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Abstract—Network Function Virtualization (NFV) emerges as
a promising paradigm with the potential for cost-efficiency,
manage-convenience, and flexibility, where the service function
chain (SFC) deployment scheme is a crucial technology. In this
paper, we propose an Ant Colony Optimization (ACO) meta-
heuristic algorithm for the Online SFC Deployment, called ACO-
OSD, with the objectives of jointly minimizing the server oper-
ation cost and network latency. As a meta-heuristic algorithm,
ACO-OSD performs better than the state-of-art heuristic algo-
rithms, specifically 42.88% lower total cost on average. To reduce
the time cost of ACO-OSD, we design two acceleration mech-
anisms: the Next-Fit (NF) strategy and the many-to-one model
between SFC deployment schemes and ant-tours. Besides, for the
scenarios requiring real-time decisions, we propose a novel online
learning framework based on the ACO-OSD algorithm, called
prior-based learning real-time placement (PLRP). It realizes near
real-time SFC deployment with the time complexity of O(n),
where 7 is the total number of VNFs of all newly arrived SFCs.
It meanwhile maintains a performance advantage with 36.53%
lower average total cost than the state-of-art heuristic algorithms.
Finally, we perform extensive simulations to demonstrate the
outstanding performance of ACO-OSD and PLRP compared with
the benchmarks.

I. INTRODUCTION

With the development of virtualization technology, network
function virtualization [1] (NFV) emerges as a promising
paradigm by migrating network functions, or middleboxes,
from proprietary hardware appliances to common commercial
servers. In an NFV system, a network service request is typi-
cally realized by chained-up virtual network functions (VNFs),
also called service function chains (SFCs) [2]. NFV makes
network services more cost-efficient, manage-convenient, and
flexible. To realize its full potential, an efficient SFC deploy-
ment scheme is essential, which can help fully utilize server
resources, save bandwidth, and reduce network latency. Thus,
the SFC deployment scheme is a crucial technology for NFV.

For SFC deployment, two major objectives are operation
cost reduction and network latency minimization. Specifi-
cally, the former is pursued by NFV providers seeking cost-
effectiveness, while the latter is more emphasized by cus-
tomers expecting a higher quality of service (QoS). Never-
theless, such two objectives are sometimes conflicted. For
example, Fig. 1 plots two alternative solutions to deploy an
SEC. Solution (a) benefits the NFV providers since they can
shut down the idle server 3 to reduce the operation cost, but it
increases the communication latency of the service compared
with solution (b). Solution (b) improves the customers’ QoS by
cutting back the communication latency between two VINFs,
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Fig. 1: An example of two SFC deployment schemes, where
there are three servers with different residual resources and an
SFC composed of two VNFs with different resource demands.
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but it incurs more operation costs due to one more employed
server compared with solution (a). Thus, in this work, we focus
on a practical problem on SFC deployment: How to achieve
a win-win SFC deployment solution that jointly reduces the
operation cost and minimizes the network latency?

Such an SFC deployment problem with two objectives has
been proven to be a combination of two NP-hard issues, i.e.,
VNF placement and flow routing [9], [10]. Due to this NP-
hardness, most existing techniques are limited to the design
of heuristic algorithms. To achieve better optimization, we
focus on another popular choice to solve the NP-hard problem:
the meta-heuristic algorithm. The meta-heuristic algorithm is
typically a high-level problem-independent algorithmic frame-
work. It has the advantage of better performance than heuristic
algorithms since it can find near-optimal solutions by itera-
tively improving solutions.

Besides, most existing SFC deployment proposals usually
work only for specific simplified models of the SFC deploy-
ment problem (Seen in Sec. II). As more practical considera-
tions and constraints are introduced into the model, e.g., multi-
ple resource types, queuing delays, online service requests, and
their limited living time, existing SFC deployment strategies
typically break. In our paper, we build a comprehensive model
and target to make an online SFC deployment, with the
objective of jointly reducing the operation cost and minimizing
the network latency. And we select a popular-used meta-
heuristic algorithm, called Ant Colony Optimization (ACO),
which can successfully fit into our model to solve the online
SFC deployment problem.

Moreover, we design two acceleration mechanisms to im-
prove the conventional ACO for this particular problem, giving
birth to a novel ACO-based Online SFC Deployment algorithm

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:13:03 UTC from IEEE Xplore. Restrictions apply.



(ACO-OSD). First, when fitting ACO into the online SFC
deployment problem, we adopt a many-to-one model between
the SFC deployment schemes and artificial ant-tours, which
significantly speeds up our algorithm by cutting back the total
number of possible ant-tours. Besides, we further facilitate our
ACO-0SD algorithm by employing the Next-Fit (NF) strategy
to obtain the shortest feasible ant-tour in a tour family and
remove the possibilities of all other “not-best” ant-tours.

In addition, for the scenarios requiring real-time decisions,
we propose an online learning framework based on ACO-
OSD, called prior-based learning real-time placement (PLRP).
It has two stages. One is the prior-based learning stage, where
ACO-0OSD runs based on the real-time network data and prior
SFC data in advance of a time slot. The other is the real-time
placement stage, where the NF strategy is adopted to deploy
the newly arrived SFCs based on the best-learned routing path
that the prior-based learning stage returns. In PLRP, only the
real-time placement stage runs after the new service requests
arrive, and its time complexity is O(n), where n is the total
number of VNFs of all newly arrived SFCs. Thus, PLRP can
realize near real-time placement. Meanwhile, the best-learned
routing path that the prior-based learning stage returns help
PLRP maintain a comparable performance advantage to that
of the ACO-OSD algorithm.

