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1. Introduction

There are three principal types of boundary value problems for elliptic operators with
rough (LP) data: Dirichlet, Neumann, and Regularity. The Dirichlet problem counsists of
establishing the existence and uniqueness of solutions with a given trace on the boundary,
the Neumann problem corresponds to prescribing the flux, that is, the normal derivative
on the boundary, again, in LP. The Regularity problem postulates that the tangential
derivative of the trace of the solution is known, once again, in some L? space. As such, it
can be seen as a companion of the Neumann problem in which the tangential rather than
the normal derivative of the solution is given, or as a version of the Dirichlet problem
corresponding to the smoother boundary data.

The Dirichlet problem has received a lot of attention in the past 30-40 years and we will
not be able to even briefly mention all the references in the subject. Its well-posedness was
established, in particular, for ¢-independent operators on all Lipschitz domains [21,22,18],
for the Laplacian on all uniformly rectifiable sets with mild topological conditions [5,19,
2,1], which was then extended to the sharp class of the so-called Dahlberg-Kenig-Pipher
(DKP) operators [25,12,20] and for their analogues in domains with lower-dimensional
boundaries [7,17].

The Neumann and Regularity problems in LP proved to be much more challenging.
In particular, concerning the latter, up until recently the only known results pertained
to either ¢-independent scenario [23] or a “small constant” DKP case [13]. The break-
through article [27] by Mourgoglou and Tolsa was the first one to consider the regularity
problem on domains beyond Lipschitz graphs: they proved the solvability of the regu-
larity problem for the Laplacian on domains with uniformly rectifiable boundaries and
some mild topology. Just in the past few months the first “big constant” DKP result
was announced, by two different arguments, by Dindos, Hofmann, Pipher [9] in the half
plane and Lipschitz domains, and simultaneously, by Mourgoglou, Poggi, Tolsa [26] on
domains with uniformly rectifiable boundaries.

The present paper is devoted to the setting of domains with lower dimensional bound-
aries. It establishes the solvability of the regularity problem in the complement of R,
or more generally, of a Lipschitz graph, for an appropriate analogue of the “small con-
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stant” DKP coefficients. The higher co-dimensional setting presented numerous new
challenges, particularly, due to the presence of “torsion”, the derivatives which roughly
speaking turn the solution around a thin boundary which are not present in the tradi-
tional (n — 1)-dimensional case. Respectively, we had to invent new structural properties
of the operators which on one hand, are amenable to the analysis in desired geometric
scenarios, and on the other, still allow for a control of the second derivatives of a solution
in a square function. All this will be discussed in detail below.

Let us also mention that in the setting of the domains with lower dimensional bound-
aries we are bound to work with degenerate elliptic operators, whose coefficients grow
as powers of the distance to the boundary. This provides a curious new motivation
point. Our operators, as explained below, essentially look like —div dist(-,dQ)?V with
a suitable power 8 depending on the dimension of the set and of the boundary. This is
reminiscent of the Caffarelli-Silvestre extension operator which allows one to view the
fractional Laplacian (—A)?, v € (0,1), on R? as a Dirichlet-to-Neumann map for the
operator —divdist(-,R?)#V on R4 where 8 = 1 — 27 (see [3] and also an extension
to higher powers by A. Chang and co-authors in [4]). Respectively, the mapping proper-
ties of the Dirichlet-to-Neumann map become the mapping properties of the fractional
Laplacian. By the same token, one could view the Dirichlet-to-Neumann map of our
operators as an embodiment of a new concept of differentiation or integration on rough
lower-dimensional sets, and in this vein the appropriate estimates correspond exactly to
the solution of the Regularity and Neumann problems. This paper is the first step in the
direction.

Let us now turn to definitions and statements of the main results. Let 0 < d < n be
two integers. If d = n — 1, the domain (2 is the half-space R} := {(z,t) € R? x (0,00)}
and if d < n — 1, then Q := R" \ R? := {(x,t) € R? x (R"~4\ {0})}. In the rest of the
article, t will be seen as a horizontal vector, and thence ¢t will correspond to the vertical
vector. It is technically simpler and more transparent to work in R} and R™ \ R? rather
than a more general graph domain, but the goal is to treat the class of coefficients which
would automatically cover the setting of Lipschitz domains via a change of variables —
see Corollary 1.2.

We take an operator L := —div|t|*t1=" AV and the first condition that we impose is
of course the ellipticity and boundedness of A: there exists A > 0 such that for £, € R”,
and (z,t) € Q,

ME® < Az, )€ - & and |A(z, )6 - ¢ < ATHEIC- (1.1)

We write (1.1)y when we want to refer to the constant in (1.1). Then, we say that
u € WZIOCQ(Q) is a weak solution to Lu = 0 if for any ¢ € C§°(Q2), we have

dt

Q
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When d = n — 1 these are the classical elliptic operators and when d < n — 1 the
weight given by the power of distance to the boundary is necessary and natural: if the
coeflicients are not degenerate, the solutions do not see the lower dimensional sets. For
instance, a harmonic function in R™ \ R? is the same as a harmonic function in R™ for
sufficiently small d. All this is discussed in detail in [6] where we develop the elliptic theory
for the operators at hand. In particular, in the aforementioned work we construct the
elliptic measure wy associated to L so that for any continuous and compactly supported

boundary data g, the function

u(X) = / o(y) ™ (y) (13)

Rd

is a weak solution to Lu = 0, which continuously extends to Q by taking the values u = g
on 09 = R4,

With this at hand, we turn to the definition of the Regularity problem. The averaged
non-tangential maximal function N is defined for any function u € L2 () as

N@)(z)= sup uwl(z7), (1.4)
(z,r)€T(x)

where I'(z) is the cone {(z,7) € RE™, |z — x| < r},! and uw (2, 7) is the L?-average

uw (27) :=( I |u(y,s>|2dyds)é,

W(z,r)

over the Whitney box
Wi(z,r) ={(y,s) € Q, ly—z| <r/2,r/2 <|s] <2r}. (1.5)

Observe that when d < n — 1, a Whitney cube is a bounded, annular region, so in
particular, the higher co-dimensional Whitney cubes W (z, r) are invariant under rotation
around the boundary. We say that the Regularity problem is solvable in LP if for any
g € C§°(R?), the solution given by (1.3) verifies

IN(VU) Lo @ey < CIVlLome) (1.6)

with a constant C' > 0 that is independent of g. If the Regularity problem is solvable in
LP, then we deduce by density that for any g € L} (R?) such that Vgl Lr(ray < 00,

loc
there exists a solution to Lu = 0 subject to (1.6) which converges non-tangentially to g.

L In this paper, the cones will have aperture 1. By a simple dilatation argument in z, the result is also
true when the cones are I'z(z) := {(z,7) € ]Rffrl, |z — x| < ar}, but we decided to remove this parameter
a to lighten the notation.
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The proof of this fact is non-trivial, but classical. See for instance Theorem 3.2 of [23] for
the proof of the non-tangential convergence from the bound (1.6), and since the space
{9 € L{,,(R?), Vgl r»wa) < o0} is homogeneous and only equipped of a semi-norm, we
need density results analogous to Lemma 5.7, Remark 5.10, Lemma 5.11 in [6].

Going further, we say that a function f satisfies the Carleson measure condition if

SUPW (2, 5) |f|2dssdz is a Carleson measure on (2, that is, there exists a constant M > 0
such that
r dsd
sdz
sup ][ / sup |f|? < M. (1.7)
z€R,7>0 W(z,s) s
z€B(z,r)

We write f € CM, or f € CM (M) when we want to refer to the constant in (1.7). It is
fairly easy to check that f € L*°(2), and we even have

1 fllpoe ) < CMY? whenever f € CM (M), (1.8)

with a constant that depends only on d and n.
The main result of the present paper is as follows.

Theorem 1.1. Let 0 < d < n be two integers. For any A > 0, there exists a small
parameter k > 0 and a large constant C, both depending only on X\, d, and n, with the

following property. Consider an elliptic operator L := — div[|t|*T1="AV] that satisfies
(1.1)x and such that A can be decomposed as A =B+ C, B is a block matriz
By Byt
[t]
= 1.
. (TTTB?, b4I>’ (1.9)

where B, Bo, B, and by are respectively a dx d matriz, a d-dimensional vertical vector,’
a d-dimensional horizontal vector,® a scalar function, and

[t]|VB1| + |||V Ba| + [t||VBs| + [t||Vbs| + |C| € CM (k). (1.10)
Then the Regularity problem is solvable in L?(R?), that is
IN (Vug)l 2 @ey < ClI Vgl L2 way (1.11)

whenever g € C§(RY) and ugy is a solution to Lu =0 given by in (1.3).

2 Since t is a horizontal vector, B2ﬁ is seen as a matrix product giving a d X (n — d) matrix.
3 That is I%Bg is a (n — d) X d matrix.
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Note that when d = n — 1 our result corresponds to the main result in [13] by Dindos,
Pipher, and Rule. In this case, the coefficients of B satisfy the so-called Dahlberg-Kenig-
Pipher (DKP) condition with a small constant and the addition of C is made possible
by the perturbation results [24,8]. The DKP condition is sharp, that is, its failure could
result in the failure of solvability of the Dirichlet problem [16] and hence, a failure of
solvability of the Regularity problem by [16].

In the setting of the domains with lower dimensional boundaries the special structure
(1.9) is new. It is dictated by the aforementioned need to control the “torsion” of the
coefficients, that is, not only to control the oscillations of the coefficients in the transversal
direction to the boundary, but also to make sure that they are well-behaved, in a very
peculiar sense, in the angular coordinate in cylindrical coordinates naturally induced
by R™ \ R?. Roughly speaking, we want to have an almost isometry to some constant
coefficient matrix as far as the ¢ direction is concerned.

One good test for whether our class of coefficients is sound structure-wise is whether
it allows for a change of variables that would yield the results on rougher, e.g., Lipschitz,
domains. After all, this was an initial motivation for the DKP Carleson conditions on
the coefficients in half-space back when Dahlberg suggested them. To this end, consider
d < n — 1 and take a Lipschitz function ¢ : R? — R"~% Let Q, = {(z,t) € R", t #
o(z)}. We set 0 := H%sq, to be the d-dimensional Hausdorff measure on the graph of
¢, which is the boundary of €2, and we construct the “smooth distance”

1
@

Dy(X) = / |X —y|~ " do(y) , a>0.
o

The quantity D, (X) is equivalent to dist(X, 9€2,), see Lemma 5.1 in [7], so the operator
L, = —diV[DZH_"V] falls under the elliptic theory developed in [6]. Moreover, it
was proved that the Dirichlet problem for such an operator L, is solvable in LP in a
complement of a small Lipschitz graph [17] and much more generally, in a complement
of a uniformly rectifiable set [10,14]. It is also explained in the aforementioned works
why D, as opposed to the Euclidean distance has to be used in this context. Using
the results from [17], one can prove solvability of the Dirichlet problem in L?. Here we
establish solvability of Regularity problem.

Corollary 1.2. Let ¢ : R — R™™9 be a Lipschitz function, and set Q, and L, as above.

There exists > 0 such that if |Vl o (ray < K, then the Regularity problem is solvable
in L*(09,).

The reader can consult Section 10 for the proof and the detailed definitions.
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1.1. Remarks on the proof of Theorem 1.1

At this point let us return to the Main result, Theorem 1.1, and discuss some highlights
of the proof along with the particular challenges of the higher co-dimensional setting.

Similarly to the strategy used in codimension 1, we want to prove that for any g
smooth enough and u, constructed as in (1.3), we have

1S (Vug) |l 22 gey < Cllgllzeray + Col| N (Vaug)|| L2 ray (1.12)

and

IN(Vug) |l L2 ey < C|S(Vug)|| p2®a), (1.13)

for some C' > 0. Here, S is a square function that will be defined in (1.19) below. We
can see that when « is small the two estimates above would formally imply the bound
(1.11). They are the crux of the matter and the core of the argument. However, even
in this passage there are considerable additional difficulties. Nothing guarantees that
HN(VU,)HLQ(Rd) is finite, and if we do not know a priori whether ||N(Vu)||L2(Rd) is
finite, we cannot use (1.12)-(1.13) to deduce that [|N(Vu)||2re) < Cllgl|p2re). For
that reason we cannot simply concentrate on (1.12)—(1.13), but rather have to prove
local versions of those estimates, where all the terms are guaranteed to be finite, and we
then carefully take a limit to directly establish

IN (V)| 2@aey < C| Vgl r2may < +oc. (1.14)

Unfortunately, taking the limit is already far from trivial, because the term ||Vgll2 is
obtained roughly by taking the limit of ||[Vu(z, €)||2, and to ensure convergence, we had to
assume that |V A|lo < 400 as in [23], and then obtain (1.14) for all A by interchanging
two limits. In the classical case of codimension 1, the situation is considerably easier
because more tools are available to us (for instance layer potential representations).

However, the principal concern is about the estimates on the quantity S(Vu), defined
in (1.19). Clearly, it involves two derivatives, and in principle we do not have enough
regularity of the coefficients (C is not necessarily continuous) to be able to directly bound
the second derivatives of the solution, not to mention the actual refined estimates that
we are targeting. This led us to a separate paper devoted to the Carleson perturbation
theory for the Regularity problem [8] (cf. [24] when d = n — 1). However, even with that
and even for A = B we could not follow the route paved for d = n — 1 in [13]. We finally
realized that these arguments are not well adapted to the cylindrical structure of our
space and the additional, quite involved, structural considerations are necessary. Let us
try to give some ideas here.



8 Z. Dai et al. / Journal of Functional Analysis 284 (2023) 109903

1.1.1. Cylindrical coordinate derivatives

As we mentioned, we shall use S(Vu) as an intermediate quantity in our computations,
and so we will need to estimate second derivatives. However, taking the second derivatives
in the cartesian system of coordinates will not be adapted to our context, and we prefer
to consider “cylindrical derivatives” defined below.

We notice that there are three difference types of directions. One is the tangen-
tial direction, which goes alone the boundary R? x {t = 0}. The second one is the
angular direction, which rotates around the boundary, and the last one is the radial
direction that moves away from the boundary. We write V, = (01,0,...,04) and
Vi = (04+1,04+2,---,0rn), where 9; = €; - V and €; € R™ denotes the vector with a
1 in the i-th coordinate and 0’s elsewhere.

Definition 1.3. The radial directional derivative 9, is defined as:

n

Ori= > fo g (1.15)

a=d+1 |t|

For each d + 1 < i, j < n, the directional derivative d,,; is defined as:

t; t;
Dp,, 1= —7-0; + 0;. (1.16)
. [t Jt]
The important property of J,, is that
Oplt] =0 (1.17)

To lighten the notation, we write J, for any angular directional derivative. We will
mention 4, j explicitly when it is necessary. Furthermore we define the angular gradi-
ent V, as a vector derivative whose components are all angular directional derivatives

(Op,; )a+1<i,j<n and

n

1
|V¢U|2:§ Z 10, ul®.

ij=d+1

Note that 9,,, =0 for all d+1 < i <mnand d,,, = —0,,, forall d+1 <14, j < n. Also,
we can easily check that the tangential, angular, and radial directions are perpendicular
to each other. More importantly, for any u € Wllof , we have the identity that |V,u|? =
|0rul? + |V,ul? almost everywhere (see Proposition 2.1). Consequently, it suffices to
establish estimates for the average non-tangential maximal functions of V., V,, and 0,.

In the rest of the article, we will write

V = (Va, Vo, 0y). (1.18)
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One of the main reasons for using the cylindrical coordinate system is that the opera-
tor L = — div[|t|¥*1~"AV] can be written in terms of 9,, d,,, and 9, (see Proposition 2.3)
when the coefficient matrix A is in the form of (1.24). The expression (2.1) not only sim-
plifies the computations, but also helps us to better understand the geometric structure
of the operator L.

Remark 1.4. The notation 0,, 0, ... might be confusing at first, as these are not deriva-
tives in a new system of coordinates. We will not use a change of variable to turn our
system of coordinates from a cartesian to a cylindrical one. Instead, J, and J, denote
linear combinations of derivatives in cartesian coordinates, or derivatives along some
curves (i.e., r and ¢ are not “new variables”). They are used for properly grouping the
derivatives. In particular, we do not need to properly define a bijection (z,t) — (z,7, ¥)
or its Jacobian.

