
Joint Resource Management and Flow Scheduling

for SFC Deployment in Hybrid Edge-and-Cloud

Network

1st Yingling Mao

Dept. of Electrical and Computer Eng.

Stony Brook University

New York, USA

yingling.mao@stonybrook.edu

2nd Xiaojun Shang

Dept. of Electrical and Computer Eng.

Stony Brook University

New York, USA

xiaojun.shang@stonybrook.edu

3rd Yuanyuan Yang

Dept. of Electrical and Computer Eng.

Stony Brook University

New York, USA

yuanyuan.yang@stonybrook.edu

Abstract—Network Function Virtualization (NFV) migrates
network functions from proprietary hardware to commercial
servers on the edge or cloud, making network services more
cost-efficient, manage-convenient, and flexible. To facilitate these
advantages, it is critical to find an optimal deployment of the
chained virtual network functions, i.e. service function chains
(SFCs), in hybrid edge-and-cloud environment, considering both
resource and latency. It is an NP-hard problem. In this paper,
we first limit the problem at the edge and design a constant
approximation algorithm named chained next fit (CNF), where a
sub-algorithm called double spanning tree (DST) is designed to
deal with virtual network embedding. Then we take both cloud
and edge resources into consideration and create a promotional
algorithm called decreasing sorted, chained next fit (DCNF),
which also has a provable constant approximation ratio. The
simulation results demonstrate that the ratio between DCNF and
the optimal solution is much smaller than the theoretical bound,
approaching an average of 1.25. Moreover, DCNF always has a
better performance than the benchmarks, which implies that it
is a good candidate for joint resource and latency optimization
in hybrid edge-and-cloud networks.

I. INTRODUCTION

Compared with traditional middle-boxes, network function

virtualization (NFV) [1] introduces new flexibility, scalability,

and cost-efficiency to network services by migrating network

functions, e.g., Proxies, Firewalls, Load Balancers, from dedi-

cated hardware to commercial servers. There is a dependency

among these virtual network functions (VNFs) and chaining

the VNFs for a network appliance in a particular order forms

a service function chain (SFC) [2]. With the fast development

of low-latency edge computing [25]–[30], there is a growing

motivation to deploy SFCs at the edge [5]–[11]. Apart from

reducing communication delay, deploying SFCs on the net-

work edges also has the potential of saving bandwidth and

protecting data safety and privacy [3].

Meanwhile, the flexibility of VNFs and the expense of

edge resources also pose challenges for the SFC deployment

problem. On one hand, it is essential to implement efficient

resource management to make full use of the insufficient,

expensive edge resources. Specifically, in NFV, resource man-

agement is realized by placing VNFs on edge commercial

servers and using as few servers as possible. On the other hand,

the chaining links between adjacent VNFs need to be taken

care of when deploying SFCs, called flow scheduling. A bad

scheduling scheme may cause redundant flow paths, incurring

high latency and network congestion, while a good scheme

will further cut back communication latency. Thus, in our

model, we targeting jointly resource and latency optimization,

not only efficiently managing edge resources but also cutting

back the communication latency.

Moreover, the insufficiency of edge resources may result

in the case that there is no way to place all SFCs on the

edge servers under the server capacity limitation. In such

cases, the cloud can be an efficient supplementary due to

its adequate computing resources. But how to allocate the

edge and cloud computing resources for these VNFs is a

challenging problem. Most existing work either neglects the

special case when the edge resource is not enough or simply

places all remaining VNFs onto the remote cloud after all edge

servers are occupied. Since latency between cloud and edge is

often higher than that between edge servers, choosing different

data flow to transmit between edge and cloud will make a

big difference in the total communication latency. Thus, it is

significant to solve the SFC deployment problem in the hybrid

edge-and-cloud network rather than a single edge network.

In all, it is desirable to jointly consider resource cost and

communication latency in the SFC deployment problem in

hybrid edge-and-cloud networks. In our paper, we envision

to design a constant approximation algorithm, minimizing

the total resource cost and all corresponding communication

latency when deploying SFCs on edge commercial servers and

the remote cloud. The work is hard since we need to balance

the resource cost and communication latency. Considering

both edge and cloud resources makes the problem more

complicated. Additionally, in the resource-related part, the

indivisible VNF and limited edge server capacity produce an

integer-variable constraint, which results in the NP-hardness

of the problem. In the latency-aware part, the complex net-

work topology brings trouble to virtual network embedding,

specifically the routing problem of multi-hops. Last but not
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least, achieving an excellent theoretical bound is also a big

challenge.

In our paper, we first simplify the problem by limiting it

at the edge and design a constant approximation algorithm

called chained next fit (CNF). CNF is mainly based on the

Next Fit strategy (NF) [4] since it can guarantee efficient

resource utilization and meanwhile have a positive influence

on the latency-aware part by avoiding the redundant data

traffic. Besides, an algorithm called double spanning tree

(DST) is proposed to match the virtual network onto the phys-

ical network. DST also reduces latency and avoids network

congestion by ensuring no more than two data flows passing

on each network connection. Furthermore, we put forward a

promotional algorithm called decreasing sorted, chained next

fit (DCNF), dealing with a general case when both edge

and cloud resources are taken into consideration. DCNF is

designed based on CNF and also has a provable constant

approximation ratio.

Our main contributions are summarized as follows.

• We formulate the SFC placement problem (SFCP), jointly

considering resource and latency, as an Integer Linear

Programming (ILP) problem and prove its NP-hardness

through a reduction from Bin Packing (BP) Problem.

• We first focus on the SFCP limited at the edge. A constant

approximation algorithm called chained next fit algorithm

(CNF) is created with two main parts: the NF strategy

and a designed sub-algorithm to deal with virtual network

embedding, called double spanning tree (DST).

