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1. Introduction

There are three principal types of boundary value problems for elliptic operators with 
rough (Lp) data: Dirichlet, Neumann, and Regularity. The Dirichlet problem consists of 
establishing the existence and uniqueness of solutions with a given trace on the boundary, 
the Neumann problem corresponds to prescribing the flux, that is, the normal derivative 
on the boundary, again, in Lp. The Regularity problem postulates that the tangential 
derivative of the trace of the solution is known, once again, in some Lp space. As such, it 
can be seen as a companion of the Neumann problem in which the tangential rather than 
the normal derivative of the solution is given, or as a version of the Dirichlet problem 
corresponding to the smoother boundary data.

The Dirichlet problem has received a lot of attention in the past 30-40 years and we will 
not be able to even briefly mention all the references in the subject. Its well-posedness was 
established, in particular, for t-independent operators on all Lipschitz domains [21,22,18], 
for the Laplacian on all uniformly rectifiable sets with mild topological conditions [5,19,
2,1], which was then extended to the sharp class of the so-called Dahlberg-Kenig-Pipher 
(DKP) operators [25,12,20] and for their analogues in domains with lower-dimensional 
boundaries [7,17].

The Neumann and Regularity problems in Lp proved to be much more challenging. 
In particular, concerning the latter, up until recently the only known results pertained 
to either t-independent scenario [23] or a “small constant” DKP case [13]. The break-
through article [27] by Mourgoglou and Tolsa was the first one to consider the regularity 
problem on domains beyond Lipschitz graphs: they proved the solvability of the regu-
larity problem for the Laplacian on domains with uniformly rectifiable boundaries and 
some mild topology. Just in the past few months the first “big constant” DKP result 
was announced, by two different arguments, by Dindoš, Hofmann, Pipher [9] in the half 
plane and Lipschitz domains, and simultaneously, by Mourgoglou, Poggi, Tolsa [26] on 
domains with uniformly rectifiable boundaries.

The present paper is devoted to the setting of domains with lower dimensional bound-
aries. It establishes the solvability of the regularity problem in the complement of Rd, 
or more generally, of a Lipschitz graph, for an appropriate analogue of the “small con-
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stant” DKP coefficients. The higher co-dimensional setting presented numerous new 
challenges, particularly, due to the presence of “torsion”, the derivatives which roughly 
speaking turn the solution around a thin boundary which are not present in the tradi-
tional (n −1)-dimensional case. Respectively, we had to invent new structural properties 
of the operators which on one hand, are amenable to the analysis in desired geometric 
scenarios, and on the other, still allow for a control of the second derivatives of a solution 
in a square function. All this will be discussed in detail below.

Let us also mention that in the setting of the domains with lower dimensional bound-
aries we are bound to work with degenerate elliptic operators, whose coefficients grow 
as powers of the distance to the boundary. This provides a curious new motivation 
point. Our operators, as explained below, essentially look like −div dist(·, ∂Ω)β∇ with 
a suitable power β depending on the dimension of the set and of the boundary. This is 
reminiscent of the Caffarelli-Silvestre extension operator which allows one to view the 
fractional Laplacian (−Δ)γ , γ ∈ (0, 1), on Rd as a Dirichlet-to-Neumann map for the 
operator −div dist(·, Rd)β∇ on Rd+1, where β = 1 − 2γ (see [3] and also an extension 
to higher powers by A. Chang and co-authors in [4]). Respectively, the mapping proper-
ties of the Dirichlet-to-Neumann map become the mapping properties of the fractional 
Laplacian. By the same token, one could view the Dirichlet-to-Neumann map of our 
operators as an embodiment of a new concept of differentiation or integration on rough 
lower-dimensional sets, and in this vein the appropriate estimates correspond exactly to 
the solution of the Regularity and Neumann problems. This paper is the first step in the 
direction.

Let us now turn to definitions and statements of the main results. Let 0 < d < n be 
two integers. If d = n − 1, the domain Ω is the half-space Rn

+ := {(x, t) ∈ Rd × (0, ∞)}
and if d < n − 1, then Ω := Rn \ Rd := {(x, t) ∈ Rd × (Rn−d \ {0})}. In the rest of the 
article, t will be seen as a horizontal vector, and thence tT will correspond to the vertical 
vector. It is technically simpler and more transparent to work in Rn

+ and Rn \Rd rather 
than a more general graph domain, but the goal is to treat the class of coefficients which 
would automatically cover the setting of Lipschitz domains via a change of variables – 
see Corollary 1.2.

We take an operator L := −div|t|d+1−nA∇ and the first condition that we impose is 
of course the ellipticity and boundedness of A: there exists λ > 0 such that for ξ, ζ ∈ Rn, 
and (x, t) ∈ Ω,

λ|ξ|2 ≤ A(x, t)ξ · ξ and |A(x, t)ξ · ζ| ≤ λ−1|ξ||ζ|. (1.1)

We write (1.1)λ when we want to refer to the constant in (1.1). Then, we say that 
u ∈ W 1,2

loc (Ω) is a weak solution to Lu = 0 if for any ϕ ∈ C∞
0 (Ω), we have

¨

Ω

A∇u · ∇ϕ
dt

|t|n−d−1 dx = 0. (1.2)
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When d = n − 1 these are the classical elliptic operators and when d < n − 1 the 
weight given by the power of distance to the boundary is necessary and natural: if the 
coefficients are not degenerate, the solutions do not see the lower dimensional sets. For 
instance, a harmonic function in Rn \ Rd is the same as a harmonic function in Rn for 
sufficiently small d. All this is discussed in detail in [6] where we develop the elliptic theory 
for the operators at hand. In particular, in the aforementioned work we construct the 
elliptic measure ωX

L associated to L so that for any continuous and compactly supported 
boundary data g, the function

u(X) :=
ˆ

Rd

g(y) dωX(y) (1.3)

is a weak solution to Lu = 0, which continuously extends to Ω by taking the values u = g

on ∂Ω = Rd.
With this at hand, we turn to the definition of the Regularity problem. The averaged 

non-tangential maximal function Ñ is defined for any function u ∈ L2
loc(Ω) as

Ñ(u)(x) = sup
(z,r)∈Γ(x)

uW (z, r), (1.4)

where Γ(x) is the cone {(z, r) ∈ Rd+1
+ , |z − x| < r},1 and uW (z, r) is the L2-average

uW (z, r) :=
( ¨

−−
W (z,r)

|u(y, s)|2dy ds

) 1
2

,

over the Whitney box

W (z, r) := {(y, s) ∈ Ω, |y − z| < r/2, r/2 ≤ |s| ≤ 2r}. (1.5)

Observe that when d < n − 1, a Whitney cube is a bounded, annular region, so in 
particular, the higher co-dimensional Whitney cubes W (z, r) are invariant under rotation 
around the boundary. We say that the Regularity problem is solvable in Lp if for any 
g ∈ C∞

0 (Rd), the solution given by (1.3) verifies

‖Ñ(∇u)‖Lp(Rd) ≤ C‖∇g‖Lp(Rd) (1.6)

with a constant C > 0 that is independent of g. If the Regularity problem is solvable in 
Lp, then we deduce by density that for any g ∈ L1

loc(Rd) such that ‖∇g‖Lp(Rd) < ∞, 
there exists a solution to Lu = 0 subject to (1.6) which converges non-tangentially to g. 

1 In this paper, the cones will have aperture 1. By a simple dilatation argument in x, the result is also 
true when the cones are Γa(x) := {(z, r) ∈ Rd+1

+ , |z − x| < ar}, but we decided to remove this parameter 
a to lighten the notation.
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The proof of this fact is non-trivial, but classical. See for instance Theorem 3.2 of [23] for 
the proof of the non-tangential convergence from the bound (1.6), and since the space 
{g ∈ L1

loc(Rd), ‖∇g‖Lp(Rd) < ∞} is homogeneous and only equipped of a semi-norm, we 
need density results analogous to Lemma 5.7, Remark 5.10, Lemma 5.11 in [6].

Going further, we say that a function f satisfies the Carleson measure condition if 
supW (z,s) |f |2 dsdz

s is a Carleson measure on Ω, that is, there exists a constant M ≥ 0
such that

sup
x∈Rd,r>0

−
ˆ

z∈B(x,r)

rˆ

0

sup
W (z,s)

|f |2 dsdz

s
≤ M. (1.7)

We write f ∈ CM , or f ∈ CM(M) when we want to refer to the constant in (1.7). It is 
fairly easy to check that f ∈ L∞(Ω), and we even have

‖f‖L∞(Ω) ≤ CM1/2 whenever f ∈ CM(M), (1.8)

with a constant that depends only on d and n.
The main result of the present paper is as follows.

Theorem 1.1. Let 0 ≤ d < n be two integers. For any λ > 0, there exists a small 
parameter κ > 0 and a large constant C, both depending only on λ, d, and n, with the 
following property. Consider an elliptic operator L := − div[|t|d+1−nA∇] that satisfies 
(1.1)λ and such that A can be decomposed as A = B + C, B is a block matrix

B =
(

B1 B2
t

|t|
tT

|t| B3 b4I

)
, (1.9)

where B1, B2, B3, and b4 are respectively a d ×d matrix, a d-dimensional vertical vector,2
a d-dimensional horizontal vector,3 a scalar function, and

|t||∇B1| + |t||∇B2| + |t||∇B3| + |t||∇b4| + |C| ∈ CM(κ). (1.10)

Then the Regularity problem is solvable in L2(Rd), that is

‖Ñ(∇ug)‖L2(Rd) ≤ C‖∇g‖L2(Rd) (1.11)

whenever g ∈ C∞
0 (Rd) and ug is a solution to Lu = 0 given by in (1.3).

2 Since t is a horizontal vector, B2
t

|t| is seen as a matrix product giving a d × (n − d) matrix.
3 That is tT

|t| B3 is a (n − d) × d matrix.
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Note that when d = n − 1 our result corresponds to the main result in [13] by Dindoš, 
Pipher, and Rule. In this case, the coefficients of B satisfy the so-called Dahlberg-Kenig-
Pipher (DKP) condition with a small constant and the addition of C is made possible 
by the perturbation results [24,8]. The DKP condition is sharp, that is, its failure could 
result in the failure of solvability of the Dirichlet problem [16] and hence, a failure of 
solvability of the Regularity problem by [16].

In the setting of the domains with lower dimensional boundaries the special structure 
(1.9) is new. It is dictated by the aforementioned need to control the “torsion” of the 
coefficients, that is, not only to control the oscillations of the coefficients in the transversal 
direction to the boundary, but also to make sure that they are well-behaved, in a very 
peculiar sense, in the angular coordinate in cylindrical coordinates naturally induced 
by Rn \ Rd. Roughly speaking, we want to have an almost isometry to some constant 
coefficient matrix as far as the t direction is concerned.

One good test for whether our class of coefficients is sound structure-wise is whether 
it allows for a change of variables that would yield the results on rougher, e.g., Lipschitz, 
domains. After all, this was an initial motivation for the DKP Carleson conditions on 
the coefficients in half-space back when Dahlberg suggested them. To this end, consider 
d < n − 1 and take a Lipschitz function ϕ : Rd �→ Rn−d. Let Ωϕ := {(x, t) ∈ Rn, t 
=
ϕ(x)}. We set σ := Hd|∂Ωϕ

to be the d-dimensional Hausdorff measure on the graph of 
ϕ, which is the boundary of Ωϕ, and we construct the “smooth distance”

Dϕ(X) :=

⎛⎜⎝ ˆ

∂Ωϕ

|X − y|−d−α dσ(y)

⎞⎟⎠
− 1

α

, α > 0.

The quantity Dϕ(X) is equivalent to dist(X, ∂Ωϕ), see Lemma 5.1 in [7], so the operator 
Lϕ := − div[Dd+1−n

ϕ ∇] falls under the elliptic theory developed in [6]. Moreover, it 
was proved that the Dirichlet problem for such an operator Lϕ is solvable in Lp in a 
complement of a small Lipschitz graph [17] and much more generally, in a complement 
of a uniformly rectifiable set [10,14]. It is also explained in the aforementioned works 
why Dϕ as opposed to the Euclidean distance has to be used in this context. Using 
the results from [17], one can prove solvability of the Dirichlet problem in L2. Here we 
establish solvability of Regularity problem.

Corollary 1.2. Let ϕ : Rd → Rn−d be a Lipschitz function, and set Ωϕ and Lϕ as above. 
There exists κ > 0 such that if ‖∇ϕ‖L∞(Rd) ≤ κ, then the Regularity problem is solvable 
in L2(∂Ωϕ).

The reader can consult Section 10 for the proof and the detailed definitions.
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1.1. Remarks on the proof of Theorem 1.1

At this point let us return to the Main result, Theorem 1.1, and discuss some highlights 
of the proof along with the particular challenges of the higher co-dimensional setting.

Similarly to the strategy used in codimension 1, we want to prove that for any g

smooth enough and ug constructed as in (1.3), we have

‖S(∇ug)‖L2(Rd) ≤ C‖g‖L2(Rd) + Cκ‖Ñ(∇ug)‖L2(Rd) (1.12)

and

‖Ñ(∇ug)‖L2(Rd) ≤ C‖S(∇ug)‖L2(Rd), (1.13)

for some C > 0. Here, S is a square function that will be defined in (1.19) below. We 
can see that when κ is small the two estimates above would formally imply the bound 
(1.11). They are the crux of the matter and the core of the argument. However, even 
in this passage there are considerable additional difficulties. Nothing guarantees that 
‖Ñ(∇u)‖L2(Rd) is finite, and if we do not know a priori whether ‖Ñ(∇u)‖L2(Rd) is 
finite, we cannot use (1.12)–(1.13) to deduce that ‖Ñ(∇u)‖L2(Rd) ≤ C‖g‖L2(Rd). For 
that reason we cannot simply concentrate on (1.12)–(1.13), but rather have to prove 
local versions of those estimates, where all the terms are guaranteed to be finite, and we 
then carefully take a limit to directly establish

‖Ñ(∇u)‖L2(Rd) ≤ C‖∇g‖L2(Rd) < +∞. (1.14)

Unfortunately, taking the limit is already far from trivial, because the term ‖∇g‖2 is 
obtained roughly by taking the limit of ‖∇u(x, ε)‖2, and to ensure convergence, we had to 
assume that ‖∇A‖∞ < +∞ as in [23], and then obtain (1.14) for all A by interchanging 
two limits. In the classical case of codimension 1, the situation is considerably easier 
because more tools are available to us (for instance layer potential representations).

However, the principal concern is about the estimates on the quantity S(∇u), defined 
in (1.19). Clearly, it involves two derivatives, and in principle we do not have enough 
regularity of the coefficients (C is not necessarily continuous) to be able to directly bound 
the second derivatives of the solution, not to mention the actual refined estimates that 
we are targeting. This led us to a separate paper devoted to the Carleson perturbation 
theory for the Regularity problem [8] (cf. [24] when d = n − 1). However, even with that 
and even for A = B we could not follow the route paved for d = n − 1 in [13]. We finally 
realized that these arguments are not well adapted to the cylindrical structure of our 
space and the additional, quite involved, structural considerations are necessary. Let us 
try to give some ideas here.
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1.1.1. Cylindrical coordinate derivatives
As we mentioned, we shall use S(∇u) as an intermediate quantity in our computations, 

and so we will need to estimate second derivatives. However, taking the second derivatives 
in the cartesian system of coordinates will not be adapted to our context, and we prefer 
to consider “cylindrical derivatives” defined below.

We notice that there are three difference types of directions. One is the tangen-
tial direction, which goes alone the boundary Rd × {t = 0}. The second one is the 
angular direction, which rotates around the boundary, and the last one is the radial 
direction that moves away from the boundary. We write ∇x = (∂1, ∂2, ..., ∂d) and 
∇t = (∂d+1, ∂d+2, ..., ∂n), where ∂i = �ei · ∇ and �ei ∈ Rn denotes the vector with a 
1 in the i-th coordinate and 0’s elsewhere.

Definition 1.3. The radial directional derivative ∂r is defined as:

∂r :=
n∑

α=d+1

tα

|t|∂α. (1.15)

For each d + 1 ≤ i, j ≤ n, the directional derivative ∂ϕij
is defined as:

∂ϕij
:= − ti

|t|∂j + tj

|t|∂i. (1.16)

The important property of ∂ϕ is that

∂ϕ|t| = 0 (1.17)

To lighten the notation, we write ∂ϕ for any angular directional derivative. We will 
mention i, j explicitly when it is necessary. Furthermore we define the angular gradi-
ent ∇ϕ as a vector derivative whose components are all angular directional derivatives 
(∂ϕij

)d+1≤i,j≤n and

|∇ϕu|2 = 1
2

n∑
i,j=d+1

|∂ϕij
u|2.

Note that ∂ϕii
= 0 for all d +1 ≤ i ≤ n and ∂ϕij

= −∂ϕij
for all d +1 ≤ i, j ≤ n. Also, 

we can easily check that the tangential, angular, and radial directions are perpendicular 
to each other. More importantly, for any u ∈ W 1,2

loc , we have the identity that |∇tu|2 =
|∂ru|2 + |∇ϕu|2 almost everywhere (see Proposition 2.1). Consequently, it suffices to 
establish estimates for the average non-tangential maximal functions of ∇x, ∇ϕ and ∂r. 
In the rest of the article, we will write

∇ = (∇x, ∇ϕ, ∂r). (1.18)
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One of the main reasons for using the cylindrical coordinate system is that the opera-
tor L = − div[|t|d+1−nA∇] can be written in terms of ∂x, ∂ϕ, and ∂r (see Proposition 2.3) 
when the coefficient matrix A is in the form of (1.24). The expression (2.1) not only sim-
plifies the computations, but also helps us to better understand the geometric structure 
of the operator L.

Remark 1.4. The notation ∂r, ∂ϕ, ... might be confusing at first, as these are not deriva-
tives in a new system of coordinates. We will not use a change of variable to turn our 
system of coordinates from a cartesian to a cylindrical one. Instead, ∂r and ∂ϕ denote 
linear combinations of derivatives in cartesian coordinates, or derivatives along some 
curves (i.e., r and ϕ are not “new variables”). They are used for properly grouping the 
derivatives. In particular, we do not need to properly define a bijection (x, t) �→ (x, r, ϕ)
or its Jacobian.

1.1.2. Commutators
The common point between ∂x and ∂ϕ is that they both cancel out the weight |t|d+1−n, 

so they will be handled in a similar manner by commuting them with the operator L; 
the estimates on the last derivative ∂r will then be obtained by using the equation 
(Proposition 2.3). The difference between the two differential operators ∂x and ∂ϕ is 
that ∂x commute with ∇ and ∇, and ∂ϕ do not commute with the radial and other 
angular derivatives, but fortunately, everything will work out at the end because the 
commutators have zero average on W (z, r). The computations pertaining to commutators 
are performed in Section 2, for instance Proposition 2.4 gives that

[∂r, ∂ϕ] := ∂r∂ϕ − ∂ϕ∂r = −∂ϕ

|t| .

1.1.3. Local bounds
We want to prove local versions of (1.12)–(1.13). Before introducing the notation, let 

us mention that a weak solution is in W 2,2
loc whenever ∇A ∈ L∞

loc, this is a well known 
fact which we proved again in Proposition 7.1.

We have already defined the non-tangential maximal function in (1.4), and the square 
function of v ∈ W 1,2

loc (Ω) is defined as:

S(v)(x) :=
(¨

Γ̂(x)

|∇v(y, s)|2 dyds

|s|n−2

) 1
2

, (1.19)

where

Γ̂(x) = {(y, s) ∈ Rn \ Rd : |y − x| ≤ |s|}

is a higher-codimension cone with vertex x ∈ Rd. We write
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S(∇u)2 :=
d∑

i=1
S(∂xi

u)2 +
∑

d<i,j≤n

S(∂ϕij
u)2 + S(∂ru)2, (1.20)

and the square functions of ∇xu and ∇ϕu are defined in a similar manner.
For a function 0 ≤ Ψ ≤ 1, the definitions of the localized square functions and the 

non-tangential maximal functions are

S(v|Ψ)(x) :=
(¨

Γ̂(x)

|∇v|2Ψ dsdy

|s|n−d

)1/2

(1.21)

and

Ñ(v|Ψ)(x) = sup
(z,r)∈Γ(x)

(v|Ψ)W,a(z, r)

where (v|Ψ)W is defined on Rd+1
+ by

(v|Ψ)W (z, r) :=
(

1
|W (z, r)|

¨

W (z,r)

|v|2Ψdyds

)1/2

.

“Good” cut-off functions will satisfy the following hypothesis.

Hypothesis (COF). We say that a function Ψ satisfies (COF) if Ψ is a cut-off function, 
that is if Ψ ∈ C∞(Ω), 0 ≤ Ψ ≤ 1, Ψ is radial - i.e. there exists ψ ∈ C∞(Rd+1

+ ) such that 
Ψ(x, t) = ψ(x, |t|) - and we have the bound

|t||∇Ψ| ≤ K and 1supp ∇Ψ ∈ CM(K).

We write (COF)K when we want to refer to a constant for which |t|∇Ψ| ≤ K and 
1supp ∇Ψ ∈ CM(K), and K will always be chosen ≥ 1.

We show that if Ψ is a “good” cut-off function, then for any weak solution u ∈ W 2,2
loc (Ω)

to the equation Lu = 0, we have

‖S(∇u|Ψ)‖2
2 ≤ C1κ‖Ñ(∇u|Ψ)‖2

2 + ‖ TrΨ(∇xu)‖2
2 + “error terms”,

where TrΨ(∇xu) is an approximation of trace of ∇xu that depends on how far is supp Ψ
to ∂Ω. The precise statement can be found in Lemma 5.5. In addition, for a reduced 
class of “good” cut-off function we will obtain the local N ≤ S

‖Ñ(∇u|Ψ3)‖2
2 � ‖S(∇u|Ψ)‖2

2 + “error terms”,
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where an exact estimate is given in Lemma 4.6. The “error terms” that we mentioned 
above go to zero once we extend local estimates to global ones. The careful definitions 
of the “good” cutoffs, a delicate splitting of the derivatives, and an enhanced structure 
of the operator are all important for the algebra of the computations. Afterwards, when 
κ is small, by taking Ψ ↑ 1, we are able to obtain the estimate

‖Ñ(∇u)‖2 � lim
ε→0

‖ Trε(∇xu)‖2 (1.22)

whenever u is an energy solution (see Theorem 6.4). Finally, with this at hand, two 
natural questions now arise. Does the limit limε ‖ Trε(∇xug)‖2 exists and does it converge 
to ‖∇g‖2?