Our main contributions are listed as follows.

o We formulate a comprehensive model for online SFC de-
ployment, which considers multiple computing resources,
such as CPU and RAM, the queuing delay, the online
service requests, and their limited living time.

o We successfully fit the ACO meta-heuristic algorithm
in our comprehensive model and propose two accelera-
tion mechanisms, generating the ACO-OSD algorithm. It
performs better than the state-of-art heuristic algorithms,
specifically 42.88% lower total cost on average.

e« We propose a novel online learning framework based
on ACO-OSD, called PLRP, which realizes near real-
time placement and maintains a performance advantage
with 36.53% lower average total cost than the state-of-art
heuristic algorithms.

o« We perform extensive simulations, demonstrating the
superiority of our ACO-OSD and PLRP compared with
two state-of-art heuristic benchmarks.

The remainder of this paper is organized as follows. Section

II reviews the related works. Section III describes the system
model and formulates the online SFC deployment problem.
Section IV states our basic ideas and challenges. Afterward,
Section V proposes the ACO-OSD algorithm for the online
SFC deployment, while Section VI designs the PLRP online
learning framework. Then, Section VII is the performance
evaluation of ACO-OSD and PLRP. Finally, we conclude the
paper in Section VIII.

II. RELATED WORK

With the development of NFV, the SFC deployment problem
has become a research hot spot. When deploying SFCs, it
is promising to optimize the operation cost and the network

latency jointly. It is NP-hard. Thus, most existing works focus
on proposing heuristic algorithms to solve it. Among them,
many works, e.g., [3]-[6], have no provable performance
guarantee. Only four existing works [7]-[10] provide theo-
retical performance bounds for the proposed algorithms on
the SFC deployment problem with these two optimization
objectives. We list them below. Shang et al. [7] put forward
provable approximation algorithms, based on the rounding
algorithm, with an approximation ratio of O(log(M)), where
M is the number of servers. Jin et al. [8] design a two-stage
VNF deployment scheme with a constrained depth-first search
algorithm (CDFSA) and a path-based greedy algorithm (PGA),
which gives a theoretically-proved worst-case performance
bound by an implicit constant factor. Mao et al. [9] propose
an SFC deployment algorithm for the hybrid edge-and-cloud
environment with a provable constant approximation ratio. In
[10], the proposed algorithms for the online SFC deployment
achieve an approximation ratio of 2 on the operation cost and
a ratio of O(log(M)) on the network latency.In all, the state-
of-art result is a provable worst-case performance bound by a
constant factor no less than 2. Limited to the complexity of
the problem, it is hard to obtain further improvement on the
worst-case theoretical bound. Thus, we pay more attention to
pursuing better average performance rather than the worst-case
bound. We consider meta-heuristic algorithms, which typically
perform better than a single heuristic algorithm.

Besides, these existing heuristic algorithms, specifically the
approximation algorithms, only work for the specific sim-
plified model and have some drawbacks which limit their
performance for real-world applications. For example, works
[7]-[10] only consider one kind of computing resource, ig-
noring the influence of capacity limitation of other resources.
And works [7], [9], [10] all ignore the queuing delay in the
computation of network latency. Additionally, work [8] only
deals with the offline case and can not adapt to the dynamic
network, while work [10] considers the online model but
assumes the arrived service is always living in the system,
which is unrealistic. We consider all these factors (i.e., multiple
resource types, queuing delay, online service requests, and
their limited living time) and build a comprehensive model
to solve the online SFC deployment problem.

Additionally, there are two existing works [23], [24] trying
to fit the ACO framework into the SFC deployment problem.
However, they both consider an offline model and can not
adapt to the dynamic network due to the high time cost caused
by the iteration framework. What’s worse, they both ignore
queuing delay in the computation of network latency. Our de-
signed ACO-OSD and PLRP both fit the comprehensive model
for online SFC deployment. In particular, PLRP can adapt
to the dynamic network due to its near real-time placement
manner.

I11. PROBLEM FORMULATION
A. System Model

The notations used in this model are shown in Table I.
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m total number of Service Function Chains (SFCs)

M number of physical servers in the network

n; number of VNFs in SFC 2

N number of all VNFs

VNF j in SFC ¢

f{f‘j needed A(= CPU or RAM) resource of VNF Fj ;

i the flow rate of SFC %

Vi the k-th physical server

R]? capacity of commercial server Vi.’s A (= CPU or RAM) resource

Cr operation cost of commercial server Vj,

L processing capacity of the router at node Vj,

[ average queuing delay at node Vi

bandwidth limit of link (V}, Vg)

w1 T if output data flow of F; ; pass through link (V;, V4), o/w 0

lp,q | link latency of link (V3, Vg)
xfj 1 if VNF F; ; is placed on Vj, otherwise O
Yk 1 if server V}, is occupied, otherwise 0

TABLE I: Notations

a) Physical Network: Let us consider a physical network
represented by a directed graph G = (V, E), where each node
is a commercial server, V' = {V;,V4,--- ,Vis} is the set of
server nodes, M = |V is the number of commercial servers,
and E is the set of communication channels connecting servers
in V. For each pair of servers V,,,V, € V, if (V,,,V,) € E, it
implies V}, and V; are directly connected, i.e., there exists a
physical communication channel connecting the server V}, and
V. Denote the bandwidth and link latency of this channel
as By g, lpg. If (V,,V,) ¢ E, V, and V, are NOT directly
connected and B, 4 and [, , are marked as 0.