• We produce a promotional algorithm to solve the com-

plete SFCP with both edge and cloud resources con-

sidered. We call it decreasing sorted, chained next fit

(DCNF), and prove its constant approximation ratio.

• We perform extensive simulations on 5 randomly gener-

ated small network topologies and 4 larger real network

topologies. The simulation results demonstrate that the

practical ratios of DCNF to the optimal solutions are

among interval [1, 2.375], far smaller than the proved

theoretical bound. What’s more, DCNF always has a

better performance than the benchmarks.

The remainder of this paper is organized as follows. Sec-

tion II briefly reviews the related work. In Section III, we

give the formulation of the jointly resource-and-latency-aware

SFC deployment problem (SFCP) and prove its NP-hardness.

Section IV demonstrates our CNF algorithm, composed of

the DST algorithm and the NF strategy, which is designed to

solve the SFCP limited at the edge. Furthermore, we prove its

constant approximation ratio. In Section V, a general algorithm

for the complete SFCP called DCNF is introduced and its

approximation ratio is proved to be constant. Additionally,

Section VI is the performance evaluation of DCNF. Finally,

we conclude the paper in Section VII.

II. RELATED WORK

With the emerging of NFV, researchers have devoted much

effort to SFC placement problem like [5]–[23]. Among them,

work [12]–[16] takes both resource and latency into consid-

eration. [12]–[14] formulate the SFC placement problem as a

mixed-integer linear programming (MILP) model and propose

various heuristic approaches while [15], [16] put forward

provable approximation algorithms based on the rounding

algorithm.

Due to the low latency of edge computing, there is a trend

of deploying SFCs on commercial servers at the edge. See [5]–

[11] as examples. However, the resource of edge computing is

limited. The insufficiency of edge resources may result in the

case that there is no way to place all SFCs on the edge servers

under the server capacity limitation. Most of the existing work

neglects such situations like [5]–[8]. Work [9], [10] introduces

cloud resources into the model for supplementary. But they

simply place all remaining VNFs onto the remote cloud after

all edge servers are occupied. To the best of our knowledge,

there is only one work [11] solving the SFC deployment

problem in the edge-and-cloud network as a whole. But [11]

only optimizes the network latency, ignoring the resource cost.

Besides, most of the work considering deploying SFCs

on network edges, e.g. [6]–[10] is limited to the design of

heuristic algorithms and does not have a provable performance

guarantee. As far as we are concerned, there are only below

two works giving the performance bounds. [5] designs a two-

stage VNF deployment scheme with a constrained depth-first

search algorithm (CDFSA) and a path-based greedy algorithm

(PGA), giving a theoretically-proved worst-case performance

bound by an implicit constant factor. In [11], Song Yang et

al. propose an efficient randomized rounding approximation

algorithm to solve the delay-aware virtual network function

placement and routing in edge clouds.

III. PROBLEM FORMULATION

A. System Model

The notations used in this model are shown in Table I.

Consider the edge network as a connected graph G =
(V,E), where each commercial server i is a vertex in the

graph, noted as Vi. If servers Vp and Vq are directly con-

nected in the edge network, then link (p, q) ∈ E. Otherwise

(p, q) /∈ E. Assume there are M servers at the edge and each

server i has its processing capacity, noted as Ci.

Suppose there are m SFCs, where the VNFs are placed in

a particular order. And in SFC i, there are ni VNFs, noted as

Fi,1, Fi,2, · · ·, Fi,ni
in the chaining order, and the throughput

of data flow is bi. Note that VNF Fi,j needs fi,j computing

resource, i.e., the size of Fi,j is fi,j . The total number of VNFs

is N =
∑m

i=1 ni.

In each SFC i, there is a data flow between Fi,j and

Fi,j+1 for any 1 ≤ j ≤ ni − 1. If Fi,j and Fi,j+1 are

placed on different edge servers, data transmission from Fi,j

to Fi,j+1 will cause communication latency. We define the

communication latency that data flow of SFC i passes through

one link in G as li. Typically, G is NOT a complete graph.

So data transmitting from Fi,j on one server to Fi,j+1 on

another server may need multiple hops, i.e., pass through

several server-nodes or links in G. The number of hops here,
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m number of Service Function Chains (SFCs)

M number of physical servers in the edge network

ni number of VNFs in SFC i

N number of all VNFs

Fi,j VNF j in SFC i

fi,j the size of VNF Fi,j

li communication latency that data flow of SFC i passes through
one link ( or to say, hop) in the edge network

Li E&C communication latency of SFC i

bi data flow of SFC i

Vk edge server k, if k > 0; the cloud, if k = 0
Ck capacity of edge server k

Bp,q bandwidth limit of network connection (p, q)
w

p,q
i,j if data between Fi,j and Fi,j+1 pass through link (p, q) or not

xk
i,j if VNF Fi,j is placed on Vk or not

yk if server k is occupied or not

zi,j number of hops at the edge when data flows from Fi,j to Fi,j+1

Zi,j if there is E&C trans. latency between Fi,j and Fi,j+1 or not

M ′ number of used servers in the results of CNF

M∗ number of used servers in OPT

V ∗

j used server j in OPT

C(·) (total) capacity of a server

c(·) occupied capacity of a server by VNFs.

TABLE I: Notations

noted as zi,j , depends on the solutions of the multi-hop routing

problem on G under the bandwidth limit of each link (p, q),
noted as Bp,q . Note that if (p, q) /∈ E, Bp,q = 0.

