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Abstract—Network Function Virtualization (NFV) migrates
network functions from proprietary hardware to commercial
servers on the edge or cloud, making network services more
cost-efficient, manage-convenient, and flexible. To facilitate these
advantages, it is critical to find an optimal deployment of the
chained virtual network functions, i.e. service function chains
(SFCs), in hybrid edge-and-cloud environment, considering both
resource and latency. It is an NP-hard problem. In this paper,
we first limit the problem at the edge and design a constant
approximation algorithm named chained next fit (CNF), where a
sub-algorithm called double spanning tree (DST) is designed to
deal with virtual network embedding. Then we take both cloud
and edge resources into consideration and create a promotional
algorithm called decreasing sorted, chained next fit (DCNF),
which also has a provable constant approximation ratio. The
simulation results demonstrate that the ratio between DCNF and
the optimal solution is much smaller than the theoretical bound,
approaching an average of 1.25. Moreover, DCNF always has a
better performance than the benchmarks, which implies that it
is a good candidate for joint resource and latency optimization
in hybrid edge-and-cloud networks.

[. INTRODUCTION

Compared with traditional middle-boxes, network function
virtualization (NFV) [1] introduces new flexibility, scalability,
and cost-efficiency to network services by migrating network
functions, e.g., Proxies, Firewalls, Load Balancers, from dedi-
cated hardware to commercial servers. There is a dependency
among these virtual network functions (VNFs) and chaining
the VNFs for a network appliance in a particular order forms
a service function chain (SFC) [2]. With the fast development
of low-latency edge computing [25]-[30], there is a growing
motivation to deploy SFCs at the edge [S]-[11]. Apart from
reducing communication delay, deploying SFCs on the net-
work edges also has the potential of saving bandwidth and
protecting data safety and privacy [3].

Meanwhile, the flexibility of VNFs and the expense of
edge resources also pose challenges for the SFC deployment
problem. On one hand, it is essential to implement efficient
resource management to make full use of the insufficient,
expensive edge resources. Specifically, in NFV, resource man-
agement is realized by placing VNFs on edge commercial
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servers and using as few servers as possible. On the other hand,
the chaining links between adjacent VNFs need to be taken
care of when deploying SFCs, called flow scheduling. A bad
scheduling scheme may cause redundant flow paths, incurring
high latency and network congestion, while a good scheme
will further cut back communication latency. Thus, in our
model, we targeting jointly resource and latency optimization,
not only efficiently managing edge resources but also cutting
back the communication latency.

Moreover, the insufficiency of edge resources may result
in the case that there is no way to place all SFCs on the
edge servers under the server capacity limitation. In such
cases, the cloud can be an efficient supplementary due to
its adequate computing resources. But how to allocate the
edge and cloud computing resources for these VNFs is a
challenging problem. Most existing work either neglects the
special case when the edge resource is not enough or simply
places all remaining VNFs onto the remote cloud after all edge
servers are occupied. Since latency between cloud and edge is
often higher than that between edge servers, choosing different
data flow to transmit between edge and cloud will make a
big difference in the total communication latency. Thus, it is
significant to solve the SFC deployment problem in the hybrid
edge-and-cloud network rather than a single edge network.

In all, it is desirable to jointly consider resource cost and
communication latency in the SFC deployment problem in
hybrid edge-and-cloud networks. In our paper, we envision
to design a constant approximation algorithm, minimizing
the total resource cost and all corresponding communication
latency when deploying SFCs on edge commercial servers and
the remote cloud. The work is hard since we need to balance
the resource cost and communication latency. Considering
both edge and cloud resources makes the problem more
complicated. Additionally, in the resource-related part, the
indivisible VNF and limited edge server capacity produce an
integer-variable constraint, which results in the NP-hardness
of the problem. In the latency-aware part, the complex net-
work topology brings trouble to virtual network embedding,
specifically the routing problem of multi-hops. Last but not
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least, achieving an excellent theoretical bound is also a big
challenge.

In our paper, we first simplify the problem by limiting it
at the edge and design a constant approximation algorithm
called chained next fit (CNF). CNF is mainly based on the
Next Fit strategy (NF) [4] since it can guarantee efficient
resource utilization and meanwhile have a positive influence
on the latency-aware part by avoiding the redundant data
traffic. Besides, an algorithm called double spanning tree
(DST) is proposed to match the virtual network onto the phys-
ical network. DST also reduces latency and avoids network
congestion by ensuring no more than two data flows passing
on each network connection. Furthermore, we put forward a
promotional algorithm called decreasing sorted, chained next
fit (DCNF), dealing with a general case when both edge
and cloud resources are taken into consideration. DCNF is
designed based on CNF and also has a provable constant
approximation ratio.