1.1.2. Commutators

The common point between 9, and 9, is that they both cancel out the weight |t|dt1—n,
so they will be handled in a similar manner by commuting them with the operator L;
the estimates on the last derivative 0, will then be obtained by using the equation
(Proposition 2.3). The difference between the two differential operators 0, and 0, is
that 0, commute with V and V, and 0, do not commute with the radial and other
angular derivatives, but fortunately, everything will work out at the end because the
commutators have zero average on W (z, r). The computations pertaining to commutators
are performed in Section 2, for instance Proposition 2.4 gives that

9

[87“3 a(p] = 37,8@ - 8¢ar = 7m

1.1.3. Local bounds

We want to prove local versions of (1.12)—(1.13). Before introducing the notation, let

oo

>, this is a well known

us mention that a weak solution is in VVIQOC2 whenever VA € L

fact which we proved again in Proposition 7.1.
We have already defined the non-tangential maximal function in (1.4), and the square

function of v € W,22(Q) is defined as:

loc

1

S(v)(x) = (// Vo(y, s)[” |j|ynd_82>27 (1.19)

['(z)

where

~

P(z) = {(y,5) e R"\R": |y — 2| < s}

is a higher-codimension cone with vertex z € R?. We write
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d
S(Vu)? :=>"S@0su)®+ Y S(0,,u)?+ S(0u)?, (1.20)

d<i,j<n

and the square functions of V,u and V,u are defined in a similar manner.
For a function 0 < ¥ < 1, the definitions of the localized square functions and the
non-tangential maximal functions are

(0] W) (x) = (/ Vol w|d;dyd> (1.21)

and

]\7(1}|\I')(m)= sup  (v|V)w,a(z,7)
(z,r)€T(x)

where (v|¥)yw is defined on Rf‘l by

(W) (2 7) = ('W(;”W // | oPwdyds)

“Good” cut-off functions will satisfy the following hypothesis.

1/2

Hypothesis (COF). We say that a function ¥ satisfies (COF) if ¥ is a cut-off function,
that is if ¥ € C>(Q), 0 < ¥ < 1, ¥ is radial - i.e. there exists ¢ € C>°(R%*!) such that
U(z,t) = ¢¥(x,|t|) - and we have the bound

\t|\V\II| <K and ILsuppvq/ S CM(K)

We write (COF)g when we want to refer to a constant for which [¢t|VU¥| < K and
Lsuppve € CM(K), and K will always be chosen > 1.

We show that if W is a “good” cut-off function, then for any weak solution u € W.22(Q2)

loc
to the equation Lu = 0, we have

1S(Vul )5 < C1u|[N(Vu| )3 + || Tre (V,u)|[3 + “error terms”,
where Trg (V,u) is an approximation of trace of V,u that depends on how far is supp ¥

to 0Q. The precise statement can be found in Lemma 5.5. In addition, for a reduced
class of “good” cut-off function we will obtain the local N < §

IN (Vul¥%)[13 < [1S(Vul )3 + “error terms”,
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where an exact estimate is given in Lemma 4.6. The “error terms” that we mentioned
above go to zero once we extend local estimates to global ones. The careful definitions
of the “good” cutoffs, a delicate splitting of the derivatives, and an enhanced structure
of the operator are all important for the algebra of the computations. Afterwards, when
k is small, by taking ¥ 1 1, we are able to obtain the estimate

IN (Va2  lim || Tee(F0) (122)

whenever u is an energy solution (see Theorem 6.4). Finally, with this at hand, two
natural questions now arise. Does the limit lim, || Tr.(Vaug)||2 exists and does it converge
to [|Vg|[2?

1.1.4. Approximation results

We want to follow the strategy that Kenig and Pipher used in [23]. The idea is to
construct a sequence of coefficients {47} ;cn such that A7 = A on {|t| > 1/j} and
A7 is Lipschitz up to the boundary. In particular A; converges pointwise to .4, which
guarantees the convergence of the solution ug to ug (see Theorem 8.1). Meanwhile, since
A’ is continuous up to the boundary, || Tre(V,uj)||2 converges indeed to [[Vgl|2 because
V.u; is continuous/smooth up to the boundary. We can swap the two limits (in € and
in j), because (1.22) entails a uniform convergence of the traces in j.

However, the construction of the A’ used by Kenig and Pipher does not immediately
transfer to our higher codimensional setting. In addition, we only succeeded to obtain
global bounds on VV,u (and not on all the second derivatives, like we could do in
the codimension 1 setting), and this forced us to prove Theorem 6.4 before doing the
approximation. For that reason, even if we globally follow the spirit of Kenig and Pipher’s
method, we cannot say that our argument is a simple adaptation of [23].

1.1.5. Self-improvement

All the arguments that we presented will allow us to prove the L?-solvability of the
Regularity problem for a reduced class of operators, and then we will “self improve” it
to Theorem 1.1. The reduced class of operators on which most of intermediate results
will be written is given as follows.

Hypothesis (). We say that the operator L := — div(|t|**1~"AV) satisfies the assump-
tion (H) if

o L is uniformly elliptic, that is there exists A € (0,1) such that

)\|£|2 < Az, t)¢-€ and |A(x,t)E- (] < )\_1|§||C| for (z,t) € Q, £, € R™; (1.23)
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e the matrix A can be written as

A (z,t Az (,t) L
0 Id—ayx (n—a)
where A, is a d x d-matrix function, and A, is vertical vector of length d*;
e There exists k > 0 such that
[t||VAL| + |t||VA2| € CM (k). (1.25)

We write (#)x,, when we want to refer to the constants in (1.23), and (1.25). The
constant « will ultimately be small.

Keep in mind that we consider the operators satisfying (#) at first, partially because
some of our intermediate results can not be stated with the assumptions from Theo-
rem 1.1 (for instance we need u € VVIQOC2 for Lemma 5.9, and so cannot consider Carleson
perturbation C for this result), but also because we want to simplify the proofs (for in-
stance, our proofs would work with A in the form (1.9) instead of (1.24), but many extra
computations would be needed in Sections 3 and 5). That is, we sacrificed the optimality
of the intermediate results in order to shorten our proof.

We prove in Section 8 the following result, which seems at first glance weaker than
Theorem 1.1.

Theorem 1.5. Take A\, M > 0. There exists k € (0,1) small enough (depending only on A,
d, and n) such that if L := — div(|t|9T'="AV) is an elliptic operator satisfying (H)x.x,
then for any boundary data g € C$°(R?), the solution u to Lu = 0 constructed as in
(1.3) or equivalently by using Laz-Milgram theorem (see Lemma 6.1) verifies

IN(VW)| z2@e) < ClIValL2me), (1.26)
where C' > 0 depends only on A\, d, and n.

Then, using the theory of Carleson perturbations for the Regularity problem [8,24]
we improve the above result in Section 9 and we get Theorem 1.1, as desired.

2. Equation in cylindrical coordinates

In Subsection 1.1.1, we introduced a set of directional derivatives adapted to the cylin-
drical structure of Q (when d < n —1). The gradient V = (V,, V., d,) in cylindrical
coordinate has a norm equivalent to the one of the classical gradient (see Proposition 2.1),
which makes V equivalent to V for estimates on first order derivatives. We compute the

4 That is, As(x, t)\tT| is a matrix operation which gives a d X (n — d) matrix.
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expression of our elliptic operator in the cylindrical system of derivatives (see Proposi-
tion 2.3).

For the second order derivatives in cylindrical coordinates, we will need to know the
commutators between V,, V,, and 0,, which we compute in Proposition 2.4 and Propo-
sition 2.6. We observe that the non trivial commutators will always involve the angular
derivative V. In order to deal with them, we shall crucially rely on Proposition 2.7,
which uses the fact that the angular directional derivative d,u(x,rd) has zero mean
on the unit sphere for almost every (z,r) € Riﬂ. From there, we will be able to use
the Poincaré inequality and recover second order derivatives (that will eventually be
controlled).

Recall that, as mentioned in Remark 1.4, r and ¢ are not “new variables in a cylindrical

system”, and &, and 0,,; are just a linear combination of Euclidean derivatives.

Proposition 2.1. Let 0,,, and 0, be directional derivatives defined in Definition 1.5, and
let Vu be the cylindrical gradient defined in (1.18). We have

Vu- Vv =Vu- Vv + (9-u)(0v) + % Z (D, u)(8y,,v) = Vu - Vu

i,j=d+1

whenever it makes sense (for instance for u € VVl:LCQ(Q) and almost every (z,t) € Q). In
particular, we have |Vu|* = |Vul?.

Proof. We just need to prove

n n

Viu - Vv i= Z (O, 1) (O, v) = (Oru)(Orv) + Z (0p,;u)(0p,,v).

a=d+1 i,j=d+1

N | =

According to the definition of d,; in (1.16), we have

n n

PORCHICIOESY {W(at 0)(@h0) 200 (0, 0)(21,0) + ||2<at1 W) (@,0) }.

ij=d+1 i,j=d+1

The first term on the righthand side equals V,u - Vv since Y2, t7/[t|* = 1. For the
same reason, the last term is also V;u - V,v. We can factorize the second term of the
righthand side into the product of a sum in ¢ and a sum in j, and we easily observe
from the definition (1.15) that the middle term is indeed —2(9,u)(d,v). The proposition
follows. O

The second proposition establishes an integration by parts for the angular and radial
derivatives.

Proposition 2.2. Let u,v € C*°(R™) be such that either u or v is compactly supported in
Q. We have the identities
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//(&u) o[ dt d = — //u (0,0) [H/417 dt da
Q Q
//(&Pu) v |t dt de = — //u (O,v) ¢4 dt da
Q Q

where 0, stands for any of the 0,,;, d+1 <1i,j <n.

and

Proof. If one writes the integrals in cylindrical coordinates, the integration by parts for
0, is immediate once you notice that we imposed the boundary condition uv = 0 when
r=0.

The second identity is also expected, but let us write is formally. Take d+1 <i,5 <n
and we have by definition of J,,; that

Fim [[@pwott deds = [ o[ @yt~ @u) bl deds
Q Q
We use the integration by part to remove 9; and 0; from u, and we get

I= —//u(ﬁ%fu) |t|dti-n dtdx—//uv[ai(tﬂﬂd—n) _ aj(ti|t|d—n)} di-d.
@ !

It is easy to check that 9;(¢;[t|*™) — 8;(t:[t|]*~™) = 0 in Q, thus the proposition fol-
lows. O

The following proposition rearranges the derivatives, in order to use 0, and 9., instead
of the t-derivatives in the expression of L.

Proposition 2.3. Let L = — div(|t|*T'="AV) be such that

wwon (o0 meoh

TTT\A?’(J/‘J) b(z, ) Id(n—dyx (n—d)

where t € R*™? is seen as a d-dimensional horizontal vector, and where A1, Aa, As,
and b are respectively a d x d matriz, a d-dimensional vertical vector, a d-dimensional
horizontal vector, and a scalar function.

Then:

1 n
L= _jgd+in [divx(Alvg;) +dive (A20,) + 0 (AsVo) +0,(00,) + 5 D Dy, (00, )]
i,j=d+1

In particular, if L satisfies (H), then
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— [t dive (AL Va) + dive (A20,) 4 07 + = Z 6%} (2.1)
,j=d+1

Proof. We first decompose as

/T
Vi) — dive (Jt] " o
2] 2|

— div(|t|"T7"0V,) =: Ly + Lo+ Lz + Ly, (2.2)

L = — diva (|t]* " A, V) — diva ([t Ay AsV.,)

Since the weight [¢t|%T!~" is independent of x, one has L; = —|t|*!1~" div, (A4, V,) and
Ly = —|t|3+1—n divz(Azﬁvt) = —[t|4*t1=" div,(A20,), since by definition 9, is |t|Vt

Recall that Az is a horizontal vector and V,, is a vertical vector differential operator,
so A3V, is a scalar (differential operator). In conclusion,

Ly = —dive (|| "7) A3V, — [t 1 Vi (A3Va) = 0 — [t 10, (A3 V).

\tI

At this point, it remains to treat Ly. The integration by parts entails that, for u,v €
C6° (%),

//(L4u)v dtde = / bV - Vi [t|TT" dt da
Q Q

_ / b0, ) (9,0) {41 dt da

+— Z // o W) (D, v) [t HI™ dt d

i j=d+1°g

by Proposition 2.1. Using the integration by part for 8, and 9,,,; given by Proposition 2.2,

//(L4u)v dtde = —/ O (bOpu) v |t dt du
Q

— = Z /ba% b0y, u)v [t dt da

i,j=d+1"g

we deduce

Since the above equality is true for all u,v € C§°(£2), we conclude

1 n
_ _ |4|d+1=n -
Ly =" 0:00,) + 5 Ed;f%(b%]
1,j=

The proposition follows. O



16 Z. Dai et al. / Journal of Functional Analysis 284 (2023) 109903

In the next results, we want to compute commutators. We immediately have that
[0z,0r] = 0 and [0;,0,] = 0. The normal derivative 0, and the angular directional
derivative 0, do not commute, therefore we want to compute their commutator.

Proposition 2.4. Let 0, and O, be the derivatives defined in Definition 1.5. Then we have

[0, 0,] := 0,0 — 0,0, = %‘P.

Proof. Fix a angular directional derivative d,,;. We use the expressions of d,,, and 0.
given in Definition 1.3 to write

n n

00y, = Q_Z:Hl%aaa%,. - a;ﬁ%[a%aa O (|t|>8 Lo (Itl) ]
— a:Zd-‘rl [apij (%‘%) — Opy; (%)804 - %‘% (%)@- + %aa(%)@} (2.3)

We notice that the first term on the last line of (2.3) is exactly 0,
over all d+1 < a < n. The third and forth terms of (2.3) are similar, and are both zero.
Indeed,

0, after summing

n n n
to - (i ta /0ia  tita ti t to
S ooa()=- 3 B(fe - te)e = S 29 =0
NIV e e iRl £z
a=d+1 a=d+1 a=d+1

The second term on the last line of (2.3) can be handled as follows:

n n

_ ; aw(%')aaz— 3 [-%@(%M%&i(%)}@

a=d+1

n
t; (5ja tjta> tj (5ioz tita)] t; t]’ alpi'
- S(Se Lite) (T e g = g g, = — 2P (2.4)
azzd;l [\tl LI L1 A TN [ I 2 Jef? |t

By combining our observations all together, the proposition follows. 0O

Different angular derivatives do not commute either, and we give their commutator
below.

Proposition 2.5. We trivially have [0,,,,, 0y, ,] = 0 when i, j, o, B are all different. If i, j, k
are all different, we have

1
[680ij7a%k] = _[onwa%'k] = ma¢jk'
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Proof. The identity [0,,,,0,,,] = —[0p,,,0p,,] comes from the fact that d,,, = —0,,,.
For the second identity, we brutally compute. We use the definitions of the angular
derivatives, and develop the expressions to obtain 8 terms that we pair as follows:

0esr2eu) = g5 (00) = e (i) = [ ) = o o)

[inti) i oo
=T +To + T35+ T}

By using the product rule for every term and the fact that i, j, k are pairwise different,
we easily get that 73 =T, =0 and

th t;
Ty = —=0; d Ty = ——L0.
PTREY T T T
We conclude that
tr 1
O,y 0p,, | = 4 0 —50j = =0y,
[ Pij <P1,lc] |t|2 ket g |t|2 |t| Pk

as desired. 0O

Now it is time to compute the commutator [L,d,], which is a crucial step for es-
tablishing local bounds between the square functions and the non-tangential maximal
functions. We will explain more when we start building up these estimates. We compute
the commutator when L satisfies (#); we could compute the commutator for general
elliptic operator L, but we do not need it, so we spare ourselves the extra complications.

Proposition 2.6. Let A be a nxn matriz in the form of (1.24), then for any v € W22(Q)

loc
L,0,)(v) = [t|4~" [diVI(Aza@) +20,0,0] + dive ([t (0,4) Vo).
Here we identity 0,.A with its non-trivial submatriz, that is the first d rows.

Proof. Fix an angular directional derivative d,. We rearrange the derivatives to avoid
using any t-derivatives, and Proposition 2.3 entails that

. . IS
—|t|d+1_n leZ(Alvw) + lez(.Agar) + 83 + 5 Z 8920”:| =: L1+ Lo+ L3+ Ly.
i j=d+1
We note that [L,0,] = Zizl[La, 0,]. So we will compute each [L,d,] individually.
Let us start from the easiest one [L;,0,]. Since V, and J, commute and 0,[t| = 0, we
have
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[L1,0,] = dive(Jt|" 7" (0,A1) Va). (2.5)

We turn to the operator L. By product rule, one has
Ly0, = —divx(|t|d+1_"A28T3¢) =— divz(\t|d+1_"A28¢8r) — div, (|t|* " Ay [0, 0y))
=— divm(|t\d+1’"8¢(A28T)) + divw(|t|d+1’”(8¢A2)8T) + [t div,(A20,), (2.6)
where we used Proposition 2.4 to compute the commutator. The first term on the last

line of (2.6) is exactly 9, Lo because 9, [t|/4"1~" = 0 and 9, and d,, commute. Thus, (2.6)
becomes

[L2,0,] = divy ([t|"™7"(0pA2)0y) — [t~ divy (A20,,). (2.7)
For simplicity, we group [L1,d,] and [La,d,]. We have for any v € W22(Q) that
[L1,0,)(v) + [L2, 0,)(v) = div, (\t|d+1’”(8¢A)Vv) + [t dive (A20,)|-

As for the commutator between Ls and 0., we use Proposition 2.4 multiple times to

write

2,
7

o, 1 |
)_%@——@@—m

020, = 0,0,0, — 0,
e ® ( ‘t|

1
0,0, + W@, = awa,? — 20,0,
and thus deduce
(L3, 0,) = 2|t|d+17"8,.8¢.

