, item 221 of Singapore’s
final theory of driving (Final Theory of Driving: The Official Handbook
2017) suggests keeping a safe gap of one meter when passing by a parked
vehicle. In contrast, item 52 of Singapore’s basic theory of driving (Basic
Theory of Driving: The Official Handbook 2018) prohibits crossing a
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solid double white lane divider. As a result, when encountering a vehicle
that is improperly parked in a lane with a solid double white lane
divider (Figure 1.2), an autonomous vehicle may need to violate either
of these rules unless the lane is wide enough to laterally accommodate
two cars with a buffer of one meter.

The uncertain and unstructured nature of environments in which the
systems operate further amplifies the complexity of the verification and
synthesis of these systems. In particular, the sociotechnical environments
may change abruptly, drastically, and unexpectedly and may include
adversaries. Such an open-world challenge leads to an unreasonably
large number of test scenarios. It drives the question of edge cases from
the safety and verification and the certification and regulation aspects.

1.4 Organizational Outline

This monograph is segmented to incrementally introduce different types
of formalisms for the analysis and synthesis of autonomous systems.
In particular, we first introduce basic concepts of models—what they
are, why the exist, and how they are used—and specifications—formal
semantics for modeling autonomous system behavior (Section 2). Then,
we show how those formal specifications can verify certain system re-
quirements that are capturable within a logic (Section 3). We continue
by showing how those specifications can synthesize behavior equipped
with formal guarantees in varying mathematical settings that capture
different systems scenarios (Sections 4, 5 and 6). Using these problem
formulation models we show how to deal with partiality in the infor-
mation the system can perceive (Section 7). We extend the synthesis
problem to monitoring for runtime assurance of correct behavior (Sec-
tion 8). We address the addition of learning in the verification and
synthesis problem (Section 9). We conclude with the open problems in
the intersection of formal methods and autonomy (Section 10).

1.5 A Note on the Coverage of the Article

In the rest of this article, we follow the exposition of several earlier
publications by the authors. We list such publications at the beginning
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of the associated sections. Additionally, while the upcoming sections
strive to give an objective coverage of the existing work, they do not
provide a complete literature survey and, at times, are biased toward
the references that had influenced the authors’ own work.



2

Models and Specifications

We present a series of formal verification and synthesis problems and
their applications in the context of autonomous systems. This section
provides a high-level view on formal verification and synthesis and their
main building blocks: models and specifications.

Models are representations of our knowledge—and the limitations in
it—on, e.g., the capabilities of the system of interest, the environment
in which it is to operate, the uncertainties to which it is subject to,
and the resources it has access. Specifications are representations of
the requirements that we impose on the system’s operation and the
assumptions we place on the aspects that influence the system’s behavior
but cannot be controlled by the system.

Models and specifications are used to formally verify systems (Fig-
ure 2.1). Roughly speaking, verification is concerned with whether all
(or most) executions of the system generated by implementing a given
control strategy will respect a specification. The answer to a verification
question is either affirmative, i.e., all possible executions of the system
respect the specification, or negative, i.e., counter-example traces that

At times, the exposition in this section follows Baier and Katoen (2008).

13
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Specifications Model

Verification Synthesis
Verified Violated a control no control

(a counter-example) strategy strategy exists

Figure 2.1: Inputs and potential outcomes of formal verification and synthesis.

don’t respect the specification are output. Synthesis is concerned with
the possibly more ambitious question of whether and how a system,
e.g., by choice of a control strategy, can ensure the satisfaction of the
specifications in all system executions. The outcome of synthesis is a
strategy that, when implemented, ensures that the system satisfies the
specifications or evidence that no such strategy exists.

The choice of mathematical representations and specification languages
for verification and synthesis depends on several factors. Factors include
the objective of verification and synthesis, the type of knowledge about
the underlying system, and the uncertainties in this knowledge. A
hierarchy of mathematical models and specification languages exists to
address these factors. For example, one sequence of models that we will
encounter in the upcoming sections is from finite transition systems
to Markov decision processes to partially observable Markov decision
processes to uncertain partially observable Markov decision processes.
This evolution will help account for the introduction of stochastic
uncertainties, limitations in the availability of run-time information,
and limitations in the knowledge about the stochastic uncertainties in
the way the system behaves or perceives its environment.

We introduce the first type of model in the sequence, (finite) transition
systems as the basis for modeling as well as linear temporal logic as an
example of a formal specification language. As they become relevant,
we will introduce extensions of such models and variants of temporal
logic.
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partially observable
Markov decision systems

—

partially observable Markov
decision systems

run-time information
limitations

Markov decision
systems

stochastic
dynamics
finite transition
system

Figure 2.2: A sequence of models with increasing expressivity.

It is impossible to present all models and specification languages exhaus-
tively. For example, one of the aspects of formally verifying autonomous
systems that we do not consider is verification and synthesis using
models with continuous (or hybrid) state and action spaces, which
is illustrated elsewhere (Kress-Gazit et al., 2007; Conner et al., 2007;
Kloetzer and Belta, 2008a; Wongpiromsarn et al., 2012; Tabuada and
Pappas, 2006; Girard and Pappas, 2009; Karaman and Frazzoli, 2009;
Castro et al., 2013; Wongpiromsarn et al., 2021; Srinivasan et al., 2018).

2.1 Transition Systems

We first introduce some notation. Given a set X, let X*, X“ and X
denote the set of finite, infinite and nonempty finite strings, respectively,
of X and let | X| denote the cardinality of X. For sequences 7, m; and
o, let m1my denote a sequence obtained by concatenating 7 and e
and let 7* denote an infinite sequence obtained by concatenating 7

infinitely many times.
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A transition system is a mathematical description of the behavior of
systems with discrete inputs, outputs, internal states, and transitions
between states. Atomic propositions that express essential characteristics
of individual states of the system formalize the behavior of transition
systems. Roughly, a proposition is a statement that can be either true
or false, but not both. An atomic proposition is a proposition whose
truth or falsity does not depend on the truth or falsity of any other
proposition. For example, a statement “traffic light is green” is an atomic
proposition, whereas a statement “traffic light is either green or red” is
not an atomic proposition.

Definition 2.1. A (labeled) transition system T'S is a tuple
TS = (S, Act,—,I, AP, L)
is composed of the following data.
e A set of states, S.
o A set of actions, Act.

e A transition relation, -C S x Act x S.

A set of initial states, I C S.

e A set of atomic propositions, AP.

e A labeling function L: S — 247,

We use the relation notation, s % s, to denote (s,a,s’) €—. The
transition system T'S is called finite if S, Act and AP are finite. Note
that a transition system 7T'S may consist of a subset of these elements

The following example is borrowed from (Baier and Katoen, 2008).

Example 2.1. Consider a traffic light that can be either red or green.
Let g denote an atomic proposition stating that the light is green. This
traffic light can be modeled by a transition system

T = (S, Act,—,1, AP, L),
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where S = {s1, s2}, Act = {a}, == {(s1,@, 52), (52, 2,51)}, I = {s1},
AP ={g} and L: S — 24 is defined by L(s1) = 0 and L(s2) = {g}.

Given a transition system T'S = (S, Act,—, I, AP,L), s € S and a €
Act, we let

Act(s) = {a € Act : 35’ € S such that s > s’}
denote the set of enabled actions in s,

Post(s,a) = {s' € S: 5% s'} and Post(s U Post(s, o)
a€Act

denote the set of direct successors of s. We say that T'S is action-
deterministic if and only if |I| < 1 and |Post(s, )| < 1 for all s € S and
«a € Act. A sequence of states, either finite m = sgs1 - - - 8, or infinite
T = 8081+, 1S a path fragment if s;11 € Post(s;) for alli > 0. A path is
a path fragment such that sg € I and it is either a finite path fragment
that ends in a state s with Post(s) = ) or an infinite path fragment.
We denote the set of paths in 7'S by Path(T'S). The trace of an infinite
path fragment m = sps7 ... is defined by trace(mw) = L(sp)L(s1) - --. The
set of traces of T'S is defined by

Trace(TS) = {trace(n) : m € Path(T'S)}.

Remark 2.1. Transition systems that are not action-deterministic are
those in which some action, when applied in some state, leads to several
possible next states. Hence, they can be used to capture uncertainties
in the system, especially those that arise from difference choices of valid
environment behaviors over which the system does not have control.

Example 2.2. Consider a traffic light 7' (Example 2.1). An infinite
sequence T = ($152)* is a path of T'" with the corresponding trace
trace(m) = (0{g})“. The set of paths and the set of traces of T are

given by Paths(T) = {r} and Traces(T) = {trace(w)}, respectively.

Complex systems are typically composed of multiple components that
can be executed at the same time. Suppose a transition system can



18 Models and Specifications

model each component of a system. Composing the complete system
amounts to composing the finite transition systems representing individ-
ual components. There are several composition techniques, depending
on how the components interact, e.g., no communication to synchronous
and asynchronous message transfer (Baier and Katoen, 2008). For exam-
ple, hand-shaking is a mode of communication between the components
that leads to synchrony. The composition of finite transition systems
by hand-shaking is defined as follows.

Definition 2.2. Let two transition systems

TS = (Sl,ACtl,—h,Il,Apl,Ll) and T'Sp = (SZaACt27_>27[2aAP27L2)

be given. Their composition (by hand-shaking), denoted by 7'S1||T'Sa,
is the transition system defined by

T51HTSQ = (Sl X Sy, Act1 U Acto, —, 11 X Iy, APy U APQ,L),

where L((s1,s2)) = L1(s1) U La(s2) and — is defined by the following
rules:

o If a € Acty N Acta, 51— 8| and s > s, then (s1, s2) > (s], ).

o If € Acty \ Acty and 51 = s}, then (sq,s2) = (s}, s2).

o If a € Acty\ Acty and sy 5 sh, then (sq,s2) = (51, 8h).
Example 2.3. Consider the system composed of 2 sets of traffic lights

(Figure 2.3). For i € {1,2}, we let g; denote an atomic proposition
stating that light 7; is green. Then,

Ty = (S1, Act1,—1, 11, AP, Ly)

is a finite transition system where S; = {s1,1,s12}, Act;1 = {a1},
—1= {(s1,1,21,512), (51,2, 01,81,1) }, [1 = {511}, AP1 = {91} and L :
Sy — 2471 is defined by L(s11) = 0 and L(s12) = {g1}. Also,

Ty = (S2, Acta, =9, I, AP>, Lo)

is a finite transition system where S; = {s21,s22}, Acta = {a2},
—o= {(s2,1,02,522), (52,2, 02, 82,1) }, Io = {521}, AP> = {g2} and L :
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Figure 2.4: The transition systems representing the models of traffic lights in
Example 2.3.

Sy — 2472 is defined by L(s21) = 0 and L(s12) = {g2}. Figure 2.4
shows the graphical representation of 77 and 75 and their composition
T1||T5. Note that T7||T3, is action-deterministic because at every state,
the actions uniquely determines the next state.

In settings where two players, one representing the controllable sys-
tem and one representing the non-controllable environment, determine
the properties characterized by the atomic propositions independently,
one may resort to an alternative definition of transition system. An
input-output transition system, different from the transition system in
Definition 2.1, treats the input atomic propositions controlled by the en-
vironment and the output atomic propositions controlled by the system
separately. The overall set of atomic propositions is AP = JUO, where J
and O are disjoint sets, denoting input and output atomic propositions,



20 Models and Specifications

respectively.

Definition 2.3. An input-output transition system over a set of input
propositions J and a set of output propositions O is a tuple T = (.S, s¢, 7),
where S is a set of states, sg is the initial state, and the transition
function 7: S x 27 — S x 29 maps a state s and a valuation o € 27 of
the input propositions to a successor state s’ and a valuation oo € 2°
of the output propositions. For any letter o, the projection to input
propositions is o7 & ¢ NJ and to output propositions is ocp & o N O.

An execution of T is an infinite sequence sg, (079 U 00g), $1, (071 U
001), 82 - .. such that s¢ is the initial state, and (s;+1,00;) = 7(si,071;)
for every i > 0. The corresponding sequence (o70Ucog), (071Uo01), ... €
3% is considered a trace.

The input-output transition system is applicable in modeling of reactive
systems, as discussed in Section 5.3.

2.2 Formal Specification Languages

A first step toward providing guarantees on the behavior of the design
artifacts is formally expressing what operational requirements and safety
constraints the system ought to satisfy. These specifications shall be in
a language that is (i) mathematically based to allow automated tool
development, (ii) rich enough to capture diverse set of properties, and
(iii) relatively natural to allow the designers to express their intent at
a high level, potentially with domain-specific terms. One such family
of possible specification languages is temporal logic which is used for
specifying properties of infinite sequences of states. For example, for
an autonomous system, snapshots of the relevant variables needed to
model the behavior of the system including its own position, availability
of its actuation and motion capabilities, quality of its sensors, position
and status of the other systems can all be modeled with temporal logic.
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Linear Temporal Logic

The broad family of temporal-logic-based specifications provides a
basis for expressing specifications for autonomous systems in a formal
language. Temporal logics is a branch of logic that implicitly incorporates
temporal aspects and can be used to reason about a time line (Baier
and Katoen, 2008; Emerson, 1990; Huth and Ryan, 2004; Manna and
Pnueli, 1992). Its use as a specification language was introduced by
Pnueli (1977). Since then, temporal logic has been demonstrated to be
an appropriate specification formalism for reasoning about various kinds
of systems, especially those of concurrent programs. It has been used to
formally specify and verify behavioral properties in various applications,
including concurrent systems, reactive systems, discrete event systems,
robotics and aerospace (Clarke et al., 1986; Pnueli, 1986; Galton, 1987;
Lin, 1993; Holzmann, 1994; Bouma et al., 1994; Seow and Devanathan,
1994; Gabbay et al., 1995; Jagadeesan et al., 1996; Cerrito and Mayer,
1998; Jiang and Kumar, 2001; Schneider et al., 1998; Havelund et al.,
2001; Holzmann, 2014).

We consider a version of temporal logic, namely linear temporal logic
(LTL). An LTL formula is built up from a set of atomic propositions
and two kinds of operators: logical connectives and temporal modal
operators. The logic connectives are those used in propositional logic:
negation (), disjunction (V), conjunction (A) and material implication
( = ). The temporal modal operators include next (O), always (O),
eventually (¢) and until (U). Specifically, an LTL formula over a set
AP of atomic propositions is inductively defined as follows.

(1) Trueis an LTL formula,
(2) any atomic proposition p € AP is an LTL formula and

(3) given LTL formulas ¢, @1 and @2, =p, ©1V @2, Op and p1Ups are
also LTL formulas.

Additional operators can be derived from the logical connectives V and
— and the temporal modal operator U. For example, ¢1 A pa = =(—¢1 V
—p2), p1 = P2 = p1 V2, Cp = True U ¢ and Op = =O-p.
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LTL formulas are interpreted on infinite strings ¢ = ogo109--- where
o; € 247 for all i > 0. Such infinite strings are referred to as words.
The satisfaction relation is denoted by [, i.e., for a word o and an LTL
formula ¢, we write o |= ¢ if and only if o satisfies ¢. The satisfaction
relation is defined inductively as follows.

o o = True,
o for an atomic proposition p € AP, o |= p if and only if p € oy,

o 0 | —pif and only if o }= ¢,

o | v1 Ao if and only if o = ¢1 and o = @9,
o 0= Oy if and only if o102 -+ = ¢ and

o 0 = ¢1Uypsy if and only if there exists j > 0 such that gjoj11 - =
@9 and for all i such all 0 <i < j, 040441+ = 1.

Let ¢ be an LTL formula over AP. The linear-time property induced by
¢ is defined as Words(p) = {o € (247)¥: o |= ¢}. Given a transition
system T'S, its infinite path fragment 7 and an LTL formula ¢ over AP,
we say that 7 satisfies ¢, denoted 7 |= ¢, if trace(w) = ¢. Finally, we
say that T'S satisfies ¢, denoted T'S |= ¢, if Trace(T'S) C Words(yp).

The decision problem of determining whether there exists a transition
system that satisfies an LTL formula is called the realizability problem
for LTL. If an LTL formula ¢ is realizable, the goal of LTL synthesis
problem is to construct a transition system 7'S such that 7'S = .

Examples of LTL formulas

Given propositional formulas p and ¢, important and widely used prop-
erties can be defined in terms of their corresponding LTL formulas as
follows.

Safety (invariance) A safety formula is of the form Op, which asserts
that the property p remains invariantly true throughout an ex-
ecution. Typically, a safety property ensures that nothing bad
happens. A classic example of safety property frequently used in
the robot motion planning domain is obstacle avoidance.
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Guarantee (reachability) A guarantee formula is of the form <p,
which guarantees that the property p becomes true at least once in
an execution. Reaching a goal state is an example of a guarantee

property.

Obligation An obligation formula is a disjunction of safety and guar-
antee formulas, [Ip V $gq. It can be shown that any safety and
progress property can be expressed using an obligation formula.
(By letting g = False, we obtain a safety formula and by letting
p = False, we obtain a guarantee formula.)

Progress (recurrence) A progress formula is of the form OOp, which
essentially states that the property p holds infinitely often in an
execution. As the name suggests, a progress property typically
ensures that the system makes progress throughout an execution.

Response A response formula is of the form O(p = <¢), which
states that following any point in an execution where the property
p is true, there exists a point where the property ¢ is true. A
response property can be used, for example, to describe how the
system should react to changes in the operating conditions.

Stability (persistence) A stability formula is of the form ¢Op, which
asserts that there is a point in an execution where the property p
becomes invariantly true for the remainder of the execution. This
definition corresponds to the definition of stability in the controls
domain since it ensures that eventually, the system converges to
a desired operating point and remains there for the remainder of
the execution.

Example 2.4. Consider the system of traffic lights (Example 2.3). Its
desired properties might include the following.

o “At least one of the lights is always on” is a safety property and
can be expressed in LTL as (g1 V ¢2).

e “Two lights are never green at the same time” is also a safety
property and can be expressed in LTL as O(—g; V —g2).
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Cs Cy Cs

Co Cy Cs

Figure 2.5: The robot environment of Example 2.5.

e “T7 will turn green infinitely often” is known as a “progress”
property and can be expressed in LTL as [1<$g;.

Example 2.5. Consider a robot motion planning problem where the
robot is moving in an environment that is partitioned into six regions
(Figure 2.5).

Let s represent the position of the robot and Cy, - -- , Cs represent the
polygonal regions in the robot environment. Suppose the robot receives
an externally triggered PARK signal. Consider the following desired
behaviors.

(a) Visit region Cjs infinitely often.
(b) Eventually go to region Cp when a PARK signal is received.

Assuming that infinitely often, a PARK signal is not received, the
desired properties of the system can be expressed in LTL as

OO (—park) = (OO(s € Cs) AD(park = (s € Cp))).  (2.1)

Here, park is a Boolean variable that indicates whether a PARK signal
is received.

Let S1 = {so0,s1, - ,s5} be a finite set of the (discretized) positions
of the robot such that s; € C; for all i, Let Sy = {p,p’}, where p
and p’ indicates that the PARK signal is received and is not received,
respectively, Act = {l,r,u,d}, where [,r,u,d represent the left, right,
up, and down movement of the robot, respectively, I = {sp}, and
AP = {C1,Cy,--- ,Cs,park}. We can model the complete system as
a finite transition system T'S = (S, Act,—, I, AP, L) where S = S X
Sa2, ((si, D), a, (s4,p)) €— if and only if C; and C; are adjacent, o
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corresponds to the location of C; relative to C;, and p,p € {p,p'}. The
labeling function L: S — 24 is defined by L(s;, p) = {C;, park} and
L(s;,p") = {C;} for all 7.

A path ™= ((Sﬁap)a (517]))’ (SQap/)a (85ap)7 (84ap)a (83ap,))w of T'S satis-
fies the LTL formula 2.1 while 7/ = ((s0,p), (s1,7"))" does not satisfy

this formula.

Example 2.6. An autonomous vehicle competing in the DARPA Urban
Challenge is required to follow traffic rules as well as completing a task
specified by a sequence of checkpoints that the vehicle has to cross
(Figure 2.6). We define the state of the autonomous vehicle as (z, 0, v)
where z € R? represents the center of its front bumper, 6 € R represents
its heading, and v € R represents its speed. Additionally, let Obs C R?
represent the union of the footprints of all the vehicles and obstacles in
the environment. The state of the complete system (autonomous vehicle
and the environment) is then given by (x, 6, v, Obs). Examples of some
desired properties and LTL formulas expressing those properties are
given below.

Traffic rule 1. No collision:
O(FP(x,0) N Obs = (),

where for any z,0 € R, FP(z,0) C R? is the footprint of the
autonomous vehicle when the center of its front bumper is at =
and its heading is 6.

Traffic rule 2. Obey speed limits:
O((z € Reduced_Speed Zone) = (v < Ureduced))

where v,.equced 1S a pre-specified parameter for the maximum speed
in Reduced_ Speed_ Zone.

Goal. Eventually visit the checkpoint: &(z = ck__pt) where ck_pt
denote the position of the checkpoint.

The following are considered to be atomic propositions in this example as
they are evaluated to be either true or false, given the state (x, 6, v, Obs)
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reduced__speed__zone

Figure 2.6: A simplified autonomous driving problem considered in Example 2.6.

of the system:

FP(z,0) N Obs =0,
x € Reduced__Speed_ Zone,
vV < Vreduceds and

xr = ck_ pt.

Remark 2.2. LTL offers an extension to the properties, e.g., safety (in
the form of constraints on the system state) and reachability (in the
form of convergence to a desired state) that have typically been used in
the controls literature.

Automata Representation of LTL Formulas

There are several ways for checking whether the behaviors (i.e., traces)
that can be generated by a transition system satisfy a given temporal
logic specification. One notion that will appear frequently in subsequent
sections is that of an automaton that witnesses the satisfaction of a
temporal logic formula.

The language accepted by an LTL formula can equivalently be repre-
sented by a nondeterministic (or universal) Biichi (or co-Biichi) automa-
ton (Biichi, 1990). A Biichi automaton over a finite alphabet ¥ is a
tuple A = (Q, Qo, 6, F'), where @ is a finite set of states, (o is the set
of initial states, 6 C @ x X x @ is the transition relation, and F' C Q) is
a subset of states. A run of A on an infinite word w = ogo1--- € X¥ is
an infinite sequence qo, q1, - . . of states, where gg € (o is an initial state
and for every i > 0 it holds that (q;, 0y, git+1) € 9.
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park

(Cs N “pCLT‘k‘) ‘ (Co N 05)
(S0 v 90) | (quvd v D)

(=Cs A —park) | (Co A =C5)

(Cs A —park) | (Co A Cs)

Figure 2.7: Biichi automaton for the LTL formula OC(-park) — (l:]<>(s €
Cs) ANO(park = O(s € Co))) in Example 2.5.

A run of a Biichi automaton is accepting if it contains infinitely many
occurrences of states in F. A co-Biichi automaton A = (Q, Qo,J, F)
differs from a Biichi automaton in the accepting condition: a run of
a co-Biichi automaton is accepting if it contains only finitely many
occurrences of states in F. For a Biichi automaton the states in F
are called accepting states, while for a co-Biichi automaton they are
called rejecting states. A nondeterministic automaton A accepts a word
w € X% if some run of A on w is accepting. A universal automaton A
accepts a word w € 3¢ if every run of A on w is accepting.

Figure 2.7 and Figure 2.8 represent examples of Biichi automata for the
LTL formulas in Example 2.5 and Example 2.6, respectively.
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e (=ck_pt A —collision N —speed_zone) | (—ck_pt A —collision A Vyeduced)

(ck_pt A —collision A —speed_zone) | (ck_pt A —collision N Vreduced)

e (—collision A —speed_zone) | (—collision A Vieduced)

Figure 2.8: Biichi automaton for the LTL formula D(FP(m, 0) N Obs = (Z)) /\D((m €

Reduced_ Speed_ Zone) = (v < vreduced)) A &(z = ck_pt) in Example 2.6. Here,
ck__pt, collision, speed__zone, and Vredquced represent x = ck_ pt, FP(xz,60) N Obs # 0,
x € Reduced__Speed_ Zone, and v < Ureduced, respectively.

While the class of nondeterministic Biichi automata are sufficient to
represent any LTL formula, there are other classes of automata that
are widely used. The major variations in the definition of these dif-
ferent automata relate to their input, states, transition function, and
acceptance condition. Other automata types include deterministic and
nondeterministic finite-state automata (McCulloch and Pitts, 1943),
deterministic Biichi automata (Biichi, 1990), Rabin automata (Rabin
and Scott, 1959), and parity automata (Gradel and Thomas, 2002).
For instance, deterministic and nondeterministic finite-state automata
are expressive enough to represent regular languages. Therefore, if an
application requires only finite-horizon specifications, its LTL formulas
can be represented by finite-state automata that are simpler than Biichi
automata.
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Verification and Model Checking

This section reviews existing approaches to system verification. These
methods perform automated analysis of the correctness of the system’s
abstract mathematical model relative to the system’s requirements. As
a result, these approaches provide a formal guarantee that the desired
system properties hold over all of its possible executions, provided that
the actual execution of the system respects its model.

3.1 Model Checking

Model checking is a well-established technique for system verification
based on exhaustive exploration of the state space. The key require-
ment of this technique is that the description of the system and its
requirements be formulated in some precise mathematical language.
From the description of the system, all of its possible behaviors can be
derived. In addition, all the valid and invalid behaviors can be obtained
from the system requirements. A model checker then checks whether
an intersection of all the possible behaviors of the system and all the
invalid behaviors is empty. It terminates with a yes/no answer and
provides an error trace in case of a negative result. This technique is

29
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Trace(TS)

(all possible
execution

executions that
are possible
and invalid

Figure 3.1: The basic idea behind model checking.

very attractive because it is automatic, fast and requires no human
interaction. However, as it is based on exhaustive exploration of the
state space, model checking is limited to finite state systems. It also
faces a combinatorial blow up of the state space, commonly known as
the state explosion problem (Holzmann, 2004; Baier and Katoen, 2008).

A model checking problem is to find a path in the finite transition
system T'S that violates the specification ¢. All the possible behav-
iors of T'S can be captured by its trace, Trace(T'S) whereas all the
invalid behaviors of the system can be captured by the linear-time
property Words(—p) (Chapter 2). The satisfiability problem — deter-
mining whether 7T'S satisfies ¢ — can then be solved by claiming that
Trace(TS) N Words(—¢) = () as shown in Figure 3.1. In case of neg-
ative result, a word in T'race(T'S) N Words(—yp) is a counterexample.
A positive result means Trace(T'S) N Words(—p) = 0, i.e., a path 7
of T'S that violates ¢ does not exist; hence, we can conclude that ¢ is
satisfied.

For simplicity of the presentation, we assume that T'S only has one valid
initial state. For T'S with multiple valid initial states, the procedure
described below can be applied to each initial state separately. To
check whether Trace(T'S) N Words(—¢) = ), we first compute a non-
deterministic Biichi automaton A = (Q,d, Qo, F) over 247 that accepts
all and only words over AP that satisfy —¢. The product 7'S, = TS® A
can then be constructed based on the following definition.

Definition 3.1. Let 7'S = (S, Act,—, I, AP, L) be a transition system
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{g0} {q1}

true -9 .
(1———®) = =

{ao} {ar}

Figure 3.2: (Left) A non-deterministic Biichi automaton A that accepts all and only
words over AP = {g} that satisfy -0<Cg. (Right) The product T'®.A for Example 3.1

and A = (Q,9,Qo, F) be a non-deterministic Biichi automaton over
24P The product of T'S and A is the transition system T'S, = T'S ® A
defined by T'S, = (S x Q, Act, =, I, Q, L) where

(i) for any s,t € S, a € Act and p,q € Q, (s,p) -3, (t,¢) if and only

L
if s % ¢tandp g)q,

(i) I, = {(s0,qo) : S0 € I and Jq € Qo such that ¢ L) qo} and

(iii) Ly : S x Q — 29 is given by L,((s,q)) = {q}.

Example 3.1. Consider the traffic light T in Example 2.1. Suppose we
want to ensure that the light is green infinitely often. This requirement
can be expressed in LTL as ¢ = OCg. A non-deterministic Biichi
automaton A that accepts all and only words over AP = {g} that
satisfy —¢ as well as the product T'® A are shown in Figure 3.2.

Consider a path 7, = (so,q0)(s1,q1)... on T'S,. We say that 7, is
accepting if and only if there exist infinitely many j > 0 such that
g; € F. Stepping through Definition 3.1 shows that given a path ,
on T'S,, the corresponding path m = s¢s1 ... on T'S generates a word
L(so)L(s1) ... that satisfies ~¢ if and only if 7, is accepting. Hence,
an accepting path of TS, uniquely corresponds to a path of 7'S that
violates . As a result, model checking can be reduced to a graph search
problem to find a state (s,q) in T'S), satisfying the following conditions:



32 Verification and Model Checking

(MC1) Ly((s,q)) € F.

(MC2) (s, q) is reachable, i.e., there exists a finite path fragment 7}
from some (sg, qo) € Ip to (s,q) in T'S),.

(MC3) (s, q) is on a direct cycle, i.e., there exists a finite path fragment
my from some (s', ¢') € Post((s,q)) to (s,q) in T'S),.

If such (s,q) does not exists, we can conclude that T'race(T'S) N
Words(—g) = () and therefore T'S = . Otherwise, an accepting path
mp on T'Sy, can be simply defined by 7, = 75(7;)“. A path ™ = sps1 ...
on T'S corresponding to 7, is a counterexample of a run on 7'S that

violates (.

Example 3.2. Let us revisit Example 3.1. Recall that F' = ¢ and the
set of states of T'S), is given by {si,s2} X {q1,¢2} as shown in Figure
3.2. First, consider the states (s1,q1) and (s2,q1). Here, L((s1,q1)) =
L((s2,q1)) = {q1} ¢ F; thus, condition (MC1) fails. Next, the state
(s1,q2) is not on a direct cycle; thus, condition (MC3) fails. Finally,
the state (s2,q2) is not reachable; thus, condition (MC2) fails. We thus
conclude that there is no accepting path m, on 7'S), and so the transition
system TS modeling the traffic light T" satisfies the specification ¢ =
5.

3.2 Computational Complexity

The number of states of A is exponential in the length of ¢, i.e., the
number of operators in . Hence, the number of states of the product
transition system T'S,, is O(]S])29U#) where |S| is the number of states
in T'S and |¢p| is the length of ¢. A nested depth-first search algorithm
(Baier and Katoen, 2008) can be used to detect accepting cycles effi-
ciently, with the worst-case time complexity that is linear in the number
of states and transitions of 1'S,,.

Several reduction techniques have been proposed to allow model check-
ers to handle large state spaces. One example is state compression,
including lossy compression (e.g., hash-compact and bitstate hashing),
lossless compression, and alternate state representation methods, help



3.3. Tools for Model Checking 33

reduce memory requirements by reducing the amount of memory re-
quired to store each state. In contrast, partial order reduction strategies
avoid computing equivalent paths, which helps reduce the number of
states that needs to be explored. Symbolic model checkers such as SMV
and NuSMV use compressed representation of the state space known as
binary decision diagram (BDD). On the other hand, Spin avoids con-
structing the complete state space by employing on-the-fly construction
of the finite transition system, the non-deterministic Biichi automaton,
and the product automaton. We refer the reader to (Holzmann, 2004)
for more details on these reduction techniques.

3.3 Tools for Model Checking

There are various model checkers for different specification languages.
TLC (Yu et al., 1999) is a model checker for specifications written in
TLA+, which is a specification language based on temporal logic of
actions (TLA) (Abadi and Lamport, 1994; Lamport, 1983; Lamport,
1994). TLA introduces new kinds of temporal assertions (Lamport,
1994) to traditional linear temporal logic (LTL) to make it practical to
describe a system by a single formula and to make the specifications
simpler and easier to understand.

The Spin model checker deals with specifications written in process
meta-language (PROMELA) (Holzmann, 2004). This language was
influenced by Dijkstra, Hoare’s CSP language and C. It emphasizes the
modeling of process synchronization and coordination, not computation
and is not meant to be analyzed by a human. Spin can be run in two
modes—simulation and verification. The simulation mode performs
random or iterative simulations of the modeled system’s execution
while the verification mode generates a C program that performs a fast
exhaustive verification of the system state space. Spin is mainly used for
checking for deadlocks, livelocks, unspecified receptions, unexecutable
code, correctness of system invariants and non-progress execution cycles.
It also supports the verification of linear time temporal constraints. Spin
has been used in many applications, especially in proving correctness
of safety-critical software (Havelund et al., 2001; Gluck and Holzmann,
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Figure 3.3: The embedded control component of Alice.

2002). Other popular model checkers include Symbolic Model Verifier
(SMV) (McMillan, 1993) and its successor NuSMV (Cimatti et al.,
2002).

3.4 Model Checking for Autonomous Vehicles

This section illustrates the applications of model checking (Section 3.1)
to the embedded control component of Alice, an autonomous vehicle
built at the California Institute of Technology for the DARPA Urban
Challenge. Alice was equipped with 25 CPUs and utilized a networked
control system architecture to provide high performance and modular
design. The embedded control component of Alice is shown in Fig-
ure 3.3. We refer the reader to (Burdick et al., 2007; DuToit et al., 2008;
Wongpiromsarn and Murray, 2008) for more details on this hierarchical
control architecture.

The case studies presented in this section focus on the low-level module,
namely Gedrive, which is the overall driving software for Alice. It takes
independent commands from Path Follower and DARPA and sends
appropriate commands to the actuators. Commands from Path Follower
include control signals to throttle, brake and transmission. Commands
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Figure 3.4: Finite state machine implemented in Actuation Interface.

from DARPA include estop pause, estop run and estop disable. An
estop pause command should cause the vehicle to be brought quickly
and safely to a rolling stop and reject commands to any actuator. An
estop run command resumes the operation of the vehicle. An estop
disable command is used to stop the vehicle and put it in the disable
mode. A vehicle that is in the disable mode may not restart in response
to an estop run command.

The logic in Gedrive to handle these concurrent commands can be
described by a finite state machine shown in Figure 3.4, which is
implemented in the Actuation Interface component of Gedrive (See
Figure 3.5). This example illustrates the use of model checking in proving
the correctness of the implementation of this finite state machine. We
model Follower, Gedrive, and DARPA (see Figure 3.5) in the Spin
model checker with the following global variables.

« state € {DISABLED (D), PAUSED (P), RUNNING (Ru), RE-
SUMING (Re), SHIFTING (S)} is the state of the finite state
machine as described in Figure 3.4.

o estop € {DISABLE (0), PAUSE (1), RUN (2)} is the emergency
stop command sent by DARPA.

o acc € [—1,1] and acc_emd € [—1,1] are the acceleration com-
mands sent from Actuation Interface to Acceleration Module and
from Follower to Actuation Interface, respectively.
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Figure 3.5: The components involved in the Gedrive FSM example.

e gear € {—1,0,1} and gear cmd € {—1,0,1} are the gear com-
mands sent from Actuation Interface to Transmission Module and
from Follower to Actuation Interface, respectively.

o timer € {0,1,2,3,4,5} keeps track of the time after which the
latest estop run command is received.

The desired properties can be expressed in LTL as follows.