Our main contributions are summarized as follows.

o We formulate the SFC placement problem (SFCP), jointly
considering resource and latency, as an Integer Linear
Programming (ILP) problem and prove its NP-hardness
through a reduction from Bin Packing (BP) Problem.

o We first focus on the SFCP limited at the edge. A constant
approximation algorithm called chained next fit algorithm
(CNF) is created with two main parts: the NF strategy
and a designed sub-algorithm to deal with virtual network
embedding, called double spanning tree (DST).

e We produce a promotional algorithm to solve the com-
plete SFCP with both edge and cloud resources con-
sidered. We call it decreasing sorted, chained next fit
(DCNF), and prove its constant approximation ratio.

o We perform extensive simulations on 5 randomly gener-
ated small network topologies and 4 larger real network
topologies. The simulation results demonstrate that the
practical ratios of DCNF to the optimal solutions are
among interval [1,2.375], far smaller than the proved
theoretical bound. What’s more, DCNF always has a
better performance than the benchmarks.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the related work. In Section III, we
give the formulation of the jointly resource-and-latency-aware
SFC deployment problem (SFCP) and prove its NP-hardness.
Section IV demonstrates our CNF algorithm, composed of
the DST algorithm and the NF strategy, which is designed to
solve the SFCP limited at the edge. Furthermore, we prove its
constant approximation ratio. In Section V, a general algorithm
for the complete SFCP called DCNF is introduced and its
approximation ratio is proved to be constant. Additionally,
Section VI is the performance evaluation of DCNF. Finally,
we conclude the paper in Section VIL.

II. RELATED WORK

With the emerging of NFV, researchers have devoted much
effort to SFC placement problem like [S]-[23]. Among them,
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work [12]-[16] takes both resource and latency into consid-
eration. [12]-[14] formulate the SFC placement problem as a
mixed-integer linear programming (MILP) model and propose
various heuristic approaches while [15], [16] put forward
provable approximation algorithms based on the rounding
algorithm.

Due to the low latency of edge computing, there is a trend
of deploying SFCs on commercial servers at the edge. See [5]-
[11] as examples. However, the resource of edge computing is
limited. The insufficiency of edge resources may result in the
case that there is no way to place all SFCs on the edge servers
under the server capacity limitation. Most of the existing work
neglects such situations like [S]-[8]. Work [9], [10] introduces
cloud resources into the model for supplementary. But they
simply place all remaining VNFs onto the remote cloud after
all edge servers are occupied. To the best of our knowledge,
there is only one work [11] solving the SFC deployment
problem in the edge-and-cloud network as a whole. But [11]
only optimizes the network latency, ignoring the resource cost.

Besides, most of the work considering deploying SFCs
on network edges, e.g. [6]-[10] is limited to the design of
heuristic algorithms and does not have a provable performance
guarantee. As far as we are concerned, there are only below
two works giving the performance bounds. [5] designs a two-
stage VNF deployment scheme with a constrained depth-first
search algorithm (CDFSA) and a path-based greedy algorithm
(PGA), giving a theoretically-proved worst-case performance
bound by an implicit constant factor. In [11], Song Yang et
al. propose an efficient randomized rounding approximation
algorithm to solve the delay-aware virtual network function
placement and routing in edge clouds.

II1. PROBLEM FORMULATION
A. System Model

The notations used in this model are shown in Table I.

Consider the edge network as a connected graph G' =
(V, E), where each commercial server ¢ is a vertex in the
graph, noted as V;. If servers V), and V; are directly con-
nected in the edge network, then link (p,q) € E. Otherwise
(p,q) ¢ E. Assume there are M servers at the edge and each
server 4 has its processing capacity, noted as Cj.

Suppose there are m SFCs, where the VNFs are placed in
a particular order. And in SFC ¢, there are n; VNFs, noted as
Fi1,F;9,- -+, F;p, in the chaining order, and the throughput
of data flow is b;. Note that VNF F} ; needs f; ; computing
resource, i.e., the size of F; ; is f; ;. The total number of VNFs
is N=>"n.

In each SFC 4, there is a data flow between F;; and
Fijq1 forany 1 < j < n; — 1. If F;; and F; ;4 are
placed on different edge servers, data transmission from F; ;
to Fj ;41 will cause communication latency. We define the
communication latency that data flow of SFC 7 passes through
one link in G as ;. Typically, G is NOT a complete graph.
So data transmitting from F;; on one server to Fj ;i on
another server may need multiple hops, i.e., pass through
several server-nodes or links in G. The number of hops here,
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m number of Service Function Chains (SFCs)

M number of physical servers in the edge network

n; number of VNFs in SFC 2

N number of all VNFs

VNF j in SFC ¢

i,j the size of VNF Fz"j

l; communication latency that data flow of SFC % passes through
one link ( or to say, hop) in the edge network

L; E&C communication latency of SFC ¢

b; data flow of SFC ¢

Vi edge server k, if £ > 0; the cloud, if k =0

Ck capacity of edge server k

By, bandwidth limit of network connection (p, q)
wp!if data between Fj j and I ;11 pass through link (p, g) or not
xfj if VNF Fj ; is placed on V} or not

Yk if server k is occupied or not

2 number of hops at the edge when data flows from F; ; to Fj j11
Zij if there is E&C trans. latency between F ; and Fj ;41 or not
M’ number of used servers in the results of CNF

M* number of used servers in OPT
V}* used server j in OPT
C(-) (total) capacity of a server

occupied capacity of a server by VNFs.

TABLE I: Notations
noted as z; ;, depends on the solutions of the multi-hop routing
problem on G under the bandwidth limit of each link (p,q),
noted as B, 4. Note that if (p,q) ¢ E, By, =0.