It remains to establish that [L4, d,] = 0. We take d+1 < «, 8 < n so that d, = 0
We invoke the fact that d,,, = —0,,, and then Proposition 2.5 to obtain

Pap*

_2|t‘nid71[L4v 64/9] == Z (83:;310%05(1 - aﬂﬁa afom) + Z (aiajawaﬁ B avaaafzaj)

ita J#B
= - Z (8¢E16<P1a - a¢aia¢m> + Z (asaaj 8%‘13 - a@ﬁj aﬁaj)
iFo J#B
= - Z (a@ma@m - apmzatpm) + Z (a@ujawﬁ - 899[3]' a@aj)a
i#a, Jj#a,B
because 0,,, = 0. We can freely change j in 7 in the second sum, and after recalling again
that 0,,, = —0,,,, we observe that two sums in the right-hand side above cancel with

each other. We conclude that [L4, ,] = 0, which finishes the proof of the proposition. O

Finally, we will need the following version of the Poincaré inequality.
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Proposition 2.7. Let u € Wlf)cz(ﬂ) and let ® € C°(Q,R™) be a radial function. Then
O, has zero mean on sphere, that is, for almost every (z,r) € Riﬂ, we have

(Opu)gn-a(z,r) : f@umr@da()

where o is the surface measure on the unit sphere S*~<.
As a result, we have

//|a¢u\2c1>dtdx < c//|t\2|a;u|2q>dtdx,
Q Q

where C > 0 1s a universal constant.

Proof. Let ¢(z,r) € Cg°(RET™) and set ®(z,t) := ¢(z, |t|). Observe that

// / dpudd| || r"=~ 1d7‘dm<//\8 u||®| dz dt < Cy

Rd+1 n—d

which proves by Fubini’s theorem that [, _, O,u df and thus (O,u)gn-a exists for almost
every (z,7) € RET. Notice now that 9,® = (9,|t|)(9,¢) = 0 because d,[t| = 0 and
|0r®| < co. Therefore the integration by parts (see Proposition 2.2) entails that

(Opu)gn-a—1 ¢r" " dr do = W / (Opu)® dt dx

R+
——;// 0,® dtdz = 0. (2.8)
— O—(S’I’L*d*l) u » L = U. .
Q

Since the identity (2.8) holds for every ¢ € Cgo(]R{iH), it is enough to conclude that
(8pt)gn—a—1(2,7) = 0 for almost every (z,r) € REFL,

Let us turn to the second part of the Proposition. Without loss of generality, we
can assume that d < n — 2 (because otherwise angular derivatives do not exist) and
0y = Op,; with i = n and j = n — 1. Write a running point of R™ as (x,t',t,_1,t,) €
R4 x R"~4=2 x R x R. We consider a function 1) € R™! := {(z,#,r) € R""2 x (0,00)},
and then ¥(z,t) := ¥(z,t, |(th—1,tn)|). The same argument as before shows that for
almost every (z,t',r) € R’};l, the function 0 — dyu(z,t',76) lies in L*(S*, do) and

(Opu)st (x, ' 1) := ][&Pu(x,t',r@) do(0) = 0.
S1
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However, S is just the unit circle, so we have the bijection
p: 2z €[0,2m) > 6 = (cos(z),sin(z)) € S*

and we even have do(f) = dz. Moreover,

0 / o . 0 ’ 0 / o /
o [u(z,t',r0)] = —rsin(6) 5tn71u(x’t ,r0) + 1 cos(6) 8tnu(x,t ,70) = rou(x, t',rf)
and similarly
82 / 292 /
@[u(x,t ,70)] = r2 0 u(z, t', rd).
We deduce that, for almost every (x,t',r) € ]Rﬁfl,
2 P
F sulutat'rpe)]) dz = @) (a.#.7) =0

0

and then, by the Poincaré inequality on [0, 27],

2m
2
/ Dpu(@,t,r0)[? do(0) = r2 / j%[u(x,t’,rp(z))}\ dz
S1 0
2m
< Cr? > t "4
< [ | lutet o) dz
0

:07‘2/|8iu(x,t’,r9)|2da(0).
Sl

We conclude by integrating over (x,t',r) € ]Rifl. Since a radial function ® depends on
tn—1 and t, only via the norm |(t,—_1,t,)|, we get

//|8¢u\2¢>dtdx: / /<I> /|8¢u(x,t’,r9)\2da(9) rdrdt dx

Q R7»—2 0 1
< / /<I> /|8§u(x,t',r€)\2da(9) ridrdt’ dx
Rr—2 0 1

2192, 12
://|t\ |0 ul"® dt dx.
0

The lemma follows. O
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3. N < S local estimates, part 1: integration by parts

We want to bound of the non-tangential maximal function by the square functional. In
this section, we prove preliminary estimates that will be improved to the desired N < .S
estimate in the next section by using a “good \” argument.

We observe first that if v € L2 () and ¥ is a cut-off function, we have by a simple
application of Fubini’s theorem that

dt dt
//|v|2\1; s d:m/ // H20(y, )Itl” sdy | dz (3.1)
Q

Rd Y, t)EF(m)

so in particular, for any v € W,22(Q)

loc

// VoP ¥ o do = [SO19) e (3.2)

The constants in (3.1) and (3.2) depends only on d and n.
Moreover, the Carleson measure condition is well adapted to the averaged non-
tangential maximal function, in that we have

dt ~
] PRI i e < CMIR @) e (33)
Q
whenever f € CM(M). The statement in this particular context can be found as Propo-
sition 4.3 in [17], but the proof is an easy consequence of the classical Carleson inequality.
Lemma 3.1. In this lemma, 0, stands for either a tangential derivative 9, or an angular

derivative 0,. For any function u € leocz(ﬂ), any cut-off function ¥ € C§°(,10,1])
satisfying (COF )k, any real constant o, and any 6 € (0,1), we have

dtdx

/ |0uu — o]0, (‘1’3)|t| —1| < SIN(Dyu—al¥)[3+C(1+6 K)|S(VulD)|l3, (3.4)

where C' > 0 depends only on n.

Proof. To lighten the notation, we write V for d,u. First, by the integration by parts
(Proposition 2.2), we have

dtdx dtdz
T = //lV al?0,( \1/3)|t|n — :—2//(V—a)(6,.V)\I'3—t|nd1
Q
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We introduce 1 = 0,|t|, and we proceed to another integration by parts in order to write

dtdx dtdx
— _ 3 _ 3
- 2// ) (0:V) ¥ (0t s = 2//|8V\If|tnd2
+2//(va)(arV)ar(\I/?’)M‘ffjf_zw//(va)(a,%V)fo?’t'didf_z =1+ 114+ IIL
Q Q

Thanks to (3.2), the term I is bounded by the square function [|S(V|¥?)||3. Since ¥
satisfies (COF)gk, the cut-off function [t|V¥ € CM(K) and so the Cauchy-Schwarz
inequality and the Carleson inequality (3.3) imply

1~ 0, ~ ) _ _
1< CKHN(V = al®) IS0z < SIN(V - al¥)[3 + €5 K| S(Tulw)]3

for any 6 € (0,1). As for the term III, we have

dtdz - dtdx
_ B 2 3 . 2 3 o
IIT = 2//(V a)([@T,av]u)\If —‘t|n—d—2 +2//(V a)(0,0:u) ¥ 7|t|n—d—2 = 1Ty +1115.
Q Q

Since 0,|t| = 0 whenever 9, = J, or J, = 0, an integration by parts yields that
dtd. dtd.
Q Q

The term I1ly; is easily bounded by C||S(Vu|¥?)||3, and similarly to II, since |t||0,¥| €
CM (K), we have that

§, ~ _
M| < SNV = a|¥9)]5 + Co7 KIS (Vul)]3.
It remains to bound III;. Since 0, and 8, commute, the commutator [02, 9] is zero,

and hence - when 0, = J, - we have I1I; = 0. Using Proposition 2.4 multiple times gives
that

[5373@] = ar[araaso] + [8raaw]ar = 71

So when 0, = 0,, we have

dtdx
I, = —4// o — a)(0r0pu) 3W

5 dtdx 5, dtdx
= 4/ (878LPU)(8(PU) 5 |t|” Tin—d=1 + 4// )8¢(‘1/3)W = 11111 +IIIlg
Q
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by the integration by part given in Proposition 2.2. Observe that Proposition 2.7 and
(3.2) infer that

dt dx
J] ke < cls@uie: (35)
Q

So by the Cauchy-Schwarz inequality, we have

W=

dt dx

d | S 15 (Vul )3

1Ly < [1S(0pu]T%)]2 / PRI
Q

and similarly to IT and IIlss,

1
2

dtd
1L}y < §||N(Dpu — a|¥%)|2 + C(6K)~ / |0pul ‘Pwn_xd

< g\lﬁ(@ou —alP)[5 4+ C6T KIS (VulD)|f5.
The lemma follows. O

Now, we prove the analogue of the previous lemma for the radial derivative, and we
shall use that w is solution to Lu = 0.

Lemma 3.2. Let L be an elliptic operator satisfying (H)x .. For any weak solution u €
WL2(Q) to Lu = 0, any cut-off function ¥ € C3°(Q,10,1]) satisfying (COF )k, any real

loc
constant o, and any § € (0,1), we have

| // o 00, () s | < BN, — oW+ €1+ 67 K2 N (V)

C(1+ 07 K2)[S(Vul D)3,

dtdz _ ~ _ =
| // 020, (0) | < 3 6T PRI @) 3+ €1+ 07 K S(Fue?) 3

(3.6)
C depends only on X\, d, and n.

Proof. We only prove the first bound, since (3.6) is established with the same compu-
tations, by simply shifting switching the place of ¥ and ¥3 when we bound |I3| + |I5|
below. By integration by parts (see Proposition 2.2), we have
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dtdz dtdx
T //|8 u — a| 3 \:[13)|t|n ) = _2//(87““_@)(83“)\1/3W
Q

But now, we can use the equation in cylindrical coordinate, that is (2.1), to obtain

n

1
Ofu = —dive A\Vou +divy Asdpu— o > 05 u

Pij
i,7=d+1

and then

dtd dtd
= 2/ (Oru — a)(divy A1 Vu)W 3‘ = f I +2//(0Tufa)(divm Azﬁru)\llgw%
Q

dtd
+ Z //(&u - a)(ﬁ‘iiju)\I/?"t'n% =T+ 11+ 1IIL

We first deal with III, which is easier. Since ¥ and [t| are radial, d,,, ([t|"™'~"¥3) =0
and thus, thanks to integration by parts, III becomes

dtdx
Il = — Z / (Op,, 0ru) (O, u)¥ SWNHS(V ul¥?)|3

N ES d+1

by the Cauchy-Schwarz inequality and then (3.5). The terms I and II are similar. We
write Ay oV ru for A1 Vau + A20,u, and by using the fact that 0,[t] = 1, we get

dtdx

I+1I= 2/ (Oru — a)(divy Ay 2V ru) VE aT(M)W'

So with an integration by parts to move the derivative 9, away from |¢|, we have

I+11=-2 //(&u —a) (0, divy Ay 2V pu) U3 “ﬁ;ﬁ%

dtdx
|t|n T4 n—d—2

—2/ 82 )(divy Ay 2V pu) U V&

dtdx

) / (Br = 0)(divs Ay 2V, 0, (1) 0 =T+ o+ 1

The integrate further by parts in I; to move the div, away from 0,42V, u (note
beforehand that 9, and div,, commute), and we obtain
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I =2 // (Va0rtt) - (9 A1 2V 1) qﬁ%
Q
dtdx
2 //(8TU/ — a) (8T.A1)2vw,ru) . VI<\I/3) W = 14 + I5.

Q

So it remains to bounds Iy, I3, I4, and I5. The terms I and 14 are similar, in that

— dtdx
| + L] < // VUV A 2V ] 9

dtdx dtdx
5 2 13
//\VVUHVAMHV pu| ¥ [T //|A1 2| [VVul? ¥ [¢[n—d—2

We use the boundedness of A; 2 and (3.2) to get that the last term in the right-hand
side is bounded by [|S(Vu|¥)||3. As the first term in the right-hand side above, we use
the inequality ab < a®+b? /4, the fact that V.A; 5 € CM(k), and the Carleson inequality
(3.3) to bound it by Ck||N(Vu|¥?)|2 + C||S(Vu|P)|2. Altogether,

[La| + L] S wIN(Va]T2)|5 + 1S (Vul T?)]3.

The terms I3 and I5 are also similar, in that they are bounded as follows

dtd
Ll 131 5[ 0= 0] V129l 99 5
dtdx
3
S / |(9,«u - O[HVA1,2||V;I;’TU| |V\I/ |W
= dtd
+/ |A1,2||3ru—a||VVu\ |V\I}3‘|t|n%
Q

SOIN(Oru — al )5+ 67 K2R N(Val©)|3 + 67 K|S (Vul ¥)|3

by using the inequality ab < da? + b?/46, the Carleson inequality (3.3), the fact that ¥
satisfies |V¥| < K/|t| and Lsuppvw € CM(K), and the fact that [V.A; 2|? < s by (1.8).
The lemma follows. O

In the following, we summarize the results from Lemma 3.1 and Lemma 3.2. Before
stating the precise result, we should introduce a notation first. We write |Vu — @|? for a
sum of [Vyu — @)%, [Vyu — @,|?, and |9,u — @,|?, where &@,, d,, and @, are different
components of constant vector & corresponding to V., V., and 0, respectively.
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Lemma 3.3. Let L be an elliptic operator satisfying (H)x .. For any weak solution u €
WL2(Q) to Lu = 0, any cut-off function ¥ € C§°(,[0,1]) satisfying (COF )k, any real
constant o, and any § € (0,1), we have

dtd ~
| // Vo= 6209 G | < AN — o)+ O+ 57 K| N (V)

+C(1+ 0 K2)|IS(VulP)[3, (3.7)
C depends only on X\, d, and n.

Proof. Immediate from Lemma 3.1 and Lemma 3.2. O
4. N < S local estimates, part 2: the good lambda argument

The main goal of this section is to establish the “good-lambda” distributional inequal-
ity, that will give the desired N < S estimate.

In this section, a boundary ball (a ball in RY) with center z and radius ! will be
written Bj(x). First, we recall several results from [17]. Let hg : R? — R be a function
such that for any compactly supported and continuous function w defined on Rfl,

hg(w)(z) := inf {7" >0, sup |w(y,s)| < 6},

(y,s)€l (1)
where T'(z,7) € R is defined as the translation of the cone I'(0) with vertex at (z, ).

Lemma 4.1 (Lemma 6.1 in [17]). For any w such that hg(w) < oo, the map hg(w) is a
1-Lipschitz function.

Lemma 4.2 (Lemma 6.2 in [17]). Let v € L% () and ¥ be a smooth function which

satisfies 0 < W < 1. Set hg := hg((v|¥3)w), which is well defined because w := (v|¥3)y

is a continuous and compactly supported function on R‘_f_“. There exists a small constant

¢ > 0 depending only on d and n such that for any 8 > 0 and N(U|\Il3)(x) > 3, we have:
(] ek tn) w2,
yeBhﬁ( )/2 ) seRn— d

where xg s a cut-off function defined as x(y,.) =0 if hg(y) =0 and

0 if 0 <r<1/5,
), with  ¢(r) :=={ (25— 5r)/24  if 1/5<r <5,
1 ifr>5
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otherwise.

The two above lemmas are analogues to results from [22] and [11] adapted to our
setting and to the use of cut-off functions W. Let us first introduce some specific cut-off
functions.

Definition 4.3. Let ¢ € C3°(R) be a non-increasing function such that ¢ = 1 on [0, 1]
and ¢ = 0 on [2,00). We define the cut-off functions on € as

¥.(0.0)i= 6(“ ) La(e.

if ¥ — e(x) > 0 is a 1-Lipschitz function, in particular,

€
\Ile(yat) = d)(m)]lSl(x,t)
if € > 0. Also, let us denote
dist(y, B)
Wi(y.t) = 0“0 )Ll

if B is a boundary ball. Moreover, we write ¥ g ; . for the product ¥p(1 — Uy)W..

