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OPERATORS IN SETS WITH UNIFORMLY
RECTIFTIABLE BOUNDARIES

GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA

ABSTRACT. In the present paper we consider elliptic operators L = — div(AV)
in a domain bounded by a chord-arc surface I' with small enough constant, and
whose coefficients A satisfy a weak form of the Dahlberg-Kenig-Pipher condi-
tion of approximation by constant coefficient matrices, with a small enough
Carleson norm, and show that the elliptic measure with pole at infinity associ-
ated to L is A.c-absolutely continuous with respect to the surface measure on
T, with a small A, constant. In other words, we show that for relatively flat
uniformly rectifiable sets and for operators with slowly oscillating coefficients
the elliptic measure satisfies the Ao condition with a small constant and the
logarithm of the Poisson kernel has small oscillations.
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1. INTRODUCTION AND MAIN RESULTS

Recent developments have showed that for the class of Dahlberg-Kenig-Pipher
operators the elliptic measure is absolutely continuous with respect to the Hausdorff
measure on all uniformly rectifiable sets with some mild topological conditions (we
will provide the relevant list of references below). The conditions on the operator
and on the geometry are both essentially necessary and in fact, one can establish
the equivalence of the aforementioned geometric features of the domain to the

property of absolute continuity of harmonic measure [JAHM™*20]|. The present paper

focuses on the “small constant” version of these results, showing, roughly speaking,
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that for relatively flat domains and for slowly oscillating coefficients, the elliptic
measure is A., with respect to the Hausdorfl measure with a small norm and
that the oscillations of the logarithm of the Poisson kernel are small. This turned
out to be surprisingly non-trivial primarily because the standard methods of work
with Carleson measures, uniform rectifiability and related notions “bootstrap” and
hence, enlarge the constants.

To be precise, in this paper we prove small A_ estimates for the elliptic measure,
with pole at infinity, of a divergence form elliptic operators L = — div(AV), with a
matrix of coefficients A that satisfies a weak Dahlberg-Kenig-Pipher condition (see
the definitions below) with a small corresponding Carleson norm. We will do this
both in the upper half-space Ri"’l and in any of the two connected components 2
bounded by a Chord-arc surface with small constant T' ¢ R4*1,

Concerning the special case of Ri"’l, this paper can be viewed as a continuation
of a paper of Bortz, Toro, and Zhao [BTZ23|, where a similar result was proved
in the vanishing case. That is, they assume in addition that the Carleson measure
associated to A has a vanishing trace, as in Definition[1.3] and get that the elliptic
measure with pole at infinity is A., with respect to the Lebesgue measure on R?,
with a vanishing constant. We can use their result, plus a compactness argument,
to say that if our result were not true on Rf‘l, we would be able to construct a
counterexample to their result too. But one can also deduce this from
and a more recent result of Bortz, Egert and Saari [BES21|. Let us say a bit more
about this. The result of [BTZ23| is based on estimates for the Green function for
L (with a pole at infinity), which come from [DLM22|, and, to go from the Green
function to the elliptic measure, a lemma of Korey on weights, which itself
is a vanishing constant variant of a result of Fefferman, Kenig and Pipher [FKP91].
Surprisingly, due to the nonlinearity of the problem, the small constant variant of
these results on weights cannot apparently be deduced from and [Kor98],
but it was finally proved by Bortz, Egert and Saari [BES21]. In view of this, our
proof by compactness is no longer needed, but we still present it as an appendix,
because we believe that it is interesting in its own right, in particular because it
contains the necessary tools for taking care of the dependence on A in the weak
DKP context. By contrast, [BES21| is more direct and concerns a much more
general situation with weights. After an earlier version of this article was completed,
Joseph Feneuil pointed out to us that the small A, result for the half-space case
could be also obtained by combining the argument in and the perturbation
result of [MPT14], which would give a shorter and more direct proof of the result
for operators satisfving a slightly stronger condition, namely, the DKP condition
(see the remark after Definition [[.10) with sufficiently small constant.

Now let us discuss the case of Chord-arc surfaces with small constant (CASSC).
These were introduced by Semmes in [Sem89][Sem90b|[Sem90a), and they can also
be seen as the correct notion of uniformly rectifiable sets with a small constant, a
small generalization of Lipschitz graphs with small constant. The most convenient
definition for us will be by “very big pieces of small Lipschitz graphs” (see Defi-
nition [I.13]), but many other definitions are equivalent. We will say more about
C'ASSC in Section[d and in particular we will check that if I is a C ASSC, then
R+ \ T has exactly two connected components, which are both NTA domains.
Our main result is that if € is one of these components, and the elliptic operator

L = —div(AV) satisfies the weak DKP condition on 2 (see Definition [T.10]), with
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a small enough norm, then the corresponding elliptic measure on I', with pole at
infinity, is absolutely continuous with respect to the Hausdorff measure on I', with
a small A density (see Definition [T.13).

The main case will be when I is a Lipschitz graph with small constant, and will
be deduced from the case of R4 with a suitable change of variable from  to
Rf‘l. Here the point is that the distortion coming from the change of variable is
compatible with the weak DKP condition. After this, we will go from small Lips-
chitz graphs to C ASSC with a comparison argument, where we put small Lipschitz
domains outside of 1 with a large boundary intersection. See Corollary for
the precise statement. Typically, one might want to approach Q from inside by
a Lipschitz graph (see Lemma [I10) as the comparison of elliptic measures in two
domains would be easier. However, this approach would not work in our situation
as the weak DKP condition does not cooperate well when restricting to subdo-
mains. Therefore, we approximate @ by small Lipschitz graphs from outside and
need, somewhat unconventionally in this context, to extend the coefficients to the
Lipschitz domains.

Let us now give more precise definitions and state the main results. We will be
working on the domain Q ¢ R%!, bounded by T', which will either be a CASSC
(defined below) or R?. Points of I' will be denoted by lower-case letters (like z),
and points of £} by upper-case letters (like X'). For # € I' and r > 0, we shall use
the Carleson boxes

(1.1) T(x,r) = QN B,(x),
where B,(z) = B(x,r) denotes the open ball in R¥*!, the surface balls A(z,r) =
B(z,r)NT, and the Whitney boxes
(1.2) Wo(x,r)={X € QN B,(x); dist(X,T) > r/2} c T(x,r).
We now introduce Carleson measures on I' x (0, 4+00). There is a similar notion

of Carleson measures on 2, which will not be needed here, but notice that in the
special case of Riﬂ, the two notions are the same.

Definition 1.3 (Carleson measures on I' x (0, +0¢)). A Carleson measure on I" x
(0, +0c) is a nonnegative Borel measure p on I' x (0, +00) whose Carleson norm

(1.4) lulei= s (A ) x (0,7))
(z,r)elx(0,4+00)

is finite. We use C, or Cq, or C(I" x (0, 4+0¢)) to denote the set of Carleson measures
on I' x (0, +00).

We say that g is a Carleson measure on I' x (0, +00) with vanishing trace when
u is a Carleson measure on ' x (0,400) and

(1.5) lim  sup sup r~u(A(z,r) x (0,7)) = 0.
ro—=0 gep<pg zel

For any pair (xg,7r0) € I' x (0, +00), we use C(xqg,ro) or sometimes C(Ag) when
we work with Ay = A(zg,70), to denote the set of Borel measures satisfying the
Carleson condition restricted to Ay x (0,7g), i.e., such that
18)  Nullegeymy) = sup P (A7) x (0.7)) < +oc.

(wr)elx(0ro) Bl r)CB(xo.ro)

We shall consider operators in divergence form L = —div(AV), where A =

[aij(X )| : @ — Mgyi(R) is a matrix-valued function, which is elliptic, as follows.
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7860 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA

Definition 1.7 (Elliptic operators). Let py > 1 be given. We say that L =
—div(AV) (and by extension the matrix-valued function A) is pg-elliptic on
when
(1.8)

(A(X)E.¢) < o €] [¢] and (A(X)E,€) > gt €] for X € Q and &, € R

We say that L (or A) is elliptic when it is pg-elliptic for some pg > 1. Finally we
denote by 2y (o) the collection of all constant pg-elliptic matrices.

We are ready to define the weak DKP condition. Let pg > 1 be given. We use
the following quantity to measure the closeness of a pp-elliptic matrix A = A(X)
to constant coefficient matrices. For z € I' and » > 0, we define

1/2
ror) = i _ A2
(1.9) aq(e,r) Auelgl?f{m,) { # [A(X) — Ag dX} :

XeW(zr)

Notice that we only integrate on the Whitney box, but it turns out that since I
is nice, a Carleson measure condition on the o 4(x,r) also yields a similar control
on the larger numbers 4 (x,r) where you integrate on the full box T'(x,r); see
Lemma[A-29] Also, we required the constant matrix Ay to be pp-elliptic, but if we
did not, we would still get an equivalent number &4(z, r); use Chebyshev or see

[DLM22].

Definition 1.10 (Weak DKP condition, vanishing weak DKP condition). Let A

be a pp-elliptic matrix-valued function on Q.

e We say that A satisfies the weak DKP condition with constant M > 0,

g da(xz)dr
T

when the measure p defined by du(x,r) = ay(z,r) is a Carleson

measure on [' x (0, +00), with norm
g do(a)dr

ag(w,r)’ ———

(1.11) N(A) = < M,

C

and where we called o = 'Hfr, the surface measure on I'.
e We say that A satisfies the vanishing weak DKP condition if g defined

a deo{x)dr
E—

by dp(z,r) = as(z,r) is a Carleson measure on I' x (0, +00) with

norm vanishing trace.

The weak DKP condition is a weaker version of the celebrated Carleson condition
popularized by Dahlberg, Kenig, and Pipher (DKP), which instead demands that
aalx, ?“)2 ‘iﬁﬁ satisfies a Carleson measure estimate, where

aalz,r)=r sup [VA(y, s)
(y,s)eW(x,r)

In 1984, Dahlberg first introduced this condition, and conjectured that such a
Carleson condition guarantees the absolute continuity of the elliptic measure with
respect to the Lebesgue measure in the upper half-space. In 2001, Kenig and Pipher
proved Dahlberg's conjecture. More precisely, they show that the DKP
condition guarantees that the corresponding elliptic measure is A, with respect to
the surface measure in Lipschitz domains. Let g and v be two non-negative Borel
measures on [. We say that u € A (v) if there exists C, 7,0 > 0 such that for any
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surface ball A C T and any F C A, we have

p(E) v(E)\’ v(E) (mE))”
(1.12) u(a) < (v(m) ) =Ny
We refer the readers to for equivalent definitions of A_..

The weak DKP condition was first introduced in [DLM22], in connection with
the regularity of the Green function. In the aforementioned recent work of Bortz,
Toro and Zhao [BTZ23], the authors show that the weak DKP condition is sufficient
for A, of the elliptic measure in the upper half-space (see Lemma[A2].

Next we recall our main condition on I'. We use the simplest definition of
CASSC for our purposes, and will provide further comments later in Section [4]

Definition 1.13 (Chord-arc surfaces with small constant). Let ¢ € (0,107!) be
given. Let I’ be a closed, unbounded set in R%+!. We say that I' is a chord-arc
surface with constant €, and we write I' € CASSC(g), when for x € I" and r > 0,
we can find an s-Lipschitz graph G, , that meets B(z,r/2) and such that

(1.14) HUT N B(z,r)\ Gor) + HYGyr N Bz, r) \T) < erd.

By e-Lipschitz graph, we mean a set G = {.’c + Alz);xz e P}, where P ¢ R4+1
is a vector hyperplane, A : P — P~ is a Lipschitz function with norm at most &,
and P+ is the vector line orthogonal to P.

In this paper, Q will always be one of the two connected components of I', where
either T is the hyperplane R? ¢ R™! or T' € CASSC () for a small enough & > 0.
In both cases, T' is uniformly rectifiable, {2 satisfies the (two-sided) NTA condition,
and for X €  there is a standard definition of the L-elliptic measure w with
pole at X and the Green function G (X,Y), Y € Q, as long as L is elliptic. As
we mentioned before, since in addition A satisfies the weak DKP condition, w™ is
even absolutely continuous with respect to the surface measure o = Hﬁ-, and the
density gg is an A, weight when I' = R? by We will see that this is
also true when I' € CASSC/(e). With the usual DKP condition, this is known and
is stated in [HMMT21], but factually is a straightforward combination of
with as the domains in question are NTA. However, the main point of the
paper is not the weaker DKP condition, but the fact that the A., constant is as
small as we want.

Our main statement will be easier to state with the elliptic measure w> with a
pole at infinity which we will define in Section[2]as a normalized limit of measures
wX, with | X| tending to infinity. One advantage, compared to the usual collection
of measures {wX}, X € Q, is that A is easier to define. Appropriately modified
statements are valid for the case of a finite pole as well, and will be stated below.

Recall that I' € CASSC(¢) for a small enough ¢ > 0, and that o = Hﬁ"-

Definition 1.15 (A, with small constant). Let § € (0,107%) be given; we say
that the positive Borel measure w on I lies in A..(o,d) when

w(E) o(E) 5
w(d)  o(d)
for every surface ball A = B(z,r) NI and every Borel subset E C A.

(1.16)

'In fact, they prove the result for C''-square domains.
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We will see later that this is also equivalent (modulo the precise value of §) to
saying that w is absolutely continuous with respect to o, and the corresponding
density k£ = g—z is such that || log(k)||Baro < 7, where 7 tends to 0 with §. Notice
that none of the two conditions change when we multiply o or w by a constant.