Above we talk about the latency at the edge. If some VNFs
are put on the cloud, there are communication latency between
edge and cloud, short for E&C communication latency. We
now consider such a situation when F;; and Fj ;4 are
placed one at the edge and one on the cloud. Then E&C
communication latency appears. It is determined mainly by
the data flow volume of SFC, the multiple hops outside the
edge network and the bandwidths between edge and cloud,
etc. The relationship is very complicated and there is work
professionally targeting the related topic [24]. For simplicity,
here we just assume the total E&C communication latency
between F; ; and F; ;1 is L; and L; > [;. Denote the cloud
as V. Also, we assume the cloud is “connected” to all edge
server-nodes and give the estimated bandwidth limit of the
connection between an edge server Vj, and the cloud V{, noted
as Bk’() = BO,k~

B. Problem Formulation

In the SFC placement problem (SFCP), our task is to
place the m SFCs onto the M edge commercial servers or
the cloud without exceeding the constraints of edge server
capacities and the bandwidth limits of network connections.
Our goal is to minimize the total resource consumption and
the whole communication latency when placing SFCs in the
hybrid edge-and-cloud network. Specifically, the total resource
consumption contains the total capacities of occupied edge
servers and the total sizes of VNFs put on the cloud while the
whole communication latency includes the total communica-
tion latency at the edge and that between edge and cloud.

In order to formulate SFCP, we first define three Boolean
variables: (1) xf ; = 1if and only if VNF F; ; is placed on
server k; (2) yr = 1 if and only if server k is occupied; (3)
w;} = 1if and only if data flow between VNF F; ; and F; 1
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passes through link (p,¢). Among them, = ; and w;'! are the
decision variables in our model while yk 1s used for clear
expression. Note that, here, server k (1 < k < M) represents
a edge server while server 0 is on behalf of the cloud.

The capacity constraint of each edge server asks

>3k

=1 j=1

Jijg <y Ck, V1I<k<M. (1)

Under the limitation of bandwidth, it satisfies
m n;—1

SN (Wl +wi?) b <B,g, VO<p<g< M (2

i=1 j=1
Since each VNF can not be split, which implies it is exactly
placed on an edge server or the cloud,

M

k
> ek =1,
k=0

According to Flow Conservation Law, as for any data flow
between VNF Fij and F7;_j+1, we have VO < k < M,

_ k
Z Zw ] xl g1 T TG

Then the number of hops that data flows at the edge
network, from F; ; to F; ;41, is

vi<i<m,1<j<n; 3)

4)

M M

G =y wif, Vi<i<ml<j<m—1 (5
p=1g=1

Note that we define z;0 = 1 and z; ,, = 1, showing as for

SFC i, there is input data flowing into the first VNF and output
data flowing out of the last VNF at the edge.

Besides we create another Boolean variable, presenting
whether there is E&C communication latency between F; ;
and F; ;1. Asforany 1 <i<m,1<j<n;—1,

M M
_ 0,9 p,0
=Y wif + ) iy
q=1 p=1

And we define Z;p =2, and Z;,, =z}, , which means
if F;; is placed on the cloud, there is input data flowing
from the edge to the cloud, producing E&C communication
latency, while if Fj ,,, is placed on the cloud, there is output
data flowing from the cloud to the edge, also producing E&C
communication latency.

In our model, there are four optimization objectives, respec-
tively

« Resource cost at the edge: RE,

« Communication Latency between edge servers: L=,

« Resource cost on the cloud: RC,

o Communication Latency between edge and cloud: L€,

M m  m;
= - Ch, =3 iz,
k=1

(6)

i=1 j=0
c_ 0 C_
= E E T s figs = E E Li-Z;;.
=1 j=1 i=1 j=0
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Then SFCP can be formulated as the below ILP.
oRE 4+ BLE 4+ 4RC 4 (L€
(1) —(6),

where «, 3,7, ( are weighting factors that are used to adjust
the relative importance of the cost component.

C. Proof of NP-hardness

As for a classical Bin Packing Problem (BP) with any
parameter setting, the problem can be reduced to an SFCP
witha = 1,8 =7 =(=0,Cr = 1,B,4 = 00, V1 <
k,p,q < M, where each server can be seen as a bin while
each VNF can be seen as an item that needs to be packed.
Since BP is an NP-complete problem, SFCP is NP-hard.

min

S.t.

D. Problem Complexity

In the above section, we show the NP-hardness of SFCP
based on the resource cost alone by reducing from BP.
Similarly, SFCP can also be proved to be NP-hard by the
reduction from the Travelling Salesman Problem (TSP) if only
the network latency is considered. It implies the complexity
of the SFCP problem comes from both the resource cost part
and the communication latency part. Besides, considering the
hybrid edge and cloud network as a whole also bring troubles
to this problem. We should take care of the four optimization
objectives at the same time, which is dramatically complicated.

Thus, in the below section, we start from a simplified SFCP
limited at the edge with two optimization objectives and then
promote the scheme to deal with the complete SFCP with four
objectives.