Each server V), has various kinds of computing resources,
such as CPU (central processing unit), GPU (graphics process-
ing unit), RAM (random-access memory), etc. Here, we only
consider two primary computing resources: CPU and RAM.
Note that if needed, our formulation and solution can be easily
generalized to that with three or more kinds of computing
resources. Denote by R;"" and R}*™ the CPU and RAM
capacities of server V(1 < k < M). Besides, denote the
processing capacity of the router at node Vj, i.e., the number
of packets per second such a router can sustain, as fij.

Each server Vi has two states: on and off. Once the
commercial server is on, the NFV provider should pay for
the operation cost of a whole server, even if only part of the
computing resources are employed. Denote the operation cost
of server Vj is C. At a time slot ¢, we use a binary variable
sk(t) to indicate the state of commercial server Vj: si(t) =1
if and only if the commercial server is on.

b) SFCs: Suppose there are m service requests, arriving
sequentially over the entire time span 7'. Each service request
needs a corresponding SFC to realize it. We number the
requests in the order of their arrivals and denote by SFC ¢ the
SFC that works for i-th service request. At each time slot ¢, the
NFV system executes the following procedures: first removing
timeout SFCs, updating the network states, receiving arriving
requests, making SFC deployment decisions, and finally again
updating the network states.

Assume the i-th request arrives at time slot ¢7. Its reserved
time to live (TTL) is tﬁ time slots. Then, we use a binary
variable e;(t) to indicate whether i-th service request (or SFC

1) is still in service in time slot ¢: e;(t) = 1, if and only if
2 <t <t 4t

In these SFCs, VNFs are chained up in some specific order
to realize the corresponding service requests. As for SFC 1,
suppose there are n; chained VNFs, noted as Fj i, Fo,- -

-, I n, in chaining order. Denoted the needed CPU and RAM
resource of VNF F; ; as f2 and f74"™. The total number of
VNFsis N =>"" n;. There isa data flow between adjacent
VNFs in an SFC. Denote the flow rate of SFC 7 as \;.

B. Problem Formulation

In the online SFC deployment problem, our task is to deploy
the m sequential SFCs onto the physical network G with M
commercial servers, i.e., place the N VNFs onto M servers
and route the corresponding data flow in the network G.

a) VNF placement: In order to formulate this problem,
we first define a Boolean variable :17 i.; as the decision variable
of the VNF placement scheme: m = 1, if and only if VNF
F; ; is placed on server V.

When placing VNFs onto servers, we should satisfy the
capacity constraint of each commercial server. Thus,

ZZ wp - ei(t) S RPY, VI<k<MteT. (1)
=1 j=1
SN ak i fme(t) <R, VI<k<MteT. (2)
i=1 j=1

Since each VNF can not be split, which implies it is exactly
placed on a commercial server, we have

M

k
Yok =1,
k=1

At the beginning of each time slot, the NFV system will
remove timeout SFCs and deploy the newly arrived SFCs.
These operations all have the possibility of changing the state
of commercial servers. For example, once all VNFs placed
on server Vi are removed, NFV providers will shut down
server Vi, immediately to reduce the operation cost, i.e., letting
sk(t) = 0. Once any VNF is scheduled to some closed server
Vi, NFV providers should open server Vj first to run this
VNF on it, i.e., letting sx(t) = 1. In our model, we ignore
the time cost of removing timeout SFCs and deploying the
newly arrived SFCs since it is typically very short compared
to a time slot. Thus, the state of server Vj, at time slot ¢ that
we mentioned in our paper refers to the final stable state in
this time slot after the executions of removing operation and
deploying operation, i.e.,

su(t) = 1, Zl_ ZJ 1x” e;(t) >0,
¥ 0, Y S akeit) =0.

b) Flow Routing: Besides, we define another Boolean
variable w? ’]q as the decision variable of the flow routing
scheme: w’i ig = 1, if and only if data flow between VNF

F, ; and F; j4q pass through link (V,, V).

vi<i<m,1<j<n; 3)

4)
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According to Flow Conservation Law, as for any data flow
between VNF F; ; and F; j1q1, we have V 1 < k < M,

Zw
p=1

The limitation of bandwidth asks V1 <p < q < M,

T J+1 xkj' o)

m n;—1
Z Z P4 wlP) N ei(t) < Bpg. (6)

i=1 j=1
In our model, we consider two kinds of network latency,
namely the queuing delay in the router at node Vj, and the
transmission delay {, ; on the link (V},,V;). To analyze the
queuing delay of users at node Vj,, we model it as an M /M /1
queue. By applying Little’s law, the average queuing delay at
Vj, at time slot ¢, noted as [}.(¢), can be calculated as follows:

, 1
lk(t) - TI,‘—l .
frre = iy (@ + 200 ZPNU My N -eilt)
(N
In order to employ the above formula, we need to satisfy
n;,—1 M
Z 2B Y Y Tl Apei(t) < pr, V1< k< M. (8)
1= 7j=1 p=1

c) Formulated Optimization Problem: Our objective is

to jointly minimize the operation cost and the network latency.

The total operation cost C for holding all opened servers
can be computed by

M
C= chk 'Sk(t)

teT k=1
The total network latency . = ID; + D, where D, is the total

transmission delay and D, is the total queuing delay. D, and
D, can be computed by

o
m
~
s
,_.
u
,_.
‘@
H

In all, the SFC deployment problem can be formulated as
W=a-C+5- (D +D,)
st (1) = (8),

where «, 8 are two weighting factors.

min

IV. BASIC IDEAS AND CHALLENGES

In our paper, we build a comprehensive model for the
online SFC deployment problem. Our basic idea is to choose
a suitable meta-heuristic algorithm to solve the optimization
problem in our model, achieving better performance than the
state-of-art heuristic algorithms.