The main result of the present paper can be formulated as follows.

Theorem 1.17. For every § > 0, we can find £ > 0 that depends only on §, d,
and pg, such that if I € CASSC(e), L = —div AV is an elliptic operator with
ellipticity po, which satisfies the weak DKP condition with norm M(A) < e, then
the associated harmonic measure w™ lies in A (0, 4).

As we shall see in Corollary we can replace the conclusion with the essen-

tially equivalent fact that w is absolutely continuous with respect to o = ?{Ifir, and

its density g% satisfies

(1.18) < 4.

BMO(T)

log —
fo)

We also have analogous local results, where we consider the elliptic measure w™
with a finite pole, but then need to restrict to small enough balls.

Theorem 1.19. For every choice of § > 0 and k > 1, we can finde = ¢(4,d, pp) > 0
and T = 7(8,d, pp, k) € (0,1) with the following properties. Suppose 'e CASSC(e),
and L = —div AV is an elliptic operator with ellipticity po which satisfies the weak
DKP condition with norm N(A) < . Let X € Q be given, and denote by w™ the
elliptic measure on I' associated to L and with pole at X. Then

WX(EB) _oB)| _,

wX(A) o(d)

for every surface ball A = B(x,r) NT" such that A C B(X, rdist(X,T)) and 0 <
r < 7dist(X,T), and every Borel subset E C A.

Theorem [L.19] will be deduced from Theorem [I.17]at the end of Section [2] and

we will see in Corollary that (I.20) can be replaced by the fact that k = d—‘&’al
is defined on A, and || log(k)||papro(a) < 0.
The rest of this paper is organized as follows. In Section [2] we recall definitions

(1.20)

and some well-known properties of the elliptic measures and the Green function. We
also deduce the local version (Theorem [I.19) of Theorem [[.17]using Lemma [2.17]
that allows us to compare elliptic measures with different poles. In Section [3]
we define a change of variables that allows us to prove Theorem [I.17] for small
Lipschitz graphs. In Section [4] we treat the CASSC case, using the result for
small Lipschitz graphs. In Section [3l we define BMO and VMO, and show the
relations between BM O (with a small semi-norm) and A, (with a small constant).
In Appendices[A]and[B] we give a proof of Theorem [L.17]in the special case of the
upper half-space; we assume the theorem is wrong and construct coefficients with
the vanishing weak DKP condition that would make the theorem of fail.
We check in Appendix[B]the lemma that allows to compute the harmonic measure
for a limit of weak DKP elliptic operators.

2. GREEN FUNCTIONS AND HARMONIC MEASURE WITH A POLE AT INFINITY

Let I' ¢ R4 be a CASSC, and L = —div AV be a divergence form elliptic
operator on ), one of the components of R¥1\ T'. In this section, we only use
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the ellipticity of L, the Ahlfors regularity of I', and the NTA character of ) (see
Section[d]), and recall the definition and basic properties of the Green function and
elliptic measure with a pole at infinity.

We start with the L-elliptic measure with a pole in €. Recall that for X € (0,
there exists a unique Borel probability measure w® = wf on 012, such that for

f e C(09) the function

u(X) = [ o) det )
a0
is the unique weak solution to the Dirichlet problem

Lu=0 1in Q,
ulpn = f
satisfying u € C(Q) and w(X) — 0 as |[X| — oo in 2. We call wy¥ the L-elliptic
measure (or the elliptic measure corresponding to L) with pole at X.
We can also associate to L a unique Green function in €, G(X,Y) : € x
0\ diag(Q) — R with the following properties (see e.g. [HMT17]): GL(-,Y) €
WA Q\{YH NC@\{Y}), GL(-.Y)],, =0 for any Y € Q, and LGL(-Y) = dy

in the weak sense in {1, that is,
(2.1) j AX)VxGL(X.Y) - Vp(X)dX = ¢(Y), for any ¢ € CF(§1).
Q

In particular, G (-, Y) is a weak solution to LGL(-,Y) =0 in Q\ {Y}. Moreover,
(2.2) GLX,Y)<C|X -Y|'""? for XY €Q,

(2.3) | XY™ <GL(X)Y), if |X —V|<0dist(X,00), 6 € (0,1),

(24) GL(X,Y)>0, GL(X.Y)=G,r(V.X), forallX,YeQ, X #Y.

Here, and in the sequel, LT is the adjoint of L defined by LT = —div ATV, where
AT denotes the transpose matrix of A.

We have the following Caffarelli-Fabes-Mortola-Salsa estimates (cf. [CEFMSEI],
and for NTA domains).

Lemma 2.5. Let Q be an NTA domain in R4 and L = — div AV be a po-elliptic
operator. Let w € 0Q, 0 < r < diam(9Q). Then for X € Q\ B(z,2r) we have

1
C
where X, . is a corkserew point for x at scale v (see Definition[d1]). The constant
in depends only on py, dimension and on the constants in the NTA character.

Lemma 2.7 (Bourgain's estimate [BouS7|[Ken94]). Let Q and L be as in Lemma
Let x € 9 and 0 < 2r < diam(9Q). Then

(2.6) w (Az, 7)) < 911G L(X, Xy ) < Cwp (A, 7)),

Xo 0 1
w, " (A, 1)) = rok

where C' > 1 depends on d, jy and the NTA constant of (0.
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Lemma 2.8. Let Q be an NTA domain. There is a constant M > 1 that depends on
the dimension and the NTA constants for Q, such that when 0 < My < diam(99),
and u,v are non-trivial functions which vanish continuously on A(a, Mr) for some
€00, u,v >0 and Lu= Lv =0 in Bz, Mr)NQ, then
uw(X)  w(Xyr)
o(X) T e(X.,)

where the implicit constants depend on n, pg and the NTA constants for ().

for all X € Bz, r)N 2,

We now consider poles at infinity. With minor modifications only, one can prove

Lemma[2.9] as in Lemma 3.7 and Corollary 3.2].

Lemma 2.9. Let L = —div AV be an elliptic operator on (} with Green function
GL(X,Y). Then for any fized Zy € Q, there exists a unique function U € C(12)

such that
L'U=0 inQ,
U=0 1n§,
U=0 onof,

and U(Zy) = 1. In addition, for any sequence {X1}, of points in 0 such that
| Xi| = o0, there exists a subsequence (which we still denote by { Xy}, ) such that if

we set (
. _ Gr(Xy.Y)
)= G (X Zo)

then

(2.10) klim up(Y)=U(Y) for any Y € L.

Moreover, there exists a unique locally finite positive Borel measure wj® on 9§} such
that the Riesz formula

(2.11) F0) doi ) = = [[ ATV V) Ty F(Y)ay
a9

holds whenever f € C2°(0Q) and F € C2°(Q) are such that Flapg = f.

Definition 2.12 (Elliptic measure and Green function with pole at infinity). Let
L, Zy, U and w}® be as in Lemma [2.9] We call wi* the elliptic measure with
pole at infinity (normalized at Zy), and U the Green function with pole at infinity
(normalized at Zj).

We will systematically fix Z; at the beginning (and take Zy = (0,1) when Q =
R‘f‘l), so we drop the term “normalized at Z," for the elliptic measure and the
Green function with pole at infinity.

Now we state estimates that allow to go from poles X € 2 to poles at infinity.
Here there is a single operator L, so we drop L from the notation, and for instance
write w¥ for b&..-é . Recall that the different measures w® are absolutely continuous
with respect to each other, as a consequence of Harnack’s inequality. Similarly,
w¥ and w™ are mutunally absolutely continuous too, as a result of the local Holder

continuity of solutions near I', and we even have the estimates stated below on the

density, which we take from [B1%723]. For X € Q, call
duX
(=)

(2.13) H (X, z):= T
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the Radon-Nykodym density of w® with respect to w™, evaluated at z € I'; the
existence comes with Lemma [2.14]

Lemma 2.14 ([BTZ23] Lemma 5.8]). Let ', 2, and L be as above; in particular
I' e CASSC(¢g) for a small enough € > 0, and L — div AV is an elliptic operator
with ellipticity po. Given X € Q, set §(X) = dist(X, ') and pick a point X; €
QN B(X.dist(X,T)) such that dist(X,,T) = §(X)/4. The density H,.(X,2) of
(233) ewists and is locally Hélder continuous of order v = ~(d, ug). Moreover, for
every k > 1 there exists Cy, = Cy(k,d, po) such that

5 N g GLX. X)) (===’
(2.15) [Hoo (X, 2) = Hoo (X, )| < Cx =55 (6(X))

forall z, 2 e TN B(X,6k6(X)), |z — 2| <d(X)/4 and
L, GL(X, Xy) Gr(X, X1)
U(X) U(X)
for all z € T' N B(X,6x4(X)). Here U is the Green function for L with pole at
infinity.

In fact Lemma[2.14]is proved in in the special case when I' = R“", but
the proof goes through. The existence of X; € QN B(X,dist(X,I")) such that
dist(X1,T') = 4(X) /4 is easy because I' is a CASSC, but a nearby corkscrew point
(not so close to X') would do the job in a more general setting. Notice also that we
will only use the case when I' # R? to deduce Theorem [I.19]from Theorem [I.17]at

the end of the section.

We now use the estimates and (2.16) to compare wX°(E) and w>(E).

Lemma 2.17. Let T, Q, L, and X € Q be as in Lemma [2.14] Let L = — div AV
be an elliptic operator with ellipticity pg. Then for any k > 1, for @ € T'N
B(X,5k6(X)) and 0 < r < §(X)/4, and any Borel set E ¢ A = T' N B(a,r),
there holds

(2.16) (Cy) < Hy(X,z) <Ck

WwX(E w>™(E r\’
(218) (&) w&EA%‘ <¢ (57 -
where C, = Cy(k,d, po) and v = ~(d, po).
Proof. By the definition (2-13) of H..,
X(B) _ Jp HoolX, 2)d™ ()
wXo(A) [y Hoo(X, 2)dw™(

(3]

Next H.(X
B X2) o) () SR oy
supHoo (X, 2) w™(A) — w¥(A) = inf Hoo(X, 2) w>(A)’
zEA ZeA

which implies that

zeE — o (E)
(2.19) (supH-x-(st) 1)

zEA

wX(E) w*(E)

w¥(A)  we(A)

IA

supH (X, 2)

zeE . -1 WX(E)
znelng(X?z) w>(A)
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Notice that

supH . (X, 2) i supH.. (X, z)
2€E 3 Wit (E) < €A 3
leelgHm(X,z) wF(A) jggﬂm(X,z)
and that —— Pp——
711612' 'x;( 13) B zlgg. :x:n( "") . wzo(E) <0
supH_ (X, 2) — | supH_ (X, z2) wE(A)
zEA zEA
so ([2.19) gives that
X ==
wr (B)  w™(E) H. (X, =
: - < s —1].
(2:20) D) ey | S Tz

Hoo(X,2) | _ [Ho(X,2) — Hoo(X, ) e —2[\"

L 1 = <Cu| =] -

H. (X, Ho (X, 2" a(X)

Then the desired estimate (2-18) follows from (2:20) and our assumptions on A. [
We now use Lemma [Z.17] to deduce Theorem [[.19]from Theorem [L.I7]

Proof of Theorem [1.19] given Theorem [I17] Let I', 2, and L be as in both theo-
rems. By Theorem[I.I7]we can find £ > 0, depending on 8, d, and pg, such that if
I'e CASSC(g) and M(A) < £, we have
w*(E) o(E) - )
we(A)  o(A)] T2
for any surface ball A C I' and any Borel set E € A. We now have to replace w™
with w™. Let A =I'N B(a,r) be such that A < B(X,xd(X)) and 0 < r < 76(X)
be as in the statement. Then we can apply Lemma[Z.17] and we get (2.18), i.e.,
WwX(E) w>(E) ro\! .

—_ <. (—L—) <c..
S - ey <O (i) <o
We now choose 7 so small, depending on §, d, 1, and k, that C,77 < §/2, and
(I:20) follows from triangle inequality. O

But Lemma[2.Td]says that for all z, 2" € TN B(X, 6k6(X)) such that [z —2'| < 6!&
|

A

2"

3. SmaLL LIPSCHITZ GRAPHS

In this section we use a change of variable to prove Theorem [I.17]in when I is
the graph of a Lipschitz function ¢ : R — R, with small Lipschitz constant. More
precisely, we assume that

(3.1) Vel <,
set,
(3.2) I = {(z,¢(x)) e R ; 2 e RY},

and denote by € the connected component of R+ \ I' that lies above I". We then
let A and L be as in Theorem [I.17] and we need to show that if £ is small enough,
depending on 4, d, and the ellipticity constant pg, the associated elliptic measure
wi lies in A (o, 6).

We now define a mapping from ]Ri"'l to €2 which is the same as the one that is
used in [KP0I], originally due to Dahlberg, Kenig, and Stein. For (z,t) € Rf‘l,
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let ni(z) = t~%(z/t), where 5 is a nonnegative radial C™ function supported in
{|#| < 1/2} and such that [, = 1. Define a mapping

(3.3) p:RHL 50 pa,t) = (2, cot + Fla,t))
with F(a,t) = n () = [ n(z)p(a — tz)dz, and co = 1+ ¢4 ||V, where

(3.4) cd = /Rd [n(y)] |y| dy.