Note that from the fact that ¢ is non-increasing, for any (non-negative) 1-Lipschitz
function e, we have

0¥, > 0. (4.1)
The proof of next lemma is easy but can nevertheless be found after Lemma 4.5 in [17].

Lemma 4.4 ([17]). There exists a uniform K that depends only on d and n such that the
functions V. and their “complements” 1 — U, satisfy (COF )k. Since Ve and Vg are
particular cases of W., then (of course) they also satisfy (COF )i with the same uniform
constant K. In addition, the property (COF )i is stable under the product, in the sense
that if U satisfies (COF ), and ® satisfies (COF )k,, then WO satisfies (COF )k, +k,-

We state the precise statement of the “good-lambda” distributional inequality that
we will need in the following.

Lemma 4.5. Let L be an elliptic operator satisfying (H )x .- There exists n € (0,1) that
depends only on d and n and C > 0 that depends on A\, d and n such that the following
holds.
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For any a weak solution u € Wlf)f(ﬂ) to Lu = 0, any cut-off function in the form
V:=Wpg,. for some e >0, somel > 100¢, and some boundary ball B of radius I, and
for any triplet 8 >0, v >0, 6 € (0,1), we have

{z € R, N(Vu|¥)(x) > B} N Ep 5] < CY2[{z € RY MIN(Vul¥%))(z) > np},
(4.2)

where
1/2 -
Eg 5= {x cR?: M [( ][ ][ V2T ds dy) }(x) + 51/2M[N(Vu|\113)](x)
Bi(.) I<]s|<2l

+ 07 V2RZ MIN (Vu 8] (2) + 67 2M[S(Vu|9))(z) < vﬂ}

Proof. Step 1: The Whitney decomposition. We fix 3,8 > 0 and we take a ball B C R¢
with radius [ > 0. Define

& = {z € RY, MIN(Vu|¥?)(z) > n8}.

We notice that (Vu|¥3)yy, is continuous and ¥ is compactly supported. Hence € is open
and bounded. We pick a ball B,(z) of radius r := dist(z, £°)/10 centered at x € £. Under
this construction, & = (J, ; By, (z;) and sup,¢ ; r; < oo. By Vitali covering lemma, there
exists a countable subcollection of balls {B,, (z;) };cr, which are disjoint and satisfy that
& C U;eq Bsri (x3). For each i € I, we set B; := Bior, (2;) and thus there exists a

y; € B; N EC, in particular M[NG(VUPIIB)](%) <np. (4.3)
We define the set F é such that
F'=F}_ s :={z € By, No(Vu|T®)(z) > 8} N Ep 4 5.
It suffices to prove that for each i € I,
|F'| < Cy°|Bi (4.4)

because Y, |Bi| < 104%,; |Br, (2i)| < 10%|€|. The inequality (4.4) is trivial when
Fé = (). Hence we assume that F é D {z;} is non-empty in the sequel of the proof.

Step 2: Localization of N(Vu|¥3) in B;. In this step, we show that if z € F’, then
N(Vu|U3)(z) has to reach its maximum value at a point (z,r) € T'(x) verifying r < ;.
Indeed, take z € F* and then (z,7) € I'(z) such that r > r;. Notice that (z,r) €
UyeBr(z) I'(y), so
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(Vul¥3)w(z,r) < N(Vuhll?’)(y) for all y € B.(2) C Baor(y:)- (4.5)
Therefore, for a constant C that depends only on d,
(Vul¥*)w (z,7) < MIN(Vul¥%)](y;) < CnB < B

by (4.3), if n is small enough (depending only on d). So it means that for any z € F*,
we have

B < N(Vul¥®)(z) = sup Trep, (Vu|U)w(z,7) for x € F". (4.6)
(z,m)€T(z)

We construct the cut-off function ®;(y,s) := (1 — Uk, )V i where Uk, := U, for
€ = K;r; and Wpi = W, for the 1-Lipschitz function e’(z) := dist(y, F*)/M;. The
constants 10 and K; in the construction of ®; are large enough so that ®;(y,t) = 1
whenever (y,t) € W(z,r) for (z,7) € T'(z) N {r < r;} and = € F;. With such a choice
and by (4.6), we have that

N(Vu|UP®3)(z) = N(Vu|¥®)(z) > 8 for z € F'. (4.7)

We let a little bit of freedom on the choice of K; to avoid some future complication.
Notice that

supp(VV g, )Nsupp(¥r,) € S; == (K;+1)Bix{s € R"™% K;r;/2 < |s| < K;ri}. (4.8)

We first try K; = 4, which is large enough for (4.7) to be satisfied. If S; intersects
{¥ #£ 0}N{V £ 1}, then we test K; = 8 instead. If S; still intersects {¥ £ 0} N{¥ #£ 1},
we multiply K; by 2 and we stop at the first time when

S;iN{¥ £0}N{¥ #£1} =0, ie. either S;C{¥=1}orS; C{¥ =0} (4.9)

Since ¥ = ¥p . is constructed from the product of three cut-off function ¥, where e is
either constant or a slowly growing 1/100-Lipschitz function, while ¥, is constructed
with a faster growing 1/10-Lipschitz function, K; can only take a uniformly finite number
of values (i.e. we think that K; < 27 and we say that K; < 20 to have some error margin).

Step 3: Catching the level sets of N (Vu|¥3). Let hg = hs((Vu|U3®3) ). Lemma 4.2
and (4.7) entails that

cf <M K ][ / |Vu|2ﬂ/3¢far[xg]%) 2} (z) for x € F".

YEBng(y/2()) s€Rn—d
(4.10)

We know from (4.9) that either S; C {¥ =1} or S; C {¥ = 0}. We set
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i ﬁ[(w)\pg/z dyds — { s, (Vu)dyds if S; € {¥ =1} (411)

0 otherwise
S

and we want to show that |@;| is smaller than ¢8/2, where ¢ is the constant in (4.10). We
select N points {z;}}L, € 2K;B; such that S; C Uj\;l W (z;, K;r;). We can always to so
with a uniformly bounded number N of points, because K; is itself uniformly bounded
(between 4 and 2'°). So we easily have by simply using the definition of @;, (Vu|¥3)w,
N(Vu|¥3) and then (4.3) that

N N
|G| < O (VulU?)w (2, Kiri) <C Y ][ N(Vu|U?)d

j=1 JZlBKiri(zj)

<C f F(Vul¥)ds < CMF (V¥ (p) < Cnd < )2, (412)

30K;B;

if 1 is small enough (depending only on d). The combination of (4.10) and (4.12) infers
that

cﬁ/QgMK ][ / |Vu — @300 [3}%)1@) for x € F'.

’l/eBh/j()/g ) s€eRn—d
(4.13)

Step 4: From a pointwise estimate to integral estimates. The result (4.13) from the
previous step implies that

(O /‘V“*aviwga[ J||(ffd51>é]

yEBhB( )/2( ) seRn—d

R dsdy

R4 y€EBh 4 (a)/2(x) s€ERm—

2
[F| <

2

thanks to L? boundedness of the Hardy-Littlewood maximal operator M. According
to Lemma 4.1, the function hg is 1-Lipschitz, that is, |hg(z) — hg(y)| < |z —y|. Ify €
Bh,(«)/2(7), then the Lipschitz condition implies that |hg(x) —hg(y)| < [z —y| < hg(z)/2
and thus hg(z)/2 < hg(y) < 3hg(x)/2. Consequently, by Fubini’s theorem,

dsd
|F’|Nﬁ2//|Vu—o¢Z\ I, [y 3}@"’%( / h/g(m)_ddx>

xGBhﬁ(y)(y)
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S ﬁi//m—cm VL0 3]
Recall that
U, = Ul (1 — U, ) (1 — Usy).
By (4.1), 0,[¥ .U r: ¥, > 0 and thus the product rule implies
VP70, [xE] < 0[PP OPNE] + Op [Wic,,, [ Wi UOXG + O[3 W UERT X

It follows that:

i dey
|F|N52/ V= 20, [V, [ W 2

- dsdy
+@//|Vu—az|28r[‘l/ ]\113 \I’3®3 BW
Q
/ Vu — &30, [U303y 3]| rffd(fl =T+ 11 + IIL

In order to prove the claim (4.4), and hence the lemma, it suffices to show I+ 1T 4 III <
C~?|B;| with a constant C that depends only on ), d, and n.

Step 5: We treat I. We recall that S; D supp(9,¥k,,,) Nsupp(¥r,), see (4.8), and
IVUk.r.| S Jt] since U satisfies (COF). Therefore,

B;
||]§[|v — a2V dsdy = |62|]lsmsuppq,]§[|Vu—az|dsdy

since we chose K; so that ¥ is either constant equal to 0 or constant equal to 1 in S;,
see (4.9), and since changing V to V is just rewriting a vector with a different system
of coordinates (and of course we rewrite &@; in this system of coordinates too). If ¥ =0
on S;, the bound I = 0 < Cv?|B,| is trivial. So we assume for the rest of the step that
¥ =1 on 5;. In this case, since @; is the average of Vu on S;, the Poincaré inequality
yields that:

2B i dsd
| ‘]5[|VV\ddy< |//|VV|\II3 lsnyQ (4.14)

because ¥ =1 on S;. We adapt the argument that we used to establish (4.12). We pick
a collection of points {z;}}_, € 2K;B; such that
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N
Si € | Breorja(zy) x {EKiri/2 < |s| < Ky},
j=1
We can choose the collection so that N is uniformly bounded. Since

Bic,r,ja(25) x {Kiri /2 < |s| < Kyri} C f(x) for x € By, /a(25),

we have

N
|Bi] = 2.3 dsdy
15 62 Z // \VVu| \ 7|S|n—d—2
j:1BKi"'i/4(Zj)X{Kﬁi/2<|s\<Kiri}
N ? 2
< |Bil N < |Bil = 3
SH S(Vulw®) () da | 5 55 S(Vu| ) (z) da
I By a(29) 0K, B;
- 52 (M[ (vu| )](xz)) —’Yl 1|7 (415)

where z; is any point of the non-emptyset F* C Ej3 s and the last inequality comes
from the fact that z; € Eg 5 (we could even have I < 726%|B;|).

Step 6: We deal with II. Observe that
supp{¥p0, ¥y} C 500B x {1 < |s| < 2I} and supp{®;} C {dist(y, B;)/20 < |s| < K;r;}

since we know that K; < 2'°. The integral II is non-zero only if the (interior of the) two
above supports intersect, and in this case, we necessarily have

I < Kyr; <2'%; and  dist(500B, F;) < 401 (4.16)

and thus we can assume those bounds in the rest of the proof. So 5008 C 22°B; and we
can find a boundary point z; € R such that

x; € F; N5508. (417)
By the triangle inequality and the fact that |[VWq| < 1 on supp(V Wy ), we have

|220-Bi‘
62

1229 B; |||
/82

s |Vu|> T3, ds dy +

5008 1<|s|<2l

U3 =11, + .

We want to bound II; with the help of the Hardy Littlewood maximal function of x —

1/2
(fBl(z) fl<|s‘<21 |Vy|2dsdy) . So we proceed like we already several times, see around
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(4.12) and (4.15). We take a uniformly finite collection of points {z;}_, € 5013 such that
5008 C | By/2(2;), and since fBl/Q(ZJ‘) |Vul? < fBl(w) |Vul? for any @ € By/s(z;)|Vul?,

we have

N
HlN Z 7[ ][ |Vu|?Uds dy
I=1B,y o (25) 1<Is|<2
2
N 1
IBy| 1
B—Z ][ ( ][ ][ |Vu|2\11‘?9dsdy)2da:
J=1 Bi/2(z;)  Bi(z) 1<|s|<2l
2

Bi 1
< 1B ][ (][ ][ \VU\Q\II%dsdy>2dm
Baooor(z:) Bi(z) 1<|s|<2l
2

Ml £ wupeasay) e | <l @

B (.) I<]s|<2l

because x; € Eg 5. It remains to bound IIy, but that one will be easy. Without loss
of generality, we can assume the support of the function ¢ used to construct Wy to be
exactly [1,2] and hence the support of 9, ¥y to be exactly {I < |s| < 2[}. But the set S;
defined in (4.8) and used to build &; has to be included by construction in either {¥ =1}
or {¥ = 0}. Combined with (4.16), it forces S; C {¥ = 0}, and thus I, = |&;| = 0.

Step 7: We bound III to conclude. As discussed at the end of Step 4, we needed to
bound I, II, and III by C?|B;| to finish the proof of the lemma. We already proved the
desired estimates of I and II in Steps 5 and 6, so it remains to show IIT < 72| B;]|.

We did not use Section 3 at this point, so as one could expect, it will appear in this
last Step. We easily have that

IN(Va — @[ U313 < | N(Vul T50F)[3 + |a[*[| N (1]®)|3. (4.19)

Lemma 4.4 shows that W3®?x% satisfies (COF) with a constant that depends only on d
and n. Thus we apply Lemma 3.3 to the term III. Together with (4.19), we deduce that

1 ~ . ~
I < @{MIN(WI‘P%?)II% + 0l [N (1) I3
+C(1+ 07 K| N(Vu|U®;) |3+ C(1 + 6’1K2)\\S(Vu\\11<1>i)||§}

Let v be any function for which N (v|®;) or S(v|®;) makes sense, and in this situation, the
non-tangential maximal function N(v|®;) and the square function S(v|®;) are supported
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in a ball C'B;, where C' is universal. Why? Because ®; is supported in a saw-tooth region
on top of F* C B;, which is truncated above by K;r;. Hence the Whitney box W (z,r)
for which (v|®;)w.,r) # 0 are such that » < 2K;r; and then z € 10K;B;, which means
supp N (v|®;) C 10K;B;. Similarly, a point (y,t) for which Vu(y,t) # 0 are such that
|t| < K;r; and then y € 3K;B;, which implies that supp S(v|®;) C 3K;B;. Altogether

supp S(v|®;) Usupp N (v|®;) C 10K;B; C B} :=2'B,. (4.20)
With this observation, we have

| Bi

s 5

{5|0’Zi|2 + 6 [sup N(Vu|\113(1>?)]2 + 6 'k [sup N(Vu\\IKI)i)]Q
B; B;

+ 07 [sup S(Vu|\1/3q>f)]2} = I, + ITT, + T115 + I11,.

B
The three terms above are handled in a similar manner. Recall that ®; is supported in a
saw-tooth region over F; truncated at K;r;. If (Vu|¥3®2)y (2',r') # 0, then W(2',r") N

supp{®;} # 0 and there exists a x; € F* C B; such that |z; — 2’| < 10007’ < 22°r;. It
follows that for all (2/,7') € R,

(Vu|E303)y (', 1') < ][ N(Vu|U3®?)(2)dz
BT/(Z/)

~

< ]l N(VulT303) (2)dz < M[N, (Vul )] (z:).  (4.21)

Biooor (%4)
Consequently, for each z € R%, there exists a x; € F} such that
SN (Vu|UP®2)(2) < SM[N(Vu|¥?)](z;) < 7 (4.22)

where the last inequality follows from the fact that z; € Eg 5. We easily deduce

5|B; -
= O 2 | [sup N(Vu|T38%)] < 4%|B|.
B B}
Similarly, we have
ot B; ~
I := % [sup N(Vu|®,)]* < 42| Bil.
B;

The term II1; follows the same lines. If y € F?, then S(Vu|¥®;)(y) < S(Vu|¥®,)(y) <
vB. If y ¢ F;, we take z; € F* such that r, := dist(y, F;) = |y — x;|. We know from the
construction of Wp: that
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®,(z,8) =0 for |z —y| < r;/10 and |s| < r;/400. (4.23)

We cover B, 20(y) by a uniformly finite collection of balls {B,, s00(2;)} and we

N
=1
notice that for any collection {w; };»Vzl of points satisfying w; € By, /300(2;), we have

N

f(y) Nsupp ®; C U f(wj).
j=1

We conclude that

—_— N —_—
SFuve)w) <> f ST w)de
j=1Bri/800(zj)
_ _ 1/2
< ][ S(Vul®) (w) dw < M|S(Vulw)] (2:) < 675,

Bar,; (%)

and then 111, < ~2|B;| as desired.
It remains to bound III;. We apply the same argument as of (4.12) using z; € F*
instead of y;. So we have

0l < 8| MIN (Vul ¥¥)] (o) | < 457, (4.24)
because z; € Ej ~ 5, from which we easily deduce III; < ~?|B;|. The lemma follows. O

The “good-lambda” distributional inequality (4.2) can be used to derive the LP — LP
boundedness result.