IV. THE SFCP LIMITED AT THE EDGE
A. Basic Ideas and Challenges

As for the SFCP limited at the edge, there exist two opti-
mization objectives, which is still difficult. Thus we take a look
at a simple version of it to find some intuitions. If ignoring the
communication latency of data flows between VNFs in SFCs,
specifically o« = 1,8 = 0,8, 4 = oo V1 < k,p,q < M, the
simplified SFCP can be seen as a BP problem with servers
being viewed as bins and VNFs as items. There are plenty of
approximation algorithms for BP. In all, the Next Fit strategy
(NF) is best suitable for SFCP, since it not only guarantees
efficient resource utilization, but also has a positive influence
on communication latency by avoiding the redundant data
traffic. What’s more, it has no rules on sequences of bins and
items, which gives us space to make rules for virtual network
embedding.

We intend to design an approximation algorithm based on
NF, satisfying both server capacity constraints and connection
bandwidth limits. Then we prove the upper bounds of the
resource consumption and communication latency separately
and finally get the approximation ratio of our algorithm by
integrating these two parts.

However, challenges still exist. The first challenge comes
from the complicated network topology. The disconnection of
some servers and the resulted various multi-hop paths between
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them make it difficult to match the virtual network to the
physical edge network, meanwhile satisfying the bandwidth
limit. Thus before applying the NF strategy, we need to add
a preparing part for virtual network embedding, specifically
sorting servers by minimizing the total number of multiple
hops. Additionally, different server capacities make it hard to
prove the bound of communication latency because it leads to
a gap between total used resources and the number of used
Sservers.

B. Chained Next Fit (CNF) Algorithm Procedures

We design an approximation algorithm called Chained Next
Fit algorithm (CNF). In the beginning of CNF, we devise a
preparing algorithm to sort servers called double spanning tree
(DST), as shown in Algo. 1. Specifically, we first choose the
maximal-capacity server. Then use the depth-first search (DFS)
algorithm to obtain a spanning tree with this server node as
the root. In DFS, let the node with larger capacity have higher
priority for the neighbor search. Double this spanning tree and
delete a link between the root and its child, we will get a path.
Finally, starting from the root, along the path, we traverse all
nodes. We sort the servers by the traversing order. Note that
if some node has been reached before, hop it and continue to
the next node.

Algorithm 1: Double Spanning Tree Algorithm (DST)

Input: G and the servers Vi, V5, - - -, V).

Output: Sorted servers Vi, Vi,, - -+, Vi, and
multi-hop paths T} between each two
adjacent sorted servers Vi, and Vg, ,.

1 Find the server V,, with maximal capacity and mark it.

2 Use DFS to obtain a spanning tree 1" with V}, as its
root, where node with larger capacity has higher
priority for the neighbor search.

3 Double T' and delete a link between V), and its child
with the smallest capacity to get a path 7.

471, kj+np

5 while j < M do

6 Find the next unmarked node of Vk]. on 7", noted

as V,, and mark it.

7 j—J3+1, kj+—q

gfor j=1—M—1do

9 Find the shortest path between V, and Vi, in G,

noted as the multi-hop path T} from Vi, to Vi

J+1°

After DST, we sort SFCs in decreasing order of their latency
parameters [; and sort VNFs in their chaining order. Next, we
employ the NF strategy to do SFC deployment. Specifically, if
a VNF fits inside the currently considered edge server, place it
on this server. Otherwise, the placement on the current server
ends, a new edge server is opened and the VNF is placed on
this new server. Repeat the same procedures on the next VNF
until all VNFs are placed at the edge.

The detailed CNF algorithm with time complexity O(N +
mlog(m) + M?log(M)) is shown in Alg. 2.
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Then we demonstrate the solution obtained by CNF is
feasible under the assumption that each edge server has enough
capacity for any VNF and each edge network connection has
enough bandwidth for double of any data flow. Based on this
premise, the NF strategy (line 5-13 in Algo. 2) maintains
the server capacity constraints in Ineq. 1. Combined with
chained sorting, it also ensures there is at most one data flow
between any two edge servers. And as shown in Fig. 1b,
DST and the property of tree structure guarantee that there
are at most two hops (or data flows) passing through any
edge network connection, which will be explained in detail
in Section IV-D. So the connection bandwidth constraints in
Ineq. 2 are satisfied.

Algorithm 2: CNF algorithm

Input: The list of VNFs {F; ;} and the capacities of
servers Cy,Co, -+, Cyy.
Output: The placement scheme x¥ ; and the number
of used servers M’. '
1 Sort and reindex servers by DST.
2 Sort and reindex SFCs so that [; > 1y > -+ > [,,;
3k« 1;
4fori=1—mdo

5 for j =1—n; do

6 if Vi, has enough rest capacity for F; ; then
7 L 1?7 = 1; (Place F; ; on V4,)

else
9 if £ < M then
10 For all links (p, ¢) in the multi-hop path
Ti, let wz’;] =1,

1 et =1, ke k+ 1

12 else

13 L Return 0; (No enough edge servers)
4 M + k.

C. Bound of Resource Part

We now demonstrate CNF has an asymptotic approximation
ratio of 2 to the optimal solution (OPT) on RE. For proof of
the ratio, we use functions of C(-) and ¢(-) to respectively
represent the capacity of an edge server and the occupied part.
Obviously, for any k € [1, M], ¢(Vy) < C(Vi).

