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AbstractÐNetwork Function Virtualization (NFV) emerges as
a promising paradigm with the potential for cost-efficiency,
manage-convenience, and flexibility, where the service function
chain (SFC) deployment scheme is a crucial technology. In this
paper, we propose an Ant Colony Optimization (ACO) meta-
heuristic algorithm for the Online SFC Deployment, called ACO-
OSD, with the objectives of jointly minimizing the server oper-
ation cost and network latency. As a meta-heuristic algorithm,
ACO-OSD performs better than the state-of-art heuristic algo-
rithms, specifically 42.88% lower total cost on average. To reduce
the time cost of ACO-OSD, we design two acceleration mech-
anisms: the Next-Fit (NF) strategy and the many-to-one model
between SFC deployment schemes and ant-tours. Besides, for the
scenarios requiring real-time decisions, we propose a novel online
learning framework based on the ACO-OSD algorithm, called
prior-based learning real-time placement (PLRP). It realizes near
real-time SFC deployment with the time complexity of O(n),
where n is the total number of VNFs of all newly arrived SFCs.
It meanwhile maintains a performance advantage with 36.53%
lower average total cost than the state-of-art heuristic algorithms.
Finally, we perform extensive simulations to demonstrate the
outstanding performance of ACO-OSD and PLRP compared with
the benchmarks.

I. INTRODUCTION

With the development of virtualization technology, network

function virtualization [1] (NFV) emerges as a promising

paradigm by migrating network functions, or middleboxes,

from proprietary hardware appliances to common commercial

servers. In an NFV system, a network service request is typi-

cally realized by chained-up virtual network functions (VNFs),

also called service function chains (SFCs) [2]. NFV makes

network services more cost-efficient, manage-convenient, and

flexible. To realize its full potential, an efficient SFC deploy-

ment scheme is essential, which can help fully utilize server

resources, save bandwidth, and reduce network latency. Thus,

the SFC deployment scheme is a crucial technology for NFV.

For SFC deployment, two major objectives are operation

cost reduction and network latency minimization. Specifi-

cally, the former is pursued by NFV providers seeking cost-

effectiveness, while the latter is more emphasized by cus-

tomers expecting a higher quality of service (QoS). Never-

theless, such two objectives are sometimes conflicted. For

example, Fig. 1 plots two alternative solutions to deploy an

SFC. Solution (a) benefits the NFV providers since they can

shut down the idle server 3 to reduce the operation cost, but it

increases the communication latency of the service compared

with solution (b). Solution (b) improves the customers’ QoS by

cutting back the communication latency between two VNFs,

Fig. 1: An example of two SFC deployment schemes, where

there are three servers with different residual resources and an

SFC composed of two VNFs with different resource demands.

but it incurs more operation costs due to one more employed

server compared with solution (a). Thus, in this work, we focus

on a practical problem on SFC deployment: How to achieve

a win-win SFC deployment solution that jointly reduces the

operation cost and minimizes the network latency?

Such an SFC deployment problem with two objectives has

been proven to be a combination of two NP-hard issues, i.e.,

VNF placement and flow routing [9], [10]. Due to this NP-

hardness, most existing techniques are limited to the design

of heuristic algorithms. To achieve better optimization, we

focus on another popular choice to solve the NP-hard problem:

the meta-heuristic algorithm. The meta-heuristic algorithm is

typically a high-level problem-independent algorithmic frame-

work. It has the advantage of better performance than heuristic

algorithms since it can find near-optimal solutions by itera-

tively improving solutions.

Besides, most existing SFC deployment proposals usually

work only for specific simplified models of the SFC deploy-

ment problem (Seen in Sec. II). As more practical considera-

tions and constraints are introduced into the model, e.g., multi-

ple resource types, queuing delays, online service requests, and

their limited living time, existing SFC deployment strategies

typically break. In our paper, we build a comprehensive model

and target to make an online SFC deployment, with the

objective of jointly reducing the operation cost and minimizing

the network latency. And we select a popular-used meta-

heuristic algorithm, called Ant Colony Optimization (ACO),

which can successfully fit into our model to solve the online

SFC deployment problem.