Lemma 4.6. Let p > 1 and L be an elliptic operator satisfying (H ), m,x. For any a weak
solution u € VV;?(Q) to Lu = 0, any cut-off function in the form ¥ := Vg, . for some
€ >0, some | > 100¢, and some boundary ball B of radius I, we have

p ~
+ Cy? N (Vul )17

- 1/2
N(vw3>||gscpH( ][ ][ VuQ\I/%dsdy)
p

Bi() 1<s|<2t

+ G| S(Vul D)5
where C, > 0 depends only on A, d, n, and p.

Remark 4.7. The limitation p > 1 comes from the fact that we used the maximal function
M in Lemma 4.5. However, with the same arguments, we could prove an analogue of
(4.2) where we replace M by M, defined as M,[f] := (M[fq})l/q for any ¢ > 0 (with a
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constant C' depending now also on ¢). Then we could establish Lemma 4.6 for any p > 0
by invoking (4.2) that used M, with 0 < ¢ < p.

Proof. We apply the distribution inequality (4.2) to obtain that there exists a n > 0
such that for any v,d € (0,1), we have

IN(TuwI; =y [ 5N (Tu9) > a3
0

<e, / BN (N (Vul ) > 8} 1 EsqsldB + ¢ / 71|, 51
0 0

< e / B {MN(Tu|T9)] > nB}dB + ¢, / 71|, 51
0 0

=141

where the implicit constant depends only on p. But in one had, we have

7
= —HM[ N (Vul 8P|l S = IIN(Vul\I’?’)II”
by the LP-boundedness of the Hardy-Littlewood maximal operator. On the other hand,

1= *”HM ][ ]1 V20, dsdy) }+51/2M[ (VT3]

B () I<|s|<21

4 Y22 MIN (V| 0)] + 62 M[S (V| 0|

p

< AP 23 1/2 1/2 a7 3 —1/2,.1/2 77
< H( (Va2 dsdy) " + 62N (Tul8?) + 6261 2N (Vulw)

Bi() I<|s|<2t

— P
+ 5—1/25(vu\\1/)H
P
again using the LP-boundedness of the Hardy-Littlewood maximal operator. Altogether,
we have

p/2

» >||1\7(Vu|\113)||5+7—pH( ][ ][ VPl dsdy)l/

~ 2 5 2|p
NV s (L + 5
ey
Bi(.) I<]s|<2l

p

+ 522 | N (Tl ) + 5720 [ $(Fulw) |
p
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The lemma follows by taking v and then ¢ (depending only on A, d, n, and p) such that
(v?n7P + 6v/ 247P) is small enough, so that the first term on the right-hand side above
can be hidden in the left-hand side (which is allowed because all the terms are finite,
due to the use of the compactly supported cut-off function ¥). O

5. S < N local estimates

In this section, we aim to establish that the square function is locally bounded by the
non-tangential maximal function, result that is eventually given in Lemma 5.5 below.

Remember that we have three different directional derivatives to deal with, which
are the tangential derivatives V., angular derivatives V, and radial derivative 0,. To
prove these estimates, we first bound the square function of the radial derivative by
the square functions of the tangential and angular derivatives, and we shall rely on
Proposition 2.3, i.e. the expression of the equation in cylindrical coordinates. Then, we
treat the tangential and angular directional derivatives, and a key point is the fact that
those derivatives verify 0, |t| = d,|t| = 0.

Lemma 5.1. Let L be an elliptic operator satisfying (H )z .. For any weak solution u €
I/VZZCQ(Q) to Lu = 0 and any radial cut-off function ¥ € C§°(2,[0,1]), we have

1S (0rul¥?)]3 < C(HHN(VU\‘I’?’)H% +IS(Voul O[3 + HS(VM‘I’?’)H%), (5.1)
where the constant C' > 0 depends only on A and the dimensions d and n.

Proof. This is basically an outcome of the equation: some derivatives can be represented
in terms of others. Observe that
1

|VO,u| < |Vp0ru| + |Vu0pu| +|02u] < [VVu| + [VVu| + i

|V pul + |07l

because V, and 0, commute and the commutator [0,, 0] is —ﬁ@w (see Proposition 2.4).
But since v is a weak solution to Lu = 0, (2.1) implies that

1 n
|0%u| = | — div, (A1 V,u) — div, (A20,u) — 5 Z aiiju
i,j=d+1
S IV AVl + A Ve0ru| + AV, Vaul + [V
< VoA Vul + A7V Vu] + [VV |

by using again the fact that V, and 0, commute. By combining the two inequalities
above, we obtain

1
IVO,u| < |VVau| + [VVu| + H\V¢u| + |V A| |Vl
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Now, (3.2) entails that

IS0 ul¥*) | Zagay S 1S(Vaul¥2) 22 gay + 1S(Voul¥?)[Za gy

dtd dtd
+/ IV 203 2 +/ PRAAPTEIED Eladecy
Q Q

|t‘n—d |t‘n—d

However, since |t||V,A| € CM(k), the Carleson inequality (3.3) implies that

‘t|n d ~

dtdx
// 21V AR V20 T < R ] 2
Q

In addition, Proposition 2.7 applied with ® = |¢|¢~" W3 infers that

|t‘n d ~

dtdx dtdx
/ IV 2 / VYl iy S ISVl ) s e
Q

by (3.2). The lemma follows. O

In order to deal with the tangential and angular directional derivatives, we will first
prove a generalized result that works for both of them. Let us write 0, for either a
tangential derivative d,,, an angular derivative d,, ,, or the radial derivative 9,. The key
step is to use the equation Lu = 0 properly. Since we want to estimate the gradient of
solutions, we should study the commutators [L, 9,] and try to bound them in a clever
way. In the next lemma, we will estimate the square function of d,u and we are able to
see how the commutator [L, d,] plays an important role in the estimates.

It will be convenient to introduce the bilinear form B(-, -) defined for f € L}, .(Q) and
¥ e O (),

dtdx
B(f /8 [It1f]0, |t|" T (5.2)

Beware that B(f, ) may be negative even when the function f is positive. We are now
ready for our next lemma.

Lemma 5.2. Let L := —div([t|4T'""AV) be an elliptic operator satisfying (1.23) and
(1.24). For any weak solution u € I/Vllof(Q) to Lu = 0 and any radial cut-off function
U e C§°(Q,[0,1]), we have

7 dtdx dtdx
’ ; \113 2< N 2 7'\1’3— / \112

S IS(@,ulw?) 3 _/ RS Ol VoV P iy
Q
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B(|0,ul?, ¥3) + // (1, 00Ju) (W2[tl0u) ez, (5.3)
Q

where C' > 0 depends only on the ellipticity constant A and the dimensions d and n.

The bound (5.3) may look a bit cryptic. The last term of (5.3) is the one that contains
the commutator [L,d,], and will be removed in the next lemmas. The first term in the
right-hand side is the “trace” term, that is the term that will become Tr(9,u) when we
take ¥ 1 1. The two other quantities are “error” terms that contain derivatives of the
cut-off function ¥, and that will eventually disappear when we take ¥ 1 1.

Proof. To lighten the notation, we write V for d,u. First of all, since A satisfies the
uniform ellipticity condition (1.23), we have

AS(V]W3))2 = /\//|VV| g _dtdz //AVV vy e

|t|n d—2 ‘t|n d—2

By product rule,

dtdx dtdx
. 34: . 3 -
/Avv VY /AVV V(V\I/ \t|) T
Q
dtd dtd
—/ AVV~V\IJ3V||x/ AVV - V(\t|)V\I/3||7xfI+II+III

We start from the term I. Recall that u is a weak solution to the equation Lu = 0. It
follows that:

LV = L(0yu) = 0y(Lu) + [L, 0,] = [L, 0y] a.e. in Q.
Consequently,

= // ([L,av]u) (V\I!3|t|) dtdz,

Q

which is one of the terms from the right-hand side of (5.3). For the term II, since matrix
is in the form of (1.24),

dtdx
|t|n—d—2

dtdx

. t .
—/ A VLV V0PV —/ Ag—vtv-v \If"VW

dtd
//vtv vV, 03V e e T 4 1T, + T,
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The terms II; and II; are estimated together by

dtdx

1
I+ T < EAIS(VIR) 5+ Cn [ VRV, 0 Po s
Q

We hide the term £A|[S(V|¥%)|3 in the left-hand side of (5.3), and the second term in
the right-hand side above stays on the right-hand side of (5.3).
As for 113, since ¥ is radial, we have that

V.V V03 = (V, V- Vit]) 0,92 = (9,V)(0,9?)

and thus,

1 dtdx dtdx
II [ 2 ‘113 o 2 \Ijk / 2 \113
s= =3 [ Vo) i = B vio.u L

by definition of B(.,.), see (5.2). The last term III is similar, because we have

dtdx 1 - dtdx dtdx
i=-flovve —_ —=_= [[(5V? ¢ = //V28\I/3
[ ve gt == o v gt ==
Q Q

thanks to the integration by parts given in Proposition 2.2. The lemma follows. O

Now we bound the square function of the tangential derivatives by applying Lemma 5.2
with 0, = J,. Recall that we write 0, for any tangential directional derivative 0; := €;-V
where ¢ < d. As we have discussed in the previous paragraphs, the commutator [L, d,]
plays an important role in computing the square function of d,. In our particular case,
an easy computation shows that

[L,0,] = div,(|t|*" "0, A)V (5.4)
because 0, |t| = 0.

Corollary 5.3. Let L be an elliptic operator satisfying (H)x .. For any weak solution
e Wh2(Q) to Lu = 0 and any radial cut-off function ¥ € C§°(9,[0,1]), we have

loc

dtdx

[T + Ck||N (Vu| %)

IS < [ 1v.upo,we
Q
+c//\v Wf2IV, ) xp|tdtdx +B(V,ul, ¥, (5.5)

|nd2

where C' > 0 depends only on A\, d, and n.
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Proof. The bound (5.5) is a consequence of the same bound on each of the tangen-

tial derivative 9,, and then summing up. For a given tangential derivative, (5.5) is an
immediate consequence of Lemma 5.2 and the bound

// ([L,@I]u) (W3[0 u) dtda| < é)\HS(V u| 3|12 + Cr|| N (V| U3)||2
Q

dtdx
+C//V¢ul2lvz@|2\lf|t|n_d_2, (5.6)
Q

for any tangential derivative 0,.. So we fix a tangential directional derivative J,, and by
(5.4) and then integration by parts, we have

// ([L,@w]u) ((8wu)\113|t\)dtdm= // (div(|t|d+1*"aﬁ4)vu) (\Il3|t\8xu)dtda:

Q
_ —//(6$A)VU-V(8$U)\II3% —//(8$A)VU-V(|t|\I'3)8wu didz
Q

|t|n7d71
Q

=I+1L. (5.7)

Since [t||V,A| € CM(k), the term I is bounded as follows

1 dtd
1< GAIS@.aulw)E + Cx [ |t|2|va|2|w|2\If3|t|n,f,1
Q

—_

S (@oul W) 5 + Crr|| Na(Vu| )3 (5.8)

[e 2]

For II, remark that the special structure of A given in (1.24) implies that the only
derivatives that hit |[¢t|U3 are tangential derivative, for which V,|t| = 0. Therefore

dtdx
11| = / (0. A)Vu - (V%) (0,u )\tI" —

dtd dtd
/ 10, AP Va9 / VP

~ dtdz
< CrIF (Ve + [ VAPV Pe . 69
Q

The lemma follows. O
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It remains to estimate the square function of the angular directional derivatives.

Corollary 5.4. Let L be an elliptic operator satisfying (H)x .. For any weak solution
we Wh(Q) to Lu = 0 and any radial cut-off function ¥ € C§°(Q,[0,1]), we have

loc

3 ~
PSVeul T3 < ChIN(VulT2)|[3 + CllS(Vaul U213

dtdx
+C//|V¢u| NAIRY a2 + B(|V,ul?, ), (5.10)

where C' > 0 depends only on A, d, and n.

Proof. Fix an angular directional derivative d,. Thanks to Lemma 5.2, it suffices to
show that

|t[r—a-1

‘// (122, Ju) (W¥]1}0u dtdz+/ 10,020, w5 2L

1
< ZAS(Vul )3 + CwIIN (Vul ¥2)|[3 + OIS (Vaul ¥%)]13

dtdx
+C//|V ul|V, U2 0 == (5.11)

oo

It will be important to estimate the two terms in the left-hand side of (5.11) together,
because there will be some cancellation.
We invoke Proposition 2.6 to say that

// (129, Ju) (W¥[1}0u)dt e = // divy ([0, A) V) (2 10, u)dr

dt dx dt dx
2//(8r3¢u)\113(8 U = T //lez (A20,u) \1138 o) a2
Q

— I+1+1L  (5.12)

By the product rule,

dtdx
[t[r—d—1

dtdx

T = 1T, +111,.

IHS/ Ve As||V pul|0pu| W3 +/ |A2|V oV pul[0pu TP
Q Q

Since [t||VzAz| € CM (k), the term III; can be estimated as follows
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dtd ~
L < e Jf (90RO R F (Vul e
Q

1 ~
< S AIS@pul T3 + Car| N (Vul 9],
by using Proposition 2.7, (3.2), and by taking e small enough (depending only on A, d

and n).
Based on the same arguments, the term III5 is bounded by

dtd
My < ¢ [/ 9,020 S5+ 0 ISV 9)
Q

1 [
< oA IS @pul )3 + CAlIS(VaulW9)]5.

The term I is analogous to the one obtained from the commutator in the proof of
Corollary 5.3. We repeat quickly the argument. By integration by parts,

dtdx dide
b= //(awA)V“'Vm(%u)‘I’SW N //(3¢A)Vu~vm\113 Opu) pma=s =i+ L
@ Q

The first integral is bounded by using the inequality 2ab < ea® + ¢~ 152, and the fact that
[t||V,A| € CM (k) we get similarly to (5.8) that

1 ~
L] < S AIS@pul T3 + Cor| N (Vul 9)]5.

As for the second integral, we proceed as in (5.9) and we obtain

dtdx

L] < Cr| N (Vul )| + / AETIAT =

The term II cancels out with the “trace” term. Indeed, we have

dtdz dtdz
20,3 _ 3
H_/a|8¢|@|t|nd1_ /&P|('9\Il|tnd1

by the integration by parts (Proposition 2.2). Observe that all our computations proved
the claim (5.11), thus the lemma follows. O

In the following, we combine all the previous results of this section together. We
recall that V stands for the gradient in cylindrical coordinates. Remember that we write
respectively ||S(V,u[®?)||3 and ||S(V,u|¥?)|3 for the sums of the square functions over
all tangential derivatives and angular derivatives in L? norm.
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Lemma 5.5. Let L be an elliptic operator satisfying (H)x .. There exists three constants
C1,Cs,C3 > 0 depending only on X, d, andn such that for any weak solution u € I/Vllof(Q)
to Lu =0 and any cut-off radial function ¥ € C3°(£2,1]0,1]), we have

dtdx

15(Fulw) 2 < 01( J V00, 0 L
Q

B<|vxu|2,w3>) 4 Cy BV uf?, 79)

~ dtdx
+Ca(WIRO I + [ Ivupe ) )
Q

In addition, if U satisfies (COF )k, we have
1S(Vu|¥?)[13 < C || N (Vul®)|l3, (5.14)
where Cx depends on A\, n, and K.

Remark 5.6. Remember that the first term in the right-hand side of (5.13) is the “trace”
term, and all the other terms are meant to disappear when ¥ 1 1.

Moreover, we have different constants because the terms that are multiplied by Cj
and C5 may be negative. We can say that 1 < Cy < C; < (3, but nothing more, in
particular taking C; = Cy = C3 would probably render the inequality false.

Remark 5.7. The result (5.14) tells us that the sum of the square functions of all
tangential directional derivatives, angular directional derivatives, and radial direction
derivatives can be estimated locally by the non-tangential maximal function of the full
gradient.

Proof. The inequality (5.13) is an immediate consequence of Lemma 5.1, Corollary 5.3,
and Corollary 5.4.
We turn to the proof of (5.14). Since U satisfies (COF) g, we have

V¥ < K and  Lgppve € CM(K), (5.15)

in particular [¢t||[V¥| € CM(K?3). We deduce that

dtdx dtdx
VP P
/ Vv VP / V0,9

dtd
< C//\Vu|2[|t|2|v\ll|2+ v AT R N (VulD) 2, (5.16)
Q

by (5.15) and the Carleson inequality (3.3).
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Consequently, it suffices to show for any V € L? () and ¢ € (0, 00),
B(VI?, ¥%)| < 81S(VIT?)|3 + 51N (V]@)]13 (5.17)

because then (5.14) follows easily by choosing e small enough. From the definition of
B(.,.), see (5.2), and the product rule, we have

dtdz dtdz
BV, 0%, <//IV|8TVIIBT\I’|\I’2t|n = //|V| O

< 8| S(V| U2+ Co~ //|V| 10,9 \1/|t|‘fdf2 / V20, \p|\p2t|fitdf . (5.18)

By using again (5.15) and the Carleson inequality, the last two terms of (5.18) are
bounded by K3||N(V|¥)||3. Hence (5.17) follows. 0O

Let us get a little bit further, since it will help us when we pass from local to global
estimates.