We choose the meta-heuristic algorithm from the ACO
algorithm family. The first ant colony optimization algorithm,

called Ant System (AS), was proposed by Dorigo et al. in
the 1990s [11]. It is inspired by the foraging behavior of the
real ant. One of the main ideas is the indirect communication
of multi-agents, called artificial ants, based on pheromone
trails. The (artificial) pheromone trails are a kind of distributed
numeric information which is modified by the ants to reflect
their experience while solving a particular problem. ACO is
a probabilistic technique for solving NP-hard combinatorial
optimization problems, which can be reduced to finding good
paths through graphs. Recently, the ACO meta-heuristic algo-
rithm family has been proposed, which provides a unifying
framework for solving numerous optimization tasks involving
some sort of graph, e.g., vehicle routing and internet routing.
SFC deployment problem can be seen as such kind of flow
routing problem.

One key challenge is that the online SFC deployment
problem is a new optimization problem, and the existing ant
colony optimization algorithms can not perfectly fit the SFC
deployment problem. Under the framework of ACO, a new
local search approach is needed to be designed for the server
resource, bandwidth, and router capacity limitations in the SFC
deployment problem. The other challenge is how to speed
up the designed ACO meta-heuristic algorithms to meet the
requirement of fast decisions in the dynamic network.

In the following two sections, we propose an ACO meta-
heuristic algorithm for online SFC deployment, called ACO-
OSD, with two acceleration mechanisms: the many-to-one fit
model for tour construction and the Next-Fit strategy. Next,
we design a novel online learning framework based on ACO-
OSD, called PLRP, for scenarios requiring real-time decisions.

V. AN ACO META-HEURISTIC ALGORITHM FOR ONLINE
SFC DEPLOYMENT

Before designing an ACO meta-heuristic algorithm for
online SFC deployment, we first clarify the inputs of each
time slot:

o targeted newly arrived SFCs: g, - - - , %, at time slot ¢ and
the needed CPU and RAM resource of their VNFs;

o realtime residual CPU resource of server Vi: r" =

1
Rzpu ZZO Z 7, g Z(‘?U el(t)7
o realtime remdual RAM resource of server Vj: rp%" =
Ry = 300 o k- f - eilt):
. realtlme res1dua1 processing capacrty of router Vi@ p) =
1 i—1 k
= S (S Sl Wl - A e();
. realtlme residual bandw1dth of link (Vo V)i bpq
1
= S ST b ) (1)
. realtlme number of ﬂows ﬂowrng into node Vi: county =
io—1 i—1
i (x} i1t Zn Zp 1w ) ei(t).

Let us look at the total cost 1ncrement caused by deploying
newly arrived SFCs at time slot ¢, which is our optimization
target at time ¢. It has three parts: the increment of operation
cost, transmission delay, and queuing delay.

The operation cost increment is AC(t) =
ML C - (Zz i Qi yzy; > 0) - (county == 0), where
(county, == 0) = 1, if count, == 0 is True; otherwise,
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(county, == 0) = 0. Here > 7", zf; > 0 means server Vi
is employed by these newly arrived SFCs while county = 0
means V} is totally idle before. That is to say, the operation
cost only increases when some server is employed from the
idle status. Note that if V}, has been employed by the existing
old SFCs and these newly arrived SFCs again employ it, the
deployment of these newly arrived SFCs on server Vj will
not cause an operation cost increase. The transmission delay
increment is just the transmission delay of these newly arrived
SFCs, ie., AD(t) = >, Yt 0L, 300l g - wlf.
Denote count), = Zz;o (xfl + Z]QI 224:1 wﬁ’f).
The queuing delay increment has two parts: one is the
queuing delay of these newly arrived SFCs, i.e., A]D)l( ) =

Sl county / [y, = Toiz, (ks + 5 L wl m};
the other is the queuing delay increment of ex1sting
old SFCs, caused by that some new data flows
occupy part of router process capacity, i.e., AID)z() =

Sl countie/ [ = i, @y + 5 S0 wl) - A

- Zkle county, /.. In all, the cost increment at time ¢ is

AW(t) = aAR(t) + B [AD; + AD, + ADZ] (t).  (9)

A. Tour Construction: Many-to-One Fit Model

In the ACO meta-heuristic framework, the basic idea is
that in each iteration, multiple artificial ants construct dif-
ferent tours according to state transition rules based on the
pheromone trails. After all the ants have constructed tours, the
pheromones are updated based on the different objective costs
of ant-tours. When we fit the ACO meta-heuristic framework
into the online SFC deployment problem, the first problem
is how to build a relationship between the SFC deployment
schemes and artificial ant-tours. The natural idea is to map
them one to one. Specifically, if ant currently exists at the
server node of VNF F; ;, its next node in the tour is exactly
the server node of the next chained VNF F; ; ;. For example,
Fig. 2 gives two SFC deployment schemes for deploying an
SFC with 4 VNFs in a network with three server nodes.
According to one-to-one mapping, the corresponding two
artificial ant-tours are respectively 1—1—2—3 and 1-2—-2-3.

There is another more cost-efficient mapping proposal. Here
we define an ant-tour by considering the process of SFC data
flowing into a different server as a move in the tour. In this
case, we will create a many-to-one relationship between the
SFC deployment schemes and artificial ant-tours. According
to this idea, both SFC deployment schemes in Fig. 2 share the
same artificial ant-tour 1 —2—3. Compared with the one-to-one
mapping, this many-to-one model has fewer possible artificial
ant-tours. Thus, it can work as an acceleration mechanism in
ACO-0OSD.