Besides we assume Vi, - - -, Vj, are used servers by CNF
while Vi*,- - -, V3. are those by OPT. Since they both deal
with the same VNF set {F; ;},

M’ m  n; M*
DoeVi) =D > fij =D cVi).
k=1 i=1j=1 k=1

Theorem 1. RE-np < 2-RE5pp + C, where C = max Cy.

Proof. Referring to the NF strategy, the first VNF placed on
the next server can NOT be placed on the current server. Thus
all VNFs of the current server plus the first VNF on the next
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(a) A Tree (b) Multi-hop Paths between nodes occupied

by two SFCs

Fig. 1: A simple example of DST algorithm

server are larger than the capacity of the current server, i.e.
V1<k<M, c(Vi)+c(Vig1) > C(Vy). In sum,

M’ M’ —1
Ricnr =Y C(Vi) < > (c(V&) + (Vi) + C,
k=1 k=1
M M*
<2 (Vi) +C =2 (Vi) +C, (7)
k=1 k=1
-
<2) C(Vi)+C=2-Reopr+C.
k=1

O
D. Bound of Communication Part

Here we show CNF also has a constant ratio to OPT on
LE. We now denote z; = Z?;o z; ; and 27 respectively as the
total number of hops in SFC 7 by CNF and OPT.

Theorem 2. LE-npr < 4- [maxckw LEopr.

min CY,

Proof. In the path T’ produced by Algo. 1, each network link
appears at most twice. Line 2 in Algo. 2 ensures for each
network link, the data flow of SFC later flowing through must
be less than or equal to that former flowing through before.

Thus m m

Zzi'liSQZMi'li7 ®)
i=1 i=1

where M, is the number of used servers when placing SFC i

by CNF.

Take a simple case with 8 servers and 2 SFCs for example.
Fig. 1a shows the spanning tree 1" of the graph G. In this case,
the path T"is Vi — Vo — V3=V — V3 — Vo — Vs — Vg — Vs — Vo —
Vi — V7 — Vs — V7 — V4. Each network link appears at most
twice. SFC 1 occupied Vi, Vo, Vs, V,, V5 while SFC 2 occupied
Vs, Vs, V7, Vs. Fig. 1b shows the multi-hop paths in the worst
case and the passing data flow, where dotted lines represent
the link second used while lines show the link first used. In
SFC 1 from Vj to V3, the multi-hop path V; — V3 — V5 — V5 is
feasible. Line 9 in Algo. 1 may find a shorter multi-hop path.
For instance, if link (V3, V) € E, then V;—V5—V5 is a shorter
multi-hop path. Anyway V; — V3 — V5 — V5 is the worst case.
Here we only consider such multi-hop paths on 7”. In Fig. 1b,
the data flow on lines is no less than that on dotted lines. For
SFC 1, data flows through V; — Vo — V3 =V — V3 — V5 — V5
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and the number of hops is 6 + 2 < 2% 5. The total number of
hops for SFC 1,2 is |[T"|+4 =18 < 2% (5+4). And |1 > I,
thus Ineq. 8 holds.

As for SFC 14, suppose the first used server by CNF is V},,
and the last is V,,. Denote the number of used servers when
placing SFC i by OPT as M. By definitions, we have

YU B /20 ¥ R b/ (5]
max C}, min C},
1<k<M 1<k<M

In OPT, there is at least one hop between two used servers
in SFC 7, as well as one hop for data flowing in, one for data
flowing out. Thus

2> M+ 1. (10)

In sum,

kp+1 C(Vi) + C(

M;

VIh) +C(V%)—‘ (11)

min Cy,

{ f”Jeraka—‘
<2

(12)

min C},

max C}, . max C},
’lean-‘ M7 +2 ’Vmian-‘ ’

<9. {maXCk-‘ .

: Z;
min C}, i

where [-] is the ceiling function, Format 11 < Format 12
stems from Ineq. 7.
Referring to Ineq. 8, we have

i max Cy,
Leonr=S 2z-5;<2-5 2. <L (13

CNF ZZ < ; [mlnC’k—‘ Z; (13)

maxCh| w= .

{ min Cy, —‘ ; -l
max Cy, LE
min Cy, OPT:
O

E. Approximation Ratio of CNF in SFC Placement Problem

Now we can combine upper bounds of RE-np and LEo g
to prove the constant approximation ratio of CNF in SFCP.
Denote CN F and OPT as the total cost respectively by CNF
and OPT. Combined with Theorem 1, 2, we obtain the below
theorem.

Theorem 3. CNF < 4. [m‘?xc’“—l -OPT + C, where C =

min C}
a - max Cy,.
Proof.
ONF =a -Rfoyr + 8- Liconr,
max C
<2a-Rfopr+C+485- { - k-‘ ‘L¥opr,
min C},
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max Cy,

<4 -
[ min Cy,
<4 [mz'xx C
- min C},

—‘ [ RFopr + B-Lfopr]| + C,

—‘ -OPT + C.

V. THE COMPLETED SFCP (EDGE & CLOUD)
A. Basic Ideas and Challenges

Typically, the communication latency between edge and
cloud is much larger than that among edge servers, i.e. L; > [;,
owing to the longer distance. Thus we prioritize the use of
edge resources.