Lemma 5.8. Let L be an elliptic operator satisfying (H)x .. For any weak solution u €
WL2(Q) to Lu = 0, any cut-off function ¥ € C°(Q,[0,1)) satisfying (COF )k, any

loc

§ € (0,1), we have

1 dtdx
2 3y _ - 2 2 3
500, %) = 5| [ (10-ul? + 1o 10, ) )09 o2

Q

< (047 K2R) [N (Vul W) 3 + Co~ K|S (Tul W) 3,
where C' depends on X\, n, § and K + M + k.

Proof. The equality is just the product rule and the definition of B(|0,u|?, ¥3), see (5.2).
The bound

dt dx _ ~ _ —
‘/ |01 \8\Il?’|t|n g < (6 + 07 K2R || N(VulD)|3 + C5 K2||S(Vu|T?) ||3

was established in (3.6). It remains to show a bound on

dt dx
3
//8 (10,u|®)0, ¥ |t|nd2,
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but that is similar to (5.18). Indeed, we use |t||V¥| € CM(K), (3.3), and the inequality
ab < 6a® + b%/46 to obtain

dt dx ~ _
1_2/ (02u)( S\I —— | < OIN(Orul®)[5 + CKS||S(9,ulP?)]f5.

The lemma follows. O

Lemma 5.9. Let k € (0,1) and let L be an elliptic operator satisfying (H)x.. Take
U € C§°(Q) satisfying (COF )i. There exist four constants cg, Cy,Ca,C5 > 0 depending
on A and n - the first one being small and the last three being large - such that, after
defining

[Vul? := C1|Vul? + Co|Voul? + kY% co K2|0,ul?,
we have, for any weak solution u € VV;?(Q) to Lu = 0, that

= dtdx
IS(Tue)3 < 1 [f 1920090 2+ BVl 9°)
Q

~ dtdx
Q

Proof. By Lemma 5.5, we have three constants C], C4, C%} depending only on A, d, and
n such that

dtdx

||S<Vu|w3>||%§01( | Voot B<|vxu|2,w3>)+C;B<|v<pu|2,w3>
Q

dtd
+C3(Ii||N(Vu|\IJ3 2+ //|Vu| IV, 0|2 Vi fz) (5.20)

We take § = C4x'/? in Lemma 5.8 and we obtain that
~B(0,ul?, ¥*) < C4xM 2N (Vul®)|3 + Con™/2K3(|S (Vul¥%)3,

for some Cjy depending on A, n, that is

1/2

1 7. 3\ 112 \T 2
—5IS(Vul¥)|lz < Car [N (Vul W)z + 2C.K?

B(|0,ul?, U3). (5.21)

Add (5.21) to (5.20) implies
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1 o= 132 94 5 dtdz
SISTuwIE < ¢ Jf (v, w 2
Q

B(C1|V ul* + C4|V pul?® + (200 K2) " £1/2|0,ul?, ©3)

~ dtdx
+20§(/€HN(VU|\IJ3)|§+/ |vfu|2vr\1/|2xpm>. (5.22)
Q

The lemma follows by taking ¢y = (2Cy) 71, C1 = 2C}, Cy = 2C%, and C3 = 4C%. O
6. Global estimates for energy solutions
We define the weighted homogeneous Sobolev space W as
W= {u € L},.(Q), Vuc L*(Q, [t|* "}

which is equipped with the semi-norm

dtdx
Jullw = / IVl g

The space H := W/22(R%) is the usual homogeneous space of traces on the boundary
09 = R%, equipped with the usual semi-norm

lglla = // %

dyRd

The trace of a function u € W is defined for any = € R? as

Tr(u)(z) = 151(1) udydt
B(z,e)NQ

if the limit exists and 400 otherwise. Equivalent definitions of trace exist, and we choose
the one constructed in [6] just because we shall refer to this manuscript for basic results.

We know from [6]° that Tr is a bounded linear operator from W to H. Moreover,
||l.]lw is & norm for the subspace Wy := {u € W, Tr(u) = 0}, and (W, ||.||w) is complete.
We can apply Lax-Milgram’s theorem to obtain weak solution to Lu = 0 with prescribed
data g € H.

5 when d < n — 1, the case d = n — 1 being general knowledge.
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Lemma 6.1 (Lemma 9.1 and Lemma 9.4 (v) in [6]). Let L = — div[[t|"*1="AV] be an
operator satisfying (1.1). For each g € H, there exists a unique function ug, € W such
that

dtd
//AVug Vo —— i S for any v € Wy

|nd1

and Tr(ug) = g. Moreover, we have the bound

lugllw < Cliglla

with a constant C' that depends only on the elliptic constant X in (1.1).
When g € H is continuous and compactly supported, the solution given by this lemma
and the solution given by (1.3) are the same.

In this section, we assume that v € W, and we observe to which extent we can take
non-compact cut-off functions in the local estimates given in Lemma 5.5, Lemma 5.9,
and Lemma 4.6, and thus obtain global estimates.

Lemma 6.2. Let w € W. For any € > 0, we have
N 2 —19,,112
[N (ul¥)llz < Ce™lulliy

where C' depends only on d and n.

Proof. Take x € R? and (2,7) € T'(z) N {r > ¢/2}. Then

dtd dtd

(Fuw (2, o= ]§[ VP dedy S // Vul? gy <! / Vul?
W(z,r)

where T*(z) := {(y,t) € Q, |y — z| < C*|t|} and C* is a large constant that depends
only on d and n and is such that W(z,r) € T*(x) for all (z,r) € T'(z). We deduce that

dt dy
T,) ! Vul? —=
Nu ] 19
F*(w
and then
dt dy _
¥ (ulw,) / IVl G = <l

by a simple variant of (3.1). O
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When u € W, we can see that || N(u)||2 will explode only when we get close to the
boundary. We can use the monotone convergence of ¥p; . 1 ¥, as B 1 R% and | — oo,
and then take U = W_ in (5.14), which shows that ||S(Vu|¥,)]|3 is also finite and bounded
by Ce™ 1| ul3,.

Moreover, we can also take ¥ = W, in (5.19). Indeed, any term containing ¥.VUp
can be bounded by 06_1||Vu||%Z(Rd\B,derl*ndtdz) and any term containing V¥, can be
bounded by CI71||ul|,, and both those terms converge to 0 as B + R? and | — oco. It
means that the terms in (5.19) that contain either VU g or V¥, with eventually disappear
when we take the limit ¥ ;. T W.. Let us give a bit of details. In the left-hand side of
(5.19), we first have

dtdz
//‘v u‘ a\IjBleMn d—1
dtdx dtdx dtdx
/ V.00, ¥ / V00 //|v ol

dtdx _ _
/ |V€E ‘ a \I]e |t|n d—1 Ce 1||vuHiZ(Rd\B,H\d*l*”dtdm)+Cl 1””“12/1/

dtd
— |V ul?0, W3 —— - as B1+R% and | — oo.
|t|” d—1

The terms n||N(Vu|\I/B 1.0)|I5 are easily bounded by k|| N (Vu|¥3)||2 and
dtdx
/ |vu|2|vx\I/B,l,e|2\I/B,l EW > 2 ||VUHL2(R‘1\B [t]d+1—ndtdx) —0

as long as we always take the radius rp of B bigger than [. The last term in the left-hand
side of (5.19) is B(|Vul3, 0% ). We have

B(Vulz, U0 — B(Vulz, ¥9)|

— dtdx
< // (IVul? + t|[VVu||Vul) (920,55 | + |1 — T[]0, ¥2]) =
Q
_ dtd
< / (IVul® + *|VVul?) (9210, 9% )| + |1 — ¥} ,]10,V2)) W%
Q

—0 asBTR%and ! — o

since ||ul|?, + [|S(Vu|¥,)||3 < +00. A similar argument gives that the term
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1/2/12
H(f ][ |vu|2x1:3Bdsdy) z/ ][ |Vul|?>T% ds dy
2

Bi(.) I<|s|<21 R 1<|s|<2l

that appears in Lemma 4.6 is bounded by C17!|jul| and also converges to 0 as [ goes
to infinity.

From those observations, Lemmas 5.9 and 4.6 combined with the fact that v € W
entail the following estimates.

Lemma 6.3. Let x € (0,1) and let L be an elliptic operator satisfying (H )x,.. There exist
four constants cy, Cy,Cs,C3 > 0 depending on A and n such that, if

|Vul|? := C1|V,u* + CQ‘V@U‘Q + COH1/2|&/LL|2,
then for any weak solution w € W to Lu = 0 and for any € > 0, we have that

— dtdx ~
1S (Vul¥2)||5 < Cl//IVzUIzar\IJE’W + B(|VulZ, ¥2) + Csk|N(Vu|¥2)|3 (6.1)
Q

and
IN (V92|12 < Cal|S(Vu|W,)||3 + Cakl|N(Vu|¥,)|2. (6.2)

Moreover, all the quantities that appear in (6.1) and (6.2) are finite and bounded by
CeHulffy

Note that we only assume that x € (0,1) in Lemma 6.3 for a technical reason (that
comes from the fact that 6 € (0,1) in Lemma 5.8) and that condition can probably be
removed. But all this does not really matter because the proof of our next result (and
thus the proof of the main result of the article) requires £ to be small anyway.

Theorem 6.4. Take \ > 0. There exists k € (0,1) small enough (depending only on A, d
and n) such that if L := — div(|t|*1="AV) is an elliptic operator satisfying (H )x .,
then for any weak solution w € W to Lu = 0 we have that

Hﬁ(vu)uggcnmsup/ ][ IVoul? ds dy, (6.3)
e—0

R ¢/2<]s|<e

where C' > 0 depends only on X\, d, and n.

Neither the right-hand side nor the left-hand side of (6.3) are guaranteed to be finite,
but the left-hand side is finite as long as the right-hand side is. More precisely, there
exists a sequence €, — 0 such that
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I <c [ Valdsdy, (6.4
R4 e /2<]|s|<e
Proof. The bound (6.3) is an immediate consequence of (6.4), so we just need to establish
the later.
Remember that W, is constructed from a smooth function ¢. All the constants depend
on the fixed ¢, but we have a bit of freedom (as long as we do not take ¢ so that U,

satisfies (COF) with a controlled constant K. Therefore, we can replace ¥, by ¥2 in
Lemma 6.3 and thus (6.2) gives that

IN(Vul¥)[3 < Cs)|S(Tul¥)[5 + Canl|N (Vul ¥2)]3.

Observe also that 9, ¥2 is non-negative, supported in {e/2 < |s| < s}, and is bounded
by Ce™1, so

0</ V020, M</ ][ Vo2 ds dy.

6|t|n d—1 ~
R4 e/2<|s|<e

The two last bounds combined with (6.1) entail that
@< cu [ f TP dsdrr B (VU BRI FOR)) (65)
R4 e/2<|s|<e

where By (v, ®) is the positive part of B(v,®) and Cy depends only A, n. The proof
consists to say that if k is small enough, there exists € > 0 as close as 0 as we want such
that

By(|Vul2,¥3) =0 and  2C4k||N(Vul2)[3 < | N(Vul¥)|3. (6.6)

For such values of €, the bound (6.5) easily self-improves to (6.4), which is exactly our
objective.

The rough strategy of the proof consists in studying the quantity

/ V20,08 44T (6.7)

|nd27

which is non-negative since W, is increasing in r. Since 0,V is supported in the strip
{e/2 < |s| < €} and since 9,V < |s|71, we deduce that

2
w(f)ﬁ/ / |VU|NW §/ / |Vl W
Rd e/2<]s|<e R e/2<|s|<e
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with constants that depends only on A, d and n. But the right-hand side above converges
to 0 as € goes to 0 (because it is the tail of |Jul|}, < +00). So we necessarily have that

lim w(e) = 0. (6.8)
e—0
We shall prove that if (6.6) fails for every € in a small neighborhood (0, €] of zero, then
(6.8) does not hold. So by contraposition, (6.8) implies the existence of e arbitrary close
to zero such that (6.6) holds.

Step 1: For this step, we look at the implications of the fact that
By (|Vul2,¥3) > 0. (6.9)

We write I for the values € € (0,00) for which (6.9) holds. Due to the fact that Vu €
LZQOC
I is open.

Recall that ¥, qﬁ(%) where ¢ : RT — [0, 1] such that ¢ =1 on [0,1] and ¢ = 0 on

[2, +00). We compute

(€2) and 9,.(¥3) is smooth (and compactly supported in ), we have that the domain

T‘\I’E = ) \II =

% = —gd, OO = o+

and we notice that
0 \t| 1 1
a ’I"\IJEZ - = - 2 *_T\Ije:*_rtrq}5~
500 =~ — e = o~ 09, = oL (o, )

The same argument shows that 8%(&\1/?) = —¢10,(]t]0,¥2). So we deduce

dt dy 1 dt dy

_ ! 25 3 _ 3

= //\Vu| |0, T )|t|” 5 6//&~<|t|Vu| 8 W -
Q

= 2B(vul, w).

By the integration by parts in r (see Proposition 2.2), the function € — w(e) is decreasing
on Ip, that is

w(a) > w(b) whenever (a,b) C Ig. (6.10)

Step 2: Now, we look at the implications of the fact that |[N(Vu|U3)[s >
| N (Vul92) .

We write « for the universal constant 5/4. The exact value of o does not matter, as
long as we have a~! <1 < a < a® < 2. We have a bit of freedom on the function ¢ that
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is used to construct ¥, (see Definition 4.3). It is always possible to choose ¢ such that
¢(x) =2 — x when

l<a<z< max{2ofl,oz3} < 2.

For the same values of z, we have ¢’ = 1. If ¢ > ae, we have ¥, > 2 —2a~!) > 0 on
supp V., hence €0, V3, < ¥ and

ds dy ~
() / Va0, wh L S LN (VU

|ndN

So there exists C’ > 0 depending only on d, n (and «) such that

sup  w(e') < Ce||N(Vu|¥?)|3. (6.11)

ae<e’<aZe
By the triangle inequality, we have
1N (VuT2)]|2 = [N (Vu|¥) 2 < [N (Vu|(1 - ©¢)Te) |

But since (1 — ¥5)¥
that

3 is supported in the strip {€/2 < |s| < €}, it is fairly easy to see

€

€ 2~

IFula- v s [ f  Vudsay
R4 e/2<|s|<e
Take now € € [a~2%¢,a™te]. With our choice of ¢ and «, we have that ¥, + €9,V is

bounded from below by a uniform constant (i.e. depend only on «) on [¢/2, €]. It implies
that

ds dy
|Vul? dsdy < HN(Vu\\Ilg N3+ / |Vul?0, U3, = s
R4 e/2<]s|<e

SINVulE)5+ 52 () (), (6.12)

where, in the last line, the coefficient x~1/2 appears because w is defined using the |Vul2.
By combining the last three computations, we obtain the existence of a constant C”' > 0
depending on n and A (and «) such that

|N(Vu|U2)|3 < C"e||N(Vul¥)|2 + C"x~ 2 inf  w(€). (6.13)

e/a?<e'<e/a
We say that € € Iy if

IN(ValE2)|I3 > C" (1 + &72C) [N (Vul¥)]3- (6.14)
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If € € Iy, then we have by (6.11), and then (6.13)—(6.14) that

sup w(e’)§0’6||N(Vu|\Ilg)||§</ inf  w(e). (6.15)

ae<e’ <aZe e/a?<e'<e/a

Step 3: We want to prove that the point 0 is in the closure of
(0,+0) \ (Ig U Iy). (6.16)

Indeed, we take x (that depends on ), d, and n) such that 2CyxC” (1 + x~1/2C") < 1,
and then we have (6.6) for any value of € € (0,+00) \ (Ig U Iy). If the claim (6.16) is
true, then we can find values of € € (0, +00) \ (IgUIy) arbitrary close to 0, and for those
values, (6.5) self-improves to the desired bound (6.4).

The argument is a bit technical because we have to combine (6.10) - which shows that
w(e) ‘continuously increases’ as e — 0 - with (6.15) - which implies that w(e) increases
by ‘jumps’ when € get closer to 0. The quantity w(e) may not be increasing as ¢ — 0,
but a subsequence will be increasing, and that is enough for us.