1.1.4. Approximation results
We want to follow the strategy that Kenig and Pipher used in [23]. The idea is to 

construct a sequence of coefficients {Aj}j∈N such that Aj ≡ A on {|t| > 1/j} and 
Aj is Lipschitz up to the boundary. In particular Aj converges pointwise to A, which 
guarantees the convergence of the solution uj

g to ug (see Theorem 8.1). Meanwhile, since 
Aj is continuous up to the boundary, ‖ Trε(∇xuj

g)‖2 converges indeed to ‖∇g‖2 because 
∇xuj is continuous/smooth up to the boundary. We can swap the two limits (in ε and 
in j), because (1.22) entails a uniform convergence of the traces in j.

However, the construction of the Aj used by Kenig and Pipher does not immediately 
transfer to our higher codimensional setting. In addition, we only succeeded to obtain 
global bounds on ∇∇xu (and not on all the second derivatives, like we could do in 
the codimension 1 setting), and this forced us to prove Theorem 6.4 before doing the 
approximation. For that reason, even if we globally follow the spirit of Kenig and Pipher’s 
method, we cannot say that our argument is a simple adaptation of [23].

1.1.5. Self-improvement
All the arguments that we presented will allow us to prove the L2-solvability of the 

Regularity problem for a reduced class of operators, and then we will “self improve” it 
to Theorem 1.1. The reduced class of operators on which most of intermediate results 
will be written is given as follows.

Hypothesis (H). We say that the operator L := − div(|t|d+1−nA∇) satisfies the assump-
tion (H) if

• L is uniformly elliptic, that is there exists λ ∈ (0, 1) such that

λ|ξ|2 ≤ A(x, t)ξ ·ξ and |A(x, t)ξ ·ζ| ≤ λ−1|ξ||ζ| for (x, t) ∈ Ω, ξ, ζ ∈ Rn; (1.23)
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• the matrix A can be written as

A(x, t) =
(

A1(x, t) A2(x, t) t
|t|

0 Id(n−d)×(n−d)

)
, (1.24)

where A1 is a d × d-matrix function, and A2 is vertical vector of length d4;
• There exists κ > 0 such that

|t||∇A1| + |t||∇A2| ∈ CM(κ). (1.25)

We write (H)λ,κ when we want to refer to the constants in (1.23), and (1.25). The 
constant κ will ultimately be small.

Keep in mind that we consider the operators satisfying (H) at first, partially because 
some of our intermediate results can not be stated with the assumptions from Theo-
rem 1.1 (for instance we need u ∈ W 2,2

loc for Lemma 5.9, and so cannot consider Carleson 
perturbation C for this result), but also because we want to simplify the proofs (for in-
stance, our proofs would work with A in the form (1.9) instead of (1.24), but many extra 
computations would be needed in Sections 3 and 5). That is, we sacrificed the optimality 
of the intermediate results in order to shorten our proof.

We prove in Section 8 the following result, which seems at first glance weaker than 
Theorem 1.1.

Theorem 1.5. Take λ, M > 0. There exists κ ∈ (0, 1) small enough (depending only on λ, 
d, and n) such that if L := − div(|t|d+1−nA∇) is an elliptic operator satisfying (H)λ,κ, 
then for any boundary data g ∈ C∞

0 (Rd), the solution u to Lu = 0 constructed as in 
(1.3) or equivalently by using Lax-Milgram theorem (see Lemma 6.1) verifies

‖Ñ(∇u)‖L2(Rd) ≤ C‖∇g‖L2(Rd), (1.26)

where C > 0 depends only on λ, d, and n.

Then, using the theory of Carleson perturbations for the Regularity problem [8,24]
we improve the above result in Section 9 and we get Theorem 1.1, as desired.

2. Equation in cylindrical coordinates

In Subsection 1.1.1, we introduced a set of directional derivatives adapted to the cylin-
drical structure of Ω (when d < n − 1). The gradient ∇ = (∇x, ∇ϕ, ∂r) in cylindrical 
coordinate has a norm equivalent to the one of the classical gradient (see Proposition 2.1), 
which makes ∇ equivalent to ∇ for estimates on first order derivatives. We compute the 

4 That is, A2(x, t) t
|t| is a matrix operation which gives a d × (n − d) matrix.
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expression of our elliptic operator in the cylindrical system of derivatives (see Proposi-
tion 2.3).

For the second order derivatives in cylindrical coordinates, we will need to know the 
commutators between ∇x, ∇ϕ, and ∂r, which we compute in Proposition 2.4 and Propo-
sition 2.6. We observe that the non trivial commutators will always involve the angular 
derivative ∇ϕ. In order to deal with them, we shall crucially rely on Proposition 2.7, 
which uses the fact that the angular directional derivative ∂ϕu(x, rθ) has zero mean 
on the unit sphere for almost every (x, r) ∈ Rd+1

+ . From there, we will be able to use 
the Poincaré inequality and recover second order derivatives (that will eventually be 
controlled).

Recall that, as mentioned in Remark 1.4, r and ϕ are not “new variables in a cylindrical 
system”, and ∂r and ∂ϕij

are just a linear combination of Euclidean derivatives.

Proposition 2.1. Let ∂ϕij
and ∂r be directional derivatives defined in Definition 1.3, and 

let ∇u be the cylindrical gradient defined in (1.18). We have

∇u · ∇v = ∇xu · ∇xv + (∂ru)(∂rv) + 1
2

n∑
i,j=d+1

(∂ϕij
u)(∂ϕij

v) = ∇u · ∇v

whenever it makes sense (for instance for u ∈ W 1,2
loc (Ω) and almost every (x, t) ∈ Ω). In 

particular, we have |∇u|2 = |∇u|2.

Proof. We just need to prove

∇tu · ∇tv :=
n∑

α=d+1

(∂tα
u)(∂tα

v) = (∂ru)(∂rv) + 1
2

n∑
i,j=d+1

(∂ϕij
u)(∂ϕij

v).

According to the definition of ∂ϕij
in (1.16), we have

n∑
i,j=d+1

(∂ϕij
u)(∂ϕij

v) =
n∑

i,j=d+1

{ t2
i

|t|2 (∂tj
u)(∂tj

v) − 2 titj

|t|2 (∂ti
u)(∂tj

v) +
t2
j

|t|2 (∂ti
u)(∂ti

v)
}

.

The first term on the righthand side equals ∇tu · ∇tv since 
∑n

i=d+1 t2
i /|t|2 = 1. For the 

same reason, the last term is also ∇tu · ∇tv. We can factorize the second term of the 
righthand side into the product of a sum in i and a sum in j, and we easily observe 
from the definition (1.15) that the middle term is indeed −2(∂ru)(∂rv). The proposition 
follows. �

The second proposition establishes an integration by parts for the angular and radial 
derivatives.

Proposition 2.2. Let u, v ∈ C∞(Rn) be such that either u or v is compactly supported in 
Ω. We have the identities
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¨

Ω

(∂ru) v |t|d+1−n dt dx = −
¨

Ω

u (∂rv) |t|d+1−n dt dx

and ¨

Ω

(∂ϕu) v |t|d+1−n dt dx = −
¨

Ω

u (∂ϕv) |t|d+1−n dt dx

where ∂ϕ stands for any of the ∂ϕij
, d + 1 ≤ i, j ≤ n.

Proof. If one writes the integrals in cylindrical coordinates, the integration by parts for 
∂r is immediate once you notice that we imposed the boundary condition uv = 0 when 
r = 0.

The second identity is also expected, but let us write is formally. Take d +1 ≤ i, j ≤ n

and we have by definition of ∂ϕij
that

I :=
¨

Ω

(∂ϕij
u) v |t|d+1−n dt dx =

¨

Ω

v
[
(∂iu) tj |t|d−n − (∂ju) ti|t|d−n

]
dt dx

We use the integration by part to remove ∂i and ∂j from u, and we get

I = −
¨

Ω

u(∂ϕij
v) |t|d+1−n dt dx −

¨

Ω

uv
[

∂i(tj |t|d−n) − ∂j(ti|t|d−n)
]

dt dx.

It is easy to check that ∂i(tj |t|d−n) − ∂j(ti|t|d−n) = 0 in Ω, thus the proposition fol-
lows. �

The following proposition rearranges the derivatives, in order to use ∂r and ∂ϕ instead 
of the t-derivatives in the expression of L.

Proposition 2.3. Let L = − div(|t|d+1−nA∇) be such that

A(x, t) =
(

A1(x, t) A2(x, t) t
|t|

tT

|t| A3(x, t) b(x, t)Id(n−d)×(n−d)

)
,

where t ∈ Rn−d is seen as a d-dimensional horizontal vector, and where A1, A2, A3, 
and b are respectively a d × d matrix, a d-dimensional vertical vector, a d-dimensional 
horizontal vector, and a scalar function.

Then:

L = −|t|d+1−n
[

divx(A1∇x) + divx(A2∂r) + ∂r(A3∇x) + ∂r(b∂r) + 1
2

n∑
i,j=d+1

∂ϕij
(b∂ϕij

)
]
.

In particular, if L satisfies (H), then
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L = −|t|d+1−n
[

divx(A1∇x) + divx(A2∂r) + ∂2
r + 1

2

n∑
i,j=d+1

∂2
ϕij

]
. (2.1)

Proof. We first decompose as

L = − divx(|t|d+1−nA1∇x) − divx(|t|d−n−1A2
t

|t|∇t) − divt(|t|d−n−1 tT

|t| A3∇x)

− divt(|t|d+1−nb∇t) =: L1 + L2 + L3 + L4. (2.2)

Since the weight |t|d+1−n is independent of x, one has L1 = −|t|d+1−n divx(A1∇x) and 
L2 = −|t|d+1−n divx(A2

t
|t| ∇t) = −|t|d+1−n divx(A2∂r), since by definition ∂r is t

|t| ∇t.
Recall that A3 is a horizontal vector and ∇x is a vertical vector differential operator, 

so A3∇x is a scalar (differential operator). In conclusion,

L3 = − divt(|t|d−ntT )A3∇x − |t|d−n−1 t

|t| · ∇t(A3∇x) = 0 − |t|d−n−1∂r(A3∇x).

At this point, it remains to treat L4. The integration by parts entails that, for u, v ∈
C∞

0 (Ω),
¨

Ω

(L4u)v dt dx =
¨

Ω

b∇tu · ∇tv |t|d+1−n dt dx

=
¨

Ω

b(∂ru)(∂rv) |t|d+1−n dt dx

+ 1
2

n∑
i,j=d+1

¨

Ω

b(∂ϕij
u)(∂ϕij

v) |t|d+1−n dt dx

by Proposition 2.1. Using the integration by part for ∂r and ∂ϕij
given by Proposition 2.2, 

we deduce
¨

Ω

(L4u)v dt dx = −
¨

Ω

∂r(b∂ru) v |t|d+1−n dt dx

− 1
2

n∑
i,j=d+1

¨

Ω

b∂ϕij
(b∂ϕij

u)v |t|d+1−n dt dx

Since the above equality is true for all u, v ∈ C∞
0 (Ω), we conclude

L4 = −|t|d+1−n
[
∂r(b∂r) + 1

2

n∑
i,j=d+1

∂ϕij
(b∂ϕij

)
]
.

The proposition follows. �
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In the next results, we want to compute commutators. We immediately have that 
[∂x, ∂r] = 0 and [∂x, ∂ϕ] = 0. The normal derivative ∂r and the angular directional 
derivative ∂ϕ do not commute, therefore we want to compute their commutator.

Proposition 2.4. Let ∂ϕ and ∂r be the derivatives defined in Definition 1.3. Then we have

[∂r, ∂ϕ] := ∂r∂ϕ − ∂ϕ∂r = −∂ϕ

|t| .

Proof. Fix a angular directional derivative ∂ϕij
. We use the expressions of ∂ϕij

and ∂r

given in Definition 1.3 to write

∂r∂ϕij
=

n∑
α=d+1

tα

|t|∂α∂ϕij
=

n∑
α=d+1

tα

|t|
[
∂ϕij

∂α − ∂α

( ti

|t|
)

∂j + ∂α

( tj

|t|
)

∂i

]

=
n∑

α=d+1

[
∂ϕij

( tα

|t|∂α

)
− ∂ϕij

( tα

|t|
)

∂α − tα

|t|∂α

( ti

|t|
)

∂j + tα

|t|∂α

( tj

|t|
)

∂i

]
. (2.3)

We notice that the first term on the last line of (2.3) is exactly ∂ϕij
∂r after summing 

over all d + 1 ≤ α ≤ n. The third and forth terms of (2.3) are similar, and are both zero. 
Indeed,

−
n∑

α=d+1

tα

|t|∂α

( ti

|t|
)

∂j = −
n∑

α=d+1

tα

|t|
(δiα

|t| − titα

|t|3
)

∂j = − ti

|t|∂j + ti

|t|

n∑
α=d+1

tα

|t|2 ∂j = 0.

The second term on the last line of (2.3) can be handled as follows:

−
n∑

α=d+1

∂ϕij

( tα

|t|
)

∂α = −
n∑

α=d+1

[
− ti

|t|∂j

( tα

|t|
)

+ tj

|t|∂i

( tα

|t|
)]

∂α

=
n∑

α=d+1

[ ti

|t|
(δjα

|t| − tjtα

|t|3
)

− tj

|t|
(δiα

|t| − titα

|t|3
)]

∂α = ti

|t|2 ∂j − tj

|t|2 ∂i = −
∂ϕij

|t| . (2.4)

By combining our observations all together, the proposition follows. �
Different angular derivatives do not commute either, and we give their commutator 

below.

Proposition 2.5. We trivially have [∂ϕij
, ∂ϕαβ

] = 0 when i, j, α, β are all different. If i, j, k
are all different, we have

[∂ϕij
, ∂ϕik

] = −[∂ϕji
, ∂ϕik

] = 1
∂ϕjk

.
|t|
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Proof. The identity [∂ϕij
, ∂ϕik

] = −[∂ϕji
, ∂ϕik

] comes from the fact that ∂ϕij
= −∂ϕji

. 
For the second identity, we brutally compute. We use the definitions of the angular 
derivatives, and develop the expressions to obtain 8 terms that we pair as follows:

[∂ϕij
, ∂ϕik

] =
[

ti

|t|∂j

( ti

|t|∂k

)
− ti

|t|∂k

( ti

|t|∂j

)]
−
[

ti

|t|∂j

( tk

|t|∂i

)
− tk

|t|∂i

( ti

|t|∂j

)]
−
[

tj

|t|∂i

( ti

|t|∂k

)
− ti

|t|∂k

( tj

|t|∂i

)]
+
[

tj

|t|∂i

( tk

|t|∂i

)
− tk

|t|∂i

( tj

|t|∂i

)]
:= T1 + T2 + T3 + T4.

By using the product rule for every term and the fact that i, j, k are pairwise different, 
we easily get that T1 = T4 = 0 and

T2 = tk

|t|2 ∂j and T3 = − tj

|t|2 ∂k.

We conclude that

[∂ϕij
, ∂ϕik

] = − tj

|t|2 ∂k + tk

|t|2 ∂j = 1
|t|∂ϕjk

as desired. �
Now it is time to compute the commutator [L, ∂ϕ], which is a crucial step for es-

tablishing local bounds between the square functions and the non-tangential maximal 
functions. We will explain more when we start building up these estimates. We compute 
the commutator when L satisfies (H); we could compute the commutator for general 
elliptic operator L, but we do not need it, so we spare ourselves the extra complications.

Proposition 2.6. Let A be a n ×n matrix in the form of (1.24), then for any v ∈ W 2,2
loc (Ω)

[L, ∂ϕ](v) = |t|d−n
[

divx(A2∂ϕ) + 2∂r∂ϕv
]

+ divx(|t|d+1−n(∂ϕA)∇v).

Here we identity ∂ϕA with its non-trivial submatrix, that is the first d rows.

Proof. Fix an angular directional derivative ∂ϕ. We rearrange the derivatives to avoid 
using any t-derivatives, and Proposition 2.3 entails that

L = −|t|d+1−n
[

divx(A1∇x) + divx(A2∂r) + ∂2
r + 1

2

n∑
i,j=d+1

∂2
ϕij

]
=: L1 + L2 + L3 + L4.

We note that [L, ∂ϕ] =
∑4

α=1[Lα, ∂ϕ]. So we will compute each [Lα, ∂ϕ] individually. 
Let us start from the easiest one [L1, ∂ϕ]. Since ∇x and ∂ϕ commute and ∂ϕ|t| = 0, we 
have
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[L1, ∂ϕ] = divx(|t|d+1−n(∂ϕA1)∇x). (2.5)

We turn to the operator L2. By product rule, one has

L2∂ϕ = − divx(|t|d+1−nA2∂r∂ϕ) = − divx(|t|d+1−nA2∂ϕ∂r) − divx(|t|d+1−nA2[∂r, ∂ϕ])

= − divx(|t|d+1−n∂ϕ(A2∂r)) + divx(|t|d+1−n(∂ϕA2)∂r) + |t|d−n divx(A2∂ϕ), (2.6)

where we used Proposition 2.4 to compute the commutator. The first term on the last 
line of (2.6) is exactly ∂ϕL2 because ∂ϕ|t|d+1−n ≡ 0 and ∂x and ∂ϕ commute. Thus, (2.6)
becomes

[L2, ∂ϕ] = divx(|t|d+1−n(∂ϕA2)∂r) − |t|d−n divx(A2∂ϕ). (2.7)

For simplicity, we group [L1, ∂ϕ] and [L2, ∂ϕ]. We have for any v ∈ W 2,2
loc (Ω) that

[L1, ∂ϕ](v) + [L2, ∂ϕ](v) = divx

(
|t|d+1−n(∂ϕA)∇v

)
+ |t|d−n| divx(A2∂ϕ)|.

As for the commutator between L3 and ∂ϕ, we use Proposition 2.4 multiple times to 
write

∂2
r ∂ϕ = ∂r∂ϕ∂r − ∂r

(∂ϕ

|t|
)

= ∂ϕ∂2
r − 1

|t|∂ϕ∂r − 1
|t|∂r∂ϕ + 1

|t|2 ∂ϕ = ∂ϕ∂2
r − 2∂r∂ϕ

and thus deduce

[L3, ∂ϕ] = 2|t|d+1−n∂r∂ϕ.

It remains to establish that [L4, ∂ϕ] = 0. We take d + 1 ≤ α, β ≤ n so that ∂ϕ = ∂ϕαβ
. 

We invoke the fact that ∂ϕij
= −∂ϕij

and then Proposition 2.5 to obtain

−2|t|n−d−1[L4, ∂ϕ] = −
∑
i�=α

(
∂2

ϕβi
∂ϕβα

− ∂ϕβα
∂2

ϕβi

)
+
∑
j �=β

(
∂2

ϕαj
∂ϕαβ

− ∂ϕαβ
∂2

ϕαj

)
= −

∑
i�=α

(
∂ϕβi

∂ϕiα
− ∂ϕαi

∂ϕβi

)
+
∑
j �=β

(
∂ϕαj

∂ϕjβ
− ∂ϕβj

∂ϕαj

)
= −

∑
i�=α,β

(
∂ϕβi

∂ϕiα
− ∂ϕαi

∂ϕβi

)
+
∑

j �=α,β

(
∂ϕαj

∂ϕjβ
− ∂ϕβj

∂ϕαj

)
,

because ∂ϕkk
= 0. We can freely change j in i in the second sum, and after recalling again 

that ∂ϕij
= −∂ϕij

, we observe that two sums in the right-hand side above cancel with 
each other. We conclude that [L4, ∂ϕ] = 0, which finishes the proof of the proposition. �

Finally, we will need the following version of the Poincaré inequality.
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Proposition 2.7. Let u ∈ W 1,2
loc (Ω) and let Φ ∈ C∞

0 (Ω, R+) be a radial function. Then 
∂ϕu has zero mean on sphere, that is, for almost every (x, r) ∈ Rd+1

+ , we have

(∂ϕu)Sn−d(x, r) := −
ˆ

Sn−d

∂ϕu(x, rθ)dσ(θ) = 0,

where σ is the surface measure on the unit sphere Sn−d.
As a result, we have

¨

Ω

|∂ϕu|2Φ dt dx ≤ C

¨

Ω

|t|2|∂2
ϕu|2Φ dt dx,

where C > 0 is a universal constant.

Proof. Let φ(x, r) ∈ C∞
0 (Rd+1

+ ) and set Φ(x, t) := φ(x, |t|). Observe that

¨

Rd+1
+

∣∣∣∣∣∣
ˆ

Sn−d

∂ϕu dθ

∣∣∣∣∣∣ |φ| rn−d−1 dr dx ≤
¨

Rn

|∂ϕu||Φ| dx dt ≤ Cφ

which proves by Fubini’s theorem that 
´
Sn−d ∂ϕu dθ and thus (∂ϕu)Sn−d exists for almost 

every (x, r) ∈ Rd+1
+ . Notice now that ∂ϕΦ = (∂ϕ|t|)(∂rφ) ≡ 0 because ∂ϕ|t| ≡ 0 and 

|∂rφ| < ∞. Therefore the integration by parts (see Proposition 2.2) entails that

¨

Rd+1
+

(∂ϕu)Sn−d−1 φ rn−d−1 dr dx = 1
σ(Sn−d−1)

¨

Ω

(∂ϕu)Φ dt dx

= − 1
σ(Sn−d−1)

¨

Ω

u∂ϕΦ dt dx = 0. (2.8)

Since the identity (2.8) holds for every φ ∈ C∞
0 (Rd+1

+ ), it is enough to conclude that 
(∂ϕu)Sn−d−1(x, r) = 0 for almost every (x, r) ∈ Rd+1

+ .