Moreover, we design two acceleration mechanisms to im-

prove the conventional ACO for this particular problem, giving

birth to a novel ACO-based Online SFC Deployment algorithm
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(ACO-OSD). First, when fitting ACO into the online SFC

deployment problem, we adopt a many-to-one model between

the SFC deployment schemes and artificial ant-tours, which

significantly speeds up our algorithm by cutting back the total

number of possible ant-tours. Besides, we further facilitate our

ACO-OSD algorithm by employing the Next-Fit (NF) strategy

to obtain the shortest feasible ant-tour in a tour family and

remove the possibilities of all other ºnot-bestº ant-tours.

In addition, for the scenarios requiring real-time decisions,

we propose an online learning framework based on ACO-

OSD, called prior-based learning real-time placement (PLRP).

It has two stages. One is the prior-based learning stage, where

ACO-OSD runs based on the real-time network data and prior

SFC data in advance of a time slot. The other is the real-time

placement stage, where the NF strategy is adopted to deploy

the newly arrived SFCs based on the best-learned routing path

that the prior-based learning stage returns. In PLRP, only the

real-time placement stage runs after the new service requests

arrive, and its time complexity is O(n), where n is the total

number of VNFs of all newly arrived SFCs. Thus, PLRP can

realize near real-time placement. Meanwhile, the best-learned

routing path that the prior-based learning stage returns help

PLRP maintain a comparable performance advantage to that

of the ACO-OSD algorithm.

Our main contributions are listed as follows.

• We formulate a comprehensive model for online SFC de-

ployment, which considers multiple computing resources,

such as CPU and RAM, the queuing delay, the online

service requests, and their limited living time.

• We successfully fit the ACO meta-heuristic algorithm

in our comprehensive model and propose two accelera-

tion mechanisms, generating the ACO-OSD algorithm. It

performs better than the state-of-art heuristic algorithms,

specifically 42.88% lower total cost on average.

• We propose a novel online learning framework based

on ACO-OSD, called PLRP, which realizes near real-

time placement and maintains a performance advantage

with 36.53% lower average total cost than the state-of-art

heuristic algorithms.

• We perform extensive simulations, demonstrating the

superiority of our ACO-OSD and PLRP compared with

two state-of-art heuristic benchmarks.

The remainder of this paper is organized as follows. Section

II reviews the related works. Section III describes the system

model and formulates the online SFC deployment problem.

Section IV states our basic ideas and challenges. Afterward,

Section V proposes the ACO-OSD algorithm for the online

SFC deployment, while Section VI designs the PLRP online

learning framework. Then, Section VII is the performance

evaluation of ACO-OSD and PLRP. Finally, we conclude the

paper in Section VIII.

II. RELATED WORK

With the development of NFV, the SFC deployment problem

has become a research hot spot. When deploying SFCs, it

is promising to optimize the operation cost and the network

latency jointly. It is NP-hard. Thus, most existing works focus

on proposing heuristic algorithms to solve it. Among them,

many works, e.g., [3]±[6], have no provable performance

guarantee. Only four existing works [7]±[10] provide theo-

retical performance bounds for the proposed algorithms on

the SFC deployment problem with these two optimization

objectives. We list them below. Shang et al. [7] put forward

provable approximation algorithms, based on the rounding

algorithm, with an approximation ratio of O(log(M)), where

M is the number of servers. Jin et al. [8] design a two-stage

VNF deployment scheme with a constrained depth-first search

algorithm (CDFSA) and a path-based greedy algorithm (PGA),

which gives a theoretically-proved worst-case performance

bound by an implicit constant factor. Mao et al. [9] propose

an SFC deployment algorithm for the hybrid edge-and-cloud

environment with a provable constant approximation ratio. In

[10], the proposed algorithms for the online SFC deployment

achieve an approximation ratio of 2 on the operation cost and

a ratio of O(log(M)) on the network latency.In all, the state-

of-art result is a provable worst-case performance bound by a

constant factor no less than 2. Limited to the complexity of

the problem, it is hard to obtain further improvement on the

worst-case theoretical bound. Thus, we pay more attention to

pursuing better average performance rather than the worst-case

bound. We consider meta-heuristic algorithms, which typically

perform better than a single heuristic algorithm.