(1) If DARPA sends an estop disable command, Gedrive state will even-
tually stay at DISABLED and Acceleration Module will eventually
command full brake forever.

O((estop = 0) = <O0(state = D A acc = —1)) (3.1)

(2) If DARPA sends an estop pause command while the vehicle is not
disabled, eventually Gedrive state will be PAUSED.

O((estop = 1 A state # D) = <O(state = P)) (3.2)

(3) If DARPA sends an estop run command while the vehicle is not dis-
abled, eventually Gedrive state will be RUNNING or RESUMING
or DARPA will send an estop disable or estop pause command.

O((estop = 2 A state # D) = O(state € {Ru, Re} V estop # 2))
(3.3)
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(4) If the current state is RESUMING, eventually the state will be
RUNNING or DARPA will send an estop disable or pause command.

O((state = Re) = <O(state = RuVestop € {0,1}))  (3.4)

(5) The vehicle is disabled only after it receives an estop disable com-
mand.

((state # D)U(estop = 0)) v O(state # D) (3.5)

(6) Actuation Interface sends a full brake command to the Acceleration
Module if the current state is DISABLED, PAUSED, RESUMING
or SHIFTING. In addition, if the vehicle is disabled, then the gear
is shifted to 0.

O(state € {D, P, Re, S} = acc=—1)A

3.6
O(state =D = gear = 0) (36)

(7) After receiving an estop pause command, the vehicle may resume
the operation 5 seconds after an estop run command is received.

O(state = Ru = timer > 5) (3.7)

Model checking revealed that an early implementation of Gedrive failed
to satisfy the above properties. In particular, the counterexample showed
that the variable state did not change as required when an estop
command was sent. The counterexample suggested that we incorporate
the following assumptions.

(a) Actuation Interface gets executed at least once each time an estop
command is sent.

(b) Actuation Interface reads the current estop status at the beginning
of each iteration. It then performs a computation based on this
estop status for the rest of the iteration.

(c) All the estop commands are eventually received.
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We introduce a global variable enableEstop to incorporate assumption
(a). Assumption (b) is enforced using atomic sequences (See (Holzmann,
2004)). Lastly, assumption (c¢) is enforced by letting the variable estop
represent the estop command received by Gedrive as well. With these
assumptions, Spin can verify the correctness of the system with respect
to the desired properties. The PROMELA models of the components
involved in this example can be found in (Wongpiromsarn, 2010).

Realizing that these assumptions needed to be enforced, we then modi-
fied the implementation of Alice by having Gedrive store all the estop
commands in a queue and process all these commands one by one. If
an estop command is not stored but only sampled at the beginning of
each iteration, an estop disable or pause command may not be handled
appropriately. Consider, for example, the case where an estop pause
command is sent while Actuation Interface is in the middle of an itera-
tion and an estop run command is sent immediately after. In this case,
Alice will not stop because the estop pause command is not processed,
leading to an incorrect, unsafe behavior.
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Closed-System Synthesis

This section provides an overview of correct-by-construction synthesis
of control protocols for autonomous systems and discusses approaches
that merge concepts from formal methods and controls. These concepts
include but are not limited to formal specification languages, discrete
protocol synthesis, and optimization-based control. It also points to
approaches that deal with settings where the set of desired specifications
is not realizable as a whole.

We consider a discrete system modeled as an action-deterministic finite
transition system, i.e., at every state, the actions uniquely determine
the next state. We refer to these systems as deterministic systems. In
particular, we consider closed systems by referring to systems whose
outputs are generated purely by themselves without any exogenous
input. We assume that at any time instance, the state of the system is
fully observable.

4.1 Control Protocol Synthesis

In this section, we are interested in synthesizing a control protocol for
a transition system to ensure that a given linear temporal logic (LTL)

39
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specification is satisfied. We define a control protocol for a transition
system as follows:

Definition 4.1. Let T'S = (S, Act,—,1, AP, L) be a transition sys-
tem. A control protocol for T'S is a function u : ST — Act such that
u(8081 - .. 8p) € Act(sy) for all sgs;...s, € ST, where ST denotes the
set of nonempty finite strings of S.

A control protocol u for a transition system TS essentially restricts the
non-deterministic choices in T'S by picking an action based on the path
fragment that leads to the system’s current state. Hence, u induces a
transition system T'S“ that formalizes the behavior of T'S under the
control protocol u.

In general, T'S* contains all of the states in ST; therefore, the induced
transition system may not be finite even though T'S is finite. However,
for special cases where u is a memoryless or a finite-memory control
protocol, it can be shown that 7'S" can be identified with a finite
transition system. Roughly, a memoryless control protocol picks an
action based on the current state of T'S, irrespective of the path fragment
that led to that state. For example, a memoryless control protocol is
sufficient for a car in a controlled intersection; the car proceeds if the
light is green and stops if the light is red. A finite memory control
protocol, on the other hand, maintains a “mode”, picks an action based
on the current mode and the current state of T'S, and modifies the mode
according to the next state. For example, an uncontrolled intersection
environment with stop signs requires cars to have finite memory control
protocols. The “mode” of the controller keeps the number of cars that
arrived at the intersection before, and the car proceeds if and only if
there are no cars that arrived before.

Example 4.1. Consider the transition system that represents the com-
plete traffic light system in Example 2.3 (see Figure 2.4). Define a
control protocol u : ST — Act such that

o u((s1,1,821)) = o,
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Figure 4.1: (T1||T2)%, the transition systems induced by applying u defined in
Example 4.1 on the traffic light system T1]||7>.

* U(7T<81,1,52,1><81,2, 82,1>) = aq,
o u(m(s1,2,521)(51,1,52,1)) = a2,
o u(m(s1,1,52,1)(51,1,522)) = a2, and
* U(7T<81,1,82,2><81,1, 82,1)) = aq,

for any m € S*. According to the transition system 71||7% in Fig-
ure 2.4, the initial state is (s1,1,52,1). At this state, the control pro-
tocol picks the action u((s1,1,52,1)) = a1, causing the system to tran-
sition to the state (s1,2,s2,1). The path fragment so far is then given
by (s1,1,52,1)(51,2,52,1). Thus, the control protocol picks the action
w(m(s1,1,52,1)(51,2,52,1)) = a1, with m = (), causing the system to tran-
sition back to the initial state (sq,1,521). Following this procedure,
the next action is u(7m(s12,52,1)(51,1,52,1)) = a2, with 7 = (s1.1, 52.1).
The system then transition to (si,1, s22), at which the control action
w(m(s1,1,52,1)(51,1,82,2)) = a2 is applied, causing the system to tran-
sition back to the initial state (si,1,52,1) once again. The transition
system induced by w is shown in Figure 4.1. This transition system
satisfies [J(—g1 V —g2) since no state in the induced system has a label
including g; and g. It also satisfies O0g; since state (s12,2,1) with
label {g1} is visited infinitely often. However, it violates (g1 V g2)
since states (s1,1, 52,1) and (s1,2, S2.2) in the induced system do not have
labels including g; or gs.

Control Protocol Synthesis Problem: Given a finite transition
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Figure 4.2: The robot motion planning problem in Example 4.2. Each cell represents
a state of T'S. The possible transitions are between the adjacent cells.

system 1S and a specification ¢ expressed as an LTL formula, automat-
ically synthesize a control protocol u such that the induced transition
system T'S" satisfies .

Example 4.2. Consider the robot motion planning problem where the
robot navigates in an area that is partitioned into cells as shown in
Figure 4.2. The dynamics of the robot is abstracted to a finite transition
system T'S shown on the right of Figure 4.2. The state of T'S represents
the cell occupied by the robot. If T'S is action-deterministic, then the
system is deterministic. Otherwise, the system is non-deterministic. In
this case, non-determinism potentially arises due to disturbances that
affect the dynamics of the robot, leading to multiple possible next states
when an action is taken. The desired property of the system is for a
robot to visit cell Cg, then C] and, subsequently, cover Cyg, C17, and
Css in any order while always avoiding cells Cs, Ci4, and Cig. This
property can be expressed in LTL as

<>(Cg A <>(01 ACCi1g AN OCI7 A 0025)) A D_‘(CQ VvV Cia V 018)-

Example 4.3. Consider the simplified autonomous driving problem
described in Example 2.6. The system consists of the autonomous
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vehicle, obstacles (i.e., Obs in Traffic rule 1), and other vehicles (i.e.,
Veh in Traffic rule 1). If the obstacles and other vehicles are not
stationary, and their motion is not known exactly, then the system is
non-deterministic since the system does not have control over the motion
of the obstacles and other vehicles. In this case, a control protocol for
this system needs to ensure that the desired properties described in
Example 2.6 are satisfied for all the possible motion (i.e., behavior) of
the obstacles and other vehicles.

4.2 Model Checking-Based Synthesis

Consider a closed system that is modeled as an action-deterministic
finite transition system 7'S. The control-protocol synthesis problem can
be formulated as finding a path in T'S that satisfies a given specification
©, which is essentially a model checking problem as described in Section
3.1. Using model checking methods, we can start with the hypothesis
that ¢ is not satisfiable; that is, we investigate whether or not there
exist a path m of T'S that satisfies ¢. In case the hypothesis can be
refuted with a counterexample, the counterexample can be used as a
synthesized path 7 of T'S that satisfies .

Let A be a non-deterministic Biichi automaton over 247 that accepts
all and only words over AP that satisfy ¢. We construct the product
TS, =TS®A as described in Definition 3.1. Let m, = (s0, qo){(s1, 1) - - -
be an accepting path on 7'S, and m = sps1... be the path on TS
corresponding to m,. We define a control protocol u for T'S by

/)
u(sysy ...s) = i
(505 E of otherwise,

: ! o/ /
= o; if sps] ... s; = s081... 54,
(2

where «; satisfies s; X Si+1 and ag € Act(sg) is any arbitrary action.
Under the control protocol u, the system simply picks the next state
according to the path 7, which ensures that the resulting path satisfies .
Note that this construction of control protocol works because we consider
a closed system, which has a full control over the non-deterministic
choices in T'S and is not affected by exogenous inputs (e.g., from the
environment).
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g1 V g2

g1 V g2

Figure 4.3: Non-deterministic Biichi automaton A that recognizes ¢ = O(—g1 V
—g2) AOCgr AOOCgse. Accepted states are drawn with a double (red) circle.

Example 4.4. Consider the traffic light system 7'S = T ||T% shown in
Figure 2.4 and the desired property ¢ = O(—g1 V —g2) A OCg1 A OOgs.
In words, the property makes sure that the two lights are never green
at the same time and each light turns green infinitely often. A non-
deterministic Biichi automaton A that recognizes ¢ and the product
transition system 7'S, = T'S ® A are shown in Figure 4.3 and Figure 4.4,
respectively. In relation to Figure 4.1, projecting the path that is shown
in Figure 4.4 onto the state of T'S yields the same transition system
that applying the control protocol in Example 4.1 induces.

4.3 A Case Study

We now take a closer look into a case study motivated by autonomous
driving. Consider a scenario where an autonomous vehicle 7°'S® needs to
make an unprotected left turn with an oncoming vehicle 7'S as shown
in Figure 4.5. The complete system consists of the autonomous vehicle,
the oncoming vehicle, and the traffic light.

First, consider the case where the complete system is deterministic, i.e.,
starting from any state, the actions of the autonomous vehicle lead to
a unique state of the complete system. This implies that the behavior
of the oncoming vehicle and the traffic light is deterministic. Figure
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Figure 4.4: The product transition system T'S, = (Ti||T2) ® A, showing only
reachable states. An accepting path is highlighted by double (red) arrows.

4.6 shows the finite transition systems that describe the behavior of
each element as well as the complete system T'S. Here, a state s € S
is of the form s = (¢;,c¢j,s), where 7 and j are the labels of the
cells occupied by the autonomous vehicle and the oncoming vehicle,
respectively, and k indicates whether or not the light is green; k£ = 1
if the light is green and k = 2 if the light is red. Act = {acc,brake}
where acc and brake represent accelerating and braking, respectively.
AP = {ay,...,a9, ho, ..., hg,g} and the labeling function L is defined
such that for any state s = (c;, ¢j, sx), as, hj € L(s) and g € L(s) if and
only if k = 1.

An LTL formula ¢ = —(hsAas)Uag specifies that the autonomous vehicle
and the oncoming vehicle do not simultaneously occupy cell ¢4 until the
autonomous vehicle reaches cell cg. Figure 4.7 shows the corresponding
nondeterministic Biichi automaton A. The product T'S ® A as well as
a solution is shown in Figure 4.8.
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Figure 4.5: An unprotected left turn scenario.

4.4 Minimum-Violation Synthesis

Autonomous systems are often subject to multiple regulatory require-
ments or safety rules that may not be equally important. In general,
it is infeasible to guarantee the satisfaction of all the rules under all
conditions. Thus, there is a need to allow for formally justifiable viola-
tion of these rules. In particular, we assume that each rule has a certain
penalty associated with its violation. The goal of minimum-violation
synthesis is to minimize such penalties.

The formulation of the minimum-violation synthesis requires some
extension to the models and specifications considered in Section 2. First,
we consider a system that can be modeled as a weighted, finite, and
action-deterministic transition system.

Definition 4.2. A weighted transition system (WTS) is a tuple T'S =
(S, Act, —, I, AP, L,W) where S, Act, —, I, AP, and L are the same
as in Definition 2.1 and, for some fixed m € N, W : § x § — RY} is a
weight function. -

For states s1,s2 € S, the weight W (sy, s2) typically represents the time
or distance between s; and so. Similar to conventional transition systems,
a WTS is finite if S, Act and AP are all finite, and is action-deterministic
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{as} {as} {ag}
(=)=~
brake brake brake

(a) Autonomous vehicle

{h3} {ha} {hs5} {he} {green} {red}
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C8, C6, S2

(d) Complete system

Figure 4.6: The finite transition systems that describe the behavior of the au-
tonomous vehicle, the oncoming vehicle, the traffic light, and the complete system.

—(ha A aa) true

() ——®)
Figure 4.7: The nondeterministic Biichi automaton corresponding to LTL formula
—\(h4 A a4)Uag.
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Figure 4.8: The product 7'S ® A as well as a run on T'S that satisfies ¢ shown in
green.
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if [I| <1 and, for all s € S and a € Act, |Post(s,a)| < 1. The weight
of a finite path fragment 7 = s¢s1 ... s, is W(m) = 3120 W (si, Si41)-

We will use finite linear temporal logic (FLTL) to formalize each rule.
As opposed to LTL, an FLTL formula ¢ is interpreted over a finite word
247+ We write o |= ¢ if and only if o satisfies (.
For example, for some p € AP, o |= p if and only if p € 0. Additionally,
o | Op if and only if, for all ¢ € {0,...,n}, we have p € ;. As a more
complicated example, with p,p’ € AP, let ¢ = O(p = (OpV Op)).
Then, o = ¢ if and only if, for all i € {0,...,n — 1} such that p € oy,
we have p € 0,41 or p' € 0y41.

0=0001...05 € (

Given an FLTL formula ¢, a finite automaton A = (Q, Qo, d, F') that
accepts all and only finite words that satisfy ¢ can be automatically
constructed (Gunter and Peled, 2002). Here, the definitions of @, Qo,
0 and F' are similar to those in the definition of a Biichi automaton
(see Section 2.2). However, a finite automaton is evaluated over a finite
word 0 = 0g...0,. A run of A over o is defined as a finite sequence
qo - - - @n+1 such that qo € Qo and (g;, 04, gi+1) € d for all i € {0,...,n}.
We say that A accepts o if and only if there exists a run qg. .. ¢p+1 of
A over ¢ such that ¢,41 € F.

We now introduce the concept of prioritized safety specification to
formalize a set of rules with unequal importance.

Definition 4.3. A prioritized safety specification is a tuple P = (AP, P,
U, p) where AP is a set of atomic propositions, ® is a set of FLTL
formulas over AP, U = (¥y, ¥y,..., ¥y) organizes the formulas in ®
into a hierarchy based on their priorities such that ¥; C &, for all
i € Ney, and p: @ — N is a function that assigns the weight to each
@ € ®. Throughout the article, we refer to each ¢ € ® as an atomic
safety rule.

Example 4.5. Consider an autonomous vehicle that is required to (1)
avoid collision, (2) stay on the road, (3) keep sufficient clearance from
other vehicles, and (4) stay within a correct lane. To capture these rules,
we define the following atomic propositions.
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o collision represents a state at which the autonomous vehicle collides
with another vehicle or obstacle.

e onroad represents a state at which the autonomous vehicle is fully
on the road.

e close represents a state at which the autonomous vehicle overlaps
with the clearance zone around another vehicle.

e inlane represents a state at which the autonomous vehicle is fully
within a correct lane.

Following Example 2.6, we let (x,60,v) € R? represent the state of the
autonomous vehicle, FP(z, §) C R? represent its footprint, and Obs C R?
represent the union of the footprints of all the vehicles and obstacles
in the environment. Additionally, we define the following environment
states.

« RD C R? is the road, i.e., the area where a vehicle is allowed to
drive, and

e CZ C R? is the union of the clearance zone around other vehicles
constructed from their footprints and the required lateral and
longitudinal clearance,

e LN C R? is the right lane, i.e., the lane with the correct travel
direction for the autonomous vehicle.

The state of the complete system (autonomous vehicle and the environ-
ment) is then given by (z,0,v,0bs, RD,CZ,LN). The labeling function
L is defined such that for any x, 0, v, Obs, RD, CZ, LN,

o collision € L(z,0,v,0bs,RD,CZ,LN) iff FP(x,0) N Obs # 0,

e onroad € L(x,60,v,0bs,RD,CZ,LN) iff FP(z,y,0) C RD,

e close € L(z,0,v,0bs,RD,CZ,LN) iff FP(z,y,0) N CZ # (), and
e inlane € L(x,0,v,0bs,RD,CZ,LN) iff FP(x,y,6) C LN.

We consider the following atomic safety rules, each of which can be
expressed by an FLTL formula.
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(i) Avoiding collision: ¢y = O—collision.

(ii) Staying on the road: ¢1 = Conroad.
(iii) Keeping sufficient clearance from other vehicles: po = O—close.
(iv) Staying within a correct lane: @3 = Oinlane.

Define the prioritized safety specification P = (AP, @, U, p) as

AP = {collision, close, onroad, inlane},

(I):{§007"‘7803}7
U = {\Ifo,\Ifl, \112}, and

:0(900) =1,Vi,

where, ¥o = {0}, ¥1 = {¢1}, and Yo = {2, ¢3}. In this definition of
P, ¢o is the only rule at the top level in the hierarchy. As we will see
later, this means that g is the most important rule, and the system
should minimize the violation of this rule, even at the cost of infinitely
violating the other rules. Next, (1 is the only rule at the second level.
This means that after minimizing ¢q, the system will minimize the
violation of @1, even at the cost of infinitely violating the other rules at
the lower levels. Finally, po and 3 are at the lowest level. This means
that after minimizing the violation of ¢y and 1, the system then tries
to minimize the weighted violation of @9 and @3, where the weights are
given by p. Note that the weights only affect the rules at the same level.

We use the level of unsafety A\,(m) to measure the violation of a finite
path fragment m with respect to an atomic safety rule ¢. The dual
concept, including robustness, has been proposed for some variants
of temporal logics such as Signal Temporal Logic (Donzé and Maler,
2010; Mehdipour et al., 2019). However, when applying to a system
that is subject to multiple requirements, this measure introduces the
additional complexity of having to ensure that the system cannot take
advantage of robustly satisfying one rule, in order to slightly violate
another rule. Additionally, when combining with the concept of rule
hierarchy, this measure may cause the system to compromise lower-
level rules by robustly satisfying the higher-level rules. For example,
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consider the prioritized safety specification in Example 4.5. Using the
robustness as the performance measure may incentivize the system
to violate staying on the road rule (2 in order to robustly satisfy the
collision avoidance rule ¢ since this behavior allows the system to be
as far away from other vehicles as possible, and hence, maximizing the
robustness of the top-level rule.

Various definitions of the level of unsafety have been proposed. For
example, Tumova et al. (2013) defines A, (7) as the minimum number of
states in 7 that needs to be removed so that the resulting path fragment
satisfies . Formally, given a finite sequence m = sps1 ... s, and a set
I CH{0,...,n}, let vanish(m, I) represent a subsequence of m obtained by
removing all s; with ¢ € I. Then, A,(7) = min;{|/] s.t. vanish(7,I) |=
m}. In contrast, (Castro et al., 2013) defines the level of unsafety as
Ap(m) = ming{> ;e p oy W(si, si+1) s-t. vanish(w, I) = m}. Following
Wongpiromsarn et al. (2021), we restrict atomic safety rules to be
expressed using a class of FLTL known as si-FLTLg, defined as follows:

Definition 4.4. An si-FLTLg, formula over a set AP of atomic propo-
sitions is an FLTL formula that is stutter-invariant (see below) and is
of the form

¢ =P,

where Px belongs to the smallest set defined inductively by the following
rules:

e pisa formula for all p € AP U { True, False};
o Op is a formula for all p € AP U { True, False}; and

o if P} and P3 are formulas, then so are —=Pg, PtV P, Py A P%
and P} = P2.

In other words, Px is a Boolean combination of propositions from AP
and expressions of the form Op where p € AP.

Roughly, a specification is stutter-invariant if its satisfaction with respect
to any word is not affected by operations that duplicate some letters or
remove some duplicate letters in that word. For example, consider o =
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0001 ...0, and o' = 00901 ...0,_10;0;0;41 ...0p, which is constructed
from o by duplicating o; for some i € {0, ...,n}. If ¢ is stutter-invariant,
then o = ¢ if and only if ¢’ = ¢. We refer the reader to (Peled and
Wilke, 1997) for the definition of stutter-invariant properties. See, e.g.,
(Klein and Baier, 2007; Michaud and Duret-Lutz, 2015) for approaches
to check whether a specification is stutter-invariant.

Example 4.6. All the rules ¢q,..., s defined in Example 4.5 are
si-FLTLg, formulas. For example, consider ¢y = [—collision. It can
be written as ¢g = UPx, where Px = —collision.

Regardless of their simplicity, si-FLTLg, formulas turn out to be suffi-
ciently expressive in many applications; for example, (Wongpiromsarn
et al., 2011a) shows that all the rules enforced in the DARPA Urban
Challenge 2007 can be expressed with si-FLTLg, formulas. Moreover,
all of the traffic rules in the examples presented in (Castro et al., 2013)
can be described using si-FLTLg, formulas.

Wongpiromsarn et al. (2021) show that the violation of a si-FLTLg,
formula is caused either by visiting an unsafe state or by taking an
unsafe transition. As a result, this work defines the level of unsafety as
the total time spent in an unsafe state and the total number of unsafe
transitions.

Let P = (AP, ®, ¥, p) be a prioritized safety specification where ¥ =
(Up, Uy,...,¥y). We define the level of unsafety of a finite-path frag-
ment 7 with respect to P as

(1) = Ao (1), -+, Awy (1)) € RV
where, for every i € {0,1,..., N},

Ay, () = D pp)hg ().

peY;

Let Pathg(TS) be the set of finite path fragments that end in a goal
state. Given a weighted, finite, and action-deterministic transition sys-
tem T'S = (S, Act,—, I, AP, L, W) and a prioritized safety specification
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P = (AP, @, T, p), the minimum-violation synthesis problem is to com-
pute an optimal path fragment 7* € Pathg(T'S) that minimizes the
weight W (7*) among all the path fragments that minimize the level
of unsafety with respect to P. Formally, we define the cost function
J : Pathg(TS) — RN*2 as

J(m) = (o), W (). (4.1)

Using the cost function .J, we now formally define the minimum-violation
synthesis problem.

Minimum-Violation Synthesis Problem: Based on the standard
lexicographical ordering, compute an optimal finite path fragment 7*
such that

= ar min J().
gerPathg(TS) ( )

Example 4.7. Consider the prioritized safety specification P in Example
4.5. In this case, we have Ap(7) = (A, (), Aw, (7), Aw, (7)), where

Awo (M) = Ao (),
A, () = Ay, (), and
Aw, () = Mg, () + Ags ().
As a result, the cost function J : Pathg(T'S) — R* is defined as
J(m) = (Aw, (), A, (7), Aw, (), W ().
For convenience, we define the following subsets.

o Pathgo(TS) is the subset of Pathg(T'S) that minimize the level
of unsafety with respect to ¢g.

e Pathg,1 is the subset of Pathgo(7'S) that minimize the level of
unsafety with respect to 1.

o Pathg,1,2 is the subset of Pathg1(7'S) that minimize the level
of unsafety with respect to 9 and 3.

An optimal path 7* is defined as a path in Pathg .12 that minimizes
the weight W (7*), which typically represents the time or distance on
the path fragment.
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Tumova et al. (2013) and Castro et al. (2013) solve the minimum-
violation synthesis problem by constructing a weighted finite automaton
A that is the product of a collection of weighted finite automata, each
of which corresponds to an atomic safety rule ¢ € ®. A weighted finite
automaton is essentially a finite automaton with weight W (q, 0,q’) €
RZ, for some m € N assigned to each transition (g, o,q’). The weights
of the transitions of A are defined such that the weight of the shortest
accepting run over any word o is the level of unsafety of o. It can be
shown that the minimum-violation synthesis problem is equivalent to
finding the shortest path in 7S ® A.

As the size of A is exponential in the length of ¢ (Baier and Katoen,
2008), the approach presented in (Wongpiromsarn et al., 2021) avoids
constructing the product 7T'S ® A to reduce computational complexity.
The main idea is to construct a weighted finite transition system 7'S’
with the same sets S, Act, I, and AP of states, actions, transitions,
initial states, and atomic propositions as well as the same transition
relation — and labeling function L as T'S. Instead, the weight W’ will
be defined such that the minimum-violation synthesis problem can be
translated to computing the shortest path on T'S’.

To enable such a construction of TS, we first translate a si-FLTLg,
formula over AP into a si-FLTLg formula over AP x AP.

Definition 4.5 (si-FLTLg). A si-FLTLg formula over AP x AP is a
si-FLTLg, formula ¢ = (0P where P is a propositional logic formula
over AP x AP.

A propositional logic formula P over AP x AP is interpreted over a pair
(1,1') € 27 x 27 with the satisfaction relation = defined as follows:
for p,p’ € AP U {True, False} and (1,1') € 247 x 247 (1,1") = (p,p') if
and only if | = p and I’ |= p/. Here, for any | € 247, we have [ = True,
| = False, and for any p € AP, [ |= p if and only if p € [. The logic
connectives are defined as in the standard propositional logic.

Based on the semantics of FLTL, given a finite word ¢ = ogo1...0, €
(247 "+1 and a si-FLTLg formula ¢ = OP over AP x AP, we say that
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o satisfies o, written o |=g9px49 @ if and only if (0;,04+1) E P for
all i € N<,,_; and (oy,0,) = P. Note that the terminal condition
(on,0n) E P results from the assumption that ¢ is stutter-invariant,
which ensures that o = ¢ if and only if o/ = ooy ... 0,0, E ¢.

Given a si-FLTLg, formula ¢ over AP, we define an operation called
denext which constructs a si-FLTLg formula over AP x AP from ¢
by replacing each instance of p in ¢ with (p, True) and replacing each
instance of Op in ¢ with (True, p), for all p € AP. For example, consider
a si-FLTLg, formula ¢ = O(p = (Op Vv Op')). The corresponding
si-FLTLg formula over AP x AP is given by

denext(p) = D((p, True) = ((True,p)V (True,p’))).

Example 4.8. Consider Example 4.5. si-FLTLg, formulas ¢y, ..., ¢4
over AP can be translated to the corresponding si-FLTLg formulas over
AP x AP as follows.

(i) Avoiding collision: denext(yg) = [C0—(collision, True).
(ii) Staying on the road: denext(y;) = O(onroad, True).

(iii) Keeping sufficient clearance from other vehicles: denext(yp2) =
O=(close, True).

(iv) Staying within a correct lane: denext(ys) = O(inlane, True).

Wongpiromsarn et al. (2021) establish the equivalence of the level of
unsafety with respect to a si-FLTLg, formula over AP and the level
of unsafety with respect to the corresponding si-FLTL¢ formula over
AP x AP.

The translation of si-FLTLg, formula over AP to a si-FLTLg formula
over AP x AP allows us to convert the original prioritized safety specifica-
tion P = (AP, P, ¥, p) to P = (AP AP, 0, p) with each atomic safety
rule obtained from that of P by applying denext operation. Formally,
® = {denext(p) | p € ®}; U = (g; ¥y, ..., Uy); U; = {denext(p) | ¢ €
U, }, for all i € {0,...,N}; and p(denext(p)) = p(¢), for all p € ®.
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For each atomic safety rule ¢ € ®, define a propositional logic formula
P, such that denext(yp) = OF,. We construct the weighted finite tran-
sition system T'S" = (S, Act,—, I, AP, L,W') such that the weight W’
corresponds to the cost function in (4.1). Formally, W’ : S x § — RN+2
is defined by

W/(517 82) == (/\\ijo(sla 52)7 ey )‘@N(Sb 82)7 W(Sl7 82))5

where Ay (s1,52) = Zwe@iﬁ(go))\w(sl,@) and Ay (s1,s2) is defined

i

based on the satisfaction of the propositional logic formula P, at s;
and sy as follows:

0 if (L(s1), L(s2)) = P,
Ao(s1,82) = W(s1,82) if (L(s1),1) & P, for all | € 247 (4.2)
1 otherwise

Note that the first condition of (4.2) corresponds to the case where P, is
satisfied by the transition from s; to sg, thereby no violation cost being
incurred. The second condition corresponds to visiting an unsafe state
s1 and the third condition corresponds to taking an unsafe transition.

Example 4.9. Let us revisit Example 4.5 with the corresponding si-FLT L
formulas over AP x AP defined in Example 4.8. For any states s1,s9 € S,
the weight W’ is defined as

W/(s1,82) = (Ag, (51,82), Ay, (51, 82), Ay, (51, 82), W(s1, 52)),
where

(i) Ag,(s1,s2) corresponds to the violation of the avoiding collision
rule and is defined as Ag (s1,s2) = 0 if collision & L(s1) (i.e.,
the autonomous vehicle does not collide with another vehicle or
obstacle at state s1) and Ay (s1,52) = W(s1, s2) otherwise,

(ii) Ag, (s1,82) corresponds to the violation of the staying on the road
rule and is defined as Ay (s1,s2) = 0 if road € L(s1) (i.e., the
vehicle is fully on the road at state s1) and Ay _(s1,s2) = W(s1, s2)
otherwise, and
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(i) Ag,(81,82) = Ay (81, 82) + Ay (81, 82), Where

e Ay, (s1,52) corresponds to the violation of the clearance rule
and is defined as Ay, (s1,s2) = 0 if close & L(s1) (i.e., the
autonomous vehicle does not overlap with the clearance
zone around another vehicle at state s;) and Ay, (s1,52) =
W (s1, s2) otherwise, and

o Ay, (s1,82) corresponds to the violation of the lane rule and
is defined as Ay, (s1,52) = 0 if inlane € L(s1) (i.e., the au-
tonomous vehicle is fully within a correct lane at state s1)
and Ay, (51, 52) = W(s1, s2) otherwise.

Wongpiromsarn et al. (2021) show that the minimum-violation synthesis
problem is equivalent to computing the shortest path (based on the
standard lexicographical ordering) on T'S’, which has the same size
as T'S. As a result, the construction of T'S’ allows temporal logic
specifications to be handled with the same computational complexity
as traditional graph-search algorithms such as Dijkstra and A*.



5

Reactive Synthesis

This chapter continues the discussion of correct-by-construction syn-
thesis of control protocols focusing on non-deterministic systems. In
particular, we consider open systems whose behaviors can be affected by
exogenous inputs. Non-determinism can be used to capture uncertain-
ties in the system, and is particularly useful in capturing uncertainties
arising from valid environment behaviors that the system cannot control.
Such a system is called reactive as it must react to the environment’s
behavior. Similarly to the previous chapter, we focus on discrete systems
modeled as finite transition systems and we assume that the system’s
state is observable at all times. This chapter puts emphasis on methods
that alleviate some of the difficulties — such as computational complexity
and conflicting specifications — that naturally arise when constructing
autonomous protocols.

This section incorporates the results from the following publications (Wong-
piromsarn, Topcu, and Murray, 2013; Kress-Gazit, Wongpiromsarn, and Topcu, 2011;
Dimitrova, Ghasemi, and Topcu, 2018).

59
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Figure 5.1: A tree representing a control protocol for non-deterministic systems.
The state of the system is a tuple (z,y) where = € {xo,x1} represents the non-
deterministic choice of the environment behavior whereas y € {yo,y1, ...} represents
the state over which the system has control.

5.1 Synthesis of Reactive Control Protocol

Similarly to as for closed systems, we say that a reactive system is
correct with respect to specification ¢ if it satisfies . However, for a
non-deterministic system, the correctness needs to be interpreted with
respect to the non-deterministic choices over which the system does not
have control. In this case, we require that the control protocol ensures
that specification ¢ is satisfied for all possible non-deterministic choices,
for example, for all of the environment’s possible behaviors. As discussed
in Pnueli and Rosner (1989) and Piterman et al. (2006), the control
protocol synthesis in this case can be treated as a two-player game
between the system and the environment, also called the adversary.
The system and the environment alternate in picking actions. The
environment then attempts to falsify ¢ while the system attempts to
satisfy ¢. A provably correct control protocol therefore needs to ensure
that ¢ is satisfied for any possible behavior from the environment. The
control protocol may thus be represented by a tree whose branches
represent the possible environment actions and capture non-determinism
as shown in Figure 5.1.
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Solving the above two-player game typically involves computing the
winning set, which is defined as the set of initial states from which there
exists a strategy for the system to satisfy the specification, for all the
possible environment behaviors. Similar to model-checking-based policy
synthesis, computing a winning set requires computing the product
of the transition system and a finite automata, except for that a non-
deterministic Biichi automaton A, recognizing ¢ must be transformed
into a deterministic Rabin automaton R, (Baier and Katoen, 2008).
We call such a transformation determinization. We then compute the
product transition system 7'S, = T'S ® R, which is defined similarly
to as in Definition 3.1. A fixed-point strategy can be applied to T'S),
in order to derive the winning set. Finally, a control protocol can be
constructed using the intermediate values in the computation of the
winning set.

The size of T'S), and the runtime of this synthesis algorithm are both at
most double exponential in the length of . The first exponent results
from the construction of the non-deterministic Biichi automaton A,
from ¢ and the second exponent results from the determinization of
A, into a deterministic Rabin automaton R,. We refer the reader to
(Pnueli and Rosner, 1989; Kloetzer and Belta, 2008b) for more details.

For a class of specifications of the form Clp, Op, OOp and $Op, where p
is a proposition, there exist efficient synthesis algorithms (Asarin et al.,
1998; Alur and La Torre, 2004). The main idea behind these algorithms
is that they avoid translating the specification to a non-deterministic
Biichi automaton as well as avoiding the determinization of the non-
deterministic Biichi automaton into a deterministic Rabin automaton.
For example, in a reachability game with specification ¢ = Op, we
define the set W = {s € S : s = p} to be the set of states at which p
is satisfied, and we define the predecessor operator Pregy | 25 5 29
as follows: Pregy(R) is the set of states whose subsequent successors
have at least one successor in R. In particular, Pregy(R) = {s € S |
Vs' € S,s — s implies 3s” € R such that s’ — s”}. The set of states
from which the controller can lead the system into W can be computed
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efficiently by the iteration sequence
Ry = W,
R, = R;,_1U P’I"egv(Ri_l),V’i > 0.