Above we talk about the latency at the edge. If some VNFs

are put on the cloud, there are communication latency between

edge and cloud, short for E&C communication latency. We

now consider such a situation when Fi,j and Fi,j+1 are

placed one at the edge and one on the cloud. Then E&C

communication latency appears. It is determined mainly by

the data flow volume of SFC, the multiple hops outside the

edge network and the bandwidths between edge and cloud,

etc. The relationship is very complicated and there is work

professionally targeting the related topic [24]. For simplicity,

here we just assume the total E&C communication latency

between Fi,j and Fi,j+1 is Li and Li ≥ li. Denote the cloud

as V0. Also, we assume the cloud is ”connected” to all edge

server-nodes and give the estimated bandwidth limit of the

connection between an edge server Vk and the cloud V0, noted

as Bk,0 = B0,k.

B. Problem Formulation

In the SFC placement problem (SFCP), our task is to

place the m SFCs onto the M edge commercial servers or

the cloud without exceeding the constraints of edge server

capacities and the bandwidth limits of network connections.

Our goal is to minimize the total resource consumption and

the whole communication latency when placing SFCs in the

hybrid edge-and-cloud network. Specifically, the total resource

consumption contains the total capacities of occupied edge

servers and the total sizes of VNFs put on the cloud while the

whole communication latency includes the total communica-

tion latency at the edge and that between edge and cloud.

In order to formulate SFCP, we first define three Boolean

variables: (1) xk
i,j = 1 if and only if VNF Fi,j is placed on

server k; (2) yk = 1 if and only if server k is occupied; (3)

wp,q
i,j = 1 if and only if data flow between VNF Fi,j and Fi,j+1

passes through link (p, q). Among them, xk
i,j and wp,q

i,j are the

decision variables in our model while yk is used for clear

expression. Note that, here, server k (1 ≤ k ≤M) represents

a edge server while server 0 is on behalf of the cloud.

The capacity constraint of each edge server asks

m∑

i=1

ni∑

j=1

xk
i,j · fi,j ≤ yk · Ck, ∀1 ≤ k ≤M. (1)

Under the limitation of bandwidth, it satisfies

m∑

i=1

ni−1∑

j=1

(wp,q
i,j + wq,p

i,j ) · bi ≤ Bp,q, ∀ 0 ≤ p < q ≤M. (2)

Since each VNF can not be split, which implies it is exactly

placed on an edge server or the cloud,

M∑

k=0

xk
i,j = 1, ∀1 ≤ i ≤ m, 1 ≤ j ≤ ni. (3)

According to Flow Conservation Law, as for any data flow

between VNF Fi,j and Fi,j+1, we have ∀ 0 ≤ k ≤M ,

M∑

p=0

wp,k
i,j −

M∑

q=0

wk,q
i,j = xk

i,j+1 − xk
i,j . (4)

Then the number of hops that data flows at the edge

network, from Fi,j to Fi,j+1, is

zi,j =
M∑

p=1

M∑

q=1

wp,q
i,j , ∀1 ≤ i ≤ m, 1 ≤ j ≤ ni − 1. (5)

Note that we define zi,0 = 1 and zi,ni
= 1, showing as for

SFC i, there is input data flowing into the first VNF and output

data flowing out of the last VNF at the edge.

Besides we create another Boolean variable, presenting

whether there is E&C communication latency between Fi,j

and Fi,j+1. As for any 1 ≤ i ≤ m, 1 ≤ j ≤ ni − 1,

Zi,j =

M∑

q=1

w0,q
i,j +

M∑

p=1

wp,0
i,j . (6)

And we define Zi,0 = x0
i,1 and Zi,ni

= x0
i,ni

, which means

if Fi,1 is placed on the cloud, there is input data flowing

from the edge to the cloud, producing E&C communication

latency, while if Fi,ni
is placed on the cloud, there is output

data flowing from the cloud to the edge, also producing E&C

communication latency.

In our model, there are four optimization objectives, respec-

tively

• Resource cost at the edge: RE,

• Communication Latency between edge servers: LE,

• Resource cost on the cloud: RC,

• Communication Latency between edge and cloud: LC,

R
E =

M∑

k=1

yk · Ck, L
E =

m∑

i=1

ni∑

j=0

li · zi,j ,

R
C =

m∑

i=1

ni∑

j=1

x0
i,j , ·fi,j , L

C =
m∑

i=1

ni∑

j=0

Li · Zi,j .
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Then SFCP can be formulated as the below ILP.

min αRE + βLE + γRC + ζLC

s.t. (1)− (6),

where α, β, γ, ζ are weighting factors that are used to adjust

the relative importance of the cost component.

C. Proof of NP-hardness

As for a classical Bin Packing Problem (BP) with any

parameter setting, the problem can be reduced to an SFCP

with α = 1, β = γ = ζ = 0, Ck = 1, Bp,q = ∞, ∀1 ≤
k, p, q ≤ M , where each server can be seen as a bin while

each VNF can be seen as an item that needs to be packed.

Since BP is an NP-complete problem, SFCP is NP-hard.

D. Problem Complexity

In the above section, we show the NP-hardness of SFCP

based on the resource cost alone by reducing from BP.

Similarly, SFCP can also be proved to be NP-hard by the

reduction from the Travelling Salesman Problem (TSP) if only

the network latency is considered. It implies the complexity

of the SFCP problem comes from both the resource cost part

and the communication latency part. Besides, considering the

hybrid edge and cloud network as a whole also bring troubles

to this problem. We should take care of the four optimization

objectives at the same time, which is dramatically complicated.

Thus, in the below section, we start from a simplified SFCP

limited at the edge with two optimization objectives and then

promote the scheme to deal with the complete SFCP with four

objectives.

