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SMALL A,, RESULTS FOR DAHLBERG-KENIG-PIPHER. 

OPERATORS IN SETS WITH UNIFORMLY 

RECTIFIABLE BOUNDARIES 

GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA 

Apsrracr. In the present paper we consider elliptic operators L = — div(AV) 
in a domain bounded by a chord-are surface I with small enough constant, and 

whose coefficients A satisfy a weak form of the Dahlberg-Kenig-Pipher condi- 
tion of approximation by constant coefficient matrices, with a small enough 
Carleson norm, and show that the elliptic measure with pole at infinity associ- 
ated to L is A.o-absolutely continuous with respect to the surface measure on 
T, with a small A. constant. In other words, we show that for relatively flat 

uniformly rectifiable sets and for operators with slowly oscillating coefficients 
the elliptic measure satisfies the A.. condition with a small constant and the 

logarithm of the Poisson kernel has small oscillations. 
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1. INTRODUCTION AND MAIN RESULTS 

Recent developments have showed that for the class of Dahlberg-Kenig-Pipher 
operators the elliptic measure is absolutely continuous with respect to the Hausdorff 
measure on all uniformly rectifiable sets with some mild topological conditions (we 
will provide the relevant list of references below). The conditions on the operator 

and on the geometry are both essentially necessary and in fact, one can establish 
the equivalence of the aforementioned geometric features of the domain to the 
property of absolute continuity of harmonic measure . The present paper 
focuses on the “small constant” version of these results, showing, roughly speaking, 
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7858 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA 

that for relatively flat domains and for slowly oscillating coefficients, the elliptic 
measure is Ax with respect to the Hausdorff measure with a small norm and 
that the oscillations of the logarithm of the Poisson kernel are small. This turned 
out to be surprisingly non-trivial primarily because the standard methods of work 
with Carleson measures, uniform rectifiability and related notions “bootstrap” and 
hence, enlarge the constants. 

To be precise, in this paper we prove small A, estimates for the elliptic measure, 
with pole at infinity, of a divergence form elliptic operators L = —div(AV), with a 
matrix of coefficients A that satisfies a weak Dahlberg-Kenig-Pipher condition (see 
the definitions below) with a small corresponding Carleson norm. We will do this 
both in the upper half-space R¢*! and in any of the two connected components 0 
bounded by a Chord-arc surface with small constant Tc R4*!. 

Concerning the special case of R4*!, this paper can be viewed as a continuation 
of a paper of Bortz, Toro, and Zhao [BTZ23], where a similar result was proved 
in the vanishing case. That is, they assume in addition that the Carleson measure 
associated to A has a vanishing trace, as in Definition [3] and get that the elliptic 
measure with pole at infinity is A, with respect to the Lebesgue measure on R¢, 
with a vanishing constant. We can use their result, plus a compactness argument, 
to say that if our result were not true on R4*!, we would be able to construct a 
counterexample to their result too. But one can also deduce this from 
and a more recent result of Bortz, Egert and Saari [BES21]. Let us say a bit more 
about this. The result of [BTZ23] is based on estimates for the Green function for 
L (with a pole at infinity), which come from and, to go from the Green 
function to the elliptic measure, a lemma of Korey 98] on weights, which itself 
is a vanishing constant variant of a result of Fefferman, Kenig and Pipher [FKP91]. 
Surprisingly, due to the nonlinearity of the problem, the small constant variant of 
these results on weights cannot apparently be deduced from and [Kor98], 
but it was finally proved by Bortz, Egert and Saari [BES21]. In view of this, our 
proof by compactness is no longer needed, but we still present it as an appendix, 
because we believe that it is interesting in its own right, in particular because it 
contains the necessary tools for taking care of the dependence on A in the weak 
DKP context. By contrast, [BES21] is more direct and concerns a much more 
general situation with weights. After an earlier version of this article was completed, 
Joseph Feneuil pointed out to us that the small Ax result for the half-space case 
could be also obtained by combining the argument in and the perturbation 
result of [MPTI4], which would give a shorter and more direct proof of the result 
for operators satisfying a slightly stronger condition, namely, the DKP condition 
(see the remark after Definition [Z10) with sufficiently small constant. 

Now let us discuss the case of Chord-are surfaces with small constant (CASSC). 
These were introduced by Semmes in [Sem89|Sem90b|Sem90a], and they can also 
be seen as the correct notion of uniformly rectifiable sets with a small constant, a 
small generalization of Lipschitz graphs with small constant. The most convenient 
definition for us will be by “very big pieces of small Lipschitz graphs” (see Defi- 
nition (13), but many other definitions are equivalent. We will say more about 
CASSC in Section J] and in particular we will check that if P is a CASSC, then 
R‘+!\ T has exactly two connected components, which are both NTA domains. 
Our main result is that if 9 is one of these components, and the elliptic operator 
L = ~div(AV) satisfies the weak DKP condition on Q (see Definition [L10), with 
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SMALL Ax RESULTS 7859 

a small enough norm, then the corresponding elliptic measure on I’, with pole at 
infinity, is absolutely continuous with respect to the Hausdorff measure on I’, with 
a small Ax density (see Definition [LI5). 

The main case will be when [ is a Lipschitz graph with small constant, and will 
be deduced from the case of R¢+! with a suitable change of variable from Q to 
R4*". Here the point is that the distortion coming from the change of variable is 
compatible with the weak DKP condition. After this, we will go from small Lips- 
chitz graphs to CASSC with a comparison argument, where we put small Lipschitz 
domains outside of with a large boundary intersection. See Corollary [20] for 
the precise statement. Typically, one might want to approach Q from inside by 
a Lipschitz graph (see Lemma [Z.10) as the comparison of elliptic measures in two 
domains would be easier. However, this approach would not work in our situation 
as the weak DKP condition does not cooperate well when restricting to subdo- 
mains. Therefore, we approximate Q by small Lipschitz graphs from outside and 
need, somewhat unconventionally in this context, to extend the coefficients to the 
Lipschitz domains. 

Let us now give more precise definitions and state the main results. We will be 
working on the domain Q c R4+!, bounded by TP, which will either be a CASSC 
(defined below) or R¢. Points of I will be denoted by lower-case letters (like 2), 
and points of Q by upper-case letters (like X). For a €T and r > 0, we shall use 
the Carleson boxes 

(1.1) T(«,r) = 20 B,(2), 
where B,(«) = B(«,r) denotes the open ball in R¢+!, the surface balls A(«,r) = 
B(a,r) AT, and the Whitney boxes 
(1.2) Wo(a.r) = {X € 20 B, (a); dist(X,P) > r/2} c T(e.1). 

We now introduce Carleson measures on Px (0, +00). There is a similar notion 
of Carleson measures on Q, which will not be needed here, but notice that in the 
special case of R4*, the two notions are the same. 

Definition 1.3 (Carleson measures on I x (0,+00)). A Carleson measure on I x 
(0, +00) is a nonnegative Borel measure jz on Px (0,-+0c) whose Carleson norm 

. -d 
(14) WlHlle = sup r “p(A(x,r) x (0,7) 

(2,r)ET x (0,400) 

is finite. We use C, or Co, or C(I x (0, +90)) to denote the set of Carleson measures 
on TI x (0, +00). 

We say that jz is a Carleson measure on I’ x (0, +00) with vanishing trace when 
wis a Carleson measure on Tx (0, +00) and 

(1.5) lim sup sup r~4y(A(x,r) x (0,r)) = 0. 
ro>0 Qer<ro weP 

For any pair (79,79) € Tx (0, +00), we use C(o,r9) or sometimes C(Ao) when 
we work with Ap = A(ao,r9), to denote the set of Borel measures satisfying the 
Carleson condition restricted to Ag x (0,79), i.e., such that 

sup r~4n(A(x,r) x (0,r)) < +00. 
(2,r)EP x (0,ro),B(x,r)C B(x0,70) 

(1.6) Wlle(ao.re) 

We shall consider operators in divergence form L = —div(AV), where A = 
[aij(X)] : © + Mus (B) is a matrix-valued function, which is elliptic, as follows. 
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7860 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA 

Definition 1.7 (Elliptic operators). Let 9 > 1 be given. We say that L = 
—div(AV) (and by extension the matrix-valued function A) is g-elliptic on Q 
when 
(1.8) 

(A(X)E,¢) < po lf| || and (A(X)E.€) > wot |g? for X €O and En ERM, 
We say that L (or A) is elliptic when it is jro-elliptic for some po > 1. Finally we 
denote by %o(400) the collection of all constant jio-elliptic matrices. 

We are ready to define the weak DKP condition. Let jp > 1 be given. We use 
the following quantity to measure the closeness of a jio-elliptic matrix A = A(X) 
to constant coefficient matrices. For x € T and r > 0, we define 

Ape%o(Ho) 
XeW(z,r) 

(1.9) aa(e.r)= inf { # lace) aa} 

Notice that we only integrate on the Whitney box, but it turns out that since P 
is nice, a Carleson measure condition on the a.4(«,r) also yields a similar control 
on the larger numbers y,4(x,r) where you integrate on the full box T(«,r); see 
Lemma [A.29] Also, we required the constant matrix Ao to be so-elliptic, but if we 
did not, we would still get an equivalent mumber @.4(x,r); use Chebyshev or see 
[DLM22]. 

Definition 1.10 (Weak DKP condition, vanishing weak DKP condition). Let A 
be a po-elliptic matrix-valued function on Q. 

We say that A satisfies the weak DKP condition with constant M > 0, 
when the measure j: defined by dj(a. )2de@ar 
measure on I’ x (0, +00), with norm 

ydela)ar | 
r | c 

is a Carleson 

<M, (1.11) MA) = Jeter r 

and where we called ¢ = H¢. the surface measure on P. 
We say that A satisfies the vanishing weak DKP condition if j: defined 
by dy(a,r) = a.4(x,r)?2* js a Carleson measure on I’ x (0, +00) with 
norm vanishing trace. 

The weak DKP condition is a weaker version of the celebrated Carleson condition 
popularized by Dahlberg, Kenig, and Pipher (DKP), which instead demands that 
@a(x,r)? 4%" satisfies a Carleson measure estimate, where 

Waar) =r sup IVA s)|. 
(y.s)€ 

In 1984, Dahlberg first introduced this condition, and conjectured that such a 
Carleson condition guarantees the absolute continuity of the elliptic measure with 

respect to the Lebesgue measure in the upper half-space. In 2001, Kenig and Pipher 
proved Dahlherg’s conjecture. More precisely, they show that the DKP 

condition guarantees that the corresponding elliptic measure is A, with respect to 
the surface measure in Lipschitz domains. Let j and v be two non-negative Borel 
measures on I. We say that jr € Ax.(v) if there exists C,, > 0 such that for any 
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surface ball A CT and any E c A, we have 

u(E) u(E)\" u(E) u(E)\" 
(12) tay sC(Sa3) aay <¢ (Say) 
We refer the readers to [CET] for equivalent definitions of Ax, 

The weak DKP condition was first introduced in [DLMZ3), in connection with 
the regularity of the Green function. In the aforementioned recent work of Bortz, 

Toro and Zhao [BTZ23} (BTZ23}, the authors show that the weak DKP condition is sufficient 

for Aj. of the elliptic measure in the upper half-space (see Lemma [A2) 
Next we recall our main condition on T. We use the simplest definition of 

CASSC for our purposes, and will provide further comments later in Section [I] 

Definition 1.13 (Chord-are surfaces with small constant). Let ¢ € (0,107!) be 
given. Let Tbe a closed, unbounded set in R¢+!, We say that P is a chord-are 
surface with constant ¢, and we write P € CASSC(<), when for « €T and r > 0, 
we can find an ¢-Lipschitz graph G,,, that meets B(«,r/2) and such that 

(1.14) HATO Bix,r) \ Gen) + H"(Ge 9 B(x.r) \T) < erd 
By e-Lipschitz graph, we mean a set G = {a + A(a); 2 € P}, where Pc R41 

is a vector hyperplane, A: P + P+ is a Lipschitz function with norm at most ¢, 
and P+ is the vector line orthogonal to P. 

In this paper, 92 will always be one of the two connected components of I’, where 
cither T is the hyperplane R? c R¢*?, or P € CASSC(e) for a small enough ¢ > 0. 
In both cases, Tis uniformly rectifiable, satisfies the (two-sided) NTA condition, 
and for X € Q there is a standard definition of the L-elliptic measure w* with 
pole at X and the Green function G;(X.Y), Y € , as long as L is elliptic. As 
we mentioned before, since in addition A satisfies the weak DKP condition, w* is 
even absolutely continuous with respect to the surface measure ¢ = Hi. and the 

density 92 is an Ax weight when T = R¢ by We will see that this is 
also true when T ¢ CASSC(<). With the usual DKP condition, this is known and 
is stated in [HMM*21], but factually is a straightforward combination of 
with as the domains in question are NTA. However, the main point of the 
paper is not the weaker DKP condition, but the fact that the A.. constant is as 
small as we want. 

Our main statement will be easier to state with the elliptic measure w® with a 
pole at infinity which we will define in Section BJas a normalized limit of measures 
* with |X| tending to infinity. One advantage, compared to the usual collection 

of measures {w*}, X € Q, is that A. is easier to define. Appropriately modified 
statements are valid for the case of a finite pole as well, and will be stated below. 
Recall that ! € CASSC(¢) for a small enough ¢ > 0, and that ¢ = Hip. 

Definition 1.15 (Ax with small constant). Let 6 € (0,107!) be given; we say 
that the positive Borel measure w on T lies in Ax(¢,6) when 

|#(E) _ o(E)| — - <b 
1#(A) oA), 

for every surface ball A = B(w,r) OT and every Borel subset E c A. 