Using the Tarski-Knaster Theorem, it can be shown that there exists a
natural number n such that R, = R,,_1. In addition, R,, is the minimal
solution of the fix-point equation R = W U Pregy(R).

The methodology proposed by Piterman et al. (2006) allows for solving
a broader class of games efficiently. A summary of the algorithm is as
follows: First, a game structure is defined as a tuple § = (V, X, Y, 6., 0,
Pes Pss AP, L, o) where

e V is a finite set of variables over finite domains,
e X CV isa set of environment variables,
e Y =V \X is a set of controlled variables,

e 0.(X) is a proposition over X characterizing the initial states of
the environment,

o 04(V) is a proposition over V characterizing the initial states of
the system,

o pe(V,X') is a proposition that relates a state s € dom(V) to a
possible next input value sy € dom(X) and characterizes the
transition relation of the environment,

o ps(V, X' )Y") is a proposition that relates a state s € dom(V) and
an input value sx € dom(X) to an output value sy € dom(Y")
and characterizes the transition relation of the system,

e AP is a set of atomic propositions,
o L:dom(V) — 24F is a labeling function, and

e ( is the winning condition, characterized by a linear temporal
logic (LTL) formula.

We let dom(V'), dom(X) and dom(Y") denote the set of all the possible
assignments to variables in V', X and Y, respectively. An environment
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Figure 5.2: An unprotected left turn scenario. As described in Section 4.3, the
autonomous vehicle 7'S® needs to make an unprotected left turn with an oncoming
vehicle TS". T'S! denotes the traffic light.

Figure 5.3: The finite transition system that represents the nondeterministic model
of the oncoming vehicle.

state sx € dom(X) is a valid input in state s € dom(V) if (s, sx) = pe.
Analogously, a controlled state sy € dom(Y') is a valid system output
at state s € dom(V), after reading input sx, if (s, sx, sy) = ps.

Example 5.1. Let us revisit the unprotected left turn scenario described
in Section 4.3 and illustrated in Figure 5.2. In practice, the behavior of
the oncoming vehicle and the traffic light may not be known exactly.
For example, in one time step, the oncoming vehicle may stay in the
same cell or move to the next cell. Figure 5.3 shows a nondeterministic
model corresponding to such behaviors.

We consider the following requirements:
1. The autonomous vehicle should eventually go to cell cg.

2. The autonomous vehicle should not collide with the oncoming
vehicle.
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The corresponding game structure § = (V, X, Y, 0., 05, pe, ps, AP, L, )
is defined as follows:

o X ={xp}, where z;, € {0,...,9} is the label of the cell occupied
by the oncoming vehicle.

o Y ={x,}, where z, € {0,...,9} is the label of the cell occupied
by the autonomous vehicle.

e 0. = (xp, =0V ap =1Va, = 2) indicates that the oncoming
vehicle can start from cell ¢g, ¢; or cs.

o Oy = (xg =4V, =TV, =8Vzx, =9) indicates that the
autonomous vehicle can start from cell ¢4, c7, cg or cg.

* Pe :/\?:0 (xh =1 = (Ozp =1V Ouxy =i—|—1)) A (xh =6 —
(Ozp, = 6)) indicates that the oncoming vehicle may stay in the
same cell or move to the next cell.

o ps = plrans ppsafe Here, pl™" = (2, =7 = (Oz4 =TV Oz, =
8) AN (xg =8 = (Oxg =8V Oxe =4)) AN (2, =4 =
(O =4V Ozg =9)) AN (o =9 = (Ozq = 9) indicates
that the autonomous vehicle may stay in the same cell or move
to the next cell, and p$*/¢ = =(z, = 4 A x;, = 4) indicates
that the autonomous vehicle and the oncoming vehicle do not
simultaneously occupy cell c4.

o =y, = OO(z, =9) indicating that the autonomous vehicle
is at cell ¢g infinitely often. Here ¢, represents the assumption on
the environment, which we will revisit in Example 5.2. Note that
from the transition system representing the autonomous vehicle,
once the vehicle reaches cg, it will stay at cg forever. As a result,
O(ze = 9) and OO (z, = 9) are equivalent winning conditions.

A game is played as follows: The environment initially chooses an
assignment sx € dom(X) such that sx = 6., and the system chooses
an assignment sy € dom(Y') such that (sx,sy) E 0. A 0. From a
state s, the environment chooses an input sxy € dom(X) such that
(s,8x) |= pe and the system chooses an output sy € dom(Y) such that
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(s,sx,s8y) | ps. Formally, we define a play as a maximal sequence
of states o = sps1 ... such that sg | 6. A 05 and, for every j > 0,

(8j7 8j+1) ): Pe N Ps-

A finite memory control protocol for the system can be identified with
a partial function f : M x dom(V') x dom(X) — M x dom(Y) such
that, for every s € dom(V), every sx € dom(X), and every m € M, if
(s,8x) E pe and f(m,s,sx) = (m/,sy), then (s, sx, sy) = ps. Here, M
is some memory domain with a designated initial value mg € M.

Protocol f is winning for the system starting from state sg if any play
0 = 5081 ... such that, for all i > 0, f(my,si, Siv1lx) = (Mir1, Si+1ly),
either (i) is infinite and satisfies ¢, or (ii) is finite and there is no
assignment sx € dom(X) such that (s, Sx) = pe, where s, is the last
state in 0. We let Wing denote a proposition characterizing the set of
states starting from which there exists a winning strategy for the system.
A game structure is winning for the system if, for all sx € dom(X)
such that sx = 0., there exists sy € dom(Y’) such that (sx,sy) = 0s
and (sx,sy) € Wins.

For certain LTL specifications, p-calculus over game structures can
be employed to characterize the set of winning states of the system.
The description of u-calculus, however, is beyond the scope of this
paper and we refer the reader to (Kozen, 1983; Piterman et al., 2006).
As an example, the p-calculus formula pR(p VO R) characterizes the
set of states from which the system can force the game to eventually
visit p-states, i.e., states that satisfy proposition p. This formula thus
provides the solution for the reachability game previously discussed.
Here, p is the least fixpoint operator in p-calculus, R is known as a
“relational variable” and the operator © is defined roughly similar to
the predecessor operator Presgy.

Piterman et al. (2006) consider a broader class of LTL formula known
as generalized reactivity[1] (GR[1]) which covers LTL formulas of the
form

e=(0O0pI A ... AOCpy,) = (OCq A ... ANOCqy). (5.1)

Roughly, the left hand side of = specifies the assumption on the
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environment behavior whereas the right hand side of = specifies the
desired property of the system. Piterman et al. (2006) show that there
exists a p-calculus formula that characterizes the set of winning states
of the system for GR[1] winning conditions. The formulation allows for
the synthesis problem to be solved based on fixpoint computation in
time proportional to nm|dom(V)|?, where |dom (V)| is the size of the
state space. The proposed synthesis procedure has been implemented
in JTLV (Piterman et al., 2006) and in TuLiP (Wongpiromsarn et al.,
2011b). We refer the reader to (Piterman et al., 2006) for more details,
including a discussion on the expressiveness of GR[1] and an extension
to handle formulas of the form ¢, = ¢ where ¢, and ¢, are any LTL
formulas that can be represented by a deterministic Biichi automaton.
A deterministic Biichi automaton is defined as a non-deterministic
Biichi automaton with additional constraints that [Qy| < 1 and for
any ¢ € Q and 0 € X, (¢,0,¢") € ¢ and (q,0,¢") € ¢ imply that
¢ = ¢". LTL formulas that can be represented by a deterministic Buchi
automaton include those of the form O(p; = <py) where p; and p
are propositions.

Example 5.2. Consider the unprotected left turn scenario described in
Example 5.1. Without any assumption on the oncoming vehicle (i.e.,
ve = True), the game structure G defined in Example 5.1 is not winning
for the system. To see this, consider the case where the oncoming vehicle
starts at co while the autonomous vehicle starts at c¢;. In two steps,
the oncoming vehicle can reach c4 and stay there forever, blocking
the autonomous vehicle from entering ¢4 without violating the safety
requirement. A sufficient assumption to ensure that the game structure
will be winning is that the oncoming vehicle visits cell ¢g infinitely
often, i.e., p. = OO (xp = 6). With this assumption, a possible control
protocol for the autonomous vehicle is to wait until the oncoming vehicle
reaches cs or cg before entering cy.

Remark 5.1. As demonstrated in Example 5.2, the system (e.g., the
autonomous vehicle) has no control over the environment (e.g., the
oncoming vehicle). As a result, the synthesis algorithm needs to take
into account all the possible values of the environment variables (e.g.,
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xp) and ensures that the resulting behavior of the system and the
environment satisfies the specification . In many cases, in order to
obtain a solution, one needs to limit the power of the environment,
which is captured by 0., p., and ¢, in the proposed model.

5.2 Receding Horizon Temporal Logic Planning

The main limitation of the discrete synthesis described in Section 4.2
and Section 5.1 is the state explosion problem. In the worst case, the
entire system’s state space has to be taken into account. For example,
if the system has |V| variables, each can take any of the P possible
values. Then, we must consider as many as P!V states. This type of
computational complexity limits the application of systhesis to relatively
small problems.

Similar computational complexity is also encountered in the area of
constrained optimal control. In the controls domain, an effective and
well-established technique to address this issue is to design and imple-
ment control strategies in a receding horizon manner, i.e., optimize over
a shorter horizon, starting from the currently observed state, imple-
ment the initial control action, move the horizon one step ahead, and
re-optimize. This approach reduces the computational complexity by
essentially solving a sequence of smaller optimization problems, each
with a specific initial condition (as opposed to optimizing with any ini-
tial condition in traditional optimal control). Under certain conditions,
receding horizon control strategies are known to lead to closed-loop
stability (Murray et al., 2003; Mayne et al., 2000; Jadbabaie, 2000). See,
e.g., (Goodwin et al., 2004) for a detailed discussion on constrained
optimal control, including finite horizon optimal control and receding
horizon control.

To partially alleviate the state explosion problem in the synthesis of fi-
nite state automata, Wongpiromsarn et al. (2010b) and Wongpiromsarn
et al. (2012) consider reactive module synthesis with GR[1] specifica-
tions and show that for systems with a certain structure, the synthesis
problem can be solved in a receding horizon fashion, i.e., compute the
plan or strategy over a “shorter” horizon, starting from the current state,
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Figure 5.4: The autonomous driving example where the road is partitioned into 3L
cells where L is the length of the road.

implement the initial portion of the plan, move the horizon one step
ahead, and recompute. This approach essentially reduces the discrete
control protocol synthesis problem into a set of smaller problems. The
size of these smaller problems depends on the horizon length. For ex-
ample, consider the autonomous driving problem where an autonomous
vehicle needs to navigate the road shown in Figure 5.4 starting from cell
C1,1 and with destination C,, UC5 1, UC3 1. Suppose the horizon length
is 1, i.e., the vehicle plans for [ cells ahead. Then, the state space for
each short-horizon problem contains at most 3123 states (whereas the
size of the original problem is 3L23%). Hence, the horizon length should
be made as small as possible, subject to the realizability of the resulting
short-horizon specifications; horizons that are too short typically render
the specifications unrealizable.

Sufficient conditions that ensure that this receding horizon implemen-
tation preserves the desired system-level properties are presented in
(Wongpiromsarn et al., 2010b; Wongpiromsarn et al., 2012). For the
simplicity of the presentation, in this article, we consider the case where
the specification is given by

Y = (Spinit A ‘;Oenv) - (‘;Osafety A @goal)a (52)

where ;i is a proposition characterizing the set of initial states, peny
is an LTL formula characterizing the assumption on the environment
behavior and can be written as the conjunction of a safety formula and
the progress formulas on the left hand side of = in (5.1), Ysafety
is a safety formula and ¢guq is of the form g, = OCq where ¢ is
a proposition characterizing the set of some goal states to be visited
infinitely often.

The receding horizon approach works as follows. First, we organize the
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discrete state space into a partially ordered set ({Wo,..., War}, <o)
such that Wq only contains the goal states and Wy <, W; for all 7 # 0.
The partial order relation <, can be defined based on the notion of
“distance” to the goal states.

Next, we define a map F : {Wq,..., Wy} — {Wo,..., Wy} that
captures the horizon length and satisfies F(W;) <, W; for all i # 0.
Finally, we specify a proposition ® that characterizes the receding
horizon invariant such that any state that satisfies y;ns also satisfies ®.
In other words, ;,;; = @ is a tautology.

With the partially ordered set ({Wo, ..., War}, <), the map F, and
the receding horizon invariant ®, we define a short-horizon specification
U, associated with each W;, for i € {0,..., M} as

Ui = (v € W) APAPeny) = (OPA@safery NV € F(Wy))) (5.3)

where v is the state of the system. The left-hand side of = states that
(a) the initial state is assumed to be in W; and satisfies ®, and (b) the
environment is assumed to satisfy the assumptions @¢y, stated in the
original specification. The right-hand side of = then specifies that
(a) @ holds throughout an execution, (b) the original safety properties

Psafety are satisfied, and (c) the system eventually reaches a state in
F(W;).

According to (5.3), F(W;) essentially defines an intermediate goal for
states in W;. In addition, ® is introduced to ensure that a provably
correct plan exists when the system reaches the end of the current
horizon and needs to compute a new plan. We refer the reader to
(Wongpiromsarn et al., 2012) for a detailed discussion on this receding
horizon framework, including an extension to the case where there are
multiple goals that may be visited in an arbitrary order.

Consider a simple example shown in Figure 5.5 where vy is the goal
state. The partial order may be defined as Wy <, W1 <, ... <, W4 and
the map J may be defined as F(W;) = W;_, for all j > 2 and F(W;) =
F(Wo) = Wy. The key idea of the receding horizon framework is to
synthesize a control protocol for short-horizon specification Wy, which
corresponds to going from v only to a state in F(Wy) = Wa, rather than
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Figure 5.5: A graphical description of the receding horizon framework for a special
case where there is only one goal v1p. v1,..., 110 are the discrete states.

synthesizing a control protocol for going from the initial state 14 to the
goal state v1g in one shot, taking into account all the possible behavior
of the environment. Once a state in W3, i.e., v5 or vg is reached, we then
recompute a protocol for the short-horizon specification W3 for going to
a state in F(Ws) = Wy. This process is then continually repeated. From
the finiteness of the set {Wy, ..., Wy} and its partial order, it can be
shown that this receding horizon implementation of the short-horizon
strategies ensures the correctness of the global specification, provided
that all of the short horizon specifications ¥;, for i € {0,... M} are
realizable (Wongpiromsarn et al., 2012). In this case, the invariant ® is
introduced to rule out the states that render the short horizon problems
unrealizable.

Given a receding horizon invariant ®, the partial order <, as well as
the horizon length defined by the map J can be automated by adding
an additional component, namely the goal generator to the hierarchical
control structure in Figure 5.6. The goal generator works on a graph
G with W;,i € {0,... M} being its states. For each i € {0,... M} and
j € {0,... M}, a transition from W; to W; in G is added if i # j
and the short-horizon specification W; is realizable with F(W;) = W;.
After G is constructed, the goal generator then performs a graph search
to find a path from W;, to which the current state of the system
belongs, to a goal state in Wy. This path essentially defines a sequence
of intermediate goals for each short-horizon problem. The resulting
hierarchical control structure with this implementation of the receding-
horizon framework is shown in Figure 5.6. Figure 5.7 shows the similarity
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Figure 5.6: The hierarchical control structure with the goal generator.

of this hierarchical control structure with that implemented on Alice,
the representative autonomous vehicle in Section 3.4, illustrating that
the techniques presented in this article can be utilized to formalize
and enable automatic design of the navigation protocol stack of an
autonomous system.

Computational Complexity and Completeness: The receding-
horizon implementation reduces the computational complexity by re-
stricting the state space considered in each subproblem; however, it is
not complete. Even if the original specification is realizable, there may
not exist a combination of horizon length, partial order relation, and
receding horizon invariant that render all of the short horizon specifica-
tions realizable. Nevertheless, its successful applications to autonomous
driving problems have been illustrated in Wongpiromsarn et al. (2010a)
and Wongpiromsarn et al. (2012). Examples of these applications are
provided in Figure 5.9.

Remark 5.2. Computation of the horizon length, partial order relation,
and receding horizon invariant requires insights for each problem domain.
Automatic construction of these elements is subject to on-going research.
Wongpiromsarn et al. (2012) describe automatic construction of certain
elements, given other elements, e.g., automatic computation of the
horizon length and partial order relation, given a receding horizon
invariant, and automatic computation of the receding horizon invariant,
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Figure 5.7: The hierarchical control structure with the receding horizon implemen-
tation, showing the similarity with the navigation protocol stack implemented on
Alice. The goal generator has similar functionality as Mission Planner. It determines
a sequence of intermediate goals for the discrete planner such that the original
“long-horizon” specification is satisfied. Its computation relies on the graph G that
encodes the partially ordered set ({Wo,..., Wi}, <,). The discrete planner has
similar functionality as the composition of Traffic Planner and Path Planner. It
computes a discrete plan for the system such that the short-horizon specification
in (5.3) with the next intermediate goal computed by the goal generator is satisfied
based on a finite, abstract model of the physical system. Finally, the continuous
controller deals with the continuous dynamics and constraints to ensure that the
physical system follows the plan computed by the discrete planner. This functionality
is similar to that of Path Follower in Alice.
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Figure 5.8: The road network and its partition for the autonomous vehicle example.
The stars indicate the cells that need to be visited infinitely often.

given a horizon length and partial order relation.

Example 5.3. Consider an autonomous driving problem in an urban-like
environment. We consider the road network shown in Figure 5.8, which
is partitioned into N = 282 cells. Each of these cells may or may not
be occupied by an obstacle. The desired properties include:

e Each of the two cells marked by star needs to be visited infinitely
often.

e No collision is allowed, i.e., the vehicle cannot occupy the same
cell as an obstacle.

e The vehicle stays in the right lane unless there is an obstacle
blocking the lane.

e The vehicle can only proceed through an intersection when the
intersection is clear.

Wongpiromsarn et al. (2012) show that with some mild assumptions
on the environment behavior, there exists a receding-horizon invariant
that ensures that all the short-horizon specifications are realizable with
horizon length 2, i.e, F(W;) = F(W;_2). Hence, the size of the state
space for each short-horizon problem is at most 4608 whereas the size of
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Figure 5.9: Simulation results with (top) no road blockage, (bottom) a road
blockage on the middle road. The corresponding movies can be downloaded from
http://sourceforge.net/projects/tulip-control/.

the state space of the original problem is in the order of 1037. Roughly,
the receding-horizon invariant requires that the vehicle is not surrounded
by obstacles and if the vehicle is not in the travel lane, there must be
an obstacle blocking the lane. Using JTLV, each short-horizon synthesis
problem can be solved in approximately 1.5 seconds on a MacBook with
a 2 GHz Intel Core 2 Duo processor and 4 Gb of memory. Simulation
results when the receding-horizon approach is applied are shown in
Figure 5.9.

5.3 Reactive Synthesis with Maximum Realizability

In conventional synthesis, either an implementation is constructed for
a given specification, or the specification is identified as unrealizable.
Nevertheless, specifications may arise from different design perspectives,
especially in large systems, and if they consist of a large number of
individual requirements, it is easy to encounter specifications that are
unrealizable. In other scenarios, the user may have several alternative
requirements in mind, potentially with some preferences, and want to
know the best realizable combination of them with respect to some
metric. Such cases usually lead to alternating between specification
modification and synthesis procedure and hence, defeating the purpose
of facilitating the design process.
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The possibility of conflict amongst the provided requirements calls
for a more comprehensive synthesis procedure that, in the case of
unrealizability, can generate an implementation that minimally violates
the specifications. In order to define the notion of minimality, one
requires a quantitative metric on the satisfaction of LTL formulas. The
approach we pursue in this section relies on multiple levels of relaxations
of an LTL formula as well as relying on forming a value function that
captures the levels of relaxations applied over the specifications. Then,
the maximum realizability of a set of LTL formulas turns into seeking
an implementation that maximizes the corresponding value.

The backbone of this section’s approach toward maximum realizability is
bounded synthesis, originally introduced by Schewe and Finkbeiner Schewe
and Finkbeiner (2007). Bounded synthesis tackles the computational
complexity of reactive synthesis from LTL properties by restricting
the size of the search space and incrementing the bound on the size
if necessary. More specifically, it searches for a realizable implementa-
tion of the size up to a prespecified bound. If no such implementation
exists, it increments the bound and repeats the search process. Each
instance of bounded search for an implementation can be encoded as
a SAT (or QBF, or SMT) problem (Faymonville et al., 2017). The
algorithm is complete as a theoretical bound on the maximum size of
the implementation exists.

In this section, we formulate maximum realizability as iterative max-
imum satisfiability (MaxSAT) solving (Biere et al., 2009). In each
iteration, we construct a MaxSAT instance that characterizes the exis-
tence of an implementation of size within the given bound that not only
realizes the hard specification but is also optimal with respect to defined
value function for soft specifications. We prove that, for any given finite
set of soft specifications, there exists an optimal implementation with
a bounded size. Consequently, the proposed algorithm that gradually
increases the bound on the implementation size is complete.
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5.3.1 Related Work

Maximum realizability and several closely related problems have at-
tracted significant attention in recent years. Tumova et al. (2013) studied
the problem of planning over a finite horizon with prioritized safety
requirements, where the goal is to synthesize a least-violating control
strategy. Kim et al. (2015) studied a similar problem for the case of
infinite-horizon temporal logic planning. Lahijanian et al. (2015) de-
scribe a method for computing plans for co-safe LTL specifications
that minimize the cost of violating each atomic proposition. These
approaches are developed for the planning setting without an adversar-
ial environment. Lahijanian and Kwiatkowska (2016) considered the
case of probabilistic environments and Lahijanian et al. (2016) stud-
ied the problem of partial satisfaction of guarantees in an unknown
environment, maximizing the number of soft specifications that are
satisfied. Tomita et al. (2017) study a maximum realizability problem
in which the specification is a conjunction of a must LTL specification,
and a number of weighted desirable LTL specifications, formulated as a
mean-payoff optimization.

Two other main research directions related to maximum realizability
are quantitative synthesis and specification debugging. Related to quan-
titative synthesis, the goal in Bloem et al. (2009) is to generate an
implementation that maximizes the value of a mean-payoff objective,
while possibly satisfying some w-regular specification, while in Almagor
et al. (2016) and Tabuada and Neider (2016), the system requirements
are formalized in a multi-valued temporal logic. Alur et al. (2008) stud-
ied an optimal synthesis problem for an ordered sequence of prioritized
w-regular properties, where the classical fixpoint-based game-solving
algorithms are extended to a quantitative setting. In specification de-
bugging there is a lot of research dedicated to finding good explanations
for the unsatisfiability or unrealizability of temporal logic specifica-
tions (Cimatti et al., 2007; Schuppan, 2012; Raman and Kress-Gazit,
2013), and more generally to the analysis of specifications (Cimatti
et al., 2008; Ehlers and Raman, 2014).

We start by an overview of the required concepts to formally state the
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synthesis problem. Then, we proceed to go over definitions of run graph
and annotations to describe the bounded synthesis method and its SAT
encoding. Lastly, we provide a brief description of the MaxSAT problem,
particularly a class of that called partial weighted MaxSAT.

Bounded Synthesis Approach

The run graph of a universal automaton A = (Q,%,9,Qo, F) on a
transition system T = (S, sq, 7) is the unique graph G = (V, F) with a
set of nodes V =5 x () and a set of labeled edges £ C V x ¥ x V such
that ((s,q),0,(s,¢")) € E if and only if (¢,0,q") € 6 and 7(s,0NJ) =
(s',0NO). That is, G is the product of A and 7.

A run graph of a universal Biichi (resp. co-Biichi) automaton is accepting
if every infinite path (so, qo), ($1,41), - - . contains infinitely (resp. finitely)
many occurrences of states ¢; in F'. A transition system 7 is accepted by
a universal automaton A if the unique run graph of A on T is accepting.
We denote with £(A) the set of transition systems accepted by A.

The bounded synthesis approach is based on the fact that for every
LTL formula ¢ one can construct a universal co-Biichi automaton A,
with at most 200¢) states such that T € L(A,) iff T = ¢, for every
transition system I (Kupferman and Vardi, 2005).

An annotation of a transition system T = (5, sp,7) with respect to
a universal co-Biichi automaton A = (Q,3,0,Qo, F) is a function
A:SxQ — NU{L} that maps nodes of the run graph of A on T
to the set N U {L}. Intuitively, such an annotation is valid if every
node (s, q) that is reachable from the node (sg, qo) is annotated with a
natural number, which is an upper bound on the number of rejecting
states visited on any path from (sg, qo) to (s,¢). Valid annotations of
finite-state transition systems correspond to accepting run graphs. An
annotation A is c-bounded if A(s, q) € {0,...,c} U{L} for all s € S and

q € Q.

The synthesis method proposed in (Schewe and Finkbeiner, 2007;
Finkbeiner and Schewe, 2013) employs the following result in order to
reduce the bounded synthesis problem to checking the satisfiability of
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propositional formulas: a transition system T is accepted by a universal
co-Biichi automaton A = (Q, 3,0, Qo, F) iff there exists a (|T] - |F|)-
bounded valid annotation for 7 and A. One can estimate a bound on
the size of the transition system, which allows to reduce the synthesis
problem to its bounded version. Namely, if there exists a transition
system that satisfies an LTL formula ¢, then there exists a transition
system satisfying ¢ with at most (2(suPf(¥)l+logleD)12 states, where ||
denotes the size of the formula ¢ and subf(y) denotes the set of all
subformulas of (.

MaxSAT

Consider a propositional logic formula in conjunctive normal form
(CNF), i.e., a formula that is a conjunction of disjunction of literals,
where a literal is a Boolean variable or its negation and a disjunction
of literals is called a clause. MaxzSAT is the problem of assigning truth
values to a set of Boolean variables such that the number of clauses of
a propositional logic formula in CNF that are made true, is maximized
(Biere et al., 2009). partial weighted MazSAT is a variant of MaxSAT
problem where the clauses are categorized as hard and soft clauses and
each of the soft clauses is associated with a positive numerical weight.
The objective is to find a truth assignment to the variables that not
only makes all the hard clauses true but also maximizes the sum of the
weights of the soft clauses that become true.

We exploit the separation of the hard and soft clauses in partial weighted
MaxSAT to capture the hard and soft constraints that arise in the
encoding of the maximum realizability problem. Furthermore, we design
the weights of the soft clauses in a way to promote the quantitative
objective associated with the conjunction of the given soft specifications.

The procedure proposed by Finkbeiner and Schewe Finkbeiner and
Schewe (2013) provides a SAT encoding of synthesis when the size of the
implementation is bounded. Maximum realizability is an optimization
variant of synthesis while MaxSAT is an optimization variant of SAT.
For a proposed value function, the maximum realizability problem under
a bounded implementation size can be reduced to a partial weighted
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MazSAT instance.

5.3.2 Maximum Realizability

Let Opq,...,0¢, be a set of LTL specifications, where each ¢; is a
safety LTL formula. In order to formalize the maximal satisfaction of
Oe; A...AOey,, we first give a quantitative semantics of formulas of
the form Jep.

Quantitative semantics of safety specifications. For an LTL formula
of the form [Jp and a transition system T, we define the value val(T,dp)
of Oy in T as

(1L1,1) T O,
(1,1,0) ifTH¥EOpand T =00,

( ) if T Qe and T OO and T EOO ¢,
( ) ifTHEOeand T OOe and T (= OO .

The value of (¢ in a transition system T is a vector (vq,v2,v3) € {0,1}3,
where the value (1,1,1) corresponds to the True value in the classical
semantics of LTL. When T = O, the values (1,1,0), (1,0,0) and
(0,0,0) capture the extent to which ¢ holds or not along the traces
of 7. For example, if val(T,0¢) = (1,0,0), then ¢ holds infinitely
often on each trace of T, but there exists a trace of T on which ¢ is
violated infinitely often. If val(T,0¢) = (0,0,0), then, on some trace of
T, © holds for at most finitely many positions. Thus, the lexicographic
ordering on {0,1}? captures the preference of one transition system
over another with respect to the quantitative satisfaction of Jp.

Example 5.4. Suppose that we want to synthesize a transition system
representing a navigation strategy for a robot working at a restaurant.
We require that the robot serves the VIP area infinitely often, formalized
in LTL as O vip__area. We also desire that the robot never enters the
staff’s office, formalized as [J—office. Now, suppose that initially the key
to the VIP area is in the office. Thus, in order to satisfy (< vip__area,
the robot must violate [J—office. A strategy in which the office is entered
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only once, and satisfies O[O0 —office, is preferable to one which enters
the office over and over again, and only satisfies [(J< —office. Thus, we
want to synthesize a strategy T maximizing val(T,d—office).

In order to compare implementations with respect to their satisfaction
of a conjunction of several safety specifications O, A ... AQOy,,, we
will extend the above definition. We first consider the case where the
specifier has not expressed any preference for the individual conjuncts
and later on, extend that to the case with a given priority ordering.
Consider the following example.

Example 5.5. We consider again the restaurant robot, now with two soft
specifications. The soft specification [J(req? — O tablel) requires that
each request by table 1 is served immediately at the next time instance.
Similarly, ((req2 — Otable2), requires the same for table number 2.
Since the robot cannot be at both tables simultaneously, formalized as
the hard specification ((—tablel V —table2), the conjunction of these
requirements is unrealizable. Unless the two tables have priorities, it
is preferable to satisfy each of reql — Qtablel and req2 — QO table2
infinitely often, rather than serve one and the same table all the time.

Quantitative semantics of conjunctions. To capture the idea illus-
trated in Example 5.5, we define a value function, which intuitively
gives higher values to transition systems in which a fewer number of soft
specifications have low values. Formally, let the value of O, A...AO¢,,
in T be

n n n
val(T,0¢p1 A ... AOw,) = (ZW,LZW,%Z%,:&),
i—1 i—1 i—1

where val(T,0¢;) = (vi1,vi2,vi3) for i € {1,...,n}. To compare tran-
sition systems according to these values, we use lexicographic ordering
on {0,...,n}>.

Example 5.6. For the specifications in Example 5.5, the defined value
function assigns value (2,0,0) to a system satisfying (0 (reql —
Otablel) and O (req2 — O table2), but neither of $(reql — O tablel)
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and OGO(reg2 — Otable2). It assigns the smaller value (1,1,1) to an
implementation that gives priority to table 1 and satisfies [J(req! —
O'tablel) but not O<(reg2 — O table2).

According to the definition above, a transition system that satisfies all
soft requirements to some extent is considered better in the lexicographic
ordering than a transition system that satisfies one of them exactly and
violates all the others. We could instead inverse the order of the sums
in the triple, thus giving preference to satisfying some soft specification
exactly, over having some lower level of satisfaction over all of them.
The next example illustrates the differences between the two variations.

Example 5.7. For the two soft specifications from Example 5.5, reversing
the order of the sums in the definition of val(T,0¢; A...AOwp,,) results
in giving the higher value (1,1, 1) to a transition system that satisfies
O(reqg! — Otablel) but not O (reg2 — O table2), and the lower value
(0,0,2) to the one that only guarantees O (reql — Otablel) and
OO(req2 — O table2). The most suitable ordering usually depends on
the specific application.

5.3.3 Problem Formulation

Using the definition of quantitative satisfaction of soft safety specifica-
tions, we now define the maximum realizability problem, which asks to
synthesize a transition system that satisfies a given hard LTL specifica-
tion, and is optimal with respect to the satisfaction of a conjunction of
soft safety specifications.

Bounded maximum realizability problem: Given an LTL formula
@ and formulas Oy, ...,0¢,, where each ¢; is a safety LTL formula,
and a bound b € Ny, the bounded maximum realizability problem asks
to determine if there exists a transition system T with |T| < b such
that T = ¢, and if the answer is positive, to synthesize a transition
system T such that T = ¢, |T| < b and for every transition system
T with 7’ = ¢ and |T’| < b, it holds that val(T,0p; A ... AOy,,) >
val(T,0p1 A ... AOPy)-
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Figure 5.10: Outline of the maximum realizability procedure.

5.3.4 Maximum Realizability as Iterative MaxSAT Solving

We now describe the MaxSAT-based approach to maximum realizability
proposed by Dimitrova et al. (2018). The approach first establishes an
upper bound on the minimal size of an implementation that satisfies
a given LTL specification ¢ and maximizes the satisfaction of a con-
junction of the soft specifications (¢, ...,¢,,, according to the value
function defined in Section 5.3.2. This bound can be used to reduce the
maximum realizability problem to its bounded version, which will be
encoded as a MaxSAT problem.

For each of the possible values of Jp; A. .. A, there is a corresponding
LTL formula that encodes this value in the classical LTL semantics. This
property can be utilized to establish an upper bound on the minimal
optimal implementation.

Theorem 5.1. Given an LTL specification ¢ and soft safety specifica-
tions ey, ..., Oy, if there exists a transition system T |= ¢, then
there exists T7* such that

(1) val(T*,0p; A...AOp,) > val(T,0p; A...AOep,) for all T with

TEe, )
(2) T* = p and |T7| < ((20+sD)1),

where b = max{|subf(pA@IA. .. A )| | Vi 2 ¢; € {Op;, OO p;, OO ¢} }-

The bound above is estimated based on the size of the specifications,
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using a worst-case bound on the size of the corresponding automata.
Given the automata for all the specifications Op;, OOw; and OO ¢;, a
potentially better bound can be estimated based on the sizes of these
automata.

Figure 5.10 gives an overview of the maximum realizability procedure
and the automata constructions it involves. As in the bounded synthesis
approach, we construct a universal co-Biichi automaton A for the hard
specification ¢. For each soft specification (D¢, we construct a pair
of automata corresponding to the relaxations of Oep;. The relaxation
OO w; is treated as in bounded synthesis. For Og; and GO, we
construct a single universal Biichi automaton and define a corresponding
annotation function.

MaxSAT Encoding of Bounded Maximum Realizability

Let A = (Q,X%,0,Q0, F) be a universal co-Biichi automaton for the
LTL formula ¢. For each syntactically safe formula Oyj, j € {1,...,n},
we consider two universal automata: the universal automaton B; =
Relaz,o(Ow;) = (Qj, %, 05, 6, F};) and a universal co-Biichi automaton
A= (@j./ Y, gj, Aé, ﬁ]) for the formula (< ¢;. Given a bound b on the
size of the desired transition system, we encode the bounded maximum
realizability problem as a MaxSAT problem.

A transition system extracted from an optimal satisfying assignment for
the MaxSAT problem is optimal with respect to the value of Jp; A... A
O¢,,, as stated in the following theorem that establishes the correctness
of the encoding.