We decided the write the (simpler) arguments that show that zero is in the closure of
both (0, +00) \ Ip and (0,4+00) \ Iy. These simpler arguments are not necessary for the
proof, but we hope it will help the reader understand later what we are doing when we
look at (0,400) \ (I U IN).

Step 3(a): We claim that 0 is in the closure of (0,+00) \ Ig. Indeed, if it is not the
case, then there exists ¢y such that (0,€e9] € Ig. The bound (6.10) implies then that
w(e) > w(ep/2) > 0 for all € € (0, €y/2), which contradicts (6.8).

Step 3(b): We claim that 0 is in the closure of (0,400) \ Iy. Indeed, if it is not the
case, then there exists ey such that (0,¢] € Iy. The bound (6.15) implies then that
w(e/a? 1) > w(eg/a) > 0 for all k € N, which contradicts (6.8).

Step 4: The argument is similar to the one done in the proof of Lemma 7.8 from [17],
but we try to give a clearer presentation.

We assume that (0,¢) C Ig U Iy, and we want to prove that (6.8) does not hold.
Because of Step 3(a), we can also assume that zero is in the closure of (0, 00)\ Ig, meaning
that for any 0 < € < ¢g, we have

inf{e’ > 0, (¢,e) C Iz} > 0. (6.17)
We write

d(e) := inf w()

e<e’'<ae

and we want to construct e such that e,y < ex/a® and 0(epp1) > 6(ep).

Induction step. We have (0, ¢;] C Ig U Iy.
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(1) If we have (ex/a?, e) C Ip, then by (6.17), we have
0 < epy1 = inf{e, (e, ;) C I} < er/a’.
Now, thanks to (6.10), we also get

S(ept1) == inf w(e) = w(aegs1) > wleg) > d(eg).
€nt1<€ Sa€pq
(2) If (1) is false, then take again € := inf{e, (¢,e0) C Ip} > €o/a?. Since Iz is open, we
necessarily have € ¢ I, which forces € € Iy. Since ek/oz2 < € < €, the intersection
[, a®€] N [e}, aey] is not empty and contains €. So if we choose €41 = €/a? we have
by (6.15) that

Sers1) > sup  w(€) > w(€) > d(en).

aé<e’ <a?é

By construction, the value of w(ex) will be bigger than §(e1) > 0 for any k > 1, which
means that the convergence (6.8) does not hold. To summarize, we established that if
zero is not in the closure of (0, +00) \ (Ip U Iy), which means that there exists ¢y > 0
such that (0, €] C Ig U Iy, then (6.8) fails. By contraposition, the convergence (6.8) -
which holds because u € W - implies that zero is in the closure of (0,400) \ (Ig U Iy).
The theorem follows. O

7. Approximation by operators with Lipschitz coefficients

With Theorem 6.4, we get closer to Theorem 1.5, which is our objective. We “just”
need to prove that if u, € W is the solution given by Lemma 6.1 for g € H satisfying
[VgllL2ra) < 0o, we have

limsup/ ][ |V, ul?dsdy < C’/|Vg|2dy. (7.1)
Rd

e—0
R4 e/2<|s|<e

However, the above convergence is not a simple fact. In some sense, it is a weaker
version of Theorem 1.5 that only consider the values of u as close as the boundary
as we want. The strategy consists of smoothing the coefficients of A in a small tube
close to the boundary while satisfying () with uniform constants. For those operators,
the convergence (7.1) hence Theorem 1.5 will hold with uniform constants. But since
the coefficients are modified only on a small enough set, the solutions to the modified
operators will converge to the solution of the initial operator, and we eventually are able
to prove Theorem 1.5.

First, we show that the weak solutions are in leof (see Proposition 7.1), which means
that taking second derivative is allowed, and so the square functional S and its local
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version make sense. We should have given this argument long ago, but this result is
already well known, and we decided to write it just as an introduction for Proposition 7.3.
In Proposition 7.3, we establish a global bound for the tangential derivatives: we show
that if the boundary data and the coefficients of A are smooth enough, any weak solution
satisfies V,u € W. As a corollary (Proposition 7.5) we prove a technical lemma stating
that the “approximation of the trace” of a solution converges to the actual trace.

In the end of the section (Theorem 7.6), we establish that any elliptic operator sat-
isfying () can be approximated by operators with smooth enough coefficients (so that
the global estimates given in Proposition 7.3 apply) that satisfy (#) with constants
controlled by the ones of the approximated operator.

In the next section, we establish the convergence of solutions of approximating op-
erators and then we combine Theorem 6.4, Theorem 7.6, and Proposition 7.5 to obtain
Theorem 1.5.

Proposition 7.1. Let L := —div[AV] be an elliptic operator defined on D such that A
satisfies (1.1) and VA € L3 (D). Then any weak solution u € W,2?(D) to Lu =0 in D

99 loc loc
also lies in W)~ (D).

Remark 7.2. Observe that the quantities V3, V0, and V0, are a linear combination of
second order derivatives and first order derivatives, so those derivatives are (locally in
L?) well defined for any weak solution to Lu = 0 for which L satisfies (#).

Proof. The proof is classical, but we could not pinpoint a good reference, so since the
proof is quite simple and will be a good introduction to the global analogue, we decided
to write it.

Take EF € D and then ¥ € C(‘J’O(D) such that W =1 on F and 0 < ¥ < 1. Pick a unit
vector e € R™. Define when 0 < h < dist(supp ¥, D¢)/2 the operator A as

X + he) —u(X
Ay = uX + 2) u )EWI{)’CZ(D)
We want to prove that
I, = // |V(AL) 20?2 dX < Cpy, (7.2)
D

with a bound Cg,, independent of h. Indeed, once the claim (7.2) is established, by the
weak compactness of the unit ball in L? we can extract a sequence h,, € (0,1) such
that V(APmu) converges weakly in L?(E) (and thus in the sense of distribution). But
we know that V(APmu) has to converge to Vd.u in the sense of distribution - where of
course 0, is the derivative in the direction e - so the weak limit of the V(Amv) is VO.u,
which is now in L?(E) and satisfies [, |[VO.u|* dX < Cg . Since we have the bound for

every compact subset E and any direction e, we conclude that VVIZOC2 (D) as desired.
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So it remains to prove (7.2). Since u is a weak solution to —div AVu = 0 in D, and
that X — U(X — he) still lies in C§°(D), we deduce

0= / A(X + he)Vu(X + he) — A(X)Vu(X)

- -VIW2AGu] dX

= // (AP A)Vu(X + he) - V[T2ALu] dX + // AVAMy - VU2 AGu) dX
D D
We use the product rule to write V[U2A%u] = 2VW (PASu) + VAL u (U?) we obtain
I, = —2//AVA’;u VU (VA u)dX — 2//(AQA)W(X + he) - VU (WASy) dX
D D

- // (AYA)Vu(X + he) - VAu (V) dX
D

We use the identity ab < ea? + b?/4e on each of the three terms of the right-hand side
above, and we group the similar terms. Afterwards, we get that

1
In< 5+ C (1+ ||A||§O)//|A;u|2|VxP|2dX+ ||VA||%OO(F)/ |Vu(X + he)|? W% dX
D D

where F' € D is the set of points at distance at most dist(supp ¥, D°)/2 from supp V.
Since I, is finite, we hide the term %Ih in the right-hand side, as for the two other terms,
we observe that they are easily bounded - up to a constant that depends only on A and
U - by [[»|Vu?dX. The claim (7.2) and the proposition follows. O

The global analogue of the previous proposition is the following result.

Proposition 7.3. Let L := —div(|t|*T'""AV) be an elliptic operator that satisfies the
uniform ellipticity condition (1.1). Suppose that w € W is a weak solution of Lu = 0
and Tr(u) = g € C§°(0). If |V Azl Lo () < 00, then Vyu € W. More precisely,

dtd
//|VV ul? |t| /|vg| dx+/|VVg| dx+//|V ‘QItI" L (13)

where the implicit constant depends on elliptic constant X\, the dimensions d and n, and
VA £ (0

Remark 7.4. In the codimension 1 case, where we do not have angular derivatives, we
can deduce a bound on the full set of second derivatives by using the equation (see
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Proposition 2.3, that allow us to write the second order radial derivative 92 of a solution
as a linear combination of first order derivatives and VV,,). However, we did not succeed
to bound globally the angular derivatives, so we did not succeed to show that Vu € W.

Proof. Let v(z,t) := u(z,t) — e I!lg(x). We first notice that e~Itlg € W and Tr(e~Itlg) =
g, hence v € Wy. Consider the difference quotient in the tangential direction e; € R¢
such that

Aby(a, 1) = 20T he“}? LG A

We can easily see that Alv € W, for each fixed h # 0. In particular, the quantity J(v)

defined as
dt
J(U) = \//VA?VUFW(Z:E’
Q

is finite. We turn to the bound of J(v). By uniform ellipticity of A,
dt
V(Al) dz. 7.4
/ A V(A s (74)

Since A?v € Wy and u is a weak solution to the equation Lu = 0, we have,

0= // Az + he;, t)Vu(z + h}fi,t) — Az, t)Vu(z,t) V(A6 |t|,itd_1 i

dt

Q

+//.A(x,t) (Afvfu(x,t)) 'V(A?”)ﬁnclji_ldw.

Q

Since two operators AP, V commute and u(x) = v(z) + e !Ylg(z), the identity above
implies that

_ dt
dt

Q
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The term J; can be bounded by

A7 _ dt
< T()/ |V (e |t|Afg)\ |t|—da:+eJ( v),
Q
and
||AhAHLoo(Q) dt
< v LR
Jo <eJ(v) + i / \Vu(z + he;, t)[? = T dr.

The term eJ(v) can be hidden to the left-hand side of (7.4) by choosing € small enough.
Moreover, the mean value inequality infers that ||A?A|s < ||V4Alloo. Consequently,

dtdx dtdx
v) 5//|V(e—|t\A? 2\t|" — //|Vu x + he;, )|2‘t|n7d71_ = Js+Jy.  (7.5)
Q

After a change of variable, Jy is just |lullf, = [[, |Vul*[t|*T " "dtdz. The term J3 is
bounded brutally by using cylindrical coordinate as follows

Iy < / e dr / (|Ag2 + VAR dx < /<|v9|2+|vvm2>dx. (7.6)
0 R4 R4

We just prove (7.3) with the rate of change Al instead of the derivative d,,, and with
a constant independent of h. So by the same compactness argument as the one given in
Proposition 7.1, (7.3) follows. O

We study the sufficient conditions to define Tr(V u) in the next proposition.

Proposition 7.5. Let L := —div([t|*T'="AV) be an elliptic operator that satisfies the
uniform ellipticity condition (1.1). Suppose that uw € W is a weak solution of Lu =0 and
Tr(u) = g € C3°(09Q). If ||[VeAllL=(q) < 00, then Tr(V,u) = Vg almost everywhere,
and in particular

lim/ ][ |qu|2dtdx:/\Vg|2dz. (7.7)

e—0
R4 e/2<|t|<e R4

Proof. The exact definition of trace is not always the same (but it is well known that
the different definitions are equivalent, as we shall show). We prove the result in the case
d < n — 1, which has way less background, with the trace introduced in [6]. We let the
reader check that proof in the case d = n — 1 is analogous with any reasonable notion of
trace.
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The trace of a function u in W is defined as in [6] by

g(z) = Tr(u)(x) := lim udydt.

e—0
B(w,e)

The definition is valid because, |B(x,€) N Q°] = 0 when d < n — 1, but that does not
matter much, because in the case d = n — 1, we can simply extend v € W from R to
R™ by symmetry. If we set g.(z ffB( udydt then (3.24) in [6] shows that

19e = gllz2 ey S €*[lullw for any o € (0,1/2). (7.8)

We pick now a smooth nonnegative function § € C§°(R4*1) such that § = 0 outside
B(0,%) and [p, 6 = 1. We define

O clypt) = o (12, L2

Tre // x,€ ya y> )dtdy

Rn

and then

We show that Tr.(u) is a good substitute of g.. Indeed, since fﬂm’e =1 and 0, is
supported in B(z,€), we have

| Tre () () — ge(&)] < // O ey, ) — ge()| dy dt < ]5[ fu(y, 1) — ge(a)| dy dt
R» B(z,e€)

[N

_ dt
S|é€ 75[ Vu(y,t)*dydt | < | € d/ |Vu(yat)‘2dyw

B(z,e€) B(z,e€)

by using the L?-Poincaré inequality and then (2.13) in [6]. So we have by Fubini’s theorem

_ dt dy
| Tre(u) — gell2 = ¢! d/ // V. 1) o do
R4 B(z,e)

dt dy
<e/ |Vu(y,t)? |t|” T = ellullw. (7.9)

Together with (7.8), we deduce

| Tre(u) — Tr(u)|[2re < €*llullw for any a € (0,1/2). (7.10)
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The above inequality shows that Tr.(u) converges to Tr(u) in L2, so also in the sense
of distribution. Therefore V, Tr.(u) converges to V Tr(u) in the sense of distributions.
Moreover, since V,u € W, we similarly have that Tr.(V,u) converges to Tr(V,u) in the
sense of distributions. But since we easily have by definition of Tr.(u) that

//V _”9 | |_3€/4)}u(y,t) dt dy
_ / V0, (y, uly, t) dt dy = // 0, (g, )V yuly, £) dt dy = Tro(Vou), (7.11)
Rn R»

then by uniqueness of the limit, we deduce that Tr(V,u) = VTr(u) = g.
It remains to prove (7.7). Observe that

|qu|2dtdx§/ ﬁ[ |V ul? dt dy da.

R4 e/2<|t|<e Re W (x,e)

The function h.(z) := JSCW(x 9 Vudtdy is similar to Tr(V,u), so we can repeat the
argument used to obtain (7.10), and we have

2 2

lim 75[ Veudtdy — Vg| dxr = lin})/ ]5[ Veudtdy — Te(Veu)| de=0
€E—r

e—0
R4 |W (x,€) Re |W(x,€)

The combination of the two last computations easily implies (7.7), which ends the proof
of the proposition. 0O

Theorem 7.6. Let L = —div(|t|9T1""AV) be an elliptic operator that satisfies (H)x -
Then there exists a sequence of {A7};eN such that

(a) the convergence A7 — A holds uniformly on compact sets of Q;
(b) VA || () < Cjr?;
(c) the operator L; := — div(|t|*T1="AIV) satisfies (H ) cn;

where in both cases, C > 0 is a constant that depends only on d and n.

Remark 7.7. We adapt the construction from Lemma 7.12 in [23] to the higher co-
dimensional boundaries, that is a construction that smoothens the coefficients of A while
preserving the form of the matrix, the (constant of the) Carleson measure conditions on
the coefficients, and the ellipticity constant of 4. Note that the construction does not
rely on the specific structure (1.24).
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Proof. Suppose that ¢ € C§°(R4) with 0 <4 <1 such that ¢ =1 on [2,00] and ) =0
on [0,1]. For j € N, set 9;(t) := 1(j|t|). We construct the matrix A7 as follows:

A (2, 8) = () A, £) + (1 — 5 (1) #iAxt )da' dt'. (7.12)

From the construction above, we observe that A7 — A uniformly on compact sets of
(2, which is a direct consequence of the uniform convergence ¢; — 1 on compact sets.
The fact that the structure (1.24) is transferred to .A; and the ellipticity bound (1.23)
on A; (with the same constant as .A) is an immediate consequence of the fact that each
coefficient in A; is an average of some value of the same coeflicient in A.

It remains to estimate V.47, we want to show that [t||V,,,.A7| € CM(Ck), |t]|0,.A7] €
CM(CM), and |[VA7| < j. Since v; is z-independent, we have

VoAl (2,1) = 1; () Ve oAz, 1) + (1 — (1)) ]f[ A(z',t')da' dt ) =1 +1p.

W(z,;)

According to (1.8) and the fact that |t||V, ,A] € CM(k), we have ||tV ,All% < & and
thus

1Lj4121/2; Va,pAll oo () S 525 (7.13)

But for A small enough, we have

%% (:C-‘rh,% W (3:_7]
A(@' + h,t') — A, ¢ _
N ‘ ]5[ : i)z| ( )d > VaAl L= (o) < GRY? (7.14)
Wa(a:%)

where the righthand side above is independent of h. By taking the limit A — 0 in (7.14),

we obtain that
]§[ A(m'7t’)dm’dt') < jrt/?