(1.16) 

1In fact, they prove the result for C!-square domains 
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7862 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA 

We will see later that this is also equivalent (modulo the precise value of 6) to 
saying that w is absolutely continuous with respect to o, and the corresponding 
density k = 42 is such that || log(k)\| pro <7, where 7 tends to 0 with 5. Notice 
that none of the two conditions change when we multiply ¢ or w by a constant. 

The main result of the present paper can be formulated as follows. 

Theorem 1.17. For every 6 > 0, we can find ¢ > 0 that depends only on 6, d, 

and ji, such that if fT € CASSC(e), L = —div AV is an elliptic operator with 
ellipticity 1, which satisfies the weak DKP condition with norm N(A) < €, then 
the associated harmonic measure w® lies in Ax.(o,6). 

As we shall see in Corollary [5-24] we can replace the conclusion with the essen- 
tially equivalent fact that w is absolutely continuous with respect to ¢ = Ht. and 

its density 42 satisfies 

(1.18) | 
BMO(r) 

We also have analogous local results, where we consider the elliptic measure wX 
with a finite pole, but then need to restrict to small enough balls. 
Theorem 1.19. For every choice of 5 > 0 and > 1, we can finde = ¢(6,d, 419) > 0 
and = 7(6,d, 0,8) € (0,1) with the following properties. Suppose ! €CASSC(c), 
and L = —div AV is an elliptic operator with ellipticity 1 which satisfies the weak 
DKP condition with norm 9(A) <<. Let X €Q be given, and denote by w* the 
elliptic measure on T associated to L and with pole at X. Then 

|wX(E) _ o(B)| 
|eX(A) aA) 

for every surface ball A = B(a.r) OT such that A Cc B(X,xdist(X,P)) and 0 < 
r <rdist(X,T), and every Borel subset EC A. 

Theorem [L.19] will be deduced from Theorem [L-T7Jat the end of Section 2] and 

we will see in Corollary [524] that (£20) can be replaced by the fact that k = 4 
is defined on A, and || log(k)|| parocay <6. 

The rest of this paper is organized as follows. In Section] we recall definitions 
and some well-known properties of the elliptic measures and the Green function. We 
also deduce the local version (Theorem [-19) of Theorem [LT7] using Lemma 2.17] 

that allows us to compare elliptic measures with different poles. In Section Bl 
we define a change of variables that allows us to prove Theorem [17] for small 
Lipschitz graphs. In Section J] we treat the CASSC case, using the result for 
small Lipschitz graphs. In Section 5] we define BMO and VMO, and show the 
relations between BMO (with a small semi-norm) and Aq (with a small constant). 
In Appendices [A]and B] we give a proof of Theorem [LI7]in the special case of the 
upper half-space; we assume the theorem is wrong and construct coefficients with 
the vanishing weak DKP condition that would make the theorem of fail. 

We check in Appendix [B] the lemma that allows to compute the harmonic measure 
for a limit of weak DKP elliptic operators. 

(1.20) <6 

2. GREEN FUNCTIONS AND HARMONIC MEASURE WITH A POLE AT INFINITY 

Let Pc R4+! be a CASSC, and L = —div AV be a divergence form elliptic 
operator on Q, one of the components of R4+!\P. In this section, we only use 
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the ellipticity of L, the Ablfors regularity of T, and the NTA character of @ (see 
Section), and recall the definition and basic properties of the Green function and 
elliptic measure with a pole at infinity. 

We start with the L-elliptic measure with a pole in Q. Recall that for X € ©, 
there exists a unique Borel probability measure w* = wt on OQ, such that for 
f € C%(AQ) the function 

W(X) =f Fly) dew) 
an 

is the unique weak solution to the Dirichlet problem 

(Dr Lu=0 inQ, 

ulan = f 

satisfying u € C(Q) and u(X) > 0 as |X| + 00 in Q. We call w the L-elliptic 
measure (or the elliptic measure corresponding to L) with pole at X. 

We can also associate to L a unique Green function in 9, Gz(X,Y) : 2 x 
Q \ diag(Q) + R with the following properties (see e.g. [HMTT7): Gz(-,Y) € 
Wie (Q\ {¥}) NC@\ {Y}), Ex(-.Y)| gq = 0 for any Y € Q, and LGz(-,Y) = dy 
in the weak sense in Q, that is, 

(2.1) [[acoyxeux.y)- vex) ax = oY), for any y € CX(Q). 

In particular, G,(-,Y) is a weak solution to LGz(-,¥) = 0 in Q\ {Y}. Moreover, 

(2.2) Gi(X,Y) <C|X-Y|-4 for X,Y €Q, 

(23) ca|X —Y|!-"<Gi(X,Y), if |X —Y| <0 dist(X,09), 0€ (0,1), 

(24) Gi(X.Y)>0, Gi(X,Y)=G,-(Y,.X), forall X, YeQ, XY. 

Here, and in the sequel, L™ is the adjoint of L defined by LT = — div ATV, where 
A™ denotes the transpose matrix of A. 

We have the following Caffarelli-Fabes-Mortola-Salsa estimates (ef. [CFMIS8I], 
and for NTA domains). 

Lemma 2.5. Let 2 be an NTA domain in R¢*! and L = —div AV bea Ho-elliptic 

operator. Let x € 00, 0 <r <diam(9M). Then for X €Q\ B(wx,2r) we have 

(2.6) Hel (Alor) < GLX, Xap) < Ca¥ (A(0.0)). 
where Xz.» is a corkscrew point for x at scale r (see Definition [E:l). The constant 
in (20) depends only on ji, dimension and on the constants in the NTA character. 

Lemma 2.7 (Bourgain’s estimate [Ken94]). Let Q and L be as in Lemma 
Let x € OQ and 0 < 2r < diam(IQ). Then 

1 
a 

where C > 1 depends on d, jo and the NTA constant of Q. 

wp (Aer) = 
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Lemma 2.8. Let 2 be an NTA domain. There is a constant M > 1 that depends on 

the dimension and the NTA constants for 9, such that when 0 < Mr < diam(0Q), 

and u,v are non-trivial functions which vanish continuously on A(x, Mr) for some 
2 € AQ, u,v >0 and Lu = Lv =0 in B(x, Mr) NQ, then 

u(X) _ u(Xer) 
o(X) ~ o(Xrr)’ 

where the implicit constants depend on n, fio and the NTA constants for 2. 

for all X € B(x,r)NQ, 

We now consider poles at infinity. With minor modifications only, one can prove 
Lemma 23Jas in Lemma 3.7 and Corollary 3.2]. 

Lemma 2.9. Let L = — div AV be an elliptic operator on Q with Green function 
Gi(X,Y). Then for any fixed Zo € ©, there exists a unique function U € CQ) 
such that 

L'U=0 inQ, 
U>0 inQ, 
U=0 onaQ, 

and U(Zo) = 1. In addition, for any sequence {Xx}, of points in Q such that 
|Xp| > 00, there exists a subsequence (which we still denote by {Xx},,) such that if 
we set 

G1 (X.Y) 
(Y) = =. 

u(¥) GL(Xx, Zo) 
then 

(2.10) im u(¥) =U) for any ¥ € 0. 
[400 

Moreover, there exists a unique locally finite positive Borel measure w? on OO. such 
that the Riesz formula 

eu) ff sw)aar@) =— ff a oyu) vRY)av 
holds whenever f € CX(82) and F € CX(Q) are such that Flan = f. 

Definition 2.12 (Elliptic measure and Green function with pole at infinity). Let 
L, Z, U and we be as in Lemma 23] We call w7 the elliptic measure with 
pole at infinity (normalized at Zo), and U the Green function with pole at infinity 
(normalized at Zo). 

We will systematically fix Zp at the beginning (and take Zy = (0,1) when 2 = 
R4*), so we drop the term “normalized at Zo” for the elliptic measure and the 
Green function with pole at infinity. 

Now we state estimates that allow to go from poles X € © to poles at infinity. 
Here there is a single operator L, so we drop L from the notation, and for instance 
write w* for wf. Recall that the different measures w* are absolutely continuous 
with respect to each other, as a consequence of Harnack’s inequality. Similarly, 
w* and w® are mutually absolutely continuous too, as a result of the local Hélder 
continuity of solutions near T, and we even have the estimates stated below on the 
density, which we take from [BTZ23]. For X € Q, call 

dX 
i= (2.13) Ha(X,2) = (=) 

Licensed to ETH-Zentrum. Prepared on Thu Nov 9 05:09:26 EST 2023 for download from IP 129.132.21.203. 
License or copyright restrictions may apply to redistribution; see https:/www.ams.org/joumal-terms-of-use



SMALL Ax RESULTS 7865 

the Radon-Nykodym density of w* with respect to w®, evaluated at 2 € I; the 
existence comes with Lemma 21] 
Lemma 2.14 ([BTZ23] Lemma 5.8]). Let P, 9, and L be as above; in particular 
T € CASSC(e) for a small enough = > 0, and L — div AV is an elliptic operator 
with ellipticity jo. Given X € Q, set 6(X) = dist(X,T) and pick a point X, € 
QA B(X,dist(X,P)) such that dist(X,,P) = 6(X)/4. The density Hx.(X,2) of 
(2.13) exists and is locally Hélder continuous of order y = >(d, 410). Moreover, for 
every K > 1 there exists Cx = Cx(w,d,f19) such that 

for all 2,2’ ET A B(X, 6m5(X)), |2 — 2!| < 6(X)/4 and 

(2.15) |H..(X, 2) — H..(X, 2)| < C, 

—1 Gi(X, Xi) Gi(X, Xi) 1 ae (2.16) (Cn) SH S Howl X 2) $ Cos 
for all 2 € T 0 B(X,6n6(X)). Here U is the Green function for L with pole at 
infinity. 

In fact Lemma B-1dis proved in in the special case when T = R¢, but 
the proof goes through. The existence of X; € 2 B(X,dist(X,P)) such that 
dist(X1, 1) = 6(X)/4 is easy because I is a CASSC, but a nearby corkscrew point 
(not so close to X) would do the job in a more general setting. Notice also that we 
will only use the case when I 4 R@ to deduce Theorem [I19] from Theorem [TT7] at 
the end of the section. 

We now use the estimates and (216) to compare w*°(E) and w®(E). 
Lemma 2.17. Let P, 2, L, and X € Q be as in Lemma BAA] Let L = — div AV 
be an elliptic operator with ellipticity 1p. Then for any x > 1, forz2 ETA 
B(X,5x6(X)) and 0 <r < 6(X)/4, and any Borel set EC A = Bl2,r), 
there holds , 

satay S¢ (xy) 
where Cx = Cx(K,d, 0) and y = 9(d, po). 

Proof. By the definition (213) of Hx. 

*(E) ~ fel = 2) 
fH 

(2.18) 

Next 

sup Hx (X 
zea 

which implies that 

inf H..(X, 2) x 
2€E w* (E) 

(2.19) (Se (2) X(A) 
zea 
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Notice that 

sup H..(X, 2) sup H.(X, 2) 
2B _, | e@() - xa 4 
in TCX 2) wor(A) > inf 1X2) 

and that ay at HX 
BEE) fae) | rie) og 
supH(X, 2) supH,.(X, 2) axa) > 
zed zed 

so (2.19) gives that 

wk(E)  w®(E) | H.(X, 2) 
2.20 iAP) _ < = =). (20) oX(A) ~ a(A)) § SPS FOG) 

But Lemma[2-L]says that for all 2, 2’ € 1 B(X, 6x5(X)) such that |2—2'| < §O, 

1 Hoo(X.2) _ | _ [Hoo(X.2) = Hol 2)1 og (l2= 2)" 
T(x) Ho X=) ste 

Then the desired estimate (£18) follows from (220) and our assumptions on A. O 

We now use Lemma 2zI7|to deduce Theorem [19] from Theorem [LI7] 

Proof of Theorem [LI] given Theorem (L17] Let I, Q, and L be as in both theo- 
rems. By Theorem [17] we can find ¢ > 0, depending on 4, d, and ji, such that if 
T € CASSC(e) and M(A) < ¢, we have 

\w(E) _ o(E)| _ 6 
|w(A)  o(A)| ~ 2 

for any surface ball A CT’ and any Borel set E Cc A. We now have to replace w® 
with w*. Let A=IA B(e,r) be such that A < B(X,x6(X)) and 0 <r < 76(X) 
be as in the statement. Then we can apply Lemma [2.17] and we get (2.18), i-e., 

(a)| <<“ (sim) Sar 
We now choose 7 so small, depending on 4, d, jig, and #, that Cyr? < 6/2, and 
(£20) follows from triangle inequality. 

3. SMALL LIPSCHITZ GRAPHS 

In this section we use a change of variable to prove Theorem [I7]in when T is 
the graph of a Lipschitz function y : R¢ > R, with small Lipschitz constant. More 
precisely, we assume that 

(3.1) Vella <e, 
set 

(3.2) T= {(a,9()) €R**1; & eR}, 

and denote by 9 the connected component of R“+! \T’ that lies above I. We then 
let A and L be as in Theorem [LI7] and we need to show that if € is small enough, 
depending on 6, d, and the ellipticity constant ji, the associated elliptic measure 
we lies in Ax(0,6). 