IV. THE SFCP LIMITED AT THE EDGE

A. Basic Ideas and Challenges

As for the SFCP limited at the edge, there exist two opti-

mization objectives, which is still difficult. Thus we take a look

at a simple version of it to find some intuitions. If ignoring the

communication latency of data flows between VNFs in SFCs,

specifically α = 1, β = 0, Bp,q = ∞ ∀1 ≤ k, p, q ≤ M , the

simplified SFCP can be seen as a BP problem with servers

being viewed as bins and VNFs as items. There are plenty of

approximation algorithms for BP. In all, the Next Fit strategy

(NF) is best suitable for SFCP, since it not only guarantees

efficient resource utilization, but also has a positive influence

on communication latency by avoiding the redundant data

traffic. What’s more, it has no rules on sequences of bins and

items, which gives us space to make rules for virtual network

embedding.

We intend to design an approximation algorithm based on

NF, satisfying both server capacity constraints and connection

bandwidth limits. Then we prove the upper bounds of the

resource consumption and communication latency separately

and finally get the approximation ratio of our algorithm by

integrating these two parts.

However, challenges still exist. The first challenge comes

from the complicated network topology. The disconnection of

some servers and the resulted various multi-hop paths between

them make it difficult to match the virtual network to the

physical edge network, meanwhile satisfying the bandwidth

limit. Thus before applying the NF strategy, we need to add

a preparing part for virtual network embedding, specifically

sorting servers by minimizing the total number of multiple

hops. Additionally, different server capacities make it hard to

prove the bound of communication latency because it leads to

a gap between total used resources and the number of used

servers.

B. Chained Next Fit (CNF) Algorithm Procedures

We design an approximation algorithm called Chained Next

Fit algorithm (CNF). In the beginning of CNF, we devise a

preparing algorithm to sort servers called double spanning tree

(DST), as shown in Algo. 1. Specifically, we first choose the

maximal-capacity server. Then use the depth-first search (DFS)

algorithm to obtain a spanning tree with this server node as

the root. In DFS, let the node with larger capacity have higher

priority for the neighbor search. Double this spanning tree and

delete a link between the root and its child, we will get a path.

Finally, starting from the root, along the path, we traverse all

nodes. We sort the servers by the traversing order. Note that

if some node has been reached before, hop it and continue to

the next node.

Algorithm 1: Double Spanning Tree Algorithm (DST)

Input: G and the servers V1, V2, · · ·, VM .

Output: Sorted servers Vk1
, Vk2

, · · ·, VkM
and

multi-hop paths Tj between each two

adjacent sorted servers Vkj
and Vkj+1

.

1 Find the server Vp with maximal capacity and mark it.

2 Use DFS to obtain a spanning tree T with Vp as its

root, where node with larger capacity has higher

priority for the neighbor search.

3 Double T and delete a link between Vp and its child

with the smallest capacity to get a path T ′.

4 j ← 1, kj ← p.

5 while j < M do

6 Find the next unmarked node of Vkj
on T ′, noted

as Vq , and mark it.

7 j ← j + 1, kj ← q.

8 for j = 1→M − 1 do

9 Find the shortest path between Vkj
and Vkj+1

in G,

noted as the multi-hop path Tj from Vkj
to Vkj+1

.

After DST, we sort SFCs in decreasing order of their latency

parameters li and sort VNFs in their chaining order. Next, we

employ the NF strategy to do SFC deployment. Specifically, if

a VNF fits inside the currently considered edge server, place it

on this server. Otherwise, the placement on the current server

ends, a new edge server is opened and the VNF is placed on

this new server. Repeat the same procedures on the next VNF

until all VNFs are placed at the edge.

The detailed CNF algorithm with time complexity O(N +
mlog(m) +M2 log(M)) is shown in Alg. 2.
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Then we demonstrate the solution obtained by CNF is

feasible under the assumption that each edge server has enough

capacity for any VNF and each edge network connection has

enough bandwidth for double of any data flow. Based on this

premise, the NF strategy (line 5-13 in Algo. 2) maintains

the server capacity constraints in Ineq. 1. Combined with

chained sorting, it also ensures there is at most one data flow

between any two edge servers. And as shown in Fig. 1b,

DST and the property of tree structure guarantee that there

are at most two hops (or data flows) passing through any

edge network connection, which will be explained in detail

in Section IV-D. So the connection bandwidth constraints in

Ineq. 2 are satisfied.

Algorithm 2: CNF algorithm

Input: The list of VNFs {Fi,j} and the capacities of

servers C1, C2, · · ·, CM .

Output: The placement scheme xk
i,j and the number

of used servers M ′.

1 Sort and reindex servers by DST.

2 Sort and reindex SFCs so that l1 ≥ l2 ≥ · · · ≥ lm;

3 k ← 1;

4 for i = 1→ m do

5 for j = 1→ ni do

6 if Vk has enough rest capacity for Fi,j then

7 xk
i,j = 1; (Place Fi,j on Vk)

8 else

9 if k < M then

10 For all links (p, q) in the multi-hop path

Tk, let wp,q
i,j = 1;

11 xk+1
i,j = 1, k ← k + 1;

12 else

13 Return 0; (No enough edge servers)

14 M ′ ← k.

C. Bound of Resource Part

We now demonstrate CNF has an asymptotic approximation

ratio of 2 to the optimal solution (OPT) on R
E. For proof of

the ratio, we use functions of C(·) and c(·) to respectively

represent the capacity of an edge server and the occupied part.

Obviously, for any k ∈ [1,M ], c(Vk) ≤ C(Vk).
Besides we assume V1, · · ·, VM ′ are used servers by CNF

while V ∗
1 , · · ·, V

∗
M∗ are those by OPT. Since they both deal

with the same VNF set {Fi,j},

M ′∑

k=1

c(Vk) =

m∑

i=1

ni∑

j=1

fi,j =

M∗∑

k=1

c(V ∗
k ).