This choice of ¢y guarantees that p is a one-to-one bhi-Lipschitz mapping of Rf‘l
onto . In fact, we have

. (T V.F(x.t)
(3.5) Vol t) = (0 ‘o —I—BtF(;r,t)) ,
and det Vp(z,t) = ¢g + O, F'(, t). Since
(3.6) [0 F (2, t)| = ‘— /]Rd n(z)z - (Vo) (x —tz2)dz| < cq4 ||V‘P||LM(]R4} ,
we get that
(3.7) 1 <detVp(w,t) <14 2cq| Ve .

Incidentally, we have that

38 VPt =| [ Ve s

< cp Vel Lo o) »

where ¢, = [ |n(y)| dy. ,

Another important property of the mapping p is that |V’2 plz, t)| tdxdt is a
Carleson measure on Ri"'l. This property has been mentioned in [KP0T], but no
proof nor an estimate for the Carleson norm has been given. We give the control
of the Carleson norm and sketch the easy proof.

Lemma 3.9. For (2,t) € R x R., the measure p defined by the density
dp(w,t) = | V2 F(x,1)|” t dudt
is a Carleson measure on Rf’l, and
Ielle < Cl|v99||ngifO(IRd} < CHV@Him{Rd):
where the constant C depends only n and d.

Sketch of proof. The lemma follows from a Carleson measure characterization of

BMO functions (see e.g. Theorem 3.3.8]). In fact, all the second derivatives
of F(a,t) can be expressed in the form of t~'6; * Vio(z), where 6;(a) = t~%0(x/t)
satisfies fﬂg O(z)dx = 0, |#(x)| < C(1 + |x|)~"? for some C, § € (0,00), and

up [ ‘é(ss)%

< .
cchd
Therefore,
o dxdt -
2 2
|9t * V¢($)| 7 <C ”v"P”BMO(Rd-) )
C
which gives the desired estimate. ]
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One can check (see f01 instance, in a slightly different context, (1.42) and its
proof in Lemma 6.17 in ) that if u is a solution of Lu = — div AVu=101n
1, thenv =uopisa solutlon of Lv = —div AVv = 0 in RY 4+ where

(3.10) Az, t) = det(Vp(z, 1)) (Vp(z, t) DT A(p(a, 1)) Vp(z, 1)~

It will be useful to write out the matrix A(z,t). A simple computation shows that

3 Ve F(xg)
(3.11) A(‘r:t):(_vm;(x,t) ?) Alp(, 1)) (é (cﬁm)‘l)

—: P(a, 1) A(p(,1))Q(x,1).

Lemma 3.12. If |Ve| < e < m, where ¢q is as in (34), then for A
defined in ([310),
N(A) < C |Vl +CN(A),

where C depends on d and the ellipticity constant of A.
Proof. For z € R? and » > 0, let us use the notation W (z, r) = Ag« (2, r) x (5r/6,r)
for Whitney regions in Riﬂ, where Aga(x,r) = {y eRe: ly —z| < '.r'} Notice that
they are slightly smaller than the Whitney regions defined in {A.3), but as we said

earlier, this change is insignificant in terms of Theorems[I.17]and [T.19]in Ri‘H. We
denote by Wq(xz,, r) the Whitney region {Y € QN B(z,,r) : dist(Y,I') > 3r/10} in
Q, where @, = (z, () € T for # € R%. Notice that we replace the constant 1/2
in ([I.2) with 3/10, but we know that this does not matter. It will be convenient to
work with the following different Whitney regions in Q: for z € R? and r > 0, set

Wo(z,r) == p(W(x,r)).

Since 1 < dy(cot + F(y,1)) < 1+ 2¢4 ||V, for all (y,) € RE,

(3.13) t < eot + F(y,t) —plx) < (14 2¢q4e)t  for (y,t) € ]Rf_“.

Let (y, s) = W,(x,r) be given, and write (y, s) = p(y.t) = (y, cot+F(y, t)) for some
(y,t) € W(x,r). Thus |y — 2| < r and 57/6 <t < r. By (313), 57/6 < s — p(y) <
(1 + 2¢qe)r. This means that |(y,s) — y,| > 5r/6, and hence dist((y, s),I') > 3r/4
if we choose ¢ sufficiently small. In addition,

[y, 8) = 20| < |y — 2| +|s — (W) + [(y) — ()| < (24 (2ca + 1)e) r < 5r/2,
if we choose (2cq + 1)e < 1/2. So
(3.14) Wy(a.r) c{Y e QN B(a,,5r/2) : dist(Y,T') > 3r/4)} = Wo(x,. 5r/2).

Now we fix 2 € R? and » > 0, and estimate ag(z,r). Let Ay be a constant
coefficient matrix which achieves the infimum for aa(z,, 3), set

a=alx,r)= # V., F(y, s)dyds
Wiz.r)

b(z,r) = #‘ 95 F(y, s)dyds,
‘:rr')

and
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and define ZU to be the constant coefficient matrix

- I 0 I —a(co+b) "
Ag = A =: PyAuQo,
0 (—a 1) 0 (0 (co+b)~ 040G

which should be compared to the expression of A(z,t) in (3II). Then

~ ~ |2
az(@,r)? < ﬂ Ay, ) — Ao dyds
Wix.r)
= ﬁ[ |P(y,5)A(p(y, 5))Q(y. 5) — PoAoQol” dyds.
l*i"'(.w:r)
By the triangle inequality,
|P(y, s)A(p(y. 5))Q(y, ) — PoAoQo| < |(P(y. s) — Fo)Alp(y, 5))Q(y. s)|
+ [ PoA(p(y. s))(Q(y, 3) — Qo)| + | Po (Alp(y, s)) — Ag) Qo -
Using the definitions of P, @, Py, Qq, the ellipticity of A and Ay, and [3.7), B3),
we obtain that
lp(y‘ S)A_(p(y, S))Q(g* S) - PUAGQU| S..' |va(y S) - G.|
+105F(y,s) = b| + |A(p(y. 5)) — Ao
Then

(3.15) ajz(z,r)?

< # ‘VF(y,s)— ]? VE(z,7)dzdr 2dyds+ ]5[ |A(p(y,s))—Ag]2dyds
W(z,r) W(x,r) W (z,r)
<2 ]9[ IV2F(y, s)|? dyds + ﬁ |A(Y) — Ap|* aY.
W(z,r) p(W (z,r))

We fix any @y € R? and r > 0, and estimate .”T (z0,70) a (2, r)?dzdr/r. By Fubini’s

theorem (recall also that r ~ s when (y,s) € W(z,r)),

/] P2 Af |V2F(?},S)|2dydsd$dr SC'/ / |V2F(-y, 3)|23dyds,
T{I{J‘T'u] . “"I(I.T} T '&?d {:L‘u‘QT"u} 1]

which is bounded by C'||[Vi||, rd thanks to Lemma[3:9] By (3:14) and our choice
of Ag'

ﬂ # A(Y) Au| IV dadr
Sz eT (xy,mg) o
Yep(W(x,r))

<C f f IA(Y) — Ao? dY
€A a(znro) Jr=0JYeWn(2,.5r/2)

dadr

<C / aa :{'l,,,mr'/Z)2 v

€Ay (zo,ro) S =0

dadr
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where in fact a4(z,r) is defined as in ([I.9), but in terms of the larger Whitney
boxes Wq(x,7); it is easy to see this does not alter the weak DKP condition (I.11J.
Now observe that if # € Apa(2g,7), then

Ty € A((:cﬂ)pr (1 + 28)'3"0) - A((:CU)P*BTO/Q)

if £ is small enough, and now, setting £ = x,,

T d d
[ [ antapsrp =
JrEA 4 (2p,rp) Jr=0

0
< / / as(€,5r/2)
EeA((xp)p.3ro/2) S r=0

by the weak DKP condition on the a4 (£, r). Recalling [3-15]), we have proved that
for any zp € R? and ry > 0,

) o dadr
/]T{__ ]oﬁ(a:??") <C‘(||V<,a|| + O A))

< CN(A)rd

»do()dr
'

which gives the desired the estimate for 91(A4). O
Let w”® (or w™) denote the elliptic measure with pole at X, € Q (or at infinity)

corresponding to the operator L = —div AV in Q. Let &¥° (or @) denote the

elliptic measure with pole at X, € Ri‘H (or at infinity) corresponding to the oper-

ator L = —div AV in Riﬂ. A change of variables shows that for any set £ C T,

and any X € (2,

(3.16) wXo(B) =5 X (pH(E)).

Similarly, one can show that for any X, Y € Q. G(p~1(X),p~'(Y)) = G(X,Y).
where G is the Green function for L in Rf_"’l , and G is the Green function for L in
Q). This implies, by the definition of the elliptic measure with a pole at infinity in
Lemma[2.9] that for any £ C T,
(3.17) wX(B) =™ (p(E)).

Now we are ready to prove Theorems [[.I7] and [[LI9] for I' defined in (3-2) with

small Lipschitz constant.

Proof of Theorem [117] for small Lipschitz graphs. Let A = BN T be any surface
ball on I' = {(z,¢(2)): 2 € R?} and let E C A be any Borel set. We write
B = B(z,,r), with 2 € R and 2, = (2, p()), and set A = B(a,r) NR%. Also call
7 R 6Ri+1 = R? the projection onto R?. Observe also that m(A) C A and,
due to the definition of p and the fact that I' is a graph,

(3.18) p HE)=m(E) and p'(A) =x(A).

Next we compare the Hausdorff measures. Since I' is an &-Lipschitz graph,
(3.19) o(r(E)) < o(E) < (1 + Ce)o (x(E)).

and similarly

(3.20) o(m(A)) < a(A) < (1+ Ce)a(m(A)).

In addition, 7(A) contains R* N B(z, (1 — £)r), so

(3.21) a(m(A)) > (1 = Ce)o(d),
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and hence

O’(?T(NA))

3.22 1-Ce <
522 - o(8)

<1

because w(A) C A.
Lemmal[3.12]and Theorem [T 17]for Rf‘l say that if £ and 91( A) are small enough,

ox(n(E) ol=(E)) 4 |85 @(A) o(x(A)| _ b
(3.23) Q) &) <15 ° d ~&) (&) <15
Because of ([B17) and (3:18)), this becomes
W (E) _o((ED|_ 6 ex(a) o(x(ap|_ s
324 =3 0@ |10 ™R @ |
and by (3:22) the second part yields
. e 0 _wE(4) 9
(3.25) 1—Cs I < 5 (&) <1+ 0

Since by (319) |o(x(E)) —o(E)| < Ceo(x(E)) < Ceo(A), we deduce from the first
part of [3:24) that
)

E+C€

(E) o(E))

3.26 L =
20 5=B)  o(d)

Finally, we may as well assume that we took 6 < 10~!, and then we deduce from

and that

w*(E) o(E))
we(A) o4

(3.27)

and since

o(E)) _o(E)| _o(E) o(B)—a(d) _,
(3.28) s@&) o) ‘ @) T o& - f
by ([3:22) and (3:20), we get that
wx(E) o(E))
(3.29) =B ]| <
as needed. O

Proof of Theorem [1.19] for small Lipschitz graphs. It follows from Theorem[LI7lfor
small Lipschitz graph and Lemma [2.17] Or we can work directly and apply (3-16)
and Theorem [T.19] for Rf‘l. O
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4., CHORD-ARC SURFACES WITH SMALL CONSTANTS

4.1. Geometric properties of the CASSC. In Definition [I.13] we defined the
CASSC by the fact that they have very big pieces of -Lipschitz graphs. This is
convenient for us (and also extends well to higher co-dimensions), but we could
have used different definitions, a popular one being that the unit normal to I' (say,
with values in S/{%1}) has a small BMO norm. We refer to the early papers of S.

Semmes [Sem89|[Sem90b||Sem90a| for details.

Let us first give some geometric definitions.

Definition 4.1 (Two-sided Corkscrew condition [JK82]). We say a domain 2 C
R4+! satisfies the two-sided corkscrew condition if there exists a uniform constant
M > 2 such that for all # € 9 and r € (0, diam Q) there exists X1, X, € RA+1
such that

B(Xy,r/M) cC B(z,r)NQ, B(Xa,r/M)C B(z,r)\ Q.

We write X, . == X3, for the interior corkscrew point for x at scale r. We also use

the notation X := X, , when A = A(z,r) = B(z,r) N o0Q.
Definition 4.2 (Harnack chain condition [JK82|). We say a domain ¢ R+

satisfies the Harnack chain condition if there exists a uniform constant M > 2 such
that if X1, Xo € Q with dist(X;,9Q) > 2 > 0 and | X; — X5| < 2%= then there exists
a ‘chain’ of open balls By, ..., By with N < Mk such that X; € By, X5 € By,
BinBj1#@forj=1,..., N—1and M~ diam Bj < dist(By,00) < M diam B;
forj=1,..., N.

Definition 4.3 (NTA domains [JK82|). We say a domain Q ¢ R is an NTA

domain if it satisfies the two-sided corkscrew condition and the Harnack chain
condition.

Let I' € CASSC(2) be given. We systematically assume that £ is small enough,
depending on d when needed. We start with simple geometric consequences of the

definition of the CASSC.

Lemma 4.4. The set I' is Ahifors regular and Reifenberg flat. More precisely, there
is a constant C' > 1 that only depends on d, such that for x € T and r > 0,

(4.5) (1—Cetegrt <HYT N B(a,r)) < (14 Ce)egrt
and there is a hyperplane P through x such that
(4.6)

dist(y, P) < CcY4r for y € TNB(x,7) and dist(y,T) < CeY% for y € PNB(a,r).