Besides, these existing heuristic algorithms, specifically the

approximation algorithms, only work for the specific sim-

plified model and have some drawbacks which limit their

performance for real-world applications. For example, works

[7]±[10] only consider one kind of computing resource, ig-

noring the influence of capacity limitation of other resources.

And works [7], [9], [10] all ignore the queuing delay in the

computation of network latency. Additionally, work [8] only

deals with the offline case and can not adapt to the dynamic

network, while work [10] considers the online model but

assumes the arrived service is always living in the system,

which is unrealistic. We consider all these factors (i.e., multiple

resource types, queuing delay, online service requests, and

their limited living time) and build a comprehensive model

to solve the online SFC deployment problem.

Additionally, there are two existing works [23], [24] trying

to fit the ACO framework into the SFC deployment problem.

However, they both consider an offline model and can not

adapt to the dynamic network due to the high time cost caused

by the iteration framework. What’s worse, they both ignore

queuing delay in the computation of network latency. Our de-

signed ACO-OSD and PLRP both fit the comprehensive model

for online SFC deployment. In particular, PLRP can adapt

to the dynamic network due to its near real-time placement

manner.

III. PROBLEM FORMULATION

A. System Model

The notations used in this model are shown in Table I.
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m total number of Service Function Chains (SFCs)

M number of physical servers in the network

ni number of VNFs in SFC i

N number of all VNFs

Fi,j VNF j in SFC i

fA
i,j needed A(= CPU or RAM) resource of VNF Fi,j

λi the flow rate of SFC i

Vk the k-th physical server

RA
k

capacity of commercial server Vk’s A (= CPU or RAM) resource

Ck operation cost of commercial server Vk

µk processing capacity of the router at node Vk

l′
k

average queuing delay at node Vk

Bp,q bandwidth limit of link (Vp, Vq)
w

p,q
i,j 1 if output data flow of Fi,j pass through link (Vp, Vq), o/w 0

lp,q link latency of link (Vp, Vq)

xk
i,j 1 if VNF Fi,j is placed on Vk , otherwise 0

yk 1 if server Vk is occupied, otherwise 0

TABLE I: Notations

a) Physical Network: Let us consider a physical network

represented by a directed graph G = (V,E), where each node

is a commercial server, V = {V1, V2, · · · , VM} is the set of

server nodes, M = |V | is the number of commercial servers,

and E is the set of communication channels connecting servers

in V . For each pair of servers Vp, Vq ∈ V , if (Vp, Vq) ∈ E, it

implies Vp and Vq are directly connected, i.e., there exists a

physical communication channel connecting the server Vp and

Vq . Denote the bandwidth and link latency of this channel

as Bp,q , lp,q . If (Vp, Vq) /∈ E, Vp and Vq are NOT directly

connected and Bp,q and lp,q are marked as 0.

Each server Vk has various kinds of computing resources,

such as CPU (central processing unit), GPU (graphics process-

ing unit), RAM (random-access memory), etc. Here, we only

consider two primary computing resources: CPU and RAM.

Note that if needed, our formulation and solution can be easily

generalized to that with three or more kinds of computing

resources. Denote by Rcpu
k and Rram

k the CPU and RAM

capacities of server Vk(1 ≤ k ≤ M). Besides, denote the

processing capacity of the router at node Vk, i.e., the number

of packets per second such a router can sustain, as µk.

Each server Vk has two states: on and off. Once the

commercial server is on, the NFV provider should pay for

the operation cost of a whole server, even if only part of the

computing resources are employed. Denote the operation cost

of server Vk is Ck. At a time slot t, we use a binary variable

sk(t) to indicate the state of commercial server Vk: sk(t) = 1
if and only if the commercial server is on.

b) SFCs: Suppose there are m service requests, arriving

sequentially over the entire time span T . Each service request

needs a corresponding SFC to realize it. We number the

requests in the order of their arrivals and denote by SFC i the

SFC that works for i-th service request. At each time slot t, the

NFV system executes the following procedures: first removing

timeout SFCs, updating the network states, receiving arriving

requests, making SFC deployment decisions, and finally again

updating the network states.