Theorem 1. R
E
CNF < 2 ·RE

OPT +C, where C = maxCk.

Proof. Referring to the NF strategy, the first VNF placed on

the next server can NOT be placed on the current server. Thus

all VNFs of the current server plus the first VNF on the next

(a) A Tree (b) Multi-hop Paths between nodes occupied
by two SFCs

Fig. 1: A simple example of DST algorithm

server are larger than the capacity of the current server, i.e.

∀ 1 ≤ k < M ′, c(Vk) + c(Vk+1) > C(Vk). In sum,

R
E
CNF =

M ′∑

k=1

C(Vk) <

M ′−1∑

k=1

(c(Vk) + c(Vk+1)) + C,

< 2
M∑

k=1

c(Vk) + C = 2
M∗∑

k=1

c(V ∗
k ) + C, (7)

≤ 2

M∗∑

k=1

C(V ∗
k ) + C = 2 · RE

OPT + C.

D. Bound of Communication Part

Here we show CNF also has a constant ratio to OPT on

L
E. We now denote zi =

∑ni

j=0 zi,j and z∗i respectively as the

total number of hops in SFC i by CNF and OPT.

Theorem 2. L
E
CNF ≤ 4 ·

⌈
maxCk

minCk

⌉
· LE

OPT .

Proof. In the path T ′ produced by Algo. 1, each network link

appears at most twice. Line 2 in Algo. 2 ensures for each

network link, the data flow of SFC later flowing through must

be less than or equal to that former flowing through before.

Thus
m∑

i=1

zi · li ≤ 2

m∑

i=1

Mi · li, (8)

where Mi is the number of used servers when placing SFC i
by CNF.

Take a simple case with 8 servers and 2 SFCs for example.

Fig. 1a shows the spanning tree T of the graph G. In this case,

the path T ′ is V1−V2−V3−V4−V3−V2−V5−V6−V5−V2−
V1 − V7 − V8 − V7 − V1. Each network link appears at most

twice. SFC 1 occupied V1, V2, V3, V4, V5 while SFC 2 occupied

V5, V6, V7, V8. Fig. 1b shows the multi-hop paths in the worst

case and the passing data flow, where dotted lines represent

the link second used while lines show the link first used. In

SFC 1 from V4 to V5, the multi-hop path V4−V3−V2−V5 is

feasible. Line 9 in Algo. 1 may find a shorter multi-hop path.

For instance, if link (V2, V4) ∈ E, then V4−V2−V5 is a shorter

multi-hop path. Anyway V4− V3− V2− V5 is the worst case.

Here we only consider such multi-hop paths on T ′. In Fig. 1b,

the data flow on lines is no less than that on dotted lines. For

SFC 1, data flows through V1 − V2 − V3 − V4 − V3 − V2 − V5
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and the number of hops is 6+ 2 < 2 ∗ 5. The total number of

hops for SFC 1, 2 is |T ′|+4 = 18 ≤ 2 ∗ (5+4). And l1 ≥ l2,

thus Ineq. 8 holds.

As for SFC i, suppose the first used server by CNF is Vpi

and the last is Vqi . Denote the number of used servers when

placing SFC i by OPT as M∗
i . By definitions, we have

M∗
i ≥




∑ni

j=1 fi,j

max
1≤k≤M

Ck




and Mi ≤




∑qi
k=pi

C(Vk)

min
1≤k≤M

Ck



. (9)

In OPT, there is at least one hop between two used servers

in SFC i, as well as one hop for data flowing in, one for data

flowing out. Thus

z∗i ≥M∗
i + 1. (10)

In sum,

Mi ≤

⌈∑qi−1
k=pi+1 C(Vk) + C(Vpi

) + C(Vqi)

minCk

⌉
, (11)

≤

⌈
2
∑ni

j=1 fi,j + 2maxCk

minCk

⌉
, (12)

≤ 2 ·

⌈
maxCk

minCk

⌉
·M∗

i + 2 ·

⌈
maxCk

minCk

⌉
,

≤ 2 ·

⌈
maxCk

minCk

⌉
· z∗i ,

where d·e is the ceiling function, Format 11 ≤ Format 12

stems from Ineq. 7.

Referring to Ineq. 8, we have

L
E
CNF =

m∑

i=1

zi · li ≤ 2 ·

m∑

i=1

2 ·

⌈
maxCk

minCk

⌉
· z∗i · li, (13)

= 4 ·

⌈
maxCk

minCk

⌉
·

m∑

i=1

z∗i · li,

= 4 ·

⌈
maxCk

minCk

⌉
· LE

OPT .

E. Approximation Ratio of CNF in SFC Placement Problem

Now we can combine upper bounds of RE
CNF and L

E
CNF

to prove the constant approximation ratio of CNF in SFCP.

Denote CNF and OPT as the total cost respectively by CNF

and OPT. Combined with Theorem 1, 2, we obtain the below

theorem.

Theorem 3. CNF ≤ 4 ·
⌈
maxCk

minCk

⌉
· OPT + C, where C =

α ·maxCk.

Proof.

CNF = α · RE
CNF + β · LE

CNF ,

≤2α · RE
OPT + C + 4β ·

⌈
maxCk

minCk

⌉
· LE

OPT ,

<4 ·

⌈
maxCk

minCk

⌉
·
[
α · RE

OPT + β · LE
OPT

]
+ C,

≤4 ·

⌈
maxCk

minCk

⌉
·OPT + C.

V. THE COMPLETED SFCP (EDGE & CLOUD)

A. Basic Ideas and Challenges

Typically, the communication latency between edge and

cloud is much larger than that among edge servers, i.e. Li ≥ li,
owing to the longer distance. Thus we prioritize the use of

edge resources.