Proof. We first prove the upper bound in (£35). Let 2 € " and r > 0 be given, and
apply the definition to find an e-Lipschitz graph G = G, that meets B(z,r/2)
and such that (T14) holds. Notice that HY(G N B(z, 7)) < (1 + Ce)eqr?, and
then the right-hand side of (£3]), with a slightly larger C' follows. Since G' meets
B(a,r/2) at some point, y, we also have that H/(GNB(z,r)) > HY(GNB(y,r/2)) >
(1 — Cs)eq(r/2)? and then, if € is small enough,

(4.7) HYT N B(z,r)) > HYG N B(a,r)) —er? > cq(r/3)%.
This already gives the Ahlfors regularity, but we want to improve the lower bound

and prove the Reifenberg-flatness. Set § = dist(z, G); then I' N B(z,8) c T'\ G,
so by (T14) HY N B(x,d)) < er?, and @T) (for (x,d)) implies that § < Cel/4r.
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We may now revise our proof of (L7), because if we pick y € G N B(x,§), then
HUG N B(x,r)) > HYGN By, (1 - CeYr)) > (1 —Ce)(1 — Ce/egrd, and the
proof of ([£7) yields the lower bound in ([L3).

Incidentally, we added the constraint that G = G, , that meets B(z,r/2) in
Definition [[.13] to avoid the case of a very small I' N B(z,r) and a G, . that does
not meet B(x,r). The £/ @ is a little ugly, but requiring G to go through z sounded
a little too much. And also we could use the fact that we deal with s-Lipschitz
graphs to prove (£3) and (46]) with the better constants C's, but we won't care.

Return to G. Since both G and I' are Ahlfors-regular, (I.14) now implies that

(4.8)  dist(y.G) < CY% for y € TN B(w,r/2)
and dist(y,T) < Ce4 for y € G N B(x,r/2)

(otherwise we can find a ball of size Ce/4r centered on I' (respectively G) that is

contained in B(x,r) N['\ G (respectively B(z,r) NG\ T'). But we can also find a
hyperplane P that contains @ and which is Ce'/%r-close to G in B (z,7), and then

(4.9) dist(y, P) < Ce¥% for y e T N B(a,r/3)
and dist(y,I) < Ce'/9r for y € PN B(x,r/3).
This is the same as ([&6), but for B(z,r/3); the lemma follows. O

Recall that since I' is Reifenberg flat, it separates exactly two domains (there is
even a bi-Holder mapping of R¥+! that maps R? to I'), and it is easy to check that
both domains are NTA. Thus Lemma[£.4] allows us to apply the usual estimates for
elliptic operators. We let 2 be one of these domains.

Similarly, the Ahlfors regularity of I' allows us to define A, (with respect to
o= 'HF"F, which is doubling) and A, (c,d) (as in Definition [I.15).

Finally, we can even construct an analogue of dyadic cubes on (T',do), which
is pleasant because it simplifies the theory of A., weights, and it implies that the
John-Nirenberg inequality on the exponential integrability of BMO functions holds
on (I, do) essentially as on R?.

We now approximate 2 by small Lipschitz domains that are contained in (2.

Lemma 4.10. Suppose as above that I' € CASSC(c), with £ small enough (de-
pending on d). Set n = c7a. Then for each z € T and r > 0, we can find an
n-Lipschitz graph G such that for one of the connected components U of R4\ G,

we have

(4.11) UnNB(z,r)cQ

and

(4.12) HUT N B(a,r)\ G) + HUG N B(a,r) \T) < C/2pd,

As usual, C depends only on d.

Proof. Again we make no attempt to get the best constants here. Let x € ' and
r > 0 be given, and let Gy = G, 2, be the e-Lipschitz graph given by Definition[T.13]
After a rotation if needed, we can assume that Gy is the graph of Ay : RY — R
(even if A was not initially defined on the whole R?, we could extend it).
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Write @ = (xq, ). Notice that dist(z, Gp) < Cel/dyr by (48), and since Gy is
almost horizontal (and if ¢ is small enough), this means that

(4.13) | Ag (o) — to| < O/,

Then consider the points X = (xq,tq £ r/2); since X4 is far from Gy, [L3) says
that X is also far from ['; without loss of generality, we can assume that X, € ),
because otherwise X_ € () (recall that I' is Reifenberg flat, so € lies at least on one
side) and we could replace U helow with the lower component of R\ Gy,

Set Z = ' B(z,r) \ Go; we want to hide Z below the new graph G. The
simplest is to take

(4.14) A(y) = max (Ao(y), sup t—nly —=2|).

(z.4)eZ
Obviously A is -Lipschitz. Call G the graph of A, and U the component of R4*! \G
above G.

Our next step is to prove that U N B(x,r) C Q, as in (£11)). First we claim that
U N B(z,r) does not meet I'. Clearly it does not meet Gy, because A > Ay, so it
is enough to exclude points of B(x,7) NI\ Gy C Z. But if (z,¢) is such a point,
then by [@I4), A(z) >t —n|z —z| =t, so (z,t) ¢ U; this proves our claim.

Let us now check that X, = (&g, to+r/2) € U, or in other words A(wg) < to+r/2.
But Ag(zq) < to + Ce'/% < tq +r/2 by [@I3), and for (2,t) € Z, we have that
t < A(xg) + Ce'/r because dist((2,t),Gy) < /4 by [@8), and Gy is almost
horizontal. Then t —ply — 2| <t < A(zo) + Ce/dr < ty+r/2, 50 X, € U. At this
point U N Bz, r) is a connected set that contains X, € §} and that does not meet
', and this implies that U N B(x, r) C ), as needed for (L.IT).

Finally we estimate the size of the two bad sets in (£12)). For each Z = (z,t) € Z,
consider the ball By = B(Z,r(Z)), with r(Z) = dist(Z, G)/100. By the 5-covering
lemma of Vitali, we can find a countable collection of balls Bz, Z € I, such that
the By are disjoint but the 5By cover Z. First consider the set

(4.15) H={yeR'NB(xo,r); Aly) # Ao(v)}.

We want to cover H by multiples of the Bz, so let y € H be given. By definition,
Aly) # Ao(y) and so we can find Z’ = (2, t') € Z such that Ag(y) <t —nly — /|
and hence, since Ay is e-Lipschitz, Ag(2") < t'—nly—2'|+ely—2'| <t —nly—2|/2.
Then we can find Z = (2,t) € I such that (2',') € 5Bz.

(4.16) ly— 2| <|ly— 2|+ |2 — 2| <271 (¢ — Ao(2) + 5r(2).

Now let W = (w, Ag(w)) € Gy minimize the distance to Z. Then |w — z| <
W — Z| = 100r(Z), so |Ap(z) — Ag(w)| < g|z — w| < 100er(Z). Now

¢ = Ao(') < It — t] + | Ao(2)) — Ao(uw)] + |Ao(w) — 1
(4.17) <hr(Z)+ ez —w|+ |W = Z|

<5r(Z)+¢e(|Z' — Z| + |Z — W)+ 100r(Z) < 106r(Z),
so ([416) implies that |y — 2| < 150p~!r(Z), and altogether

(4.18) Hc |J B(x2000(2)).
Z=(z.t)el
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This yields
(4.19) HYUH) < Cnp= Y " n(Z) <Oy~ HUT N By)
Zel Zel
< O~ " HUT N B(a,2r) \ Go) < Oy~ derd = Cet/2pd
because the Bz are disjoint by construction, contained in B(z,2r) \ Gy because
r(Z) = dist(Z, Go)/100 << 7, by the Ahlfors regularity of I', by (.14}, and because

n=c! 2d 36 we control the measure of the difference between the two graphs G

and Gy, and at this point (Z12) follows from (T.I4). O
As a corollary of Lemma the inclusion ({11} can be reversed. That is,

given any ball B(«,r) centered on I, € can be approximated by a Lipschitz domain
that contains QN B(x,r). We state this result as follows.

Corollary 4.20. Suppose as above that T' € CASSC(e), with ¢ small enough
(depending on d). Set n = c71. Then for each 2 € T and r > 0, we can find an
n-Lipschitz graph G such that for one of the connected components U of R4*! \ G,

we have

(4.21) QN Bla,r)CcU

and

(4.22) HUT N B(e,r)\ G) + HYG N B(x,r) \T) < Ce/24,

As usual, C depends only on d.

Proof. Let G be the n-Lipschitz graph as in Lemma[£10] Then we only need to
prove ([L27) since (£22) is the same as ([L.12). Let the two connected components
of R4+ \ G be Ui, and the two connected components of RA+! \T' be Q4. Then
by Lemma U_n B(x,r) € Q_. Taking complement, we get that (0, C
Uy U B(x,7) . Therefore, @y N B(x,r) € Uy N B(z,r) C Us, as desired. O

4.2. Small A, result in the case of CASSC. In this section we deduce Theo-
rem [£.23] from the case of small Lipschitz graphs, through a standard comparison
argument.

Throughout the section, we let I' € CASSC(e) with £ small enough, and Q be
one of the components of R+ \ I". We shall approximate {2 from outside by a
Lipschitz graph as in Corollary [£.20]

Theorem 4.23. For every choice of § > 0, there exist g = £0(8, d, po) > 0 with the
following properties. Let 0 < g < gq. Suppose I' € CASSC(g), and L = —div AV
is an elliptic operator with ellipticity pg which satisfies the weak DKP condition
with norm MN(A) < . Then for every surface ball A = B(x,r)NT and every Borel
subset B C A,

wo(E) _ o(E)
wo'(4)  o(8)

< 4,

whenever Xo = X, -5, € 0 is a corkscrew point for @ at scale e By, with 0 < 3 <
By for some By that depends only on d and .

Remark 4.24. Although Theorem [23]is stated differently from Theorem [T.19] one
can check that the latter can be deduced from the former. In fact, let 4 > 0, k > 1

and X € () be fixed. Take A = A(z,r) C B(X,x§(X)) with r <76(X) and 7 > 0
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to be determined, where 6(X) = dist(X,I'), and let E € A. By Theorem [£.23]
there exists an £9 > 0 such that
wY(E) o(B)

- @) 7@)

whenever Xy € () is a corkscrew point for x at scale g 'a“r, for some By = Go(d, po) >
0. By a change-of-pole argument similar to Lemma[2.17] one can show that

wXo WX s
o)~ x| <o Q) erreg;

(4.26) n

for some v = v(d, p1g) > 0, where d = min {d(X),d(Xg)}. Note that we can assume
that d = 6(Xy) by taking = sufficiently small (for instance, let T = 2,° /2). Now we
take £g sufficiently small so that Eg " < %-: then Theorem[T19]follows from ([£25)),
(£26), and the triangle inequality. Theorem [T17] can be deduced from Theorem
[19]using Lemma [2.17]

We shall need Lemmata [£27] and [£30] that enable us to localize the elliptic

measures.

Lemma 4.27. There exists a constant M > 1 depending on the dimension so that
the following holds. Let z € T' and r > 0 be given, and L = —div AV be a pgo-
elliptic operator. Let M' > M?. Let w be the L-elliptic measure of Q with pole at
Xo = Xoonry and let @ be the L-elliptic measure of N Bz, 4M'r) with pole at
Xo- Then w|a(z,r) and &|a(z,r) are mutually absolutely continuous, and

dw
(4.28) a(u) =1, wae yeAlzr),
where the implicit constants depend on d, po, and the NTA constant. Therefore,
(4.29) D(E) =~ w(E) for any Borel set E C A(z,r),

where the implicit constants depend on d, pg, and the NTA constant.

Proof. Let y € T and s > 0 be such that B(y,s) C B(x,r). By Lemma [Z5] and
2.4,

B(AW.s) _ GXo, Xyo)  CT(X,0 Xo)
w(A(y,) ~ G(Xo, Xys) ~ GT(Xy, Xo)’

where (Aj( Y') is the L-Green function for QNB(z, 4M'r) with pole at Y, and G(-,Y)
is the L-Green function for €2 with pole at Y. Since | Xy — 2| > dist(X,,00Q) >
2M’r /M and we have chosen M’ > M2, G (-, X;) and G (-, X;) are both solutions
to L'u = 0 in B(xz,2Mr) N Q that vanish on A(x,2Mr). By the comparison

principle (Lemma[2.8) and the estimates (2.2), (23] for the Green function,

GT(Xys Xo) _ G (Xer, Xo)
GT(Xys Xo) ~ GT( Xy, Xo)

~1,

and thus
w(Aly, s))
w(A(y, s))

~ 1.

Licensed to ETH-Zentrum. Prepared on Thu Nov 9 05:09:26 EST 2023 for download from [P 129.132.21.203.
License or copyright restrictions may apply to redistribution; see https/www.ams.org/journal-terms-of-use



SMALL A.. RESULTS TRTT

Since the elliptic measures are regular and doubling, this implies that &|s(, . and
w|A(z,r) are mutually absolutely continuous. Then the Lebesgue differentiation
theorem asserts that
diw Y, S
—(y)_lllll ( (y ))
s=0 w(A(y, s))
which proves (£28]). Then (4.29) is an immediate consequence of ([L.28) since we
can write B(E) = [ 22 (y)dw(y). O

~1 wae. yeAx,r),

Lemma 4.30. There exists a constant M > 1 depending on the dimension so that
the following holds. Let M’ > M? r > 0, x € ', and L be as in Lemma [L.27]
Let w be the L-elliptic measure of § with pole at Xo = Xy pprr, and let @ be the
L-elliptic measure of QN B(x, M'r) with pole at Xy. Then

o, _ G(Xo,Y)

(4.31) Jorw a.e. y € Az, r),

where G(-,Y) is the L-Green function for N B(x, M'r), G(-,Y) is the L-Green
function for Q, and the limit is taken in B(x, M'r) N Q. Moreover, for E, E' C

'nB(z,r),
1- 5 &(E , 1+ 5% &
(4.32) e S8 o) e BB
L+ 15 B(E) ~ w(B) 71— 5= ©(E)
where C' and o are positive constants that depend on d, pg, and the NTA constant
of Q1.