B. A Next-Fit Speed-up Strategy

To introduce the many-to-one model into the ACO frame-
work for the online SFC problem, we need to give a map from
the artificial ant-tour back to the SFC deployment scheme.
Note that not all randomly produced artificial ant-tour is

Data Flow VNF
S ) N S @
.
1 2 3
Server
1 2 3

Fig. 2: Tour Constructions

feasible. Some ant-tours may have no SFC deployment scheme
that maps to it because the servers along the tour do not
have enough resources to place all VNFs. We call them
infeasible ant-tours. Besides, since the network graph is not
fully connected, only permitting the ant moves to the unvisited
node, as the classical ACO does, is unfeasible.

That is to say, in our defined ant-tour, some server nodes
may appear multiple times. Then, another problem appears:
How to decide the stop point of the tour construction ? If we
stop too early, the ant-tour will be infeasible. Below, we will
show the Next-Fit strategy can solve these two problems.

Let us first consider a tour family 7/, where if T}, T» € T7,
then the start node of 7} and 75 are the same and T} is a part
of Ty or T is a part of T3. For example, {1,1 — 2,1 — 2 —
3,1 —2—3—4} is a tour family.

If given a tour family and the order of possible employed
server nodes is fixed by the longest tour, the NF strategy
can return an SFC deployment scheme for an SFC, which
maps to an artificial ant-tour belonging to this tour family.
Specifically, start from the first VNF of this SFC and the
first server node in the tours of this tour family. If this VNF
fits inside the currently considered server, i.e., this server has
enough residual available CPU and RAM resources for this
VNE, it is placed on this server. Otherwise, the placement on
the current server ends. Following the order of servers, find
the next server with enough residual CPU and RAM resources
for this VNF, place the VNF on it and consider this server as
the current server. Repeat the same procedures on the next
chained VNF until all VNFs are placed on the servers.

Theorem 1. If given an ant-tour family T, whose longest tour
is T'= [Vay,Vay, + , Vayp |, the NF strategy returns an SFC
deployment scheme for SFC i. This SFC deployment scheme is
mapped to the shortest feasible tour in this tour family, which

is also the tour with the minimal cost among all feasible tours.

Proof. 1t can be proved by mathematical induction. First, it is
easy to see the Next-Fit strategy returns the shortest feasible
tour for deploying a sub-SFC with only VNF F; ;. Assume
NF returns a shortest feasible tour for deploying a sub-SFCs
with VNF F;; to VNF F;; (1 < j < jo). We need to
prove NF returns the shortest feasible tour for deploying sub-
SFCs with VNF F;; to VNF I} j 41, which can be proved
by contradiction.

Assume the feasible tour given by NF for deploying a sub-
SFCs with VNF F; ; to VNF F; ; 41, noted as 71, is not the
shortest feasible tour. There exist a feasible tour 75 among
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the tour family 7'/, which is shorter than 71, i.e., |T2| < |[T1].
Since T5 is a feasible tour, there must exist an SFC deployment
scheme for SFC ¢, which maps to the ant-tour 75. Denote in
this SFC deployment scheme for tour 75, the last VNF placed
on the server Va|T2|71 as F; ;, (j1 < jo + 1). Denote F;
is placed on V,, by the NF strategy. Since |T2| < |7T1], then
|T5| — 1 < k, which contradicts with the assumption that NF
strategy returns a shortest feasible tour for deploying a sub-
SFCs with VNF F; ; to VNF F; ;, (1 < j1 < jo). O

Therefore, we can use the Next-Fit strategy to control the
stop point of the tour construction and map from the ant-
tour back to the SFC deployment. It speeds up our ACO-OSD
by further removing all other possibilities, except the shortest
feasible tour, in each tour family.

C. ACO Meta-heuristic Algorithm

Based on the above-mentioned many-to-one model and
Next-Fit strategy, we design our ACO-OSD algorithm as
below. In ACO-OSD, the ACO framework algorithm that we
choose is Ant Colony System (ACS) [12], which is a popularly
used ACO algorithm proposed for the Travelling Salesman
Problem (TSP). ACS is based on an earlier algorithm, called
Ant-Q [13], which combines AS, the first proposed ACO
algorithm, with Q-learning, a specific reinforcement learning
algorithm.

ACO-OSD differs in three main aspects from ACS, mainly
in the tour construction. First, ACO-OSD extends the tour
only when requiring more servers to deploy SFCs. The tour
may not traverse all network nodes. Second, in steps of the
tour extension, the feasible neighborhood of node Vi, 2,
is redefined by the set of x nearest feasible nodes, rather
than the neighborhood of node Vj in the network graph G.
It is essentially a local search procedure added to the ACS
framework. Third, every time of tour extension, we add the
path from node V}, to node V;, rather than node V}, to the tour.
It may cause some nodes repeatedly appear in the tour, which
permits full use of the residual resource of some servers.

In the following, we present these modifications in more
detail.

1) Tour Construction and SFC deployment: Step 1: Ini-
tially, each artificial ant a is put on some randomly chosen
feasible node Vj. Note that the feasible node here refers
to the node where the server has enough residual available
CPU and RAM resources for the current considered VNF
F; j(i = ip,j = 1) and the router has enough residual pro-
cessing capacity for the data flow of SFC g, i.e., 7" > fif’;-“,
M > ff ?’”, and pj, > A;. Now, node Vj, is added to the
tour of ant a, and V}, is the current node.

Step 2: Employ the Next-Fit strategy to place all chained
VNFs after the current considered VNF F; ; (including F; ;)
onto the current node V. There are two possible results: (1)
if all chained VNFs after VNF F; ; (including F; ;) have been
successfully placed onto node Vi, go to Step 3; (2) if the
placement stops at some VNF F; ;; since the server Vj has
no enough residual available CPU and RAM resource to place
VNF F; ;:, go to Step 4.