In order to take full use of edge resources, the natural idea

is to put as much VNFs at the edge as possible and then put

the rest VNFs on the cloud. However, such direct operations

may cost high communication latency between edge and cloud

since what VNFs and SFCs are left is uncontrolled. The key

challenge here is how to choose VNFs or SFCs, putting at the

edge, so that the left VNFs need as small cloud resources as

possible and meanwhile produce as low E&C communication

latency as possible.

B. Algorithm Procedures

Here we design an approximation algorithm called Decreas-

ing Sorted, Chained Next Fit algorithm (DCNF). Based on

Theorem 1, CNF makes the left VNFs as few as possible,

which helps minimizes the needed cloud resources. But it can

not ensure the left SFCs produce as low E&C communication

latency as possible.

In order to minimize the E&C communication latency, the

basic rule is to put the whole SFC i or a continuously chaining

segment of SFC i on the cloud, where the communication

latency is merely 2Li. Otherwise, if there is k intermittent parts

of SFC i placed on the cloud, the produced communication

latency between edge and cloud is 2k · Li. Luckily, the left

VNFs of a SFC by CNF must be continuously chaining. Since

the total resource consumption on the cloud is roughly fixed,

noted as Rc, depending on the fixed total edge resources, the

key problem is a 0-1 min-knapsack problem as below.

min
m∑

i=1

2Li ·Xi,

s.t.

m∑

i=1

Fi ·Xi ≥ Rc,

where Xi is a Boolean variable, representing if SFC i is placed

on the cloud or not; Fi =
∑ni

j=1 fi,j is the total size of all

VNFs in SFC i, also mentioned as the size of SFC i.
This 0-1 min-knapsack problem can be solved by a greedy

approach. Sort and reindex SFCs by Li

Fi
in increasing order so

that
L1

F1
≤

L2

F2
≤ · · · ≤

Lm

Fm

.

Then keep choosing SFCs with the smallest Li

Fi
until the total

sizes of choice SFCs reaching Rc. Since Rc is not exactly
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known, we sort SFCs in the inverse order and put as more

SFCs with large Li

Fi
at the edge as possible.

But the reindexing step of SFCs in line 2 of Algo. 2 makes

the left SFCs uncontrolled, not necessarily with small Li

Fi
. Thus

when employ CNF, we must ensure enough resources at the

edge. Otherwise, there is a possibility that some VNFs in a

SFC with large Li

Fi
are left to be placed on the cloud. If no

definitely adequate edge resources, we had better call CNF

with the input of merely one SFC. Referring to Eq. 7, we can

see there is always enough edge servers for VNFs whose total

sizes are less than or equal to 1
2

∑M
k=1 C(Vk)

def
= 1

2 C̃.

Above all, we first sort and reindex SFCs by Li

Fi
in de-

creasing order and find the largest m′ s.t.
∑m′

i=1 Fi ≤
1
2 C̃.

Then employ CNF to place SFC 1 to m′ at the edge. Keep

calling CNF to deal with the next SFC, notes as i0, until CNF

breaks due to no enough edge resources. Finally, we put the

rest VNFs of SFC i0, as well as the whole SFCs i0+1 to m on

the cloud. The detailed DCNF algorithm with time complexity

O(N +mlog(m) +M2 log(M)) is shown in Alg. 3.

Algorithm 3: DCNF algorithm

Input: The list of VNFs {Fi,j} and the capacities of

servers C1, C2, · · ·, CM .

Output: The placement scheme xk
i,j .

1 Sort and reindex SFCs so that L1

F1
≥ L2

F2
≥ · · · ≥ Lm

Fm
;

2 C̃ ←
∑M

k=1 Ck, Sum← F1, i← 1;

3 while Sum ≤ 1
2 C̃ do

4 i← i+ 1, Sum← Sum+ Fi;

5 Employ CNF to place SFC 1 to i− 1 at the edge;

6 while there exist edge resources left do

7 Run CNF to deal with SFC i;
8 i0 ← i, i← i+ 1;

9 Put the rest VNFs of SFC i0, as well as the whole

SFCs i0 + 1 to m, on the cloud. (x0
i,j = 1)

Then we illustrate the solution obtained by DCNF is feasi-

ble. First CNF maintains all constraints at the edge, specifically

the edge server capacity constraints in Ineq. 1, and the edge

network connection bandwidth constraints in Ineq. 2. Besides,

as for the connection bandwidth constraints between edge and

cloud, i.e. p = 0 or q = 0, in Ineq. 2, the NF strategy and

chaining sorting also ensure they are satisfied.

C. Approximation Ratio

We now demonstrate DCNF has provable constant ratios to

OPT for two different cases. For proof of the ratios, we denote

DCNF and OPT as the total cost respectively by DCNF and

OPT. Denote the total size of all VNFs as F̃ =
∑m

i=1 Fi.

Theorem 4. DCNF ≤ r ·OPT + C, where if F̃ ≤ 1
2 C̃,

C = α ·maxCk and r = 4 ·

⌈
maxCk

minCk

⌉
;

If F̃ > 1
2 C̃,

C = 2ζ ·maxLi and r = max

{
4

⌈
maxCk

minCk

⌉
,

2αC̃ + (2F̃ − C̃)(γ + 2ζmax
i

Li

Fi
)

2αmin
{
F̃ , C̃

}
+ 2max

{
F̃ − C̃, 0

}
(γ + 2ζmin

i

Li

Fi
)





.

(14)

And when F̃ → ∞, r = max

{
4
⌈
maxCk

minCk

⌉
,
γ+2ζ max

i

Li
Fi

γ+2ζ min
i

Li
Fi

}

is constant. When α = 0, 1
2 C̃ < F̃ ≤ C̃, r has another

format, r = 4 ·
⌈
maxCk

minCk

⌉
+ maxCk

min li
·
(2F̃−C̃)(γ+2ζ max

i

Li
Fi

)

β(F̃+C̃)
.