Theorem 5.2. Let A be a given co-Biichi automaton for ¢, and for
each j € {1,...,n}, let B; = Relaz,o(O;) be the universal automaton
for O¢p;, and let A; be a universal co-Biichi automaton for O ;.
The constraint system for bound b € Ny is satisfiable if and only
if there exists an implementation T with |T| < b such that T = ¢.
Furthermore, from the optimal satisfying assignment to the variables
Tsop,s and 0g4;, One can extract a transition system T such that
for every transition system T with || < b and T = ¢ it holds that
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Figure 5.11: An optimal implementation for Example 5.5.

val(T*, 0@ A ... AOp,) = val(T, 091 A ... AOg,)-

Figure 5.11 shows a transition system extracted from an optimal satis-
fying assignment for Example 5.5 with bound 3 on the implementation
size. The transitions depicted in the figure are defined by the values
of the variables 7., . The outputs of the implementation (omitted
from the figure) are defined by the values of o, ,,. The output in state
s1 when r1 is true is tablel A —table2, and the output in so when 72 is
true is —tablel A table2. For all other combinations of state and input,
the output is —tablel A —table2.

The next proposition establishes the size of the MaxSAT encoding.

Proposition 5.1. Let A be a given co-Biichi automaton for ¢, and for
each j € {1,...,n}, let B; = Relaz,(O¢;) be the universal Biichi
automaton for (J¢;, and let A; be a universal co-Biichi automaton for
00 ¢. The constraint system for bound b € N has weights in O(n?). It
has

O((B?+b-10) - 2" +b- Q| - (1 +log(b- Q)+

> (b-1Qs1(1 +log(b- Q1)) + 3 (b+Q;1(1 + log(b- 1Q51))))

Jj=1 Jj=1
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variables, and its size is
O(IQ - b* -2 (d +log(b-QI)) Z Q2 b? - 2

(dy + s +og(b- Q1)) + 0D (1@ 47 - 271 - (d; + log(b- ;1)) ).

j=1
where
d= Eli)fq |0s.q.01,0' |5 dj = Srqnf[}fq, |‘5§,q,01,q’|’
d; = max | J,q,az,q‘ and rj = max \rej (s,q,q, or)l.

5,401, 5,4,01,q

5.3.5 A case study

Consider a robotic museum guide in a museum shown in Figure 5.12.
The robot has to give a tour of the exhibitions in a specific order, which
constitutes the hard specification. The tour starts at the entrance of
the museum where the robot picks up newly arrived visitors. The main
objective is to take the group through the two exhibitions on that floor
and then return to the entrance to pick up a new group of people.
Preferably, it also avoids certain locations, such as the library, or the
passage when it is occupied. These preferences are encoded in the soft
specifications. In particular, on one hand, the robot can only gain access
to Exhibition 2 by getting a key from the staff’s office. On the other
hand, the robot is asked not to disturb the employees in the office.
There is a library between Exhibition 1 and Exhibition 2 which can be
used to go from one to the other, but it is preferred that visitors do
not enter the library. However, it is also desirable that when the other
passage between these two exhibitions is occupied, the robot does not
go through there.

These specifications cannot be realized in conjunction. Given their pri-
orities, we categorize the requirements into hard and soft specifications,
and synthesize a strategy which satisfies the hard specifications and
maximizes the satisfaction of the soft specifications. We formalize the
problem as follows.
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Figure 5.12: Map of the museum.

Propositions: The set J contains a single Boolean variable occupied
that indicates whether the passage between the two exhibitions is
occupied. The set of output propositions O consists of eight Boolean
variables corresponding to the eight locations on the map: entrance,
corridory, corridora, exhibitiony, exhibitiono, passage, office, library.

The hard specification is the conjunction of the following formulas.

The robot starts at the entrance:

entrance.

At each time step, the robot can occupy only one location:

O /\ 01 — /\ =109

01€0 02€0\{o1}

The admissible actions of the robot are to stay in the current loca-
tion or move to an adjacent one. This leads to eight requirements
describing the map. For instance:

O(corridory — O (corridory V office V exhibitiony)) .

Remark: Due to the requirements above, the robot will always be in
exactly one valid location, i.e., in a transition system that satisfies the
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specifications it is impossible to reach a state where all output variables
are false.

e The robot must infinitely often visit both exhibitions:

O< exhibitiony,
O exhibitions.

e The robot has to respect the order of visits, by starting from
Exhibition 1, going to Exhibition 2 and finishing at the entrance:

O (exhibitiony — O ((—entrance A —exhibition,) U exhibitions)) ,
O (exhibitiony — O ((—exhibitiony A —ezhibitions) U entrance)) ,

O(entrance — O ((—exhibitiony A\ —~entrance) U exhibitiony)) .

¢ The robot does not have access to Exhibition 2 before it visits
the office:
—ezhibitions U office.

The set of soft specifications describes the desirable requirements
that the robot does not enter the office, the library, or a occupied
passage. Formally:

e The robot must not enter the office from corridor 1:

O(corridory — QO -office) .

e The robot must not enter the library from the exhibitions:
O (exhibitiony V exhibitiony — O —library) .
e The robot must not enter the passage from the exhibitions when
it is occupied:
O ((exhibitiony V exhibitions) A O occupied — O —passage) .

The maximum realizability as iterative MaxSAT approach can be ap-
plied to synthesize a policy for the robotic museum guide. Table 5.1
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summarizes the results. With implementation bound of 8, the hard
specification is realizable and a partial satisfaction of soft specifications
is achieved. This strategy always selects the passage to transition from
Exhibition 1 to Exhibition 2 and hence, avoids the library. It also vio-
lates the requirement of not entering the staff’s office, to acquire access
to Exhibition 2. For implementation bound 10 the solver times out.
Notice that strategies with higher values exists, however, they require
larger implementation size.

Table 5.1: Results of applying synthesis with maximum realizability to the robotic
navigation example, with different bounds on implementation size |T|. We report
on the number of variables and clauses in the encoding, the satisfiability of hard
constraints, the value (and bound) of the MaxSAT objective function, the running
times of Spot, Open-WBO, and the time of the solver plus the time for generating
the encoding.

Encoding Solution Time (s)

[T # vars # clauses sat. Ywetghts Spot Open-WBO enc.+solve
2 4051 25366 UNSAT 0 (39) 0.93 0.011 0.12
4 19965 125224 UNSAT 0 (39) 0.93 0.079 0.57
6 45897 289798 UNSAT 0 (39) 0.93 1.75 2.9
8 95617 596430 SAT 31 (39) 0.93 956 959

10 152949 954532 SAT - (39) 0.93 time-out time-out
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Probabilistic Synthesis and Verification

Autonomous systems operate in uncertain, dynamic environments and
involve many sub-components such as perception, localization, planning,
and control. The interaction between all of these components involves
uncertainty. The sensors cannot entirely capture the environment around
the autonomous system and are inherently noisy. Perception and lo-
calization techniques often rely on machine learning, and the outputs
of these techniques involve uncertainty. Overall, the autonomous sys-
tem needs to plan its decisions based on the uncertain output from
perception and localization, which leads to uncertain outcomes.

To model decision-making under uncertainty, we start by describing
the sequential decision-making model given in Figure 6.1. At any time
step t, an agent observes the system’s state s; and makes a decision
ay based on this observation. This action yields two results. First, the
agent receives an immediate reward r; (or a cost.) Second, the system
transitions to a new state s;41 according to a probability distribution
at time step ¢t + 1, which is determined by the choice of action a; in

This section incorporates the results from the following publications (Cubuktepe,
Jansen, Junges, Katoen, and Topcu, 2018; Cubuktepe, Jansen, Junges, Katoen, and
Topcu, 2020b).

89
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Figure 6.1: A representation of a sequential decision-making problem.

A

A

state s;. At the subsequent time steps, the agent faces a similar problem
and needs to make a decision in a potentially different state in the
system and from a potentially different set of actions. We list the key
ingredients in this sequential decision model:

1. A set of states, which describes all possible configurations of the
system.

2. A set of available action in each state, which describes the set of
decisions in the all states of the system.

3. A set of rewards or costs for each state and action, which describes
the objective or performance criterion of the system.

4. A set of transition probabilities to the states in the system for
each state and action, which describes the dynamics of the system.

5. A set of (potentially infinite) decision horizon, which describes
the planning period.

We focus on a particular sequential decision-making model, which is
called Markov decision processes (MDPs) (Puterman, 2014). In MDPs,
the set of available actions, the rewards or costs, and the transition
probabilities depend only on the current state and implemented action
on the system.

Definition 6.1 (Markov Decision Process (MDP)). A Markov decision
process MDP is a tuple M = (S, sinit, Act, P) with a finite set S of states,



91

an initial state s € S, a finite set Act of actions, and a transition
function P: S x Act x S — [0, 1] such that Y, P(s, Act,s’) =1 for
all s € S and Act € Act(s) where Act(s). denotes the set of available
actions in the state s. A cost function c: S x Act — R>( associates cost
to state-action pairs.

MDPs have numerous applications in various domains thanks to their
generality. These applications include but not limited to reinforcement
learning (Jansen et al., 2020; Mason et al., 2017; Lecarpentier and
Rachelson, 2019), robotics (Liu et al., 2018; Omidshafiei et al., 2017;
Ghasemi and Topcu, 2019a), human-robot interaction (Chen et al.,
2020; Akash et al., 2020; Cubuktepe et al., 2020a), aircraft collision
avoidance (Julian et al., 2019), healthcare (Hosseini et al., 2014), disease
management (Radoszycki et al., 2015), finance (Borkar and Jain, 2014),
and digital marketing (Thomas et al., 2017).

The central problem for MDPs is to find a control policy, which deter-
mines what action to take with the current knowledge of the system at
a given time. In other words, the policy is a mapping from the states to
the actions. The typical aim is to optimize a given objective, such as
minimizing expected cost, for example, minimizing the fuel usage of the
system, or maximizing the probability of the successful operation of a
system for a (potentially infinite) horizon. Given an MDP, the problem
of finding an optimal policy can be cast as a dynamic programming
problem, and numerous methods based on value or policy iteration and
reinforcement learning exist to find such a policy.

A related problem of finding a policy in an MDP is called model check-
ing. Given a model that represents the behavior of the system and a
specification that determines the objective, model checking refers to a
set of techniques that systematically check whether the system satisfies
the given specification. For MDPs, a related technique is probabilistic
model checking. Given an MDP and a specification, typically expressed
as a formula in temporal logic, probabilistic model checking refers to
determining whether there exists a policy that satisfies the specifica-
tion. Many related problems such as minimizing the expected cost of
satisfying the specification can also be solved using the probabilistic
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model checking framework.

In Section 6.1, we first consider the probabilistic model checking prob-
lem for MDPs and explain different approaches to solve this problem.
We illustrate this problem with a case study on human-autonomy in-
teractions in Section 6.2. Then, in Section 6.3, we define an extension
of MDPs called parametric MDPs, where functions now give the tran-
sition and reward function of an MDP over parameters. We discuss
a convex-optimization-based technique by Cubuktepe et al. (2018) to
solve the so-called parameter synthesis problem that scales to thousands
of parameters as opposed to a handful of parameters for the existing
methods. Next, in Section 6.4, we consider a setting where the parame-
ters of the transition probabilities and rewards belong to an uncertainty
set parameterized by a collection of random variables. The problem
is to compute the satisfaction probability to satisfy a temporal logic
specification within any MDP that corresponds to a sample from these
unknown distributions. We give a technique by Cubuktepe et al. (2020b)
from so-called scenario optimization to compute high confidence bounds
on the satisfaction probabilities.

6.1 Probabilistic Model Checking in Markov Decision Processes

Probabilistic model checking is a rigorous technique that can precisely
solve the aforementioned control problems, and this rigor provides
guarantees on appropriate behavior for all possible events in the sys-
tem. Probabilistic model checking has been extensively studied for
MDPs (Baier and Katoen, 2008), and mature tools exist for efficient
model checking (Kwiatkowska et al., 2011; Dehnert et al., 2017; Hahn
et al., 2014).

In this section, we first give the formal definitions of concepts related to
MDPs. Then, we give methods for verification and synthesis in MDPs
subject to temporal logic specifications.
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Figure 6.2: An MDP with the state space S = {so, s1, s2, S3, S4, S5, S6, S7}, action
space Act = {a, b} and the initial state sinit = so. The transition function P is given
by (possibly branching edges) in the graph. To avoid clutter, we omit the transitions
with probability 1, and we merge action selections that induce the same transition
probabilities, but differ only in action names.

6.1.1 Preliminaries for Markov Decision Processes

A probability distribution over a finite or countably infinite set X is
a function p: X — [0, 1] € R with Y, cx p(z) = 1. The set of all
distributions on X is denoted by Distr(X).

Definition 6.2 (Policy). To define measures on MDPs, nondeterministic
action choices are resolved by a so-called policy o: S — Act with
o(s) € Act(s). The set of all policies over M is Pol™.

We note that the above definition of a policy is a deterministic mapping
from states to actions. Such policies are called memoryless deterministic
and suffice for MDPs for the performance criteria considered in this
review (Baier and Katoen, 2008).

Applying a policy to an MDP yields an induced Markov chain (MC)

where all nondeterminism is resolved.

Definition 6.3 (Induced Markov Chain (MC)). For MDP M = (S, Sinit, Act, P)
and policy o € Pol™, the MC induced by M and o is M7 = (S, Sinit, Act, P7)



94 Probabilistic Synthesis and Verification

with

P7(s,8') = P(s,0(s),s") for all 5,8 € S.

Intuitively, the transition probabilities in M7 are obtained with respect
to the action choices of the policy.

Definition 6.4 (Occupancy Measure). The occupancy measure z, of a
policy o for an MDP M is defined as

Ty (s, Act) = Zzo Pr(s; = s, Act, = Act|so = Sinit), (6.1)

where Pr? denotes the probability measure induced by o, and s; and
Act; denote the state and action in M at time ¢.

The occupancy measure x,(s, Act) is the expected number of times to
take action Act at state s under the policy o.

For an MC D, the reachability specification ¢ = P<»(QT') asserts that a
set 7' C S of target states is reached with probability at most A € [0, 1].
If ¢ holds for D, we write D = ¢. Accordingly, for an expected cost
specification, 1 = ER<,(0G), D [= 9 holds if and only if the expected
cost, of reaching a set G C S is bounded by k € R. We use standard
measures and definitions as in (Baier and Katoen, 2008, Ch. 10).

Specifications. We consider specifications that are combinations of
reachability specifications and expected cost specifications. A reachability
property ¢ = P<»(0T") with upper probability bound A € [0, 1] C Q
and target set T' C S constrains the probability to finally reach T" from
sinit in M to be at most A. Analogously, expected cost specifications
1) = ER<,(0G) impose an upper bound x € R on the expected cost to
reach goal states G C S with respect to the cost function ¢. Combining
both types of specifications, the intuition is that a set of bad states T
shall only be reached with a certain probability A\ (safety specification)
while the expected cost for reaching a set of goal states G has to be
below k (performance specification). We overload the notation ¢7T to
denote both a reachability specifications and the set of all paths that



6.1. Probabilistic Model Checking in Markov Decision Processes 95

finally reach T" from the initial state s;,;; of an MC. The probability and
the expected cost for reaching T' from s;,,;; are denoted by Pr(¢7T") and
ER(QT), respectively. Hence, Pr(07) < XA and ER(OG) < k express
that the properties P<)(07") and ER<,(0G) respectively are satisfied
by MC D. We note that linear temporal logic (LTL) specifications can
be reduced to reachability and expected cost specifications, and we refer
the reader to (Baier and Katoen, 2008) for a detailed introduction.

An MDP M satisfies both reachability specification ¢ and expected cost
specification 1, if and only if for all policies ¢ it holds that the induced
MC M7 satisfies the properties ¢ and 9, i.e., M? = ¢ and M? = 9. In
our setting, we are also interested in the so-called synthesis problem,
where the aim is to find a policy o such that both specifications are
satisfied (while this does not necessarily hold for all specifications). If
M? = ¢, policy o is said to admit the property ; this is denoted by

o= .

Example 6.1. Consider the MDP in Figure 6.2 with the target set
T = {s¢}. Given a reachability specification ¢ = P<,(0T") with X\ =
0.85, an example policy o; that satisfies the specification is given by
o1(s3) = b,01(s4) = a, and 01(s5) = a, which induces a reachability
probability of 0.895, and is greater than the threshold A. In this example,
the policy o2, which is defined by selecting the same actions as o1
except 03(s5) = b, induces a MC that satisfies the specification with
probability 0.85, and also satisfies the specification, even though it may
not maximize the reachability probability.

6.1.2 Verification and Synthesis in Markov Decision Processes
Subject to Temporal Logic Specifications

In this section, we describe the primal and dual linear programming (LP)
formulations for verification and synthesis problems in MDPs subject
to temporal logic specifications (Puterman, 2014; Forejt et al., 2011).
We first start with the primal LP formulation, which is mainly used in
verification problems. The variables in the primal LP formulation specify
the probability of satisfying the reachability specification ¢ induced
by a maximizing policy, hence it is used in verification problems. We
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then describe the dual LP formulation, which is mainly used in policy
synthesis problems subject to (multiple) temporal logic specifications.
The variables in the dual LP are the expected number of times of taking
action in the states of the MDP, and an optimal policy can also be
obtained from an optimal solution of the dual LP.

Primal LP. The primal LP formulation computes the maximum prob-
ability ps,,,, of reaching the target set T from the initial state s;yi
using Bellman’s principle of optimality. The result of the LP serves as
a certificate for the verification problem (Baier and Katoen, 2008, Ch.
10). The LP reads as follows:

minimize py,,,, (6.2)
subject to
ps=1, VseT,
P(s, Act,s') >0, Vs, s’ € S\ T, VAct € Act(s),

Z P(s, Act,s') =1, Vse& S\ T, VAct € Act(s), (6.5)
s'eS

ps > > P(s, Act,s') - py Vs € S\ T, VAct € Act(s), (6.6)
s'eS

A 2 Psinies (6.7)

where ps are the variables. For s € S, the probability variable ps € [0,1]
represents an upper bound of the probability of reaching target set
T C S. We minimize ps,,,, to compute the maximum probability of
reaching set 7. The constraint (6.7) ensures that the probability of
reaching T is above the threshold A. This constraint is optional for
stating the verification problem, but with that constraint, the LP is
feasible if all policies in the MDP satisfy the reachability specification

®.

The constraints of the primal LP have the following meanings. The
probability of reaching a state in 7" from 7 is set to one (6.3). The con-
straints (6.4) and (6.7) ensure the validity of the transition probabilities
and trivially hold for a valid MDP. For each state s € S\ T" and action
Act € Act(s), the probability induced by the mazimizing policy is a
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lower bound to the probability variables ps (6.6). The constraint (6.7)
ensures that the probability of reaching T is below the threshold A.

Expected cost specifications. The LP in (6.2) - (6.6) considers reach-
ability probabilities. If we have instead an expected cost specification,
we can similarly define the LP as follows:

minimize py, ,, (6.8)
subject to
ps =0, Vse€QG, (6.9)
P(s, Act,s') >0, Vs, s’ € S\ G, VAct € Act(s),
(6.10)
> P(s,Act,s') =1, Vse€ S\ G, VAct € Act(s),

s'eS
6.11)

s'eS 6.12)

(
ps > c(s, Act) + Z P(s, Act,s') - py, Vs € S\ G, VAct € Act(s)
(
(6.13)

K Z psinit'

We have ps € R, as these variables represent the expected cost to reach
G. At G, the expected cost is set to zero (6.9); The constraints (6.10)
and (6.11) are analogous to (6.4) and (6.5). The actual expected cost
for other states is a lower bound to ps (6.12). Finally, ps,,,, is bounded
by the threshold k.

Dual LP. In this section, we recall the dual LP formulation to compute
a policy that maximizes the probability of satisfying a reachability
specification ¢ in an MDP (Puterman, 2014; Forejt et al., 2011).

The variables of the dual LP formulation are following:

o z,(s, Act) € [0,00) for each state s € S\ T and action Act € Act
defines the occupancy measure of a state-action pair for the policy
0, i.e., the expected number of times for taking action Act in state
s.
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o z,(s) € [0,1] for each state s € T defines the probability of
reaching a state s € T'.

maximize ZseT Zo(s) (6.14)
subject to
Z zo(s, Act) Z Z (s', Act, 8)xo (s, Act) + a5, Vs € S\T,
ActeAct s'€S\T ActeAct
(6.15)

Z Z P(s', Act, s)xy(s', Act) + a5, Vs €T, (6.16)
s'€S\T Acte Act

> ey tols) =B (6.17)

where ag = 1if s = sjpir and as = 0if s # Sjp. The constraints in (6.15)
and (6.16) ensure that the expected number of times transitioning to
a state s € S is equal to the expected number of times to take action
Act that transitions to a different state s’ € S. The constraint in (6.17)
ensures that the specification ¢ is satisfied with a probability of at
least 3. We determine the states with probability 0 to reach T" by a
preprocessing step on the underlying graph of the MDP. To ensure that
the variables z,(s) encode the actual probability of reaching a state
s € T, we then set the variables of the states with probability 0 to reach
T to zero.

For any optimal solution z, to the LP in (6.14)—(6.17),

T (s, Act)
/
ZAct’eAct xU(S’ Act )

is an optimal policy, and x, is the occupancy measure of o, see (Puter-
man, 2014) and (Forejt et al., 2011) for details.

o(s, Act) = (6.18)

6.2 A Case Study

We now visit an example from (Feng et al., 2015) as an illustration of
synthesis in MDPs for autonomous systems that interact with human
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Figure 6.3: A road network for UAV ISR missions (adapted from (Humphrey et al.,
2014)).

operators, where a remotely controlled unmanned air vehicle (UAV)
is used to perform intelligence, surveillance, and reconnaissance (ISR)
missions over a road network. Figure 6.3 shows a map of the road
network, which has six surveillance waypoints labeled wy,wa, ..., ws.
Approaching a waypoint from certain angles may be better than others,
e.g.in order to obtain desired look angles on a waypoint target using
an ellipsoidal loiter pattern. Angles of approach are thus discretized
in increments of 45° around each waypoint, resulting in eight angle
points a1, as, . . .,as around each waypoint. Roads connecting waypoints
are discretized into road points ri,79,...,79. Red polygons represent
“restricted operating zones” (ROZs), areas in which flying the UAV
may be dangerous or lead to a higher chance of being detected by an
adversary.

In current practice (Cooke and Pedersen, 2009), at least two human
operators are required for a UAV ISR mission: one to pilot the UAV, and
the other to steer the onboard sensor and interpret the sensor imagery.
Here, we assume the UAV has a certain degree of autonomy that is used
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to fulfill most of the piloting functions, e.g., maintaining loiter patterns
around waypoints, selecting most of the points that comprise the route,
and flying the route. The human operator primarily performs sensor
tasks, e.g.steering the onboard sensor to capture imagery of targets
at waypoints. However, the operator also retains the ability to affect
some of the piloting functions of the UAV. The operator decides how
many loiters to perform at each waypoint, since more loiters may be
needed if the operator is not satisfied with the sensor imagery obtained
on previous loiters. Additionally, waypoints ws, ws, and wg in Figure
6.3 will be designated as checkpoints. At checkpoints, the operator can
directly impact the choices made by the protocol we synthesize by
selecting different roads to be taken between waypoints.

The optimal piloting plan for the UAV varies depending on mission
objectives. Specification patterns for a variety of UAV missions are
presented in (Humphrey et al., 2014), including safety, reachability,
coverage, sequencing of waypoints, etc. Through a few concrete examples,
e.g.surveillance of the road network with minimum fuel consumption,
or flying to certain waypoints while trying to avoid ROZs, the goal is to
synthesize the optimal UAV piloting plan for a specific mission objective,
which would be implemented by the UAV’s onboard automation interface
to control the route. In particular, the results shed light on how the
uncertainties and imperfections of a human operator’s behavior affect
the optimal UAV piloting plan. Specifically, what is the influence of
an operator’s proficiency, workload, and fatigue level on UAV mission
performance? Can we synthesize individualized optimal UAV piloting
plans for different operators? Can the automation provide informative
feedback to operators to assist them in decision-making?

We now introduce the models for the operator, the UAV and the
interactions between the two.

The operator model. We build abstractions of the operator’s possible
behavior as a probabilistic model Mop. Figure 6.4 shows a fragment of
the model, representing the possible behavior at waypoint wg. There is
a non-negative integer variable k£ counting the number of sensor tasks
performed by the operator since the beginning of the mission. The
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Figure 6.4: A fragment of the operator model Mop representing the operator’s
behavior. The red dashed square highlights the common behavior that is repeated
at all waypoints, while the blue solid square indicates specific choices of roads at
waypoint we. The operator’s behavior at other waypoints is omitted from the figure,
indicated by ---

updates “k+-+" represent increasing the value of k£ by one. The purpose
of using k in the model is to measure the operator’s fatigue level. To
obtain a finite state model, let the value of k£ stop increasing once it
reaches a certain threshold 7' (a constant that will be used later in
modeling fatigue).

In general, operators’ workload levels are driven by a number of factors
including mission characteristics, e.g.how many UAVs the operator su-
pervises simultaneously and the phase of the mission. For simplicity and
to reduce the complexity of the models (so that the results discussed
later are easier to interpret), we model the operator’s workload as a
uniform distribution over two levels: low and high. Operators’ accuracy
on vigilance tasks tends to decline with lower levels of proficiency and
higher levels of workload (Boff and Lincoln, 1988). We model an oper-
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ator’s accuracy in steering sensors to capture high resolution imagery
of targets as probability distributions that correlate with proficiency,
workload, and fatigue. Specifically, when the operator’s workload level
is low, the probabilities of capturing good and bad quality imagery
are p;(k) and 1 — p;(k), respectively. Here p;(k) is a function over the
variable k such that p;(k) = p;(0) if £ < T and pi(k) = f-p(0) if & > T,
where p;(0) is the initial parameter value of the accuracy function, 7'
is the fatigue threshold mentioned earlier, and f is a fatigue discount
factor. We define the accuracy function py, (k) for high workload anal-
ogously. Note that p;(k) > pp(k) for any k, modeling the fact that an
operator tends to make more errors under higher levels of workload and
stress. Furthermore, more proficient operators have higher values for
the accuracy parameters p;(0) and pp(0). If the quality of the captured
imagery is bad, the operator would ask the UAV to continue to loiter
at the current waypoint in order to collect more sensor imagery; other-
wise, the operator allows the UAV to fly to another waypoint. At each
waypoint, the operator repeats the aforementioned behavior (the red
dashed square in Figure 6.4).

The operator selects the next road for the UAV at waypoints that are
checkpoints (wg for example), while the UAV controller chooses the
road at any non-checkpoint waypoint. As illustrated in the blue solid
square in Figure 6.4, we model the operator’s choices at wg as following
a certain probability distribution, i.e., picking the roads that connect
to neighboring road points 79, 73, and rg with probabilities p, p’, and
p”, respectively (note that p +p' + p” = 1).

Suppose the operator chooses r3. According to the map shown in Figure
6.3, the next waypoint is ws. For simplicity, the operator’s behavior at
ws is omitted from Figure 6.4.

The UAV model. We model the UAV’s piloting behavior as an MDP
Muyav, which contains 63 states (6 waypoints, 6x8 angle points, and
9 road points). At any waypoint or road point, the UAV can nonde-
terministically fly to a neighboring angle point or road point. These
nondeterministic choices need to be resolved by a strategy. Figure 6.5
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loiter

Figure 6.5: A fragment of the UAV model Myav, representing the UAV loitering
and flying over the waypoints we and ws.

shows a fragment of the UAV model', illustrating how the UAV loiters
and flies over waypoints wg and ws. If the UAV receives a loiter in-
struction from the operator, it loiters at the current waypoint, allowing
the operator to capture more sensor imagery; otherwise, the UAV ran-
domly picks one of the eight angle points ay, - -- , ag to exit wg. Then, a
nondeterministic choice between three roads rs, r3, and rg needs to be
resolved. Suppose 73 is chosen by the operator; then the UAV can fly
to the waypoint ws and approach it via one of the eight angles, or the
UAV can also fly back to the waypoint wg (for clarity, this choice is not
drawn in Figure 6.5).

The operator-UAV interactions. We model interactions between the
operator and the UAV by composing Mop and Myay, which synchro-
nize over common actions loiter and fly, and obtain a product MDP
Mop||Myay, see (Baier and Katoen, 2008) for a formal product model
definition. Synchronization between actions in our models abstracts the
concrete process of interchanging information between the operator and
the UAV, which is assumed via a reliable communication protocol. The
model does not distinguish between “sender” and “receiver”, or outputs
and inputs, of a protocol. We can think of the operator initiating the

LOur models are shown with several distributions associated with an action name
but after composition this can easily be resolved through renaming, and we obtain
MDPs.
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loiter action, which the UAV can receive at any waypoint (see the
self-loops at wg and ws in Figure 6.5). The fly action is initiated as well
by the operator, but we can think of the UAV deciding which flight
direction to take (see the fly transitions at wg in Figure 6.5). Note that
synchronization between actions in the model also assumes that the
operator and UAV synchronize their behaviors temporally.

Since Mop is a discrete time MC and has no nondeterminism, synthesiz-
ing a strategy o for the MDP Mop||Myay yields a strategy o’ for Myay
such that (Mop||Myav)? = Mop||Mﬁ;\V. The strategy o’ operates on
the MDP model Myay of the UAV. For ¢’ to be implemented as a
flight controller for the UAV, it must know which state of Myay the
UAV is in, and hence, from the point of view of the strategy, the model
transitions are triggered by the UAV’s behavior.

Representative analysis results. We present representative results
obtained using the above MDP model.

Consider a UAV surveillance mission that requires covering all six
waypoints in Figure 6.3, where the objective is to complete the mission
as fast as possible. Assume that each loiter takes 10 time units and
flying between any neighboring waypoint and/or road point takes 60
time units. Figure 6.6 illustrates the influence of the operator’s fatigue
threshold 7" and discount factor f on the minimum expected time to
complete the mission. The general trend is that the UAV completes
the mission faster if the operator has a higher fatigue threshold 7' (i.e.,
less likely to get tired) or a larger value of f (i.e., the accuracy is less
discounted). The best UAV performance (i.e., the smallest expected
mission completion time) is achieved when f = 1, that is, there is no
accuracy discount due to fatigue.

The operator’s accuracy in steering sensors and capturing good quality
imagery are affected by proficiency and workload. Figure 6.7 illustrates
the influence of accuracy parameters p;(0) and pp(0) on the minimum
expected time of finishing the mission (i.e., covering all six waypoints).
The trends show that a more proficient operator who has higher values
for p;(0) and pp,(0) can complete the mission faster. In addition, the
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Figure 6.6: The effect of operator fatigue on minimum expected mission completion
time, for different values of the fatigue threshold T" and discount factor f (with fixed
parameters p;(0) = 0.9 and px(0) = 0.8).

more accuracy declines due to high workload, i.e., the larger the gap
between p;(0) and pp,(0), the longer the time needed to complete the
mission.

6.3 Parameter Synthesis for Markov Decision Processes

In this section, we consider parametric Markov decision processes (para-
metric MDPs) whose transitions probabilities are affine functions of a
finite set of parameters. Every fixed set of parameters induce an MDP,
and the goal is to find a good set of parameters such that the induced
MDP satisfies the specifications. We develop an approach that utilizes a
sequential convex programming (SCP) method. The techniques improve
the runtime and scalability by multiple orders of magnitude compared
to black-box SCP by merging ideas from convex optimization and prob-
abilistic model checking. We demonstrate the approaches on a satellite
collision avoidance problem with hundreds of thousands of states and
tens of thousands of parameters and their scalability on a wide range
of commonly used benchmarks.

6.3.1 Parametric Markov Decision Processes

A more general description of expressing the transition and reward
function of an MDP is to define them as functions over parameters
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Figure 6.7: The effect of operator proficiency and workload on minimum expected
mission completion time, for different initial values of the accuracy functions p;(0)
and pp,(0) (with fixed parameters "= 10 and f = 0.7).

whose values are left unspecified (Daws, 2004; Lanotte et al., 2007; Hahn
et al., 2010). Such parametric MDPs describe uncountable sets of MDPs.
A well-defined instantiation of the parameters yields an instantiated,
parameter-free MDP. For a given finite-state parametric MDP, the
parameter synthesis problem is to compute a parameter instantiation
such that the instantiated MDP satisfies a specification. We can also
think the parameter synthesis problem as a design problem, where the
objective is to compute an optimal design as a function of the parameters
of the MDP. This design problem can also include computing an optimal
policy for the parametric MDP.

Traditionally, approaches for solving the parameter synthesis prob-
lems have been built around the notion of abstracting the parametric
model into a solution function. The solution function is the proba-
bility of satisfying the temporal logic specification as a function of
the model parameters (Daws, 2004; Hahn et al., 2010; Dehnert et al.,
2015; Filieri et al., 2016). The solution function can be exploited by
the probabilistic model checking tools PARAM (Hahn et al., 2010),
PRISM (Kwiatkowska et al., 2011) and Storm (Dehnert et al., 2017)
to solve the parameter synthesis problem. However, this function is
exponentially large in the parameters, and solving the problem is again
exponential in the number of parameters, making the whole approach
doubly exponential (Baier et al., 2020). Consequently, these approaches
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typically can handle millions of states but only a handful of parameters.
Moreover, these approaches require a fixed policy or has to introduce a
parameter for every state/action-pair in the MDP.

Orthogonally, Quatmann et al. (2016) address an alternative parameter
synthesis problem which focuses on proving the absence of parameter
instantiations. The method iteratively solves simple stochastic games.
Spel et al. (2019) consider proving that the parameters behave mono-
tonically, allowing for faster sampling-based approaches. However, this
method is limited to a few parameters. A recent survey on parameter
synthesis in Markov models can be found in (Junges et al., 2019).

Further variations of parameter synthesis, e.g., consider statistical guar-
antees for parameter synthesis, often with some prior on the parameter
values (Bortolussi and Silvetti, 2018; Calinescu et al., 2016). These
approaches cannot provide the absolute guarantees on an answer that
the methods in this dissertation provide.

Parametric MDPs generalize interval models (Sen et al., 2006; Chen
et al., 2013a). Such interval models have also been considered with
convex uncertainties (Puggelli et al., 2013; Hahn et al., 2017; Wu and
Koutsoukos, 2008; Chen et al., 2013a). However, the resulting problems
with interval models are easier to solve due to the lack of dependencies
(or couplings) between parameters in different states.

6.3.2 Preliminaries for Parametric Markov Decision Processes

Let V. ={z1,...,2,} be a finite set of variables over the real numbers
R. The set of multivariate polynomials over V' is Q[V]. An instantiation
for V is a function v: V — R.

Definition 6.5 ((Affine) parametric Markov decision process (pMDP)).
A pMDP is a tuple My = (S, sinit, Act, V,P) with a finite set S of
states, an initial state s, € S, a finite set Act of actions, a finite
set V of real-valued variables (parameters) and a transition function
: S x Act x S — Q[V]. A pMDP is affine if (s, Act,s’) is an affine
function of V for every s,s’ € S and Act € Act.
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For s € S, Act(s) = {Act € Act | 35’ € S. (s, Act, §') # 0} is the set of
enabled actions at s. Without loss of generality, we require Act(s) # ()
for s € S. If |Act(s)| = 1 for all s € S, M is a parametric discrete-time
Markov chain (pMC). MDPs can be equipped with a state—action cost
function c: S x Act — Rxg.