Let us turn to the second part of the Proposition. Without loss of generality, we 
can assume that d ≤ n − 2 (because otherwise angular derivatives do not exist) and 
∂ϕ = ∂ϕij

with i = n and j = n − 1. Write a running point of Rn as (x, t′, tn−1, tn) ∈
Rd ×Rn−d−2 ×R ×R. We consider a function ψ ∈ Rn−1

+ := {(x, t′, r) ∈ Rn−2 × (0, ∞)}, 
and then Ψ(x, t) := ψ(x, t′, |(tn−1, tn)|). The same argument as before shows that for 
almost every (x, t′, r) ∈ Rn−1

+ , the function θ → ∂ϕu(x, t′, rθ) lies in L2(S1, dσ) and

(∂ϕu)S1(x, t′, r) :=
 

∂ϕu(x, t′, rθ) dσ(θ) = 0.
S1
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However, S1 is just the unit circle, so we have the bijection

ρ : z ∈ [0, 2π) �→ θ = (cos(z), sin(z)) ∈ S1

and we even have dσ(θ) = dz. Moreover,

∂

∂z
[u(x, t′, rθ)] = −r sin(θ) ∂

∂tn−1
u(x, t′, rθ) + r cos(θ) ∂

∂tn
u(x, t′, rθ) = r∂ϕu(x, t′, rθ)

and similarly

∂2

∂z2 [u(x, t′, rθ)] = r2∂2
ϕu(x, t′, rθ).

We deduce that, for almost every (x, t′, r) ∈ Rn−1
+ ,

2π 

0

∂

∂z
[u(x, t′, rρ(z))] dz = (∂ϕu)S1(x, t′, r) = 0

and then, by the Poincaré inequality on [0, 2π],

ˆ

S1

|∂ϕu(x, t′, rθ)|2 dσ(θ) = r−2
2πˆ

0

∣∣∣ ∂

∂z
[u(x, t′, rρ(z))]

∣∣∣2dz

≤ Cr2
2πˆ

0

∣∣∣ ∂2

∂z2 [u(x, t′, rρ(z))]
∣∣∣2dz

= Cr2
ˆ

S1

|∂2
ϕu(x, t′, rθ)|2 dσ(θ).

We conclude by integrating over (x, t′, r) ∈ Rn−1
+ . Since a radial function Φ depends on 

tn−1 and tn only via the norm |(tn−1, tn)|, we get

¨

Ω

|∂ϕu|2Φ dt dx =
ˆ

Rn−2

∞̂

0

Φ

⎛⎝ˆ
S1

|∂ϕu(x, t′, rθ)|2 dσ(θ)

⎞⎠ r dr dt′ dx

�
ˆ

Rn−2

∞̂

0

Φ

⎛⎝ˆ
S1

|∂2
ϕu(x, t′, rθ)|2 dσ(θ)

⎞⎠ r3dr dt′ dx

=
¨

Ω

|t|2|∂2
ϕu|2Φ dt dx.

The lemma follows. �



Z. Dai et al. / Journal of Functional Analysis 284 (2023) 109903 21
3. N ≤ S local estimates, part 1: integration by parts

We want to bound of the non-tangential maximal function by the square functional. In 
this section, we prove preliminary estimates that will be improved to the desired N < S

estimate in the next section by using a “good λ” argument.

We observe first that if v ∈ L2
loc(Ω) and Ψ is a cut-off function, we have by a simple 

application of Fubini’s theorem that

¨

Ω

|v|2Ψ dt

|t|n−d−2 dx ≈
ˆ

Rd

⎛⎜⎝ ¨

(y,t)∈Γ̂(x)

|v(y, t)|2Ψ(y, t) dt

|t|n−2 dy

⎞⎟⎠ dx (3.1)

so in particular, for any v ∈ W 1,2
loc (Ω)

¨

Ω

|∇v|2Ψ dt

|t|n−d−2 dx ≈ ‖S(v|Ψ)‖2
L2(Rd). (3.2)

The constants in (3.1) and (3.2) depends only on d and n.
Moreover, the Carleson measure condition is well adapted to the averaged non-

tangential maximal function, in that we have
¨

Ω

|v|2|f |2Ψ dt

|t|n−d
dx ≤ CM‖Ñ(u|Ψ)‖2

L2(Rd) (3.3)

whenever f ∈ CM(M). The statement in this particular context can be found as Propo-
sition 4.3 in [17], but the proof is an easy consequence of the classical Carleson inequality.

Lemma 3.1. In this lemma, ∂v stands for either a tangential derivative ∂x or an angular 
derivative ∂ϕ. For any function u ∈ W 2,2

loc (Ω), any cut-off function Ψ ∈ C∞
0 (Ω, [0, 1])

satisfying (COF)K , any real constant α, and any δ ∈ (0, 1), we have∣∣∣∣∣∣
¨

Ω

|∂vu − α|2∂r(Ψ3) dtdx

|t|n−d−1

∣∣∣∣∣∣ ≤ δ‖Ñ(∂vu−α|Ψ3)‖2
2 +C(1+δ−1K)‖S(∇u|Ψ)‖2

2, (3.4)

where C > 0 depends only on n.

Proof. To lighten the notation, we write V for ∂vu. First, by the integration by parts 
(Proposition 2.2), we have

T :=
¨

|V − α|2∂r(Ψ3) dtdx

|t|n−d−1 = −2
¨

(V − α)(∂rV )Ψ3 dtdx

|t|n−d−1

Ω Ω
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We introduce 1 = ∂r|t|, and we proceed to another integration by parts in order to write

T = −2
¨

Ω

(V − α)(∂rV )Ψ3(∂r|t|) dtdx

|t|n−d−1 = 2
¨

Ω

|∂rV |2Ψ3 dtdx

|t|n−d−2

+ 2
¨

Ω

(V − α)(∂rV )∂r(Ψ3) dtdx

|t|n−d−2 + 2
¨

Ω

(V − α)(∂2
r V )Ψ3 dtdx

|t|n−d−2 := I + II + III.

Thanks to (3.2), the term I is bounded by the square function ‖S(V |Ψ3)‖2
2. Since Ψ

satisfies (COF)K , the cut-off function |t|∇Ψ ∈ CM(K) and so the Cauchy-Schwarz 
inequality and the Carleson inequality (3.3) imply

II ≤ CK
1
2 ‖Ñ(V − α|Ψ3)‖2‖S(V |Ψ)‖2 ≤ δ

3‖Ñ(V − α|Ψ3)‖2
2 + Cδ−1K‖S(∇u|Ψ)‖2

2

for any δ ∈ (0, 1). As for the term III, we have

III = 2
¨

Ω

(V −α)
(

[∂2
r , ∂v]u

)
Ψ3 dtdx

|t|n−d−2 +2
¨

Ω

(V −α)(∂v∂2
r u)Ψ3 dtdx

|t|n−d−2 := III1 +III2.

Since ∂v|t| = 0 whenever ∂v = ∂x or ∂v = ∂ϕ, an integration by parts yields that

III2 = −2
¨

Ω

(∂2
vu)(∂2

r u)Ψ3 dtdx

|t|n−d−2 − 2
¨

Ω

(V − α)(∂2
r u)∂v(Ψ3) dtdx

|t|n−d−2 := III21 + III22.

The term III21 is easily bounded by C‖S(∇u|Ψ3)‖2
2, and similarly to II, since |t||∂vΨ| ∈

CM(K), we have that

|III22| ≤ δ

3‖Ñ(V − α|Ψ3)‖2
2 + Cδ−1K‖S(∇u|Ψ)‖2

2.

It remains to bound III1. Since ∂x and ∂r commute, the commutator [∂2
r , ∂x] is zero, 

and hence - when ∂v = ∂x - we have III1 = 0. Using Proposition 2.4 multiple times gives 
that

[∂2
r , ∂ϕ] = ∂r[∂r, ∂ϕ] + [∂r, ∂ϕ]∂r = − 2

|t|∂r∂ϕ.

So when ∂v = ∂ϕ, we have

III1 = −4
¨

Ω

(∂ϕu − α)(∂r∂ϕu)Ψ3 dtdx

|t|n−d−1

= 4
¨

Ω

(∂r∂ϕu)(∂ϕu)Ψ3 dtdx

|t|n−d−1 + 4
¨

Ω

(∂ϕu − α)(∂ϕu)∂ϕ(Ψ3) dtdx

|t|n−d−1 := III11 + III12
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by the integration by part given in Proposition 2.2. Observe that Proposition 2.7 and 
(3.2) infer that

¨

Ω

|∂ϕu|2Φ dt dx

|t|n−d
≤ C‖S(∂ϕu|Φ)‖2

2 (3.5)

So by the Cauchy-Schwarz inequality, we have

III11 ≤ ‖S(∂ϕu|Ψ3)‖2

⎛⎝¨
Ω

|∂ϕu|2Ψ3 dt dx

|t|n−d

⎞⎠
1
2

� ‖S(∇u|Ψ3)‖2
2

and similarly to II and III22,

III12 ≤ δ‖Ñ(∂ϕu − α|Ψ3)‖2
2 + C(δK)−1

⎛⎝¨
Ω

|∂ϕu|2Ψ dt dx

|t|n−d

⎞⎠
1
2

≤ δ

3‖Ñ(∂ϕu − α|Ψ3)‖2
2 + Cδ−1K‖S(∇u|Ψ)‖2

2.

The lemma follows. �
Now, we prove the analogue of the previous lemma for the radial derivative, and we 

shall use that u is solution to Lu = 0.

Lemma 3.2. Let L be an elliptic operator satisfying (H)λ,κ. For any weak solution u ∈
W 1,2

loc (Ω) to Lu = 0, any cut-off function Ψ ∈ C∞
0 (Ω, [0, 1]) satisfying (COF)K , any real 

constant α, and any δ ∈ (0, 1), we have

∣∣∣¨
Ω

|∂ru − α|2∂r(Ψ3) dtdx

|t|n−d−1

∣∣∣ ≤ δ‖Ñ(∂ru − α|Ψ3)‖2
2 + C(1 + δ−1K2)κ‖Ñ(∇u|Ψ)‖2

2

+ C(1 + δ−1K2)‖S(∇u|Ψ)‖2
2,

and∣∣∣¨
Ω

|∂ru|2∂r(Ψ3) dtdx

|t|n−d−1

∣∣∣ ≤ (δ + δ−1K2κ)‖Ñ(∂ru|Ψ)‖2
2 + C(1 + δ−1K2)‖S(∇u|Ψ3)‖2

2,

(3.6)
C depends only on λ, d, and n.

Proof. We only prove the first bound, since (3.6) is established with the same compu-
tations, by simply shifting switching the place of Ψ and Ψ3 when we bound |I3| + |I5|
below. By integration by parts (see Proposition 2.2), we have
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T :=
¨

Ω

|∂ru − α|2∂r(Ψ3) dtdx

|t|n−d−1 = −2
¨

Ω

(∂ru − α)(∂2
r u)Ψ3 dtdx

|t|n−d−1

But now, we can use the equation in cylindrical coordinate, that is (2.1), to obtain

∂2
r u = − divx A1∇xu + divx A2∂ru − 1

2

n∑
i,j=d+1

∂2
ϕij

u

and then

T = 2
¨

Ω

(∂ru − α)(divx A1∇xu)Ψ3 dtdx

|t|n−d−1 + 2
¨

Ω

(∂ru − α)(divx A2∂ru)Ψ3 dtdx

|t|n−d−1

+
n∑

i,j=d+1

¨

Ω

(∂ru − α)(∂2
ϕij

u)Ψ3 dtdx

|t|n−d−1 := I + II + III.

We first deal with III, which is easier. Since Ψ and |t| are radial, ∂ϕij
(|t|d+1−nΨ3) = 0

and thus, thanks to integration by parts, III becomes

III = −
n∑

i,j=d+1

¨

Ω

(∂ϕij
∂ru)(∂ϕij

u)Ψ3 dtdx

|t|n−d−1 � ‖S(∇u|Ψ3)‖2
2

by the Cauchy-Schwarz inequality and then (3.5). The terms I and II are similar. We 
write A1,2∇x,ru for A1∇xu + A2∂ru, and by using the fact that ∂r|t| = 1, we get

I + II = 2
¨

Ω

(∂ru − α)(divx A1,2∇x,ru) Ψ3 ∂r(|t|) dtdx

|t|n−d−1 .

So with an integration by parts to move the derivative ∂r away from |t|, we have

I + II = −2
¨

Ω

(∂ru − α)(∂r divx A1,2∇x,ru) Ψ3 dtdx

|t|n−d−2

− 2
¨

Ω

(∂2
r u)(divx A1,2∇x,ru) Ψ3 dtdx

|t|n−d−2

− 2
¨

Ω

(∂ru − α)(divx A1,2∇x,ru) ∂r(Ψ3) dtdx

|t|n−d−2 = I1 + I2 + I3.

The integrate further by parts in I1 to move the divx away from ∂rA1,2∇x,ru (note 
beforehand that ∂r and divx commute), and we obtain
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I1 = 2
¨

Ω

(∇x∂ru) · (∂rA1,2∇x,ru) Ψ3 dtdx

|t|n−d−2

+ 2
¨

Ω

(∂ru − α) (∂rA1,2∇x,ru) · ∇x(Ψ3) dtdx

|t|n−d−2 := I4 + I5.

So it remains to bounds I2, I3, I4, and I5. The terms I2 and I4 are similar, in that

|I2| + |I4| �
¨

Ω

|∇∇u||∇A1,2∇x,ru| Ψ3 dtdx

|t|n−d−2

�
¨

Ω

|∇∇u||∇A1,2||∇x,ru| Ψ3 dtdx

|t|n−d−1 +
¨

Ω

|A1,2||∇∇u|2 Ψ3 dtdx

|t|n−d−2

We use the boundedness of A1,2 and (3.2) to get that the last term in the right-hand 
side is bounded by ‖S(∇u|Ψ)‖2

2. As the first term in the right-hand side above, we use 
the inequality ab ≤ a2 +b2/4, the fact that ∇A1,2 ∈ CM(κ), and the Carleson inequality 
(3.3) to bound it by Cκ‖Ñ(∇u|Ψ3)‖2

2 + C‖S(∇u|Ψ)‖2
2. Altogether,

|I2| + |I4| � κ‖Ñ(∇u|Ψ3)‖2
2 + ‖S(∇u|Ψ3)‖2

2.

The terms I3 and I5 are also similar, in that they are bounded as follows

|I3| + |I5| �
¨

Ω

|∂ru − α||∇A1,2∇x,ru| |∇Ψ3| dtdx

|t|n−d−2

�
¨

Ω

|∂ru − α||∇A1,2||∇x,ru| |∇Ψ3| dtdx

|t|n−d−2

+
¨

Ω

|A1,2||∂ru − α||∇∇u| |∇Ψ3| dtdx

|t|n−d−1

� δ‖Ñ(∂ru − α|Ψ3)‖2
2 + δ−1K2κ‖Ñ(∇u|Ψ)‖2

2 + δ−1K2‖S(∇u|Ψ)‖2
2

by using the inequality ab ≤ δa2 + b2/4δ, the Carleson inequality (3.3), the fact that Ψ
satisfies |∇Ψ| ≤ K/|t| and 1supp ∇Ψ ∈ CM(K), and the fact that |∇A1,2|2 ≤ κ by (1.8). 
The lemma follows. �

In the following, we summarize the results from Lemma 3.1 and Lemma 3.2. Before 
stating the precise result, we should introduce a notation first. We write |∇u − �α|2 for a 
sum of |∇xu − �α‖|2, |∇ϕu − �αϕ|2, and |∂ru − �αr|2, where �αx, �αϕ, and �αr are different 
components of constant vector �α corresponding to ∇x, ∇ϕ, and ∂r respectively.
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Lemma 3.3. Let L be an elliptic operator satisfying (H)λ,κ. For any weak solution u ∈
W 1,2

loc (Ω) to Lu = 0, any cut-off function Ψ ∈ C∞
0 (Ω, [0, 1]) satisfying (COF)K , any real 

constant α, and any δ ∈ (0, 1), we have

∣∣∣¨
Ω

|∇u − �α|2∂rΨ3 dtdx

|t|n−d−1

∣∣∣ ≤ δ‖Ñ(∂ru − α|Ψ3)‖2
2 + C(1 + δ−1K2)κ‖Ñ(∇u|Ψ)‖2

2

+ C(1 + δ−1K2)‖S(∇u|Ψ)‖2
2, (3.7)

C depends only on λ, d, and n.

Proof. Immediate from Lemma 3.1 and Lemma 3.2. �
4. N ≤ S local estimates, part 2: the good lambda argument

The main goal of this section is to establish the “good-lambda” distributional inequal-
ity, that will give the desired N < S estimate.

In this section, a boundary ball (a ball in Rd) with center x and radius l will be 
written Bl(x). First, we recall several results from [17]. Let hβ : Rd → R be a function 
such that for any compactly supported and continuous function w defined on Rd+1

+ ,

hβ(w)(x) := inf
{

r > 0, sup
(y,s)∈Γ(x,r)

|w(y, s)| < β
}

,

where Γ(x, r) ⊂ Rd+1
+ is defined as the translation of the cone Γ(0) with vertex at (x, r).

Lemma 4.1 (Lemma 6.1 in [17]). For any w such that hβ(w) < ∞, the map hβ(w) is a 
1-Lipschitz function.

Lemma 4.2 (Lemma 6.2 in [17]). Let v ∈ L2
loc(Ω) and Ψ be a smooth function which 

satisfies 0 ≤ Ψ ≤ 1. Set hβ := hβ((v|Ψ3)W ), which is well defined because w := (v|Ψ3)W

is a continuous and compactly supported function on Rd+1
+ . There exists a small constant 

c > 0 depending only on d and n such that for any β > 0 and Ñ(v|Ψ3)(x) > β, we have:

M
[(

−
ˆ

y∈Bhβ (.)/2(.)

ˆ

s∈Rn−d

|v|2Ψ3∂r[χ3
β ] ds

|s|n−d−1 dy
) 1

2
]
(x) ≥ cβ,

where χβ is a cut-off function defined as χβ(y, .) ≡ 0 if hβ(y) = 0 and

χβ(y, s) := φ
( |s|

hβ(y)

)
, with φ(r) :=

⎧⎪⎪⎨⎪⎪⎩
0 if 0 ≤ r < 1/5,

(25 − 5r)/24 if 1/5 ≤ r ≤ 5,

1 if r > 5
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otherwise.

The two above lemmas are analogues to results from [22] and [11] adapted to our 
setting and to the use of cut-off functions Ψ. Let us first introduce some specific cut-off 
functions.

Definition 4.3. Let φ ∈ C∞
0 (R) be a non-increasing function such that φ ≡ 1 on [0, 1]

and φ ≡ 0 on [2, ∞). We define the cut-off functions on Ω as

Ψe(y, t) := φ
(e(x)

|t|
)
1Ω(x, t)

if x → e(x) ≥ 0 is a 1-Lipschitz function, in particular,

Ψε(y, t) := φ
( ε

|t|
)
1Ω(x, t)

if ε > 0. Also, let us denote

ΨB(y, t) := φ
(dist(y, B)

100|t|
)
1Ω(x, t)

if B is a boundary ball. Moreover, we write ΨB,l,ε for the product ΨB(1 − Ψ2l)Ψε.

Note that from the fact that φ is non-increasing, for any (non-negative) 1-Lipschitz 
function e, we have

∂rΨe ≥ 0. (4.1)

The proof of next lemma is easy but can nevertheless be found after Lemma 4.5 in [17].

Lemma 4.4 ([17]). There exists a uniform K that depends only on d and n such that the 
functions Ψe and their “complements” 1 − Ψe satisfy (COF)K . Since Ψε and ΨB are 
particular cases of Ψe, then (of course) they also satisfy (COF)K with the same uniform 
constant K. In addition, the property (COF)K is stable under the product, in the sense 
that if Ψ satisfies (COF)K1 and Φ satisfies (COF)K2 , then ΨΦ satisfies (COF)K1+K2 .

We state the precise statement of the “good-lambda” distributional inequality that 
we will need in the following.

Lemma 4.5. Let L be an elliptic operator satisfying (H)λ,M,κ. There exists η ∈ (0, 1) that 
depends only on d and n and C > 0 that depends on λ, d and n such that the following 
holds.
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For any a weak solution u ∈ W 1,2
loc (Ω) to Lu = 0, any cut-off function in the form 

Ψ := ΨB,l,ε for some ε > 0, some l > 100ε, and some boundary ball B of radius l, and 
for any triplet β > 0, γ > 0, δ ∈ (0, 1), we have

|{x ∈ Rd, Ñ(∇u|Ψ3)(x) > β} ∩ Eβ,γ,δ| ≤ Cγ2|{x ∈ Rd, M[Ñ(∇u|Ψ3)](x) > ηβ}|,
(4.2)

where

Eβ,γ,δ :=
{

x ∈ Rd : M
[(

−
ˆ

Bl(.)

−
ˆ

l≤|s|≤2l

|∇u|2Ψ3
B ds dy

)1/2]
(x) + δ1/2M[Ñ(∇u|Ψ3)](x)

+ δ−1/2κ1/2M[Ñ(∇u|Ψ3)](x) + δ−1/2M[S(∇u|Ψ)](x) ≤ γβ

}
.

Proof. Step 1: The Whitney decomposition. We fix β, δ > 0 and we take a ball B ⊂ Rd

with radius l > 0. Define

E := {x ∈ Rd, M[Ñ(∇u|Ψ3)](x) > ηβ}.