Sketch of proof. By Lemma [L.27] &[a (4, and w|a(w,r) are mutually absolutely
continuous, and

oy 9(8(5.)
diw 530 w(Aly,s))
Then (431 can be proved using the Riesz formula, CFMS estimates, the ellipticity
of the operator and the boundary Caccioppoli inequality. We refer the readers to

[BTZ20] Lemma 5.1] for details. Now (£32) is a consequence of ([Z31]), as one can

wae yeAxr).

write
w(E) = / e —(y)da(y / L(y)do(y
where L(y) = limy_,, % By the comparison principle, one can show that

C C
< < C LT " .
(1 ”m) L(x) < L(y) ( U’“) L(xz) forye Alw,r)
From here, (4:332) follows. Details can be found in e.g. Corollary 4.2]. [

Now we start our proof of Theorem[£:23] Let § < (0, f—U) xg € I and rg > 0 be
given. Let Ay = B(zg,7) NT, and let E € Ap. Let M be the largest of the two
constants M in Lemmata [$27] and [L30] and take K > M? to be determined. Set
Xo =X,y kro € 20N B2y, Krg) to be a corkscrew point for x; at scale Kr.

By Corollary [£.20] there exists an ¢ e -Lipschitz graph G = { y, Aly)) iy € Rd}

such that for one of the connected components U of R4\ G, we have

(4.33) QN Bz, 10Kr) C U
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and
(4.34)  HYT N B(xo, 10K 1) \ G) + HYG N B(zg, 10K ) \ T) < CK4/2rd.
Similar to (Z8), we have that
(4.35) dist(y, G) < CKsjlﬁfro for y € ' N B(20,10K7ry/2),
dist(y,T') < CKeZiry for y € G N B(zg, 10K7/2).
We shall choose
(4.36) K=K(s)=¢c",

with a small constant 3 > 0 that will be chosen near the end of the argument, and
then £ = £(4,d, po) > 0 sufficiently small. Thus K is as large as we want, and in
particular we shall choose £ so small that K > M. We intend to show that for
e =¢(d,d, up) > 0 sufficiently small,

i (B) | o(F)

(4.37) —é.
wat(Ag) — (Ao)
Once we have ([L37) for any set £ C Ag, we obtain that —5% < % + 4 hy

taking E to be A\ E in ([@37). Therefore, it suffices to show (L37).
Set B = B(wxg, Krg) to lighten the notation. We first transfer elliptic measures
from ) to 2 N B; this will be convenient because 2N B is contained in U, while 2

may not be.
Recall that L = — div AV. In Section[4.3] we will show that there is a pg-elliptic

operator L = —div AV that satisfies the weak DKP condition in U with constant
MN(A) < Ce, and such that

(4.38) A(X) = A(X) on QN B(wg, 2Krg) C U.

Denote by w the L-elliptic measure of 2N B with pole at X, and by w' the E—elliptic
measure of U N B with pole at X. Define

(4.39) Z:=I'nB\G.
Observe that by (Z34),
(4.40) HI(Z) < CK /g,

Our first claim is that for any set H C I'N G N B(xq, 7o),
(4.41) W'(H) <w(Z)+w(H).

Proof of [@41). Let H,, C H be closed sets in GNT such that H,, T H as n — oc.
Let O,, € GN B(xg,2ry) be open sets such that On J, H. Let g, € C>(0,,) be such
that 1y, <gn < lo,. For X € UN B, define u, (X fgn dm’X (y), where w'X
is the E—elliptic measure of U N B with pole at X. Then by the definition of elliptic
measures, f,un =0in UNB and u is continuous in U N B. Since 3(QNB) Cc U N B,
uy is continuous on (N B). Let v,(X) = [ un(y)dw™ (y), where w? is the L-
elliptic measure of 2 M B with pole at X. Then Lv, = 0in QN B, with v, = uy,
on J(£2N B). Since L=LinQnB , the maximum principle implies that v, = wuy,
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in QN B. Observe that 3(QNB)=(I'NGNB)UZU(IBNQ), and that u,, = g,
on (CNGNB)U(OBNQN). So for X € QN B,

tn(X) = vn(X) = f

rnGnB

! WX i Uy X il U-f'x |
gn(y)d (y)+/z (y)dw (y)+/a gn(y)dw? (y)

B
— ] gn(y)dw™ (1) +/ o (y)dw™ (y) < wX(0, NT) +w™ (2),
rmo, Z

where in the last inequality we have used g, < lp, and wu, < 1. On the other
hand, since g, > 1y

un(X) > /H d'X (y) = X (H.,).

So we get that
WX (H,) < wX(0,NnT) + ¥ (2).

Then (£A41) follows from taking n — oo and by the regularity of elliptic measures.
O

Now we define another set F', which we think of as the large shadow of Z on G,
which is defined as

(4.42) F:=|J GnB(Z206(2)).
ZeZ
Here, and in the sequel, §(Z) = dist(Z, G). Notice that by {@33)), §(Z) < Ce3a Kr
for all Z € Z. We show that
(4.43) HYF) < CK%Y?rd

Proof of (ZA3). For each Z € Z, let By = B(Z,r(Z)) with r(Z) = dist(Z, G)/100.
Then by the Vitali covering lemma, we can find a countable collection of balls By,
Z € I, such that the Bz are disjoint but Z < |J 5Bz. Recall that G is the graph
Zel
of A: R4 5 R. Write a2y = (,t9), where & € R? and t, € R. By (4370, for
sufficiently small, we have that F C {(y, A(y)) :y € R4 N B(z, 2Krg)}. Set
H:={yeR'NB(x,2Knr) : (y, A(y)) € F}.

Observe that for any fixed y € H, there exists a Z = (2,t) € Z such that
[(y, A(y)) — (2, )] < 208(Z). But there must be a Z' = (2',#') € I such that
Z € 5Bg:. So

NZ)<SZ)+|Z-Z'|<6(Z2')+5r(Z") <26(2").
Then
ly — 2| <|y—=z|+ |z —2'| £200(Z)+5r(Z") <216(Z'),
which implies that y € B(2',216(Z")). Since y € H is arbitrary, we obtain that

Hc |J B(2218(2)).
Z=(zt)el

Since IT" is d-Ahlfors regular,

HUH)<CY 8(Z)'<C> HYTNBy).
Zel Zel
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Recall that the Bz are disjoint and that Bz C B(xp,2Krg) \ G, so
> HUT N Bz) < CHYUT N B(xo,2Kr0) \ G) < CK''/r,
Zel

where the last inequality follows from (£34]). Therefore,

HIUF) < /H V1+ |[VAPdy < C(1 + 26V K9 2pd < C K420,
as desired. [l

We now consider the f—elliptic measure of U. We claim that for some C > 1
depending on d and pg,

(4.44) W (F) > é forall Z € Z.

Proof of (£44). Let Z = (2.t) € Z be given. We first show that
(4.45) (y,A(y)) € F for any y € RY that satisfies |y — 2| < 108(Z).
Let Z' = (2', A(2')) € G be such that |Z — Z'| = 6(Z). Then

| — 2|+t — A(2)| < \/21Z — 2'|° < 26(Z).

For any y € R? with |y — 2| < 106(Z), we have that

(v, Ay)) = Z| < |y — 2| + |Aly) — |
<y —z[+A(y) — A(2)[ + |A(2) — A(")] + [A(z") — ]
<(1+e#)ly—sl+et |z 2| +]A() -]
< (12 +3gﬁ) 8(Z) < 208(2).

which proves (£:45]).

By (£45), Z' € F and B(Z',56(Z)) NG C F. Therefore,
1
= 61

where in the last inequality we have used Bourgain's estimate (Lemma[2.7). ]

With (@44]), we are ready to show that
(4.46) Wi (F) > %w(Z).
Proof of [E46). Observe that Z C I' is open in ', and that F' C G is open in G.
Let F,, € F be a sequence of closed sets such that F,, T F, and let Z,,, € Z be a
sequence of closed sets such that Z,,, T Z. Let f, € C°(F) and 1p, < f, < L.
Let g, € C(2) and 1z, < gm < 1z. For X € U, set v,(X) = [, fu(y)dwi.

Then by the definition of elliptic measures, E-vn =0in U and v, = f, on G. Also,
(4.47) Wit (F) = v,(X) > wir (F,).
For X € QN B, set

Wil (F) = w{}(B(Z',55(2)) N G)

™ (X) = / () 0n (1) deiS 5 (1):
8(QNB)
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Then Luﬁ:) =0in 2N B and 'm[f:;) = gm Un on (2N B). Since L=LinQnN B,

the maximum principle implies that
vp(X) = u;‘ff] (X) for any X € QN B, for any m,n € N.
Then by g, > 1z, and (d47),

W (F) > [ on () dwil 5 (y) > / WY (F) dorl ().

m T

Letting n — oo, by the regularity of wy and ([4.406), we get that

. - 1
“-’g(F) = A WEF(F) dwéﬁB(y) z ?wgnB(Zm)-

Now letting m — o0, the regularity of wo~p gives that
X I x
wir (F) > Ews'mB(Z) for any X € QN B.
This proves (4.44]) since X, € QN B. O
We are now ready to prove ([£37). By (432},

wy'(B) 1= g w(B)  w(E)

X = C Z — 0P,
wh(Ap) T 1+ 1= w(Ae) T w(Ao)

(4.48)

where, according to (436), we have chosen K = e~ for some 8 > 0 to be deter-
mined later. We now compute a lower bound for uL((AE.‘_,)) Since F and Ap might not
be contained in G, we write

w(E) < w(ENG)

w(lAg) T w(AgNG) +w(Ag\G)

By (@.4),
wENG)>w'(ENG) —w(Z).

Since QN B c UNB and L = L on 2N B, the maximum principle implies
that w(Ap N G) < W' (Ag N G). Also, from the definition of Z, it follows that
w(Ag\ G) <w(Z). So

w(FE) S W(ENG)—w(Z) N WIENG)  2w(Z)
L.\J(Ag) - w’(A@ n G) + w(Z) - w’(AU n G) w!(AQ n G)
Let us first show that I, can be arbitrary small. By (£46) and (£:29],

o
(4.50) I < C;“bi
{L’L;‘,(AQ ﬂG)

(449) = II - 212

By Section[3] the L-elliptic measure of U is in A~ (dH%|¢) (we even have A, with
small constant). Therefore,
&

d
B (F) < Caif (BN6) (s )

and

d n
" (8006) > gl (Blan, 1) 16) (s )

Hd(B(Lrg, ?‘U) mn G)
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where #, 1 > 0 are A, constants, which are independent of the sets. Again by A,
we have that

Wi(BNG) (M (Blao.r)nG)\ ™"
WO (B Q) HI(BNG) '
wir’ (B(wo,m0) N G)

Substituting these estimates in (£50]), we get that

] HYF) \' / (HY (AN )"
(451) nsc(mane) | Gagnsr)
Observe that

HY (A0 NG) = HYT N B(wo,10) N G) = HYT N Blwo, ma)) — HY(Z).
Thus, if we choose K = K(¢) according to [436) and ¢ so small that

Ry
(4.52) CKdel/2 ~ W’
then by and (£.40),
_Celldy,
(4.53) Hinong) > L= ay oora

2
‘We now check that
(4.54)

Cd

e K% <HYBNG) < cq(1 + Ce7a) K7l

The second inequality follows directly from the fact that G isan e ﬁ—Lipschitz graph.
To see the first inequality, we want to use a ball centered on I'. By (435}, there
exists a point 2* € G such that §(xy) = |zg — 2*| < Ce7a Krg. Since B(z*, Krg —
d(xp)) C B, we get that

HYBNG) > HYB(2*, Kro — 6(x0))) = (1 — Ce0)(Kro — 8(x0))* > %’Kd-rg

because G is an Eﬁ%—Lipscllitz graph and if £ is small enough; follows. Using
(£43), and in ([4.51), we obtain that

(4.55) I, < CK%:%

We return to I; in ([€49). By (£32),

c X
(4.56) > ioxs wp(ENG)
T 14+ & Wi (A0NG)

We are in a position to apply the A (o, d) result for small Lipschitz graph, which
says that for ¢ = £(d, g, 8) sufficiently small and
K> 1
~ 7(d,d, po)’
where 7 = 7(d, 8, po) is as in Theorem [I.19]for small Lipschitz graphs,
Wi(ENG) _ HYENG) 6

4.58 > - -
(4.58) Wi (AgNG) ~ HI(AgNG) 8
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Notice that we do not have a zero denominator on the right-hand side of (4.5§),
and even H(Ag N G) > eqril, because B(a*,ro/2) C B(xg.ro) for the same z* as
above, as soon as we choose # < 7 in (Z36) and ¢ so small that

(4.59) CKem < 1/2.