A pMDP M is a Markov decision process (MDP) if the transition func-
tion yields well-defined probability distributions, i.e., : § X Act x S —
[0,1] and > ycg(s, Act,s’) =1 forall s € S and Act € Act(s). Applying
an instantiation v: V — R to a pMDP M yields an instantiated MDP
M|[v] by replacing each f € Q[V] in M by f[v]. An instantiation v is
well-defined for M if the resulting model M[v] is an MDP.

6.3.3 Formal Problem Statement for Parameter Synthesis

In this section, we state the parameter synthesis problem, which is to
compute a parameter instantiation such that the instantiated MDP
satisfies the given temporal logic specification. We then discuss the
nonlinear program formulation of the parameter synthesis problem,
which forms the basis of the considered solution method.

Problem 6.1 (Parameter Synthesis Problem). Given a parametric MDP
My = (S, sinit, Act, V, P), and a reachability specification ¢ = P<(0T),
compute a well-defined instantiation v: V — R for My such that
My [v] = ¢

In words, we seek for an instantiation of the parameters that satisfies ¢
for all possible strategies in the instantiated MDP. We show necessary
adaptions for an expected cost specification 1) = ER<.(0T') later.

For a given well-defined instantiation v, Problem 6.1 can be solved
by verifying whether My [v] = ¢. The standard formulation uses a
linear program (LP) to minimize the probability ps, ., of reaching
the target set T' from the initial state s;,;; while ensuring that this
probability is realizable under any strategy (Baier and Katoen, 2008,
Ch. 10). The straightforward extension of this approach to pMDPs
to compute a satisfiable instantiation v yields the following nonlinear
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program (NLP) (Cubuktepe et al., 2017; Cubuktepe et al., 2018): with
the variables p; for s € S, and the parameter variables in V in the
transition function (s, Act, s’) for s, € S and Act € Act(s):

minimize p;,,,, (6.19)
subject to
VseT, ps=1, (6.20)
Vs,s' € S\ T, VAct € Act(s), (s,Act,s') >0, (6.21)
Vs e S\ T, VAct € Act(s), Z (s, Act,s') =1, (6.22)
s'eS
A> Do (6.23)
Vs € S\ T, VAct € Act(s), ps> Z (s, Act,s) - pgr. (6.24)
s'eS

For s € S, the probability variable ps € [0, 1] represents an upper bound
of the probability of reaching target set 7' C S. The parameters in
the set V' enter the NLP as part of the functions from Q[V] in the
transition function . The constraint (6.23) ensures that the probability
of reaching T is below the threshold A. This constraint is optional for
stating the problem, but we use the constraint for finding a parameter
instantiation that satisfies the specification ¢. We minimize p,, ,, to
assign probability variables their minimal values with respect to the
parameters V.

The probability of reaching a state in 7' from T is set to one (6.20).
The constraints (6.21) and (6.22) ensure well-defined transition prob-
abilities. Recall that (s, Act, s’) is an affine function in V. Therefore,
the constraints (6.21) and (6.22) only depend on the parameters in V/,
and they are affine in the parameters. Constraint (6.23) is optional but
necessary later, and ensures that the probability of reaching T is below
the threshold A. For each state s € S\ T and action Act € Act(s),
the probability induced by the mazimizing scheduler is a lower bound
to the probability variables ps (6.24). To assign probability variables
to their minimal values with respect to the parameters in V, py, .. is
minimized in the objective (6.19). We state the correctness of the NLP
in Proposition 6.1.
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Proposition 6.1. The NLP in (6.19) — (6.24) computes the minimal
probability of reaching T' under a mazimizing strategy, and an instanti-
ation v is feasible to the NLP if and only if My [v] = .

Proof. The NLP in (6.19) — (6.24) is an extension of the LP in (Baier
and Katoen, 2008, Theorem 10.105). We refer to (Junges, 2020, Theorem
4.20) for a formal proof. O

Remark 6.1 (Graph-Preserving Instantiations). In the LP formulation
for MDPs, states with probability 0 to reach 1" are determined via a
preprocessing on the underlying graph, and their probability variables
are set to zero to ensure that the variables encode the actual reachability
probabilities. This preprocessing requires the underlying graph of the
parametric MDP to be preserved under any valuation of the parameters.
Thus, as in (Hahn et al., 2010; Dehnert et al., 2015), we consider only
graph-preserving valuations. Concretely, we exclude valuations v with
flv] =0 for f € (s, Act,s’) for all s,s' € S and Act € Act. We replace
the set of constraints (6.21) by

Vs,s' € S.VAct € Act(s), (s, Act,s) > graphs (6.25)

where egrapn > 0 is a small constant.

We demonstrate the constraints for the NLP in (6.19) — (6.25) for a
parametric MC by Example 6.2.

Example 6.2. Consider the parametric Markov chain in Fig. 6.8 with
parameter set V = {v}, initial state so, and target set 7" = {s3}. Let
A be an arbitrary constant. The NLP in (6.26) — (6.32) minimizes the
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Figure 6.8: A parametric MC with a single parameter v.

probability of reaching s3 from the initial state:

minimize p, (6.26)
subject to  pg, = 1, (6.27)
A 2 Psos (6.28)
Dsy = U Dsys (6.29)
Ps; = (1= v) - psy, (6.30)
Psy = U Dss, (6.31)
1 — Egraph = U 2 Egraph- (6.32)

Expected Cost Specifications. The NLP in (6.19) — (6.25) considers
reachability probabilities. If we have instead an expected cost specifica-
tion ¢ = ER<x(0G), we replace (6.20), (6.23), and (6.24) in the NLP
by the following constraints:

Vs e G, ps =0, (6.33)
Vs € S\ G, VAct € Act(s), ps > c(s, Act) + E (s, Act,s') - pg,
s'eS
(6.34)
52 o (6.35)

We have ps € R, as these variables represent the expected cost to reach
G. At G, the expected cost is set to zero (6.33), and the actual expected
cost for other states is a lower bound to ps (6.34). Finally, ps,,,, is
bounded by the threshold «.

For an affine parametric MDP My, the functions in the resulting NLP
(6.19) — (6.23) for parametric MDP synthesis are affine in V. However,
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the functions in the constraints (6.24) are quadratic, as a result of mul-
tiplying affine functions occurring in with the probability variables py .
The problem in (6.19) — (6.24) is a quadratically constrained quadratic
program (QCQP) (Boyd and Vandenberghe, 2004) and is generally
nonconvex (Cubuktepe et al., 2018), and computationally hard to solve.
In the rest of the chapter, we discuss two methods to obtain a locally
optimal solution to the problem in (6.19) — (6.24).

6.3.4 Sequential Convex Programming

In this section, we discuss a method by Cubuktepe et al. (2021a) for
solving the parameter synthesis problem, which is a SCP approach with
trust region constraints (Yuan, 2015; Mao et al., 2018; Chen et al.,
2013b). The SCP method computes a locally optimal solution by itera-
tively approximating a nonconvex optimization problem. The resulting
approximate convex problem is an LP, and the convexified functions are
no longer upper bounds of the original functions. Therefore, approxima-
tion may generate optimal solutions in the convexified problem that are
infeasible in the original problem. Therefore, we include trust regions
and an additional model checking step to ensure that the new solution
improves the objective. The trust regions ensure that the resulting LP
accurately approximates the nonconvex QCQP. If the new solution
indeed improves the objective, we accept and update the assignment of
the variables and enlarge the trust region. Otherwise, we contract the
trust region, and do not update the assignment of the variables.

Constructing the Affine Approximation

We now explain in detail how we linearize the bilinear functions in the
constraints in (6.24). Recall that this constraint appears as

Vs e S\ T, VAct € Act(s), ps> Z (s, Act,s') - pgr.
s'eS

Similar to the previous seciton, consider the bilinear function in the
above constraint

h(s, Act,s") = (s, Act,s') - ps (6.36)



6.3. Parameter Synthesis for Markov Decision Processes 113

and let

(s, Act,s') =2d-y+c, and py = 2, (6.37)

where y is the parameter variable, z is the probability, and c,d are
constants, similar to the previous chapter. We then convexify h(s, Act, s)
as

ha(s, Act,s') i=2d - (§+2) +9- (z—2)+ 2 (y =) + -z, (6.38)

where (7, 2) are any assignments to y and z. Note that the function
ha(s, Act, s') is affine in the parameter variable y and the probability
variable z.

After the linearization, the set of constraints (6.24) is replaced by the
convex constraints

Vs € S\ T.VAct € Act(s), ps> Z ha(s, Act,s").
s'eS

Remark 6.2. If the parametric MDP is not affine, i.e., (s, Act, s’) is not
affine in V for every s, s’ € S and Act € Act(s), then h(s, Act, s') will not
be a quadratic function in V' and probability variables p’. In this case,
we can compute hy(s, Act, s’) by computing a first order approximation
with respect to V and py around the previous assignment.

We use penalty variables kg for all s € S\ T to all linearized constraints,
ensuring that they are always feasible. We minimize the sum of penalty
variables to minimize the violation of the constraints in (6.45) However,
the functions in these constraints do not over-approximate the functions
in the original constraints. Therefore, a feasible solution to the linearized
problem is potentially infeasible to the parameter synthesis problem.
To make sure that the linearized problem accurately approximates the
parameter synthesis problem, we use a trust region contraint around
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the previous parameter instantiations. The resulting LP is:

minimize ps, , +7 Z ks (6.39)
VseS\T
subject to
VseT, ps=1, (6.40)
Vs,s' € S\ T,VAct € Act(s), (s, Act,s") > egraph, (6.41)
Vs € S,VAct € Act(s), Z (s, Act,s') =1, (6.42)
s'es
A2 Do, (6.43)
Vs € S\ T,VAct € Act(s), ks+ ps> Z ha(s, Act,s"), (6.44)
s'E\T
Vse S\ T, ks >0, (6.45)
Vs € S\T, ps/s' <ps<ps-?, (6.46
Vs, s’ € S\ T,VAct € Act(s),
(s,Act,s") /50 <(s, Act,s") <1(s, Act,s") - &', (6.47)

where 7 > 0 is a constant, and s, Act,s’) and ps denotes the pre-
vious assignment for the parameter and probability variables. The
constraints (6.46)—(6.47) are the trust region constraints. 6 > 0 is the
size of the trust region, and ¢’ = 6 + 1. We demonstrate the linearization
in Example 6.3.

Example 6.3. Recall the parametric Markov Chain (MC) in Fig. 6.8 and
the QCQP from Example 6.2. After linearizing around an assignment
for 9, Psy, Ds,» and Ps,, the resulting LP with a trust region radius 6 > 0
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is given by

minimize ps, + T 22: ks,
=0
subject to
Pss = 1, A > psgs
kso +Pso = 0 Psy + Dsy - (v —0) + 0+ (ps; — Psy )
ks, + Dsy > Psy — 0 Doy — Psy - (0 —0) =D+ (Dsy — Psy)s
ks, + Psy = 0 Psg + Psg - (v —0) + 0 (Psg — Psg)
ksg > 0,ks; >0, ks, >0,
Dso/8 > psy > Psy 0, Po1 /8" > psy > Ps, - 0,
Poa /8! > Psy > Pay 0, Ofs' >0 >0 6.

We detail our SCP method in Fig. 6.9. We initialize the method with a
guess for the parameters v, for the probability variables p, and the trust
region 6 > 0. Then, we solve the LP (6.39)-(6.46) that is linearized
around Vv and probability variables 6.

After obtaining an instantiation to the parameters v, we model check the
instantiated MDP My [v] to obtain the values of probability variables
res(p) for the instantiation v. If the instantiated MDP indeed satisfies
the specification, we return the instantiation v. Otherwise, we check
whether the probability of reaching the target set g is larger than the
previous best value B . If B is larger than 3 , we update the values for the
probability and the parameter variables, and enlarge the trust region.
Else, we reduce the size of the trust region, and resolve the problem
that is linearized around v and p. This procedure is repeated until a
parameter instantiation that satisfies the specification is found, or the
value of § is smaller than w > 0. The intuition behind enlarging the trust
region is as follows: If the instantiation to the parameters v increases
the probability of reaching the target set 5 over the previous solution,
then we conclude that the linearization is accurate. Consequently, the
SCP method may take a larger step in the next iteration for faster
convergence in practice.

For expected cost specifications, the resulting algorithm is similar,
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except, we accept the parameter instantiation if the expected cost is
reduced compared to the previous iteration, and initialize 8 with a large
constant. For various numerical results about the SCP Method, we refer
the reader to (Cubuktepe et al., 2018).

initial

guess vV, P, P,
B <+ 0

update: Vv « v,
p< P,
6067,
B« B

Model check
the MDP:
MVl E¢

(G )—{wwame s <o)
no
I_) return

v

Figure 6.9: SCP with model checking in the loop. The NLP (6.19)-(6.24) is
linearized around v, p. Then, we solve the LP (6.39)—(6.46) an optimal solution
to the parameter values, denoted by v. After each iteration, we model check the
instantiated MDP M][v] to determine whether the specification is satisfied. If the
instantiated MDP satisfies the specification, we return the parameter instantiation.
Otherwise, we check whether the reachability probability, denoted by £, is improved
compared to the previous iteration, denoted by B If the probability is improved,
we accept this step, update the assignment for the parameters and the probability
variables, and increase the size of the trust region § by 7. Otherwise, we do not
update the assignment, and decrease the size of the trust region.

6.4 Scenario-Based Verification in Uncertain Markov Decision Pro-
cesses

In this chapter, we consider Markov decision processes (MDPs) in
which the transition probabilities and rewards belong to an uncertainty
set parametrized by a collection of random variables. The probability
distributions for these random parameters are unknown. The problem
is to compute the probability to satisfy a temporal logic specification
within any MDP that corresponds to a sample from these unknown
distributions. In general, this problem is undecidable, and we resort
to techniques from so-called scenario optimization. Based on a finite
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number of samples of the uncertain parameters, each of which induces
an MDP, the proposed method estimates the probability of satisfying
the specification by solving a finite-dimensional convex optimization
problem. The number of samples required to obtain a high confidence on
this estimate is independent from the number of states and the number
of random parameters. Experiments on a large set of benchmarks show
that a few thousand samples suffice to obtain high-quality confidence
bounds with a high probability.

There are several approaches for verification of uncertain MDPs. Bacci
et al. (2019) consider the analysis of Markov models in the presence
of uncertain rewards, utilizing statistical methods to reason about the
probability of a parametric MDP satisfying an expected cost specifi-
cation. This approach is restricted to reward parameters and does not
explicitly compute confidence bounds. Llerena et al. (2018) compute
bounds on the long-run probability of satisfying a specification with
probabilistic uncertainty for Markov chains. Other related techniques
include multi-objective model checking to maximize the average per-
formance with probabilistic uncertainty sets (Scheftelowitsch et al.,
2017), sampling-based methods which minimize the regret with uncer-
tainty sets (Ahmed et al., 2017), and Bayesian reasoning to compute
parameter values that satisfy a metric temporal logic specification on a
continuous-time Markov chain (Bortolussi and Silvetti, 2018). Arming
et al. (2018) consider a variant of the problem in this dissertation where
the probability distribution of the uncertainty sets is assumed to be
known. This work formulates the policy synthesis problem as a partially
observable Markov decision process (POMDP) synthesis problem and
use off-the-shelf point-based POMDP methods (Pineau et al., 2003;
Cassandra et al., 1997). The work in (Puggelli et al., 2013; Wolff et al.,
2012) consider the verification of MDPs with convex uncertainties. How-
ever, the uncertainty sets for different states in an MDP are restricted to
be independent, which does not hold in the considered problem setting
where we have parameter dependencies.

Uncertainties in MDPs have received quite some attention in the ar-
tificial intelligence and planning literatures. Interval MDPs (Puggelli
et al., 2013; Givan et al., 2000) use probability intervals in the transi-
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tion probabilities. Dynamic programming, robust value iteration and
robust policy iteration have been developed for MDPs with uncertain
transition probabilities whose parameters are statistically independent,
also referred to as rectangular, to find a policy ensuring the highest
expected total reward at a given confidence level (Nilim and El Ghaoui,
2005; Wolff et al., 2012). The work in (Wiesemann et al., 2013) relaxes
this independence assumption a bit and determines a policy that sat-
isfies a given performance with a pre-defined confidence provided an
observation history of the MDP is given by using conic programming.
State-of-the art exact methods can handle models of up to a few hun-
dred of states (Ho and Petrik, 2018). Multi-model MDPs (Steimle et al.,
2018) treat distributions over probability and cost parameters and aim
at finding a single policy maximizing a weighted value function. For
deterministic policies this problem is NP-hard, and it is PSPACE-hard
for history-dependent policies.

6.4.1 Uncertain Markov Decision Processes

We now introduce the setting that we study in this chapter. Specifically,
we use parameters to define the uncertainty in the transition probabil-
ities and cost functions of an MDP. Each random parameter follows
an unknown probability distribution from which we can sample the
parameter values.

Definition 6.6 (Uncertain Markov decision process (uMDP)). An uMDP
Mp (uMDP) is a tuple Mp = (P,P) where P is a parametric MDP
(pMDP), and PP is a probability distribution over the parameter space
Vp. If P is a pMC, then we call Mp a uMC.

Intuitively, a uMDP is a pMDP with an associated distribution over
possible (graph-preserving) parameter instantiations. That is, a realiza-
tion of P yields a concrete MDP P[u] with the respective instantiation
u € Vp (and P(u) > 0).

Remark 6.3. In a uMDP, we distinguish controllable and uncontrol-
lable parameters. The uncontrollable parameters follow the probability
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distribution P. In contrast, we can actively instantiate the controllable
parameters. In the following, we specifically allow cost parameters to
be controllable.

Definition 6.7 (Satisfaction Probability). Let Mp = (P,P) be a uMDP
and ¢ a specification. The (weighted) satisfaction probability of ¢ is

F(Mp, ) = /V Io(u) dP(u)

with u € Vp and I,: Vp — {0,1} is the indicator for ¢, i.e. I,(u) =1
iff Plu] = .

Note that I, is measurable, as Vp is the finite union of semi-algebraic
sets (Basu et al., 2010). Moreover, we have that F(Mp, ¢) € [0, 1] and
F(Mg, p) + F(Mz, ~¢) = 1.

Example 6.4. Consider the uMC in the left figure of Figure 6.10 with
the uncontrollable parameter set V' = {v}, initial state sg, target set
T = {s3} and an uniform distribution for the parameter v over the
interval [0, 1]. We plot the probability of satisfying the specification
@ =P<\(0T) as a function of v in the right figure of Figure 6.10. We
also show the satisfying region and its complementary as green and
red regions. The satisfying region is given by the union of the intervals
[0.13,0.525] and [0.89, 1.0], and the satisfaction probability F'(Mp, )
is 0.395 + 0.11 = 0.505.

6.4.2 Formal Problem Statement

In this section, we state the problem that we study in this chapter. We
seek to compute the satisfaction probability of the parameter space for a
reachability or an expected cost specification ¢ on an uMDP. Intuitively,
we seek the probability that a randomly sampled instantiation from the
parameter space induces an MDP which satisfies ¢. Formally: Given
an uncertain MDP Mp = (P,P), and a specification ¢, compute the
satisfaction probability F'(Mp, ¢). However, as mentioned, the problem
is in general undecidable (Arming et al., 2018). Therefore, we consider
an approximation of computing the satisfaction probability:
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v

Figure 6.10: Left: A uMC with parameter v. Right: The probability of satisfying
the reachability specification ¢ = P<»(0T) versus the value of the parameter v.
Intervals that satisfy ¢ are green, intervals that violate ¢ are red.

Problem 6.2. Given an uncertain MDP Mp = (P, P), a reachability
specification ¢, = P<)(0T), and a tolerance probability v, compute a
confidence probability a,, such that F(Mp,¢,) > 1 — v holds with a
probability of at least 1 — «y,.

We illustrate the problem statement with the following example.

Example 6.5. For a UAV motion planning example, consider the ques-
tion “What is the probability on a given day such that there exists
a policy for the UAV to successfully finish the mission.” A possible
result is, e.g., 0.78 (confidence probability: 0.99) and 0.81 (confidence
probability: 0.95). Then, with a confidence probability of 0.99, the actual
satisfaction probability is indeed greater than 0.78, and with a (slightly
lower) confidence probability of 0.95 it is greater than 0.81. Such a
result shows that it is quite likely that the UAV will finish the mission
successfully with a probability that is at least 81%.
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6.4.3 Scenario-Based Verification

In this section, we present an approach by Cubuktepe et al. (2020b) to
solve Problem 6.2, that is, to approximate the satisfaction probability
with respect to a specification. We first consider the robust verifica-
tion problem that accounts for all possible values in the uncertainty
set, potentially leading to a very pessimistic result. This problem can
be formulated as a semi-infinite convex optimization problem, which
is NP-hard (Wiesemann et al., 2013). Here, we exploit the structure
of this problem, which includes finitely many variables but infinitely
many constraints. The presented approach is based on scenario opti-
mization (Calafiore and Campi, 2006; Campi and Garatti, 2008): We
sample a finite number of parameter values and restrict the semi-infinite
problem to these samples. The resulting finite-dimensional convex opti-
mization problem can be solved efficiently (Boyd and Vandenberghe,
2004). Based on the solution of the optimization problem, we compute
high confidence in the estimate of the satisfaction probability. The esti-
mate also generalizes to the samples from the probability distribution
that are not in the sample set.

Remark 6.4. For ease of presentation, we focus on uncertain Markov
chains (uncertain MCs). The results and methods generalize to uncertain
MDPs (uncertain MDPs).

We first develop the main results for the simple setting where all sampled
instantiated MCs from the parameter space Vo satisfy the reachability
specification ¢,. This assumption does not imply that all instantiated
MCs satisty ¢,: The sample set does not contain an MC that violates
wr even though there exists such an MC in the parameter space. In
Chapter 6.4.5, we drop this assumption and allow sampled points in
Vp to violate ¢,.. This completes our treatment of Problem 6.2.

6.4.4 Restriction to Satisfying Samples

In this section, we assume that all instantiated MCs satisfy ¢,. We then
generalize the presented method to any values of v. We want to check
if an uncertain MC D satisfies a reachability specification ¢ = P<,(0T)
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for all instantiations in the sample set U. For each instantiation, we
can formulate a linear program (LP) that is feasible if and only if ¢, is
satisfied (Puterman, 2014). For a subset U C Vi of the parameter space
Vp of the uncertain MC D, we can then write the conjunction of these
LPs. We assume that |U]| is finite and sampled from the probability
distribution P over the parameter space V.

For each instantiation v € U, we introduce a set of linear constraints
that are parametrized by u. We assume that each sample has a unique
index. We use the following variables. For s € S and u € U, the
variable p¥ € [0, 1] represents the probability of reaching the target
set T' C S from state s. The variable 7 represents an upper bound on
the probability of satisfying ¢, for all instantiations in U. Note that
T is a variable in our formulation, whereas A is the threshold of the
reachability specification, and thus constant. The set =307 represents
the set of states which cannot reach the target set 7. The probability of
reaching 7' from these states is zero, and the set =307 does not change
for different graph-preserving instantiations (Hahn et al., 2010). The set
=307 can be found in polynomial time in the size of an uncertain MC
by using standard graph-based search algorithms (Baier and Katoen,
2008). We solve the following LP £,(U), which is parametrized by each
instantiation v in U,

minimize 7 (6.48)

subject to Vu € U,

Doy < T (6.49)

P <A (6.50)

VseT, pi=1, (6.51)

Vs € =307, py =0, (6.52)

Vs e S\ (TTU-30T), ps= Z P(s,8)[u] - p. (6.53)

s'eS
The objective (6.48) minimizes the maximal probability that can be

achieved by all MCs induced by U. The constraint (6.49) represents
an upper bound on the reachability probability for all instantiations.
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We minimize the upper bound to compute the maximal probability of
satisfying ¢, for all instantiated MCs. The constraint (6.50) ensures
that the probability of reaching 7" from the initial state s;,;; is below the
threshold A. The constraint (6.51) sets the probability to reach a state in
T from T to 1. The constraint (6.52) sets the reachability probabilities
from the states in =307 to zero. The constraint (6.53) computes the
probability of satisfying the specification for each non-target state s € S
in the standard way.

There are infinitely many constraints in the semi-infinite LP £, (Vo)
as the cardinality of (Vp) is infinite. To obtain a LP with finitely
many constraints, we instantiate the parameters u € Vg by sampling
the probability distribution P. Then, for a given violation probability
v € (0,1), we compute a solution that violates the constraints in the
LP £,(Vp) with a tolerance probability that is not larger than v. We
first give some properties of the LP £,.(U). For proofs in this section,
we refer the reader to (Cubuktepe et al., 2020b).

Theorem 1. Let uncertain MC D and the sample sets U C Vp with
K = |U| > 2. Assume for all u € U, D[u] = ¢. For a given tolerance
probability v € [0,1), let the associated confidence probability

o, = 21: <K> (1— )50, (6.54)

i=0 \'*
Then, with a probability of at least 1 — «,,, we have

F(Dp,pr) >1—v. (6.55)

Remark 6.5 (Independence to Model Size). The confidence probability in
Theorem 1 is in fact independent from the number of states, transitions,
or random parameters of the uncertain MC. From a practical perspective,
the number of samples that are needed for a certain confidence does
not depend on the model size.

Finally, Theorem 1 asserts that with a probability of at least 1 — ay,
the next sampled point from Vp will satisfy the specification with
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a probability of at least 1 — v. Note that «a, is the tail probability
of a binomial distribution. It converges exponentially rapidly to 0 in
|U| (Campi and Garatti, 2008).

6.4.5 Satisfaction Probability by Treating Violating Samples

Theorem 1 assumes that all sampled points, that is, the induced MCs,
satisfy the specification ¢,. This is a severe assumption in general. To
lift this assumption, we consider the discarding approach from (Campi
and Garatti, 2011). Specifically, after sampling a set of instantiations
U from Vp according to the probability distribution P, we remove the
constraints for the MCs that violate the specification ¢, from the LP.
We construct the set R = U \ Q, where Q denotes the set of samples
that induce MCs violating the specification ¢,. Therefore, the set R
denotes the set of sampled MCs that satisfy the specification ¢,.. We
then solve the LP £,(R)

minimize T

subject to Vu € R, (6.56)

(6.49) — (6.53),

where for u € R and s € S, p¥ gives the probability of satisfying the
reachability specification of the instantiated MC D[u] at state s. The
other constraints in the optimization problem in LP £, (R) are identical
to the LP £,(U). We give the main result of this section.

Theorem 2. Let uncertain MC D and the sample sets U, Q C Vo, with
K = |U|] > 2 and L = |Q|. For a given tolerance probability v € [0, 1),
the associated confidence probability is

o = <Lz 1) LZH <K> (1— )K=y (6.57)

i
i=0
Then, with a probability of at least 1 — «,,, we have

F(Dp,pr) >1—v. (6.58)

6.4.6 Building Scenario-Based Algorithms

The question remains how we leverage the theoretical results to compute
an estimate on the satisfaction probability to solve the problem in this



6.4. Scenario-Based Verification in Uncertain Markov Decision Proced&s

section. For instance, let v be a violation probability and U the sample
set. Then, we can use Theorem 2 to compute the confidence probability
ay, by using the discarding approach from (Campi and Garatti, 2011).
Similarly, for a the sample set U and a threshold on the confidence
probability «, we do a bisection on v. Specifically, we repeatedly apply
Theorem 2 for different values of v € (0, 1), to see if the corresponding
confidence probability c,, is below the threshold. We then approximate
the lower and upper bounds on v.

The correctness of the approach is based on scenario-based optimization.
However, it also applies to an obtained solution by any procedure (Campi
et al., 2018). For instance, for any obtained value for the controlled
parameters, we can construct a scenario program by sampling from
random parameters. We can then apply Theorem 2 to compute the
confidence probability «, or the violation probability v.

Generalization to Uncertain MDPs. Recall that we want to compute
the satisfaction probability for an uncertain MDP, which is the prob-
ability that for any sampled MDP, we are able to synthesize a policy
that satisfies the specification ¢,. To generalize the presented results to
uncertain MDPs, we can modify the constraint (6.53) in the LP £,.(U)
as

Vs e S\ (T'U-30T), VAct € Act(s), ps < Z P(s, Act, s")[u] - p.
s'eS

(6.59)

The constraints (6.49)-(6.52) and (6.59) assert that, for each non-target
state s € S and action Act € Act(s), the probability induced by the
minimizing policy is an upper bound to the probability variables p¥.
Recall that, the reachability specification ¢, is satisfied if and only if the
reachability probability at the initial state induced by the minimizing
policy is less than X. Then, our theoretical results apply to the uncertain
MDPs.
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Figure 6.11: An example of a 3D UAV benchmark with obstacles and a target area.

6.4.7 Case Study: UAV Motion Planning

We implemented the approach from Chapter 6.4.3 using the model
checker Storm (Dehnert et al., 2017) to construct and analyze sam-
ples of MDPs. To solve the scenario optimization problems with cost
parameters, we used the SCS solver (O’Donoghue et al., 2016). All com-
putations ran on a computer with 8 2.2 GHz cores, and 32 GB of RAM.
We note that further benchmarks evaluating scenario-based algorithms
with a varying number of samples in (Cubuktepe et al., 2020c; Badings
et al., 2022). Specifically, the obtained confidence probabilities decrease
exponentially rapidly with an increasing number of samples.

In the benchmark, we consider a UAV motion planning example to
model a realistic problem with a high number of random parameters.
We model the problem as an uncertain MDP, where the parameters
represent how the weather conditions affect the movement of the UAV,
and how the weather may change. In particular, different wind conditions
induce specific satisfaction probabilities. We assume that the planning
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area is a certain valley where we have historic weather data which
provide distributions over parameter values. The mission of the UAV
is to transport a payload to a specific location and return safely to its
initial position. The problem is to compute the satisfaction probability,
that is, the probability that for any sampled MDP for this scenario we
are able to synthesize a UAV policy that satisfies the specification.

We model the problem as follows: States encode the position of the UAV,
the current weather situation, and the general wind direction in the
valley. Parameters describe how the weather affects the position of the
UAV for different zones in the valley, and how the weather/wind may
change during the day. Fig. 6.11 shows an example environment with
zones to avoid (red) and a target zone (green). We define four different
weather conditions that each induce certain probability distributions
over the eight different wind directions. The parameters of the model
determine the probabilities of transitioning between different weather
and wind conditions at each time step. The specification is to reach
the target zone safely with a probability of at least 0.9. The number of
states in our example is 266 880, and the number of parameters is 2 500.

For the distributions over parameter values, that is, over weather con-
ditions, we consider the following cases. First, we assume a uniform
distribution over the different weather conditions in each zone. Second,
the probability for a weather condition inducing a wind direction that
pushes the UAV into the positive y-direction is five times more likely
than others. Similarly, in the third case, it is five times more likely to
push the UAV into the negative x-direction. We depict some example
trajectories of the UAV for three different conditions in Fig. 6.11. The
trajectory given by the blue dashed line represents the expected trajec-
tory for the first case, taking a direct route to reach the target area.
Similarly, the trajectories given by the black dotted and solid green
lines represent the expected trajectories for the second and third cases.
For the second case, we observe that the UAV tries to avoid to get
closer to the obstacles in x direction as the wind may push the UAV to
the obstacles. For the third case, the UAV avoids the obstacle at the
bottom and then reaches the target area.
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We sample 1000 parameters for each case and approximate the maximal
satisfaction probability with a confidence probability of at least 1 — a,
with oy, = 1075, The highest satisfaction probability is given by the first
weather condition with 0.86, and the other conditions have a satisfaction
probability of 0.78 and 0.75, showing that it may be harder to navigate
around the obstacles with non-uniform probability distributions. The
average time to compute the satisfaction probabilities is 1341 seconds.

Finally, we introduce costs to a 2-dimensional example, where hitting an
obstacle causes (1) a cost of 100 and (2) the UAV to return to the initial
position. Specifically, we introduce cost parameters for transitions that
steer the UAV towards = or y-directions. We minimize the maximal
possible expected cost (under all parameter values) to reach the target
location. The specification asserts that the resulting expected cost
should be less than 20.

We uniformly sample 1000 parameter values for weather conditions
and note that the UAV policies favor on average transitioning to y-
direction more compared to the z-direction to minimize the cost while
ensuring that the probability of hitting an obstacle is minimized. The
average expected cost of the induced MDPs is 7.41 and the satisfaction
probability is 0.71. The solving time for this example is 2274 seconds.
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Dealing with Information Limitations

Methods for the synthesis and verification of policies in Markov decision
processes (MDPs), parametric Markov decision processs (pMDPs), and
uncertain Markov decision processs (uMDPs) assume that the agent
is able to observe the underlying state of the system. However, many
sensor or communication limitations may lead to imperfect or limited
observations of the system’s state in practice. In this section, we study
the problem of sequential decision-making under uncertainty when the
decision-making agent has only limited observational capabilities.

There exist several formalisms for modeling decision-making under
imperfect perception. Bai et al. (2014) model an integrated perception
and planning problem using partially observable Markov decision process
(POMDP)s. In Ghasemi and Topcu (2019b), the authors propose a
perception-aware point-based POMDP solver. In Benenson et al. (2006),
the authors integrate simultaneous localization and mapping (SLAM)
with a partial motion planner for autonomous navigation. Fu et al.
(2016) consider a robot with a temporal logic task in a probabilistic
map obtained from a semantic SLAM.

We begin this section by presenting the POMDP, a commonly used

129
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model for decision-making under partial observability. We then present
uncertain partially observable Markov decision processs (WuPOMDPs)—
in addition to having imperfect information about the current state,
the transition and observation functions belong to uncertainty sets.
Following the exposition of Cubuktepe et al. (2021b), we present an
algorithm for the synthesis of policies that robustly satisfy specifications
in uncertain POMDPs. We then present an application of uPOMDPs
through a spacecraft motion planning case study. Finally, as an example
of policy synthesis under an alternate model of partial observability we
present an algorithm, and corresponding case studies, for the setting
in which an MDP model of the system is available, but the semantic
labeling of the environment is only partially known.

7.1 Partially Observable Markov Decision Processes

POMDPs generalize MDPs by introducing an observation function,
which defines a probability distribution over a set of possible observations
given the current state of the system.

Definition 7.1 (POMDP). A POMDP is a tuple Mz = (M, Z, O), with
M the underlying MDP of My, a finite set of observations Z, and
observation function O: S — Z.

For brevity, we use so-called deterministic observation functions which
may be derived from the more standard stochastic observation functions
O: S — Distr(Z) via a (polynomial) reduction (Chatterjee et al., 2016).
For POMDPs, observation-action sequences are based on a finite path
TE Paths%% of the underlying MDP M and have the form: 7, = O(w) =

O(so) Acto O(s1) Ach, . -O(sp,). The set of all finite observation-action
sequences for a POMDP My is ObsSeq%;Z .