We notice that (∇u|Ψ3)W,a is continuous and Ψ is compactly supported. Hence E is open 
and bounded. We pick a ball Br(x) of radius r := dist(x, Ec)/10 centered at x ∈ E . Under 
this construction, E =

⋃
i∈J Bri

(xi) and supi∈J ri < ∞. By Vitali covering lemma, there 
exists a countable subcollection of balls {Bri

(xi)}i∈I , which are disjoint and satisfy that 
E ⊆

⋃
i∈I B5ri

(xi). For each i ∈ I, we set Bi := B10ri
(xi) and thus there exists a

yi ∈ Bi ∩ Ec, in particular M[Ña(∇u|Ψ3)](yi) ≤ ηβ. (4.3)

We define the set F i
β such that

F i = F i
β,γ,δ := {x ∈ Bi, Ña(∇u|Ψ3)(x) > β} ∩ Eβ,γ,δ.

It suffices to prove that for each i ∈ I,

|F i| � Cγ2|Bi| (4.4)

because 
∑

i∈I |Bi| ≤ 10d
∑

i∈I |Bri
(xi)| ≤ 10d|E|. The inequality (4.4) is trivial when 

F i
β = ∅. Hence we assume that F i

β ⊃ {xi} is non-empty in the sequel of the proof.

Step 2: Localization of Ñ(∇u|Ψ3) in Bi. In this step, we show that if x ∈ F i, then 
Ñ(∇u|Ψ3)(x) has to reach its maximum value at a point (z, r) ∈ Γ(x) verifying r ≤ ri. 
Indeed, take x ∈ F i and then (z, r) ∈ Γ(x) such that r > ri. Notice that (z, r) ∈⋃

y∈B (z) Γ(y), so

r
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(∇u|Ψ3)W (z, r) ≤ Ñ(∇u|Ψ3)(y) for all y ∈ Br(z) ⊂ B20r(yi). (4.5)

Therefore, for a constant C that depends only on d,

(∇u|Ψ3)W (z, r) ≤ M[Ñ(∇u|Ψ3)](yi) ≤ Cηβ < β

by (4.3), if η is small enough (depending only on d). So it means that for any x ∈ F i, 
we have

β < Ñ(∇u|Ψ3)(x) = sup
(z,r)∈Γ(x)

1r≤ri
(∇u|Ψ3)W (z, r) for x ∈ F i. (4.6)

We construct the cut-off function Φi(y, s) := (1 − ΨKiri
)ΨF i where ΨKiri

:= Ψεi
for 

εi := Kiri and ΨF i := Ψei for the 1-Lipschitz function ei(x) := dist(y, F i)/Mi. The 
constants 10 and Ki in the construction of Φi are large enough so that Φi(y, t) = 1
whenever (y, t) ∈ W (z, r) for (z, r) ∈ Γ(x) ∩ {r ≤ ri} and x ∈ Fi. With such a choice 
and by (4.6), we have that

Ñ(∇u|Ψ3Φ3
i )(x) = Ñ(∇u|Ψ3)(x) > β for x ∈ F i. (4.7)

We let a little bit of freedom on the choice of Ki to avoid some future complication. 
Notice that

supp(∇ΨKiri
)∩supp(ΨFi

) ⊂ Si := (Ki+1)Bi×{s ∈ Rn−d, Kiri/2 < |s| < Kiri}. (4.8)

We first try Ki = 4, which is large enough for (4.7) to be satisfied. If Si intersects 
{Ψ 
= 0} ∩{Ψ 
= 1}, then we test Ki = 8 instead. If Si still intersects {Ψ 
= 0} ∩{Ψ 
= 1}, 
we multiply Ki by 2 and we stop at the first time when

Si ∩ {Ψ 
= 0} ∩ {Ψ 
= 1} = ∅, i.e. either Si ⊂ {Ψ ≡ 1} or Si ⊂ {Ψ ≡ 0}. (4.9)

Since Ψ = ΨB,ε is constructed from the product of three cut-off function Ψe where e is 
either constant or a slowly growing 1/100-Lipschitz function, while ΨFi

is constructed 
with a faster growing 1/10-Lipschitz function, Ki can only take a uniformly finite number 
of values (i.e. we think that Ki ≤ 27 and we say that Ki ≤ 210 to have some error margin).

Step 3: Catching the level sets of Ñ(∇u|Ψ3). Let hβ := hβ((∇u|Ψ3Φ3
i )W ). Lemma 4.2

and (4.7) entails that

cβ ≤ M
[(

−
ˆ

y∈Bhβ (.)/2(.)

ˆ

s∈Rn−d

|∇u|2Ψ3Φ3
i ∂r[χ3

β ] dsdy

|s|n−d−1

) 1
2
]
(x) for x ∈ F i.

(4.10)

We know from (4.9) that either Si ⊂ {Ψ ≡ 1} or Si ⊂ {Ψ ≡ 0}. We set
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�αi := −−
¨

Si

(∇u)Ψ3/2 dy ds =
{

−−̃
Si

(∇u) dy ds if Si ⊂ {Ψ ≡ 1}
0 otherwise

(4.11)

and we want to show that |�αi| is smaller than cβ/2, where c is the constant in (4.10). We 
select N points {zj}N

j=1 ∈ 2KiBi such that Si ⊂
⋃N

j=1 W (zj , Kiri). We can always to so 
with a uniformly bounded number N of points, because Ki is itself uniformly bounded 
(between 4 and 210). So we easily have by simply using the definition of �αi, (∇u|Ψ3)W , 
Ñ(∇u|Ψ3) and then (4.3) that

|�αi| ≤ C

N∑
j=1

(∇u|Ψ3)W (zj , Kiri) ≤ C

N∑
j=1

−
ˆ

BKiri
(zj)

Ñ(∇u|Ψ3)dx

≤ C ′ −
ˆ

30KiBi

Ña(∇u|Ψ3)dx ≤ C ′M[Ñ(∇u|Ψ3)](yi) ≤ C ′ηβ ≤ cβ/2, (4.12)

if η is small enough (depending only on d). The combination of (4.10) and (4.12) infers 
that

cβ/2 ≤ M
[(

−
ˆ

y∈Bhβ (.)/2(.)

ˆ

s∈Rn−d

|∇u − �αi|2Ψ3Φ3
i ∂r[χ3

β ] dsdy

|s|n−d−1

) 1
2
]
(x) for x ∈ F i.

(4.13)

Step 4: From a pointwise estimate to integral estimates. The result (4.13) from the 
previous step implies that

|F i| � 1
β2

∥∥∥∥M
[(

−
ˆ

y∈Bhβ (.)/2(.)

ˆ

s∈Rn−d

|∇u − �αi|2Ψ3Φ3
i ∂r[χ3

β ] dsdy

|s|n−d−1

) 1
2
]∥∥∥∥2

2

� 1
β2

ˆ

Rd

−
ˆ

y∈Bhβ (x)/2(x)

ˆ

s∈Rn−d

|∇u − �αi|2Ψ3Φ3
i ∂r[χ3

β ] dsdy

|s|n−d−1 dx

thanks to L2 boundedness of the Hardy-Littlewood maximal operator M. According 
to Lemma 4.1, the function hβ is 1-Lipschitz, that is, |hβ(x) − hβ(y)| ≤ |x − y|. If y ∈
Bhβ(x)/2(x), then the Lipschitz condition implies that |hβ(x) −hβ(y)| ≤ |x −y| ≤ hβ(x)/2
and thus hβ(x)/2 ≤ hβ(y) ≤ 3hβ(x)/2. Consequently, by Fubini’s theorem,

|F i| � 1
β2

¨

Ω

|∇u − �αi|2Ψ3Φ3
i ∂r[χ3

β ] dsdy

|s|n−d−1

( ˆ

x∈Bh (y)(y)

hβ(x)−ddx

)

β
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� 1
β2

¨

Ω

|∇u − �αi|2Ψ3Φ3
i ∂r[χ3

β ] dsdy

|s|n−d−1 .

Recall that

ΨΦi = ΨBΨF iΨε(1 − ΨKiri
)(1 − Ψ2l).

By (4.1), ∂r[ΨeΨF iΨε] ≥ 0 and thus the product rule implies

Ψ3Φ3
i ∂r[χ3

β ] ≤ ∂r[Ψ3Φ3
i χ3

β ] + ∂r[Ψ3
Kiri

]Ψ3
F iΨ3χ3

β + ∂r[Ψ3
2l]Ψ3

BΨ3
εΦ3

i χ3
β .

It follows that:

|F i| � 1
β2

¨

Ω

|∇u − �αi|2∂r[Ψ3
Kiri

]Ψ3
F iΨ3χ3

β

dsdy

|s|n−d−1

+ 1
β2

¨

Ω

|∇u − �αi|2∂r[Ψ3
2l]Ψ3

BΨ3
εΦ3

i χ3
β

dsdy

|s|n−d−1

+ 1
β2

¨

Ω

|∇u − �αi|3∂r[Ψ3Φ3
i χ3

β ] dsdy

|s|n−d−1 := I + II + III.

In order to prove the claim (4.4), and hence the lemma, it suffices to show I + II + III ≤
Cγ2|Bi| with a constant C that depends only on λ, d, and n.

Step 5: We treat I. We recall that Si ⊃ supp(∂rΨKiri
) ∩ supp(ΨFi

), see (4.8), and 
|∇ΨKiri

| � |t| since Ψ satisfies (COF). Therefore,

I � |Bi|
β2 −−

¨

Si

|∇u − �αi|2Ψ3 ds dy = |Bi|
β2 1Si∩supp Ψ−−

¨

Si

|∇u − �αi|2ds dy

since we chose Ki so that Ψ is either constant equal to 0 or constant equal to 1 in Si, 
see (4.9), and since changing ∇ to ∇ is just rewriting a vector with a different system 
of coordinates (and of course we rewrite �αi in this system of coordinates too). If Ψ ≡ 0
on Si, the bound I = 0 ≤ Cγ2|Bi| is trivial. So we assume for the rest of the step that 
Ψ ≡ 1 on Si. In this case, since �αi is the average of ∇u on Si, the Poincaré inequality 
yields that:

I � r2
i |Bi|
β2 −−

¨

Si

|∇∇u|2dsdy � |Bi|
β2

¨

Si

|∇∇u|2Ψ3 ds dy

|s|n−2 (4.14)

because Ψ ≡ 1 on Si. We adapt the argument that we used to establish (4.12). We pick 
a collection of points {zj}N

j=1 ∈ 2KiBi such that
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Si ⊂
N⋃

j=1
BKiri/4(zj) × {Kiri/2 < |s| < Kiri}.

We can choose the collection so that N is uniformly bounded. Since

BKiri/4(zj) × {Kiri/2 < |s| < Kiri} ⊂ Γ̂(x) for x ∈ BKiri/4(zj),

we have

I � |Bi|
β2

N∑
j=1

¨

BKiri/4(zj)×{Kiri/2<|s|<Kiri}

|∇∇u|2Ψ3 ds dy

|s|n−d−2

� |Bi|
β2

N∑
j=1

⎛⎜⎝  

BKiri/4(zj)

S(∇u|Ψ3)(x) dx

⎞⎟⎠
2

� |Bi|
β2

⎛⎝ −
ˆ

30KiBi

S(∇u|Ψ3)(x) dx

⎞⎠2

≤ |Bi|
β2

(
M[S(∇u|Ψ)](xi)

)2 ≤ γ2|Bi|, (4.15)

where xi is any point of the non-emptyset F i ⊂ Eβ,γ,δ and the last inequality comes 
from the fact that xi ∈ Eβ,γ,δ (we could even have I � γ2δ2|Bi|).

Step 6: We deal with II. Observe that

supp{ΨB∂rΨ2l} ⊂ 500B×{ l ≤ |s| ≤ 2l} and supp{Φi} ⊂ {dist(y, Bi)/20 ≤ |s| ≤ Kiri}

since we know that Ki ≤ 210. The integral II is non-zero only if the (interior of the) two 
above supports intersect, and in this case, we necessarily have

l < Kiri ≤ 210ri and dist(500B, Fi) < 40l (4.16)

and thus we can assume those bounds in the rest of the proof. So 500B ⊂ 220Bi and we 
can find a boundary point xi ∈ Rd such that

xi ∈ Fi ∩ 550B. (4.17)

By the triangle inequality and the fact that |∇Ψ2l| � l on supp(∇Ψ2l), we have

II � |220Bi|
β2

 

500B

 

l≤|s|≤2l

|∇u|2Ψ3
B ds dy + |220Bi||�αi|2

β2 Ψ3
B = II1 + II2.

We want to bound II1 with the help of the Hardy Littlewood maximal function of x →( ffl ffl
|∇y|2dsdy

)1/2
. So we proceed like we already several times, see around 
Bl(x) l<|s|<2l
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(4.12) and (4.15). We take a uniformly finite collection of points {zj}N
j=1 ∈ 501B such that 

500B ⊂
⋃

Bl/2(zj), and since 
ffl

Bl/2(zj) |∇u|2 �
ffl

Bl(x) |∇u|2 for any x ∈ Bl/2(zj)|∇u|2, 
we have

II1 � |Bi|
β2

N∑
j=1

 

Bl/2(zj)

 

l<|s|<2l

|∇u|2Ψ3
Bds dy

� |Bl|
β2

N∑
j=1

⎛⎜⎝  

Bl/2(zj)

(  

Bl(x)

 

l<|s|<2l

|∇u|2Ψ3
B ds dy

) 1
2
dx

⎞⎟⎠
2

� |Bi|
β2

⎛⎜⎝  

B2000l(xi)

(  

Bl(x)

 

l<|s|<2l

|∇u|2Ψ3
B ds dy

) 1
2
dx

⎞⎟⎠
2

≤ |Bi|
β2

⎛⎜⎝M
[  

Bl(.)

 

l<|s|<2l

|∇u|2Ψ3
B ds dy

) 1
2
]
(xi)

⎞⎟⎠
2

≤ γ2|Bi|, (4.18)

because xi ∈ Eβ,γ,δ. It remains to bound II2, but that one will be easy. Without loss 
of generality, we can assume the support of the function φ used to construct Ψ2l to be 
exactly [1, 2] and hence the support of ∂rΨ2l to be exactly {l ≤ |s| ≤ 2l}. But the set Si

defined in (4.8) and used to build �αi has to be included by construction in either {Ψ ≡ 1}
or {Ψ ≡ 0}. Combined with (4.16), it forces Si ⊂ {Ψ ≡ 0}, and thus II2 = |�αi| = 0.

Step 7: We bound III to conclude. As discussed at the end of Step 4, we needed to 
bound I, II, and III by Cγ2|Bi| to finish the proof of the lemma. We already proved the 
desired estimates of I and II in Steps 5 and 6, so it remains to show III � γ2|Bi|.

We did not use Section 3 at this point, so as one could expect, it will appear in this 
last Step. We easily have that

‖Ñ(∇u − �αi|Ψ3Φ3
i )‖2

2 ≤ ‖Ñ(∇u|Ψ3Φ3
i )‖2

2 + |�αi|2‖Ñ(1|Φi)‖2
2. (4.19)

Lemma 4.4 shows that Ψ3Φ3
i χ3

β satisfies (COF) with a constant that depends only on d
and n. Thus we apply Lemma 3.3 to the term III. Together with (4.19), we deduce that

III ≤ 1
β2

{
δ‖Ñ(∇u|Ψ3Φ3

i )‖2
2 + δ|�αi|2‖Ñ(1|Φi)‖2

2

+ C(1 + δ−1K2)κ‖Ñ(∇u|ΨΦi)‖2
2 + C(1 + δ−1K2)‖S(∇u|ΨΦi)‖2

2

}
Let v be any function for which Ñ(v|Φi) or S(v|Φi) makes sense, and in this situation, the 
non-tangential maximal function Ñ(v|Φi) and the square function S(v|Φi) are supported 
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in a ball CBi, where C is universal. Why? Because Φi is supported in a saw-tooth region 
on top of F i ⊂ Bi, which is truncated above by Kiri. Hence the Whitney box W (z, r)
for which (v|Φi)W (z,r) 
= 0 are such that r ≤ 2Kiri and then z ∈ 10KiBi, which means 
supp N(v|Φi) ⊂ 10KiBi. Similarly, a point (y, t) for which ∇v(y, t) 
= 0 are such that 
|t| ≤ Kiri and then y ∈ 3KiBi, which implies that supp S(v|Φi) ⊂ 3KiBi. Altogether

supp S(v|Φi) ∪ supp N(v|Φi) ⊂ 10KiBi ⊂ B∗
i := 214Bi. (4.20)

With this observation, we have

III � |Bi|
β2

{
δ|�αi|2 + δ

[
sup
B∗

i

Ñ(∇u|Ψ3Φ3
i )
]2 + δ−1κ

[
sup
B∗

i

Ñ(∇u|ΨΦi)
]2

+ δ−1[ sup
B∗

i

S(∇u|Ψ3Φ3
i )
]2} := III1 + III2 + III3 + III4.

The three terms above are handled in a similar manner. Recall that Φi is supported in a 
saw-tooth region over Fi truncated at Kiri. If (∇u|Ψ3Φ3

i )W (z′, r′) 
= 0, then W (z′, r′) ∩
supp{Φi} 
= ∅ and there exists a xi ∈ F i ⊂ Bi such that |xi − z′| ≤ 1000r′ ≤ 220ri. It 
follows that for all (z′, r′) ∈ Rd+1

+ ,

(∇u|Ψ3Φ3
i )W (z′, r′) ≤ −

ˆ

Br′ (z′)

Ñ(∇u|Ψ3Φ3
i )(z)dz

� −
ˆ

B1000r′ (xi)

Ñ(∇u|Ψ3Φ3
i )(z)dz ≤ M[Ña(∇u|Ψ3)](xi). (4.21)

Consequently, for each z ∈ Rd, there exists a xi ∈ F i
β such that

δÑ(∇u|Ψ3Φ3
i )(z) � δM[Ñ(∇u|Ψ3)](xi) ≤ γβ (4.22)

where the last inequality follows from the fact that xi ∈ Eβ,γ,δ. We easily deduce

III2 := δ|Bi|
β2

[
sup
B∗

i

Ñ(∇u|Ψ3Φ3
i )
]2 � γ2|Bi|.

Similarly, we have

III3 := δ−1κ|Bi|
β2

[
sup
B∗

i

Ñ(∇u|ΨΦi)
]2 � γ2|Bi|.

The term III4 follows the same lines. If y ∈ F i, then S(∇u|ΨΦi)(y) ≤ S(∇u|ΨΦi)(y) ≤
γβ. If y /∈ Fi, we take xi ∈ F i such that ry := dist(y, Fi) = |y − xi|. We know from the 
construction of ΨF i that
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Φi(z, s) ≡ 0 for |z − y| < ri/10 and |s| < ri/400. (4.23)

We cover Bri/20(y) by a uniformly finite collection of balls {Bri/800(zj)}N
j=1, and we 

notice that for any collection {wj}N
j=1 of points satisfying wj ∈ Bri/800(zj), we have

Γ̂(y) ∩ supp Φi ⊂
N⋃

j=1
Γ̂(wj).

We conclude that

S(∇u|ΨΦi)(y) ≤
N∑

j=1
−
ˆ

Bri/800(zj)

S(∇u|ΨΦi)(w) dw

� −
ˆ

B2ri
(xi)

S(∇u|Ψ)(w) dw ≤ M
[
S(∇u|Ψ)

]
(xi) ≤ δ1/2

γ
β,

and then III4 � γ2|Bi| as desired.
It remains to bound III1. We apply the same argument as of (4.12) using xi ∈ F i

instead of yi. So we have

δ|�αi|2 � δ
∣∣M[Ñ(∇u|Ψ3)](xi)

∣∣2 � γ2β2, (4.24)

because xi ∈ Eβ,γ,δ, from which we easily deduce III1 � γ2|Bi|. The lemma follows. �
The “good-lambda” distributional inequality (4.2) can be used to derive the Lp − Lp

boundedness result.

Lemma 4.6. Let p > 1 and L be an elliptic operator satisfying (H)λ,M,κ. For any a weak 
solution u ∈ W 1,2

loc (Ω) to Lu = 0, any cut-off function in the form Ψ := ΨB,l,ε for some 
ε > 0, some l > 100ε, and some boundary ball B of radius l, we have

‖Ñ(∇u|Ψ3)‖p
p ≤ Cp

∥∥∥∥( −
ˆ

Bl(.)

−
ˆ

l≤|s|≤2l

|∇u|2Ψ3
Bds dy

)1/2∥∥∥∥p

p

+ Cpκp/2‖Ñ(∇u|Ψ)‖p
p

+ Cp‖S(∇u|Ψ)‖p
p

where Cp > 0 depends only on λ, d, n, and p.

Remark 4.7. The limitation p > 1 comes from the fact that we used the maximal function 
M in Lemma 4.5. However, with the same arguments, we could prove an analogue of 
(4.2) where we replace M by Mq defined as Mq[f ] :=

(
M[fq]

)1/q for any q > 0 (with a 
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constant C depending now also on q). Then we could establish Lemma 4.6 for any p > 0
by invoking (4.2) that used Mq with 0 < q < p.

Proof. We apply the distribution inequality (4.2) to obtain that there exists a η > 0
such that for any γ, δ ∈ (0, 1), we have

‖Ñ(∇u|Ψ3)‖p
p = cp

∞̂

0

βp−1|{Ñ(∇u|Ψ3) > β}|dβ

≤ cp

∞̂

0

βp−1|{Ñ(∇u|Ψ3) > β} ∩ Eβ,γ,δ|dβ + cp

∞̂

0

βp−1|Ec
β,γ,δ|dβ

� cpγ2
∞̂

0

βp−1|{M[Ñ(∇u|Ψ3)] > ηβ}|dβ + cp

∞̂

0

βp−1|Ec
β,γ,δ|dβ

:= I + II

where the implicit constant depends only on p. But in one had, we have

I = γ2

ηp
‖M[Ñ(∇u|Ψ3)]‖p

p � γ2

ηp
‖Ñ(∇u|Ψ3)‖p

p

by the Lp-boundedness of the Hardy-Littlewood maximal operator. On the other hand,

II = γ−p
∥∥∥M

[(
−
ˆ

Bl(.)