Step 3: If ¢ < 75, update the current considered VNF by
i =14 1,7 = 1 and repeat Step 2. If ¢ > i, finish the tour
construction.

Step 4: Update the current considered VNF by j = j'. If
artificial ant a currently stops at the current node, i.e., the
current node is the last node of the current ant-tour, do tour
extension to update ant-tour and update the current node by
its next node in the ant-tour. Otherwise, directly update the
current node by its next node in the ant-tour. Then, repeat
Step 2.

2) Tour Extension: If artificial ant a currently stops at node
Vi, but the VNFs of all newly arrived SFCs have not been
totally placed, the tour should be extended from node V}. Ant
a applies the pseudo-random-proportional action choice rule to
extend the tour. That is, with probability 1 — qg, ant a follows
a probabilistic action choice rule. In particular, the probability
with which ant a, currently at node Vj, chooses to go to node
V, at r-iteration of the algorithm is:
Tri (1) - 772[

Yy o?

if 1€,
0EQy, Tko(r) "Mko

(10)

pri(r) = 5

where 7 (r) is the pheromone value with an initialized value
of 1 and updated via Eq. 11-12, ny, is a heuristic value, v (y >
0) is a hyper-parameter which determines the relative influence
of the pheromone trail versus the heuristic information, and €2,
is the feasible neighborhood of node Vj. Unlike ACS, €2 here
is redefined by the set of x nearest feasible nodes. They can
be found by the Dijkstra algorithm, with link latency as link
weights of the network graph, under the bandwidth and router
capacity limitation. It is a local search procedure that avoids
possible flow blocks caused by the random walk. If [ € ,
the heuristic value of 7y is defined by the length (the sum of
link latency) of the path from V), to V; given by the Dijkstra
algorithm.

With probability qp, ant a follows a deterministic action
choice rule. That is, ant a, currently at node V}, chooses to
go to node V; that 75,(r) - n/, is maximal and [ € Q. In this
case, the best possible move under current learned knowledge
is made.

Above all, the path from node Vj to node V] is added to
the tour of artificial ant a.

3) Global pheromone trail update: After all the ants have
constructed their tours, we evaluate these tours by Eq. 9 and its
mapped SFC deployment scheme. Afterward, the pheromone
trails are updated globally. This is done by first lowering the
pheromone strength on all arcs by a constant factor and then
only allowing the artificial ant, which produces the global-best
tour, to add pheromone on the arcs it has visited. Specifically,
the global pheromone trail is updated following the below
equation.

ma(r+1) = (1= p) - ma(r) + p- ATL(), (A1)

where p (0 < p < 1) is the global pheromone trail evap-
oration rate. It is used to avoid the unlimited accumulation
of pheromone trails and enables the algorithm to “forget”
previously bad decisions. If an arc is not chosen by the
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global-best tour, its associated pheromone strength decreases
exponentially. AT,flb (r) is the amount of pheromone that the
artificial ant, which produces the global-best tour, puts on the
arcs it has visited. It is defined as follows:

AT,flb(r) _ 1, if arc (.k, 1) € the global-best tour, (12)

0, otherwise.

4) Local pheromone trail update: In addition to the global
updating rule, we also employ a local update rule, applied
immediately after each tour construction:

(1) = (1= &) - Tra(r) + & - 70,

where local pheromone evaporation rate £ (0 < £ < 1), and
intensification value 7y are two Hyper-parameters. The effect
of the local updating rule is to make an already chosen arc less
desirable for the following ants. In this way, the exploration
of not yet visited arcs is increased.

13)

VI. PRIOR-BASED LEARNING REAL-TIME PLACEMENT

Although we have tried our best to design a fast ACO meta-
heuristic algorithm for the online SFC deployment problem,
its time cost must be much more than that of the heuristic
algorithms. It is caused by the iteration framework and can not
be solved without framework change. It means ACO-OSD can
not adapt to scenarios that require real-time decisions. Thus,
we propose an online learning framework based on ACO-
OSD, called PLRP, which realizes near real-time placement
and meanwhile maintains the advantage of performance.

It is inspired by the separation of the training and testing
stages in many popular machine learning algorithms, where
although the training stage takes a lot of time, the testing stage
is very fast, near real-time feedback. And in applications, we
only care about the time cost of the test stage. Similarly, in our
online SFC deployment problem, can we do some preparations
in advance? Following this idea, our PLRP framework also
has two stages: one is prior-based learning, which is done in
advance; the other is the real-time placement stage, which is
very fast, near real-time feedback. Specifically, it works as
follows.

When we do the online SFC deployment decision for a new
time slot ¢, there are two kinds of input (seen in Sec. V-C): the
real-time SFC data and the real-time network data. The real-
time network data can be known by a time slot in advance
because it is totally decided by the deployment schemes of
the SFCs that have arrived before, and their time to live.
Take the simple case in Fig. 3 for example, where SFCs 1-
3 arrive at the beginning of time slot ¢y, SFCs 4-6 arrive
at the beginning of time slot ¢,. In this example, we target
to find the deployment schemes for SFCs 4-6. Thus, this
deployment decision will happen after the arrival of SFCs 4-
6 at the beginning of time slot 2. The input of the real-time
network data is decided by the deployment schemes of the
SFCs 1-3 and their time to live, which can be known at the
beginning of time slot t; when SFCs 1-3 have arrived and
been deployed. Thus, combined with some prior SFC data,
ACO-0OSD can be executed right after SFCs 1-3 have been

arrive SFCs 1-3  arrive SFCs 4-6

SR

L
prior realtime placement Timeline
SFC network data scheme
data

network
routing
path

NextFit

Fig. 3: Sketch map of PLRP framework for the newly arrived
SFCs 4-6 in time slot to

deployed at the beginning of time slot ¢;. In this plan, we
have a whole time slot, which is typically much more than
the time cost of ACO-OSD, to run the ACO-OSD algorithm.
We call it the prior-based learning stage, and the output is the
learned best network routing path (artificial ant-tour). Next,
right after SFCs 4-6 arrive at the beginning of the time slot,
we can do real-time SFC deployment based on the Next-Fit
strategy and the learned network routing path. This stage is
very fast with the time complexity of O(n), where n is the
total number of VNFs of all newly arrived SFCs. Thus, we
call it the real-time placement stage.