While the agent acts within the environment, it encounters certain
observations, according to which it can infer the probability of the
system being in a certain state. Technically, this belief b is a distribution
b € Distr(S), such that b(s) describes the probability of being in state
seSs.
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Recall that a policy in an MDP is a mapping from states to actions. A
policy in a POMDP is a mapping from the observations (or a history
of observations) to the actions.

The problem of computing an optimal policy for POMDPs is unde-
cidable (Madani et al., 1999). To achieve computational tractability,
policies are often restricted to finite memory by computing a finite state
controller (FSC) (Meuleau et al., 1999; Amato et al., 2010), which is
an NP-hard problem (Vlassis et al., 2012).

Definition 7.2 (Finite-Memory Policies.). An observation-based policy
0: (Z x Act)* x Z — Distr(Act) for a POMDP maps a trace, i.e., a
sequence of observations and actions, to a distribution over actions.
An FSC consists of a finite set of memory states and two functions.
The action mapping v(n,0) takes an FSC memory state n and an
observation O, and returns a distribution over POMDP actions. To
change a memory state, the memory update n(n,O, Act) returns a
distribution over memory states and depends on the action Act selected
by 7. An FSC induces an observation-based policy by following a joint
execution of these functions upon a trace of the POMDP. An FSC is
memoryless if there is a single memory state; memoryless FSCs encode
policies o: Z — Distr(Act).

We start with a simple 5-state reachability example to highlight the
utility of FSCs as finite-memory POMDP policies.

Example 7.1. Consider the POMDP in Figure 7.1. The POMDP has
three observations (blue, s3 and s4), where observation blue is received
upon visiting sg, s1, and so. That is, the agent is unable to distinguish
between these states. The specification is ¢ = Pr>(.9(< s3);the agent
should reach state s3 with at least probability 0.9. We define the 1-FSC
Ajq, illustrated in Figure 7.1b, with one memory node 0:

up with probability p,
a(0, blue) =
down with probability 1 — p,

5(0,0,Act) =0 VO € Z, Act € Act.
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up
Al

17

down
(a) 5-State POMDP (b) 1-FSC
up
down
(c) 2-FSC

Figure 7.1: (a) POMDP for Example 7.1 with three observations {blue, s3, s4} with
(b) 1-FSC and (c) 2-FSC. Both FSCs are defined for observing “blue” and subsequent
action choices that may result in a change of memory node for the 2-FSC.

A 2-FSC with two memory nodes (0 and 1), see Figure 7.1c, allows
for greater expressivity, i.e. the policy can base its decision on larger
observation sequences.

With this memory structure, we can create an FSC As that ensures the
satisfaction of ¢:

(0, blue) up with probability 1,
a(0, blue) =
down with probability 0,

(1, blue) up with probability 0,
a(l,blue) =
down with probability 1,

0(0, blue, up) =1,
d(1, blue, down) = 0.

While POMDPs provide an expressive modeling framework for par-
tially observable settings, in many cases the transition and observation
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functions of the model may not be known exactly. In these cases, it
is necessary to also model our uncertainty in the POMDP model. We
discuss such uPOMDPs models in the following section.

7.2 Uncertain Partially Observable Markov Decision Processes

By combining uMDPs and POMDPs, we obtain uPOMDPs—in addition
to imperfect information pertaining to the current state, the transition
and observation functions belong to uncertainty sets.

Definition 7.3 (UPOMDP). An uPOMDP is a tuple Mz = (S, Sinit,
Act, I, P, Z, O, r) with a finite set S of states, an initial state s;p € S,
a finite set Act of actions, a set I of probability intervals, an uncertain
transition function P: S x Act x S — 1, a finite set Z of observations,

an uncertain observation function O: S x Z — 1, and a reward function
R: S x Act — Rxp.

Nominal probabilities are point intervals where the upper and lower
bounds coincide. If the probabilities of all transitions and observations
are nominal, the model is a (nominal) POMDP. Without a loss of
generality, we may express any uPOMDP as a set of nominal POMDPs
that vary only in their transition functions. For a transition function
P:Sx Act x S — R, we write P € P if for all s,s' € S and a € Act
we have P(s, Act,s’) € P(s, Act,s’) and P(s, Act,-) is a probability
distribution over S. Finally, we note that a fully observable uPOMDP
where each state has unique observations is an uMDP.

Existing approaches for policy synthesis in uPOMDPs rely on dynamic
programming (Wolff et al., 2012), convex optimization (Wolff et al.,
2012), or value iteration (Wolff et al., 2012). While the complexity of
solving a standard MDP is polynomial in the number of states and
actions, solving an uMDP is NP-hard in general (Wiesemann et al.,
2013). The existing approaches for uPOMDPs rely on sampling (Burns
and Brock, 2007) or robust value iteration (Osogami, 2015) on the belief
space of the uPOMDP. The policy synthesis algorithm presented by
Suilen et al. (2020) is based on convex optimization and searches over
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memoryless policies. However, their resulting optimization problems are
exponentially larger than ours, and they only consider memoryless poli-
cies. Meanwhile, Burns and Brock, 2007 utilize sampling-based methods
and Osogami, 2015 employ a robust value iteration on the belief space
of the uPOMDP. Ahmadi et al., 2018 use sum-of-squares optimization
to verify uncertain POMDPs against temporal logic specifications. Itoh
and Nakamura, 2007 assume distributions over the probability values
of the uncertainty set. Finally, Chamie and Mostafa, 2018 consider a
convexified belief space and computes a policy that is robust over this
space.

7.2.1 Synthesizing Robust Finite-State Controllers for Uncertain
Partially Observable Markov Decision Processes

Following the presentation of Cubuktepe et al., 2021b, we now present
an algorithm for the synthesis of finite-state controllers that robustly
satisfy specifications in uPOMDPs.

Problem Formulation

We begin by introducing observation-based policies, which are similar
to memoryless FSCs for POMDPs. We then introduce specifications for
POMDPs, followed by the notion of robustly satisfying a specification
in a uPOMDP.

Definition 7.4 (Observation-based policy). An observation-based policy
o: Z — Distr(Act) for an uPOMDP maps observations to distributions
over actions. Note that such a policy is referred to as memoryless and
randomized. More general types of policies take an (in)finite sequence of
observations and actions into account. We use 227 to denote the set
of observation-based strategies for Mz p. Applying o € yMz2 to Mgz p
resolves all choices and partial observability and results in an induced
(uncertain) Markov chain M9 5.

Specifications in POMDPs. We constrain the undiscounted expected
reward (the value) of a policy for a POMDP using specifications: For
a POMDP My and a set of goal states G the specification ER<,(0G)
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states that the expected reward before reaching G is at least . For
brevity, we require that the POMDP has no dead-ends, i.e., that under
every policy, we eventually reach G. Reachability specifications to a
subset of G and discounted rewards are special cases (Puterman, 2014).

Robustly Satisfying Specifications in uPOMDPs. A policy o satisfies
a specification ¢ = ER<,(0G), if the expected reward to reach G
induced by o is at least k. POMDP My »[P] denotes the instantiated
uPOMDP My » with a fixed transition function P € P. A policy robustly
satisfies ¢ for the uPOMDP My 5, if it does so for all Mz p[P] with
P € P. Thus, a (robust) policy for uPOMDPs accounts for all possible
instantiations P € P.

Intuitively, to robustly satisfy a specification in a uPOMDP, we require a
policy that satisfies the specification for all POMDP instantiations from
My p[P]. If we have several (expected cost or reachability) specifications
Oy -y Pm, We write 0 = 1 A ... A @, where o robustly satisfies all
specifications. Note that general temporal logic constraints can be
reduced to reachability specifications (Baier and Katoen, 2008; Bouton
et al., 2020), therefore we omit a detailed introduction to the underlying
logic.

Assumption 7.1. For the correctness of the presented method, we
require the lower bounds of the intervals to be strictly larger than zero,
that is, an instantiation cannot “eliminate” transitions. Put differently,
either a transition exists in all instantiations of the uMDP, or in
none. That assumption is standard and, for instance, also employed
in (Wiesemann et al., 2013). Moreover, the problem statement would
be different and theoretically harder to solve, see (Winkler et al., 2019).
We allow the upper and lower bound of an interval to be the same,
resulting in nominal transition probabilities.

Problem 7.1 (Robust Synthesis for Uncertain POMDPs). Given an un-
certain uPOMDP Mz and an expected reward specification ¢ =
ER<;(0G), compute an FSC that yields an observation-based policy o
which robustly satisfies ¢ for My p.
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Optimization Problem for Uncertain Partially Observable Markov
Decision Processes

We now reformulate the above problem statement as a semi-infinite non-
convex optimization problem, with finitely many variables but infinitely
many constraints.

To do so, we begin by adopting a small extension of (PO)MDPs in
which only a subset of the actions are available in any given state,
i.e., the transition function should be interpreted as a partial function.
We denote the set of actions at state s by Act(s). We ensure that any
states that share an observation also share the set of available actions.
Moreover, we translate the observation function to be deterministic
without uncertainty, i.e., of the form O: S — Z, by expanding the state
space (Chatterjee et al., 2016).

Definition 7.5 (Binary/Simple uncertain POMDP). An uncertain POMDP
is binary, if |Act(s)| < 2 for all s € S. A binary uncertain POMDP is
simple if for all s € S, the following is true:

|Act(s)| = 2 implies VAct € Act(s).3s' € S, P(s, Act,s") =1,

Simple uPOMDPs differentiate the states with action choices and
uncertain outcomes. All uPOMDPs can be transformed into simple
uPOMDPs. We refer to (Junges et al., 2018) for a transformation. This
transformation preserves the optimal expected reward of an uPOMDP.
We denote S, by the states with action choices, and S, the states with
uncertain outcomes. We now give an example to a simple and binary
POMDP in Figure 7.2.

We now introduce the optimization problem with the nonnegative reward
variables {rs > 0| s € S} denoting the expected reward before reaching
goal set G from state s, and positive variables {os 4ct > 0] s € S, Act €
Act(s)} denoting the probability of taking an action Act in a state s
for the policy. Note that we only consider policies where for all states s
and actions Act it holds that o, 4, > 0, such that applying the policy
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(a) 5-State POMDP

Figure 7.2: A simple and binary POMDP with four observations {blue, green, sz, s4}.
This POMDP is simple as the states {so, s1,s2} only have the action choices in
{up, down}, and the actions have deterministic outcomes. On the other hand, the
states {ss, s4} only have uncertain outcomes with probabilistic transitions belonging
to intervals.

to the uncertain POMDP does not change the underlying graph.

maximize 71,

~—

(7.1
subject to g, > kK, (7.2)
Vse G, rs=0, (7.3)
Vs €S, Z Os Act = 1, (7.4)
ActeAct(s)
Vs,s' € S,VAct € Act(s), O(s) =O0(s') = 0s.4ct =0 Act, (7.5)
Vs € Su.VP P, rg < R(s)+ > P(s,s) ry. (7.6)
s'eS
Vs € Sa, 15 < Z os,Act - (R(s, Act) + Z P(s, Act,s') - ry),
ActeAct(s) s'eS

(7.7)

The objective is to maximize the expected reward 7, at the initial
state. The constraint (7.3) encodes the specification requirement and
assigns the expected reward to 0 in the states of goal set G. We ensure
that the policy is a valid probability distribution in each state by (7.4).
Next, (7.5) ensures that the policy is observation-based. We encode the
computation of expected rewards for states with uncertain outcomes
by (7.6) and with action choices by (7.7). We omit denoting the unique
actions in the transition function P(s,s’) and reward function R(s)
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n (7.6) for states with uncertain outcomes.

Let us consider some properties of the optimization problem. First,
the functions in (7.7) are quadratic. Essentially, the policy variables
0s,Act are multiplied with the reward variables r,. In general, these
constraints are nonconvex, and we later linearize them. Second, the
values of the transition probabilities P(s, s’) for s, s’ € S, in (7.6) belong
to continuous intervals. Therefore, there are infinitely many constraints
over a finite set of reward variables. These constraints are similar to the
LP formulation for MDPs (Puterman, 2014), and are affine; there are
no policy variables. We refer the reader to (Cubuktepe et al., 2021b)
for a solution approach of the optimization problem.

7.2.2 Spacecraft Motion Planning Case Study

We evaluate the sequential convex programming (SCP)-based approach
from (Cubuktepe et al., 2021b) for solving the uPOMDP problem on a
case study based on a satellite motion planning problem.

This case study considers the robust spacecraft motion planning system
presented by Frey et al. (2017) and Hobbs and Feron (2020). The
spacecraft orbits the earth along a set of predefined natural motion
trajectories (NMTs) (Kim et al., 2007). While the spacecraft follows
its current NMT, it does not consume fuel. Upon an imminent close
encounter with other objects in space, the spacecraft may be directed to
switch into a nearby NMT at the cost of a certain fuel usage. We consider
two objectives: (1) To maximize the probability of avoiding a close
encounter with other objects and (2) to minimize the fuel consumption,
both within successfully finishing an orbiting cycle. Uncertainty enters
the problem in the form of potential sensing and actuating errors.
In particular, there is uncertainty about the spacecraft position, the
location of other objects in the current orbit, and the failure rate of
switching to a nearby NMT.

Modeling Spacecraft Motion Planning Using uPOMDPs. We encode
the problem as an uPOMDP with two-dimensional state variables for the
NMT n € {1,...,36}, and the (discretized) time index i € {1,...,1}
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Figure 7.3: Computational effort versus the performance of the different policies
for the spacecraft motion planning case study. Top: Obtained probability of avoiding
close encounters between the spacecraft and other objects in the orbit. Middle: The
performance of policies synthesizes using a nominal POMDP model, applied to the
nominal model (solid lines) and to the uPOMDP model (dashed lines). Bottom: The
obtained expected cost of successfully finishing an orbit.

for a fixed NMT. We use different values of resolution I in the ex-
amples. Every combination of (n,i) defines an associated point in the
3-dimensional space. The transition model is built as follows. In each
state, there are two types of actions, (1) staying in the current NMT,
which increments the time index by 1, and (2) switching to a different
NMT if two locations are close to each other. More precisely, we allow a
transfer between two points in space defined by (n, ) and (n/,') if the
distance between the two associated points in space is less than 250km.
A switching action may fail. In particular, the spacecraft may transfer
to an unintended nearby orbit. The observation model contains 1440
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Figure 7.4: We show the obtained trajectory from a policy in red that finishes an
orbit around the origin. (a) Trajectory from a memoryless policy. (b) Trajectory
from policy with 5 memory states. We highlight the initial location by a big red
circle. We depict the other objects by black spheres, and all NMTs that were used as
a part of the trajectory in blue, green, or yellow.

different observations of the current locations of the orbit, which give
partial information about the current NMT and time index in orbit.
Specifically, for each NMT, we can only observe the location up to an
accuracy of 40 different locations in each orbit. The points that are
close to each other have the same observation.

Experimental Setup and Algorithm Variants. We consider three
benchmarks. S1 is our standard model with a discretized trajectory of
I = 200 time indices. S2 denotes an extension of S1 where the considered
policy is an FSC with 5 memory states. S3 uses a higher resolution
(I = 600). Finally, S4 is an extension of S3, where the policy is an FSC
with 2 memory states. In all models, we use an uncertain probability of
switching into an intended orbit and correctly locating the objects, given
by the intervals [0.50,0.95]. The four benchmarks have approximately
3.6e4, 3.5e5, 1.1eb and 3.4eb states as well as 6.5e4, 7.0e5, 2.0e5 and 6.7eb
transitions, respectively. In this example, the objective is to maximize
the probability of avoiding a close encounter with objects in the orbit
while successfully finishing a cycle.
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Memory Yields the Best Policies. Fig. 7.3 (top) shows the conver-
gence of the reachability probabilities for each model, specifically the
probability versus the runtime in seconds. First, we observe that after
20 minutes of computation, using larger POMDPs that have a higher
resolution or memory in the policy yields superior policies. Second, the
policy with memory is superior to the policy without memory. Finally,
we observe that larger models indeed require more time per iteration,
which means that on the smaller uncertain POMDP S1, the algorithm
converges faster to its optimum.

Comparing the Policy Performances. Fig. 7.4 shows a comparison of
policies and depicts the resulting spacecraft trajectories. In particular,
we show the trajectories from two different policies, a memoryless policy
(one memory state) in Fig. 7.4a—computed on S1—and from a policy
with finite memory (five memory states) in Fig. 7.4b— computed on S2.
The trajectory from the memoryless policy switches its orbit 17 times,
whereas the trajectory from the finite-memory policy switches its orbit
only 4 times. Additionally, the average length of the trajectory with the
finite-memory policy is 188, compared to 375 for the memoryless one.
These results demonstrate the utility of finite-memory to improve the
reachability probability and to minimize the number of switches.

Robust Policies are Indeed More Robust. We demonstrate the utility
of computing robust policies against uncertainty in Fig. 7.3 (middle).
Intuitively, we compute policies on nominal models and use them on
uncertain models. We give results on the nominal transition probabilities
of the four considered models. The performance of the policies on the
nominal models has solid lines, and the performance of the policies on the
uncertain models has dashed lines. Note that when we apply the policies
synthesized using nominal models on the uPOMDP, they perform
significantly worse and fail to satisfy the objective in each case. The
results clearly demonstrate the trade-offs between computing policies for
nominal and uncertain problems. In each case, the computation time for
the problem with uncertainty is roughly an order of magnitude larger.
Yet, the resulting policies are better: we observe that the probability
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of a close encounter with another object increases up to 60 percentage
points, if we do not consider the uncertainty in the model.

Expected Energy Consumption. Finally, we consider an example
where there is a cost for switching orbits. In this example we only
consider models S1 and S2, which both have discretized trajectories with
I = 200 time indices. The objective is to minimize the cost of successfully
finishing a cycle in orbit. We obtain the cost of each switching action
according to the parameters in (Frey et al., 2017). Additionally, we
define the cost of a close encounter to be 10000/N-s, a much higher cost
than all possible switching actions. We reduce the uncertainty in the
model by setting the previously mentioned intervals for these models to
[0.90, 0.95]. In particular, the worst-case probability to correctly detect
objects is now higher than before, reducing the probability of close
encounters with those objects. Fig. 7.3 shows the convergence of the
costs for each model. The costs of the resulting policies for models S1
and S2 are 178 N-s and 153N-s, respectively. Similar to the previous
example, the results demonstrate the utility of finite-memory policies
in reducing fuel costs in spacecraft motion planning problems.

7.3 Task-Oriented Active Perception and Planning

In the previous subsections we presented FSCs for POMDPs, as well
as an approach to compute robust policies for uPOMDPs. In general,
POMDPs provide a useful modeling framework for policy synthesis when
perception and planning are closely coupled. However, in some cases the
uncertainty stemming from perception-based information limitations
must be decoupled from the the uncertainty that arises from the stochas-
ticity of the underlying system dynamics. For instance, in the case of
probabilistic knowledge over atomic propositions, a POMDPs model
would require an exponential expansion in its state space, resulting in a
computationally intractable problem.

Following the presentation of Ghasemi et al. (2020), we now present a
model and an accompanying algorithm that is able to separately reason
about these two sources of uncertainty. More specifically, we consider
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an agent that is assigned a temporal logic task in an environment that
is only partially known. We represent the environment using semantic
labeling, i.e., with a set of state properties (labels) captured by atomic
propositions over which the agent holds a probabilistic belief that is
updated as new sensory measurements arrive. The goal is to design
a joint perception and planning strategy for the agent that realizes
the task with high probability. We present a planning strategy that
takes the semantic uncertainties into account and by doing so provides
probabilistic guarantees on the task success. Furthermore, as new data
arrives, the belief over the atomic propositions evolves and the planning
strategy adapts accordingly.

Temporal logic planning under imperfect perception has been studied
from different perspectives. Jones et al. (2013) proposed a new type
of logic, called distribution temporal logic, to enable expressions over
belief-based predicates. In Ding et al. (2011), the authors considered
an agent moving over a graph where the truth values of the predicates
over the nodes depend on known probabilities. There is also a family of
solutions that rely on sampling methods (Vasile and Belta, 2013). In
another related work, Silva et al. (2019) propose a synthesis algorithm
for probabilistic temporal logic over reals specifications in the belief
space. Montana et al. (2017) propose a sampling-based solution to
temporal logic planning under imperfect state information, relying on
constructing a transition system by sampling from a feedback-based
information roadmap. The work of Kress-Gazit et al. (2009) considers
uncertainty in the environment propositions and proposed to design
a reactive controller offline such that it can satisfy the task for all
admissible environments.

Many solutions resort to replanning techniques, such as the iterative
receding-horizon planning algorithm by Wongpiromsarn et al. (2012)
mentioned in Section 5.2. For a subclass of temporal logic formulas,
Livingston et al. (2012) introduce a method to locally patch a nominal
controller once a change in the environment is detected. Lahijanian
et al. (2016) propose an iterative replanning strategy that can relax the
constraints imposed by the task if the discovery of a new obstacle deems
the task unrealizable. Fu and Topcu (2015) and Fu and Topcu (2016)
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design an alternating active sensing and planning strategy for temporal
logic tasks. In the work of Guo et al. (2013) the agent generates a plan
according to its initial knowledge over a deterministic model and after
new real-time information is gathered, it revises the plan.

7.3.1 Problem Formulation

Returning to the presentation of Ghasemi et al. (2020), we now introduce
the agent model, the environment model, the observation model and the
task specification language that we use in the formal problem statement.

Agent and Environment Models

We model the interaction between the agent and the environment by a
MDP. In particular, we use M = (S, sinit, Act, P) to represent the MDP
modeling the agent’s decision-making.

The agent perceives its environment through atomic propositions. Differ-
ent from the approaches discussed above, we use a time-varying labeling
function to capture the belief of the agent about the truth values of the
atomic propositions.

Definition 7.6. An environment model is a tuple & = (S, AP, £) where
S is a finite, discrete state space, AP is a set of atomic propositions, and
L : S — 27 is a deterministic labeling function that captures the true
state of the environment. The agent’s belief at time ¢ is a probabilistic
labeling function £; : S x 247 — [0, 1]. For a state s and a subset of
atomic propositions P C AP, L(s, P) assigns the probability of the
event that P holds true at s, i.e., Pr((,cp s = p)-

We denote by Ly the agent’s prior belief. This prior belief may, for
example, be an uninformative prior distribution. We assume that the
truth values of the propositions are mutually independent in each state,
facilitating the update of the labeling function over time. Nevertheless,
so long as the joint distribution model is known, the updates can be
computed.
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Observation Model

At each time step, the agent’s perception module processes a set of
sensory measurements regarding the atomic propositions. While the
measurements may be from multiple sensing units, for ease of notation,
we consider their joint model by a general observation function.

Definition 7.7. Let Z(s1, s2,p) € { True, False} denote the perception
output of the agent at state s; for the atomic proposition p at state so.
The joint observation model of the agent is

O:8 xS x AP x {True, False} — [0, 1],

where O(s1, s2,p, b) represents the probability that Z(s1, s2,p) = True
if the truth value of p is given by the Boolean variable b.

More specifically, Z(s1, s2,p) represents a measurement of the property
captured by p at state so, i.e., whether p holds at ss or not, when the
agent takes this measurement from state si, i.e., the current state of the
agent is s;. Hence, Z(s1, s2,p) is a Bernoulli random variable and its
distribution is dictated by the observation model O(sy, s2,p,b), which
depends on the true value of p at state sy captured by b, i.e., b indicates
whether p in reality holds at s or not. An accurate observation model is
one for which the output probability of O(s1, s2,p, b) is one for b = True
and zero for b = Fulse.

In the Bayesian framework, the observation model is used to update
the agent’s belief. Nevertheless, in the absence of such an observation
model, one can perform the update in a frequentist way.

Task Specification Language

We use syntactically co-safe linear temporal logic (scLTL) (Kupferman
and Vardi, 2001) to specify finite-horizon tasks for the agent. Notice that
scLTL is a variant of linear temporal logic (LTL), introduced in Section
2.2, that deals only with finite-horizon tasks. Hence, one would need
to investigate finite traces of a system for verification purposes. The
language defined by an scLTL formula can equivalently be represented
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through a deterministic finite automaton (DFA) D = (Q, ginst, 2,9, F)
(Kupferman and Vardi, 2001).

Problem Statement

We consider an agent whose interaction with the environment is captured
by an MDP. The agent is tasked with an scLTL specification that can
be successfully completed within finite time. The agent is unaware of
the environment state. However, it starts with a prior knowledge and
over time, gathers observations that can be used to further revise its
belief. The formal definition of the problem is stated next.

Problem 7.2. Given an MDP M = (5, sinit, Act,P), an environment
model with unknown labeling function € = (S, AP, ), an observation
model O, and an scLTL task ¢, find a policy 7 that maximizes the prob-
ability of satisfying the task conditioned on the true labeling function,
i.e.,
7" = argmax Pr(M™ |= ¢ | £).
s

7.3.2 Joint Active Perception and Planning

Before introducing the algorithm, it is necessary to first describe the
challenges of having a probabilistic view of the environment and, in
particular, atomic propositions. In a setting where the agent is uncertain
about the valuations of all atomic propositions over the whole environ-
ment, there may be up to 2/°IM71 possibilities for how the environment is
configured. In this case, computing policies that can account for all pos-
sible configurations, as offline reactive synthesis does (Baier and Katoen,
2008), is indeed computationally intractable. Additionally, if the envi-
ronment is not dynamically changing, then such a comprehensive policy
that accounts for all possible configurations, is not necessary. Another
fundamental challenge is the fact that the nature of the probabilistic
perception differs from the stochasticity of the agent model. Therefore,
as seen in Example 7.2, one cannot combine the belief probabilities on
the perception side with the transition probabilities of the MDP.
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Figure 7.5: The MDP transitions behave in a stochastic way while the uncertainty
in knowledge does not. (a) An MDP. The edge labels represent an action and a
transition probability, respectively, while the node labels capture agent’s knowledge
about the value of property p at each state. (b) A DFA with knowledge uncertainty.
The edge labels represent properties’ valuations that lead to a transition where 7
denotes any valuation (tautology). Node g3 is the accepting state.

Example 7.2 (Stochastic transition versus knowledge uncertainty). Con-
sider the simple MDP and DFA in Figure 7.5. The DFA accepts any
path on the MDP whose induced word is in the form of (p7)*—pr. For
instance, if the true labels are sy = p, s1 = p, and s9 |= —p, then the
path
a c d
Sog —> S2 —> S92 —» 8o
on the MDP generates the run
o = @1 —> Qo —> @2 — g3
on the DFA which is accepting and satisfies the task.

A key observation is that the nature of the probabilities of the MDP
transitions are distinct from that of the agent’s belief. A stochastic
transition means that if the agent takes the same action at the same
state multiple times, every time the next state is determined by the
given probabilities. Therefore, a path like

a d a
So —> 81 —> Sop — S2

is possible on the MDP. On the other hand, the true labels of the states
are fixed and the distribution of the agent’s belief does not translate
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Figure 7.6: The schematic of the perception-planning loop. The blue blocks refer to
pure perception modules and the red blocks refer to pure planning modules, and the
purple block indicates a combined perception and planning module of the algorithm.

into similar behavior. For instance, the path
b b b
So —> Sop —> Sop — S0

on the MDP cannot generate the run
V- - V=
%iﬂhp—?%—pﬂmp—g%

on the DFA. Since in this run, the truth value assignment of property p
at state sq is inconsistent.

The outline of the proposed algorithm is illustrated in Figure 7.6. At
each state, the agent gathers some perception outputs, e.g., sensing mea-
surements, and uses them to update its belief about the environment.
If the updated belief, called the posterior belief, is significantly different
from the previous one, called the prior belief, the agent must replan.
Otherwise, it will continue with its previous policy to take a step. To
check the significance of the added information from the new percep-
tion data, we compute the difference between the prior and posterior
beliefs using statistical distance measured by a divergence metric. If the
threshold (a hyperparameter given to the algorithm) on this difference
is exceeded, the agent first estimates the most probable configuration
of the environment. Then, the agent applies a synthesis algorithm with
the estimated environment model. This synthesis algorithm outputs a
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strategy that maximizes the probability of satisfying the given temporal
logic task. The given strategy induces a Markov chain that is used to
calculate the risk due to perception uncertainty. If the risk is lower
than a threshold (another hyperparameter given to the algorithm), the
agent uses the computed policy to take a step. Otherwise, it will find
an active perception strategy to reduce its perception uncertainty. We
now proceed to explain different stages of the proposed algorithm.

Information Processing

Consider the agent’s state to be s; at time t. The agent will receive new
perception outputs according to the observation model O(s, ., .,.) for
all states and atomic propositions.

The agent employs the observations to update its learned model of
the environment in a Bayesian approach. For ease of notation, let
Ly = Li(s,p) and O(b) = O(sy, s,p,b). Given the prior belief of the
agent L;_1 and the received observations Z, the posterior (updated)
belief follows

L1-10(True)
P =T =
t(s = pl(se, 5,p) rue) Li-10(True) + (1 — Ly—1)O(False)’

Pr(s = p|Z(s¢t, s,p) = False) =
Li—1(1 = O(True))
Li-1(1 = O(True)) + (1 — £4-1)(1 — O(False))’

for all s € S and p € AP. Depending on the truth value observed for
p, L£.(s,p) will be updated according to one of the above expressions.
Besides, for any P C AP,

Lt(S,P) = H Lt(S,p)~
pEAP
Divergence Test on the Belief

If the agent’s knowledge about the environment configuration has not
significantly changed from its knowledge in the previous state, then the
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agent will continue with its previous policy. Nevertheless, if its knowl-
edge has significantly changed, the agent will synthesize a new policy.
We use the Jensen-Shannon divergence to quantify the change in the
belief distribution between two consecutive time steps. The cumulative
Jensen-Shannon divergence over the states and the propositions can be
expressed as

1 1
Dgsp (Li—1]/L¢) :§DJ<£ (Le1llLh,) + §DJ<L (LellLhy),

where Dy (.||.) is the Kullback-Leibler divergence between two proba-
bility distributions and £!, = 1/2 (£;—1 + £;) is the average probability
distribution. One of the input parameters to the algorithm is a threshold
4 on the above divergence. If v4 is not exceeded, the agent uses its
previous policy m;—; to pick an action and transitions according to its
outcome. Otherwise, it has to synthesize a new policy.

For the policy synthesis step, the agent first estimates the most probable
environment configuration from the distribution dictated by its updated
belief. Let £; : S — 247 indicate the agent’s inference of the environ-
ment configuration at time ¢. The maximum a posteriori estimation is
fairly simple as it decomposes into finding the mode of the posterior
distribution for each property at each state. For binary-valued atomic
propositions that follow Bernoulli distributions, the inference turns into
picking the more probable outcome for each property at each state, i.e.,

Li(s) = {p e AP|Ly(s,p) > 0.5}.

Policy Synthesis

Finding an optimal policy, i.e., a policy that maximizes the probability
of realizing a temporal logic task, translates into a reachability criterion
on the product MDP. Let F) = S x F denote the equivalent accepting
states on the product MDP. The agent must find a policy that with
high probability reaches to 3’%’[.

Given that there exists an optimal memoryless deterministic policy on
the product MDP (Baier and Katoen, 2008), one can restrict the search
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space to that of memoryless deterministic policies and formulate

7 = arg max Pr(M}, = OFN | Ly), (7.8)
7€M m.d

where IL,,,, 4 is the set of memoryless and deterministic policies. To find
7y in (7.8), we use a linear programming (LP) approach (Baier and
Katoen, 2008). The optimal value of the linear program is the maximum
probability of reaching the set of accepting states. In order to find the
corresponding optimal policy, it suffices to find the actions for which
the corresponding LP constraints are active. If there are more than one
action with active constraint for a state, any of those actions can be
chosen arbitrarily.

Risk Assessment of Imperfect Perception

To assess the risk of the computed policy due to perception uncertainties,
we now factor in the probabilistic belief of the agent over the environment
properties. In particular, we first generate the induced Markov chain
M7 by applying the policy m; over the product MDP Myp. Next, we
verify the induced Markov chain with the uncertain labels against the
task specification. We develop an algorithm via a computation graph
that yields the exact probability of the task realization. However, due to
the complexities explained in Example 7.2, such quantitative analysis
has exponential complexity, as formalized in the next theorem.

Theorem 7.1. Let M% to be a Markov chain with n states and £; to
be a fully probabilistic labeling function (i.e., all labels are uncertain)
over m atomic propositions. Quantitative verification of M7} against a
reachability specification has a complexity of O(n2"™").

Since the complexity of an exact quantitative analysis is prohibitive, we
instead propose a statistical verification. More specifically, we approxi-
mate the expected value of the probability of the task realization over
all possible instances of the environment

E¢pisi(c) [Pr (M5 = )]
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by an empirical expectation with N samples

T T 1 al T
E¢piste) [Pr (MF E ¢)] = N > Pr (MY EolLi),
i=1

where £; are samples drawn from Dist(L) = L;. By the application
of Hoeffding’s inequality (Hoeffding, 1994), we establish the following
concentration result for this approximation.

Theorem 7.2. Let f(£;) = Pr (M7 = ¢|£;) denote the output of veri-
fication for an environment modeled by £;. The empirical expectation
of B¢ pisic) [f(£)] with N samples has the following concentration
bound

1 X

Pr (ELNDist(L) [f(L)] — ~ > F(Li)] = 6) < 2exp(—2N¢é?).
i=1

It is worth noting that Pr (M7} |= ¢|£;) itself is the output of a system
of linear equations (Baier and Katoen, 2008) that depend on the sampled
labeling function £;. Therefore, further characterization of f(£;) such
as bounding its higher moments is very difficult. Pr (M7 |= ¢|£;) can
also be computed via statistical verification techniques by sampling
paths over the Markov chain (Agha and Palmskog, 2018).

For a policy m;, we define a risk parameter

RMop, 7y, Ly, p) = ’PT(M% F ol ﬁt) - EL~Dist(L) [Pr (Mg - @)]
(7.9)

which accounts for the variation in the task realization guarantee of
the policy with respect to the perception uncertainty. Another input
parameter to the proposed perception and planning algorithm is a

’

threshold ~+, on the risk due to perception uncertainty. If 7, is not
exceeded, the agent acts according to the computed policy m;. Otherwise,
it takes an active perception strategy as explained next.

Active Perception Strategy

We develop an algorithm to compute an active perception strategy in
the form of a sequence of actions that the agent follows to reduce its
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Figure 7.7: Total probabilistic finite automaton for the formula ¢ = (=obs U door1)V
((—doorz U key) N (—obs U doorz)). State g3, a sink state, and the transitions to it
have been added to make the automaton total. The transitions between the states of
the automaton are probabilistic where the probabilities depend on the belief over
the states’ propositions. For example, §(qo, g2|s) indicates how £;(s,.) determines
the probability of the transition between go and g2.

perception uncertainty. We consider three criteria for computing an
active perception strategy. First, such a strategy should enable the
agent to reduce its uncertainty about the value of the propositions
that affect the task progress. These propositions are the ones that
enable the transitions from the current stage of the task, i.e., state
of the automaton, to the next ones. For example in Figure 7.7, if the
agent is at state ¢, the propositions that matter are obs and doory. To
measure the uncertainty reduction, we use expected entropy of the said
propositions over the whole state space. Second, an active perception
strategy must not affect the stage of the task and so, the agent has
to remain in the same state of the automaton. Third, after the agent
completes the sequence of actions, it should be able to return to the
point from which it started the active perception strategy.