We now define a mapping from R¢*! to Q which is the same as the one that is 
used in [KPOI], originally due to Dahlberg, Kenig, and Stein. For («,t) € R4*?, 
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let m(«) = t~4n(x/t), where 7 is a nonnegative radial C* function supported in 
{|a| < 1/2} and such that fp. = 1. Define a mapping 

(3.3) p RYO, pla,t) = («, cot + F(x,t)) 

with F(a, t) =m * 9(x) = fn(z)y(a — tz)dz, and co = 14 ca||Vel|.,, where 

(3.4) ca= [ In(y)| lyl dy. Rd 

This choice of co guarantees that p is a one-to-one bi-Lipschitz mapping of R4*? 
onto Q. In fact, we have 

. (1 VeF(a.t) 
(3.5) Votest)= (5 waren): 
and det Vp(«,t) = co + &F (a, t). Since 

(3.6) |AF(a,t)| = I- f. nlz)z-(Ve)(a — tz)dz 

we get that 

(3.7) 1 < det Vo(a.t) < 1+ 2ca || Voll, - 

< cal Velln~ ae) 

Incidentally, we have that 

(8) VeF|=| fale Worle ~ sbae| < ch lVlim ans 

where cj = J |n(y)| dy. ; 
Another important property of the mapping p is that |V?(«,t)|" tdadt is a 

Carleson measure on R¢*!, This property has been mentioned in [KPOH], but no 
proof nor an estimate for the Carleson norm has been given. We give the control 
of the Carleson norm and sketch the easy proof. 

Lemma 3.9. For («,t) €R¢ x Ry, the measure ji defined by the density 

dp(a,t) = |V2,,F(e,t)|” tdxdt 

is a Carleson measure on R4*!, and 

llnle < CllVelipmops) < CllVelliixcasy + 

where the constant C depends only n and d. 

Sketch of proof. The lemma follows from a Carleson measure characterization of 
BMO functions (see e.g. Theorem 3.3.8]). In fact, all the second derivatives 
of F(x,t) can be expressed in the form of t-10; * Vip(«), where 0; (a) = t-40(«/t) 
satisfies [ 0(«)dx = 0, |@(«)| < C(1 + |x|)-"~ for some C, 6 € (0,00), and 

x). dsl 
/ (a6) ) <o. sup 

€eR 

Therefore, 

dadt 2 2 lvoe? S| < CHV elbvoan: 
c 

which gives the desired estimate. O 

Licensed to ETH-Zentrum. Prepared on Thu Nov 9 05:09:26 EST 2023 for download from IP 129.132.21.203. 
License or copyright restrictions may apply to redistribution; see https:/www.ams.org/joumal-terms-of-use



7868 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA 

One can check (see for instance, in a slightly different context, (1.42) and its 
proof in Lemma 6.17 in [DFM19]) that if w is a solution of Lu = — div AVu = 0 in 
Q, then v = wo pis a solution of Ly = — div AVv = 0 in R4*1, where 

(3.10) A(a, t) = det(V p(x, t))(Vp(a,t)-!)" A(p(a, t)) Vp(a, t)}. 

It will be useful to write out the matrix A(e,t). A simple computation shows that 

1 0 ED 
V.F(e,t) ') lolz.) ({ wits.) 

=: P(x, t)A(p(«,t))Q(a,t)- 

(3.11) A(@,t) = 

Lemma 3.12. If Vell. < © < qagteqq: where ca is as in GA), then for A 
defined in (310), 

M(A) < C ||VeI, + ORLA), 
where C’ depends on d and the ellipticity constant of A. 

Proof. For « € R¢ and r > 0, let us use the notation W(a,r) = Age(x,r) x (5r/6,r) 
for Whitney regions in R4+1, where Age(x,r) = {y € R¢: x| <r}. Notice that 
they are slightly smaller than the Whitney regions defined in . but as we said 
earlier, this change is insignificant in terms of Theorems [LI7]and[LJ9]in R4*!. We 
denote by Wo(ap,r) the Whitney region {Y € 2 B(wp,r) : dist(Y,P) > 3r/10} in 
Q, where ap = (x, (x)) €T for « € R*. Notice that we replace the constant 1/2 
in (2) with 3/10, but we know that this does not matter. It will be convenient to 
work with the following different Whitney regions in 9: for 2 € R¢ and r > 0, set 

W,(a,r) == p(W(a,r)). 

Since 1 < d,(cot + Fy, t)) < 1+ 2ca||Vel|.¢ for all (y,t) € RE, 

(3.13) t < cot + Fly.t) — g(a) < (1+ cae) for (yt) € RE. 

Let (y, 8) = Wo(,r) be given, and write (y,s) = p(y. t) = (y.cot+F(y,t)) for some 
(y,t) € W(a,r). Thus |y —2| <r and 5r/6<t <r. By G13), 5r/6 <8 — gly) < 
(1+ 2cae)r. This means that |(y,s) — yp| > 5r/6, and hence dist((y, s),P) > 3r/4 
if we choose € sufficiently small. In addition, 

I(y.8) = @pl Sly 2| + |s — (y)| + le(y) — e(@)| $ (2 + (2ea + Ne) r < 5/2, 
if we choose (2cq + 1)e < 1/2. So 

(3.14) W,(a,r) C{¥ € QA B(wp, 5r/2) : dist(Y,P) > 3r/4)} = Wo(wp, 5r/2). 

Now we fix 2 € R¢ and r > 0, and estimate aj(x,r). Let Ag be a constant 
coefficient matrix which achieves the infimum for a.4(ap, ¥), set 

a=a(z,r) = # V,F(y, s)dyds 
W(a,r) 

and 

b=B(a,r) = # O,F(y, s)dyds, 
W(2,r) 
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and define Ag to be the constant coefficient matrix 

x (I 0 IT -a(cot+b)') _. 
Ao = C1, ") Ao (5 (eg) ) =: PoAoQo. 

which should be compared to the expression of A(e,t) in @1D). Then 

ag(a,r)? < f |Aly.s) ~ Ao” dvds 
W(a,r) 

= ff |Plus)Alolu.s))Qu.s) ~ PrAoQol* dads. 
W(a,r) 

By the triangle inequality, 

Ply. 8)A(oly. §))Q(y.8) — PoAoQol < \(P(y. 8) — Po)A(oly, 8). 5)| 
+ |PoA(plu-))(Qlu.s) ~ Qo)| + |Po (Ale(u.s)) ~ Ao) Qol- 

Using the definitions of P, Q, Po, Qo, the ellipticity of A and Ao, and (7), GS), 
we obtain that 

|P(y, s)A(p(y, 8) )Q(y. 8) — PoAoQol S |VyF(y. 8) — a 

+ |O.F(y,s) —b| + |A(o(y, s)) — Aol - 

2 

s # IVFtas) - # VE(z,r)dzdr| dyds + # |A(p(y, s)) — Aol” dyds 
W(a,r) W(z,r) W(z,r) 

sr ff |V2F(y, s)|? dyds + # |A(Y) — Ag|? aY. 
W(2,r) p(W(2,r)) 

We fix any 2g € Rand rp > 0, and estimate [[r.,,, ,) @4(0.7)°drdr/r. By Fubini’s 
theorem (recall also that r~ s when (y,s) € W(z,r)), 

I of |V2F(y, 3) dyas ret <e[ [ |V2F(y,s)|" sdyds, 
T(x0,r0) W(a,r) r Aga(r0.2r0) JO 

which is bounded by C'||Vy||2, rf thanks to Lemma 3] By (Td) and our choice 
of Ao, 

I f |A(Y) — Aol ay 22 
(2,r)€T (20.70) r 

Yep(W(z,r)) 
vo dnd 

<c [ f \A(y) — Ajay 
2€Aza (20,70) Jr=0 JY EWa(xp.5r/2) r 

vo dnd 
<c [ aia(y,5r/2) ee, 

rEAza (20,70) Jr=0 r 
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where in fact a.4(a,r) is defined as in (9), but in terms of the larger Whitney 
boxes Wo(a,r); it is easy to see this does not alter the weak DKP condition (LI). 
Now observe that if « € Aga(ao, ro), then 

2p» € A((xo)p, (1 + 2£)r0) C A((20)p,370/2) 
if € is small enough, and now, setting € = xp, 

0 ded 
[ J eslen.5r/2? 
@€A,g(ro,7o) Jr=0 r 

ro 
<|/ | oa(é.5r/2)2 2" < em(aynd 

‘EA((x0)p.3r0/2) 4r=0 
r 

by the weak DKP condition on the a.4(€,r). Recalling (8.15), we have proved that 
for any ap € R@ and ro > 0, 

dedr I ag(erP SS <C (lie. + 9A) rf, 
(20.70) r 

which gives the desired the estimate for N(A). o 

Let w*° (or w®) denote the elliptic measure with pole at Xo € Q (or at infinity) 
corresponding to the operator L = — div AV in Q. Let &*° (or B®) denote the 
elliptic measure with pole at Xo € R4*? (or at infinity) corresponding to the oper- 
ator L = —div AV in R4*!. A change of variables shows that for any set Ec T, 
and any Xp € 2, 

(3.16) w*9(B) = oP (Xo) (p(B), 

Similarly, one can show that for any X, Y € Q, G(p7!(X),p-'(Y)) = G(X,Y), 
where G is the Green function for L in R4*1, and G is the Green function for L in 
Q. This implies, by the definition of the elliptic measure with a pole at infinity in 
Lemma 2.9] that for any E CT, 

(3.17) w*(E) = &* (p(B). 
Now we are ready to prove Theorems [7] and (19 for I defined in (&Q) with 

small Lipschitz constant. 

Proof of Theorem [LIT] for small Lipschitz graphs. Let A = BOT be any surface 
ball on T = {(#,(x)): « € R¢} and let E C A be any Borel set. We write 
B= B(xp,r), with « € R4 and vy = (x, y(x)), and set A = B(a,r) NR4. Also call 
a: R41 5 AR{! ~ R4 the projection onto R¢. Observe also that (A) c A and, 
due to the definition of p and the fact that I’ is a graph, 

(3.18) p \(E) =7(E) and p7!(A) =7(A). 

Next we compare the Hausdorff measures. Since [is an Lipschitz graph, 

(3.19) o(x(B)) < o(B) < (1+ Ce)o(x(B)), 

and similarly 

(3.20) a(x(A)) < o(A) < (1+ Ce)o(z(A)). 

In addition, 7(A) contains R¢N B(x, (1 —<)r), so 

(3.21) o(x(A)) > (1 — Ce)o(A), 
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and hence 

(3.22) 

because (A) c A. 
Lemma[S-1Jand Theorem[LI7|for R¢* say that if ¢ and (A) are small enough, 

BR(m(B)) 2 ee | . a and a= (#(A)) 7 ata) oo 

(A) ) | (A) a(A) 10 

Because of (17) and (LIS), this becomes 

(3.23) 

(3.24) 

(3.25) 

Since by (B19) |o(x(E)) —0(B)| < Ceo(n(E)) < Ceo(A), we deduce from the first 
part of (3.24) that 

“(E) _ o(E)) 2 Lee. 
(20) (A) o(A)| 10 

Finally, we may as well assume that we took 6 < 107!, and then we deduce from 
and (3.26) that 

(BE) _ o(E))| 28 
(3.27) a3 x a |< > 

and since 

o(E)) _ o(E))| _ o(B)) (A) -o(A) 
(8.28) o(a) a(S) -4 “Gay oa) 
by (8:22) and (3:20), we get that 

(3.29) 

as needed. o 

Proof of Theorem [LI9] for small Lipschitz graphs. It follows from Theorem[.17]for 
small Lipschitz graph and Lemma 217] Or we can work directly and apply 8.16) 
and Theorem [19] for R4*!. oO 
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4, CHORD-ARC SURFACES WITH SMALL CONSTANTS 

4.1. Geometric properties of the CASSC. In Definition [E13] we defined the 
CASSC by the fact that they have very big pieces of e-Lipschitz graphs. This is 
convenient for us (and also extends well to higher co-dimensions), but we could 
have used different definitions, a popular one being that the unit normal to I’ (say, 
with values in S/{+1}) has a small BMO norm. We refer to the early papers of S. 
Semmes for details. 

Let us first give some geometric definitions. 

Definition 4.1 (Two-sided Corkscrew condition ). We say a domain 2 ¢ 
Rt" satisfies the two-sided corkscrew condition if there exists a uniform constant 
M > 2 such that for all « € OO and r € (0, diam JQ) there exists X),X2 ¢ R41 

such that 

B(X1,r/M) ¢ B(a,r) 0, B(X2,r/M) c B(a,r)\&. 

We write X,,, := Xj, for the interior corkscrew point for x at scale r. We also use 

the notation Xq := X;,, when A = A(x,r) = B(a.r) 09. 

Definition 4.2 (Harnack chain condition [JKS2]). We say a domain Q c R41 
satisfies the Harnack chain condition if there exists a uniform constant M > 2 such 
that if X1, Xp © with dist(X;,9Q) > © > 0 and |X; — Xo| < 2%e then there exists 
a ‘chain’ of open balls By, ..., By with N < Mk such that X; € By, Xp € By, 
ByOBjy1 4 @ for j =1,..., N-1and M~! diam B; < dist(B;,0Q) < M diam B; 
for j=1,. 

Definition 4.3 (NTA domains [JK82]). We say a domain 2 ¢ R“! is an NTA 
domain jf it satisfies the two-sided corkscrew condition and the Harnack chain 

N 

condition. 

Let P € CASSC(¢) be given. We systematically assume that is small enough, 
depending on d when needed. We start with simple geometric consequences of the 
definition of the CASSC. 