Proof. When F̃ ≤ 1
2 C̃, DCNF is reduced to CNF and SFCP

is limited at the edge. By Theorem 3, we know

r = 4 ·

⌈
maxCk

minCk

⌉
and C = α ·maxCk.

When F̃ > 1
2 C̃,

R
E
DCNF = C̃, R

E
OPT ≥ min

{
F̃ , C̃

}
.

And referring to Theorem 2, LE
DCNF ≤ 4

⌈
maxCk

minCk

⌉
·OPTc,

where OPTc represents the minimal latency when placing

these VNFs at the edge. In OPT, more VNFs are placed at

edge servers due to its low latency, thus L
E
OPT ≥ OPTc.

Line 6-8 in Algo. 3 ensures all edge servers are occupied,

then by Eq. 7, the total sizes of VNFs placed at the edge

≥ 1
2 C̃, which implies R

C
DCNF ≤ F̃ − 1

2 C̃.

In OPT, the total sizes of VNFs placed at the edge ≤ C̃,

thus when F̃ ≥ C̃, the resource cost on the cloud ≥ F̃ − C̃.

When F̃ < C̃, there is a possibility that all SFCs are placed

at the edge, so in this case, we can only get the resource cost

on the cloud ≥ 0. In all, RC
OPT ≥ max

{
F̃ − C̃, 0

}
.

In DCNF, SFCs i0 + 1 to m are totally put on the cloud,

thus SFC i (i0 + 1 ≤ i ≤ m) has exactly two data flows

between cloud and edge and the total E&C latency is 2Li.

VNFs of SFC i0 are partly put on the cloud. But the NF

strategy ensures it is a continuous part, thus SFC i0 also has

at most two data flows between cloud and edge, producing

2Li0 delay. In sum, L
C
DCNF ≤

∑m
i=i0

2Li ≤ 2Li0 +

2(max Li

Fi
)
∑m

i=i0+1 Fi. Eq. 7 demonstrates
∑i0

i=1 Fi ≥
1
2 C̃,

which implies
∑m

i=i0+1 Fi = F −
∑i0

i=1 Fi ≤ F − 1
2C. Thus,

L
C
DCNF ≤ 2maxLi +max Li

Fi
· (2F̃ − C̃).

And if some VNFs in SFC i are placed on the cloud, the

E&C communication latency of this chain is at least 2Li. And

the total sizes of SFCs that contain VNFs on the cloud is larger

than or equal to the used cloud resources. Thus L
C
OPT ≥

min 2Li

Fi
·max

{
F̃ − C̃, 0

}
.

Above all,

DCNF =αRE
DCNF + βLE

DCNF + γRC
DCNF + ζLC

DCNF ,

≤αC̃ + 4

⌈
maxCk

minCk

⌉
· (β ·OPTc) + 2ζ ·maxLi,
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+ (
1

2
γ + ζ ·max

Li

fi
) · (2F̃ − C̃),

OPT =αRE
OPT + βLE

OPT + γRC
OPT + βLC

OPT ,

≥αmin
{
F̃ , C̃

}
+ β ·OPTc

+ (γ + 2ζ ·min
Li

fi
) ·max

{
F̃ − C̃, 0

}
.

Since a+b
c+d
≤ max

{
a
c
, b
d

}
, letting b = 4

⌈
maxCk

minCk

⌉
· (β ·OPTc)

and d = β ·OPTc, we can get Eq. 14.

And by Eq. 10, OPTc ≥
∑m

i=1

(
Fi

maxCk
+ 1

)
· li ≥

( F̃
maxCk

+ m) · min li ≥
min li
maxCk

(F̃ + C̃). Thus, when α =

0, 1
2 C̃ < F̃ ≤ C̃, r has another format. r = 2 ·

⌈
maxCk

minCk

⌉
+

maxCk

min li
·
(4F̃−C̃)(γ+2ζ max

i

Li
Fi

)

β(F̃+C̃)
.

VI. PERFORMANCE EVALUATION

In this section, we perform extensive simulations on differ-

ent network topologies to evaluate and compare the perfor-

mance of DCNF with those of benchmarks. For each group

of outcomes, we use the average value from 100 groups of

simulations to reduce accidental errors. And the errors shown

on all the plots below are determined by the standard variances

of the corresponding 100 groups of simulations.

A. Algorithm Benchmarks

In the simulations, we compare our proposed DCNF with

three other heuristic algorithms as below.

• Rounding Algorithm (Rd): After formulating SFCP as

an ILP, the rounding algorithm can be used here. See

[15], [16] as example.

• First Fit Algorithm + Shortest Path Algorithm

(FFSP): since our DCNF is based on the NF strategy

of BP, here we try another popularly-used approximation

algorithm for BP, first-fit algorithm (FF). Specifically, we

use FF to assign VNFs on edge servers, and if there

are no enough edge resources for a VNF, we put it

on the cloud. Then we use the shortest path algorithm,

e.g. Floyd algorithm [31], to find the routing of multiple

hops between two servers to compute the communication

latency.

• Best Fit Algorithm + Shortest Path Algorithm (BFSP):

Here we try another different popularly-used approxima-

tion algorithm for BP, best-fit algorithm (BF). Other steps

are the same as FFSP.

B. Simulations on 5 Small-Scale Random Network Topologies

(a) Topo 1 (b) Topo 2 (c) Topo 3 (d) Topo 4 (e) Topo 5

Fig. 2: 5 different Network topologies with 8 Nodes

1) Network Topology and Simulation Setup: According to

Section III-C, SFCP is NP-hard, which implies the time cost of

finding OPT grows exponentially with the increase of problem

scale, specifically the number of VNFs N and the number of

edge servers M . Thus we first evaluate the performance of

DCNF on the small-scale network topologies with 8 nodes,

where we can use the MIP solver to find OPT for SFCP.