Based on these criteria, we propose an algorithm to construct an active
perception strategy. The algorithm takes a bound Cy.; on the number
of actions and uses that to construct a tree of depth C'4.;. Each node of
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the tree has four parameters: distribution over the states of the MDP,
distribution over the states of the DFA, expected entropy reduction,
and reachability probability back to the root node. The distribution
over the states of the MDP depends on the MDP’s transitions while the
distribution over the states of the DFA depend on the agent’s belief over
the propositions, as shown in Figure 7.7. Once the tree is generated, the
algorithm picks the best node using a hyperparameter 8 that weighs
safety versus information quality. Safety refers to the ability of the agent
to remain in the same state of the automaton as well as its ability to
return to the root node while information quality refers to the amount
of entropy reduction. The sequence of actions leading to the optimum
node with respect to a combination of safety and information quality
results in the active perception strategy. After following this sequence
of actions, the perception-planning loop starts over.

7.3.3 Task-Oriented Active Perception and Planning Case Studies
Simulating Planar Navigation with Finite-Horizon Tasks

We consider an agent that navigates in a discretized 2D environment
and has a finite-horizon task. For instance, the task encoded as a DFA in
Figure 7.7 asks the agent to either go to the state where door; is located
or find a key and go to the state where doors is located, while avoiding
the obstacles. We implemented different versions of the task-oriented
perception and planning algorithm to evaluate the effect of each module
on the performance.

Table 7.1 reports the results for a reach-avoid task in an environment
with 64 states and with randomly generated obstacles and target. In the
table, No perc. refers to a baseline scenario where the agent estimates the
environment configuration with its prior knowledge and plans according
to that. Perc. w/ no update is a perception strategy that incorporates
only the most recent perception output. Perc. w/ update is perception
with a Bayesian update, as described in Section 7.3.2. With the exception
of the first algorithm, all algorithms have a replanning module, however,
the ones with div. replan only if the divergence threshold over the
change in the belief is exceeded. info. means that active perception is



7.3. Task-Oriented Active Perception and Planning 155

Table 7.1: Results of planar navigation under a reach-avoid task using different
versions of the proposed algorithm. Success is the percentage of runs that complete
the task. #Step is the average length of the runs and #Plan is the number of times
that the agent synthesizes a new policy.

Algorithm Success = #Step  #Plan
No perc. 0% 50 1
Perc. w/ no update + replan 0% 38.4 38.4
Perc. w/ update + replan 84% 21.8 21.8
Perc. w/ update + div. 80% 22.8 14.8
Perc. w/ update + replan + info. 92% 194 19.4
Perc. w/ update + div. + info. 86% 22.6 14.6
Policy evaluation with sampling

reachability

0 20 10 60 80 100
number of samples

Figure 7.8: Statistical verification of an induced Markov chain with uncertain
atomic propositions.

enabled and hence the agent will perform active perception strategies
when the risk due to perception uncertainty is high. The results show
that adding the divergence test reduces the number of policy synthesis
steps. Furthermore, the divergence test reduces the success rate. On the
other hand, adding the active perception module increases the success
rate. Figure 7.8 depicts the results from a risk assessment step for the
MDP with 64 states and 2 atomic propositions. Even though the size
of the sampling space is large (264), it can be seen that the empirical
expectation of the reachability probability quickly converges with about
20 samples.
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Figure 7.9: A scene from the created urban environment.

Drone Navigation in Simulated Urban Environment

In the AirSim Shah et al., 2017 simulator, we designed an urban en-
vironment as shown in Figure 7.9 and tasked a drone to fly from an
initial state to a specific flagged building while avoiding collision with
other entities of the environment. The drone is equipped with 4 cameras
and 4 depth sensors. The perception module processes the cameras’
readings as well as the depth measurements to map the semantic labels
to a discretized model of the environment. We applied the proposed
perception and planning scheme. However, in contrast to the previous
simulation scenario, an observation model does not exist here. Therefore,
we used a frequentist update rule for the agent’s belief. Details of the
simulation setting as well as recordings of the resulting behavior of the
drone are available in Ghasemi et al., 2020.
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Runtime Assurance via Shielding

Runtime verification detects violations of a set of specified properties
while a system is executing (Leucker and Schallhart, 2009). An extension
of this idea is to perform runtime enforcement of specified properties,
in which violations are not only detected but also overwritten in a way
that specified properties are maintained.

A general approach for runtime enforcement of specified properties
is shield synthesis, in which a shield monitors the system and instan-
taneously overwrites incorrect outputs. A shield must ensure both
correctness, i.e., it corrects system outputs such that all properties are
always satisfied, as well as minimum deviation, i.e., it deviates from
system outputs only if necessary and as rarely as possible. The latter
requirement is important because the system may satisfy additional
noncritical properties that are not considered by the shield but should
be retained as much as possible.

Merging formal methods with shielding we require the notion of k-

This section follows an adapted exposition from Humphrey, Koénighofer,
Konighofer, and Topcu (2016) and Konighofer, Alshiekh, Bloem, Humphrey,
Kénighofer, Topcu, and Wang (2017).
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stabilizing shields (Bloem et al., 2015). Given a safety specification, we
can identify wrong outputs, i.e., outputs after which the specification is
violated or, more precisely, after which the environment can force the
specification to be violated. A “wrong” trace is then a trace that ends
in a wrong output. The idea of shields is that they may modify the
outputs so that the specification always holds, but that such deviations
last for at most k consecutive steps after a wrong output. If a second
violation happens during the k-step recovery phase, the shield enters a
mode where it only enforces correctness, but no longer minimizes the
deviation.

8.0.1 Overview of Shielding

We apply shielding to reactive systems, which model well with Mealy
machines—finite-state machines that depend both on state and current
inputs. We can view a Mealy machine formally as the tuple M =
(S,q0,%1,%0,0,A) composed of the following data.

« A finite set of states, S.

e A starting state, qo.

¢ An input alphabet, ;.

e An output alphabet, Xp.

e A transition function, 6: S x X; — S.
e An output function, A\: S x ¥ — ¥o.

This tuple is the fundamental unit for the formalism of a system model,
termed the design, and its shield.

Definition 8.1 (Shield, Bloem et al. (2015)). Let D = (S, qo, X1, X0, 6, \)
be a design, ¢ be a set of properties, and ¥ C ¢ be a valid subset such
that D = ¢¥. A reactive system 8 = (5, q(), X, X0, 0", X) is a shield of
D with respect to (¢ \ ¢¥) if and only if (D o 8) = ¢. We also require
that for 8 to be a it must be shield of any design D such that D = ¢°.
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Correctness property

With correctness we refer to the property that the shield corrects any
design’s output such that a given safety specification is satisfied.

Since a shield must work for any design, the synthesis procedure does not
need to consider the design’s implementation. This property is crucial
because the design may be unknown or too complex to analyze. On the
other hand, the design may satisfy additional (noncritical) specifications
that are not specified in ¢ but should be retained as much as possible.

Minimum deviation property

Minimum deviation requires a shield to deviate only if necessary, and as
infrequently as possible. To ensure minimum deviation, a shield can only
deviate from the design if a property violation becomes unavoidable.
Given a safety specification ¢, a shield 8 does not deviate unnecessarily
if for any design D and any trace that is not wrong and D does not
violate ¢, 8 keeps the output of D intact.

Admissibility property

To address shortcoming with k-stabilizing shields (1), we guarantee
the following: (a) Admissible shields are subgame optimal. That is, for
any wrong trace, if there is a finite number k of steps within which
the recovery phase can be guaranteed to end, the shield will always
achieve this. (b) The shield is admissible, that is, if there is no such
number k, it always picks a deviation that is optimal in that it ends the
recovery phase as soon as possible for some possible future inputs. As a
result, admissible shields work well in settings in which finite recovery
can not be guaranteed, because they guarantee correctness and may
well end the recovery period if the system does not pick adversarial
outputs. To address shortcoming (2), admissible shields allow arbitrary
failure frequencies and in particular failures that arrive during recovery,
without losing the ability to recover.

To create an admissible shield we must first define what k-stabilizing
a trace means. Given an unavoidable violation occurring in design D,
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the shield can deviate from the expected outputs of the design for at
most k consecutive time steps. This means that violations cannot be
consecutive and can only be tolerated after k steps. In the event that
the design violates the specification within & steps, then the shield
transitions the system to a fail-safe mode

Definition 8.2 (Admissible Shield). A shield 8§ is admissible if for any
trace, whenever there exists a k and a shield 8’ such that 8’ adversely
k-stabilizes the trace, then 8§ adversely k-stabilizes the trace. If such a
k does not exist for trace, then 8 collaboratively k-stabilizes the trace
for a minimal k.

8.1 Shielding a UAV mission

In this section, we apply shields on a scenario in which a UAV must
maintain certain properties while performing a surveillance mission in
a dynamic environment. We show how a shield can be used to enforce
the desired properties, where a human operator in conjunction with
a lower-level autonomous planner is considered as the reactive system
that sends commands to the UAV’s autopilot. We discuss how we would
intuitively want a shield to behave in such a situation.

A common UAV control architecture consists of a ground control station
that communicates with an autopilot onboard the UAV (Chao et al.,
2010). The ground control station receives and displays updates from the
autopilot on the UAV’s state, including position, heading, airspeed, bat-
tery level, and sensor imagery. It can also send commands to the UAV’s
autopilot, such as waypoints to fly to. A human operator can then use
the ground control station to plan waypoint-based routes for the UAV,
possibly making modifications during mission execution to respond to
events observed through the UAV’s sensors. However, mission planning
and execution can be very workload intensive, especially when operators
are expected to control multiple UAVs simultaneously (Donmez et al.,
2010). To address this issue, methods for UAV command and control
have been explored in which operators issue high-level commands, and
automation carries out low-level execution details.
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Several errors can occur in this type of human-automation paradigm
(Chen and Barnes, 2012). For instance, in issuing high-level commands
to the low-level planner, a human operator might neglect required safety
properties due to high workload, fatigue, or an incomplete understanding
of exactly how the autonomous planner might execute the command.
The planner might also neglect these safety properties either because of
software errors or by design. Waypoint commands issued by the operator
or planner could also be corrupted by software that translates waypoint
messages between ground station and autopilot specific formats or
during transmission over the communication link.

As the mission unfolds, waypoint commands will be sent periodically to
the autopilot. If a waypoint that violates the properties is received, a
shield that monitors the system inputs and can overwrite the waypoint
outputs to the autopilot would be able to make corrections to ensure
the satisfaction of the desired properties.

Consider a mission map (Figure 8.1) (Feng et al., 2016b), which contains
three tall buildings (illustrated as blue blocks), over which a UAV should
not attempt to fly. It also includes two unattended ground sensors (UGS)
that provide data on possible nearby targets, one at location loc; and
one at loc,, as well as two locations of interest, loc, and loc,. The UAV
can monitor loc;, locy, and loc, from several nearby vantage points.
The map also contains a restricted operating zone (ROZ), illustrated
with a red box, in which flight might be dangerous, and the path of a
possible adversary that should be avoided (the pink dashed line). Inside
the communication relay region (large green area), communication links
are highly reliable. Outside this region, communication relies on relay
points with lower reliability. Given this scenario, properties of interest
include:

e Connected waypoints. The UAV is only allowed to fly to directly
connected waypoints.

e« No communication. The UAV is not allowed to stay in a location
with reduced communication reliability.

¢ Restricted operating zones. The UAV has to leave a ROZ
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Figure 8.1: A map for UAV mission planning.

within 2 time steps.

e Detected by an adversary. Locations on the adversary’s path
cannot be visited more than once over any window of 3 time steps.

e UGS. If a UGS reports a possible nearby target, the UAV should
visit a respective waypoint within 7 steps (for UGS] visit locy,
for UGS, visit locs, locg, locy, or locs).

¢ Go home. Once the UAV’s battery is low, it should return to a
designated landing site at loci4 within 10 time steps.

The task of the shield is to ensure these properties during operation. In
this setting, the operator in conjunction with a lower-level planner acts
as a reactive system that responds to mission-relevant inputs; in this
case data from the UGSs and a signal indicating whether the battery is
low. In each step, the next waypoint is sent to the autopilot, which is
encoded in a bit representation via outputs ly, I3, l2, and ;. The shield
monitors (Figure 8.2) mission inputs and waypoint outputs, correcting
outputs immediately if a violation of the safety properties becomes
unavoidable.

We represent each of the properties by a safety automaton, the product of
which serves as the shield specification. Figure 8.3 models the “connected
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Figure 8.2: The interaction between the operator/planner (acting as a reactive
system) and the shield.

Figure 8.3: Safety automaton of Property 8.1 over the map in Figure 8.1.

waypoints” property, where each state represents a waypoint with the
same number. Edges are labeled by the values of the variables l4...[;.
For example, the edge leading from state s5 to state sg is labeled by
=ly4l3la—ly. For clarity, we drop the labels of edges in Figure 8.3. The
automaton also includes an error state, which is not shown. Missing
edges lead to this error state, denoting forbidden situations.

How should a shield behave in this scenario? If the human operator
wants to monitor a location in a ROZ, he or she would like to simply
command the UAV to “monitor the location in the ROZ and stay there”,
with the planner handling the execution details. If the planner cannot
do this while meeting all the safety properties, it is appropriate for
the shield to revise its outputs. Yet, the operator would still expect
his or her commands to be followed to the maximum extent possible,
leaving the ROZ when necessary and returning whenever possible. Thus,
the shield should minimize deviations from the operator’s directives as
executed by the planner.
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Using a k-stabilizing shield

As a concrete example, assume the UAV is currently at locs, and
the operator commands it to monitor locis. The planner then sends
commands to fly to loci; then locis, which are accepted by the shield.
The planner then sends a command to loiter at locio, but the shield
must overwrite it to maintain Property 8.1, which requires the UAV to
leave the ROZ within two time steps. The shield instead commands the
UAYV to go to locyis. Suppose the operator then commands the UAV to
fly to locis, while the planner is still issuing commands as if the UAV
is at locia. The planner then commands the UAV to fly to locys, but
since the actual UAV cannot fly from locis to locig directly, the shield
directs the UAV to loci4 on its way to locis. The operator might then
respond to a change in the mission and command the UAV fly back
to locie, and the shield again deviates from the route assumed by the
planner, and directs the UAV back to locis, and so on. Therefore, a
single specification violation can lead to an infinitely long deviation
between the UAV’s actual position and the UAV’s assumed position. A
k-stabilizing shield is allowed to deviate from the planner’s commands
for at most k consecutive time steps. Hence, no k-stabilizing shield
exists.

Using an admissible shield

Recall the situation in which the shield caused the actual position of
the UAV to “fall behind” the position assumed by the planner, so that
the next waypoint the planner issues is two or more steps away from the
UAV’s current waypoint position. The shield should then implement
a best-effort strategy to “synchronize” the UAV’s actual position with
that assumed by the planner. Though this cannot be guaranteed, the
operator and planner are not adversarial towards the shield, so it will
likely be possible to achieve this re-synchronization, for instance when
the UAV goes back to a previous waypoint or remains at the current
waypoint for several steps. This possibility motivates the concept of
an admissible shield. Assume that the actual position of the UAV is
loci4 and the its assumed position is loci3. If the operator commands
the UAV to loiter at loci3, the shield will be able to catch up with the
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Figure 8.4: Synthesizing admissible shields.

state assumed by the planner and to end the deviation by the next
specification violation.

8.2 Synthesizing Admissible Shields

We will illustrate shield synthesis using the admissible shielding def-
inition, but the process is similar for other types of shields. Starting
from a safety specification ¢ = (Q, qo, 2,9, F') with ¥ = X x X, the
admissible shield synthesis procedure consists of five steps (Figure 8.4).

Step 1. Constructing the Violation Monitor U

From ¢ we build the automaton U = (U, ug, X, §*) to monitor property
violations by the design. The goal is to identify the latest point in
time from which a specification violation can still be corrected with a
deviation by the shield. This constitutes the start of the recovery period,
in which the shield is allowed to deviate from the design. In this phase
the shield monitors the design from all states that the design could
reach under the current input and a correct output. A second violation
occurs only if the next design’s output is inconsistent with all states
that are currently monitored. In case of a second violation, the shield
monitors the set of all input-enabled states that are reachable from the
current set of monitored states.

The first phase of the construction of the violation monitor U considers
v =(Q,q0,%,0, F) as a safety game and computes its winning region
W C F so that every reactive system D |= ¢ must produce outputs
such that the next state of ¢ stays in W. Only in cases in which the
next state of ¢ is outside of W the shield is allowed to interfere.
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The second phase expands the state space Q to 29 via a subset con-
struction, with the following rationale. If the design makes a mistake
(i.e., picks outputs such that ¢ enters a state ¢ ¢ W), we have to
“guess” what the design actually meant to do and we consider all output
letters that would have avoided leaving W and continue monitoring
the design from all the corresponding successor states in parallel. Thus,
U is essentially a subset construction of ¢, where a state u € U of U
represents a set of states in ¢.

The third phase expands the state space of U by adding a counter
d € {0,1,2} and a output variable z. Initially d is 0. Whenever a
property is violatedd is set to 2. If d > 0, the shield is in the recovery
phase and can deviate. If d = 1 and there is no other violation, d is
decremented to 0. In order to decide when to decrement d from 2 to
1, we add an output z to the shield. If this output is set to True and
d = 2, then d is set to 1.

The final violation monitor is U = (U, ug, X%, 0%), with the set of states
U = (29 x {0,1,2}), the initial state ug = ({go},0), the input/output
alphabet X% = ¥; x X3 with ¥§ = Yo U 2, and the next-state function
0" , which obeys the following rules:

1. 6*((u,d), (o1,00)) = {d' €W | 3q € u,00" € ¥ .6(q, (01,00")) =
q/}a 2) if Vq cu. 5(‘]7 (01500)) ¢ W7 and

2. 8"“((u,d),0) = ({¢ e W | 3g € u.d(q,0) = ¢'},dec(d)) if 3q €
u.6(q,0) € W, and dec(0) = dec(1) = 0, and if z is True then
dec(2) = 1, else dec(2) = 2.

Our construction sets d = 2 whenever the design leaves the winning
region, and not when it enters an unsafe state. Hence, the shield §
can take a remedial action as soon as “the crime is committed”, before
the damage is detected, which would have been too late to correct the
erroneous outputs of the design.

Example 8.1. We illustrate the construction of U using the speci-
fication ¢ from Figure 8.5 over the outputs o; and o2. (Figure 8.5
represents a safety automaton if we make all missing edges point
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Figure 8.5: Safety automaton of Ex-

ample 8.1. Figure 8.6: The deviation monitor 7.

to an (additional) unsafe state.) The winning region consists of all
safe states, i.e., W = {F,S,T}. The resulting violation monitor is
U= ({F,S,T,FS,ST,FT,FST} x {0,1,2}, (F,0), X", 0%). The transi-
tion relation §* is illustrated in Table 8.1 and lists the next states for all
possible present states and outputs. Lightning bolts denote specification
violations. The update of counter d, which is not included in Table 8.1,
is as follows: Whenever the design commits a violation d is set to 2. If
no violation exists, d is decremented in the following way: if d = 1 or
d=0,disset to 0. If d =2 and z is True, d is set to 1, else d remains
2. In this example, z is set to True, whenever we are positive about the
current state of the design (i.e. in ({F'},d), ({S},d), and ({1'},d)).

Let us take a closer look at some entries of Table 8.1. If the current state
is ({F'},0) and we observe the output —0201, a specification violation
occurs. We assume that D meant to give an allowed output, either
0901 or —02-01. The shield continues to monitor both F and S; thus,
U enters the state ({F,S},2). If the next observation is 0201, which is
allowed from both possible current states, the possible next states are
S and T, therefore U traverses to state ({S,7},2). However, if the next
observation is again —0901, which is neither allowed in F nor in S, we
know that a second violation occurs. Therefore, the shield monitors the
design from all three states and U enters the state ({F,S,T'},2).

Step 2. Constructing the Deviation Monitor T

We build T = (T, tg, X0 x X0, ") to monitor deviations between the
shield and design outputs. Here, T' = {to, t;} and §'(¢, (c0,00")) = to
if and only if cp = 0p’. That is, if there is a deviation in the current
time step, then T will be in ¢; in the next time step. Otherwise, it will
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Table 8.1: Transition relation 6“ of monitor U for example 8.1.

101702 —0102 Or 01702 0102
{F} {F} {F.8}’ {S}
{S} {T}’ {T}’ {T}
{T} {F} {F} {F}

{F.S} {F} {F,S,T} {S,T}
{st3 | {F.TY {F,T} {F,T}
{F.,T} {F} {F.S,T} {F.,S}
{FS,T} | {F} {F,S, T} {F,S,T}

be in ty. This deviation monitor is shown in Figure 8.6.

Step 3. Constructing and Solving the Safety Game G*

Given the automata U and T and the safety automaton ¢, we construct
a safety game §° = (G*, g5, X7, X3 0%, F®), which is the synchronous
product of U, T, and ¢, such that G* = U xT'x () is the state space, g5 =
(uo, to, qo) is the initial state, X7 = ¥; x ¥p is the input of the shield,
¥4 = Yo U{z} is the output of the shield, 0° is the next-state function,
and F* is the set of safe states such that 6*((u,t,q), (61,00), (c0',2)) =

(5u[u’ (017 (007 Z))]v (St[tv (UO’ UO/)]a 5[% (017 00,)]),

and F* = {(u,t,q) € G° | g€ FANu= (w,0) =t =tp}.

We require ¢ € F', which ensures that the output of the shield satisfies ¢,
and that the shield can only deviate in the recovery period (i.e., if d = 0,
no deviation is allowed). We use standard algorithms for safety games
(cf. Faella (2009)) to compute the winning region W* and the most
permissive non-deterministic winning strategy ps : G x ¥; — 2¥0 that
is not only winning for the system, but also contains all deterministic
winning strategies.

Step 4. Constructing the Biichi Game G°

Implementing the safety game ensures correctness (D o8 | ¢) and
that the shield 8 keeps the output of the design D intact, if D does
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not violate ¢. The shield still has to keep the number of deviations
per violation to a minimum. Therefore, we would like the recovery
period to be over infinitely often. This can be formalized as a Biichi
winning condition. We construct the Biichi game G° by applying the
non-deterministic safety strategy p® to the game graph G°.

Given the safety game §° = (G%, g3, X7, 35, 6° F°) with the non-
deterministic winning strategy p°® and the winning region W#, we con-
struct a Biichi game §° = (G?, ¢, ¥3, ol 6%, F%) such that G® = W* is
the state space, the initial state gg = g3 and the input/output alphabet
¥b = 7 and El(’) = ¥} remain unchanged, 6 = 6% N p? is the transition
function, and F® = {(u,t,q) € W* | (u = (w,0) Vu = (w,1))} is the set
of accepting states. A play is winning if d < 1 infinitely often.

Step 5. Solving the Biichi Game G

Most likely, the Biichi game G° contains reachable states, for which
d <1 cannot be enforced infinitely often. We implement an admissible
strategy that enforces to visit d < 1 infinitely often whenever possible.
This criterion essentially asks for a strategy that is winning with the
help of the design.

The admissible strategy p® for a Biichi game §° = (G?, gb, ¥4, 322, 6%, F?)
can be computed as follows Faella (2009):

1. Compute the winning region W and a winning strategy pfu for
G (cf. Mazala (2001)).

2. Remove all transitions that start in W and do not belong to p%
from G°. This results in a new Biichi game G4 = (G?, g8, %%, 22, 6%, F?)
with

(ga (017 0-0)7 gl) € 5l1)
if (9,01,00) € pb,

or if VO’O/ € ZbO -(Q,UI,UO/) ¢ p'lz)u A (97 (01700)79/) € 6b'

3. In the resulting game G2, compute a cooperatively winning strategy
pb. In order to compute pP, one first has to transform all input
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variables to output variables. This results in the Biichi game
gh = (Gb,go, 0, Eb X E , 6%, F?). Afterwards, p® can be computed
with the standard algorlthm for the winning strategy on 5.

The strategy p’ is an admissible strategy of the game GP, since it is
winning and cooperatively winning (Faella, 2009). Whenever the game
GP starts in a state of the winning region W?, any play created by p? is
winning. Since p® coincides with pfu in all states of the winning region
WP, p’ is winning. We know that p? is cooperatively winning in the
game G4. A proof that p? is also cooperatively winning in the original
game G° can be found in Faella (2009).

Theorem 8.1. A shield that implements the admissible strategy p°
in the Biichi game G0 = (Gb, g8,%%,%%, 6% FP) in a new reactive sys-
tem § = (Gb7 gO’ bO? 6/7 pb) with 5/(97 U[) = 5b(gv g1, pb(g’ U])) is an
admissible shleld.

Proof. First, the admissible strategy p® is winning for all winning states
of the Biichi game G°. Since winning strategies for Biichi games are
subgame optimal, a shield that implements p® ends deviations after
the smallest number of steps possible, for all states of the design in
which a finite number of deviations can be guaranteed. Second, p’ is
cooperatively winning in the Biichi game G°. Therefore, in all states in
which a finite number of deviation cannot be guaranteed, a shield that
implements the strategy p® recovers with the help of the design as soon
as possible. O

The standard algorithm for solving Biichi games contains the computa-
tion of attractors; the i-th attractor for the system contains all states
from which the system can “force” a visit of an accepting state in
steps. For all states g € G® of the game G°, the attractor number of g
corresponds to the smallest number of steps within which the recovery
phase can be guaranteed to end, or can end with the help of the design
if a finite number of deviation cannot be guaranteed.

Theorem 8.2. Let ¢ = {Q, qo, %, d, F'} be a safety specification and |Q)|
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be the cardinality of the state space of . An admissible shield with
respect to ¢ can be synthesized in O(2/9l) time, if it exists.

Proof. The safety game G° and Biichi game G° have at most m =
(2-2191 +1Q]) -2 - |Q| states and at most n = m? edges.

Safety games can be solved in O(m + n) time and Biichi games in
O(m - n) time (Mazala, 2001). O
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Verifiable Learning-Based Synthesis

This section provides an overview of incorporating learning techniques
in policy synthesis and discusses an approach that merges concepts from
formal methods and machine learning. We consider the challenging task
of computing a policy for a partially observable Markov decision process
(POMDP) that satisfies certain classes of specifications, first introduced
in Section 7. The approach discussed in this section represents a policy
using recurrent neural networks (RNNs). We then show how such a
representation can be integrated with formal methods by extracting a
policy that is compatible with state-of-the-art verification tools.

RNNSs offer an effective policy representation for POMDPs due to their
ability to effectively process sequential data. As opposed to the conven-
tional feed-forward architectures present in artificial neural networks,
in which the nodes in each layer are only connected to nodes in sub-
sequent layers, recurrent architectures allow for backward connections
between nodes. Such backward connections allow RNNs to create inter-
nal memory states, such as those in long short-term memory (LSTM)

This section incorporates the results from the following publications (Carr,
Jansen, Wimmer, Serban, Becker, and Topcu, 2019; Carr, Jansen, and Topcu, 2020;
Carr, Jansen, and Topcu, 2021).
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architectures (Hochreiter and Schmidhuber, 1997), which infer temporal
behavior from sequences of data (Pascanu et al., 2014). Reinforcement
learning research has shown that RNNs used in environments modeled
by POMDPs perform well as black-box functions for either state or
value estimators (Wierstra et al., 2007; Bakker, 2001) or as control
policies (Hausknecht and Stone, 2015; Heess et al., 2015b).

In POMDPs that model agents in safety-critical environments, policies
that are guaranteed to prevent unsafe behavior are necessary. The
agent’s behavior may have to obey more complicated specifications than
maximizing an expected reward, such as reachability, liveness or, more
generally, specifications expressed in temporal logic, e.g. linear temporal
logic (LTL), see Section 4.2.

Verifying whether an agent following an RNN-based policy in a POMDP
satisfies temporal logic specifications is, in general, hard. RNNs are com-
plex structures that capture non-linear input-output relations (Mulder
et al., 2015). To formally analyze how RNNs interpret sequences of data,
Sherstinsky (2020) suggest fixing a defined sequence length for analysis
and performing an unrolling procedure, which converts the RNN to a
feed-forward neural network with the same number of layers as that
defined length (Goodfellow et al., 2016). Checking whether the agent’s
behavior satisfies the specification for the set of all possible sequences of
data with a given length in the POMDP is intractable (Meuleau et al.,
1999).

The approach discussed in this section combines the representation
power of RNNs from machine learning with the provable guarantees
that are at the heart of formal verification. The latter can efficiently
verify whether an agent following a given policy, typically in the form
of an finite state controller (FSC) (Poupart and Boutilier, 2003; Junges
et al., 2018), adheres to a temporal logic specification (Baier and Katoen,
2008). However, directly synthesizing a policy requires—in general—
memory of exponential size in the number of POMDP states (Baier
et al., 2012). Machine learning, on the other hand, provides an efficient
approach, in the form of training RNN-based policy representations
from sequences of data, to find candidate policies that might ensure an
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Figure 9.1: High-level iterative policy improvement process.

agent in a POMDP satisfies a temporal logic specification (Heess et al.,
2015a).

There remains a central gap: How to close the loop between training an
RNN-based policy and efficiently verifying for a candidate policy? The
approach closes this gap by tightly integrating formal verification and
machine learning towards three key steps: (1) extracting an FSC from
an RNN-based policy, (2) verifying this candidate FSC for the POMDP
against a temporal logic specification, and (3) if needed, either refining
the FSC or generating more training data for the RNN, see Figure 9.1.

9.1 Verifiable Recurrent Neural Network-Based Policies for Partially
Observable Markov Decision Processes

In this section, we formulate a problem that is similar to that introduced
in Problem 7.1. We restate it here without the robustness considerations:

Problem 9.1 (POMDP synthesis). For a POMDP M and a specification
@, where either ¢ = P, (¢) for ~ € {<,<,>,>} and A € [0, 1] with ¢
an LTL specification, or ¢ = E_ (0 a), the problem is to determine a
(finite-memory) policy o € %% such that M% |= ¢.

In Problem 9.1, if no (finite-memory) policy exists, the problem is
infeasible. Note that, in general, Problem 9.1 is undecidable (Madani
et al., 1999) and each method is necessarily incomplete.
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Figure 9.1 outlines the learning-based overall approach to Problem 9.1.
A trained RNN serves as an efficient representation of a POMDP policy.
As safety-critical scenarios necessitate a sound notion of correctness, the
approach evaluates such an RNN-based policy using formal verification
against LTL specifications. There are four main building blocks towards
that approach: (1) Training the RNN, (2) extracting FSCs as a tractable
representation of the RNN-based policy, (3) evaluating the policy, and
(4) improving the policy.

9.1.1 Training a Recurrent Neural Network-Based Policy

We first define how RNNs can be used as a representation of POMDP
policies.

Definition 9.1 (RNN-based policy). An RNN-based policy for a POMDP
is a function 6: ObsSeqj%ELZ — Distr(Act), where ObsSequ\{;Z is the set
of all sequential observation-action inputs and Distr(Act) is the set of
all distributions over actions. To be more precise, we identify the main
components of such a network. An RNN-based policy & is sufficiently
described by a hidden-state update function 6:R x Z x Act — R and

an action-mapping op: R — Distr(Act).

Consider the following observation-action sequence:

O(m) = O(s0) # O(s1)

- O(si) (9.1)

The RNN-based policy receives an observation-action sequence and
returns a distribution over the action choices. Throughout the execution
of the sequence, the RNN holds a continuous hidden state h € R,
typically described as an internal memory state, which captures previous
information. On each transition, this hidden state is updated to include
the information of the current state and the last action taken under the
hidden-state update function 5. From the prior observation sequence in
(9.1), the corresponding hidden state sequence would be defined as:

Acty, O(Sz)

§(r) = ho 20060,y o hy
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Figure 9.3: RNN-based policy structure with a QBN. RNN block and associated
QBN of Bj, = 3 with quantized activation 64: R — {—1,0,1}.

Additionally, the output of the RNN-based policy is expressed by the
action-distribution function o, which maps the value of hidden state
to an action mapping op. At an internal memory state h;, we have

A

d(hi, O(si),a;) = hit1 and op(hi+1) = u(Act) for state s; on path .

The approach constructs an RNN-based policy using a three-layer
network, shown in Figure 9.2. The policy network uses an LSTM ar-
chitecture (Hochreiter and Schmidhuber, 1997) for the recurrent layer
5 and then a softmax layer for the output action mapping o, (see
Definition 9.1). To fit the RNN model to the sequences of training data,
we use the Adam optimizer Kingma and Ba, 2015 with a categorical
cross-entropy error function Goodfellow et al., 2016.
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In practice, a machine learning-based approach requires a method of
generating data. One such method involves first computing a policy
o € YM of the underlying Markov decision process (MDP) M that
satisfies ¢ using the STORM probabilistic model checker (Dehnert
et al., 2017). Then it samples an initial state uniformly over the initial
belief support sy € supp(b) and generate finite observation paths 7,
thereby creating multiple trajectory trees (Kearns et al., 1999). When
generating sequences of data, selecting one of the trees and following it to
a leaf, which forms either at a pre-defined maximum sequence length or a
deadlock, gives a finite path = € Paths]%. From this path 7, the method

generates one possible observation-action sequence m, € ObsSeq%;Z .

Example 9.1. Consider the POMDP in Example 7.1 and Figure 7.1: a
sample set of sequences of data would be:

D = {xY = (blue,up, blue, down, s3), w2 = (blue,down,s3), 72 =
(blue,up, s3)}. An example RNN policy o trained on these sequences
would yield a policy for observation-action sequence 7, = (blue) as
0(m,0) = {0.67 : up, 0.33 : down}, which has a categorical cross-entropy
loss of approximately 0.585. Similarly, the same RNN policy for a
longer observation-action sequence such as 7,1 = (blue, up, blue) yields

a policy o(m,,1) = {1.0 : down}, for a cross-entropy loss of 0.

9.1.2 Finite-State Policy Extraction

The discussed approach adapts a method called quantized bottleneck
insertion (Koul et al., 2019) to extract an FSC from a given RNN-
based policy. Let us first explain the relationship between the main
components of an RNN-based policy ¢ (Definition 9.1) and an FSC
A (Definition 7.2). In particular, the hidden-state update function B
takes as input a real-valued hidden state of the policy network, while
the FSC’s memory update function ¢ takes a memory node from the
finite set V. Figure 9.2 describes a simplified architecture for the former
since its recurrent component acts as the hidden-state update function
5. The key for linking the two is therefore a mechanism that encodes
the continuous hidden state h into a set N of discrete memory nodes.
We outline such a mechanism in the sequel and in Figure 9.3 in which
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we show the modified activation function (formed using an encoder and
a decoder).

The approach leverages an autoencoder (Goodfellow et al., 2016) in
the form of a quantized bottleneck network (QBN) (Koul et al., 2019).
This QBN, consisting of an encoder and a decoder, is inserted into the
RNN-based policy directly before the softmax layer, see Figure 9.3. In
the encoder, the continuous hidden-state value h € R is mapped to
an intermediate real-valued vector RBr of pre-allocated size Bj,. The
decoder then maps this intermediate vector into a discrete vector space
defined by {-1,0, l}Bh. This process, illustrated in Figure 9.3, provides
a mapping of the continuous hidden state h into 3% possible discrete
values. We denote the discrete state for h by h and the set of all such
discrete states by H. Note, that |H| < 35 since not all values of the
hidden state may be reached in an observation sequence.