In order to take full use of edge resources, the natural idea
is to put as much VNFs at the edge as possible and then put
the rest VNFs on the cloud. However, such direct operations
may cost high communication latency between edge and cloud
since what VNFs and SFCs are left is uncontrolled. The key
challenge here is how to choose VNFs or SFCs, putting at the
edge, so that the left VNFs need as small cloud resources as
possible and meanwhile produce as low E&C communication
latency as possible.

B. Algorithm Procedures

Here we design an approximation algorithm called Decreas-
ing Sorted, Chained Next Fit algorithm (DCNF). Based on
Theorem 1, CNF makes the left VNFs as few as possible,
which helps minimizes the needed cloud resources. But it can
not ensure the left SFCs produce as low E&C communication
latency as possible.

In order to minimize the E&C communication latency, the
basic rule is to put the whole SFC ¢ or a continuously chaining
segment of SFC ¢ on the cloud, where the communication
latency is merely 2L;. Otherwise, if there is k intermittent parts
of SFC i placed on the cloud, the produced communication
latency between edge and cloud is 2k - L;. Luckily, the left
VNFs of a SFC by CNF must be continuously chaining. Since
the total resource consumption on the cloud is roughly fixed,
noted as R., depending on the fixed total edge resources, the
key problem is a 0-1 min-knapsack problem as below.

min i2LZ -Xi,
i=1

Z F-X; > R,

i=1
where X; is a Boolean variable, representing if SFC i is placed
on the cloud or not; F; = 27:1 fi; is the total size of all
VNFs in SFC 7, also mentioned as the size of SFC 3.

This 0-1 min-knapsack problem can be solved by a greedy
approach. Sort and reindex SFCs by IL,— in increasing order so
that '

Ly Lo Ly,

L O T il

L~ F F,
Then keep choosing SFCs with the smallest —? until the total
sizes of choice SFCs reaching R.. Since RC is not exactly
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known, we sort SFCs in the inverse order and put as more
SFCs with large % at the edge as possible.

But the reindexing step of SFCs in line 2 of Algo. 2 makes
the left SFCs uncontrolled, not necessarily with small Z: +:. Thus
when employ CNF, we must ensure enough resources at the
edge. Otherwise, there is a possibility that some VNFs in a
SFC with large & L: “are left to be placed on the cloud. If no
definitely adequate edge resources, we had better call CNF
with the input of merely one SFC. Referring to Eq. 7, we can
see there is always enough edge servers for VNFs whose total
sizes are less than or equal to 1 S°M O (V;,) & 1C.

Above all, we first sort and reindex SFCs by % in de-

creasing order and find the largest m' s.t. Zzl F; < %CN‘
Then employ CNF to place SFC 1 to m’ at the edge. Keep
calling CNF to deal with the next SFC, notes as i¢, until CNF
breaks due to no enough edge resources. Finally, we put the
rest VNFs of SFC i, as well as the whole SFCs i5+1 to m on
the cloud. The detailed DCNF algorithm with time complexity
O(N + mlog(m) + M?log(M)) is shown in Alg. 3.

Algorithm 3: DCNF algorithm
Input: The list of VNFs {F; ;} and the capacities of
servers Cp,Co, - -, Cyy.
Output: The placement scheme a:’i i
1 Sort and reindex SFCs so that Q > L2 > > L
C<—Ziule, Sum < Fi, z(—l
while Sum < 1C do
L 1+—i+1, Sum(—Sum—i—Fi;

5 Employ CNF to place SFC 1 to ¢ — 1 at the edge;

6 while there exist edge resources left do

7 Run CNF to deal with SFC i;

8 L g1, 1+ 1+1;

9 Put the rest VNFs of SFC i, as well as the whole
SFCs ig + 1 to m, on the cloud. (2 ; = 1)

A W N

Then we illustrate the solution obtained by DCNF is feasi-
ble. First CNF maintains all constraints at the edge, specifically
the edge server capacity constraints in Ineq. 1, and the edge
network connection bandwidth constraints in Ineq. 2. Besides,
as for the connection bandwidth constraints between edge and
cloud, i.e. p = 0 or ¢ = 0, in Ineq. 2, the NF strategy and
chaining sorting also ensure they are satisfied.

C. Approximation Ratio

We now demonstrate DCNF has provable constant ratios to
OPT for two different cases. For proof of the ratios, we denote
DCNF and OPT as the total cost respectively by DCNF and
OPT. Denote the total size of all VNFs as F' =) " F,

Theorem 4. DONF < r-OPT + C, where if F < %C,

C=a-maxCyandr=4- {maka-‘ :

min C},

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloade

d
1

IfF>1iC,

C =2¢-max L; and r = max {4 {maxck—‘

min C,

2aC + (2F — O) (7 + 20 max )

2amin{ﬁ,6’} + 2max{ﬁ — 5,0} (v + ZCmiin %)
(14)

™ ’Y+2CmaxL—’f
AndwhenF—)oo,r:maX{4 ’Vmaxck-‘7 i F,}

min C}, ~+2¢ min %
i Fi

%5 < F < C~', r has another
(2F—C)(7+2¢ max )
B(F+C)

is constant. When o = 0,

min C, minl;

format, r =4 - [mf”‘ C’”‘—‘ 4 maxCy

Proof. When F < %6, DCNF is reduced to CNF and SFCP
is limited at the edge. By Theorem 3, we know

4. Fnax C

min C},

—‘ and C = o - max C}.