: - HY(E) . o HY(ENG) HY(E)
Since we want grx-y in ([£37), we need to compare Fragney and gapay. We use

([£40) and the Ahlfors regularity of I' to get that
HYENG) . HYE) - HYZ) . HYE)  CK'!'/? . HYE) 6
HI(ANG) — He(Ag) T HYAg) (1+Ce)eg — HIUA,) 8
where we have chosen 3 < 4—1a; in (£.36) and € = 2(d, §, o) so small that
CKdgl/? ]
7 <z
(1+Cs)eqg ~ 8
in the last inequality. Returning to (£356]), we obtain that for £ small enough,
1— 5 (HYE) 4 HUE) & ,_ HYE) 4
461) L > —E° - — = P> -
(4.61) 1—1+.R%(Hd(aﬁ) 4)— :

Altogether, by (L61), ([A55), (449) and (L48). we get that

(4.60)

W(Ag) 4 THIA) 2

Xo d d
“a (E) = H (E) J CR'CI?},,% C o H (E)
- g2 —(Ce™" > _——"" —§
wa(Ag) ~ HY(Ao) 2 ~ HI(Ao)
if we choose 3 so that dnfS < % and € so small that
(4.62) CKM:zz 4 08 < §/2

in the last inequality.

Finally, we check that all the conditions (([£52]), (457), (£59), (£60), (£62)) on

K and £ can be satisfied if we choose 0 < # < min {2—1(1, Eﬁﬁ} and ¢ = (d, po, 0)

sufficiently small. This completes the proof of ([L37).

4.3. We extend to U the matrix of coefficients. In this subsection, we extend
the matrix A of coefficients of L = —div(AV) to U so that the extension satisfies
the weak DKP condition on G x (0, 00), with a constant smaller than CN(A) < Ce.

We shall use the setup in Section[£.2] that is, given 2y € I' and ry > 0, we have
an e27-Lipschitz graph G such that (Z33) and ([@34) hold.

We have seen in Section that if we can find a pg-elliptic operator L =
—div(AV) on U that satisfies the weak DKP condition in U with constant 9(A) <
Ce, and such that

(4.63) A=Aon QN B(xg,2Kry) C U,
as in (438), then we can prove Theorem [£23] We also required that {433} and
hold in the larger ball B(zg, 10K ry), and we shall use the extra space to
build the desired extension A with a small enough norm ‘)T(:‘l") The construction
will be similar to the usual proof of the Whitney extension theorem with partitions
of unity.

Set B = B(wo, Kro) as before. Because of (I63), we want to keep A = A on the

closure of 2N 2B, and we are free to define A as we please on V = R4+1\ 0N 2B.
So we cover V' by Whitney cubes, which we construct as in Chapter VII.
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T8R4 GUY DAVID, LINHAN LI, AND SVITLANA MAYBORODA

That is, let {Q;}, ¢ € I, denote the collection of maximal dyadic cubes @Q; C V
such that, say,

(4.64) diam(Q;) < 107" dist(Q;, QN 2B).

The @i, i € I, cover V| and they have overlap properties that we will recall when
we need them. We can also construct a partition of unity {x:}, o7 on 'V, adapted
to {Qi},cp. such that } 7. x; = 1y and for each 7, x; € C’f"{%Q‘) 0<y; <1,
and |Vy;| < Cdiam(Q;)!. See for instance for details. As usual in these
instances, we shall keep A=AonQN2B (as suggested above) and set
(4.65) AX) =3 Ai(X) for X €V,

iel
where we take

(4.66) A = f A(X)dX,
J Wy

where the average is componentwise, for some set W; < Q (so that A is defined
on W;) that we shall now choose carefully. Notice that A; and ;1"(3,) are pg-elliptic
matrices, because they are averages of pg-elliptic matrices. Set d; = dist(Q;, 2N
2B). We start with the case when

(4.67) dist(Q;,T') < d; < Krg
(and then we say that ¢ € I;). Then we pick & € I' such that dist(&,Q;) =
dist(Q;, ') < d;, denote by W; the Whitney cube W(§;,d;) C €2 associated to () as
in (I.2). When
(4.68) d; < dist(Q;,T') and d; < Kry,
we say that i € Iy and we choose W; = ();. Notice that ¢}; does not meet T, so
Q, is either contained in © or in R%!\ Q. The second case is impossible because
dist(Q;, 2N B) < d; < dist(Q;, '), so W; C £ as needed. We are left with the case
when
(4.69) d; > Kry.
Then we say that i € I, and we decide to take W; = W (zp, Krg), which is contained
in QN B by definition. This will conveniently kill the variations of A far from B.
Notice that W; ¢ QN 5B for all i € I. This is obvious by definition when i € I3
and because d; < Kry otherwise, so that @Q; € 3B, which proves the case when
i€ly. Whenie I, & € %B, so W; =W(¢&.d;) C %B,
It will also be good to know that
(4.70) dist(X,Q;) < 3d; = 3dist(Q;,QN2B) for X e W;, i<l
When i € Iy, this is clear because dist(&;,Q;) < d;. When ¢ € I this is trivial.
Finally, when i € I3, set D = dist(Q;, 2¢), observe that W; = W(zq, Krg) C B lies
in a D+ Krp-neighborhood of @Q;, while D < dist(Q;, 2N2B)+2Krg = d;+2Kry <
3d; by definition of I3. N
So we have a function A defined on the whole Rf‘l, and our next task is to

evaluate the numbers @(y, ) associated to (the restriction to U of) A, defined for
y € G and r > 0. Recall that they are defined by

- 1/2
(4.71) a(y,r) = inf f [A— Ao)?} .
A { W(y,r) }

Ay
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where the infimum is taken over constant pg-elliptic matrices Ay, and we use the
Whitney boxes

(4.72) W(y.r)={X e UnB(y,r); dist(X,G) > r/2}.
We claim that

(4.73) @(y,r) =0 when r > 6Kro,

and

(4.74)  @(y,r) =0 when dist(y,'N2B) > 2r and dist(y,I'N2B) > 6Kry.

To see this, let us first prove that
(4.75) :flu(X) = Ago == f A(Y)dY for X e R\ 3B.
Wixo,Kro)

Indeed for any Whitney cube @;, i € I} U I, we have that dist(Q;, QN 2B) =d; <
Krg, and then %Q!‘ C 3B because diam(Q;) < d;/10. Now if X € R4\ 3B, all
the indices 7 such that y;(X) # 0 lie in I3, and since A; = Agq for i € I,
vields A(X) = Ago.

If r > 6Ky, we have that dist(X,G) > r/2 > 3Kr for X € VV(y,?) but then
dist(X, zq) > dist(X.G) > 3Kry and A(X) = Ago. That is, A is constant on
W(y,r), and (T3] follows. If dist(y,I' N2B) > 6Kry and r < dist(y,[' N 2B)/2,
then for any Z € W(y,r), |Z —xo| > |y — wo| —|Z — y| > dist(y,'N2B)/2 > 3Kr,
which shows that W(y,r) € R9*1\ 3B. Then ([@T4) follows from ([Z75).

Let y € G and r > 0 be given. We shall distinguish between cases, and the most
interesting is probably when

(4.76) dist(y, ' N2B) < 2r and r < 6Kro.
We claim that in this case
(4.77) a(y,r) < Cya(z,80r) for every x € I' N B(y, 47),

where ~4(z,r) is the variant of a4 (x,7), but defined with balls. That is,

4.78 ) = inf ][ A—A
( ) 4‘-‘{ OnB(z,r) | 0| }

Let € I' N B(y,4r) be as in the claim. We will use the same constant matrix Ay
as in the definition of 74 (x,80r) to evaluate @(y,r). First write

—~ 2
aly,r)? < |[W(y,r)|™ (/ |A — Ag*dX +/ ‘A —AO‘ dX) ,
W(y,r)nQn2B W(y.r)nV

and notice that the first part is in order, because Q N W(y,r) € QN B(y,r) C
QN B(x,80r) and the denominators |W(y,»)| and |B(a, 80r)| are comparable. We

are left with the integral J = fW{y AV |A" — A0|2. Let I(y,r) be the collection of
indices such that @; meets W(y,r) N V; then J < Yic Hy.r) |‘21' - AU|2dX, and the
definition of A yields

7< ¥ / ‘ZAJX} g ax= Y / ‘Z(A — 40) (X[ dx

icl(y,r) iel(y.r)

because ZJ— v;j(X) = 1. Observe that for X € @Q;, we only sum over the set J; of
those j € I such that gQJ contains X and hence meets ();. There are only finitely
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many of such indices j, and they are all such that %dia.m(Qj) < diam(Q;) <
4diam(Q);). We use Minkowski's inequality to get that

([, |20 angeofax)™ < ([ 164 - an o )"

jed;
Since x; < 1 and by definition of A;, the right-hand side is at most

. 1/2
Sl 14—l <0 Y ([ [ 142) - afaz)

jedi jed;
where in the last inequality we have used the fact that |@Q;| =~ |Q;| when %QJ
meets Q;. By construction |W;| =~ |Q,| for j € I UI,. Recall from (476 that
dist(y, I' M 2B) < 2r < 12Krg, hence for j € I; where i € I3 N I(y, r), diam(Q;) =
CKrg. Therefore |W;| = |Q;| holds for all j € I;, i € I(y,r), and so we may drop
{-%‘J—l' Altogether

' . B 9 1/2 2
(4.79) J<C ;‘e;[:y.-r] { I;Ze,},- (/wj [A(Z) — Ag| dZ) }
<C E E / (Z) — Ag*dZ,

icl(y,r)jed
where the last inequality follows from Jensen's inequality. We claim that
(4.80) W; € B(x,80r) for j € J;.
To see this, let Z e W; be given; by (L70), dist(Z.Q;) < 3d;. But d; =
dist(Q;, 2N2B) < 20diam(Q;) by definition of our Whitney cubes, so dist(Z, ;) <
60 diam(Q;). Next £Q; meets Q;, so dist(Z,Q;) < 62diam(Q;) < 244 diam(Q;).
Pick X € Q;NW (y,r); it exists because i € I(y,r); then | X —z| < | X —y|+|y—a| <
5r, and so |Z — x| < 244diam(Q;) + 5r. But the definition of our cubes yields
diam(Q;) < 107 dist(Q;, QN 2B), and dist(Q;, 2N 2B) < dist(Q;, ' N2B) < 3r by
[@T6). So 244 diam(Q;) < 2445 < 75r, and (E30) follows.

Return to ([L.79); by (£30) a11cl the f'lct that the W; have finite overlap,

J< C/ |A(Z) — Ao|* dZ < Cratiq s (2, 80r)2,
2,800

which completes the proof of our claim (4.77).
Let us now use the claim to do the part of our Carleson measure estimate that
comes from

Z={(y.,r) € G x (0,+0¢); dist(y,[ N2B) < 2r}.
We need to know that the set I' N B(y,r) of the claim is not too small. We use
([@76) to pick y* € ['M 2B such that |y — y*| < dist(y,I' M 2B) < 2r; then by
for balls centered at y* and since B(y*,2r) C B(y,4r) C B(y*,6r),
(4.81)
card < (1= Ce¥eg(2r)d < HYB(y. 4r) NT) < (14 Ce¥¥)eq(6r)? < Tleqrd.

Let yp € G and sy > 0 be given, and estimate

_ d.‘
@ = [ | tstn) st L)
yeGnB(yo,.s0) JO0<r<sg r
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Denote min {sg,6K7y} by 55. We use (L.73), (£77), (Z81), the Ahlfors regularity
of I and GG, and a Fubini argument, to get that

(4.82)

J(E) < C’/ / {-r_d./ val(w, 807’)2617'({!(&')}@({?{&@)
yeGNB(yn,s0) 4 0<r<sy xelNB(y.4r) r

od
<C / valw, SOT)Z—Tde(m)
z€NB (yo,5s0) J0<r<s "

' dr
_ (/ / a2 dH ().
2N B(yo,550) J 0<r<80sq r

In [DLM22], we proved that the weak DKP condition implies the stronger estimate
that (=, -r)2@ is a Carleson measure in R? x (0, 00). The same thing holds here,
with almost the same proof, even though the geometry is a bit different because we
work with I and Q. That is, for any 2y € I' and rg > 0, we have that

d d ;
“;"‘4(I?,T)2M S C Q‘q(m.’?“)gw .
" Clzo.ro) " Clzo.ro)
Therefore, [£:82) now implies that
(4.83) J(E) < CsIn(A) = Csie

and concludes this part of the argument.
Return to our main Carleson estimate. We are left with the pairs (y,r) that
belong to the set

(4.84) = ={(y,r) € G x (0,400); dist(y, T N2B) > 2r}.

Let (y,r) € Z’ be given, and assume additionally that dist(y,I'N2B) < 6Krq. Set
d(y) = dist(y,[' M 2B), then 2r < d(y) < 6Kry. Obviously

(4.85) dist(W(y,r),I' N 2B) > dist(B(y,r),I N2B) > d(y) — r > d(y)/2.

Let @; be any of the Whitney cubes such that gQ; meets W(y,r), and pick
X € W(y,r)N £Q;. Then by ([I33) d(y)/2 < dist(X, T N2B) < dist(Q;. T N2B) +
S diam(Q;) < 12diam(Q;), so diam(Q;) > d(y)/24. Next pick any X € W(y,r)
and any constant matrix Ag, and observe that by
(4.86) VAX) =" A, Vxi(X) =) _[Ai — Ag] Vi (X)

icl iel
because Y Vx; = 0. We sum only over the set J(X) of indices ¢ such that X € %Qz
and since |Vy;(X)| < Cdiam(Q;)~! < Cd(y)~! for i € I(X), we get that
(4.87) IVA(X)| < Cd(y)™" Y |4 — Aol.
iel(X)
Recall that A; is the average of A on W;; we want to compare A; to some average of

A on a large ball centered on T', so we choose y* € I'M2B such that |y* —y| < d(y)
and we check that

(4.88) W; c B(y*,12d(y)).