Assume the i-th request arrives at time slot tsi . Its reserved

time to live (TTL) is tli time slots. Then, we use a binary

variable ei(t) to indicate whether i-th service request (or SFC

i) is still in service in time slot t: ei(t) = 1, if and only if

tsi ≤ t ≤ tsi + tli.
In these SFCs, VNFs are chained up in some specific order

to realize the corresponding service requests. As for SFC i,
suppose there are ni chained VNFs, noted as Fi,1, Fi,2, · ·
·, Fi,ni

in chaining order. Denoted the needed CPU and RAM

resource of VNF Fi,j as f cpu
i,j and fram

i,j . The total number of

VNFs is N =
∑m

i=1 ni. There is a data flow between adjacent

VNFs in an SFC. Denote the flow rate of SFC i as λi.

B. Problem Formulation

In the online SFC deployment problem, our task is to deploy

the m sequential SFCs onto the physical network G with M
commercial servers, i.e., place the N VNFs onto M servers

and route the corresponding data flow in the network G.

a) VNF placement: In order to formulate this problem,

we first define a Boolean variable xk
i,j as the decision variable

of the VNF placement scheme: xk
i,j = 1, if and only if VNF

Fi,j is placed on server Vk.

When placing VNFs onto servers, we should satisfy the

capacity constraint of each commercial server. Thus,

m
∑

i=1

ni
∑

j=1

xk
i,j · f

cpu
i,j · ei(t) ≤ Rcpu

k , ∀1 ≤ k ≤ M, t ∈ T. (1)

m
∑

i=1

ni
∑

j=1

xk
i,j ·f

ram
i,j ·ei(t) ≤ Rram

k , ∀1 ≤ k ≤ M, t ∈ T. (2)

Since each VNF can not be split, which implies it is exactly

placed on a commercial server, we have

M
∑

k=1

xk
i,j = 1, ∀1 ≤ i ≤ m, 1 ≤ j ≤ ni. (3)

At the beginning of each time slot, the NFV system will

remove timeout SFCs and deploy the newly arrived SFCs.

These operations all have the possibility of changing the state

of commercial servers. For example, once all VNFs placed

on server Vk are removed, NFV providers will shut down

server Vk immediately to reduce the operation cost, i.e., letting

sk(t) = 0. Once any VNF is scheduled to some closed server

Vk, NFV providers should open server Vk first to run this

VNF on it, i.e., letting sk(t) = 1. In our model, we ignore

the time cost of removing timeout SFCs and deploying the

newly arrived SFCs since it is typically very short compared

to a time slot. Thus, the state of server Vk at time slot t that

we mentioned in our paper refers to the final stable state in

this time slot after the executions of removing operation and

deploying operation, i.e.,

sk(t) =

{

1,
∑m

i=1

∑ni

j=1 x
k
i,j · ei(t) > 0,

0,
∑m

i=1

∑ni

j=1 x
k
i,j · ei(t) = 0.

(4)

b) Flow Routing: Besides, we define another Boolean

variable wp,q
i,j as the decision variable of the flow routing

scheme: wp,q
i,j = 1, if and only if data flow between VNF

Fi,j and Fi,j+1 pass through link (Vp, Vq).
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According to Flow Conservation Law, as for any data flow

between VNF Fi,j and Fi,j+1, we have ∀ 1 ≤ k ≤ M ,

M
∑

p=1

wp,k
i,j −

M
∑

q=1

wk,q
i,j = xk

i,j+1 − xk
i,j . (5)

The limitation of bandwidth asks ∀ 1 ≤ p < q ≤ M ,

m
∑

i=1

ni−1
∑

j=1

(wp,q
i,j + wq,p

i,j ) · λi · ei(t) ≤ Bp,q. (6)

In our model, we consider two kinds of network latency,

namely the queuing delay in the router at node Vk, and the

transmission delay lp,q on the link (Vp, Vq). To analyze the

queuing delay of users at node Vk, we model it as an M/M/1
queue. By applying Little’s law, the average queuing delay at

Vk at time slot t, noted as l′k(t), can be calculated as follows:

l′k(t) =
1

µk −
∑m

i=1(x
k
i,1 +

∑ni−1
j=1

∑M
p=1 w

p,k
i,j ) · λi · ei(t)

.