Besides, let us talk about the selection of prior SFC data,
where we assume there is one SFC with n,,;,. same-sized
VNFs. Suppose the prior values of VNF needed CPU and
RAM resources equal to the mean value of the required CPU
and RAM resource of all possible employed VNFs. Typically,
there are only 20 types of popularly-used VNFs. Besides, we
set the prior data flow rate as the mean value of all data flow
rates in the network. And the natural idea for 1y, is to let
it equal the mean value of the service request number in each
time slot times the mean value of the VNF number in each
possible employed SFCs, noted as n,,cq,. However, if so, it
may appear that the servers along the learned network routing
path do not have enough resources to deploy all newly arrived
SFCs. Such infeasible cases are because all prior values are
based on the corresponding mean value, and the real values
may be larger.

We can eliminate the infeasible cases by setting 7nppior
as a large number. But it is not the best choice. Accord-
ing to our simulation results shown in Section VIL.C, a
small feasible np,;o helps PLRP perform better. Thus, we
eliminate infeasibility by setting multiple n,,;,- values, par-
allel running ACO-OSD based on these 1., values, and
obtaining multiple learned network routing paths with dif-
ferent lengths. Specifically, we set Nprior € {Tmin, Nmin +
Any Nmin + 2An7 e 7nm,in}7 where Nmin (nm,in < nmean)y
Nmaz(Mmaz > Nmean) and A, are hyper-parameters which
affect the multiple learned network routing path lengths.

VII. PERFORMANCE EVALUATION
A. Simulation Setting

a) Network topology: We implement our simulations on
3 real network topologies of different sizes from the Internet
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topology zoo [26]: (1) ARNES (34 nodes and 46 links), (2)
DEN (58 nodes and 87 links), (3) ITCDeltacom (113 nodes
and 160 links). Without special mention, we execute on DFN.

b) Network data setting: The CPU and RAM resource
configured for each server node, i.e., R;"" and R;*™, were
randomly selected from {1,2,4,6} (with the unit of CPU
cores) and {2,4,8,16} (with the unit of GB), respectively.
Typically, the server with more computing resource needs
more operation cost, thus, we set the operation cost for server
Vi by Cr = F(RP" + R;*™). Besides, we configure each
node’s router with a processing capacity randomly chosen
among [50, 200] Mbps.

For each link (V},, V;,), we randomly assign it a link latency,
lp,q> ranging from 0.05 ms to 0.2 ms and a bandwidth capacity,
By, 4, of 1300 Mbps (the bandwidth of Wireless 802.11ac).

c¢) SFC data setting: We generate SFCs by randomly
picking 4 to 8 VNFs from 20 VNF types, and each kind of
VNF instance requires [0.1,0.4] CPU cores and [0.05,0.2] GB
of memory. The flow rate of each SFC, ;, ranges from 0.5
Mbps to 5 Mbps.

d) Online model setting: We consider a time span with
10 time slots, and at the beginning of each time slot, there
are random 1 to 10 service requests arriving. The time to live
(TTL) of each SFC is randomly set among [1, 10].

e) Parameter setting: First, we set the two weights in the
optimization objective of the SFC deployment by o = 1,5 =
100. In our ACO-OSD, we set 50 ants in each iteration and,
in total 100 iterations. Besides, the hyper-parameters among
ACO-0OSD are set as follows: (1) ant action-choice proportion
qo = 0.3; (2) relative weight parameter v = 1; (3) the size of
neighborhood x = 6; (4) global pheromone evaporation rate
p = 0.5; (5) local pheromone evaporation rate £ = 0.001;
(6) intensification value 79 = 1. In PLRP, we set the hyper-
parameter A, = 6.

f) Benchmarks: (1) Next-Fit (NF) + Nearest Neigh-
bour (NN) algorithm: Work [10] employs such algorithms
and proves NF maintains an approximation ratio of 2 on the
operation cost while NN helps achieve a ratio of O(log(M))
on the network latency; (2) Next-Fit (NF) + Double Spanning
Tree (DST) algorithm: Work [9] resorts to such algorithms,
which has a provable constant approximation ratio in SFC
deployment problem.

Note that for each outcome shown on the plots below, we
use the average value of 100 groups of simulations to show
moderate cases.

B. ACO-OSD Performance Evaluation in A Time Slot

In Fig. 4, the top two plots display the iteration process
of ACO-OSD in a time slot with the input of a different
number of newly arrived service requests and different network
topology, where the y-axis value is the ratio of the cost of the
current-best SFC deployment scheme to that of the best SFC
deployment scheme after all iterations. Besides, the bottom
two plots exhibit the time cost as the iterations increase under
different cases, where the time cost is all proportional to the
iterations.