−
ˆ

l≤|s|≤2l

|∇u|2Ψ3
B ds dy

)1/2]
+ δ1/2M[Ñ(∇u|Ψ3)]

+ δ−1/2κ1/2M[Ñ(∇u|Ψ)] + δ−1/2M[S(∇u|Ψ)]
∥∥∥p

p

� γ−p
∥∥∥( −

ˆ

Bl(.)

−
ˆ

l≤|s|≤2l

|∇u|2Ψ3
B ds dy

)1/2
+ δ1/2Ñ(∇u|Ψ3) + δ−1/2κ1/2Ñ(∇u|Ψ)

+ δ−1/2S(∇u|Ψ)
∥∥∥p

p

again using the Lp-boundedness of the Hardy-Littlewood maximal operator. Altogether, 
we have

‖Ñ(∇u|Ψ3)‖p
p �

(γ2

ηp
+ δp/2

γp

)
‖Ñ(∇u|Ψ3)‖p

p + γ−p
∥∥∥( −

ˆ

Bl(.)

−
ˆ

l≤|s|≤2l

|∇u|2Ψ3
B ds dy

)1/2∥∥∥p

p

+ δ−p/2κp/2γ−p‖Ñ(∇u|Ψ)‖p
p + δ−p/2γ−p

∥∥∥S(∇u|Ψ)
∥∥∥p

p
.
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The lemma follows by taking γ and then δ (depending only on λ, d, n, and p) such that 
(γ2η−p + δp/2γ−p) is small enough, so that the first term on the right-hand side above 
can be hidden in the left-hand side (which is allowed because all the terms are finite, 
due to the use of the compactly supported cut-off function Ψ). �
5. S ≤ N local estimates

In this section, we aim to establish that the square function is locally bounded by the 
non-tangential maximal function, result that is eventually given in Lemma 5.5 below.

Remember that we have three different directional derivatives to deal with, which 
are the tangential derivatives ∇x, angular derivatives ∇ϕ, and radial derivative ∂r. To 
prove these estimates, we first bound the square function of the radial derivative by 
the square functions of the tangential and angular derivatives, and we shall rely on 
Proposition 2.3, i.e. the expression of the equation in cylindrical coordinates. Then, we 
treat the tangential and angular directional derivatives, and a key point is the fact that 
those derivatives verify ∂r|t| = ∂ϕ|t| = 0.

Lemma 5.1. Let L be an elliptic operator satisfying (H)λ,κ. For any weak solution u ∈
W 1,2

loc (Ω) to Lu = 0 and any radial cut-off function Ψ ∈ C∞
0 (Ω, [0, 1]), we have

‖S(∂ru|Ψ3)‖2
2 ≤ C

(
κ‖Ñ(∇u|Ψ3)‖2

2 + ‖S(∇xu|Ψ3)‖2
2 + ‖S(∇ϕu|Ψ3)‖2

2

)
, (5.1)

where the constant C > 0 depends only on λ and the dimensions d and n.

Proof. This is basically an outcome of the equation: some derivatives can be represented 
in terms of others. Observe that

|∇∂ru| ≤ |∇x∂ru| + |∇ϕ∂ru| + |∂2
r u| ≤ |∇∇xu| + |∇∇ϕu| + 1

|t| |∇ϕu| + |∂2
r u|

because ∇x and ∂r commute and the commutator [∂r, ∂ϕ] is − 1
|t| ∂ϕ (see Proposition 2.4). 

But since u is a weak solution to Lu = 0, (2.1) implies that

|∂2
r u| =

∣∣∣− divx(A1∇xu) − divx(A2∂ru) − 1
2

n∑
i,j=d+1

∂2
ϕij

u
∣∣∣

� |∇xA||∇u| + λ−1|∇x∂ru| + λ−1|∇x∇xu| + |∇2
ϕu|

≤ |∇xA||∇u| + λ−1|∇∇xu| + |∇∇ϕu|

by using again the fact that ∇x and ∂r commute. By combining the two inequalities 
above, we obtain

|∇∂ru| � |∇∇xu| + |∇∇ϕu| + 1 |∇ϕu| + |∇xA||∇u|
|t|
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Now, (3.2) entails that

‖S(∂ru|Ψ3)‖2
L2(Rd) � ‖S(∇xu|Ψ3)‖2

L2(Rd) + ‖S(∇ϕu|Ψ3)‖2
L2(Rd)

+
¨

Ω

|∇ϕu|2Ψ3 dtdx

|t|n−d
+
¨

Ω

|t|2|∇xA|2|∇u|2Ψ3 dtdx

|t|n−d
.

However, since |t||∇xA| ∈ CM(κ), the Carleson inequality (3.3) implies that

¨

Ω

|t|2|∇xA|2|∇u|2Ψ3 dtdx

|t|n−d
� κ‖Ñ(u|Ψ3)‖2

L2 .

In addition, Proposition 2.7 applied with Φ = |t|d−nΨ3 infers that

¨

Ω

|∇ϕu|2Ψ3 dtdx

|t|n−d
�
¨

Ω

|∇∇ϕu|2Ψ3 dtdx

|t|n−d−2 � ‖S(∇ϕu|Ψ3)‖2
L2(Rd)

by (3.2). The lemma follows. �
In order to deal with the tangential and angular directional derivatives, we will first 

prove a generalized result that works for both of them. Let us write ∂v for either a 
tangential derivative ∂xi

, an angular derivative ∂ϕij
, or the radial derivative ∂r. The key 

step is to use the equation Lu = 0 properly. Since we want to estimate the gradient of 
solutions, we should study the commutators [L, ∂v] and try to bound them in a clever 
way. In the next lemma, we will estimate the square function of ∂vu and we are able to 
see how the commutator [L, ∂v] plays an important role in the estimates.

It will be convenient to introduce the bilinear form B(·, ·) defined for f ∈ L1
loc(Ω) and 

Ψ ∈ C∞
0 (Ω),

B(f, Ψ) := −1
2

¨

Ω

∂r[|t|f ] ∂rΨ dtdx

|t|n−d−1 . (5.2)

Beware that B(f, Ψ) may be negative even when the function f is positive. We are now 
ready for our next lemma.

Lemma 5.2. Let L := − div(|t|d+1−nA∇) be an elliptic operator satisfying (1.23) and 
(1.24). For any weak solution u ∈ W 1,2

loc (Ω) to Lu = 0 and any radial cut-off function 
Ψ ∈ C∞

0 (Ω, [0, 1]), we have

7
8λ‖S(∂vu|Ψ3)‖2

2 ≤
¨

|∂vu|2∂rΨ3 dtdx

|t|n−d−1 + C

¨
|∂vu|2|∇xΨ|2Ψ dtdx

|t|n−d−2

Ω Ω
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+ B(|∂vu|2, Ψ3) +
¨

Ω

(
[L, ∂v]u

)(
Ψ3|t|∂vu

)
dtdx, (5.3)

where C > 0 depends only on the ellipticity constant λ and the dimensions d and n.

The bound (5.3) may look a bit cryptic. The last term of (5.3) is the one that contains 
the commutator [L, ∂v], and will be removed in the next lemmas. The first term in the 
right-hand side is the “trace” term, that is the term that will become Tr(∂vu) when we 
take Ψ ↑ 1. The two other quantities are “error” terms that contain derivatives of the 
cut-off function Ψ, and that will eventually disappear when we take Ψ ↑ 1.

Proof. To lighten the notation, we write V for ∂vu. First of all, since A satisfies the 
uniform ellipticity condition (1.23), we have

λ‖S(V |Ψ3)‖2
2 = λ

¨

Ω

|∇V |2Ψ3 dtdx

|t|n−d−2 ≤
¨

Ω

A∇V · ∇V Ψ3 dtdx

|t|n−d−2

By product rule,

¨

Ω

A∇V · ∇V Ψ3 dtdx

|t|n−d−2 =
¨

Ω

A∇V · ∇
(

V Ψ3|t|
) dtdx

|t|n−d−1

−
¨

Ω

A∇V · ∇Ψ3 V
dtdx

|t|n−d−2 −
¨

Ω

A∇V · ∇(|t|) V Ψ3 dtdx

|t|n−d−1 = I + II + III.

We start from the term I. Recall that u is a weak solution to the equation Lu = 0. It 
follows that:

LV = L(∂vu) = ∂v(Lu) + [L, ∂v] = [L, ∂v] a.e. in Ω.

Consequently,

I =
¨

Ω

(
[L, ∂v]u

)(
V Ψ3|t|

)
dtdx,

which is one of the terms from the right-hand side of (5.3). For the term II, since matrix 
is in the form of (1.24),

II = −
¨

Ω

A1∇xV · ∇xΨ3 V
dtdx

|t|n−d−2 −
¨

Ω

A2
t

|t|∇tV · ∇xΨ3 V
dtdx

|t|n−d−2

−
¨

Ω

∇tV · ∇tΨ3 V
dtdx

|t|n−d−2 =: II1 + II2 + II3.
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The terms II1 and II2 are estimated together by

II1 + II2 ≤ 1
8λ‖S(V |Ψ3)‖2

2 + Cλ

¨

Ω

|V |2|∇xΨ|2Ψ dtdx

|t|n−d−2 .

We hide the term 1
8λ‖S(V |Ψ3)‖2

2 in the left-hand side of (5.3), and the second term in 
the right-hand side above stays on the right-hand side of (5.3).

As for II3, since Ψ is radial, we have that

∇tV · ∇tΨ3 = (∇tV · ∇t|t|) ∂rΨ3 = (∂rV )(∂rΨ3)

and thus,

II3 = −1
2

¨

Ω

(∂rV 2)(∂rΨ3) dtdx

|t|n−d−2 = B(V 2, Ψk) + 1
2

¨

Ω

V 2∂rΨ3 dtdx

|t|n−d−1

by definition of B(., .), see (5.2). The last term III is similar, because we have

III = −
¨

Ω

∂rV V Ψ3 dtdx

|t|n−d−1 = −1
2

¨

Ω

(∂rV 2) Ψ3 dtdx

|t|n−d−1 = 1
2

¨

Ω

V 2 ∂rΨ3 dtdx

|t|n−d−1

thanks to the integration by parts given in Proposition 2.2. The lemma follows. �
Now we bound the square function of the tangential derivatives by applying Lemma 5.2

with ∂v = ∂x. Recall that we write ∂x for any tangential directional derivative ∂i := �ei ·∇
where i ≤ d. As we have discussed in the previous paragraphs, the commutator [L, ∂x]
plays an important role in computing the square function of ∂x. In our particular case, 
an easy computation shows that

[L, ∂x] = divx(|t|d+1−n∂xA)∇ (5.4)

because ∂x|t| = 0.

Corollary 5.3. Let L be an elliptic operator satisfying (H)λ,κ. For any weak solution 
u ∈ W 1,2

loc (Ω) to Lu = 0 and any radial cut-off function Ψ ∈ C∞
0 (Ω, [0, 1]), we have

3
4λ‖S(∇xu|Ψ3)‖2

2 ≤
¨

Ω

|∇xu|2∂rΨ3 dtdx

|t|n−d−1 + Cκ‖Ñ(∇u|Ψ3)‖2
2

+ C

¨

Ω

|∇xu|2|∇xΨ|2Ψ dtdx

|t|n−d−2 + B(|∇xu|2, Ψ3), (5.5)

where C > 0 depends only on λ, d, and n.
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Proof. The bound (5.5) is a consequence of the same bound on each of the tangen-
tial derivative ∂x, and then summing up. For a given tangential derivative, (5.5) is an 
immediate consequence of Lemma 5.2 and the bound

∣∣∣∣∣∣
¨

Ω

(
[L, ∂x]u

)(
Ψ3|t|∂xu

)
dtdx

∣∣∣∣∣∣ ≤ 1
8λ‖S(∇xu|Ψ3)‖2

2 + Cκ‖Ñ(∇u|Ψ3)‖2
2

+ C

¨

Ω

|∇ϕu|2|∇xΨ|2Ψ dtdx

|t|n−d−2 , (5.6)

for any tangential derivative ∂x. So we fix a tangential directional derivative ∂x, and by 
(5.4) and then integration by parts, we have

¨

Ω

(
[L, ∂x]u

)(
(∂xu)Ψ3|t|

)
dtdx =

¨

Ω

(
div(|t|d+1−n∂xA)∇u

)(
Ψ3|t|∂xu

)
dtdx

= −
¨

Ω

(∂xA)∇u · ∇(∂xu)Ψ3 dtdx

|t|n−d−2 −
¨

Ω

(∂xA)∇u · ∇
(
|t|Ψ3)∂xu

dtdx

|t|n−d−1

= I + II. (5.7)

Since |t||∇xA| ∈ CM(κ), the term I is bounded as follows

|I| ≤ 1
8λ‖S(∂xu|Ψ3)‖2

2 + Cλ

ˆ

Ω

|t|2|∇xA|2|∇u|2Ψ3 dt dx

|t|n−d−1

≤ 1
8λ‖S(∂xu|Ψ3)‖2

2 + Cλκ‖Ña(∇u|Ψ3)‖2
2. (5.8)

For II, remark that the special structure of A given in (1.24) implies that the only 
derivatives that hit |t|Ψ3 are tangential derivative, for which ∇x|t| = 0. Therefore,

|II| =

∣∣∣∣∣∣
¨

Ω

(∂xA)∇u · (∇xΨ3)(∂xu) dtdx

|t|n−d−2

∣∣∣∣∣∣
≤
¨

Ω

|t|2|∂xA|2|∇u|2Ψ3 dtdx

|t|n−d
+
¨

Ω

|∇xu|2|∇xΨ|2Ψ dtdx

|t|n−d−2

≤ Cκ‖Ñ(∇u|Ψ3)‖2
2 +

¨

Ω

|∇xu|2|∇xΨ|2Ψ dtdx

|t|n−d−2 . (5.9)

The lemma follows. �
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It remains to estimate the square function of the angular directional derivatives.

Corollary 5.4. Let L be an elliptic operator satisfying (H)λ,κ. For any weak solution 
u ∈ W 1,2

loc (Ω) to Lu = 0 and any radial cut-off function Ψ ∈ C∞
0 (Ω, [0, 1]), we have

3
4λ‖S(∇ϕu|Ψ3)‖2

2 ≤ Cκ‖Ñ(∇u|Ψ3)‖2
2 + C‖S(∇xu|Ψ3)‖2

2

+ C

¨

Ω

|∇ϕu|2|∇xΨ|2Ψ dtdx

|t|n−d−2 + B(|∇ϕu|2, Ψ3), (5.10)

where C > 0 depends only on λ, d, and n.

Proof. Fix an angular directional derivative ∂ϕ. Thanks to Lemma 5.2, it suffices to 
show that

∣∣∣∣∣∣
¨

Ω

(
[L, ∂ϕ]u

)(
Ψ3|t|∂ϕu

)
dtdx +

¨

Ω

|∂ϕu|2∂rΨ3 dt dx

|t|n−d−1

∣∣∣∣∣∣
≤ 1

8λ‖S(∇ϕu|Ψ3)‖2
2 + Cκ‖Ñ(∇u|Ψ3)‖2

2 + C‖S(∇xu|Ψ3)‖2
2

+ C

¨

Ω

|∇xu|2|∇xΨ|2Ψ dtdx

|t|n−d−2 . (5.11)

It will be important to estimate the two terms in the left-hand side of (5.11) together, 
because there will be some cancellation.

We invoke Proposition 2.6 to say that

¨

Ω

(
[L, ∂ϕ]u

)(
Ψ3|t|∂ϕu

)
dtdx =

¨

Ω

(
divx(|t|d+1−n∂ϕA)∇u

)(
Ψ3|t|∂xu

)
dtdx

+ 2
¨

Ω

(∂r∂ϕu)Ψ3(∂ϕu) dt dx

|t|n−d−1 +
¨

Ω

divx(A2∂ϕu)
(
Ψ3∂ϕu

) dt dx

|t|n−d−2

=: I + II + III. (5.12)

By the product rule,

III �
¨

Ω

|∇xA2||∇ϕu||∂ϕu|Ψ3 dtdx

|t|n−d−1 +
¨

Ω

|A2|∇ϕ∇xu||∂ϕu|Ψ3 dtdx

|t|n−d−1 := III1+III2.

Since |t||∇xA2| ∈ CM(κ), the term III1 can be estimated as follows
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III1 ≤ ε

¨

Ω

|∇ϕu|2Ψ3 dtdx

|t|n−d
+ Cε−1κ‖Ñ(∇u|Ψ3)‖2

2

≤ 1
24λ‖S(∂ϕu|Ψ3)‖2

2 + Cλκ‖Ñ(∇u|Ψ3)‖2
2,

by using Proposition 2.7, (3.2), and by taking ε small enough (depending only on λ, d
and n).

Based on the same arguments, the term III2 is bounded by

III2 ≤ ε

¨

Ω

|∇ϕu|2Ψ3 dtdx

|t|n−d
+ Cε−1‖S(∇xu|Ψ3)‖2

2

≤ 1
24λ‖S(∂ϕu|Ψ3)‖2

2 + Cλ‖S(∇xu|Ψ3)‖2
2.

The term I is analogous to the one obtained from the commutator in the proof of 
Corollary 5.3. We repeat quickly the argument. By integration by parts,

I = −
¨

Ω

(∂ϕA)∇u · ∇x(∂ϕu)Ψ3 dtdx

|t|n−d−2 −
¨

Ω

(∂ϕA)∇u · ∇xΨ3 (∂ϕu) dtdx

|t|n−d−1 := I1 + I2.

The first integral is bounded by using the inequality 2ab ≤ εa2 + ε−1b2, and the fact that 
|t||∇ϕA| ∈ CM(κ) we get similarly to (5.8) that

|I1| ≤ 1
24λ‖S(∂ϕu|Ψ3)‖2

2 + Cλκ‖Ñ(∇u|Ψ3)‖2
2.

As for the second integral, we proceed as in (5.9) and we obtain

|I2| ≤ Cκ‖Ñ(∇u|Ψ3)‖2
2 +

¨

Ω

|∇ϕu|2|∇xΨ|2Ψ dtdx

|t|n−d−2 .

The term II cancels out with the “trace” term. Indeed, we have

II =
¨

Ω

∂r|∂ϕu|2Ψ3 dt dx

|t|n−d−1 = −
¨

Ω

|∂ϕu|2∂rΨ3 dt dx

|t|n−d−1

by the integration by parts (Proposition 2.2). Observe that all our computations proved 
the claim (5.11), thus the lemma follows. �

In the following, we combine all the previous results of this section together. We 
recall that ∇ stands for the gradient in cylindrical coordinates. Remember that we write 
respectively ‖S(∇xu|Ψ3)‖2

2 and ‖S(∇ϕu|Ψ3)‖2
2 for the sums of the square functions over 

all tangential derivatives and angular derivatives in L2 norm.
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Lemma 5.5. Let L be an elliptic operator satisfying (H)λ,κ. There exists three constants 
C1, C2, C3 > 0 depending only on λ, d, and n such that for any weak solution u ∈ W 1,2

loc (Ω)
to Lu = 0 and any cut-off radial function Ψ ∈ C∞

0 (Ω, [0, 1]), we have

‖S(∇u|Ψ3)‖2
2 ≤ C1

(¨

Ω

|∇xu|2∂rΨ3 dtdx

|t|n−d−1 + B(|∇xu|2, Ψ3)
)

+ C2 B(|∇ϕu|2, Ψ3)

+ C3

(
κ‖Ña(∇u|Ψ3)‖2

2 +
¨

Ω

|∇u|2|∇xΨ|2Ψ dtdx

|t|n−d−2

)
(5.13)

In addition, if Ψ satisfies (COF)K , we have

‖S(∇u|Ψ3)‖2
2 ≤ CK‖Ñ(∇u|Ψ)‖2

2, (5.14)

where CK depends on λ, n, and K.

Remark 5.6. Remember that the first term in the right-hand side of (5.13) is the “trace” 
term, and all the other terms are meant to disappear when Ψ ↑ 1.

Moreover, we have different constants because the terms that are multiplied by C1
and C2 may be negative. We can say that 1 ≤ C2 ≤ C1 ≤ C3, but nothing more, in 
particular taking C1 = C2 = C3 would probably render the inequality false.

Remark 5.7. The result (5.14) tells us that the sum of the square functions of all 
tangential directional derivatives, angular directional derivatives, and radial direction 
derivatives can be estimated locally by the non-tangential maximal function of the full 
gradient.

Proof. The inequality (5.13) is an immediate consequence of Lemma 5.1, Corollary 5.3, 
and Corollary 5.4.

We turn to the proof of (5.14). Since Ψ satisfies (COF)K , we have

|t||∇Ψ| ≤ K and 1supp ∇Ψ ∈ CM(K), (5.15)

in particular |t||∇Ψ| ∈ CM(K3). We deduce that

¨

Ω

|∇u|2|∇xΨ|2Ψ dtdx

|t|n−d−2 +
¨

Ω

|∇xu|2|∂rΨ3| dtdx

|t|n−d−1

≤ C

¨

Ω

|∇u|2
[
|t|2|∇Ψ|2 + |t||∇Ψ|

]
Ψ dtdx

|t|n−d
≤ CK3‖Ñ(∇u|Ψ)‖2

2, (5.16)

by (5.15) and the Carleson inequality (3.3).
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Consequently, it suffices to show for any V ∈ L2
loc(Ω) and δ ∈ (0, ∞),

|B(|V |2, Ψ3)| ≤ δ‖S(V |Ψ3)‖2
2 + Cδ−1‖Ñ(V |Ψ)‖2

2 (5.17)

because then (5.14) follows easily by choosing ε small enough. From the definition of 
B(., .), see (5.2), and the product rule, we have

|B(|V |2, Ψ3)| ≤
¨

Ω

|V ||∂rV ||∂rΨ|Ψ2 dtdx

|t|n−d−2 + 1
2

¨

Ω

|V |2|∂rΨ|Ψ2 dtdx

|t|n−d−1

≤ δ‖S(V |Ψ3)‖2
2 + Cδ−1

¨

Ω

|V |2|∂rΨ|2Ψ dtdx

|t|n−d−2 + 1
2

¨

Ω

|V |2|∂rΨ|Ψ2 dtdx

|t|n−d−1 . (5.18)

By using again (5.15) and the Carleson inequality, the last two terms of (5.18) are 
bounded by K3‖Ñ(V |Ψ)‖2

2. Hence (5.17) follows. �
Let us get a little bit further, since it will help us when we pass from local to global 

estimates.