When F > %CN',

Rfpenr=C, REopr >min {ﬁ 5} .

And referring to Theorem 2, LEpenr <4 [%8’:—‘ -OPT,,
where OPT, represents the minimal latency when placing
these VNFs at the edge. In OPT, more VNFs are placed at
edge servers due to its low latency, thus LEspr > OPT..

Line 6-8 in Algo. 3 ensures all edge servers are occupied,
then by Eq. 7, the total sizes of VNFs placed at the edge

1C which implies RCponr < F - C’

In OPT, the total sizes of VNFs placed at the edge < C
thus when F~Z C’ the resource cost on the cloud > F' — C.
When F' < C, there is a possibility that all SFCs are placed
at the edge, so in this case, we can only get the resource cost
on the cloud > 0. In all, RS0 pp > max { F — C, oi

In DCNF, SFCs ip + 1 to m are totally put on the cloud,
thus SFC 7 (ip + 1 < ¢ < m) has exactly two data flows
between cloud and edge and the total E&C latency is 2L;.
VNFs of SFC iy are partly put on the cloud. But the NF
strategy ensures it is a continuous part, thus SFC ¢, also has
at most two data flows between cloud and edge, producing
2L;, delay. In sum, Leponr < Z 2L, < 2L;, +
2(max J%)Zz ior1 Fi- Bq. 7 demonstrates Z v F > 10,
which implies > 3", | F; = F — Z Fi < F—1C. Thus,
LCpenrF < 2max L; —|—1nax? (2F C)

And if some VNFs in SFC 7 are placed on the cloud, the
E&C communication latency of this chain is at least 2. And
the total sizes of SFCs that contain VNFs on the cloud is larger
than or equal to the used cloud resources. Thus LCopr >
2Li max{F —C 0}

F,
Above all,

DCNF =aREponr + BLEponre + YR  ponr + CLE ponr,

max Ck-‘ -(B-OPT,) +2¢ - max L;,
min C},

<aC+4{
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1 Li.  ~ ~
+ (§7+C-max—_@) -(2F - O),
OPT =aR®opr + BLEopr + R 0pr + BL 0P,

Zamin{ﬁ,é} —|—B-OPT

+(y+2¢- mln— maX{F C,O}
Since 4% < max {2, 5}, letting b = 4 [’;?I’l‘g"] -(3-OPT.)
and d = - OPT,, we can get Eq. 14.
And by Eq. 10, OPT. > Y7 (mdxck 1) -4 >

minl;
= maxCy

+m) - minl; >

(rmxc,c (F + C’) Thus, when o =

1C < F < O, r has another format. r = 2 - [%gﬂ +
max Cy, | (4F C)(“/jQEm?x F:) 0
minl; B(F+C)

VI. PERFORMANCE EVALUATION

In this section, we perform extensive simulations on differ-
ent network topologies to evaluate and compare the perfor-
mance of DCNF with those of benchmarks. For each group
of outcomes, we use the average value from 100 groups of
simulations to reduce accidental errors. And the errors shown
on all the plots below are determined by the standard variances
of the corresponding 100 groups of simulations.

A. Algorithm Benchmarks

In the simulations, we compare our proposed DCNF with
three other heuristic algorithms as below.

o Rounding Algorithm (Rd): After formulating SFCP as
an ILP, the rounding algorithm can be used here. See
[15], [16] as example.

o First Fit Algorithm + Shortest Path Algorithm
(FFSP): since our DCNF is based on the NF strategy
of BP, here we try another popularly-used approximation
algorithm for BP, first-fit algorithm (FF). Specifically, we
use FF to assign VNFs on edge servers, and if there
are no enough edge resources for a VNEF, we put it
on the cloud. Then we use the shortest path algorithm,
e.g. Floyd algorithm [31], to find the routing of multiple
hops between two servers to compute the communication
latency.

o Best Fit Algorithm + Shortest Path Algorithm (BFSP):
Here we try another different popularly-used approxima-
tion algorithm for BP, best-fit algorithm (BF). Other steps
are the same as FFSP.

B. Simulations on 5 Small-Scale Random Network Topologies

RRED_L7 ¢

(a) Topo 1 (b) Topo 2 (c) Topo 3 (d) Topo 4 (e) Topo 5

Fig. 2: 5 different Network topologies with 8 Nodes
1) Network Topology and Simulation Setup: According to
Section III-C, SFCP is NP-hard, which implies the time cost of

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloade(:iL

finding OPT grows exponentially with the increase of problem
scale, specifically the number of VNFs /N and the number of
edge servers M. Thus we first evaluate the performance of
DCNF on the small-scale network topologies with 8 nodes,
where we can use the MIP solver to find OPT for SFCP.
We randomly generate 5 different such network topologies as
shown in Fig. 2.