‘i —e— m=10 —e— |TCDeltacom
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Fig. 4: The iteration process of ACO-OSD based on different
numbers of service requests and different network topologies

In the left two plots of Fig. 4, we can see the more new
service requests arrive in a time slot, the more slowly the
iteration process converges, and the more time each iteration
costs on average. But even for the maximal number of newly
arrived requests in a time slot, i.e., m = 10, it drops to a
near-convergent value (i.e., no matter drop after a fixed large
number of iterations) among 100 iterations and costs less
than 7 seconds in total. It implies ACO-OSD can work for
online scenarios that can accept execution time on the order
of seconds.

The right two plots show the influence of different topolo-
gies on the convergent process and the time cost. As for the
time cost, the influence is totally determined by the number
of nodes in the network topology. The more nodes there are
in the network topology, the more time each iteration costs on
average. And all of the time cost is on the order of seconds. But
as for the convergent process, it is not the case. The topology
structure also has an influence. For example, we can see DFN
has fewer nodes than ITCDeltacom, but the iteration process
on DFN converges more slowly than that on ITCDeltacom.

C. PLRP Performance Evaluation in A Time Slot
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Fig. 5: The performance of PLRP with different prior VNF
numbers under the number of service requests m = 2,6, 8

In Fig. 5, we show the different performance of PLRP
compared to ACO-OSD with the prior VNF number 7,0, €
{6,12, 18,24, 30, 36,42, 48, 54, 60, 66, 72, 78}. Since the per-
formance of ACO-OSD will not be affected by the different
settings of 1.0 and PLRP is a proposed framework based
on ACO-OSD, we use ACO-OSD as a baseline. The left plot
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of Fig. 5, where the y-axis value is the ratio of the cost
of ACO-OSD (baseline) to that of PLRP, demonstrates that
in general, the less feasible prior VNF number is set, the
better performance PLRP achieves. But the more new service
requests arrive in a time slot, the larger the smallest feasible
prior VNF number is. It is because the feasible learned routing
path works better when its length is larger than but more
close to the real needed length. But more new service requests
require more resources, so the real needed length is larger. It
can also be reflected by the right plot of Fig. 5.

The right plot exhibits the success ratios to deploy the
different numbers of newly arrived SFCs (m) with the input of
different prior VNF numbers. We can find as for all different
m, the larger the prior VNF number is, the higher the success
ratio is. But as for less m, the success ratio increases more
early with the increase of the prior VNF number. Since we do
not know the number of newly arrived SFCs m in advance,
setting multiple different n,,;,- in PLRP is necessary and
helps improve the performance of PLRP.

D. Performance Comparison over A Whole Time Span
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Fig. 6: Performance comparison of our ACO-OSD and PLRP
with two benchmarks over a time span with 10 time slots

In an online problem, algorithms make optimization deci-
sions in each time slot only based on the current information.
The local performance on the optimization decisions in each
time slot and the global performance of all decisions over
the whole time span are two critical judgment criteria for
online algorithms. Thus, we compare the performance of our
ACO-OSD algorithm and PLRP framework with two state-
of-art benchmarks on both local added total cost, the cost
increment caused by the deployment of newly arrived SFCs in
each time slot (in Fig. 6a), and the global total cost, the total
cost of all working SFCs in so-far all time slots (in Fig. 6b).
In Fig. 6, we can see our ACO-OSD algorithm and PLRP
framework always maintain better performance than the two
benchmarks, no matter in terms of local performance in each
time slot or global performance over the whole time span.
Besides, the performance of PLRP is always a bit worse than
ACO-OSD. This is because of the error between prior SFC
data and the real employed SFCs. PLRP essentially sacrifices
partial performance benefits for realizing real-time placement.
Luckily, Fig. 6 shows this part of the sacrifice is acceptable

since the performance of PLRP is still always better than two
benchmarks and is very close to ACO-OSD.
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Fig. 7: The performance improvement of our ACO-OSD and
PLRP on different network topologies

Fig. 7 quantitatively presents the performance improve-
ment of our ACO-OSD algorithm and PLRP frame-
work compared with the two state-of-art benchmarks on
different network topologies, where the y-axis value is
minlgfe (N DS e NE DD gl yihre algo poins
to our ACO-OSD or PLRP, gic(+) is the global total cost of
the target algorithm. In general, ACO-OSD achieves 42.88%
lower global total cost on average, compared with that of two
state-of-art benchmarks, while PLRP obtains 36.53% lower
total cost on average. Besides, Fig. 7 reveals our ACO-OSD
algorithm and PLRP framework have more performance im-
provement on the larger network, i.e., the network topologies
with more nodes. This is because compared with the bench-
marks, our algorithms learn more global network information
by the ant colony pheromone.

VIII. CONCLUSION AND FUTURE WORK

We build a comprehensive model for the online SFC deploy-
ment problem with the objective of minimizing both operations
cost and network latency. To address this issue, we first design
the ACO-OSD algorithm, which has two acceleration mech-
anisms: the many-to-one model between SFC deployment
schemes and ant-tours and the Next-Fit strategy. Besides, as for
the scenarios requiring real-time responses, we also propose a
PLRP online learning framework based on ACO-OSD, which
realizes near real-time placement with the time complexity
of O(n), where n is the total number of VNFs of all newly
arrived SFCs. Finally, we perform extensive simulations on
realistic network topologies, which demonstrates our ACO-
OSD has 42.88% lower total cost on average, compared with
the state-of-art benchmarks, while PLRP has 36.53% lower
average total cost.

In the future, we will do more research on how to get
better prior SFC data by predicting the future arrived SFCs, to
improve the performance of PLRP further. Moreover, we will
also try more complex but accurate learning algorithms, such
as the combination of deep neural networks and reinforcement
learning, to substitute ACO.
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