Wa(z,%)
and then
2| < (j'fl/Q)]l\t|§2/j~ (7.15)

We deduce
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”VI,@Ajnm < ||(VI,¢A)]1It\21/j”oo + ”IQHOO S, j’fl/Z (7‘16)

by (7.13) and (7.15), and

. tl 1
Ve g AT[ < [T+ (8] [T2] S 8]V, Al + %“%ﬂ|t<2/j € CM(Cr) (7.17)

because [t||V, Al € CM(k) and a simple computation shows that %‘Ii%‘ﬂmgg/j €

CM (4kc,,_q), where ¢, _q4 is the surface of the unit sphere in R"~.
We have the two desired bounds (7.16) and (7.17) on V, ,.A7, and it remains to prove
the analogue estimates on 9,.47. We have that

10, 47| = ¢ja,4+ar¢j ]§[ A, 1) dmdt)

W(:v,J

< Apgy>1/410-Al + 1< <2l Lye>1/2; VA

And since, similarly to (7.13), we have ||1;>,;VA|% < j%k. So we easily conclude that
10, A7]| o < jk? and

[#110-A7] S [£10rA| + 51t T1<j10<2(M + 5)? € CM(Cr)
because j[t|1;<;ij<2 € CM(C). The lemma follows. O
8. Proof of Theorem 1.5: the regularity problem for a reduced class of operators

In Theorem 8.1, we study the convergence of the solutions u; of the approximating
operators constructed in Theorem 7.6 to the solution u of the initial operator. Then
we solve the Regularity problem for smooth boundary data in Theorem 1.5, using the
bound obtained in Theorem 6.4, the convergence of trace provided by Proposition 7.5,
and of course the convergence of solutions established in Theorem 8.1. It is important
to understand that we have two convergences (one on the trace given by Proposition 7.5
and one on the solutions given by Theorem 8.1) and the uniqueness of the double limit is
only guaranteed by the uniform convergence of the traces, which is given by (6.3). That
is, we can prove the identity

1im/|Tr (Vauy)? dx—hm/ ][ |V ul? dt dx
7—0

Rée/2<t|<e

only when the assumptions of Theorem 6.4 are satisfied.
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Theorem 8.1. Let L = —div(|[t|*T'="AV) be a uniformly elliptic operator satisfying
(1.1). Let A’ be a sequence of matrices that converges pointwise to A and for which each
AJ satisfies (1.1) with the same constant as A.

If w and u; to be weak solutions in W of respectively Lu = 0 and Lju; = 0 with the
same trace, i.e. u; —u € Wy, then ||u; — ullw converges to 0.

Proof. According to Lemma 6.1, we have

lullw + llujllw < llglle (8.1)

where g is the common trace g = Tr(u) = Tr(u;) and the constant is independent of j.
Since u —u; € Wy and Lu = Lju; = 0, we have

/ AV - V(- tﬁtdf . _/ AV, -V —uj)% 0. (82
By the uniform ellipticity of matrix A’ and (8.2), we have
b=l = I 9t e
< / AV (4~ ) - Vot |t|itdf : _/ AVu- V(u )|t|flfdf :
)

dtdx

Furthermore, we apply the Cauchy-Schwarz inequality to obtain that

dtdz dtdx \1/2
— 2 J 2
Ju sl < //\v P ) //lA APV )
dtdx \1/2
=l ujlhw //w APIVUP (5 ) 83)

hence

; dtdx

2 2 2
sl <[] 10— ARV e
Q

Since A and A; are bounded by a uniform constant, the functions A7 — A|?|Vu|?|t| 1
are bounded (uniformly in j) by (2))2|Vu/|?|t|¢*1~" which is integrable on €. So by the
Lebesgue’s dominated convergence theorem,
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dtdx
Tl ul S //hmw APV s =0

since A’ converges pointwise to A. The theorem follows. 0O

Corollary 8.2. Under the hypotheses of Theorem 8.1, if ||N(VUj)||L2(Rd) S IVl wey
for all j € N, where the implicit constant is independent of j, then

”N(VU)HLQ(RL‘) S ||Vg||L2(Rd)~
Proof. Let ¢ > 0. We first notice that:
IN(Vul @)L < [N (Vuy [ 2 + [ N(V(w — uy)[Te)] 2
SVl + [[N(V(w —uj)|[¥e)lze (8.4)

by assumption. Yet, we have ||N(V(u—uj)|\lle)||2 < Ce V2||u—uj|lw — 0 by Lemma 6.2
and then Theorem 8.1. So by taking the limit as j goes to infinity, (8.4) becomes

IN(Vul®)l[L2 < Vgl L2
The corollary follows then from the monotone convergence theorem. 0O
We conclude our section with the proof of Theorem 1.5

Proof of Theorem 1.5. Pick A > 0. Let Cj (that depends only on A, d and n) be the
constant in Theorem 7.6, and then let k9 < 1 (that depends on d, n and \) be the
“kappa” value provided by Theorem 6.4 for \. We pick then & := £q/Cp.

According to Theorem 7.6, there exists a sequence of {A7};cn such that A7 — A
pointwise as j — oco. Each A7 satisfies the following conditions,

(2) VA < Cjr'/?
(b) the operator L; := — div([t|¢*1 " AIV) satisfies (H)x -

Let u; € W be the solution to Lju; with Tr(u;) = Tr(u) = g € H provided by
Lemma 6.1. Our choice of kg is small enough to have the inequality (6.3) for each u;. So
Theorem 6.4 and then Proposition 7.5 infer that

(V) < timsup / f Vw2 dsdy = |Vgl2,
R4 e/2<|s|<e

with a constant that depends only on d, n and A (in particular is independent of j). The
theorem follows now from Corollary 8.2. O
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9. Proof of Theorem 1.1

First, the solvability of the Regularity problem is stable under Carleson perturbations.
Theorem 9.1 (Theorem 2.1 in [25], Theorem 1.3 in [8]). Let
Lo = — div[|t|"™ 7" AgV] and L; = —div[[t|*T " A, V]

be two uniformly elliptic operators that satisfy (1.1) with the same constant A. Assume
that:

(1) the Regularity problem for the operator Lo is solvable in LP, that is there exists a
constant Cy such that for any g € C§° (), the solution ug to Loug = 0 constructed
as in (1.3) (or equivalently as in Lemma 6.1) verifies

HN(VM)HLPO(]Rd) < ColIVgllLro w4y (9.1)

(2) the disagreement A1 — Ag satisfies the Carleson measure condition with the constant
M -ie |A1 — Ayl € CM(M).

Then the Regularity problem for the operator Ly is solvable in LP* for some p1 > 1, more
precisely there exists p1 € (1,po] and Cy both depending only on A, d, n, pg, Co, and M,
such that for any g € C§ (), the solution uy to Lyuy = 0 constructed in (1.3) verifies

IN(Vur) || s Ry < C1l Vgl o (a)- (9.2)

Furthermore, if M > 0 is small enough (depending on A, n, py, and Cy), then we can
take p1 = po in (9.2).

The second result shows that any operator as in Theorem 1.1 can be compared to a
Carleson perturbation of an operator satisfying (#).

Proposition 9.2. Let Ly = —div[[t|4T'="BV] be such that B satisfies (1.1) and can be
written as a block matriz in the form

. Bl By
- %Bg byl

where byl is the product of the identity matriz of order n — d with a scalar function, Bo
is a d-dimensional vertical vector,® Bs is a d-dimensional horizontal vector,” and

6 Recall that t is a horizontal vector, so Bg‘:—l is a valid matrix product.
T

. T . .
7 Since tT is a vertical vector, so 0l

Bs is a (n — d) X d-matrix.
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[tV By| + [t]|[V Ba| + [t]|V Bs| + [t][Vba| € CM (r).

If k > 0 is small enough, there exists a bi-Lipschitz change of variable p from Q to Q
such that

(1) p(z) =z for any v € R? = 9Q;

(2) there exists Cy such that for any weak solution u to Lou = 0, the function uo p is
a weak solution to L,(u o p) = 0 where the operator L, satisfies (1.1) with constant
C and can be written as

L, = —div[[t|*™ (B, + C,)V]
where C, € CM (2k) and L, := — div[[t|*T1 "B, V] satisfies (H )5 /2,2
Moreover, if B is symmetric, then B, and C, are symmetric.

Remark 9.3. The assumption that « is small can actually be removed, but will make the
proof longer. The proposition is a variant of the method presented in [15], and we refer
any reader that wants to remove the condition on the smallness of x to the later article.

Proof. As we just said, the proposition is a variant of the result given in [15]. We will
try to keep it light and refer to [15] for the details that we skipped.

Step 1: Change of variables to cancel the bottom left corner of 5. We write v for the

d x n matrix function B3/bs. We define p, as

po = p(x + |t\v(m,t),t).

Observe that p, maps Q to Q and is the identity on R¢. Its Jacobian matrix is

[+ [t|Voo 0 I 0
Jac, = Co+ |tV T) 7 %v )+ OUHIVBs.al)

[l

where O(h) denotes a quantity bounded by Ch, and Bs 4 denotes the couple (Bs,bs).
We have |t||VBs.4| € CM(k), which implies |¢t||VBs4| < Ck by (1.8), and since & is
small, we deduce that Jac, is invertible and | Jac, | + | Jac,* | are bounded by 1.1\. In
addition

1 0
Jac,t = (—%v I) + O(|t||VBs3.4]) and det(Jac,) =1+ O(Jt||VB3.4]).
¢
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We define the conjugate® operator L, = — div|[|t|4"1~".A,V] where

. Rd d+1—n
A, = (dlSt(p”ﬁZ’ b, )> det(Jac,) Jac, T (B o p,) Jac, *. (9.3)

We check that dist(p,(z,t), R?) = |t| and hence

tT

s * (B o p, = (bao p)o "I
o [ [B3 0 py — (bg 0 py)v] (by 0 py)I

) + O([t]|VBs/4l)

By — (Bs)") L
= (; B2 ;413) ]lt‘ ) + O(|t||VB1,234| + |B1,234° py — B1,2,34])

because Bs — byv = 0 with our choice of v. We did not compute the upper left corner in
the matrix above to lighten the notation, but we can have By — By B3 /by. We write BY
for the matrix in the right-hand side above which has 0 in the bottom left corner, and
Cv for AV — B”. We have that

IC*| S [tIVB1,2,3,4] + |B1,2,340py — Bi234] € CM(Ck)

because |B12,34 © py — B1,2,34/(x,t) is bounded by the supremum of [t||VBi23.4| in a
Whitney region around (z, t), so satisfies Carleson estimate as long as |||V By 2,3.4| does.
The matrix BY has the form

P (Bf Bs,%)
= T =
&I 0 byl

and the Carleson bound [t||VBY, 3 ,4] € CM(Ck) is consequence of the fact that the
coefficients of BY are product, quotient, difference, and sums of coefficients of B (we
actually have [t|[VBY 5 5 4| < C[t]|VB12,34])-

Step 2: Change of variables to reduce the bottom right corner of B, to I. The strategy
is very similar to what we did in Step 1. Set h := by and define py, as

pn = p(x,th(x,t)).

As before, observe that pj, maps Q to Q and is the identity on R%. Its Jacobian matrix
is

I tv.h \ (I 0

8 By conjugate, we mean that L,(uo p,) =0 whenever Lu = 0.
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Since  is small (depending only on d, n and A), the matrix Jac, is invertible and
| Jacy, | + | Jac;, ! | are bounded by a constant that depends only on A. In this case, we
have
-1 1 0 n—d
Jac, " = (o 51 + O(Jt||Vby]) and det(Jac,) = A"~ + O([t]||[Vba]).

Note that dist(pp(z,t),R%) = |t|h(z,t). Therefore, the conjugate operator L; =
— div[[t|**17" A, V] of L, by p is such that

dist £),Rd)\ "
Ay, = < ist(pn(2,1), )) det(Jacy,) Jac, T (A, o pp) Jac,

|t

t

_(* [(BZ —B?"Zﬂ)oph]m
B (0 h(b40ph)] +0(|t||Vb4|+|Cvoph|)

_ BTt

with our choice for h. We denote the matrix in the right-hand side above as By, and Cp
is Aj, — By, The matrix By, has the desired form, and L, o := — div[[t|**17"B,V] satisfies
(H)cy.crn- By definition

ICh| < |t Vba| + |Cy 0 pi| + |Bo pr, — Bl

and the right-hand side above easily satisfies the Carleson measure condition with con-
stant Ck for the same reasons as in Step 1 (and the fact that bi-Lipschitz changes of
variable preserve the Carleson measure condition).

Conclusion. The change of variables is p := p,, o pp, which is bi-Lipschitz because p,
and pj, are bi-Lipschitz. The conjugate of L by p is Ly, and the ellipticity constant of L,
is controlled by the ellipticity constant of L (because Jacobian matrices of Jac,, Jacy,
and their inverses are bounded by constants that depends only on \). The top left corner
of B}, does not really matter, but one can check that we (can) have

5 <b4B13233 [BQB?,T]§|>
h = 0 I

so By, easily satisfies ()¢, - At last, notice that all our operations on the coefficients
preserve the symmetry of matrix coefficients, which means that Bj, and Cj, are symmetric
as long as B is symmetric. The proposition follows. O

We are now ready for the proof of our main theorem.

Proof of Theorem 1.1. We consider the elliptic operator L' = — div BV, then we con-
struct from it the change of variable from Proposition 9.2. The conjugated operator of L’
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by p is in the form L/, := —div[[t|**'~"(B, + C,)V], where L/ , := — div[|t|*T1""B,V]
satisfies (H)c,,cnx and C, € CM(Ck). Therefore, if k := (A, n) is small enough we can
apply Theorem 1.5 to say that the Regularity problem for the operator L;,o is solvable
in L2.

The operator L’p is a small Carleson perturbation of L’

p,0’
the Regularity problem for the operator L; is solvable in the same space L2. Since L'

so Theorem 9.1 gives that

and L; are the same operator up to a bi-Lipschitz change of variable, the Regularity
problem is also solvable for L’ in L?. Now, L is a small Carleson perturbation of L', so
we use Theorem 9.1 again to obtain that the Regularity problem is still solvable for L
in L?. O

10. A complement of a Lipschitz graph

The definition of cones, Whitney regions, non-tangential maximal function, and other
objects given in the introduction was adapted to the that fact that the domain R™\ R? is
the product space R? x (R"~%\ {0}). But we did so only for convenience, and equivalent
definition can be given in general spaces.

If the domain is more general €2, we define the cones in 2 with vertex in z € 9% as

[(z) = {X € Q,|X — 2| < 2dist(X, 00)}. (10.1)

We can change the ‘aperture’ of the cone by replacing the value 2 by any a > 1. The
Whitney box W (X) is defined as

W(X) == B(X, dist(X, 89)/2).

The definition of the cones and Whitney boxes given here is just example, as many
variants exist. From there, we define the averaged non-tangential maximal function as

1
Nw)w) = s | ] JJ iy
W(X)

From now on, we need a doubling measure on 912, that we call o. When 0fQ is the graph
of a Lipschitz function as in Corollary 1.2 - ¢ will simply be the d-dimensional Hausdorff
measure. The Carleson measure condition, that is the substitute of (1.7) is

feCM(M) < sup // sup |f[? dx < Mo(B(x,r) N o).

€O, r>0 W (X) dist(X, 09)
B(z,r)NQ

Moreover, we say that the Regularity problem is solvable in L? if, for any g € C§°(R4),
we have
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IN (V)| o 00,0y < ClIV o000l Lr(00,0)-

The gradient Vg is a gradient on 952, which needs to be defined. In the simple case
where 02 is the graph of a Lipschitz function, as in Corollary 1.2, Vg is simply the
classical gradient (that can be defined almost everywhere).

Proof of Corollary 1.2. We can construct a bi-Lipschitz change of variable p (with Lip-
schitz constants close to 1) such that, for any weak solution v to L,u = 0 in €, the
function u o p is a solution to L,(u o p) = 0 in R™ \ R, where the operator L, satisfies
the assumptions of Theorem 1.1. The construction of such change of variable, and the
properties of the conjugate operator L, are the main purpose of the article [7].

The fact that p is bi-Lipschitz and Theorem 1.1 entail then that

IN([Vug] © p)ll 2@y < 2IN(Vug © p)) | r2may < ClV[g © plll 12 (Ra)-

The fact that || N(v o P2 ray = H]\NT(U)HLz(p(Rd)J) is a consequence of the fact that
p change the shape the regions W(z,r), but preserves the fact that they are Whitney
regions. Similarly, p change the shape of the cones, but not the fact that they are the
union of Whitney regions for a same point at all scale - i.e. a weaker version of “cones”
variant to (10.1) - and we know from [28, Chapter II, S 2.5.1] and the various definitions
of cones does not change the LP-boundedness of the non-tangential maximal functions
N and N. The fact that p is bi-Lipschitz also infers the equivalence || V[g o p]|| L2(Rd) R
Vgllz2(a0,)- The corollary follows. O
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