(7)

In order to employ the above formula, we need to satisfy

m
∑

i=1

(xk
i,1+

ni−1
∑

j=1

M
∑

p=1

wp,k
i,j )·λi·ei(t) < µk, ∀1 ≤ k ≤ M. (8)

c) Formulated Optimization Problem: Our objective is

to jointly minimize the operation cost and the network latency.

The total operation cost C for holding all opened servers

can be computed by

C =
∑

t∈T

M
∑

k=1

Ck · sk(t).

The total network latency L = Dt +Dq, where Dt is the total

transmission delay and Dq is the total queuing delay. Dt and

Dq can be computed by

Dt =
∑

t∈T

m
∑

i=1

ni−1
∑

j=1

M
∑

p=1

M
∑

q=1

lp,q · w
p,q
i,j · ei(t),

Dq =
∑

t∈T

m
∑

i=1

(xk
i,1 +

ni−1
∑

j=1

M
∑

p=1

wp,k
i,j ) · ei(t) · l

′
k(t).

In all, the SFC deployment problem can be formulated as

min W = α · C+ β · (Dt + Dq)

s.t. (1)− (8),

where α, β are two weighting factors.

IV. BASIC IDEAS AND CHALLENGES

In our paper, we build a comprehensive model for the

online SFC deployment problem. Our basic idea is to choose

a suitable meta-heuristic algorithm to solve the optimization

problem in our model, achieving better performance than the

state-of-art heuristic algorithms.

We choose the meta-heuristic algorithm from the ACO

algorithm family. The first ant colony optimization algorithm,

called Ant System (AS), was proposed by Dorigo et al. in

the 1990s [11]. It is inspired by the foraging behavior of the

real ant. One of the main ideas is the indirect communication

of multi-agents, called artificial ants, based on pheromone

trails. The (artificial) pheromone trails are a kind of distributed

numeric information which is modified by the ants to reflect

their experience while solving a particular problem. ACO is

a probabilistic technique for solving NP-hard combinatorial

optimization problems, which can be reduced to finding good

paths through graphs. Recently, the ACO meta-heuristic algo-

rithm family has been proposed, which provides a unifying

framework for solving numerous optimization tasks involving

some sort of graph, e.g., vehicle routing and internet routing.

SFC deployment problem can be seen as such kind of flow

routing problem.

One key challenge is that the online SFC deployment

problem is a new optimization problem, and the existing ant

colony optimization algorithms can not perfectly fit the SFC

deployment problem. Under the framework of ACO, a new

local search approach is needed to be designed for the server

resource, bandwidth, and router capacity limitations in the SFC

deployment problem. The other challenge is how to speed

up the designed ACO meta-heuristic algorithms to meet the

requirement of fast decisions in the dynamic network.

In the following two sections, we propose an ACO meta-

heuristic algorithm for online SFC deployment, called ACO-

OSD, with two acceleration mechanisms: the many-to-one fit

model for tour construction and the Next-Fit strategy. Next,

we design a novel online learning framework based on ACO-

OSD, called PLRP, for scenarios requiring real-time decisions.