Lemma 5.8. Let L be an elliptic operator satisfying (H)λ,κ. For any weak solution u ∈
W 1,2

loc (Ω) to Lu = 0, any cut-off function Ψ ∈ C∞
0 (Ω, [0, 1]) satisfying (COF)K , any 

δ ∈ (0, 1), we have

|B(|∂ru|2, Ψ3)| = 1
2

∣∣∣∣∣∣
¨

Ω

(
|∂ru|2 + |t|∂r(|∂ru|2)

)
∂rΨ3 dt dx

|t|n−d−1

∣∣∣∣∣∣
≤ (δ + δ−1K2κ)‖Ñ(∇u|Ψ)‖2

2 + Cδ−1K2‖S(∇u|Ψ3)‖2
2,

where C depends on λ, n, δ and K + M + κ.

Proof. The equality is just the product rule and the definition of B(|∂ru|2, Ψ3), see (5.2). 
The bound∣∣∣∣∣∣

¨

Ω

|∂ru|2∂rΨ3 dt dx

|t|n−d−1

∣∣∣∣∣∣ ≤ (δ + δ−1K2κ)‖Ñ(∇u|Ψ)‖2
2 + Cδ−1K2‖S(∇u|Ψ3)‖2

2

was established in (3.6). It remains to show a bound on

I :=

∣∣∣∣∣∣
¨

∂r(|∂ru|2)∂rΨ3 dt dx

|t|n−d−2

∣∣∣∣∣∣ ,

Ω



46 Z. Dai et al. / Journal of Functional Analysis 284 (2023) 109903
but that is similar to (5.18). Indeed, we use |t||∇Ψ| ∈ CM(K), (3.3), and the inequality 
ab ≤ δa2 + b2/4δ to obtain

I = 2

∣∣∣∣∣∣
¨

Ω

(∂2
r u)(∂ru)∂rΨ3 dt dx

|t|n−d−2

∣∣∣∣∣∣ ≤ δ‖Ñ(∂ru|Ψ)‖2
2 + CKδ−1‖S(∂ru|Ψ3)‖2

2.

The lemma follows. �
Lemma 5.9. Let κ ∈ (0, 1) and let L be an elliptic operator satisfying (H)λ,κ. Take 
Ψ ∈ C∞

0 (Ω) satisfying (COF)K . There exist four constants c0, C1, C2, C3 > 0 depending 
on λ and n - the first one being small and the last three being large - such that, after 
defining

|∇u|2κ := C1|∇xu|2 + C2|∇ϕu|2 + κ1/2c0K−2|∂ru|2,

we have, for any weak solution u ∈ W 1,2
loc (Ω) to Lu = 0, that

‖S(∇u|Ψ3)‖2
2 ≤ C1

¨

Ω

|∇xu|2∂rΨ3 dtdx

|t|n−d−1 + B(|∇u|2κ, Ψ3)

+ C3

(
κ‖Ñ(∇u|Ψ3)‖2

2 +
¨

Ω

|∇u|2|∇xΨ|2Ψ dtdx

|t|n−d−2

)
. (5.19)

Proof. By Lemma 5.5, we have three constants C ′
1, C ′

2, C ′
3 depending only on λ, d, and 

n such that

‖S(∇u|Ψ3)‖2
2 ≤ C ′

1

(¨

Ω

|∇xu|2∂rΨ3 dtdx

|t|n−d−1 + B(|∇xu|2, Ψ3)
)

+ C ′
2 B(|∇ϕu|2, Ψ3)

+ C ′
3

(
κ‖Ñ(∇u|Ψ3)‖2

2 +
¨

Ω

|∇u|2|∇xΨ|2Ψ dtdx

|t|n−d−2

)
. (5.20)

We take δ = C ′
3κ1/2 in Lemma 5.8 and we obtain that

−B(|∂ru|2, Ψ3) ≤ C ′
3κ1/2‖Ñ(∇u|Ψ)‖2

2 + C0κ−1/2K2‖S(∇u|Ψ3)‖2
2,

for some C0 depending on λ, n, that is

−1
2‖S(∇u|Ψ3)‖2

2 ≤ C ′
3κ‖Ñ(∇u|Ψ)‖2

2 + κ1/2

2C0K2 B(|∂ru|2, Ψ3). (5.21)

Add (5.21) to (5.20) implies
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1
2‖S(∇u|Ψ3)‖2

2 ≤ C ′
1

¨

Ω

|∇xu|2∂rΨ3 dtdx

|t|n−d−1

+ B(C ′
1|∇xu|2 + C ′

2|∇ϕu|2 + (2C0K2)−1κ1/2|∂ru|2, Ψ3)

+ 2C ′
3

(
κ‖Ñ(∇u|Ψ3)‖2

2 +
¨

Ω

|∇u|2|∇xΨ|2Ψ dtdx

|t|n−d−2

)
. (5.22)

The lemma follows by taking c0 = (2C0)−1, C1 = 2C ′
1, C2 = 2C ′

2, and C3 = 4C ′
3. �

6. Global estimates for energy solutions

We define the weighted homogeneous Sobolev space W as

W := {u ∈ L1
loc(Ω), ∇u ∈ L2(Ω, |t|d+1−n}

which is equipped with the semi-norm

‖u‖W :=

⎛⎝¨
Ω

|∇u|2 dt dx

|t|d+1−n

⎞⎠
1
2

.

The space H := Ẇ 1/2,2(Rd) is the usual homogeneous space of traces on the boundary 
∂Ω = Rd, equipped with the usual semi-norm

‖g‖H :=

⎛⎜⎝ ¨

Rd×Rd

|f(x) − f(y)|2
|x − y|d+1

⎞⎟⎠
1
2

.

The trace of a function u ∈ W is defined for any x ∈ Rd as

Tr(u)(x) := lim
ε→0

¨
−−

B(x,ε)∩Ω

u dy dt

if the limit exists and +∞ otherwise. Equivalent definitions of trace exist, and we choose 
the one constructed in [6] just because we shall refer to this manuscript for basic results.

We know from [6]5 that Tr is a bounded linear operator from W to H. Moreover, 
‖.‖W is a norm for the subspace W0 := {u ∈ W, Tr(u) = 0}, and (W0, ‖.‖W ) is complete. 
We can apply Lax-Milgram’s theorem to obtain weak solution to Lu = 0 with prescribed 
data g ∈ H.

5 when d < n − 1, the case d = n − 1 being general knowledge.
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Lemma 6.1 (Lemma 9.1 and Lemma 9.4 (v) in [6]). Let L = − div[|t|d+1−nA∇] be an 
operator satisfying (1.1). For each g ∈ H, there exists a unique function ug ∈ W such 
that

¨

Ω

A∇ug · ∇v
dt dx

|t|n−d−1 = 0 for any v ∈ W0

and Tr(ug) = g. Moreover, we have the bound

‖ug‖W ≤ C‖g‖H

with a constant C that depends only on the elliptic constant λ in (1.1).
When g ∈ H is continuous and compactly supported, the solution given by this lemma 

and the solution given by (1.3) are the same.

In this section, we assume that u ∈ W , and we observe to which extent we can take 
non-compact cut-off functions in the local estimates given in Lemma 5.5, Lemma 5.9, 
and Lemma 4.6, and thus obtain global estimates.

Lemma 6.2. Let u ∈ W . For any ε > 0, we have

‖Ñ(u|Ψε)‖2
2 ≤ Cε−1‖u‖2

W

where C depends only on d and n.

Proof. Take x ∈ Rd and (z, r) ∈ Γ(x) ∩ {r ≥ ε/2}. Then

|(∇u)W (z, r)|2 :=
¨
−−

W (z,r)

|∇u|2 dt dy � ε−1
¨

W (z,r)

|∇u|2 dt dy

|t|n−1 ≤ ε−1
¨

Γ̂∗(x)

|∇u|2 dt dy

|t|n−1

where Γ̂∗(x) := {(y, t) ∈ Ω, |y − x| ≤ C∗|t|} and C∗ is a large constant that depends 
only on d and n and is such that W (z, r) ∈ Γ̂∗(x) for all (z, r) ∈ Γ(x). We deduce that

Ñ(u|Ψε)(x) � ε−1
¨

Γ̂∗(x)

|∇u|2 dt dy

|t|n−1

and then

‖Ñ(u|Ψε)‖2
2 � ε−1

¨

Ω

|∇u|2 dt dy

|t|n−d−1 = ε−1‖u‖2
W

by a simple variant of (3.1). �
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When u ∈ W , we can see that ‖Ñ(u)‖2
2 will explode only when we get close to the 

boundary. We can use the monotone convergence of ΨB,l,ε ↑ Ψε as B ↑ Rd and l → ∞, 
and then take Ψ = Ψε in (5.14), which shows that ‖S(∇u|Ψε)‖2

2 is also finite and bounded 
by Cε−1‖u‖2

W .
Moreover, we can also take Ψ = Ψε in (5.19). Indeed, any term containing Ψε∇ΨB

can be bounded by Cε−1‖∇u‖2
L2(Rd\B,|t|d+1−ndtdx) and any term containing ∇Ψl can be 

bounded by Cl−1‖u‖2
W , and both those terms converge to 0 as B ↑ Rd and l → ∞. It 

means that the terms in (5.19) that contain either ∇ΨB or ∇Ψl with eventually disappear 
when we take the limit ΨB,l,ε ↑ Ψε. Let us give a bit of details. In the left-hand side of 
(5.19), we first have

¨

Ω

|∇xu|2∂rΨ3
B,l,ε

dtdx

|t|n−d−1

≤
¨

Ω

|∇xu|2∂rΨ3
ε

dtdx

|t|n−d−1 +
¨

Ω

|∇xu|2Ψε|∂rΨB | dtdx

|t|n−d−1 +
¨

Ω

|∇xu|2|∂rΨl|
dtdx

|t|n−d−1

≤
¨

Ω

|∇xu|2∂rΨ3
ε

dtdx

|t|n−d−1 + Cε−1‖∇u‖2
L2(Rd\B,|t|d+1−ndtdx) + Cl−1‖u‖2

W

−→
¨

Ω

|∇xu|2∂rΨ3
ε

dtdx

|t|n−d−1 as B ↑ Rd and l → ∞.

The terms κ‖Ñ(∇u|Ψ3
B,l,ε)‖2

2 are easily bounded by κ‖Ñ(∇u|Ψ3
ε)‖2

2 and

¨

Ω

|∇u|2|∇xΨB,l,ε|2ΨB,l,ε
dtdx

|t|n−d−2 ≤ Cl

r2
B

‖∇u‖2
L2(Rd\B,|t|d+1−ndtdx) −→ 0

as long as we always take the radius rB of B bigger than l. The last term in the left-hand 
side of (5.19) is B(|∇u|2κ, Ψ3

B,l,ε). We have

|B(|∇u|2κ, Ψ3
B,l,ε) − B(|∇u|2κ, Ψ3

ε)|

�
¨

Ω

(
|∇u|2 + t|∇∇u||∇u|

) (
Ψ3

ε |∂rΨ3
B,l| + |1 − Ψ3

B,l||∂rΨ3
ε |
) dtdx

|t|n−d−2

�
¨

Ω

(
|∇u|2 + t2|∇∇u|2

) (
Ψ3

ε |∂rΨ3
B,l| + |1 − Ψ3

B,l||∂rΨ3
ε |
) dtdx

|t|n−d−2

−→ 0 as B ↑ Rd and l → ∞

since ‖u‖2
W + ‖S(∇u|Ψε)‖2

2 < +∞. A similar argument gives that the term
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∥∥∥∥( −
ˆ

Bl(.)

−
ˆ

l≤|s|≤2l

|∇u|2Ψ3
Bds dy

)1/2∥∥∥∥2

2
≈
ˆ

Rd

 

l≤|s|≤2l

|∇u|2Ψ3
B ds dy

that appears in Lemma 4.6 is bounded by Cl−1‖u‖W and also converges to 0 as l goes 
to infinity.

From those observations, Lemmas 5.9 and 4.6 combined with the fact that u ∈ W

entail the following estimates.

Lemma 6.3. Let κ ∈ (0, 1) and let L be an elliptic operator satisfying (H)λ,κ. There exist 
four constants c0, C1, C2, C3 > 0 depending on λ and n such that, if

|∇u|2κ := C1|∇xu|2 + C2|∇ϕu|2 + c0κ1/2|∂ru|2,

then for any weak solution u ∈ W to Lu = 0 and for any ε > 0, we have that

‖S(∇u|Ψ3
ε)‖2

2 ≤ C1

¨

Ω

|∇xu|2∂rΨ3
ε

dtdx

|t|n−d−1 + B(|∇u|2κ, Ψ3
ε) + C3κ‖Ñ(∇u|Ψ3

ε)‖2
2 (6.1)

and

‖Ñ(∇u|Ψ3
ε)‖2

2 ≤ C3‖S(∇u|Ψε)‖2
2 + C3κ‖Ñ(∇u|Ψε)‖2

2. (6.2)

Moreover, all the quantities that appear in (6.1) and (6.2) are finite and bounded by 
Cε−1‖u‖2

W .

Note that we only assume that κ ∈ (0, 1) in Lemma 6.3 for a technical reason (that 
comes from the fact that δ ∈ (0, 1) in Lemma 5.8) and that condition can probably be 
removed. But all this does not really matter because the proof of our next result (and 
thus the proof of the main result of the article) requires κ to be small anyway.

Theorem 6.4. Take λ > 0. There exists κ ∈ (0, 1) small enough (depending only on λ, d
and n) such that if L := − div(|t|d+1−nA∇) is an elliptic operator satisfying (H)λ,M,κ, 
then for any weak solution u ∈ W to Lu = 0 we have that

‖Ñ(∇u)‖2
2 ≤ C lim sup

ε→0

ˆ

Rd

 

ε/2≤|s|≤ε

|∇xu|2 ds dy, (6.3)

where C > 0 depends only on λ, d, and n.
Neither the right-hand side nor the left-hand side of (6.3) are guaranteed to be finite, 

but the left-hand side is finite as long as the right-hand side is. More precisely, there 
exists a sequence εk → 0 such that
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‖Ñ(∇u|Ψ9
εk

)‖2
2 ≤ C

ˆ

Rd

 

εk/2≤|s|≤εk

|∇xu|2 ds dy. (6.4)

Proof. The bound (6.3) is an immediate consequence of (6.4), so we just need to establish 
the later.

Remember that Ψε is constructed from a smooth function φ. All the constants depend
on the fixed φ, but we have a bit of freedom (as long as we do not take φ so that Ψε

satisfies (COF) with a controlled constant K. Therefore, we can replace Ψε by Ψ3
ε in 

Lemma 6.3 and thus (6.2) gives that

‖Ñ(∇u|Ψ9
ε )‖2

2 ≤ C3‖S(∇u|Ψ3
ε )‖2

2 + C3κ‖Ñ(∇u|Ψ3
ε)‖2

2.

Observe also that ∂rΨ3
ε is non-negative, supported in {ε/2 ≤ |s| ≤ s}, and is bounded 

by Cε−1, so

0 ≤
¨

Ω

|∇xu|2∂rΨ3
ε

dtdx

|t|n−d−1 �
ˆ

Rd

 

ε/2≤|s|≤ε

|∇xu|2 ds dy.

The two last bounds combined with (6.1) entail that

‖Ñ(∇u|Ψ9
ε)‖2

2 ≤ C4

( ˆ

Rd

 

ε/2≤|s|≤ε

|∇xu|2 ds dy+B+(|∇u|2κ, Ψ3
ε)+κ‖Ñ(∇u|Ψ3

ε )‖2
2

)
, (6.5)

where B+(v, Φ) is the positive part of B(v, Φ) and C4 depends only λ, n. The proof 
consists to say that if κ is small enough, there exists ε > 0 as close as 0 as we want such 
that

B+(|∇u|2κ, Ψ3
ε) = 0 and 2C4κ‖Ñ(∇u|Ψ3

ε )‖2
2 ≤ ‖Ñ(∇u|Ψ9

ε )‖2
2. (6.6)

For such values of ε, the bound (6.5) easily self-improves to (6.4), which is exactly our 
objective.

The rough strategy of the proof consists in studying the quantity

ω(ε) :=
¨

Ω

|∇u|2κ∂rΨ3
ε

dtdx

|s|n−d−2 , (6.7)

which is non-negative since Ψε is increasing in r. Since ∂rΨε is supported in the strip 
{ε/2 ≤ |s| ≤ ε} and since ∂rΨε � |s|−1, we deduce that

ω(ε) �
ˆ

d

ˆ
|∇u|2κ

ds dy

|s|n−d−1 �
ˆ

d

ˆ
|∇u|2 ds dy

|s|n−d−1

R ε/2≤|s|≤ε R ε/2≤|s|≤ε
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with constants that depends only on λ, d and n. But the right-hand side above converges 
to 0 as ε goes to 0 (because it is the tail of ‖u‖2

W < +∞). So we necessarily have that

lim
ε→0

ω(ε) = 0. (6.8)

We shall prove that if (6.6) fails for every ε in a small neighborhood (0, ε0] of zero, then 
(6.8) does not hold. So by contraposition, (6.8) implies the existence of ε arbitrary close 
to zero such that (6.6) holds.

Step 1: For this step, we look at the implications of the fact that

B+(|∇u|2κ, Ψ3
ε) > 0. (6.9)

We write IB for the values ε ∈ (0, ∞) for which (6.9) holds. Due to the fact that ∇u ∈
L2

loc(Ω) and ∂r(Ψ3
ε ) is smooth (and compactly supported in Ω), we have that the domain 

IB is open.
Recall that Ψε := φ( ε

|t| ), where φ : R+ → [0, 1] such that φ ≡ 1 on [0, 1] and φ ≡ 0 on 
[2, +∞). We compute

∂rΨε = − ε

|t|2 φ′, ∂r∂rΨε = 2ε

|t|3 φ′ + ε2

|t|4 φ′′,

and we notice that

∂

∂ε
(∂rΨε) = − 1

|t|2 φ′ − ε

|t|3 φ′′ = −|t|
ε

∂2
r Ψε − 1

ε
∂rΨε = −1

ε
∂r(|t|∂rΨε).

The same argument shows that ∂
∂ε

(∂rΨ3
ε) = −ε−1∂r(|t|∂rΨ3

ε). So we deduce

ω′(ε) = −1
ε

¨

Ω

|∇u|2κ∂r

(
|t|∂rΨ3

ε

) dt dy

|t|n−d−2 = 1
ε

¨

Ω

∂r

(
|t|∇u|2κ

)
∂rΨ3

ε

dt dy

|t|n−d−2

= −2
ε

B(∇u|2κ, Ψ3
ε).

By the integration by parts in r (see Proposition 2.2), the function ε �→ ω(ε) is decreasing 
on IB, that is

ω(a) > ω(b) whenever (a, b) ⊂ IB. (6.10)

Step 2: Now, we look at the implications of the fact that ‖Ñ(∇u|Ψ3
ε )‖2 �

‖Ñ(∇u|Ψ9
ε )‖2.

We write α for the universal constant 5/4. The exact value of α does not matter, as 
long as we have α−1 < 1 < α < α3 < 2. We have a bit of freedom on the function φ that 
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is used to construct Ψε (see Definition 4.3). It is always possible to choose φ such that 
φ(x) = 2 − x when

1 < α ≤ x ≤ max{2α−1, α3} < 2.

For the same values of x, we have φ′ = 1. If ε′ ≥ αε, we have Ψε ≥ 2 − 2α−1) > 0 on 
supp Ψε′ , hence ε′∂rΨ3

ε′ � Ψ9
ε and

(ε′)−1ω(ε′) � ε′
¨

Ω

|∇u|2∂rΨ3
ε′

ds dy

|s|n−d
� ‖Ñ(∇u|Ψ9

ε)‖2
2.

So there exists C ′ > 0 depending only on d, n (and α) such that

sup
αε≤ε′≤α2ε

ω(ε′) ≤ C ′ε‖Ñ(∇u|Ψ9
ε)‖2

2. (6.11)

By the triangle inequality, we have

‖Ñ(∇u|Ψ3
ε )‖2 − ‖Ñ(∇u|Ψ9

ε)‖2 ≤ ‖Ñ(∇u|(1 − Ψ6
ε)Ψ3

ε)‖2

But since (1 − Ψ6
ε)Ψ3

ε is supported in the strip {ε/2 ≤ |s| ≤ ε}, it is fairly easy to see 
that

‖Ñ(∇u|(1 − Ψ6
ε)Ψ3

ε)‖2
2 �

ˆ

Rd

 

ε/2≤|s|≤ε

|∇u|2 ds dy

Take now ε′ ∈ [α−2ε, α−1ε]. With our choice of φ and α, we have that Ψε + ε′∂rΨε′ is 
bounded from below by a uniform constant (i.e. depend only on α) on [ε/2, ε]. It implies 
that
ˆ

Rd

 

ε/2≤|s|≤ε

|∇u|2 ds dy � ‖Ñ(∇u|Ψ9
ε )‖2

2 + (ε′)−1
¨

Ω

|∇u|2∂rΨ3
ε′

ds dy

|s|n−d−2

� ‖Ñ(∇u|Ψ9
ε )‖2

2 + κ−1/2(ε′)−1ω(ε′), (6.12)

where, in the last line, the coefficient κ−1/2 appears because ω is defined using the |∇u|2κ. 
By combining the last three computations, we obtain the existence of a constant C ′′ > 0
depending on n and λ (and α) such that

ε‖Ñ(∇u|Ψ3
ε )‖2

2 ≤ C ′′ε‖Ñ(∇u|Ψ9
ε )‖2

2 + C ′′κ−1/2 inf
ε/α2≤ε′≤ε/α

ω(ε′). (6.13)

We say that ε ∈ IN if

‖Ñ(∇u|Ψ3
ε )‖2

2 > C ′′(1 + κ−1/2C ′)‖Ñ(∇u|Ψ9
ε)‖2

2. (6.14)
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If ε ∈ IN , then we have by (6.11), and then (6.13)–(6.14) that

sup
αε≤ε′≤α2ε

ω(ε′) ≤ C ′ε‖Ñ(∇u|Ψ9
ε )‖2

2 < inf
ε/α2≤ε′≤ε/α

ω(ε′). (6.15)

Step 3: We want to prove that the point 0 is in the closure of

(0, +∞) \ (IB ∪ IN ). (6.16)

Indeed, we take κ (that depends on λ, d, and n) such that 2CMκC ′′(1 + κ−1/2C ′) ≤ 1, 
and then we have (6.6) for any value of ε ∈ (0, +∞) \ (IB ∪ IN ). If the claim (6.16) is 
true, then we can find values of ε ∈ (0, +∞) \ (IB ∪IN ) arbitrary close to 0, and for those 
values, (6.5) self-improves to the desired bound (6.4).