The capacities of 8 edge servers are set as respectively
4,4,4,4,4,6,6,8. Besides, we set o = 1,8 =1,y =2,( =
1, fi; ~ N(2,0.5),1; ~ N(f;,0.25), L; ~ N(f;,0.25), where
fi is the mean size of all VNFs F; ; of a SFC i.
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(a) Different Network topologies (b) Different Chains for Topo 1

Fig. 3: Approximation ratios of DCNF on topologies with 8
nodes

2) Approximation Ratio Verification: We do simulations on
the number of chain m from 1 to 5 with 5 VNFs for each chain.
Here we use the MIP solver to compute the optimal solutions
of SFCP. The approximation ratio in Fig. 3 is computed by
dividing the total cost of DCNF by that of OPT in each
simulation.

In Fig. 3a, we can see the ratios of DCNF to OPT in
different network topologies are among interval [1,2.375], far
smaller than the upper bound proved in Theorem 4. Besides,
comparing the outcomes of different topologies, we can find
DCNF works better on the topologies with fewer links or
higher symmetry.

Fig. 3b shows the performance of DCNF with different
numbers of SFCs. The results with 1 and 2 chains demonstrate
the cases limited at the edge when DCNF is reduced to CNF.
The results with 3 and 4 chains are the critical cases when
DCNF may need cloud resources while OPT need not. And the
results with 5 chains are the cases when there are no adequate
resources at the edge and cloud resources must be used. In
Fig. 3b, we can see that the worst performance of DCNF is
achieved on the critical point when the edge is just enough by

OPT.

150 § 3501
= 125 S 4 3001
: g
O 100 O 2501
G T 2001
s o] o] ‘6’
F 5o % % .% F 150

254 ¢ ‘ : : : 1004 ‘ ‘ ‘ .

Rd BFSP FFSP DCNF OPT Rd BFSP FFSP DCNF OPT
Algorithms Algorithms
(a) 2 chains (b) 5 chains

Fig. 4: Performance comparisons of diff. algorithms on Topol
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3) Performance Comparisons with Benchmarks: In this
section, we do simulations on Topo 1 with m = 2 when SFCP
is limited at the edge and m = 5 when cloud resources must be
used. In each simulation, we run Rd, FFSP, BFSP, DCNF, OPT.
The different performances of them are displayed in Fig. 4.
As for m = 2,5, DCNF always has the best performance
compared with three benchmarks.

C. Simulations on 4 Large-Scale Real Network Topologies

1) Network Topology and Simulation Setup: Moreover, we
also perform simulations on 4 larger real network topologies,
shown in Fig. 5, from the Internet topology zoo [32]: (1)
AMRES (25 nodes and 24 links), (2) ARNES (34 nodes and
46 links), (3) DFN (58 nodes and 87 links), (4) ITCDeltacom
(113 nodes and 160 links).

o

(a) AMRES (b) ARNES (c) DEN

(d) ITCDeltacom
Fig. 5: Different real network topologies

Let the capacities of edge servers follows the normal distri-
bution of mean of 12 and standard variance of 4, with the limi-
tation of no less than 6. Additionally, weseta =1, =1,y =
2,( =1, fi; ~N(2,0.5),1; ~ N(f;,0.25), L; ~ N(f;,0.25),
where f; is the mean size of all VNFs F; ; of a SFC i.
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Fig. 6: Performance comparisons of different algorithms on 4
different real network topologies, respectively called AMRES,
ARNES, DFN, ITCDeltacom.

2) Performance Comparisons with Benchmarks: In this
part, we do simulations on 4 different real network topologies
with different m. In each simulation, all three benchmarks and
our DCNF are operated. In Fig. 6, we can see DCNF always
have a better performance than three benchmarks.

3) Time Cost Comparisons with Benchmarks: In Fig. 7,
we draw the time cost of simulations on the network topology
called ITCDeltacom by different algorithms. In the figure, we
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Fig. 7: Time cost of of different algorithms on Deltacom

can get the conclusion that DCNF is a very fast algorithm. It
has a dramatic advantage compared with the three benchmarks.
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Fig. 8: Performance comparisons of different algorithms with
different settings of weighting factors

4) Performance Comparisons with Different Settings of
Weighting Factors: Here we do simulations with 30 SFCs
and different settings of weighting factors on the network
topology called AMRES. In detail, we first adjust the relative
importance between resource weights and latency weights by
setting the ratio of %, % from é to 5. Besides we also adjust the
relative importance between cloud weights and edge weights
by setting the ratio of I, % from 1 to 5. Fig. 8 reveals DCNF
always has a better performance than the benchmarks in all
cases.

VII. CONCLUSION

In this paper, we propose an approximation algorithm,
DCNE, to deploy SFCs on the edge and the cloud. It balances
the resource and latency and optimizes the sweet-spot of
resource cost on the edge and the cloud and all corresponding
communication latency. Specifically, the Next Fit (NF) strategy
employed in it ensures efficient resource utilization and avoids
the redundant data traffic. Besides, a designed sub-algorithm
called double spanning tree (DST) for virtual network em-
bedding plays a critical role in reducing latency. In all, we
prove DCNF has a constant approximation ratio to the optimal
solution. Simulation results demonstrate its superiority. Due to
the space limitation, in this paper, we only solves SFCP in a
batch manner. In future, we will further settle SFCP in online
manner. Since NF can sequentially deal with SFCs in their
arriving order, we can promote our CNF to the online manner
by simply substituting the nearest neighbor algorithm for DST.
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