Lemma 4.4. The set’ is Ahlfors regular and Reifenberg flat. More precisely, there 
is a constant C > 1 that only depends on d, such that for « €T and r > 0, 
(4.5) (1—Ce/*)egr? < HUT 9 B(a,r)) < (1+ Ce)egr* 

and there is a hyperplane P through « such that 
(4.6) 
dist(y, P) < Ce4r for y €TNB(x,r) and dist(y.P) < Cel/4r for y € PAB(2,r). 

Proof. We first prove the upper bound in (5). Let « € T and r > 0 be given, and 
apply the definition to find an ¢-Lipschitz graph G = G,,, that meets B(«,r/2) 
and such that (1d) holds. Notice that H4(GA B(w,r)) < (1+ Ce)car4, and 
then the right-hand side of (5), with a slightly larger C, follows. Since G meets 
B(«,r/2) at some point y, we also have that H4(GNB(«,r)) > H4(GNB(y, r/2)) = 
(1 — Ce)ca(r/2)4 and then, if ¢ is small enough, 

(4.7) HP B(w,r)) > H4(G A B(w,r)) — er? > ca(r/3)*. 

This already gives the Ahlfors regularity, but we want to improve the lower bound 
and prove the Reifenberg-flatness. Set 6 = dist(«,G); then T B(a,6) CP\ G, 
so by (214) H4(P 9 B(x, 5)) < er*, and (£7) (for (a,6)) implies that 6 < Cel/4r. 
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We may now revise our proof of (£7), because if we pick y € GM B(a,4), then 
H"(GN B(z,r)) > H4(GN Bly, (1— Ce!/4)r)) > (1— Ce)(1— Ce!) car4, and the 
proof of (427) yields the lower bound in (5). 

Incidentally, we added the constraint that G = G,,, that meets B(«,r/2) in 
Definition [13] to avoid the case of a very small [9 B(e,r) and a G,., that does 
not meet B(«,r). The e!/4 is a little ugly, but requiring G to go through x sounded 
a little too much. And also we could use the fact that we deal with Lipschitz 
graphs to prove { and (4.6) with the better constants Ce, but we won’t care. 

Return to G. Since both G and [ are Ahlfors-regular, (14) now implies that 

(4.8) dist(y,@) < CeM/4r for y EP. N Bw, r/2) 

and dist(y,P) < Cel4r for y € GN B(a,r/2) 

(otherwise we can find a ball of size Cz!/4r centered on T’ (respectively G) that is 
contained in B(x,r) AT \ G (respectively B(x,r) AG \T). But we can also find a 
hyperplane P that contains x and which is Cz!/4r-close to G in B(a,r), and then 

(4.9) dist(y, P) < Ce'/4r for y ET 9 B(x, r/3) 

and dist(y,P) < Cel for y € PA B(a,r/3). 

This is the same as (ZO), but for B(«,r/3); the lemma follows. o 

Recall that since I’ is Reifenberg flat, it separates exactly two domains (there is 
even a bi-Hélder mapping of R¢+! that maps Ré to [), and it is easy to check that 
both domains are NTA. Thus Lemma [ZdJallows us to apply the usual estimates for 
elliptic operators. We let © be one of these domains. 

Similarly, the Ahlfors regularity of I allows us to define Ax. (with respect to 
o =H, which is doubling) and A.(¢,6) (as in Definition [L15). 

Finally, we can even construct an analogue of dyadic cubes on (I',do), which 
is pleasant because it simplifies the theory of Ax weights, and it implies that the 
John-Nirenberg inequality on the exponential integrability of BMO functions holds 
on (I, do) essentially as on R¢. 

We now approximate @ by small Lipschitz domains that are contained in Q. 

Lemma 4.10. Suppose as above that T € CASSC(e), with © small enough (de- 
pending on d). Set = €%. Then for each x €T and r > 0, we can find an 
n-Lipschitz graph G such that for one of the connected components U of R4+!\ G, 
we have 

(4.11) UN Bla,r) C2 

and 

(4.12) H1(0 9 B(w,r)\ G) +H(GN Bla,r)\T) < Cel? rt. 

As usual, C depends only on d. 

Proof. Again we make no attempt to get the best constants here. Let « € P and 
r > Obe given, and let Go = Gz," be the €-Lipschitz graph given by Definition[L13] 
After a rotation if needed, we can assume that Go is the graph of Ao : R4 > R 
(even if A was not initially defined on the whole R4, we could extend it). 
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Write & = (a0, to). Notice that dist(2,Go) < Ce!/4r by £3), and since Go is 
almost horizontal (and if ¢ is small enough), this means that 

(4.13) |Ao(ao) — tol < Cel/4r. 

Then consider the points Xs = (wo, to + r/2); since Xx is far from Go, (LS) says 
that X,. is also far from T; without loss of generality, we can assume that X, € Q, 
because otherwise X_ € © (recall that I is Reifenberg flat, so @ lies at least on one 
side) and we could replace U below with the lower component of R¢+! \ Go. 

Set Z =I B(x,r) \ Go; we want to hide Z below the new graph G. The 
simplest is to take 

(4.14) A(y) = max (Ao(y), sup_t—nly— 2l)- 
(z,thez 

Obviously A is n-Lipschitz. Call G the graph of A, and U the component of R¢*!\G 
above G. 

Our next step is to prove that UN B(w.r) C Q, as in (£1I). First we claim that 
U9 B(a,r) does not meet I’. Clearly it does not meet Go, because A > Ag, 80 it 
is enough to exclude points of B(x,r) AT \ Go C Z. But if (z,t) is such a point, 
then by (1M), A(z) >t — nz — 2| =#, so (z,) ¢ U; this proves our claim. 

Let us now check that X, = (0, to+7/2) € U, or in other words A(2o) < to+r/2. 
But Ao(xo) < to + Cel/4r < to + r/2 by (LTB), and for (2,t) € Z, we have that 
t < A(ao) + Ce'/4r because dist((2,t),Go) < 1/4r by GLB), and Go is almost 
horizontal. Then t — nly — 2| <t < A(wo) +Cel/4r < to +r/2, so Xy €U. At this 
point UN B(«,r) is a connected set that contains X, € 9 and that does not meet 
l, and this implies that UA B(w,r) CQ, as needed for GLI). 

Finally we estimate the size of the two bad sets in (12). For each Z = (z,t) € Z, 
consider the ball Bz = B(Z,r(Z)), with r(Z) = dist(Z, Go)/100. By the 5-covering 
lemma of Vitali, we can find a countable collection of balls Bz, Z € J, such that 

the Bz are disjoint but the 5Bz cover Z. First consider the set 

(4.15) H = {y €R4N B(ao,r); Aly) # Ao(y)}- 

We want to cover H by multiples of the Bz, so let y € H be given. By definition, 
A(y) # Ao(y) and so we can find Z’ = (2/,t’) € Z such that Ao(y) < ’ = nly — 2'| 
and hence, since Ag is ¢-Lipschitz, Ao(z’) < t/ —nly—2'|+ely—2/| < t= nly—2"|/2. 
Then we can find Z = (2,t) € I such that (2',t’) € 5Bz. 

(4.16) ly—2| Sly —2!| 42! — 2] < 29 '(t — Ao(2’)) + 5r(Z). 
Now let W = (w,Ao(w)) € Go minimize the distance to Z. Then |w — 2| < 
|W — Z| = 100r(Z), so |Ao() — Ao(w)| < el2z — w| < 100er(Z). Now 

t! = Ao(2') < tl = t| + |Ao(2")  Ao(w)| + |Ao(w) = ¢| 
<5r(Z) +e|2’ — wl +|W -2| 

< 5r(Z) +2(|Z’ — Z| + |Z —W|) + 100r(Z) < 106r(Z), 

(4.17) 

so (£16) implies that |y — z| < 15077!r(Z), and altogether 

(4.18) He (LU Blz,200r(Z)). 
Z=(z,tel 
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This yields 

(4.19) HH) < Cy 4S r(Z)4 < C4 YO HAT Bz) 
Zel Zel 

< Cn*H4(LE 9 Bw, 2r) \ Go) < Cy~ter4 = Cel/2rt 

because the Bz are disjoint by construction, contained in B(«,2r) \ Go because 
r(Z) = dist(Z,Go)/100 << r, by the Ahlfors regularity of P, by (LI), and because 

2d_ So we control the measure of the difference between the two graphs G n= 
and Gp, and at this point (EIQ) follows from (LI). Qo 

As a corollary of Lemma (£10) the inclusion (ETI) can be reversed. That is, 
given any ball B(«,r) centered on I, © can be approximated by a Lipschitz domain 
that contains 2M B(x,r). We state this result as follows. 

Corollary 4.20. Suppose as above that T € CASSC(e), with ¢ small enough 

(depending on d). Set n = 24. Then for each « €T and r > 0, we can find an 
n-Lipschitz graph G such that for one of the connected components U of R4*1\G, 
we have 

(4.21) QNBlw,r) CU 

and 

(4.22) H4(P A B(w,r) \ G) +H(GN Bla,r)\T) < Cel? rd, 

As usual, C depends only on d. 

Proof. Let G be the n-Lipschitz graph as in Lemma [ZI0| Then we only need to 
prove (£21) since (Z-22) is the same as (£12). Let the two connected components 
of R4+! \ G be Ux, and the two connected components of R4*!\T be Q3. Then 
by Lemma E210) U_ 1 B(a,r) C Q_. Taking complement, we get that 24 ¢ 
U,UB(a,r)*. Therefore, 2,9 B(a,r) CU, B(x,r) C Us, as desired. Oo 

4.2. Small A. result in the case of CASSC. In this section we deduce Theo- 

rem [4.23] from the case of small Lipschitz graphs, through a standard comparison 
argument. 

Throughout the section, we let T ¢ CASSC(e) with ¢ small enough, and Q be 
one of the components of R¢+!\T. We shall approximate Q from outside by a 
Lipschitz graph as in Corollary 20) 

Theorem 4.23. For every choice of 6 > 0, there exis (5, d, 1) > 0 with the 
following properties. Let 0 < © < o. Suppose T € CASSC(é), and L = —div AV 
is an elliptic operator with ellipticity ji which satisfies the weak DKP condition 
with norm 9(A) <¢. Then for every surface ball A = B(x,r) AT and every Borel 
subset ECA, 

| 
|g) _ o(E), 
jwar(A)  o(A)| 

whenever Xo = Xy,.-s, €Q is a corkscrew point for « at scale e~°r, with 0 < B< 
Bo for some By that depends only ond and jig. 

Remark 4.24. Although Theorem [2glis stated differently from Theorem [19] one 
can check that the latter can be deduced from the former. In fact, let 6 >0, 6 > 1 
and X €Q be fixed. Take A = A(x,r) C B(X.6(X)) with r <76(X) and r > 0 

Licensed to ETH-Zentrum. Prepared on Thu Nov 9 05:09:26 EST 2023 for download from IP 129.132.21.203. 
License or copyright restrictions may apply to redistribution; see https:/www.ams.org/joumal-terms-of-use



7876 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA 

to be determined, where 5(X) = dist(X,I), and let EC A. By Theorem [23] 
there exists an ¢9 > 0 such that 

wX0(E) a 

wXo(A) aa <? 
(4.25) : 

whenever Xo € (is a corkscrew point for w at scale £5, for some 8) = Bo(d, no) > 
0. By a change-of-pole argument similar to Lemma [2-17] one can show that 

w%X(E) eX (B) ry d 
2A) o¥(a)| S (5) ferr< 0 a 

for some 7 = 7(d, 0) > 0, where d = min {6(X),6(Xp)}- Note that we can assume 
that d = 6(Xo) by taking 7 sufficiently small (for instance, let r = 8° /2). Now we 
take ¢o sufficiently small so that 22°? < ;4,, then Theorem[-I9]follows from (25), 
(£20), and the triangle inequality. Theorem [LT7] can be deduced from Theorem 

(C19 using Lemma 217] 

We shall need Lemmata [£27] and (230 that enable us to localize the elliptic 
measures. 

(4.26) 

Lemma 4.27. There exists a constant M > 1 depending on the dimension so that 

the following holds. Let x € T andr > 0 be given, and L = — div AV be a juo- 
elliptic operator. Let M' > M?. Let w be the L-elliptic measure of Q with pole at 
Xo = Xz.2M'r and let & be the L-elliptic measure of QM B(x,4M'r) with pole at 
Xo. Then w|a(e,r) and Blacz,r) are mutually absolutely continuous, and 

(4.28) Fw wl, wae. ye A(a,r), 

where the implicit constants depend on d, ju, and the NTA constant. Therefore, 

(4.29) &(B) ~w(E) for any Borel set Ec A(a,r), 

where the implicit constants depend on d, i, and the NTA constant. 