Indeed, for Z € W;, ([E10) says that dist(Z, Q;) < 3dist(Q;,2N2B) < 60 diam(Q;),
and all points of @; lie within 2 diam(Q;) from W (y, r) (because £Q; meets W(y,r))
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hence within 2diam(Q;) +r from y. So |Z — y*| < |Z — y| + d(y) < 60diam(Q;) +

3d(y) /2.
Now %Q, meets W (y,r), and if X € W(y,r)N %Q? we both have that dist(X,T'N

2B) < d(y) +r < 3d(y)/2 by (34), and dist(X,T' N 2B) > dist(£Q;,I' N2B) >
dist(Q;,I' N 2B) — £ diam(Q;) > 9diam(Q;), so 60 diam(Q;) < 10d(y) and [E38)
follows. Therefore, choosing Ag = f;,, B(y* 12d(y)) A(Y)dY (which does not depend
oni € I(X), and not even on X),

|Ai — Ag| < Wi / A(Y) — AoldY < W]~ f A(Y) — AgldY
W, B(y*,12d(y))

< CW B 124(0)| A(Y) — AgldY.
B(y*.12d(y))
Observe that |[W;|~!|B(y*, 12d(y))| < C. For i € I} UIs, this follows from diam(Q;)
> d(y)/24. For i € I, this is because d(y) < 6Krj. Hence,
(4.89) |Ai = Ao| < Cd(y) " yaly”, 12d(y))

by Cauchy-Schwarz. We notice that all the W}, i € I(Z), stay at distance at least
C—ldiam(Q;) > C~'d(y) from T, so we can replace v(y*,12d(y)) with a(y*, d(y)),
the larger variant of a(x,r), defined by

a(z,r) = {i;;f W (a, )| /A

N 1/2
A — AOV} ,
Wx,r)

with ﬁ?(m, r)={X € QN B(a,20r); dist(X,T) > C~1r}. Altogether,
(490)  [VAX)| < Cd(y)™ D [Ai = Ao| < Cd(y)~"aly", d(y)).
iel(X)

Because of this, the oscillation of A(X) on W (y, r) is at most Cd(y)~'ra(y*, d(y)),
and hence @(y,r) < Cd(y) *ra(y*.d(y)). By this and (Z74),

(491) JE) = [ / L= (y,7) Lagyy<oknn (¥) (5, 7)
JyeGnB(yo,sn) J0<r<sy

<c / / a(y", d(y)) d(y)2rdr dH(y)
yeGNB{ya,sp) JO0<r<d(y)/2

<c f a(y".d(y))? dH(y)
yeGMB(yo,50)

<COsf  sup  ay*,d(y))’.
yeGMB{yo,sn)
Now the weak DKP condition implies that a(z,r)? < CO(A) < Csforall z € I and
r > 0, where the Carleson norm 91(A) is as in {I.11). The verification is also easy
(and is done in [DLM22]). Thus we also get that J(Z') < Csfe, and since ([Z33)
provides the estimate for the other piece .J(Z'), we finally get that the extension A
satisfies the weak DKP condition on G x (0,00), with a norm at most Ce.

*Laniy)

r

5. SMALL AND VANISHING A., AND BMO

At this point, our proof of Theorems[Z.23] and [I.19]is complete. However, since
we like to work with chord-arc surface with small constant, we want to explain
a few rather simple relations between A., weights and BMO estimates for their
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logarithm. We want to do this in (T',do), where either I' ¢ R%! is a chord-arc
surface with small constant and o = 'Hldr, or I' = R? and o is the Lebesgue measure
on I'. Because of the first case, we define BMO with balls.

We first define the mean oscillation on a set E such that 0 < o(E) < 400, of
the function f € L'(E,do) by

5.1) mols. E) = o(B)" [ |t) (. sao)
We say that f € BMO(T') when f € L}, .(T',do) and

do(y).

(5.2) lflBaro := supsup mo(f, Az, r)) < +oc,
r=0pel’
and that f € VMO(T') when f € BMO(T') and in addition
(5.3) lim sup mo(f, A(x,r)) = 0.
r—=04 per

It is easy to see that in the case of R?, we can replace the collection of balls A(a, r)
with the collection of cubes @@ with faces parallel to the axes, and get the same
space BMO, with a slightly different but equivalent semi-norm

(5.4) 1]l = sup mo(f, Q)
Q

also VMO(T) could be defined with cubes. Finally, we can localize: if A =

A(zg, 7o) is a surface ball in ', we say that f € BMO(A) when f € LY(A,do)

and

(5.5) | fllBrroca) = sup mo(f, Az, r)) < +oo.
(w,r)edx (0o Az, r)CA

This may be a little ugly near the boundary, but often we only care about the

restriction of f to A(ag,r0/2) anyway. In R9, the version with cubes is a little

better. If Qo € R? is a cube (with faces parallel to the axes, we won't repeat), we
say that f € BMO,(Qo) when f € L'(Qq, do) and

(5.6) [ fllBaro. Qo) = sup mo(f, Q) < +o0,
QCQo

where the supremum is over the cubes @ C Q.
With all these definitions at hand, we are ready to state a first result about A
absolute continuity with vanishing constant and VAMO.

Lemma 5.7. Let I be a chord-arc surface (or just an Ahlfors regular set of dimen-
ston d) and let o be an Ahlfors regular measure on U'. Let w be a positive locally
finite Borel measure on ', suppose that it is absolutely continuous with respect to o,
and denote by k = % its Radon-Nikodym density. Assumelogk € VMO(T). Then
for any 6 > 0, there exvists v > 0 such that for any surface ball A = A(x,r) C T
with 0 < r < ~, and any Borel set E C A,

w(E) o(E)
w(A)  o(A)] T

There is a similar “small constant” statement that says that for each § > 0, we
can find £ = £(4,T') > 0 such that if || logk||grro < €, then w € A (0,d). But we
leave the details to the reader.

For the comfort of the reader, we are only going to prove this in the special case
when I' = R? and o is the Lebesgue measure, but in a way that is easy to follow

(5.8)
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in the general case, with simple modifications, by observing that we can cut I' into
collections of “M. Christ dyadic cubes” that have roughly the same properties as the
dyadic cubes in R?. We don’t even need the slightly unpleasant “small boundary
property”, just size and nesting properties of cubes are enough.

We start the proof with the simplest version of the John and Nirenberg theorem,
with cubes in RY,

Lemma 5.9. There exist constants ¢ = ¢g > 0 and C = Cy > 1 that depend only
on d, such that if Qqy is a cube and f € BMO.(Qyp), then

$@) = (f, sir)

In fact, the (very standard) proof with a stopping time on dyadic cubes only
requires a control on mo(f, Q) when @ is a dyadic subcube of @ (i.e., obtained
from @ by the usual dyadic partitions).

s1) [ e (e15800. o) < o)

Proof of Lemma Let w and k = % be as in the statement, and let 4 > 0 be
given. Let € > 0 be given, and choose rg > 0 so small that mo(logk, A(z, 7)) < €
for every surface ball A(z,r) such that 0 < r < rg. By standard manipula-
tions of covering cubes with balls of roughly the same sizes, we also see that
[log k| Baro, (qo) < C¢ for every cube Qq such that diam(Qq) < ro.

We choose v = d=/?rg, consider a surface ball A = A(x,r) such that r < ~,
and try to prove for any Borel set E € A. Call Qg the smallest cube that
contains A; we chose 4 so that diam(Qo) < 7o, and so |[log(k)| o, Q) < Ce.
This allows us to apply Lemma[5.9]and get

(5.11) / exp (ac“_1
o

with a new constant a = C~'¢ > 0 that depends only on d. Since does
not change when we multiply w by a positive constant, we may assume that
fQ{] log(k)de = 0, which will simplify our computations slightly. We write

log (k(z)) — ( log(k)dcr)

f Jast) <,

(5.12) w(@) = / k(z)do(xz) and w(E) = ] k(z)do(z)
Q E
and decide to cut each of these integrals in three, corresponding to the three regions

(5.13) Q1 = {z € Qu: log(k(x)) < —Ac},
Q2 = {& € Qo; |log(k(2))| < Ae},
Qs = {x € Qo; log(k(x)) > A<},

where the large constant A will be chosen soon. Notice that as—!|log(k)| > a4 on

()1 U Q3, so by Chebyshev

(5.14) w(Q1) < 0(Q1) < a(Q1) +0(Qs) < Ce™*4a(Qo).
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Similarly, we cut Q3 into the regions D; = {.r €Qq; 7+ Az <log(k(x)) <j+1+
AE} and get that

(5.15) w(Qs) < o k(z)do(x) < Z/Dj k(z)do (x)

jz0
< Z eI HIHAL oxp (— ac™1(j + Ag)) / exp (as!log(k(x)))do(z)
>0 D;
< CJ(QO)el-i-Ase—ﬂA Z eje—as_lj
iz0
< CJ(QO)E‘I—’_AEE_QA < C_-e—a.él{ﬁ

if we choose A > 2a~! and ¢ < A=, Now let F be a Borel subset of Qg; we think
about F or A. Then

(5.16)
w(F) — o(F)] < w(F 1 (Q1UQs)) +o(F N (Q1UQs)) + / lk(z) — 1|do

FrnQ:

Sw(@UQs3)+a(Q1UQs) +/ e — 1]|do < (Ce™ A2 + 242)0(Qo)

Q2

by (EI3)-(5I5). By definition of Q. we also have that o(A) > ao(Qq) for some
constant e« > 0 that depends only on d. Then we choose A, and then &, so that

Ce 2 124 < 107206 in (5.10). Then
(5.17) lw(A) — a(A)] < 107 2ado(Qg) < 107 %50(A)

and similarly

(5.18) lw(E) — a(E| <107 260(A),
from which it is easy to see that % — ;Ei; < 4 as in (5.3). O

There is a converse to Lemmal[5.7]and its small constant variant, which we discuss
now.

Lemma 5.19. There is a constant € > 0 that depends only on d, and for each
d > 0, a constant 1 = £1(d,d) with the following property. Let IT' € CASSC(e)
be a chord-arc surface with small enough constant in R4+ (as in Definition [T13)),
and let w be another measure on I' such that w € Ay (0o,21) (see Definition [LID]).
Then w is absolutely continuous with respect to o, and its density k = f;—L: satisfies
|| log(k)||Brro < 6.

Proof. Let I' € CASSC(g) and w € A (0,e;) satisfy the assumption. It is a
general fact about A that then w is absolutely continuous with respect to o, so
k is well defined and locally integrable. Let a > 0 be small, to be chosen later
(depending on d). We want to show that (if € and £; are small enough), for every
surface ball A, there is a constant C'a such that

(5.20) o({z € A; |log(k(z)) — cal 2 6}) < ac(A).
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In fact, the simplest is to take cp = log ( (ﬂ)) Write A = Ay UA; U A3, with

(5.21) Ay ={zeA;k(z) <e2°},
Ay ={zeA; e <k(z) < et}
Ag = {9: eA; k(z) > e‘ci"H};
we want to show that ¢(A;)+o(A3z) < o(A)/100. We take E' = A; in the definition
([LI6); we get that ‘:)[(3” — 28] <) or, since w(A) = e“2a(A),

A) T o(d)
(5.22) l[e™2w(Ay) — o(A1)] € g10(A).

But w(A,) = [, kdo < 200 (A) so o(Ay) — e “Bw (AI) > (1-e%)o(Ay), so
the comparison with (322) yields o(A1) < £1(1 — e %) 1o (A) < ac(A)/2 if g, is

chosen small enough. Similarly,
(5.23) [eT2w(Ag) — o(A3)] < 210(A)

by the proof of (5.:22), and the definition yields w(Ajz) = f&u kdo > e2H0a(A),
so that e~ “2w(Az) — 0(Az) > (e7% — 1)o(A3) and the comparison yields o(Asz) <
g1(e® — 1)7'o(A) < ac(A)/2. This proves (5.20).

Now we claim that a well known result proved by F. John [Joh63], improved by
J. O. Strémberg [Str79], allows one to deduce from ([5.20) that log(k) € BMO, with
a norm less than C'6. Here C' depends on d, and of course the difference between C'd
and 4 could be easily compensated by taking £; smaller. The advantage of the result
of John and Stromberg is that it is directly valid for a doubling measure. For the
sake of the reader that would know the usual proof of the John-Nirenberg theorem
(with simple stopping times), let us say two words about how the underlying ideas
could be applied. In R?, if you have for balls, you also get it for cubes @,
by the usual trick of using (5.20) for the smallest ball containing ), and at the
price of starting with the smaller @ = ac(Q)/a(A). Then, if a is small enough, we
deduce from (5.20) that if @ and R are cubes such that ) € R and diam(Q) >
diam(R)/2, then —cg| < 25. Then the proof of the John-Nirenberg theorem
can then be applied, and this yields || log(k)||paro < C8. So the result is valid when
I'e CASSC(g), £ small enough (so that o is doubling), with the usual fake dyadic
cubes on I'. We need to take a even smaller, so that in particular we can control
lcqg — cr| for fake cubes, when @ is a child of R, but the proof goes through. [0

Corollary 5.24. In Theorem [ILI7l we can replace the conclusion that w™ €
Aoo(a,8) with the conclusion that w™ is absolutely continuous with respect to o,
with a density k = 9 such that || log(k)||prmo < 6.