We randomly generate 5 different such network topologies as

shown in Fig. 2.

The capacities of 8 edge servers are set as respectively

4, 4, 4, 4, 4, 6, 6, 8. Besides, we set α = 1, β = 1, γ = 2, ζ =
1, fi,j ∼ N(2, 0.5), li ∼ N(fi, 0.25), Li ∼ N(fi, 0.25), where

fi is the mean size of all VNFs Fi,j of a SFC i.

topo1 topo2 topo3 topo4 topo5
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(a) Different Network topologies
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(b) Different Chains for Topo 1

Fig. 3: Approximation ratios of DCNF on topologies with 8

nodes

2) Approximation Ratio Verification: We do simulations on

the number of chain m from 1 to 5 with 5 VNFs for each chain.

Here we use the MIP solver to compute the optimal solutions

of SFCP. The approximation ratio in Fig. 3 is computed by

dividing the total cost of DCNF by that of OPT in each

simulation.

In Fig. 3a, we can see the ratios of DCNF to OPT in

different network topologies are among interval [1, 2.375], far

smaller than the upper bound proved in Theorem 4. Besides,

comparing the outcomes of different topologies, we can find

DCNF works better on the topologies with fewer links or

higher symmetry.

Fig. 3b shows the performance of DCNF with different

numbers of SFCs. The results with 1 and 2 chains demonstrate

the cases limited at the edge when DCNF is reduced to CNF.

The results with 3 and 4 chains are the critical cases when

DCNF may need cloud resources while OPT need not. And the

results with 5 chains are the cases when there are no adequate

resources at the edge and cloud resources must be used. In

Fig. 3b, we can see that the worst performance of DCNF is

achieved on the critical point when the edge is just enough by

OPT.
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Algorithms
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(a) 2 chains
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Fig. 4: Performance comparisons of diff. algorithms on Topo1
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3) Performance Comparisons with Benchmarks: In this

section, we do simulations on Topo 1 with m = 2 when SFCP

is limited at the edge and m = 5 when cloud resources must be

used. In each simulation, we run Rd, FFSP, BFSP, DCNF, OPT.

The different performances of them are displayed in Fig. 4.

As for m = 2, 5, DCNF always has the best performance

compared with three benchmarks.

C. Simulations on 4 Large-Scale Real Network Topologies

1) Network Topology and Simulation Setup: Moreover, we

also perform simulations on 4 larger real network topologies,

shown in Fig. 5, from the Internet topology zoo [32]: (1)

AMRES (25 nodes and 24 links), (2) ARNES (34 nodes and

46 links), (3) DFN (58 nodes and 87 links), (4) ITCDeltacom

(113 nodes and 160 links).

(a) AMRES (b) ARNES (c) DFN (d) ITCDeltacom

Fig. 5: Different real network topologies

Let the capacities of edge servers follows the normal distri-

bution of mean of 12 and standard variance of 4, with the limi-

tation of no less than 6. Additionally, we set α = 1, β = 1, γ =
2, ζ = 1, fi,j ∼ N(2, 0.5), li ∼ N(fi, 0.25), Li ∼ N(fi, 0.25),
where fi is the mean size of all VNFs Fi,j of a SFC i.
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Fig. 6: Performance comparisons of different algorithms on 4

different real network topologies, respectively called AMRES,

ARNES, DFN, ITCDeltacom.

2) Performance Comparisons with Benchmarks: In this

part, we do simulations on 4 different real network topologies

with different m. In each simulation, all three benchmarks and

our DCNF are operated. In Fig. 6, we can see DCNF always

have a better performance than three benchmarks.

3) Time Cost Comparisons with Benchmarks: In Fig. 7,

we draw the time cost of simulations on the network topology

called ITCDeltacom by different algorithms. In the figure, we
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Fig. 7: Time cost of of different algorithms on Deltacom

can get the conclusion that DCNF is a very fast algorithm. It

has a dramatic advantage compared with the three benchmarks.
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Fig. 8: Performance comparisons of different algorithms with

different settings of weighting factors

4) Performance Comparisons with Different Settings of

Weighting Factors: Here we do simulations with 30 SFCs

and different settings of weighting factors on the network

topology called AMRES. In detail, we first adjust the relative

importance between resource weights and latency weights by

setting the ratio of α
β

, γ
ζ

from 1
5 to 5. Besides we also adjust the

relative importance between cloud weights and edge weights

by setting the ratio of γ
α

, ζ
β

from 1 to 5. Fig. 8 reveals DCNF

always has a better performance than the benchmarks in all

cases.

VII. CONCLUSION

In this paper, we propose an approximation algorithm,

DCNF, to deploy SFCs on the edge and the cloud. It balances

the resource and latency and optimizes the sweet-spot of

resource cost on the edge and the cloud and all corresponding

communication latency. Specifically, the Next Fit (NF) strategy

employed in it ensures efficient resource utilization and avoids

the redundant data traffic. Besides, a designed sub-algorithm

called double spanning tree (DST) for virtual network em-

bedding plays a critical role in reducing latency. In all, we

prove DCNF has a constant approximation ratio to the optimal

solution. Simulation results demonstrate its superiority. Due to

the space limitation, in this paper, we only solves SFCP in a

batch manner. In future, we will further settle SFCP in online

manner. Since NF can sequentially deal with SFCs in their

arriving order, we can promote our CNF to the online manner

by simply substituting the nearest neighbor algorithm for DST.
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