Proof. Let y € T and s > 0 be such that B(y,s) C B(#,r). By Lemma [5] and 
eq, 

B(Aly,s)) _ G(Xo.Xys) _ GT (Xy.s Xo) 
w(Aly,s)) G(X, Xys) G7 (Xy,s, Xo)" 

where G(., Y) is the L-Green function for QNB(«,4M’r) with pole at Y, and G(-,Y) 
is the L-Green function for Q with pole at Y. Since |Xo —a| > dist(Xo,0Q) > 
2M'r/M and we have chosen M’ > M?, G7 (-, Xo) and G' (-, Xo) are both solutions 
to L'u = 0 in B(w,2Mr) 1 Q that vanish on A(«,2Mr). By the comparison 
principle (Lemma [2.8) and the estimates (2.2), (23) for the Green function, 

G@ (Xys.Xo) _ GT (Xz rs Xo) 
Dw FF aoe em 1, 
GT (Xys,X0) ~~ G™(Xar, Xo) 

and thus 
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Since the elliptic measures are regular and doubling, this implies that ]_,¢,,) and 
wla(nr) are mutually absolutely continuous. Then the Lebesgue differentiation 
theorem asserts that 

a B(Aly.s By) = tim SAW) dy!) = Bb Ay. 8) 
which proves (28). Then (£29) is an immediate consequence of (28) since we 
can write &(E) = fp @(y)do(y). o 

Lemma 4.30. There exists a constant M > 1 depending on the dimension so that 

the following holds. Let M' > M?, r > 0, @ €T, and L be as in Lemma E27] 
Let w be the L-elliptic measure of 2 with pole at Xo = Xe,arrr, and let & be the 
L-elliptic measure of 20 B(x,M’r) with pole at Xo. Then 

dé G(X.) 
TY) = 3m Gey) fore ae ve Alw.n), 

x1 wae. ye A(a.r), 

(4.31) 

where G(-,Y) is the L-Green function for 20 B(x,M'r), G(-,Y) is the L-Green 
function for ©, and the limit is taken in B(a,M'r) AQ. Moreover, for EB, BE! c 
Tn Bie,r), 

(4.32) 

where C and a are positive constants that depend on d, j1o, and the NTA constant 
of O. 

Sketch of proof. By Lemma [27] &lacsr) and w|a(x,r) are mutually absolutely 
continuous, and 

Ky) = tim ZOO) gs a0 ye A(a,r). 550 S(A(y, s)) 
Then (£31) can be proved using the Riesz formula, CFMS estimates, the ellipticity 
of the operator and the boundary Caccioppoli inequality. We refer the readers to 

Lemma 5.1] for details. Now (£33) is a consequence of (£31), as one can 
write 

w(B)= f Zeeay) = f ecaaay, 
where £(y) =limy-4y $42. By the comparison principle, one ean show that 

(Xo.¥) 

a a ( - im) L(x) < L(y) < (1 + im) L(x) for ye A(a,r). 

From here, (£32) follows. Details can be found in e.g. Corollary 4.2). 0 

Now we start our proof of Theorem [23] Let 5 € (0, 4), 20 €T and rp > 0 be 
given. Let Ap = B(ao,r9) OT, and let E Cc Ap. Let M be the largest of the two 

constants M in Lemmata 27] and 30] and take K > M? to be determined. Set 

Xo = Xoy,kro € 2 B(ao, Kro) to be a corkscrew point for xq at scale Kro. 
By Corollary [2] there exists an ¢7#-Lipschitz graph G = {(y, A(y)) : y € R¢} 

such that for one of the connected components U of R¢+! \ G, we have 

(4.33) OA B(xo, 10K ro) CU 
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and 

(4.34) H4(PA B(xo, 10K ro) \ G) + H2(GN B(ao, 10K ro) \T) < CK 44/2 rd. 

Similar to (3), we have that 

(4.38) dist(y,@) < CKe? ro for y € TF 9 B(ao, 10K 0/2), 
4.35 

dist(y,T) < CKe2#ro for y € GN B(xo, 10K r0/2). 

We shall choose 

(4.36) K=K() 

with a small constant 3 > 0 that will be chosen near the end of the argument, and 
then © = £(3,d, 41) > 0 sufficiently small. Thus K is as large as we want, and in 
particular we shall choose ¢ so small that K > M. We intend to show that for 
© =(6,d, 10) > 0 sufficiently small, 

wA%(E) 5 o(E) _ 4 “a (4.37) Ae(Da) = o(Ao) 

Once we have (37) for any set EC Ao, we obtain that a2 < < BE +o by 

taking E to be Ao \ E in (£37). Therefore, it suffices to show (37). 
Set B = B(xo, Kro) to lighten the notation. We first transfer elliptic measures 

from © to 2N B; this will be convenient because 2/9 B is contained in U, while © 
may not be. 

Recall that L = — div AV. In Section [£3] we will show that there is a jug-elliptic 

operator I = —div AV that satisfies the weak DKP condition in U with constant 
M(A) < Ce, and such that 

(4.38) A(X) = A(X) on 29 B(ao,2Kro) CU. 

Denote by w the L-elliptic measure of 29 B with pole at Xo and by w’ the L-elliptie 
measure of UA B with pole at Xo. Define 

(4.39) Z:=TNB\G, 

Observe that by (34), 

(4.40) H4(Z) < CK4e!/?rd. 

Our first claim is that for any set H CT.OGN B(2o, 70), 

(4.41) w!(H) < w(Z) +«(H). 

Proof of (E41). Let Hy C H be closed sets in GAT such that Hy, t H as n—> 00. 
Let On C GAB(«o, 2ro) be open sets such that O | H. Let gn € CX (On) be such 
that 111, Sgn S Lo,. For X EUNB, define um(X) = f gn(y)de’* (y), where w’® 
is the Z-elliptic measure of UA B with pole at X. Then by the definition of elliptic 
measures, Lun = 0 in UNB and wis contin in UOB. Since (0B) CUNB, 
un is continuous on O(N B). Let vn(X) = f un(y)do* (y), where w* is the L- 
elliptic measure of © B with pole at a Then Ley, = 0 in QNB, with vp = un 
on O(N B). Since E = L in 2A B, the maximum principle implies that vp = un 
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in OA B. Observe that O(N B) = (FAGAN B)UZU(OBNQ), and that un = gn 
n (TAG B)U(@BNQ). So for X €ONB, 

un(X) = on(X) -[ 
raGnB 

7x Un x In xX an(y)dee (y) + I (y)deo* (y) + / OLA) 

J, gated ta + ff unt) (y) <e*(On NP) +0*(2), 
TAO, Zz 

where in the last inequality we have used g, < 10, and u, < 1. On the other 
hand, since g, > 1H,, 

un(X) > J des’*(y) = a! (Hy). 
Hn 

So we get that 

w'* (Hy) < w (On AP) +w* (2). 
Then (£41) follows from taking n + 00 and by the regularity of elliptic measures. 

ao 

Now we define another set F, which we think of as the large shadow of Z on G, 
which is defined as 

(4.42) F:= JU Gn B(Z,208(Z)). 
ZezZ 

1 Here, and in the sequel, 6(Z) = dist(Z,G@). Notice that by (35), 5(Z) < Ce7Kro 
for all Z € Z. We show that 

(4.43) HF) < CK pd 

Proof of (43). For each Z € Z, let Bz = B(Z.r(Z)) with r(Z) = dist(Z,G)/100. 
Then by the Vitali covering lemma, we can find a countable collection of balls Bz, 
Z €1, such that the Bz are disjoint but Z C LU 5Bz. Recall that G is the graph 

Zel 

of A: R¢ > R. Write xo = (x,t), where x € R¢ and ty € R. By (£35), for € 
sufficiently small, we have that Fc {(y, A(y)) :y € R4N B(«,2Kr9)}. Set 

H = {y € R4N B(w,2K 7) : (y, A(y)) € F}- 

Observe that for any fixed y € H, there exists a Z = (z,t) € Z such that 
\(y, A(y)) — (z,#)| < 206(Z). But there must be a Z’ = (2’,t') € I such that 
Z €5Bz). So 

5(Z) < 6(Z') + |Z — Z'| < 6(Z’) + 5r(Z’) < 26(Z’). 

Then 
ly—2'| <|y—2|+|2-2’| < 206(Z) + 5r(Z’) < 216(2’), 

which implies that y € B(2’,216(Z')). Since y € H is arbitrary, we obtain that 

Heo U B(z,216(Z)). 
Z=(zt)el 

Since Tis d-Ahlfors regular, 

HY(H) <C>. 6(Z)9 < CO HEN Bz). 
Zel Zel 
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Recall that the Bz are disjoint and that Bz C B(xo,2Kro) \ G, so 

SO H4(P 9 Bz) < CHAE B(x0, 2K 19) \ G) < CK? 7G, 
Zel 

where the last inequality follows from (34). Therefore, 

HF) < |, 1+ |VAPdy < C(1 + 22/4) Kel Prd < CK Ge Prd 

as desired. o 

We now consider the Z-clliptic measure of U. We claim that for some C > 1 
depending on d and pio, 

(4.44) wf (F) > a for all Z € Z. 

Proof of 44). Let Z = (2,t) € Z be given. We first show that 

(4.45) (y, A(y)) € F for any y € R¢ that satisfies |y — =| < 100(Z). 

Let Z’ = (2', A(2’)) € G be such that |Z — Z’| = 6(Z). Then 

Je—2'| + |t- A(2’)| < Y2|Z - 2"? < 26(Z). 

For any y € R¢ with |y — 2| < 106(Z), we have that 

\(y, A(y)) - Z| < ly — 2| + |A(y) - ¢| 
<ly—2| +|A(y) — A(2)| + |Al@) — Al) + |AG’) - tl 

1 
< (142%) ly—2|+e = 2'|+|A(e’) -¢| 

< (2 + gem) 6(Z) < 208(Z), 

which proves (5). 
By (£45), Z' € F and B(Z’,55(Z)) 1G Cc F. Therefore, 

wf (P) > uf (BUZ',55(2)) VG) > 2. 
where in the last inequality we have used Bourgain’s estimate (Lemma 27). o 

With (4a), we are ready to show that 
1 

(4.46) wh(F) > qe(2). 

Proof of (£46). Observe that Z CT is open in T, and that F C G is open in G. 
Let Fy C F be a sequence of closed sets such that F, t F, and let Zm C Z be a 
sequence of closed sets such that Zn t Z. Let fy € CX(F) and Ip, < fn < Ip. 
Let gm © C2(Z) and 1z,, < gm < lz. For X €U, set on(X) = fo faly)dwis. 
Then by the definition of elliptic measures, Lv, = 0 in U and vp = fn on G. Also, 

(4.47) wis (F) > vn(X) > wis (Fr). 
For X € ON B, set 

u(x) = f ony Sm eoenlueednn( 
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Then Lu\) = 0 in QA B and ul? = gm vp on ON B). Since L = Lin NB, 
the maximum principle implies that 

vn(X) > ul")(X) for any X € NB, for any m,n EN. 

Then by gm > 1z,, and GI, 

wS(F)> [ entdedinly) > [Lab (Fa) deste) 

Letting n — 00, by the regularity of wy and (4-46), we get that 

wS(F)> [ot P)dethsala) > Zedina (Zn) 
Now letting m — oo, the regularity of wong gives that 

wh (F) > Autna() for any X €QNB. 

This proves (£4) since Xp € QM B. oO 

We are now ready to prove (£37). By 32). 

wo°(E) 1-2 #(B) . w(E) 
(448) (ao) = 1g B(Ao) = STA) 
where, according to (36), we have chosen K 8 for some 3 > 0 to be deter- 

EB mined later. We now compute a lower bound for . Since E and Ao might not 
be contained in G, we write 

w(E) w(ENG) 
w(Ao) ~ #(Ap NG) +u(Ao \ G)" 

By 41), 
w(ENG) > w' (ENG) - «(Z). 

Since ON BC UNB and L = ZT on Q/KB, the maximum principle implies 
that w(Ao NG) < w'(Ao MG). Also, from the definition of Z, it follows that 
w(Ao \ G) < w(Z). So 

w(B) — w(ENG)-u(Z) ~ w(ENG) 2w(Z) 
(4.49) w(Ao) 2 w(Ao NG) +0(Z) 2 w(AoNG) a(AonG) Ty 2p. 

Let us first show that Jy can be arbitrary small. By (£46) and (29), 
Xo 

(4.50) b<c ee) 
aR (Ay NG) 

By Section [J] the Z-elliptic measure of U is in Aso (dH“|q) (we even have Ase with 
small constant). Therefore, 

@ . d 
wil? (F) < Cu (BIG) (aaa) : 

and 
d n 

w8%(09G) > Fal Bloor) NG) (garg) HB(ao, 70) NG. 
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where 0,7) > 0 are Ac constants, which are independent of the sets. Again by A.., 
we have that 

wi*(BNG) < (Bee ro) a)" 

wh" (Blo.ro) 1G) HBG) . 

Substituting these estimates in (50), we get that 

6 

way se satprey) / Gataaey) 
Observe that 

H4(Ao NG) = HALA B(2xo. ro) NG) > HALA B(xo, r0)) — H4(Z). 

Thus, if we choose K = K (2) according to (36) and ¢ so small that 
ol /d 

(4.52) CKie? < Ae cn Je 

then by (5) and (£40), 
_ id 

(4.53) Hane) > & Jed yds Om tpd. 

We now check that 

(4.54) SK < HBG) < ca(1 + Ce%) K 4rd. 

The second inequality follows directly from the fact that G is an ¢27-Lipschitz graph. 
To see the first inequality, we want to use a ball centered on T. By (435), there 

exists a point a* € G such that 6(#o) = |vo — 2*| < Ce Kro. Since B(a*, Kro — 
5(xo)) C B, we get that 

HBO G) > H"(B(w*, Kro ~ 5(0))) > (1 — Ce¥*)(Kro — d(ao))" > SK ry 
1 because G is an €22-Lipschitz graph and if ¢ is small enough; follows. Using 

(3), and in (51), we obtain that 

(4.55) Tn < CK%e?, 

We return to J; in G49). By @3Q). 