The argument is a bit technical because we have to combine (6.10) - which shows that 
ω(ε) ‘continuously increases’ as ε → 0 - with (6.15) - which implies that ω(ε) increases 
by ‘jumps’ when ε get closer to 0. The quantity ω(ε) may not be increasing as ε → 0, 
but a subsequence will be increasing, and that is enough for us.

We decided the write the (simpler) arguments that show that zero is in the closure of 
both (0, +∞) \ IB and (0, +∞) \ IN . These simpler arguments are not necessary for the 
proof, but we hope it will help the reader understand later what we are doing when we 
look at (0, +∞) \ (IB ∪ IN ).

Step 3(a): We claim that 0 is in the closure of (0, +∞) \ IB. Indeed, if it is not the 
case, then there exists ε0 such that (0, ε0] ∈ IB. The bound (6.10) implies then that 
ω(ε) ≥ ω(ε0/2) > 0 for all ε ∈ (0, ε0/2), which contradicts (6.8).

Step 3(b): We claim that 0 is in the closure of (0, +∞) \ IN . Indeed, if it is not the 
case, then there exists ε0 such that (0, ε0] ∈ IN . The bound (6.15) implies then that 
ω(ε/α2k+1) ≥ ω(ε0/α) > 0 for all k ∈ N, which contradicts (6.8).

Step 4: The argument is similar to the one done in the proof of Lemma 7.8 from [17], 
but we try to give a clearer presentation.

We assume that (0, ε0] ⊂ IB ∪ IN , and we want to prove that (6.8) does not hold. 
Because of Step 3(a), we can also assume that zero is in the closure of (0, ∞) \IB, meaning 
that for any 0 < ε < ε0, we have

inf{ε′ > 0, (ε′, ε) ⊂ IB} > 0. (6.17)

We write

δ(ε) := inf
ε≤ε′≤αε

ω(ε′)

and we want to construct εk such that εk+1 ≤ εk/α2 and δ(εk+1) > δ(εk).

Induction step. We have (0, εk] ⊂ IB ∪ IN .
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(1) If we have (εk/α2, εk) ⊂ IB, then by (6.17), we have

0 < εk+1 := inf{ε, (ε, εk) ⊂ IB} ≤ εk/α2.

Now, thanks to (6.10), we also get

δ(εk+1) := inf
εk+1≤ε′≤αεk+1

ω(ε′) = ω(αεk+1) > ω(εk) ≥ δ(εk).

(2) If (1) is false, then take again ε̃ := inf{ε, (ε, ε0) ⊂ IB} > ε0/α2. Since IB is open, we 
necessarily have ε̃ /∈ IB, which forces ε̃ ∈ IN . Since εk/α2 < ε̃ ≤ εk, the intersection 
[αε̃, α2ε̃] ∩ [εk, αεk] is not empty and contains ˜̃ε. So if we choose εk+1 = ε̃/α2 we have 
by (6.15) that

δ(εk+1) > sup
αε̃≤ε′≤α2 ε̃

ω(ε′) ≥ ω(˜̃ε) ≥ δ(εk).

By construction, the value of ω(εk) will be bigger than δ(ε1) > 0 for any k ≥ 1, which 
means that the convergence (6.8) does not hold. To summarize, we established that if 
zero is not in the closure of (0, +∞) \ (IB ∪ IN ), which means that there exists ε0 > 0
such that (0, ε0] ⊂ IB ∪ IN , then (6.8) fails. By contraposition, the convergence (6.8) -
which holds because u ∈ W - implies that zero is in the closure of (0, +∞) \ (IB ∪ IN ). 
The theorem follows. �
7. Approximation by operators with Lipschitz coefficients

With Theorem 6.4, we get closer to Theorem 1.5, which is our objective. We “just” 
need to prove that if ug ∈ W is the solution given by Lemma 6.1 for g ∈ H satisfying 
‖∇g‖L2(Rd) < ∞, we have

lim sup
ε→0

ˆ

Rd

 

ε/2≤|s|≤ε

|∇xu|2 ds dy ≤ C

ˆ

Rd

|∇g|2 dy. (7.1)

However, the above convergence is not a simple fact. In some sense, it is a weaker 
version of Theorem 1.5 that only consider the values of u as close as the boundary 
as we want. The strategy consists of smoothing the coefficients of A in a small tube 
close to the boundary while satisfying (H) with uniform constants. For those operators, 
the convergence (7.1) hence Theorem 1.5 will hold with uniform constants. But since 
the coefficients are modified only on a small enough set, the solutions to the modified 
operators will converge to the solution of the initial operator, and we eventually are able 
to prove Theorem 1.5.

First, we show that the weak solutions are in W 2,2
loc (see Proposition 7.1), which means 

that taking second derivative is allowed, and so the square functional S and its local 
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version make sense. We should have given this argument long ago, but this result is 
already well known, and we decided to write it just as an introduction for Proposition 7.3. 
In Proposition 7.3, we establish a global bound for the tangential derivatives: we show 
that if the boundary data and the coefficients of A are smooth enough, any weak solution 
satisfies ∇xu ∈ W . As a corollary (Proposition 7.5) we prove a technical lemma stating 
that the “approximation of the trace” of a solution converges to the actual trace.

In the end of the section (Theorem 7.6), we establish that any elliptic operator sat-
isfying (H) can be approximated by operators with smooth enough coefficients (so that 
the global estimates given in Proposition 7.3 apply) that satisfy (H) with constants 
controlled by the ones of the approximated operator.

In the next section, we establish the convergence of solutions of approximating op-
erators and then we combine Theorem 6.4, Theorem 7.6, and Proposition 7.5 to obtain 
Theorem 1.5.

Proposition 7.1. Let L := − div[A∇] be an elliptic operator defined on D such that A

satisfies (1.1) and ∇A ∈ L∞
loc(D). Then any weak solution u ∈ W 1,2

loc (D) to Lu = 0 in D
also lies in W 2,2

loc (D).

Remark 7.2. Observe that the quantities ∇∂x, ∇∂ϕ and ∇∂r are a linear combination of 
second order derivatives and first order derivatives, so those derivatives are (locally in 
L2) well defined for any weak solution to Lu = 0 for which L satisfies (H).

Proof. The proof is classical, but we could not pinpoint a good reference, so since the 
proof is quite simple and will be a good introduction to the global analogue, we decided 
to write it.

Take E � D and then Ψ ∈ C∞
0 (D) such that Ψ ≡ 1 on E and 0 ≤ Ψ ≤ 1. Pick a unit 

vector e ∈ Rn. Define when 0 < h < dist(supp Ψ, Dc)/2 the operator Δh
e as

Δh
e u := u(X + he) − u(X)

h
∈ W 1,2

loc (D)

We want to prove that

Ih =
¨

D

|∇(Δh
e u)|2Ψ2 dX ≤ CE,u, (7.2)

with a bound CE,u independent of h. Indeed, once the claim (7.2) is established, by the 
weak compactness of the unit ball in L2 we can extract a sequence hm ∈ (0, 1) such 
that ∇(Δhm

e u) converges weakly in L2(E) (and thus in the sense of distribution). But 
we know that ∇(Δhm

e u) has to converge to ∇∂eu in the sense of distribution - where of 
course ∂e is the derivative in the direction e - so the weak limit of the ∇(Δhm

e u) is ∇∂eu, 
which is now in L2(E) and satisfies 

´
E

|∇∂eu|2 dX ≤ CE,u. Since we have the bound for 
every compact subset E and any direction e, we conclude that W 2,2

loc (D) as desired.
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So it remains to prove (7.2). Since u is a weak solution to − div A∇u = 0 in D, and 
that X → Ψ(X − he) still lies in C∞

0 (D), we deduce

0 =
¨

D

A(X + he)∇u(X + he) − A(X)∇u(X)
h

· ∇[Ψ2Δe
hu] dX

=
¨

D

(Δh
e A)∇u(X + he) · ∇[Ψ2Δe

hu] dX +
¨

D

A∇Δh
e u · ∇[Ψ2Δe

hu] dX

We use the product rule to write ∇[Ψ2Δe
hu] = 2∇Ψ (ΨΔe

hu) + ∇Δe
hu (Ψ2) we obtain

Ih = −2
¨

D

A∇Δh
e u · ∇Ψ (ΨΔe

hu) dX − 2
¨

D

(Δh
e A)∇u(X + he) · ∇Ψ (ΨΔe

hu) dX

−
¨

D

(Δh
e A)∇u(X + he) · ∇Δe

hu (Ψ2) dX

We use the identity ab ≤ εa2 + b2/4ε on each of the three terms of the right-hand side 
above, and we group the similar terms. Afterwards, we get that

Ih ≤ 1
2Ih + C

⎛⎝(1 + ‖A‖2
∞)

¨

D

|Δe
hu|2|∇Ψ|2 dX + ‖∇A‖2

L∞(F )

¨

D

|∇u(X + he)|2Ψ2 dX

⎞⎠
where F � D is the set of points at distance at most dist(supp Ψ, Dc)/2 from supp Ψ. 
Since Ih is finite, we hide the term 1

2Ih in the right-hand side, as for the two other terms, 
we observe that they are easily bounded - up to a constant that depends only on A and 
Ψ - by 

˜
F

|∇u|2 dX. The claim (7.2) and the proposition follows. �
The global analogue of the previous proposition is the following result.

Proposition 7.3. Let L := − div(|t|d+1−nA∇) be an elliptic operator that satisfies the 
uniform ellipticity condition (1.1). Suppose that u ∈ W is a weak solution of Lu = 0
and Tr(u) = g ∈ C∞

0 (∂Ω). If ‖∇Ax‖L∞(Ω) < ∞, then ∇xu ∈ W . More precisely,

¨

Ω

|∇∇xu|2 dt

|t|n−d−1 dx �
ˆ

∂Ω

|∇g|2dx +
ˆ

∂Ω

|∇∇g|2dx +
¨

Ω

|∇u|2 dtdx

|t|n−d−1 , (7.3)

where the implicit constant depends on elliptic constant λ, the dimensions d and n, and 
‖∇A‖L∞(Ω).

Remark 7.4. In the codimension 1 case, where we do not have angular derivatives, we 
can deduce a bound on the full set of second derivatives by using the equation (see 
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Proposition 2.3, that allow us to write the second order radial derivative ∂2
r of a solution 

as a linear combination of first order derivatives and ∇∇x). However, we did not succeed 
to bound globally the angular derivatives, so we did not succeed to show that ∇u ∈ W .

Proof. Let v(x, t) := u(x, t) −e−|t|g(x). We first notice that e−|t|g ∈ W and Tr(e−|t|g) =
g, hence v ∈ W0. Consider the difference quotient in the tangential direction ei ∈ Rd

such that

Δh
i v(x, t) = v(x + hei, t) − v(x, t)

h
, h 
= 0.

We can easily see that Δh
i v ∈ W0 for each fixed h 
= 0. In particular, the quantity J(v)

defined as

J(v) :=
¨

Ω

|∇Δh
i v|2 dt

|t|n−d−1 dx,

is finite. We turn to the bound of J(v). By uniform ellipticity of A,

J(v) �
¨

Ω

A∇(Δh
i v) · ∇(Δh

i v) dt

|t|n−d−1 dx. (7.4)

Since Δh
i v ∈ W0 and u is a weak solution to the equation Lu = 0, we have,

0 =
¨

Ω

A(x + hei, t)∇u(x + hei, t) − A(x, t)∇u(x, t)
h

· ∇(Δh
i v) dt

|t|n−d−1 dx

=
¨

Ω

(Δh
i A)∇u(x + hei, t) · ∇(Δh

i v) dt

|t|n−d−1 dx

+
¨

Ω

A(x, t)
(

Δh
i ∇u(x, t)

)
· ∇(Δh

i v) dt

|t|n−d−1 dx.

Since two operators Δh
i , ∇ commute and u(x) = v(x) + e−|t|g(x), the identity above 

implies that

J = −
¨

Ω

A∇(e−|t|Δh
i g) · ∇(Δh

i v) dt

|t|n−d−1 dx

−
¨

Ω

(Δh
i A)∇u(x + hei, t) · ∇(Δh

i v) dt

|t|n−d−1 dx = J1 + J2.
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The term J1 can be bounded by

J1 ≤
‖A‖2

L∞(Ω)

4ε

¨

Ω

|∇(e−|t|Δh
i g)|2 dt

|t|n−d−1 dx + εJ(v),

and

J2 ≤ εJ(v) +
‖Δh

i A‖2
L∞(Ω)

4ε

¨

Ω

|∇u(x + hei, t)|2 dt

|t|n−d−1 dx.

The term εJ(v) can be hidden to the left-hand side of (7.4) by choosing ε small enough. 
Moreover, the mean value inequality infers that ‖Δh

i A‖∞ ≤ ‖∇xA‖∞. Consequently,

J(v) �
¨

Ω

|∇(e−|t|Δh
i g)|2 dtdx

|t|n−d−1 +
¨

Ω

|∇u(x + hei, t)|2 dtdx

|t|n−d−1 := J3 + J4. (7.5)

After a change of variable, J4 is just ‖u‖2
W =

˜
Ω |∇u|2|t|d+1−ndtdx. The term J3 is 

bounded brutally by using cylindrical coordinate as follows

J3 �

⎛⎝ ∞̂

0

e−2rdr

⎞⎠ ˆ

Rd

(
|Δh

i g|2 + |∇Δh
i g|2

)
dx �

ˆ

Rd

(|∇g|2 + |∇∇g|2) dx. (7.6)

We just prove (7.3) with the rate of change Δh
i instead of the derivative ∂xi

, and with 
a constant independent of h. So by the same compactness argument as the one given in 
Proposition 7.1, (7.3) follows. �

We study the sufficient conditions to define Tr(∇xu) in the next proposition.

Proposition 7.5. Let L := − div(|t|d+1−nA∇) be an elliptic operator that satisfies the 
uniform ellipticity condition (1.1). Suppose that u ∈ W is a weak solution of Lu = 0 and 
Tr(u) = g ∈ C∞

0 (∂Ω). If ‖∇xA‖L∞(Ω) < ∞, then Tr(∇xu) = ∇g almost everywhere, 
and in particular

lim
ε→0

ˆ

Rd

 

ε/2<|t|≤ε

|∇xu|2 dt dx =
ˆ

Rd

|∇g|2 dx. (7.7)

Proof. The exact definition of trace is not always the same (but it is well known that 
the different definitions are equivalent, as we shall show). We prove the result in the case 
d < n − 1, which has way less background, with the trace introduced in [6]. We let the 
reader check that proof in the case d = n − 1 is analogous with any reasonable notion of 
trace.
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The trace of a function u in W is defined as in [6] by

g(x) = Tr(u)(x) := lim
ε→0

¨
−−

B(x,ε)

u dy dt.

The definition is valid because, |B(x, ε) ∩ Ωc| = 0 when d < n − 1, but that does not 
matter much, because in the case d = n − 1, we can simply extend u ∈ W from Rn

+ to 
Rn by symmetry. If we set gε(x) := −−̃

B(x,ε) u dy dt then (3.24) in [6] shows that

‖gε − g‖L2(Rd) � εα‖u‖W for any α ∈ (0, 1/2). (7.8)

We pick now a smooth nonnegative function θ ∈ C∞
0 (Rd+1) such that θ ≡ 0 outside 

B(0, 14 ) and 
´
Rn θ = 1. We define

θx,ε(y, t) := ε−nθ
(y − x

ε
,

|s| − 3ε/4
ε

)
and then

Trε(u)(x) :=
¨

Rn

θx,ε(y, t)u(y, t) dt dy.

We show that Trε(u) is a good substitute of gε. Indeed, since 
ffl

θx,ε = 1 and θx,ε is 
supported in B(x, ε), we have

| Trε(u)(x) − gε(x)| ≤
¨

Rn

θx,ε|u(y, t) − gε(x)| dy dt �
¨
−−

B(x,ε)

|u(y, t) − gε(x)| dy dt

�

⎛⎜⎝ε2
¨
−−

B(x,ε)

|∇u(y, t)|2 dy dt

⎞⎟⎠
1
2

�

⎛⎜⎝ε1−d

¨

B(x,ε)

|∇u(y, t)|2 dy
dt

|t|n−d−1

⎞⎟⎠
1
2

by using the L2-Poincaré inequality and then (2.13) in [6]. So we have by Fubini’s theorem

‖ Trε(u) − gε‖2
2 = ε1−d

ˆ

Rd

¨

B(x,ε)

|∇u(y, t)|2 dt dy

|t|n−d−1 dx

� ε

¨

Rn

|∇u(y, t)|2 dt dy

|t|n−d−1 = ε‖u‖W . (7.9)

Together with (7.8), we deduce

‖ Trε(u) − Tr(u)‖L2(Rd � εα‖u‖W for any α ∈ (0, 1/2). (7.10)
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The above inequality shows that Trε(u) converges to Tr(u) in L2, so also in the sense 
of distribution. Therefore ∇x Trε(u) converges to ∇ Tr(u) in the sense of distributions. 
Moreover, since ∇xu ∈ W , we similarly have that Trε(∇xu) converges to Tr(∇xu) in the 
sense of distributions. But since we easily have by definition of Trε(u) that

∇x Trε(u) = −
¨

Rn

∇x

[
ε−nθ

(y − x

ε
,

|s| − 3ε/4
ε

)]
u(y, t) dt dy

= −
¨

Rn

∇yθx,ε(y, t)u(y, t) dt dy =
¨

Rn

θx,ε(y, t)∇yu(y, t) dt dy = Trε(∇xu), (7.11)

then by uniqueness of the limit, we deduce that Tr(∇xu) = ∇ Tr(u) = g.
It remains to prove (7.7). Observe that

ˆ

Rd

 

ε/2<|t|≤ε

|∇xu|2 dt dx ≤
ˆ

Rd

¨
−−

W (x,ε)

|∇xu|2 dt dy dx.

The function hε(x) := −−̃
W (x,ε) ∇xu dt dy is similar to Trε(∇xu), so we can repeat the 

argument used to obtain (7.10), and we have

lim
ε→0

ˆ

Rd

∣∣∣∣∣∣∣
¨
−−

W (x,ε)

∇xu dt dy − ∇g

∣∣∣∣∣∣∣
2

dx = lim
ε→0

ˆ

Rd

∣∣∣∣∣∣∣
¨
−−

W (x,ε)

∇xu dt dy − Tr(∇xu)

∣∣∣∣∣∣∣
2

dx = 0

The combination of the two last computations easily implies (7.7), which ends the proof 
of the proposition. �
Theorem 7.6. Let L = − div(|t|d+1−nA∇) be an elliptic operator that satisfies (H)λ,κ. 
Then there exists a sequence of {Aj}j∈N such that

(a) the convergence Aj → A holds uniformly on compact sets of Ω;
(b) ‖∇Aj‖L∞(Ω) ≤ Cjκ

1
2 ;

(c) the operator Lj := − div(|t|d+1−nAj∇) satisfies (H)λ,Cκ;

where in both cases, C > 0 is a constant that depends only on d and n.

Remark 7.7. We adapt the construction from Lemma 7.12 in [23] to the higher co-
dimensional boundaries, that is a construction that smoothens the coefficients of A while 
preserving the form of the matrix, the (constant of the) Carleson measure conditions on 
the coefficients, and the ellipticity constant of A. Note that the construction does not 
rely on the specific structure (1.24).
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Proof. Suppose that ψ ∈ C∞
0 (R+) with 0 ≤ ψ ≤ 1 such that ψ ≡ 1 on [2, ∞] and ψ ≡ 0

on [0, 1]. For j ∈ N, set ψj(t) := ψ(j|t|). We construct the matrix Aj as follows:

Aj(x, t) = ψj(t)A(x, t) + (1 − ψj(t))
¨
−−

W (x, 1
j )

A(x′, t′) dx′ dt′. (7.12)

From the construction above, we observe that Aj → A uniformly on compact sets of 
Ω, which is a direct consequence of the uniform convergence ψj → 1 on compact sets. 
The fact that the structure (1.24) is transferred to Aj and the ellipticity bound (1.23)
on Aj (with the same constant as A) is an immediate consequence of the fact that each 
coefficient in Aj is an average of some value of the same coefficient in A.

It remains to estimate ∇Aj, we want to show that |t||∇x,ϕAj | ∈ CM(Cκ), |t||∂rAj | ∈
CM(CM), and |∇Aj | � j. Since ψj is x-independent, we have

∇x,ϕAj(x, t) = ψj(t)∇x,ϕA(x, t) + (1 − ψj(t))∇x

( ¨
−−

W (x, 1
j )

A(x′, t′)dx′dt′
)

=: I1 + I2.