In Theorem [1.19] we can replace the conclusion by the fact that for each surface
ball A = B(z,r) N T such that A € B(X,rdist(X,T)) and 0 < r < 7dist(X,T),

w™ is absolutely continuous with respect to o on A, and the density k = %’Ji is

such that ||log(k)|Bamo(a)y < 4.

Proof. The first part follows at once from Theorem [[.17] and Lemma The
second part follows Theorem [[19] (applied with a larger x for security) and the
proof of Lemma [5.19] O
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APPENDIX A. CONSTRUCTION OF AN EXAMPLE IN Ri“

In this section, we give a different proof of the special case of Theorem [[.I7]where
= Ri"‘l. We came up with this proof in the period when the result of [BES21]
for small weights was not yet available. As was said in the introduction, we shall
assume that the theorem fails, and get the desired contradiction by constructing
an operator L that satisfies the assumption of the main theorem of [BTZ23|, but
not the conclusion. We recall the main theorem of [BTZ23].

Lemma A.1 ([BTZ23| Theorem 1.2]). Let L = —div AV be a divergence form
elliptic operator on Ri"’l, whose coefficient matriz A satisfies the vanishing weak
DKP condition. If k7° is the elliptic kernel associated to L (in ]Ri“) with pole at
infinity then log k3 € VMO(RY) (see [53) for the definition of VMO).

The authors of [BTZ23] also show the big constant version of the result above.

Lemma A.2 ([BTZ23| Theorem 5.2]). Let L = —div AV be a divergence form
elliptic operator on Ri"’l, whose coefficient matriz A satisfies the weak DKP con-
dition. Let wi® be the elliptic measure with pole at infinity. Then wi° < £ where
L4 is the Lebesgue measure on R, w3 € A (dz), and k3°(y) = %’;—i(y) has
the property that log k7° € BM’O(]R‘I). The implicit constants in the statements
w3 € A (dz) and logk € BMO(RY) are each bounded by a constant depending on

d, the ellipticity constant pg, and ||Q'A(a,‘., 1r')2 dz dr

T

e

In this section, I = R ¢ R+ Q = ]Rff_"’l, and we study operators L =
— div(AV) that are pg-elliptic. Points of Rf‘l will be written X = (z,¢), with 2 €
R? and t > 0, and surface balls will be denoted by A(z,r) = B.(z)N{t =0} c R4,
with 2 € R? and r > 0.

If A = A(z,r) is a surface ball, we may also denote by Ta the Carleson box
T(z,r) = By(x) ﬂRi"‘l over A(z,r), but our notation will be slightly simpler if we
switch to

(A.3) W(z,r) = Az, r) x (gr} c R4

for the Whitney cube. This makes no real difference (compared to (I.2])), and in
particular the definition of Carleson measures and the weak DKP condition do not
change in any significant way.

So we start the proof of Theorem [I.17] in Ri"’l by contradiction: we assume
the theorem to be false, so we can find an ellipticity constant pg, a small constant
do > 0, and for each integer j > 0, a pp-elliptic matrix A; such that

(A.4) M(A;) < e, wheree; =277,

but for which the conclusion of the theorem fails for L; = —div(A;V). That is,
wr ¢ A (o,dq), where by habit we still denote by ¢ the Lebesgue measure on R
Notice that changing the normalization point for wi’z would only multiply wi’z by
a constant, and not affect the fact that w7® ¢ A (0, dp).

This means that for each j we can find a surface ball A; C R? and a Borel set
E; C A; such that

wi, (Ej)  o(E)

(A-5) wi (8;)  o(4dy)

> dg.
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We want to use this to derive a contradiction, but before we start for good, it will
be good to record how our various ohjects behave under dilations that preserve the
boundary.

A.1. Some scaling properties. In this subsection we are only interested in the
changes of variable induced by the linear transformations
z d+1 d+1
(A.6) TA:R_,_"' —>R++, X = AX +(2,0)=XX + Z,
where A > 0, z € R%, and we set Z = (2,0) € R to prevent confusion between

R? and R%!. In the following computations, A and z are fixed, we are given an
elliptic matrix valued function A, and we consider

(A7) A(X) = A(TE(X)).

Lemma A.8. With the notation above,

(A.9) az(xz,r) =aas(Tx(z,r)) for any x € RY r > 0,

and

(A.10) N(A) = N(A).

Proof. Both and follow from direct computations; we omit the proof.

O

Lemma A.11. Now let L = —div AV. Then for any Borel set E € RY,
E—(z0)
A

where U is the Green function with pole at infinity associated to L (and normalized
at the point Zy = (0,1)).

Proof. By ([2I)), one can show that
(A.13) G:(X,Y) = NG (TH(X), TE(Y)) for X,V € REFL

(A12) wP(E) =A"1U(z,A) w¥ (

) = X (T ED,

Denote by U the Green function with pole at infinity for L. Then by (210) and

(A.13),

o — i CTERY) L GLTE(X) TE(Y))
U(Y) o kl—mo GE (Xk, Z@) o k]—mo GL(Tf(Xk)Tf(Zo)) ’

where {X}.} is some sequence of points in Ri"'l such that |Xj| — oo as k — oc.
On the other hand, we can write

U i CHTEOOLY) o GLTH.Y) GulTE(X). TS ()
W GLTE(X0), Zo) e G (X0), T3 (Za) Go(T3(X0). Zo)
= lim GL(TX(Xk). Y)

k—oc GL(T5(Xk), T5(Z0))

U(TX(Z0))-

Comparing it to U(Y), we obtain that

(A.14) U(T;(Y)) = UY)U(T$(Z))  for any Y € R

Recall that the Riesz formula (ZII) for L asserts that

a15) [ Fwdre) = - [[ AT T vy Fy)ay
a0n
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for f € C*(RY) and F € C(R™) such that F(y,0) = f(y). Set F(T(Y)) =
F(Y), f(y) = F(y,0). Then f € C>*(R?) and F € C>°(R4+!). Using (A14), the
change of variable Y’ = T¢(Y'), and then the Riesz formula for L, the right-hand
side of is equal to

—A‘—dU(Tf(ZO))—I/ AT(Y)YVU(Y')-VF(Y")dY'
=NTUENT | @) (),

where we have also used the fact that U(T§(Z,)) = U(z, A). Since f(y) F(y, )=
F(T§(y,0)) = f(Ay + 2), asserts that

/ FOw + 2)dw(y) = XUz f F(w)dw(v)

for f € C>*(RY). By a limiting argument, this implies that for any Borel set
E C R? and if we set E' = AY(E — (2,0)) = (T§)~Y(E),

E) / Le(Ay + )d«.&) (y) = AL dU{'v A7t f 1 (y)dwi (y)
="z ) e (B,
as desired. O

A.2. We can modify A; away from a band. Return to the bad operator L; =
—div(A;V) and its bad set E; C A;. We claim that we can assume that for all j,
A; = Ay, the unit ball in R?. Write A; = A(z,A), and notice that T§(Ag) = A;.
Then replace A; with the function A j = Ao T} given by (A7). By Lemmal[ATF]
‘R(AJ-) = NM(A;). In addition, set E = (T5)-1(E;) C (T5)-1(A;) = Ag; then by
Lemma [A17]

wis (Ej) @, (Ej)

wio (Aj) w%‘;(ﬂo)’

where the extra factors AY~1U(z, A) are the same on the numerator and denominator
and cancel. So let us assume that A; = A (and that (AX) and hold).

Our goal is to use the A; to construct a matrix-valued function A* that satisfies
the vanishing weak DKP condition and keeps the bad properties of each A;. Lemma
[A16]will allow us to modify A; outside of some strip, but essentially maintain (A.5).

Lemma A.16. There exist 0 < p; < 1 and M; > 1 such that if 4}‘ is any fo-
elliptic matriz that satisfies Aj(x,t) = Aj(z,t) for t € (pj, M;), and N(A}) < Co
for some Cy < 00, then

wi® (E;j .
(A.17) Lf (Ej) - o(E;)
o2 .B0)  o(Bo)
where Wi corresponds to the operator Ljx = —div A}V.

We could also have allowed modifications of A; for |z| very large, but since this
is not necessary for our construction, we will not do that.
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Proof. Notice that we allow p; and M; to depend wildly on j. We prove the lemma
by contradiction. Fix j and suppose that the statement is false; then there exists
a sequence of pg-elliptic matrices {4k}, such that Ajp(z,t) = Aj(w,t) for
te (275 28), MN(A; ) < Cp, and

v (B)  o(E))

wie (Do) o(Ao)
Let X = (0,ty), with ¢y > 4 to be chosen soon. Then by Lemma 2.17](applied with

k=2, 2=0 and r = 1),
1\’
<C (_) =Cty™ 7,
to

wi (B)  wis(E))
wi (o) wi (Do)

where C' and ~ are positive constants that depend only on d and pg. Choose ty so

large (depending on d and pg) that Cty ™7 < %; then

wi (Bj) Wi (E)) %

wi (Ao)  wE(Ao)| —

do

(A.18) 3 kel

(A.19)

g
By the triangle inequality, [A.5) (recall that A; = Ag) and (A.19) yield

wr (B))  o(Ey)| _ 7
(1&20) uJE? (A@) - J(Au) -~ §50,

while and the analogue of for L (which is valid with uniform
bounds) give that

w{m(Ej) _ o(E;)
oF (Bo) (Do)

< gﬁo for k e N.

(A.21)

Now we want to let k tend to +0oc. We claim that for any bounded Borel set

E c R4,
(A.22) J}im Wi, (E) =wi, (B).

Once we prove this, we let k tend to +o0 in (A.21)) and get a contradiction with
(A20). So Lemma[A16] follows from Lemma[A 23] (proved later). O

Lemma A.23. Let L = —div AV be a pg-elliptic operator, let L = —div ARV
be a po-elliptic operator that satisfies Ap(a,t) = A(x,t) for t € (27%,2F), and
N(Ag) < Cy for some Cy < oo for all k € Z.. Then for any bounded Borel set
E c R, and any X, € Rf_"'l, there holds

(A.24) Jim Wi (E) = wy*(B).

Lemma should not surprise the reader, but something like the uniform
bound 9(A;) < Cj that guarantees A, is needed. The weak convergence of the
elliptic measures, on the other hand, does not require anything for the operator
apart from ellipticity. In fact, it is well known that assuming A; — A a.e. as
k — oo, Ap and A elliptic, then for any fixed Xy € Riﬂ, ffdn.{.f: tends to
[f dwf” as k — oo for any continuous function f with compact support on R%; see
e.g. [KP93]. However, we do not seem to find a proof written for the convergence

(A24), and so we give the proof in Section
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A.3. We neutralize the coefficients of A; away from a band. Now we con-
tinue with a given j > 0 and construct a matrix A} that coincides with A; on
the large band { (x,t); "07“’ <t<2M j} and with the identity matrix outside of a
much larger band (so that further gluing will be easier). The main point of the
construction is to do it without increasing the norm 9(A;) too much.

Definition A.25 (The matrix Aj). Let Aj be the matrix that we fixed earlier.
Let p; and M, be as in Lemma[A16] Set N; = :“;-_1 = 27 and denocte by [ is the
identity matrix of size d + 1. We define A; by

A (z,1)

I t > 2N M;j ort < Q_N-f'pj,

L+ (1= ) A ), 2My <t <250, for LIS N, 1,

Aj(a,t), Bo<t <2M;,

w L (1= ) Aj(e,t), 27 <t <27, for 1IN - 1.
Notice that we only care about the values of ¢ here, and we do not modify A;(z,¢)

for |z| large, because this is not needed for the construction. We need a very large

interval around I%’, 2M;] because we want the coeflicients to vary slowly, so that
some £2-norm is small. We now evaluate the a-numbers for Ajf.

Lemma A.26. For any = € RY,
=0, r< 2N pj orr > 2N3‘+1ﬂ-1'j,
A (x,r){ < Cgj, 2—N; pj <r<p;or2M; <r< 2"\"1‘"1;"1-{3-,
= a,(z,r), pj <r < 2M;.
Here, the constant C' depends only on d and pg.

Proof. Let us discuss four cases.

Case 1. r < 2_"\{4",0}- orr > ‘2}\'»""11‘.-{.;.
In this case, observe that for any x € RY,

W(z,r) = Az, ) x (r/2,7] € R? x {(0,27Ni7s] U (2N M, 00) } .

By the definition of A%, A¥(x,t) = I for (x,t) € RY x {(0,27Nirs] U (2N M, 00) }.
So we can just take Ag = I in the definition of o A and get that

g (z,7)=0 for x € Rd, r< 2N pjorr= 2"V4‘+11'u'j.

Case 2. Q_N—fpj <r <pj.
Let k be such that Q_k_lpj <r< 2_;",03-; then 0 <k < N; —1 and for x € RY,

g (@, r)?

1 / /‘2"‘"1*’1 k41 ( k+1) ’
< - T+ (1-212) Ay, t) — Ao| dtdy
|W(:1.?,?")| Afzr) Jr/2 N:'f IVJ' J( ‘
o s o |57+ (17 5) |
o ST+ (1= =) Ay, t) — Ao| dtdy
W@ o Jorin, | N; ) At = Ao
= 1) + I,
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