We are in a position to apply the Aq.(¢,6) result for small Lipschitz graph, which 
says that for ¢ = ¢(d, wo, 6) sufficiently small and 

where 7 = 7(d, 6, 10) is as in Theorem [L19]for small Lipschitz graphs, 

Xo id eX (ENG) _ HENG) 6 
4.58 Sy 5 es 

(4.58) GANG) ~ HANG) 8 
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Notice that we do not have a zero denominator on the right-hand side of { (258). 

and even H4(Ao MG) > card , because B(2*,ro/2) C B(vo,ro) for the same 2” as 
above, as soon as we choose 8 < 44 in (30) and ¢ so small that 

(4.59) CKer <1/2. 
. cow. Hi(E) « , HS(ENG) H4(B) 1 

Since we want ya7x7y in (£37), we need to compare ATA nC) and Fa7R_y- We use 

(£40) and the Ablfors regularity of T to get that 

HY(ENG) _ HY(E)-H4(Z)_ HB) CKte1/? HE) 6 
HANG) ~~ HD) ~ HA) + Celea ~ HUAo) 8 

(d,6, 10) so small that where we have chosen 3 < 2, in (£36) and 
‘d-1/2 5 

(4.60) CN ~ 2 
= 8 

in the last inequality. Returning to (4.56), we obtain that for ¢ small enough, 

HA(E) HAE) HE) 6 461) > — —=-Ce8 > . (461) he pe ics 1) 2 ey > AMA) 2 
Altogether, by (£61), (£55), (£49) and (£48). we get that 

we . A) HME) 8 cretnes —ercae 5 HEE) 
aia) 2 Hao) 2 ORME = C8" > ara 

if we choose so that dy3 < % and ¢ so small that 

(4.62) CK 23 + Cee < 6/2 

in the last inequality. 
Finally, we check that all the conditions ( (52), . E50), (5) on 

K and € can be satisfied if we choose 0 < 8 < min { 4. tn} and © = e(d, 10,3) 
sufficiently small. This completes the proof of (£37). 
4.3. We extend to U the matrix of coefficients. In this subsection, we extend 

the matrix A of coefficients of L = —div(AV) to U so that the extension satisfies 
the weak DKP condition on G x (0,00), with a constant smaller than CM(A) < Ce. 

We shall use the setup in Section J] that is, given zo €T and ro > 0, we have 
an €71-Lipschitz graph G such that (33) and (39) hold. 

We have seen in Section [2] that if we can find a po-elliptic operator L = 
— div(AV) on U that satisfies the weak DKP condition in U with constant %(A) < 
Ce, and such that 

(4.63) A= Aon 2QN B(x, 2K ro) CU, 

as in (38), then we can prove Theorem [23] We also required that (33) and 
(£30) hold in the larger ball B(«o,10Kro), and we shall use the extra space to 
build the desired extension A with a small enough norm (A). The construction 
will be similar to the usual proof of the Whitney extension theorem with partitions 
of unity. 

Set B = B(ao, Kro) as before. Because of (63), we want to keep A = A on the 
closure of 9.9 2B, and we are free to define A as we please on V = R¢+! \\ ON 2B. 
So we cover V by Whitney cubes, which we construct as in Chapter VI]. 
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That is, let {Q;}, i € I, denote the collection of maximal dyadic cubes Q; C V 
such that, say, 

(4.64) diam(Q;) < 1071 dist(Q;,@9 2B). 

The Qi, i € I, cover V, and they have overlap properties that we will recall when 
we need them. We can also construct a partition of unity {x:};<7 on V, adapted 

to {Qi}icy, such that J; x; = ly and for each i, x; € C2(£Qi), 0 < xi <1, 
and |Vxi| < Cdiam(Q;)~!. See for instance for details. As usual in these 
instances, we shall keep A = A on © 2B (as suggested above) and set 

(4.65) A(X) = 7 Ai xi(X) for X €V, 
iel 

where we take 

(4.66) Av= 4 A(X)dX, 
Wi 

where the average is componentwise, for some set W; C Q (so that A is defined 
on W;) that we shall now choose carefully. Notice that A; and A(«) are jio-elliptic 
matrices, because they are averages of jio-elliptic matrices. Set dj = dist(Qi,QN 
2B). We start with the case when 

(4.67) dist(Q;,T) < di < Kro 

(and then we say that i € ;). Then we pick & € T such that dist(€;,Qi) = 
dist(Qi,T) < d;, denote by W; the Whitney cube W(&;,d;) C Q associated to Q as 
in (£2). When 

(4.68) dj < dist(Q;,I) and d; < Kro, 

we say that i € Iy and we choose W; = Q;. Notice that Q; does not meet I, so 
Q; is either contained in Q or in R¢+!\ Q. The second case is impossible because 
dist(Qi,QA B) < dj < dist(Qi,T), so W; CQ as needed. We are left with the case 
when 
(4.69) d, > Kro. 
Then we say that i € I, and we decide to take W; = W(x, ro), which is contained 
in QA B by definition. This will conveniently kill the variations of A far from B. 

Notice that W; C QA5B for all i € I. This is obvious by definition when i € Is 
and because d; < Ko otherwise, so that Q; C 3B, which proves the case when 
i€Iy, When ich, & € 7B, s0 W, =W(&.d)) $B. 

It will also be good to know that 
(4.70) dist(X, Qi) < 3d; = 3dist(Q;,2N2B) forXeWi, iel. 
When i € 1, this is clear because dist(£;,Qi) < dj. When i € I, this is trivial. 
Finally, when i € Iz, set D = dist(Q;, 20), observe that W; = W(ao, Kro) C B lies 
in a D+Kro-neighborhood of Q;, while D < dist(Q;,Q02B)+2Kro = di +2Kro < 
3d; by definition of I. 

So we have a function A defined on the whole R2*!, and our next task is to 
evaluate the numbers a(y,”) associated to (the restriction to U of) A, defined for 
y €G and r > 0. Recall that they are defined by 

aS 1/2 
471 a(y.r) = inf A-AoP >. (a7) aur) =ine{ f 1A A0l*} 
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where the infimum is taken over constant jio-elliptic matrices Ao, and we use the 
Whitney boxes 
(4.72) Wy.) = {X €UN Bly,r); dist(X,G) > r/2}. 

We claim that 
(4.73) a(y,r) =0 when r > 6Kro, 
and 
(474) a(y,r) =0 when dist(y.72B) > 2r and dist(y, 2B) > 6K'ro. 
To see this, let us first prove that 

(4.75) A(X) = Ago := f A(Y)dY for X € RY+1\ 3B. 
W(2o0,Kro) 

Indeed for any Whitney cube Q;, i € I, U Jy, we have that dist(Q;,QN 2B) = d; < 
Kro, and then $Q; C 3B because diam(Q;) < d;/10. Now if X € R¢+! \ 3B, all 
the indices i such that y:(X) # 0 lie in Is, and since A; = Ago for i € Is, 
yields A(X) = Ago. 

If r > 6Ko, we have that dist(X,G) > r/2 > 3K ro for X € W(y,r), but then 
dist(X,a9) > dist(X,G) > 3Krq and A(X) = Ago. That is, A is constant on 
Wly,r), and (£73) follows. If dist(y,[ 2B) > 6K ro and r < dist(y,P. 9 2B)/2, 
then for any Z € W(y,r), |Z —ao| > |y — @o|—|Z — y| > dist(y, PN2B)/2 > 3Kro, 
which shows that W(y,r) ¢ R4+! \ 3B. Then (74) follows from (£75). 

Let y € G and r > 0 be given. We shall distinguish between cases, and the most 
interesting is probably when 

(4.76) dist(y,P 2B) < 2r and r < 6Kro. 
We claim that in this case 
(4.77) a(y,r) < Cya(x,80r) for every « ET Bly, 4r), 
where 74(2,r) is the variant of a.4(x,r), but defined with balls. That is, 

1/2 
(4.78) svale,r) =u {fe 7 4 Aol} 

Ble. 
Let « € 1M B(y,4r) be as in the claim. We will use the same constant matrix Ao 
as in the definition of y4(«,80r) to evaluate a(y,r). First write 

2 

aly.r? <|Wy.r)| I \4—aol?ax + f |A-Av| ax), 
W (yr) ADB Wy.r)av 

and notice that the first part is in order, because 29 W(y.r) C QM Bly,r) 
ON B(w,80r) and the denominators |W(y, r)| and |B(x,80r)| are comparable. We 
are left with the integral J = Srna |A — Ao|?. Let I(y,r) be the collection of 

indices such that Q; meets W(y.r) OV; then J < Sier(y,r) |A — Aol dX, and the 
definition of A yields 

> / EAs) = Aol" ax= [, 4, - Ao) u(X (fax 
iel(y,r) 9 @ iel(y.r) 72 

because 3; xj(X) = 1. Observe that for X € Q;, we only sum over the set Ji of 
those j € I such that $Q; contains X and hence meets Q;. There are only finitely 
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many of such indices j, and they are all such that }diam(Q;) < diam(Q;) < 
Adiam(Q;). We use Minkowski’s inequality to get that 

(f, | 24 — anvc)"ax) y"s¥ (fia Anh X)Pax) 
Ged; 

Since yj < 1 and by definition of Aj, the right-hand side is at most 
1/2 

SE ial'*ias al sed (rf, (|A(Z)~ aaltaz) 
jek 

where in the last inequality we have used the fact that |Q;| ~ |Qi| when $Q; 
mects Q;. By construction |W;| * |Q;| for j € I; Uy. Recall from (76) that 
dist(y, 7. 2B) < 2r <12K'ro, hence for j € I; where i € Iz NI(y,r), diam(Q,;) © 
CKro. Therefore |W;| © |Q;| holds for all j € Ii, 1 € I(y,r), and so we may drop 
ie. Altogether 

9 

(479) 7<0 {EU 
iel(ysr) V5 

|A(Z) — age az)’ *\° 

<c> > I, |A(Z) — Aol? dZ, 
i€l (yr) FEA 

where the last inequality follows from Jensen's inequality. We claim that 

(4.80) W; ¢ B(w,80r) for j € Ji. 

To see this, let Z € Wj be given; by (£70), dist(Z,Q;) < 3d;. But dj = 
dist(Qj,QN2B) < 20 diam(Q;) by definition of our Whitney cubes, so dist(Z,Q;) < 
60diam(Q;). Next $Q; meets Qj. so dist(Z,Qi) < 62diam(Q;) < 244 diam(Q;). 
Pick X € QiNW(y,r); it exists because i € I(y,r); then |X —a| < |X —y|+|y—a| < 
5r, and so |Z — | < 244diam(Q;) + 5r. But the definition of our cubes yields 
diam(Q;) < 107! dist(Q;,02B), and dist(Q;,®92B) < dist(Q;, 2B) < 3r by 
(E70). So 244 diam(Q;) < 244% < 75r, and (£30) follows. 

Return to (£79); by (£80) and the fact that the Wj; have finite overlap, 

J< ef onan |A(Z) — Ao|? dZ < Cr? y.4(a, 80r)?, 
2,807 

which completes the proof of our claim (£77). 
Let us now use the claim to do the part of our Carleson measure estimate that 

comes from 
E = {(y.r) € G x (0, +00); dist(y, 7 2B) < 2r}. 

We need to know that the set [9 B(y,r) of the claim is not too small. We use 
(£70) to pick y* € 1.1 2B such that |y — y*| < dist(y, 7 2B) < 2r; then by 
for balls centered at y* and since B(y*,2r) C B(y,4r) C Bly*,6r), 
(4.81) 

cart < (1—Ce"/*)ca(2r)t < H4(Bly, dr) OT) < (1+ Cel )ca(6r)4 < Tear. 

Let yo € G and so > 0 be given, and estimate 

= od Je)= f [tetra Lael. 
y€GNB(yo.so) JO<r<so r 
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Denote min {s9,6Kro} by %. We use (73), (77), (LET), the Ahlfors regularity 
of P and G, and a Fubini argument, to get that 

(4.82) 

JE) < c| | {af yale 80y7aH"(a)} Pare) 
YEGNB(yo,80) JO<r<% 2ePnB(y.4r) r 

<c | -ya(o,80r)? d(x) 
O<rs% r rEPNB(yo.580) 

-c [er Sant), 
2ETNB(yo,580) /0<r<80so r 

In [DEM22], we proved that the weak DKP condition implies the stronger estimate 
that 7(«,r)?4*# is a Carleson measure in R¢ x (0,00). The same thing holds here, 
with almost the same proof, even though the geometry is a bit different because we 
work with P and 2. That is, for any xo € TP and ro > 0, we have that 

id. | d. 
ya(@, py dha)ar <Claa(z, pp dt(aar . 

r He(xo,ro) r (v0.70) 

Therefore, (£82) now implies that 

(4.83) J(2) < Cst(A) = Cste 

and concludes this part of the argument. 
Return to our main Carleson estimate. We are left with the pairs (y,r) that 

belong to the set 
(4.84) = {(y.r) € G x (0, +00): dist(y,P. 2B) > 2r}. 

Let (y,r) € =’ be given, and assume additionally that dist(y, 2B) < 6Kro. Set 
d(y) = dist(y, [9 2B), then 2r < d(y) < 6Kro. Obviously 

(4.85) dist(W(y,r), PN 2B) > dist(B(y,r), 79 2B) > d(y) — r > d(y)/2. 