According to (1.8) and the fact that |t||∇x,ϕA| ∈ CM(κ), we have ‖t∇x,ϕA‖2
∞ � κ and 

thus

‖1|t|≥1/2j∇x,ϕA‖2
L∞(Ω) � j2κ. (7.13)

But for h small enough, we have

1
|h|

∣∣∣ ¨
−−

Wa(x+h, 1
j )

A(x′, t′)dx′dt′ −
¨
−−

Wa(x, 1
j )

A(x′, t′)dx′dt′
∣∣∣

=
∣∣∣ ¨

−−
Wa(x, 1

j )

A(x′ + h, t′) − A(x′, t′)
|h| dx′dt′

∣∣∣ � ‖1|t|≥j∇xA‖L∞(Ω) � jκ1/2, (7.14)

where the righthand side above is independent of h. By taking the limit h → 0 in (7.14), 
we obtain that

∇x

( ¨
−−

Wa(x, 1
j )

A(x′, t′)dx′dt′
)
� jκ1/2

and then

|I2| � (jκ1/2)1|t|≤2/j . (7.15)

We deduce
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‖∇x,ϕAj‖∞ ≤ ‖(∇x,ϕA)1|t|≥1/j‖∞ + ‖I2‖∞ � jκ1/2 (7.16)

by (7.13) and (7.15), and

|t||∇x,ϕAj | ≤ |t||I| + |t||I2| � |t||∇x,ϕA| + |t|
j

κ
1
2 1|t|≤2/j ∈ CM(Cκ) (7.17)

because |t||∇x,ϕA| ∈ CM(κ) and a simple computation shows that |t|
j κ

1
2 1|t|≤2/j ∈

CM(4κcn−d), where cn−d is the surface of the unit sphere in Rn−d.
We have the two desired bounds (7.16) and (7.17) on ∇x,ϕAj , and it remains to prove 

the analogue estimates on ∂rAj . We have that

|∂rAj | =

∣∣∣∣∣∣∣ψj∂rA + ∂rψj

(
A −

¨
−−

W (x, 1
j )

A(x′, t′)dx′dt′
)∣∣∣∣∣∣∣

≤ 1|t|≥1/j |∂rA| + j11≤j|t|≤2‖1|t|≥1/2j∇A‖.

And since, similarly to (7.13), we have ‖1|t|≥j∇A‖2
∞ � j2κ. So we easily conclude that 

‖∂rAj‖∞ ≤ jκ
1
2 and

|t||∂rAj | � |t||∂rA| + j|t|11≤j|t|≤2(M + κ) 1
2 ∈ CM(Cκ)

because j|t|11≤j|t|≤2 ∈ CM(C). The lemma follows. �
8. Proof of Theorem 1.5: the regularity problem for a reduced class of operators

In Theorem 8.1, we study the convergence of the solutions uj of the approximating 
operators constructed in Theorem 7.6 to the solution u of the initial operator. Then 
we solve the Regularity problem for smooth boundary data in Theorem 1.5, using the 
bound obtained in Theorem 6.4, the convergence of trace provided by Proposition 7.5, 
and of course the convergence of solutions established in Theorem 8.1. It is important 
to understand that we have two convergences (one on the trace given by Proposition 7.5
and one on the solutions given by Theorem 8.1) and the uniqueness of the double limit is 
only guaranteed by the uniform convergence of the traces, which is given by (6.3). That 
is, we can prove the identity

lim
j→0

ˆ

Rd

| Tr(∇xuj)|2 dx = lim
ε→0

ˆ

Rd

 

ε/2<|t|≤ε

|∇xu|2 dt dx

only when the assumptions of Theorem 6.4 are satisfied.
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Theorem 8.1. Let L = − div(|t|d+1−nA∇) be a uniformly elliptic operator satisfying 
(1.1). Let Aj be a sequence of matrices that converges pointwise to A and for which each 
Aj satisfies (1.1) with the same constant as A.

If u and uj to be weak solutions in W of respectively Lu = 0 and Ljuj = 0 with the 
same trace, i.e. uj − u ∈ W0, then ‖uj − u‖W converges to 0.

Proof. According to Lemma 6.1, we have

‖u‖W + ‖uj‖W � ‖g‖H (8.1)

where g is the common trace g = Tr(u) = Tr(uj) and the constant is independent of j. 
Since u − uj ∈ W0 and Lu = Ljuj = 0, we have

¨

Ω

A∇u · ∇(u − uj) dtdx

|t|n−d−1 =
¨

Ω

Aj∇uj · ∇(u − uj) dtdx

|t|n−d−1 = 0. (8.2)

By the uniform ellipticity of matrix Aj and (8.2), we have

‖u − uj‖2
W =

¨

Ω

|∇(u − uj)|2 dtdx

|t|n−d−1

�
¨

Ω

Aj∇(u − uj) · ∇(u − uj) dtdx

|t|n−d−1 =
¨

Ω

Aj∇u · ∇(u − uj) dtdx

|t|n−d−1

=
¨

Ω

(Aj − A)∇u · ∇(u − uj) dtdx

|t|n−d−1 .

Furthermore, we apply the Cauchy-Schwarz inequality to obtain that

‖u − uj‖2
W �

(¨
Ω

|∇(u − uj)|2 dtdx

|t|n−d−1

)1/2(¨
Ω

|Aj − A|2|∇u|2 dtdx

|t|n−d−1

)1/2

= ‖u − uj‖W

(¨
Ω

|Aj − A|2|∇u|2 dtdx

|t|n−d−1

)1/2
, (8.3)

hence

‖u − uj‖2
W �

¨

Ω

|Aj − A|2|∇u|2 dtdx

|t|n−d−1

Since A and Aj are bounded by a uniform constant, the functions |Aj −A|2|∇u|2|t|d+1−n

are bounded (uniformly in j) by (2λ)2|∇u|2|t|d+1−n which is integrable on Ω. So by the 
Lebesgue’s dominated convergence theorem,
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lim
j→∞

‖u − uj‖2
W �

¨

Ω

lim
j→0

|Aj − A|2|∇u|2 dtdx

|t|n−d−1 = 0

since Aj converges pointwise to A. The theorem follows. �
Corollary 8.2. Under the hypotheses of Theorem 8.1, if ‖Ñ(∇uj)‖L2(Rd) � ‖∇g‖L2(Rd)
for all j ∈ N, where the implicit constant is independent of j, then

‖Ñ(∇u)‖L2(Rd) � ‖∇g‖L2(Rd).

Proof. Let ε > 0. We first notice that:

‖Ñ(∇u|Ψε)‖L2 ≤ ‖Ñ(∇uj |Ψε)‖L2 + ‖Ñ(∇(u − uj)|Ψε)‖L2

� ‖∇g‖L2 + ‖Ñ(∇(u − uj)|Ψε)‖L2 (8.4)

by assumption. Yet, we have ‖Ñ(∇(u −uj)|Ψε)‖2 ≤ Cε−1/2‖u −uj‖W → 0 by Lemma 6.2
and then Theorem 8.1. So by taking the limit as j goes to infinity, (8.4) becomes

‖Ñ(∇u|Ψε)‖L2 � ‖∇g‖L2

The corollary follows then from the monotone convergence theorem. �
We conclude our section with the proof of Theorem 1.5

Proof of Theorem 1.5. Pick λ > 0. Let C0 (that depends only on λ, d and n) be the 
constant in Theorem 7.6, and then let κ0 < 1 (that depends on d, n and λ) be the 
“kappa” value provided by Theorem 6.4 for λ. We pick then κ := κ0/C0.

According to Theorem 7.6, there exists a sequence of {Aj}j∈N such that Aj → A
pointwise as j → ∞. Each Aj satisfies the following conditions,

(a) ‖∇Aj‖∞ ≤ Cjκ1/2,
(b) the operator Lj := − div(|t|d+1−nAj∇) satisfies (H)λ,κ0 .

Let uj ∈ W be the solution to Ljuj with Tr(uj) = Tr(u) = g ∈ H provided by 
Lemma 6.1. Our choice of κ0 is small enough to have the inequality (6.3) for each uj . So 
Theorem 6.4 and then Proposition 7.5 infer that

‖Ñ(∇uj)‖2
2 � lim sup

ε→0

ˆ

Rd

 

ε/2≤|s|≤ε

|∇xuj |2 ds dy = ‖∇g‖2
2,

with a constant that depends only on d, n and λ (in particular is independent of j). The 
theorem follows now from Corollary 8.2. �
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9. Proof of Theorem 1.1

First, the solvability of the Regularity problem is stable under Carleson perturbations.

Theorem 9.1 (Theorem 2.1 in [23], Theorem 1.3 in [8]). Let

L0 = − div[|t|d+1−nA0∇] and L1 = − div[|t|d+1−nA1∇]

be two uniformly elliptic operators that satisfy (1.1) with the same constant λ. Assume 
that:

(1) the Regularity problem for the operator L0 is solvable in Lp0 , that is there exists a 
constant C0 such that for any g ∈ C∞

0 (Ω), the solution u0 to L0u0 = 0 constructed 
as in (1.3) (or equivalently as in Lemma 6.1) verifies

‖Ñ(∇u)‖Lp0 (Rd) ≤ C0‖∇g‖Lp0 (Rd), (9.1)

(2) the disagreement A1 − A0 satisfies the Carleson measure condition with the constant 
M - i.e. |A1 − A0| ∈ CM(M).

Then the Regularity problem for the operator L1 is solvable in Lp1 for some p1 > 1, more 
precisely there exists p1 ∈ (1, p0] and C1 both depending only on λ, d, n, p0, C0, and M , 
such that for any g ∈ C∞

0 (Ω), the solution u1 to L1u1 = 0 constructed in (1.3) verifies

‖Ñ(∇u1)‖Lp1 (Rd) ≤ C1‖∇g‖Lp1 (Rd). (9.2)

Furthermore, if M > 0 is small enough (depending on λ, n, p0, and C0), then we can 
take p1 = p0 in (9.2).

The second result shows that any operator as in Theorem 1.1 can be compared to a 
Carleson perturbation of an operator satisfying (H).

Proposition 9.2. Let L0 = − div[|t|d+1−nB∇] be such that B satisfies (1.1) and can be 
written as a block matrix in the form

B =
(

B1 B2
t

|t|
tT

|t| B3 b4I

)

where b4I is the product of the identity matrix of order n − d with a scalar function, B2
is a d-dimensional vertical vector,6 B3 is a d-dimensional horizontal vector,7 and

6 Recall that t is a horizontal vector, so B2
t

|t| is a valid matrix product.
7 Since tT is a vertical vector, so tT

|t| B3 is a (n − d) × d-matrix.



Z. Dai et al. / Journal of Functional Analysis 284 (2023) 109903 67
|t||∇B1| + |t||∇B2| + |t||∇B3| + |t||∇b4| ∈ CM(κ).

If κ > 0 is small enough, there exists a bi-Lipschitz change of variable ρ from Ω to Ω
such that

(1) ρ(x) = x for any x ∈ Rd = ∂Ω;
(2) there exists Cλ such that for any weak solution u to L0u = 0, the function u ◦ ρ is 

a weak solution to Lρ(u ◦ ρ) = 0 where the operator Lρ satisfies (1.1) with constant 
Cλ and can be written as

Lρ = − div[|t|d+1−n(Bρ + Cρ)∇]

where Cρ ∈ CM(2κ) and Lρ,0 := − div[|t|d+1−nBρ∇] satisfies (H)λ/2,2κ.

Moreover, if B is symmetric, then Bρ and Cρ are symmetric.

Remark 9.3. The assumption that κ is small can actually be removed, but will make the 
proof longer. The proposition is a variant of the method presented in [15], and we refer 
any reader that wants to remove the condition on the smallness of κ to the later article.

Proof. As we just said, the proposition is a variant of the result given in [15]. We will 
try to keep it light and refer to [15] for the details that we skipped.

Step 1: Change of variables to cancel the bottom left corner of B. We write v for the 
d × n matrix function B3/b4. We define ρv as

ρv := ρ(x + |t|v(x, t), t).

Observe that ρv maps Ω to Ω and is the identity on Rd. Its Jacobian matrix is

Jacv =
(

I + |t|∇xv 0
tT

|t| v + |t|∇tv I

)
=
(

I 0
tT

|t| v I

)
+ O(|t||∇B3,4|)

where O(h) denotes a quantity bounded by Ch, and B3,4 denotes the couple (B3, b4). 
We have |t||∇B3,4| ∈ CM(κ), which implies |t||∇B3,4| ≤ Cκ by (1.8), and since κ is 
small, we deduce that Jacv is invertible and | Jacv | + | Jac−1

v | are bounded by 1.1λ. In 
addition

Jac−1
v =

(
I 0

− tT

v I

)
+ O(|t||∇B3,4|) and det(Jacv) = 1 + O(|t||∇B3,4|).
|t|
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We define the conjugate8 operator Lv = − div[|t|d+1−nAv∇] where

Av :=
(

dist(ρv(x, t),Rd)
|t|

)d+1−n

det(Jacv) Jac−T
v (B ◦ ρv) Jac−1

v . (9.3)

We check that dist(ρv(x, t), Rd) = |t| and hence

Av =
(

∗ [B2 ◦ ρv − (b4 ◦ ρv)vT ] t
|t|

tT

|t| [B3 ◦ ρv − (b4 ◦ ρv)v] (b4 ◦ ρv)I

)
+ O(|t||∇B3/4|)

=
(

∗ [B2 − (B3)T ] t
|t|

0 b4I

)
+ O(|t||∇B1,2,3,4| + |B1,2,3,4 ◦ ρv − B1,2,3,4|)

because B3 − b4v = 0 with our choice of v. We did not compute the upper left corner in 
the matrix above to lighten the notation, but we can have B1 − B2B3/b4. We write Bv

for the matrix in the right-hand side above which has 0 in the bottom left corner, and 
Cv for Av − Bv. We have that

|Cv| � |t||∇B1,2,3,4| + |B1,2,3,4 ◦ ρv − B1,2,3,4| ∈ CM(Cκ)

because |B1,2,3,4 ◦ ρv − B1,2,3,4|(x, t) is bounded by the supremum of |t||∇B1,2,3,4| in a 
Whitney region around (x, t), so satisfies Carleson estimate as long as |t||∇B1,2,3,4| does. 
The matrix Bv has the form

Bv =
(

Bv
1 Bv

2
t

|t|
tT

Bv
3

bv
4I

)
=
(

Bv
1 Bv

2
t

|t|
0 b4I

)

and the Carleson bound |t||∇Bv
1,2,3,4| ∈ CM(Cκ) is consequence of the fact that the 

coefficients of Bv are product, quotient, difference, and sums of coefficients of B (we 
actually have |t||∇Bv

1,2,3,4| ≤ C|t||∇B1,2,3,4|).

Step 2: Change of variables to reduce the bottom right corner of Bv to I. The strategy 
is very similar to what we did in Step 1. Set h := b4 and define ρh as

ρh := ρ(x, th(x, t)).

As before, observe that ρh maps Ω to Ω and is the identity on Rd. Its Jacobian matrix 
is

Jach =
(

I t∇xh
0 hI + (∇th)t

)
=
(

I 0
0 hI

)
+ O(|t||∇b4|).

8 By conjugate, we mean that Lv(u ◦ ρv) = 0 whenever Lu = 0.
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Since κ is small (depending only on d, n and λ), the matrix Jach is invertible and 
| Jach | + | Jac−1

h | are bounded by a constant that depends only on λ. In this case, we 
have

Jac−1
h =

(
I 0
0 h−1

)
+ O(|t||∇b4|) and det(Jacv) = hn−d + O(|t||∇b4|).

Note that dist(ρh(x, t), Rd) = |t|h(x, t). Therefore, the conjugate operator Lh =
− div[|t|d+1−nAv∇] of Lv by ρ is such that

Ah :=
(

dist(ρh(x, t),Rd)
|t|

)d+1−n

det(Jach) Jac−T
h (Av ◦ ρh) Jac−1

h

=
(

∗ [(B2 − BT
3 ) ◦ ρh] t

|t|
0 h(b4 ◦ ρh)I

)
+ O(|t||∇b4| + |Cv ◦ ρh|)

=
(

∗ [B2 − BT
3 ] t

|t|
0 I

)
+ O(|t||∇b4| + |Cv ◦ ρh| + |B ◦ ρh − B|)

with our choice for h. We denote the matrix in the right-hand side above as Bh, and Ch

is Ah −Bh. The matrix Bh has the desired form, and Lρ,0 := − div[|t|d+1−nBρ∇] satisfies 
(H)Cλ,Cλκ. By definition

|Ch| � |t||∇b4| + |Cv ◦ ρh| + |B ◦ ρh − B|

and the right-hand side above easily satisfies the Carleson measure condition with con-
stant Cκ for the same reasons as in Step 1 (and the fact that bi-Lipschitz changes of 
variable preserve the Carleson measure condition).

Conclusion. The change of variables is ρ := ρv ◦ ρh, which is bi-Lipschitz because ρv

and ρh are bi-Lipschitz. The conjugate of L by ρ is Lh, and the ellipticity constant of Lρ

is controlled by the ellipticity constant of L (because Jacobian matrices of Jacv, Jach, 
and their inverses are bounded by constants that depends only on λ). The top left corner 
of Bh does not really matter, but one can check that we (can) have

Bh =
(

b4B1 − B2B3 [B2 − BT
3 ] t

|t|
0 I

)
so Bh easily satisfies (H)Cλ,Cλκ. At last, notice that all our operations on the coefficients 
preserve the symmetry of matrix coefficients, which means that Bh and Ch are symmetric 
as long as B is symmetric. The proposition follows. �

We are now ready for the proof of our main theorem.

Proof of Theorem 1.1. We consider the elliptic operator L′ = − div B∇, then we con-
struct from it the change of variable from Proposition 9.2. The conjugated operator of L′
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by ρ is in the form L′
ρ := − div[|t|d+1−n(Bρ + Cρ)∇], where L′

ρ,0 := − div[|t|d+1−nBρ∇]
satisfies (H)Cλ,Cλκ and Cρ ∈ CM(Cκ). Therefore, if κ := κ(λ, n) is small enough we can 
apply Theorem 1.5 to say that the Regularity problem for the operator L′

ρ,0 is solvable 
in L2.

The operator L′
ρ is a small Carleson perturbation of L′

ρ,0, so Theorem 9.1 gives that 
the Regularity problem for the operator L′

ρ is solvable in the same space L2. Since L′

and L′
ρ are the same operator up to a bi-Lipschitz change of variable, the Regularity 

problem is also solvable for L′ in L2. Now, L is a small Carleson perturbation of L′, so 
we use Theorem 9.1 again to obtain that the Regularity problem is still solvable for L
in L2. �
10. A complement of a Lipschitz graph

The definition of cones, Whitney regions, non-tangential maximal function, and other 
objects given in the introduction was adapted to the that fact that the domain Rn \Rd is 
the product space Rd × (Rn−d \ {0}). But we did so only for convenience, and equivalent 
definition can be given in general spaces.

If the domain is more general Ω, we define the cones in Ω with vertex in x ∈ ∂Ω as

Γ(x) := {X ∈ Ω, |X − x| < 2 dist(X, ∂Ω)}. (10.1)

We can change the ‘aperture’ of the cone by replacing the value 2 by any α > 1. The 
Whitney box W (X) is defined as

W (X) := B(X, dist(X, ∂Ω)/2).

The definition of the cones and Whitney boxes given here is just example, as many 
variants exist. From there, we define the averaged non-tangential maximal function as

Ñ(u)(x) := sup
X∈Γ(x)

⎛⎜⎝ 1
|W (X)|

¨

W (X)

|u(Y )|2dY

⎞⎟⎠
1
2

.

From now on, we need a doubling measure on ∂Ω, that we call σ. When ∂Ω is the graph 
of a Lipschitz function as in Corollary 1.2 - σ will simply be the d-dimensional Hausdorff 
measure. The Carleson measure condition, that is the substitute of (1.7) is

f ∈ CM(M) ⇐⇒ sup
x∈∂Ω,r>0

¨

B(x,r)∩Ω

sup
W (X)

|f |2 dX

dist(X, ∂Ω) � Mσ(B(x, r) ∩ ∂Ω).

Moreover, we say that the Regularity problem is solvable in Lp if, for any g ∈ C∞
0 (Rd), 

we have
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‖Ñ(∇u)‖Lp(∂Ω,σ) ≤ C‖∇∂Ωg‖Lp(∂Ω,σ).

The gradient ∇∂Ω is a gradient on ∂Ω, which needs to be defined. In the simple case 
where ∂Ω is the graph of a Lipschitz function, as in Corollary 1.2, ∇∂Ω is simply the 
classical gradient (that can be defined almost everywhere).

Proof of Corollary 1.2. We can construct a bi-Lipschitz change of variable ρ (with Lip-
schitz constants close to 1) such that, for any weak solution u to Lϕu = 0 in Ωϕ, the 
function u ◦ ρ is a solution to Lρ(u ◦ ρ) = 0 in Rn \ Rd, where the operator Lρ satisfies 
the assumptions of Theorem 1.1. The construction of such change of variable, and the 
properties of the conjugate operator Lρ are the main purpose of the article [7].

The fact that ρ is bi-Lipschitz and Theorem 1.1 entail then that

‖Ñ([∇ug] ◦ ρ)‖L2(Rd) ≤ 2‖Ñ(∇[ug ◦ ρ])‖L2(Rd) ≤ C‖∇[g ◦ ρ]‖L2(Rd).

The fact that ‖Ñ(v ◦ ρ)‖L2(Rd) ≈ ‖Ñ(v)‖L2(ρ(Rd),σ) is a consequence of the fact that 
ρ change the shape the regions W (z, r), but preserves the fact that they are Whitney 
regions. Similarly, ρ change the shape of the cones, but not the fact that they are the 
union of Whitney regions for a same point at all scale - i.e. a weaker version of “cones” 
variant to (10.1) - and we know from [28, Chapter II, S 2.5.1] and the various definitions 
of cones does not change the Lp-boundedness of the non-tangential maximal functions 
N and Ñ . The fact that ρ is bi-Lipschitz also infers the equivalence ‖∇[g ◦ ρ]‖L2(Rd) ≈
‖∇g‖L2(∂Ωϕ). The corollary follows. �
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