After the QBN insertion, we simulate a series of executions querying
the modified RNN for action choices on the POMDP. These executions
form a dataset of consecutive pairs (ﬁt, ;Lt+1) of discrete hidden states,
the action Act; and the observation O.;y; that led to the transition
{fzt, Acty, Opy1, Bt—i—l} at each time t during the execution of the RNN-
based policy. The number of accessed memory nodes N C H corresponds
to the number of different discrete states i € H in this dataset. The
deterministic memory update rule (n¢, Acty, Opy1) = nyqq is obtained
by constructing a N x (|Z] x |Act|) transaction table (Koul et al.,
2019). We can additionally construct the action-mapping a: N x Z —
Distr(Act) with a(ng, Or) = p € Distr(Act) by querying the softmax-
output layer (see Figure 9.2) for each memory node and observation.

9.1.3 Evaluating the Extracted Policy

We assume that for POMDP My = (M, Z, O) and specification ¢, we
have an extracted FSC As € M2 as in Definition 7.2. The approach
applies the policy As to obtain an induced discrete-time Markov chain
(DTMC) J\/[le&. For this DTMC, formal verification through model
checking checks whether Mle" = ¢ and thereby provides hard guarantees
about the quality of the extracted FSC A4 regarding ¢. In particular,
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(probabilistic) model checking provides the probability — or the expected
reward — to satisfy a specification for all states s € S via solving linear
equation systems, see Section 6 and (Baier and Katoen, 2008).

Example 9.2. Consider the case in the 1-FSC A from Example 7.1
(Figure 7.1b) where the parameter p = 1 and the probability of reaching
the state s3 in the induced DTMC is Pr(<s3) = % The behavior
induced by this 1-FSC violates the specification and we obtain two
counterexamples of critical memory-state pairs for this policy As: (0, sp)
and (0, s1).

If the specification does not hold, the policy may require refinement.
On the one hand we can increase the number of memory nodes By, to
extract a new FSC. On the other hand, we may decide via a formal
entropy check whether new data need to be generated.

9.1.4 Improving the Policy with Counterexample Data

The approach attempts to determine whether an RNN-based policy
requires more training data D or not. Existing approaches in supervised
learning methods leverage benchmark comparisons between a train-test
set using a loss function (Baum and Wilczek, 1987). Loss visualization,
proposed by Goodfellow and Vinyals (2015) provides a set of analytical
tools to show model convergence. However, such approaches aim at
continuous functions instead of the discrete representations as in the
FSC. More importantly, the method leverages the information gained
from a model-based approach.

We first determine a set of states that are critical for the satisfaction
of the specification under the current policy. Consider a sequence of
memory nodes and observations (ng, 9g) —% --- RN (n¢, Of) from
the POMDP My under the FSC Ags. For each of these sequences, we
collect the states s € S underlying the observations, e.g., O(s) = O;
for 0 < i < t. As we know the probability or expected reward for these
states to satisfy the specification from previous model checking, we
can now directly assess their criticality regarding the specification. We

collect all pairs of memory nodes and states from N x S that contain
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critical states and build the set C’ritjj\{iz C N x S that serves us as a
counterexample. These pairs carry the joint information of critical states
and memory nodes from the policy applied to the DTMC M“ga .

Entropy measure. The average entropy across the distributions over
actions at the choices induced by the counterexample set Crit%f is
our measure of choice to determine the level of training for the RNN-
based policy. Specifically, for each pair (n,s) € Crz't%iz, we collect
the distribution p € Distr(Act) over actions that As returns for the
observation O(s) when it is in memory node n. Then, we define the
evaluation function H using the entropy H(u) of the distribution p:

H: Crit)? — [0,1] with H(n, s) = H(n).

For high values of H, the distribution is uniform across all actions and
the associated RNN-based policy is likely extrapolating from unseen
inputs.

We observe that when there are fewer samples and higher memory
nodes, the extracted FSC tends to perform arbitrarily, see Section 9.1.5
and Figure 9.7 for a detailed empirical analysis. We lift the function H
to the full set Crit%f:
1
H(Crit)?) = ——— > H(n,s). (9.2)

= =

|Crit, 7|
As Mz
(n,s)ECmtA&

We compare the average entropy over all decision-points of the counterex-
ample against a constant threshold n € [0, 1], that is, if H (Cm'ti\{iz) >,
we will provide more training data. Vice versa, if H (Cm't%iz) <mn, we
increase the upper bound on the number of memory nodes in the FSC.

Example 9.3. Under the working Example 7.1, the policy A, was the
1-FSC with p = 1 (Figure 7.1b), which produces two counterexample
memory and state pairs: C'r'z‘tjﬂvgz = {(0,50),(0,s1)}. The procedure
would then examine the policy’s average entropy at these critical com-
ponents (n,s) € C’m’t%f, which in this trivial example is given by
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H(Crit)?) = —plogy(p) — (1 — p)logy(1 — p) = 0 from (9.2). The
average entropy is below a prescribed threshold, n = 0.5, and thus we
increase the number of memory nodes, which results in the satisfying
FSC A, in Figure 7.1c.

9.1.5 Performance on Partially Observable Markov Decision Process
Benchmarks

We evaluate the RNN-based synthesis on benchmark examples that are
subject to either LTL specifications or expected reward specifications.
For the former, we compare to the tool PRISM-POMDP (Norman et al.,
2017), and for the latter to PRISM-POMDP and the point-based solver
SolvePOMDP (Walraven and Spaan, 2017).

For a fair comparison, instead of terminating the synthesis procedure
once the policy satisfies the specification, we always iterate 10 times,
where one iteration encompasses the (re-)training of the RNN-based
policy using counterexamples, the FSC extraction, the evaluations, and
the policy improvement. For instance, for a specification ¢ = P>, (1)),
we leave the \ open and seek to compute Py (1)), that is, we compute
the minimal probability of satisfying 1 to obtain a policy that satisfies
. We cannot guarantee to reach that optimum, but we rather improve
as far as possible within the predefined 10 iterations.

We created the following Python toolchain to realize the full RNN-based
procedure, combining the state-of-the-art tools from deep learning with
those from formal verification. First, we use the deep learning library
Keras (Ketkar, 2017) to train the RNN-based policy from sequences of
data. To evaluate policies, we employ the probabilistic model checkers
PRISM (Norman et al., 2017) and STORM (Dehnert et al., 2017) for
LTL and undiscounted expected reward respectively. We evaluated on a
2.3 GHz machine with a 12 GB memory limit and a specified maximum
computation time of 10% seconds. In Table 9.1 TO/MO denote violations
of the time/memory limit, respectively and Res. refers to the output
value of the induced DTMC.
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Figure 9.4: Physical environments for presented examples.

Problem settings with temporal logic specifications. We examined
three problem settings involving motion planning with LTL specifica-
tions. For each of the settings, we use a square gridworld of length ¢
with 4 action choices (cardinal directions of movement). The motivation
for gridworld examples is that they provide a minimal safety check: a
policy that fails to behave safely in such simple environments is also
unlikely to behave safely in the real world (Leike et al., 2017). Inside
this environment, there are a set of static (#) and moving (Z) obstacles
as well as possible target cells G; and Gbs.

The agent has a limited visibility region, indicated by the green area, and
can infer its state from observations and knowledge of the environment.
We define observations as Boolean functions that take as input the
positions of the agent and moving obstacles, see Figure 9.4a. Intuitively,
the functions describe the 8 possible relative positions of the obstacles
with respect to the agent inside its viewing range. The three problem
settings are as follows:

1. Navigation with moving obstacles—An agent and a single
stochastically moving obstacle. The agent task is to maximize the
probability to navigate to a goal state A while not colliding with
obstacles (both static and moving): ¢ = Ppax (X UG1) with
X=zUz,

2. Delivery without obstacles—An agent and static objects (land-
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marks). The task is to deliver an object from G; to G2 in as few
steps as possible: o = Epax (O(G1 A O Ga)).

3. Slippery delivery with static obstacles—An agent where the
probability of moving perpendicular to the desired direction is
0.1 in each direction. It attempts to maximize the probability to
travel from location G and to Go without colliding with the static
obstacles #: p3 = Piax (OC G1 A OO G A =0 X)), with X = 2.

Problems settings for maximizing expected reward. For comparison
to existing benchmarks, we extend a well-known POMDP example
Maze(c) for an arbitrary-sized structure. These problems are quite
different to the LTL examples, in particular the significantly smaller
observation spaces, see (Carr et al., 2021) for details.

1. Grid-based Maze(c) with ¢+ 2 rows—The agent can only
detect its neighboring walls and attempts to reach a goal state
G in as few steps as possible, see Figure 9.4b for Maze(1). Extra
rows add uncertainty over the agent’s position in the corridors,
see the blue observations in Figure 9.4b.

2. Grid(c) with restricted vision—A square grid with length
¢ where the agent attempts to reach a goal state GG at the top
right of the square. The agent is placed in the grid according to a
uniform distribution of the states and can only observe its exact
location when it reaches the goal state.

Increasing the number of memory nodes improves performance. In
Figure 9.5, we show that increasing the number of memory nodes in the
FSC produces higher performing policies, both in the form of higher
probabilities of satisfying the specification and higher undiscounted
expected rewards. A noticeable characteristic is that for each FSC in
Figure 9.5, there is a point of diminishing returns where the additional
memory does not produce higher quality policies. In most cases, this
point falls between 6 and 8 memory nodes. As a consequence for the
set of benchmarks, unless otherwise specified, we set the upper bound
for the number of memory nodes at Bj, = 8.
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Figure 9.5: Probability of satisfying the specification for agent employing k-FSCs
for Navigation as the number of memory nodes increases. Each point represents the
best performing policy over 10 iterations of the in Figure 9.1. Each FSC begins to
experience diminishing returns at values of Bj, = 6 and higher.

Using counterexample data improves the quality of the extracted
policies. Figure 9.6 compares the number of critical states in a set
of counterexamples in relation to the probability of satisfying an LTL
specification in each iteration of re-training for the proposed method.
In particular, we depict the size of the set of critical states C’mt%z cS
regarding the specification ¢. In Figure 9.6, as the satisfaction probabll-
ity and the expected reward increases, the number of the critical states
identified by the verification decreases. In particular, the retraining of
the RNN-based policy on the sequences of data generated using the
local improvement step is effective in improving the policy with each
iteration.

Using counterexample data generates policies that make less arbitrary
decisions. In Figure 9.7, we ignore the decision at the entropy check,
fix the memory precision, and iteratively add more sequences of data
generated using the counterexamples. Each point in Figure 9.7 represents
one instance of verification in the loop in Figure 9.1. As the RNN-based
policy iteratively trains on additional sequences of data, the subsequent
extracted policy makes less arbitrary decisions, shown in Figure 9.7 by
the decrease in entropy of the FSC as the RNN-based policy is trained
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PRISM-POMDP RNN-based Policy

Problem States Type, ¢ Res. Time (s) Res. Time (s)
Navigation (3) 333 P)'Z, »| 0.84 73.88| 0.80 123.14
Navigation (4) 1088 PMZ o, | 0.937 1034.64| 0.92 160.32
Navigation (5) 2725 PMZ, »1| MO MO| 0.95 311.65
Navigation (10) 49060 PpZ, 1| MO MO| 0.85 2561.02
Navigation (20) 798040 PMZ, o1 | MO MO| 0.98* 8173.03*
Navigation (30) 4045840 PMZ, o1| MO MO| 0.97* 61350.34*
Navigation (40) - PMZ 4| MO MO| TO TO
Delivery (4) 80 EX'Z, oo| -6.0 28.53| -6.04 94.32
Delivery (5) 125 ]ExJ:;[ava P2 -8.0 102.41| -8.13 150.44
Delivery (10) 500 En'Z, ¢»| MO MO| -18.13 347.98
Slippery (4) 460 PXZ . 5| 0.90 5.10| 0.80 180.15
Slippery (5) 730 PoZ, 5| 0.93  83.24| 0.89 212.79
Slippery (10) 2080 P)'Z, o3| MO MO| 0.98 280.55
Slippery (20) 11980 P2°Z. o3| MO MO| o0.99 2384.56
Maze (1) ENZ | -4.30 0.09| -4.33 80.31
Maze (2) EmZ 523  2.176| -5.34 114.23
Maze (5) EnZ |-13.001 4110.50| -13.29 160.12
Maze (10) E)'Z MO MO |-23.02 210.01
Grid (3) ENZ 288  2.332| -2.90 87.31
Grid (4) ENZ 413 1032.53| -4.20 124.31
Grid (5) ENZ MO MO| -5.91 250.14
Grid (10) E)Z MO MO|-12.92 1031.21
Grid (25) ENZ MO MO |-35.32 6514.30

Table 9.1: Computing policies for examples with LTL specifications.
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Figure 9.6: Progression of the number of critical states and the probability of
satisfying LTL specification o1 in Navigation(5)
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Figure 9.7: Entropy of the extracted FSCs for Navigation(5) from an RNN as it is
trained with more samples. Each point represents an extracted FSC, for color sequence
we fix the discretization and add more samples guided by the counterexamples.

on larger sets of training sequences.

Increasing the number of memory nodes generates policies that
make less arbitrary decisions. In Figure 9.7, we also compare how
the number of memory nodes in the extracted FSC correlates to the
entropy of the decisions at critical states. When trained on a large set of
sequences of training data, the FSCs with a higher number of memory
nodes have a lower entropy than those without. This behavior is likely
due the fact that extracted FSC with more memory nodes can better
approximate the RNN-based policy, which itself is making less arbitrary
decisions due to the larger training set. Meanwhile, when the extracted
FSCs are approximating RNN-based policies trained on smaller sets of
training sequences, they generally make arbitrary decisions (see top left
of Figure 9.7). In these cases, the FSC with more memory nodes tend
to make more arbitrary decisions than those with less, which is likely a
function of an under-defined hidden state update $ in the RNN-based
policy.

Limiting the number of memory nodes creates a precision-perfor-
mance trade-off. Increasing the number of memory states in the FSC
produces policies with higher probabilities of satisfying the specification
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and greater expected rewards. In Table 9.1, we include the sizes of the
FSCs for the handcrafted procedure to demonstrate the trade-off be-
tween computational tractability and expressivity: a larger FSC means
that the policy can store more information, which may lead to better
decisions. However, larger FSCs require more computational effort and
may require more sequences of data for training the RNN-based policy.
Figure 9.8 shows the automatically extracted FSC for the Maze(1) envi-
ronment. Note that a 2-FSC can represent the optimal Maze(1) policy.
The FSC shown in Figures 9.8a and 9.8b is very close to this optimal
policy. The stochastic action choices at (no, blue) and at (n1,yellow)
create the suboptimality in this example with the optimal policy taking
the respective up and right actions at these points.

9.2 Case Study: Autonomous Driving in Traffic Lights

Consider the scenario, pictured in Figure 9.9, of an autonomous vehicle
operating in a city with the following sensors:

1. Navigation System (GPS),

2. Optical Camera (Traffic Light Identification),
3. Lidar (Proximity),

4. Radar (Speed).

At each intersection is a set of traffic lights that restrict the available
action choices of the vehicle:

o Red: {Stop},
o Yellow: {Stop, Straight},
o Green: {Stop, Straight, Left, Right}.

The state of each traffic light can be modeled as a Markov chain
where the system switches from red to green and green to orange
with probability p = 0.1, see Fig. 9.9¢c. In this environment there is
a pedestrian, who moves stochastically but with reduced speed. Each
turn, the vehicle takes two actions while the pedestrian can move one
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(b) FSC A, at nq

Figure 9.8: The corresponding FSC A, for Maze(1) example. The agent’s initial
state s; € S\{so} is allocated over a uniform distribution and each color represents
a different observation. The FSC A, has two memory nodes (ng and n1), we prune
action mappings and memory updates with low probabilities from 9.8a and 9.8b.

intersection at a time. While the vehicle must move according to the
status of the lights, the pedestrian is under no such restriction and will
ignore them.

State space description. A state in this system is s = (z,y, 0, 0bs;, obs,, L),
which is the location and direction of the vehicle and the location of
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Figure 9.9: Autonomous car operating in an urban environment modeled as a
gridworld and traffic lights. Each intersection has a decision point for the car who
moves twice for each pedestrian move.

the pedestrian as well as the status of the lights L at each intersection.

Partial observability for the vehicle. The car is only able to see the
traffic lights that are directly in front of it. For example in Figure 9.9a,
the vehicle facing to the right can observe the lights of two intersections
(the middle and the center right). The vehicle uses its optical sensors
to determine the status of the lights. The task of navigating from an
initial position A; to a goal location Ay is modeled as a POMDP, with
a belief on each status of the unseen intersection lights.

Specifications for the vehicle. We demonstrate the effect of differ-
ent specifications on feature splitting. In particular, we describe three
scenarios where the POMDP problem differs based on the safety task
and the sensors that autonomous vehicle uses to measure the relevant
features.

o Fastest trip to goal—The vehicle attempts to navigate the
changing lights to ensure the vehicle reaches the goal location As

(¢ =< Ag).

e Pedestrian never follows car—The vehicle attempts to en-
sure the pedestrian cannot read the number plate of the back
of the car. To read the plate the pedestrian must be behind the
car (for example when the car faces east the label is defined
by B = ((x —obs;) = 1A (y — obsy) =0)) for two consecutive
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(a) A violating path in Carla environment (b) A satisfying path in Carla environment

Figure 9.10: Example paths in the autonomous vehicle case study. The vehicle
must avoid speeding past the pedestrian which would violate specification ¢¢.

turns—described by ¥ = =0 (B A O B)UAz. The vehicle uses
the lidar proximity sensor to construct the relevant feature that
determines its relative position to the pedestrian.

e Vehicle cannot speed within vicinity of pedestrian—The
vehicle moves twice for every one action cycle. Accordingly, we
define “speeding” as moving straight a; twice through the green
lights. For this specification, we utilize a lidar to sense the relative
position as well as the radar to test speed. g = =< ((a1 A Oay) A
pedUAs where ped is when the pedestrian within one space of
the vehicle, defined by ped = |z — obsg| + |y — obs,| < 1.

Figure 9.10 shows the difference between a vehicle path that violates ¥¢
and one that satisfies ¥g. In Figure 9.10a, the vehicle at the intersection
with the pedestrian, having previously taken straight, takes the same
action again. This action causes the label ((a; A Oay) Aped) to be True
and since it occurs prior to the vehicle reaching As, this path violates
specification ¥g. In Figure 9.10b, an alternate satisfying path has the
vehicle turning right at this intersection.

9.2.1 Experiments on the CARLA High-Fidelity Driving Simulator

For the high-fidelity autonomous vehicle simulation, we implement the
computed policies on the open-source simulator CARLA (Dosovitskiy
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Table 9.2: Synthesis times for autonomous vehicle POMDP

Case (grid size) Spec. Size (states) Time (s) Result V7(bg)
Autonomous Vehicle (3) 2916 50.65 3.75
Autonomous Vehicle (3) ¢p 26244 350.23 6.42
Autonomous Vehicle (3) ¢ 26244 475.23 4.5
Autonomous Vehicle (4) 708588 -TO- -TO-
Autonomous Vehicle (4) p 6377292 -TO- -TO-
Autonomous Vehicle (4) 9a 6377292 -TO- -TO-

Figure 9.11: Output policy for vehicle at s = (2,0, west,2,0,L) (or at t = 1 in
Figure 9.10). The straight action would result in a violation of specification ¢ while
taking right leads to a path like that in Figure 9.10b.

et al., 2017). We run CARLA 0.9.11 on a 3.1 GHz machine with a
GeForce RTX2060 graphics and 32GB of memory. Table 9.2 contains
the model sizes, synthesis compute times and the expected values for
city-grids of size 3 and 4.

In Figure 9.11, we see the synthesized policy for the situation that
occurs at the pedestrian intersection in Figure 9.10. The computed
policy rules out the choices of straight and left.
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Some Future Directions

We have seen how formal methods can assist with validating system
models and generating provable guarantees. However, the increasingly
complex structures necessary for implementing today’s systems open
new problems. In this section, we examine some paths for further
developing formal methods that still contain a rich set of questions
to answer. In fact, we show that formal methods must intersect with
other areas to produce formalisms and tools for better validating and
confidently assuring engineered systems. These intersections include
but are not limited to fields such as learning, security, regulation, and
certification.

10.1 Formal Methods for Reinforcement Learning

Reinforcement learning (RL) algorithms search for policies that are
optimal with respect to user-specified objectives. These algorithms allow
for goal-oriented descriptions of complex behaviors and they provide
a high degree of flexibility; they can be applied even when the system
dynamics are high-dimensional, stochastic, and unknown (Sutton and
Barto, 2018; Bertsekas, 2019; Powell, 2022).

192
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Recently, deep RL algorithms—which use neural networks to parame-
terize value and policy functions—have demonstrated empirical success
in a variety of applications: e.g., controlling plasma configurations in a
nuclear fusion reactor (Degrave et al., 2022) and playing Chess, Shogi,
and Go at superhuman levels (Silver et al., 2018). In these examples,
the application of neural networks enables approximate solutions to
problems in decision and control that would otherwise not be possible;
the state and action spaces of these examples are too large for exact
solution computed via dynamic programming algorithms.

However, there remain barriers to the deployment of RL algorithms in
many engineering applications. Autonomous vehicles, power systems
management, and robotic systems are examples of complex application
domains that require strict adherence of the system’s behavior to stake-
holder requirements. However, the verification of RL policies is difficult.
This is particularly true for deep RL algorithms, which typically only
output the learned policy and its estimated value function, rendering
their resulting behaviors opaque to further verification and analysis.
The introduction of techniques borrowing from formal methods is nec-
essary for the development of RL algorithms that yield behaviors with
verifiable properties. To achieve this aim, we require frameworks to
incorporate verifiable models into RL algorithms.

For example, given some temporal logic specification Alshiekh et al.
(2018) synthesize reactive systems called shields, which prevent reinforce-
ment learning systems from taking unsafe actions with respect to the
specification. Meanwhile, a number of works have studied the use of RL
as a method of controller synthesis for temporal logic objectives (Hahn
et al., 2019; Hasanbeig et al., 2019b; Bozkurt et al., 2020; Hasanbeig
et al., 2019a). While Wen et al. (2017) and Djeumou et al. (2021) use
linear temporal logic formulas as side information that constrains the
outputs of inverse reinforcement learning algorithms.

A general framework that brings verifiable models into reinforcement
learning algorithms is that of the reward machine—a type of finite
state machine used to encode reward functions in RL problems (Toro
Icarte et al., 2022). These structured task representations can encode
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non-markovian tasks, and they can be exploited to improve learning
efficiency (Icarte et al., 2018; Xu et al., 2020; Icarte et al., 2019) and to
automatically translate specifications given in formal languages, such as
linear temporal logic, into reward functions (Camacho et al., 2019). In
the context of multiagent RL, Neary et al. (2021) use reward machines
to specify multi-agent tasks, and to decompose these tasks into subtasks
to be learned by individual agents through decentralized RL algorithms.
The authors use the structure of the reward machines to prove conditions
under which the resulting learned behavior is guaranteed to accomplish
the original task.

Beyond the framework of reward machines, compositional design of RL
systems can be used to greatly reduce the complexity of, and to more
easily verify, individual subsystems. By creating well-defined interfaces
between subsystems, system-level requirements may be decomposed
into component-level ones. Conversely, each component may be devel-
oped and tested independently, and the satisfaction of component-level
requirements may then be used to place assurances on the behavior of
the system as a whole. Towards these ends, Neary et al. (2022) propose
a framework to verify compositional RL systems against probabilistic
task specifications. The framework builds a high-level system model,
represented as a Markov decision process, which is used for high-level
planning and to automatically generate subtask specifications for the
low-level subsystems, each of which is implemented as an independent
RL agent. Jothimurugan et al. (2021) similarly build compositional RL
systems by using a graph-based representation of high-level tasks, and
by using RL-based controllers to accomplish all necessary subtasks.

The above references provide examples of ways in which properties of RL-
trained policies may be verified. Future work that continues to develop
such frameworks and that applies them in experiments is necessary
for the eventual deployment of trustworthy autonomous systems that
incorporate RL-trained components.
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10.2 Operating Under Limited Information and Concealing Infor-
mation

The operation of autonomous systems relies on the information flow
both within the components of the system and between the system and
its environment. Most of the formal methods for autonomous systems
discussed in this review inherently assume that this information flow is
perfect. For example, numerical operations can be carried out with full
accuracy, the sensor inputs are not quantized, and the communication
channels are not noisy. However, in reality, the information is distorted
in many ways due to both the system’s internal design and the envi-
ronmental factors. For example, cyber-physical systems typically have
bandwidth limitations that require the sensor and controller outputs
to be quantized (Franceschetti and Minero, 2014). In addition to these
naturally occurring distortions, the information flow to the system may
be adversarially modified.

The dependency on information brings multiple questions: What are the
possible sources of distortion? What is the lowest amount of information
that can ensure the safe operation of a system? How can we modify
the existing formal methods for autonomous systems to account for
these distortions? As an answer to these questions, early works from
control theory show that the stability of a dynamical system imposes a
lower bound on the information rate of a system (Nair and Evans, 2004;
Franceschetti and Minero, 2014). For the discrete dynamical systems,
Tanaka et al. (2021) and Eysenbach et al. (2021) provided methods that
limit the information flow between the components of a system that is
modeled with a Markov decision process. In the context of multi-agent
systems, Wang et al. (2020) and Karabag et al. (2022) minimize the
information shared between the agents to improve the performance
under communication loss. In the case of an adversarial corruption
of information flow in deterministic systems, we can represent the
adversary as an additional player, represent the synthesis problem as a
two-player game, and utilize the reactive synthesis methods mentioned
in Section 5.1.

On the flip side, an autonomous system must not leak critical informa-
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tion about itself to maintain the success of its operation. There is a
growing literature on minimizing the information leakage of a system
by considering concepts such as opacity (Saboori and Hadjicostis, 2007;
Tong et al., 2018; Bérard et al., 2015), privacy (Such, 2017; Gohari et al.,
2020), deceptiveness (Zhang and Zhu, 2018; Karabag et al., 2021), and
estimation error (Farokhi and Sandberg, 2017; Karabag et al., 2019).
There is a trade-off between minimizing the information leakage by
considering such concepts and the performance of the system. However,
minimizing the information leakage gives robustness to the system
against its adversaries, thereby maximizing the performance in the long
run.

10.3 Safeguarding Information Privacy in Autonomous Decision-
Making Systems

In this survey, we mainly addressed the safety implications of au-
tonomous decision-making systems. In particular, we surveyed papers
that generally study the problems of policy synthesis and verification
with respect to certain mathematically and formally specified objectives;
for example, we frequently revisited the case study of an autonomous
vehicle that must avoid crashing into obstacles and adhere to certain
traffic rules formulated via temporal logic. While such developments
are crucial to safeguarding the safety of the individuals whose daily
lives will be affected by the deployment of autonomous decision-making
systems, the societal impacts of these systems may extend far beyond
the matters discussed in this survey; these systems often incorporate
confidential, proprietary, operational, personal, or otherwise sensitive
information in their decision-making algorithms, which raises privacy
concerns.

Markov decision processes have been a major part of the formulation
of many policy synthesis and verification problems discussed in this
paper. Gohari et al. (2020) study a policy-synthesis problem in which it
is within the privacy interests of a decision-maker to keep the transition
probabilities of the underlying Markov decision process confidential
while publicly taking actions according to synthesized policy. The paper
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uses the framework of differential privacy to obfuscate the transition
probabilities and then synthesizes a policy based on the obfuscated
transition probabilities using dynamic programming. Then, the differ-
ential privacy of the overall synthesis algorithm becomes immediate
due to differential privacy’s immunity to post-processing. Although
the proposed policy-synthesis algorithm addresses some of the named
privacy concerns, it is not clear how the algorithm can satisfy a set
of safety specifications, especially that differentially private algorithms
are known to often trade off utility. Future work that incorporates the
approaches discussed in this survey may be a potential solution to this
issue.

Recall that, in Section 9, we reviewed an approach for policy synthesis
and verification in which the policy is represented via recurrent neural
networks. There exists mounting evidence that processing data in the
form of training neural networks has privacy ramifications for the
training data (Mireshghallah et al., 2020). Yang et al. (2021) show that
the privacy ramifications of training recurrent neural networks can be
worse than conventional feed-forward neural networks, especially in the
task of deep reinforcement learning which is closely related to the policy-
synthesis problem discussed in Section 9. The authors further study
mitigation methods that leverage the promise of differential privacy
by perturbing the trainable parameters of the neural network under
protection. In this case, it must be further studied how the perturbations
in the name of differential privacy affect a policy’s ability to satisfy a
given set of safety specifications.

10.4 Explainability in Verification and Synthesis

Formal methods such as model checking (Baier and Katoen, 2008) are
capable of verifying human-generated robotic mission plans against a
set of requirements (Humphrey and Patzek, 2013). In cases in which
the plans may violate the requirements, such techniques generate coun-
terexamples that illustrate requirement violations and provide valuable
diagnostic information (Wimmer et al., 2014; Feng et al., 2016a). Nev-
ertheless, these artifacts may be too complex for humans to understand,
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because existing notions of counterexamples are defined as either a set
of finite paths or an automaton typically with large number of states
and transitions.

Counterexample generation for model checking Markov decision pro-
cesses has been studied in several works using different representations
of counterexamples: Han et al., 2009 computes the smallest number
of paths in a Markov decision process whose joint probability mass
exceeds the threshold and formulates the counterexample generation as
a k-shortest path problem; (Wimmer et al., 2014) computes a critical
subsystem of a Markov decision process with the minimal number of
states and proposes solutions based on mixed-integer linear program-
ming (MILP) and SAT-modulo-theories. There are several attempts
to generate human-readable counterexamples: (Wimmer et al., 2013)
computes a minimal fragment of model description in some high-level
modeling language (e.g., probabilistic guarded commands), while (Feng
et al., 2016a) computes structured probabilistic counterexamples as
a sequence of “plays” that capture the high-level objectives in UAV
mission planning. Feng et al. (2018) define a notion of explainable
counterexample, which includes a set of structured natural language
sentences to describe the system behavior that lead to a requirement
violation in an MDP model of a robotic mission plan. They propose an
approach based on MILP for generating explainable counterexamples
that are minimal, sound and complete.

The study of natural language for robotic applications has mostly
focused on translating human instructions expressed in natural language
to robotic control commands. For example, Hayes and Shah (2017)
considers the problem of synthesizing natural language descriptions
of robotic control policy. Lignos et al. (2015) present an integrated
system for synthesizing reactive controllers using natural language
specifications which are translated into linear temporal logic formulas.
If unsynthesizable, the minimal unsynthesizable core is returned as a
subset of the natural language input specifications.
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10.5 Regulation

Regulatory requirements have to be incorporated when deriving speci-
fications for safety-critical systems. Autonomous driving, for instance,
is one of the fast-growing domains where regulation plays a significant
role. Regulatory requirements, in this case, include the rules of the road
and traffic regulations. Some rules, however, are ambiguously stated
and include implicit assumptions related to the capability and rational-
ity of human drivers. Such ambiguity potentially leads to inconsistent
interpretation of the rules among different developers, complicates the
design process, and ultimately jeopardizes the safety and efficiency of
the system.

The lack of precise specifications has been acknowledged both by indus-
try and academia (Shalev-Shwartz et al., 2017; Phan-Minh et al., 2019;
Censi et al., 2019; Harel et al., 2022) and is a significant impediment
towards formal methods realizing their full potential in this domain.
Furthermore, without a clear description of how autonomous vehicles
should behave, especially around dynamic objects such as humans and
other vehicles, a common practice is to start with an implementation of
specific behaviors and evaluate it based on simulation and testing. This
approach is costly, as evidenced by the delay of deploying autonomous
vehicles from the original estimate of 2020 (Anderson, 2020). Having
a precise specification not only speeds up the development process
but also ensures transparency and predictability of the system while
giving the developers the flexibility of picking an implementation that
leads to admissible behaviors as defined by the specification. Finally, it
equips the regulators with an objective measure to validate autonomous
vehicles.

Censi et al. (2019) make an initial attempt to tackle this problem by
introducing frameworks for describing these specifications. The focus of
these initial works is on the structure of the specifications that allows
trajectories to be evaluated based on the violation of individual rules,
which incorporate different factors such as safety, law, ethics, culture,
etc. Systematic approaches to derive the specifications, taking into
account these factors, however, remain an open problem.
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10.6 Dynamic Certification

In addition to more conventional versions of regulation that focus on
requlatory requirements, autonomous systems require a more proactive
approach to certification. Such dynamic approaches use formal methods
as a form of design guide, to give a quick and inexpensive way of circling
through different scenarios and contexts where the system ought to
behave as expected. This type of dynamic certification is the iterative
revision of permissible (use, context) pairs for a system—rather than
prespecified tests that a system must pass to be certified (Bakirtzis et
al., 2022b), meaning that we can only certify for particular operational
requirements and environments and can never fully guarantee any
system-level requirements preserve in any deployment scenario.

Specifically, dynamic certification is based on applying testing that is
informative to the different stages of a systems lifecycle, from early
to transitional to finally confirmatory. These testing phases are not
executed linear and testing is not expected to certify for any context.
Rather, the expectation of testing, compared to more traditional meth-
ods within certification where the goal is to be certified, is continual
and inputs of new contexts must again be tested through a series of
living documents (e.g., capturing changing requirements within formal
models), simulations (e.g., congested environments vs. open areas), and
controlled environments before deployment (e.g., testing car tracks).

The output of dynamic certification is acceptable scenarios of operation,
including but not limited to identified and potentially mitigated haz-
ardous states, admissible environments of operation (e.g., congested vs.
non-congested streets for an autonomous car), and modified system-level
requirements. While the word output might suggest that the process
terminates, the expectation is closer to “terminates yet starts again”:
Given that autonomous systems operate in changing environments it
is natural to suggest that dynamic certification must apply to those
changes. Having done dynamic certification for a (use, context) pair,
however, only needs to document and test the changed parameters and
do a form of regression testing in models, simulations, and controlled
environments to make sure those changes do not break our overall
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assumptions and guarantees.

Autonomous systems rely on two types of decision-making: design and
deployment decisions. Design decisions concern the structure and in-
tended operation of the autonomous system, which can include criteria
and metrics of correct behavior and revisions to system requirements,
behaviors, and architectures (reflected to formal models, testings proce-
dures, and controlled environment parameters). Deployment decisions
concern the contexts and uses for the autonomous system, including
what hazardous states ought to be eliminated or mitigated against.
Dynamic certification considers both.

Further research in autonomy is paramount to achieve a level of gran-
ularity that accounts for design and deployment decisions and their
associated models and testing, particularly when dynamic certification
is partially implemented with formal methods. Such thrusts can include
finding more economical ways to compute formal models, addressing un-
certainty to better match environmental parameters, and accounting for
learning algorithms that are composed with traditional control-theoretic
methods.
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