Let Q; be any of the Whitney cubes such that $Q; meets W(y,r), and pick 
X €Wly,r) $Q;. Then by (85) d(y)/2 < dist(X,P 2B) < dist(Q;,P A 2B) + 
$diam(Q;) < 12diam(Q;), so diam(Q;) > d(y)/24. Next pick any X € W(y.r) 
and any constant matrix Ao, and observe that by (£65) 

(4.86) VA(X) = 0 Ai Vil X) = SOLA: = Ao] Vue X) 
iel tel 

because > Vx; = 0. We sum only over the set [(X) of indices i such that X € $Qj, 
and since |Vx;(X)| < Cdiam(Q;)~! < Cd(y)~! for i ¢ I(X), we get that 

(4.87) |VA(X)| < Cd(y)“? > [Ay = Aol. 
iel(X) 

Recall that Aj is the average of A on 1V;; we want to compare A; to some average of 
Aon a large ball centered on T, so we choose y* € [2B such that |y* — y| < d(y) 
and we check that 
(4.88) Wi c Bly", 12d(y)). 
Indeed, for Z € W;, (C70) says that dist(Z, Qi) < 3dist(Q;, 2B) < 60diam(Q,), 
and all points of Q; lie within 2 diam(Q;) from W(y, r) (because £Q; meets W(y, r)) 
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hence within 2diam(Q;) +r from y. So |Z — y*| < |Z — y| +d(y) < 60diam(Q;) + 
3d(y)/2. 
ve £Q; meets W(y,r), and if X € W(y,r)7$Q; we both have that dist(X,T'9 

2B) < d(y) +r < 3d(y)/2 by GBM), and dist(X,P. 2B) > dist($Q;,1 2B) > 
dist(Q;,T 9 2B) — 4 diam(Q;) > 9diam(Q;), so 60diam(Q;) < 10d(y) and (£38) 
follows. Therefore, choosing Ao = fon iye12q(y) A(Y)4Y (which does not depend 
on i € I(X), and not even on X), 

[Av = Aol <i) fay) ~ Adley < int [ |A(Y) ~ Ao|a¥ 
Ww B(y* .12d(y)) 

< C|W;|""|B(y*, 12d(y))| |A(Y) — Ao|dY. 
B(y* 12d(y)) 

Observe that |IV;|-"|B(y*, 12d(y))| < C. For i € T1Uhh, this follows from diam(Q;) 
> d(y)/24. For i € Is, this is because d(y) < 6Krp. Hence, 

(4.89) |Ai — Ao] < Cd(y)~*ya(y", 12d(y)) 
by Cauchy-Schwarz. We notice that all the W;, i € I(Z), stay at distance at least 
C-! diam(Q;) > C-d(y) from T, so we can replace +(y*, 12d(y)) with @(y*, d(y)), 
the larger variant of a(w,r), defined by 

— fant We pi 4_ 42? = {int Pe.n) I 4 Adl?} . 
V (x.r 

with W(2,r) = {X € 27 B(w,20r); dist(X,T) > C-r}. Altogether, 

(4.90) |VA(X)| < Cd(y)~? SP Ai — Ao| < Ca(y)~'A(y*. d(y)). 
ieI(X) 

Because of this, the oscillation of A(X) on W(y,r) is at most Cd(y)~!ra(y*, d(y)), 
and hence @(y,r) < Cd(y)~!r@(y", d(y)). By this and (£72), 

dr 

| | la(y.r) Law<oxro(y) A(y.r)?—dH"(y) 
yEGNB(yo,80) J0<r<so 

r 

<c[ i ly". A(y)) dy) Prd dy) 
yEGNB(yo.8o) Y0<r<d(y)/2 

<cf Aly. dy))? dy) 
y€GNB(yo,so) 

<Csf sup (y*,d(y))?. 
vEGNB(yo.s0) 

Now the weak DKP condition implies that @(2,r)? <C@(A) < Ce for all 2 € P and 
r > 0, where the Carleson norm (A) is as in (II). The verification is also easy 
(and is done in [DLM23]). Thus we also get that J(=’) < Csde, and since (33) 
provides the estimate for the other piece .J(=’), we finally get that the extension A 
satisfies the weak DKP condition on G x (0,20), with a norm at most Ce. 

5. SMALL AND VANISHING Ax AND BMO 

At this point, our proof of Theorems [23] and [LIJJis complete. However, since 
we like to work with chord-are surface with small constant, we want to explain 
a few rather simple relations between Ax, weights and BO estimates for their 
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logarithm. We want to do this in (Ido), where either P C R¢+? is a chord-are 
surface with small constant and o = H4., or T = R¢ and a is the Lebesgue measure 
on T’. Because of the first case, we define BMO with balls. 

We first define the mean oscillation on a set E such that 0 < o(E) < +00, of 
the function f € L!(E,do) by 

5 _ -1 _ (6.1) mol. B) = o(E)-* [sw -(F fae) 
We say that f € BMO(L) when f € L, 

do(y). 
(P,do) and 1 

loc’ 

(5.2) \lfllearo := sup sup mo(f, A(x, r)) < +00, 
r>0 rel 

and that f € VMO(P) when f € BMO(P) and in addition 
(5.3) lim sup mo(f,A(a,r)) = 0. 

704 cer 

It is easy to see that in the case of R4, we can replace the collection of balls A(«,r) 
with the collection of cubes Q with faces parallel to the axes, and get the same 
space BMO, with a slightly different but equivalent semi-norm 

(5.4) Il. = sup mol. Q): 

also VMO(L) could be defined with cubes. Finally, we can localize: if A = 
A(ao,ro) is a surface ball in T, we say that f € BMO(A) when f € L'(A,do) 
and 

(5.5) If llparocay = sup mo(f, A(a,r)) < +00. 
(z,r)EAx (0,70), A(z,r)CA 

This may be a little ugly near the boundary, but often we only care about the 
restriction of f to A(wo,ro/2) anyway. In R¢, the version with cubes is a little 
better. If Qo C R¢ is a cube (with faces parallel to the axes, we won't repeat), we 
say that f € BMO.(Qo) when f € L!(Qo,do) and 

(5.6) fll B10. (Qo) = oe mo(f,Q) < +00, 
2CQo0 

where the supremum is over the cubes Q C Qo. 
With all these definitions at hand, we are ready to state a first result about Ac. 

absolute continuity with vanishing constant and VMO. 

Lemma 5.7. Let T be a chord-are surface (or just an Ahlfors regular set of dimen- 
sion d) and let o be an Ahlfors regular measure onT. Let w be a positive locally 
finite Borel measure on, suppose that it is absolutely continuous with respect too, 
and denote by k = 42 its Radon-Nikodym density. Assume logk € VMO(L). Then 
for any 5 > 0, there exists y > 0 such that for any surface ball A = A(a,r) CT 
with 0 <r <7, and any Borel set ECA, 

5 |(Z) _ o(2) (5.8) ay 7 ota) <8 

There is a similar “small constant” statement that says that for each 6 > 0, we 

can find € = ¢(6,P) > 0 such that if || logk||paro < ¢, then w € Ax.(0,4). But we 
leave the details to the reader. 

For the comfort of the reader, we are only going to prove this in the special case 
when P = R¢ and a is the Lebesgue measure, but in a way that is easy to follow 
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in the general case, with simple modifications, by observing that we can cut I’ into 
collections of “M. Christ dyadic cubes” that have roughly the same properties as the 
dyadic cubes in R¢. We don’t even need the slightly unpleasant “small boundary 
property”, just size and nesting properties of cubes are enough. 

We start the proof with the simplest version of the John and Nirenberg theorem, 
with cubes in R¢. 

Lemma 5.9. There exist constants c = cq > 0 and C = Cq > 1 that depend only 

ond, such that if Qo is a cube and f € BMO.(Qo), then 

(5.10) [, = (cif listioun)f) -( f, fd) 

In fact, the (very standard) proof with a stopping time on dyadic cubes only 
requires a control on mo(f,Q) when Q is a dyadic subcube of Qo (i.e., obtained 
from Qo by the usual dyadic partitions). 

) dala) < Calo). 

Proof of Lemma [5.7] Let w and k = 42 be as in the statement, and let 6 > 0 be 
given. Let ¢ > 0 be given, and choose ro > 0 so small that mo(log k, A(x,r)) < € 
for every surface ball A(«,r) such that 0 <r < ro. By standard manipula- 
tions of covering cubes with balls of roughly the same sizes, we also see that 
|| log kl|zar0.(Qo) < Ce for every cube Qo such that diam(Qo) < ro. 

We choose y = d~!/2rq, consider a surface ball A = A(x,r) such that r < 4, 

and try to prove for any Borel set E C A. Call Qo the smallest cube that 
contains A; we chose 7 so that diam(Qo) < ro, and so ||log(k)||ga10.(Q0) < Ce. 
This allows us to apply Lemma JJand get 

(5.11) [,» (= 

with a new constant a = C~'c > 0 that depends only on d. Since does 
not change when we multiply w by a positive constant, we may assume that 
fc, log(ke)do = 0, which will simplify our computations slightly. We write 

|, k(x)do(a) 

and decide to cut each of these integrals in three, corresponding to the three regions 

log(k(2)) — CA log(k)do) ) date) <C, 

(5.12) 2(Q)= f Keldete) and w(E) 

(5.13) Qi = {x € Qo; log(k(w)) < Ae}. 
Q2 = {2 € Qo; |log(k(x))| < Ae} 

Qs = {x € Qo; log(k(x)) > Ac}, 

where the large constant A will be chosen soon. Notice that a~!|log(k)| > aA on 
Q1 UQ3, so by Chebyshev 

(5.14) w(Q1) < o(Q1) < o(Q1) + (Qs) < Ce~*4a(Qo). 
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Similarly, we cut Qs into the regions Dj = {x € Q3: j + Ae < log(k(a)) <j +1+ 
Ac} and get that 

(5.15) (Qa) < I, _(e)do(#) <> I, k(e)do(2) 
j20 

< Yel +4° oxp ( ~ a+ Ae) [ exp (ae! log(k())) do(«) 
20 D; 

< Co(Qo)e!t4%e-24 ee j 

520 
< Co(Qo)ett4ee-@4 < Ce“4/?2 

if we choose A > 2a~! and e¢ < A~!. Now let F be a Borel subset of Qo; we think 
about E or A. Then 

(5.16) 

lw(F) —o(F)| $ o(F 9 (Qi UQs)) + o(F (Qi UQs)) +f |k(a) — 1|do 
FOQ2 

< #(Q1 UQs) + o(Qi UQs) +f, eA® — Ilda < (Ce~*4/? + 2Ae)a(Qo) 

by (£13)-(5-15). By definition of Qo, we also have that (A) > ac(Qo) for some 
constant @ > 0 that depends only on d. Then we choose A, and then ¢, so that 
Ce~*4?? 4 2Ae < 10-706 in Then 

(5.17) \w(A) — o(A)| < 10-%ad0(Qo) < 10-*5a(A) 

and similarly 

(5.18) |w(E) — o(B| < 10-750(A), 

from which it is easy to see that [48 - al <6 as in (8). a 

There is a converse to Lemma[5.7Jand its small constant variant, which we discuss 
now. 

Lemma 5.19. There is a constant ¢ > 0 that depends only on d, and for each 

6 > 0, a constant 21 = £1(6,d) with the following property. Let T € CASSC(e) 
be a chord-are surface with small enough constant in R4*! (as in Definition [LI3), 
and let w be another measure on T such that w € Ax.(0,£1) (see Definition [ET5). 
Then w is absolutely continuous with respect to a, and its density k = 42 satisfies 

||log(F)||aao <6. 

Proof. Let T € CASSC(c) and w € Ax(0,¢;) satisfy the assumption. It is a 
general fact about A,, that then w is absolutely continuous with respect to 0, so 
k is well defined and locally integrable. Let a > 0 be small, to be chosen later 
(depending on d). We want to show that (if ¢ and ¢; are small enough), for every 
surface ball A, there is a constant Ca such that 

(5.20) a({x € A: |log(k(«)) — ca| > 5}) < ao(A). 
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In fact, the simplest is to take ce, = log (23) _ Write A = A, U Ag U Ag, with 

(5.21) A; = {we A; k(x) < es}, 

Ag = {4 EA; 8 < h(a) < OF, 

As = {w EA; k(x) > e°*?}; 

we want to show that ¢(A;)+0(Ag) < o(A)/100. We take E = A, in the definition 
(C10); we get that | sta - wey <1 or, since w(A) = e®0(A), 

(6.22) je~®w(A1) ~ o(An)] < e10(). 
But w(A1) = fy, kdo < e®3~8o(A) so o(A1) — e-* 
the comparison with yields o(A1) < (1-7 
chosen small enough. Similarly, 

(Ar) > (1—e>*)o(An), so 
)-10(A) < ao(A)/2 if 21 is 

(6.23) je®uo(As) — 0(As)| < er0(A) 
by the proof of (522), and the definition yields w(Ag) = f,, kKdo > e%+%o(A), 
so that e~®Sw(A3) — o(As) > (e~? — 1)o(As) and the comparison yields ¢(As) < 
e1(e§ — 1)“10(A) < ao(A)/2. This proves (5.20). 

Now we claim that a well known result proved by F. John [Joh65), improved by 
J. O. Strémberg [Sir79], allows one to deduce from that log(k) € BMO, with 
a norm less than C5. Here C depends on d, and of course the difference between Cd 
and 6 could be easily compensated by taking ¢1 smaller. The advantage of the result 
of John and Strémberg is that it is directly valid for a doubling measure. For the 
sake of the reader that would know the usual proof of the John-Nirenberg theorem 
(with simple stopping times), let us say two words about how the underlying ideas 
could be applied. In R4, if you have for balls, you also get it for cubes Q, 
by the usual trick of using ( for the smallest ball containing Q, and at the 
price of starting with the smaller @ = ac(Q)/o(A). Then, if a is small enough, we 
deduce from that if Q and R are cubes such that Q ¢ R and diam(Q) > 
diam(R)/2, then |cg — cr| < 26. Then the proof of the John-Nirenberg theorem 
can then be applied, and this yields || log(k)|| 170 < Cd. So the result is valid when 
TP € CASSC(e), ¢ small enough (so that ¢ is doubling), with the usual fake dyadic 
cubes on I’. We need to take a even smaller, so that in particular we can control 
leq —er| for fake cubes, when Q is a child of R, but the proof goes through. 0 

Corollary 5.24. In Theorem [LIZ] we can replace the conclusion that w® € 
A..(0,6) with the conclusion that w® is absolutely continuous with respect to 0, 
with a density k = 42 such that || log(k)||Baro < 6. 

In Theorem [L19) we can replace the conclusion by the fact that for each surface 
ball A = B(x,r) OT such that A c B(X,«dist(X,T)) and 0 <r < rdist(X,P), 
w* is absolutely continuous with respect too on A, and the density k = 4 is 
such that || log(k)\|garocay < 4. 

Proof. The first part follows at once from Theorem [E17] and Lemma The 
second part follows Theorem [19] (applied with a larger « for security) and the 
proof of Lemma ao 
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APPENDIX A. CONSTRUCTION OF AN EXAMPLE IN Ri 

In this section, we give a different. proof of the special case of Theorem [LI7]where 
Q = R4!, We came up with this proof in the period when the result of [BES21] 
for small weights was not yet available. As was said in the introduction, we shall 

assume that the theorem fails, and get the desired contradiction by constructing 
an operator L that satisfies the assumption of the main theorem of [BTZ23], but 
not the conclusion. We recall the main theorem of [BTZ23]. 

Lemma A.1 ([BTZ23] Theorem 1.2]). Let L = —div AV be a divergence form 
elliptic operator on R4*!, whose coefficient matrix A satisfies the vanishing weak 
DKP condition. If k% is the elliptic kernel associated to L (in R4+") with pole at 
infinity then log kf? € VMO(R®) (sce for the definition of VMO). 

The authors of [BTZ23] also show the big constant version of the result above. 

Lemma A.2 ([BTZ23] Theorem 5.2]). Let L = —div AV be a divergence form 
elliptic operator on R4*!, whose coefficient matrix A satisfies the weak DKP con- 
dition. Let w° be the elliptic measure with pole at infinity. Then wie « £4, where 
L4 is the Lebesgue measure on R4, we € Ax(dx), and ke(y) = “E(y) has 
the property that logk?? € BMO(R‘). The implicit constants in the statements 
we € Ax(de) and logk € BMO(R®) are each bounded by a constant depending on 
d, the ellipticity constant po, and \jaa(x,r)? = |. 

In this section, T = R¢ c R4&!, Q = RY, and we study operators L = 
—div(AV) that are jip-clliptic. Points of R4*! will be written X = (2, t), with # € 
R¢ and t > 0, and surface balls will be denoted by A(a,r) = B,(w) N{t = 0} c R4, 
with « € R¢ and r > 0. 

If A = A(a,r) is a surface ball, we may also denote by T the Carleson box 
T(a,r) = B,(2) R&S over A(x,r), but our notation will be slightly simpler if we 
switch to 

(A.3) Wie, A(z,r) x ‘ | cri 

for the Whitney cube. This makes no real difference (compared to (12), and in 
particular the definition of Carleson measures and the weak DKP condition do not 
change in any significant way. 

So we start the proof of Theorem [17] in R4*! by contradiction: we assume 
the theorem to be false, so we can find an ellipticity constant jz, a small constant 
69 > 0, and for each integer j > 0, a jio-elliptic matrix A; such that 

(A4) M(A,) < <2, =r, 
but for which the conclusion of the theorem fails for L; = —div(AjV). That is, 
wR ¢ Ax(o,60), where by habit we still denote by the Lebesgue measure on R¢. 
Notice that changing the normalization point for wi would only multiply w= by 
a constant, and not affect the fact that w7 ¢ Ax. (0.60). 

This means that for each j we can find a surface ball Aj ¢ RY and a Borel set 
Ej Aj such that 

(As) 
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We want to use this to derive a contradiction, but before we start for good, it will 
be good to record how our various objects behave under dilations that preserve the 
boundary. 

A.1. Some scaling properties. In this subsection we are only interested in the 

changes of variable induced by the linear transformations 

(A.6) TR REIT GRE X GAN 4 (2,0) =AN4Z, 

where \ > 0, z € R¢, and we set Z = (2,0) € R¢+ to prevent confusion between 
R¢ and R¢+!. In the following computations, \ and = are fixed, we are given an 
elliptic matrix valued function A, and we consider 

(A.7) A(X) = A(T5(X))- 

Lemma A.8. With the notation above, 

(A.9) aj(a,r) =a4(Ti(2,r)) for any x € R4r > 0, 

and 

(A.10) mA) = NCA). 

Proof. Both (A.9) and follow from direct computations; we omit the proof. 
Oo 

Lemma A.11. Now let L = —div AV. Then for any Borel set E € R4, 

. ~ (E-(2.0 “uy _ _ 
(A.12) we(E) =A 1U(z, A) wt (==) = MU (z, A) w® (TE) (E)), 

where U is the Green function with pole at infinity associated to L (and normalized 
at the point Zy = (0,1). 

Proof. By (2.1), one can show that 

(A.13) Gz (X,Y) = “4G 1 (Ty (X). TE (Y)) for X,Y e RY. 

Denote by 0 the Green function with pole at infinity for Z. Then by (210) and 
(AT), 

~ — Gy(XeY) Gr (TE(Xx), T3(Y)) 
O)=h L =) 4 a 

(Y) = Jim G(Xp, Zo) b> Gr (Tz(Xn), Ts (Zo) 

where {Xj} is some sequence of points in R4*! such that |X,| 4 00 as k + oo. 
On the other hand, we can write 

tim GHEY) _ 5, Ge XW).Y) Gi (TE(Xx), Th(Z0)) 
ksce Gi (Tx(Xxk), Zo) +00 Gi (TX(Xx), TX (Zo)) Gi (TX (Xx), Zo) 

- i Gi(TX(Xe).Y) yep 
TES GUT). Tay 

UY) 

Comparing it to 7(Y), we obtain that 

(A.14) U(TR(Y)) = O(Y)U(T;(Zo)) for any Y eR, 

Recall that the Riesz formula (211) for E asserts that 

(aay ff Fy) aap) =- ff Toyo) vWF yay 
an 
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for f € C®(R4) and F € CX(R4*) such that F(y,0) = f(y). Set F(TZ(Y)) = 
F(Y), f(y) = Fly,0). Then f € Cx(R4) and F € Cx(R+1). Using (X14), the 
change of variable Y’ = Tz(Y), and then the Riesz formula for L, the right-hand 
side of is equal to 

— au (T3(0)) ff A'(Y’)VU(Y’)- VF(¥’)dY" 

=a) [Fae 
where we have also used the fact that U(T§(Zo)) = U(z,A). Since f(y) = Fy, 0) = 

F(TS(y,0)) = fy +2), asserts that 

[f0u+ Adee) =U. [Fader 
for f € Cx(R4). By a limiting argument, this implies that for any Borel set 
ECR, and if we set E! = A-!(E = (2,0) = (Tf)1(E), 

wP (BE) = I. Le (Ay + 2)dw (y) = Ab4U(z, A)“ I. Lp (y)dwe(y) 

= MU (z,\)wP(E’), 

as desired. o 

A.2. We can modify A; away from a band. Return to the bad operator Lj = 

—div(A,V) and its bad set B; C Aj. We claim that we can assume that for all j, 
Aj = Ao, the unit ball in R¢. Write A; = A(z, A), and notice that T7(Ao) = Ay. 
Then replace A; with the function Aj = Ao T} given by (7). By Lemma[A3] 
M(A;) = N(Aj). In addition, set By = (TZ)-1(B;) C (T¥)-1(Aj) = Ao; then by 
Lemma [AL 

where the extra factors \!-1U (2, A) are the same on the mumerator and denominator 
and cancel. So let us assume that Aj = Ao (and that (Xd) and hold). 

Our goal is to use the A; to construct a matrix-valued function A* that satisfies 
the vanishing weak DKP condition and keeps the bad properties of each A;. Lemma 
[A.Glwill allow us to modify A; outside of some strip, but essentially maintain (5). 

Lemma A.16. There exist 0 < pj < 1 and Mj > 1 such that if At is any pio- 
elliptic matrix that satisfies A3(x,t) = Aj(v,t) for t € (pj.Mj), and NAF) < Co 
for some Co < 00, then 

we (Ej) o(E;)| — bo AAT Shy I M5) | 80 (A17) TE(Bo) ao) > 2 
where wP. corresponds to the operator Lx = — div A3V. 

We could also have allowed modifications of A; for |x| very large, but since this 

is not necessary for our construction, we will not do that. 
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Proof. Notice that we allow p; and M; to depend wildly on j. We prove the lemma 
by contradiction. Fix j and suppose that the statement is false; then there exists 
a sequence of jio-elliptic matrices {Ajx},ey- Such that Aj,(a,t) = Aj(,t) for 
te (2-*,2') (Aj x) < Co, and 

wpe (Ej) o(E;)| _ 6 
(A.18) + Ll<r, keEN. 

T.(Ao) (Ao) 

Let X = (0, to), with to > 4 to be chosen soon. Then by Lemma 2-17] (applied with 
« =2,e=0, and r=1), 

wk (Ej) (By) yo 
OR (Bo) SE (Bo) <c(Z) =O 

where C and ¥ are positive constants that depend only on d and ji. Choose to so 
_ 

(A.19) 

(recall that A; = Ag) and yield 

of, (E)) o(E;)| 7 7, 
wi, (Ao) ~ (Bo) | = 25 

while and the analogue of for Lj (which is valid with uniform 
bounds) give that 

By the triangle inequality, 

(A.20) 

X (Bf 
wi w(E) (ES) 35. or hen. (21) GR (Bo) @(Bo)) <8 

Now we want to let k tend to +o. We claim that for any bounded Borel set 
EcR4, 

(A.22) Jim «7, (E) = wi, (E). 

Once we prove this, we let k tend to +00 in and get a contradiction with 
(K-20). So Lemma [A-16] follows from Lemma (proved later). Oo 

Lemma A.23. Let L = —div AV be a jio-elliptic operator, let Ly = — div AxV 
be a jo-elliptic operator that satisfies Aj(x,t) = A(a,t) for t € (27*,2*), and 
M(Ax) < Co for some Co < oo for all k € Z,. Then for any bounded Borel set 
ECR*, and any Xp € R4*1, there holds 

(A.24) jim n wi (E) = wi(B). 

Lemma should not surprise the reader, but something like the uniform 
bound 2(Aj,) < Co that guarantees Ax is needed. The weak convergence of the 
elliptic measures, on the other hand, does not require anything for the operator 
apart from ellipticity. In fact, it is well known that assuming Ax — A ae. as 
k — 00, Ag and A elliptic, then for any fixed Xo € R4*?, f fdw%? tends to 
J fdux? as k + co for any continuous function f with compact support on R4; se 
e.g. [KP93]. However, we do not seem to find a proof written for the convergence 
(A224), and so we give the proof in Section 
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A.3. We neutralize the coefficients of A; away from a band. Now we con- 
tinue with a given j > 0 and construct a matrix A} that coincides with Aj on 
the large band {(x,t); 4% < t < 2M;} and with the identity matrix outside of a 
much larger band (so that further gluing will be easier). The main point of the 
construction is to do it without increasing the norm (Aj) too much. 

Definition A.25 (The matrix A%). Let A) be the matrix that we fixed earlier. 
Let p; and Mj be as in Lemma [A.16] Set Nj = 7! = 2/ and denote by J is the 
identity matrix of size d+ 1. We define A} by 

As(0,t) 
I, t>2NM; ort <2-Nip;, 

Hit (1-d) Ail), IM; <¢<2"Mj, for <0 < 
Aj(a,t), 4 <t<2M;, 

Mle (1- x) Ales), tp) < tS 2p, for SUS Nj 1. 

-1, 

Notice that we only care about the values of t here, and we do not modify Aj(a,t) 
for |x| large, because this is not needed for the construction. We need a very large 
interval around [&,2M;] because we want the coefficients to vary slowly, so that 
some ¢?-norm is small. We now evaluate the a-numbers for Ay. 

Lemma A.26. For any x € R¢, 

=0, rs 2-Nip; orr > 2Ni*1 Mj, 
aa;(a,r) 4 < Ce), 2-Nip; <r < pj or 2M; <r < 2Ni4+1M;, 

=aa,(a.r), pj) <r < 2M). 

Here, the constant C depends only on d and pio. 

Proof. Let us discuss four cases. 

Case 1. r < 2-Nip; or r > 2Ni71 Mj. 
In this case, observe that for any « € R¢, 

W(a,r) = A(a,r) x (r/2.7] CRE x {(0, 2789] U (2%) Mj, 00)} . 

By the definition of Ay, A3(«,t) = I for («w,t) € R¢ x {(0,2-%"] U (2%) Mj, 00)}. 
So we can just take Ay = I in the definition of a4, and get that 

aas(vr)=0  forw eR r< 2p; or r > 2% My. 

Case 2. 2-Nip; <r < pj. 
Let k be such that 2-'1p; <r <2-*p;:; then 0 < k < Nj —1 and for « € R¢, 

a; (ar)? 
or 2 

1 i [ P\k+1 ( =) 
— —I+(1—-——) Aj(y,t)— Ao) dtdy We Iaenhye Ny Ny) Ane Ao 

AT Iocan doy, 351 (a5) +o —I+(1——) Aj(y,t) — Ao| dtdy 
|W(2,r)] A(a,r) J2-*-1p; Nj Nj AH) ° 

= +h, 
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