V. AN ACO META-HEURISTIC ALGORITHM FOR ONLINE

SFC DEPLOYMENT

Before designing an ACO meta-heuristic algorithm for

online SFC deployment, we first clarify the inputs of each

time slot:

• targeted newly arrived SFCs: i0, · · · , is at time slot t and

the needed CPU and RAM resource of their VNFs;

• realtime residual CPU resource of server Vk: rcpuk =

Rcpu
k −

∑i0−1
i=1

∑ni

j=1 x
k
i,j · f

cpu
i,j · ei(t);

• realtime residual RAM resource of server Vk: rramk =
Rram

k −
∑i0−1

i=1

∑ni

j=1 x
k
i,j · f

cpu
i,j · ei(t);

• realtime residual processing capacity of router Vk: µ′
k =

µk −
∑i0−1

i=1 (xk
i,1 +

∑ni−1
j=1

∑M
p=1 w

p,k
i,j ) · λi · ei(t);

• realtime residual bandwidth of link (Vp, Vq): bp,q =

Bp,q −
∑i0−1

i=1

∑ni−1
j=1 (wp,q

i,j + wq,p
i,j ) · λi · ei(t);

• realtime number of flows flowing into node Vk: countk =
∑i0−1

i=1 (xk
i,1 +

∑ni−1
j=1

∑M
p=1 w

p,k
i,j ) · ei(t).

Let us look at the total cost increment caused by deploying

newly arrived SFCs at time slot t, which is our optimization

target at time t. It has three parts: the increment of operation

cost, transmission delay, and queuing delay.

The operation cost increment is ∆C(t) =
∑M

k=1 Ck · (
∑is

i=i0

∑ni

j=1 x
k
i,j > 0) · (countk == 0), where

(countk == 0) = 1, if countk == 0 is True; otherwise,
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(countk == 0) = 0. Here
∑ni

j=1 x
k
i,j > 0 means server Vk

is employed by these newly arrived SFCs while countk = 0
means Vk is totally idle before. That is to say, the operation

cost only increases when some server is employed from the

idle status. Note that if Vk has been employed by the existing

old SFCs and these newly arrived SFCs again employ it, the

deployment of these newly arrived SFCs on server Vk will

not cause an operation cost increase. The transmission delay

increment is just the transmission delay of these newly arrived

SFCs, i.e., ∆Dt(t) =
∑is

i=i0

∑ni−1
j=1

∑M
p=1

∑M
q=1 lp,q · wp,q

i,j .

Denote count′k =
∑is

i=i0
(xk

i,1 +
∑ni−1

j=1

∑M
p=1 w

p,k
i,j ).

The queuing delay increment has two parts: one is the

queuing delay of these newly arrived SFCs, i.e., ∆D
1
q(t) =

∑M
k=1 count

′
k/

[

µ′
k −

∑is
i=i0

(xk
i,1 +

∑ni−1
j=1

∑M
p=1 w

p,k
i,j ) · λi

]

;

the other is the queuing delay increment of existing

old SFCs, caused by that some new data flows

occupy part of router process capacity, i.e., ∆D
2
q(t) =

∑M
k=1 countk/

[

µ′
k −

∑is
i=i0

(xk
i,1 +

∑ni−1
j=1

∑M
p=1 w

p,k
i,j ) · λi

]

−
∑M

k=1 countk/µ
′
k. In all, the cost increment at time t is

∆W(t) = α∆R(t) + β
[

∆Dt +∆D
1
q +∆D

2
q

]

(t). (9)

A. Tour Construction: Many-to-One Fit Model

In the ACO meta-heuristic framework, the basic idea is

that in each iteration, multiple artificial ants construct dif-

ferent tours according to state transition rules based on the

pheromone trails. After all the ants have constructed tours, the

pheromones are updated based on the different objective costs

of ant-tours. When we fit the ACO meta-heuristic framework

into the online SFC deployment problem, the first problem

is how to build a relationship between the SFC deployment

schemes and artificial ant-tours. The natural idea is to map

them one to one. Specifically, if ant currently exists at the

server node of VNF Fi,j , its next node in the tour is exactly

the server node of the next chained VNF Fi,j+1. For example,

Fig. 2 gives two SFC deployment schemes for deploying an

SFC with 4 VNFs in a network with three server nodes.

According to one-to-one mapping, the corresponding two

artificial ant-tours are respectively 1−1−2−3 and 1−2−2−3.

There is another more cost-efficient mapping proposal. Here

we define an ant-tour by considering the process of SFC data

flowing into a different server as a move in the tour. In this

case, we will create a many-to-one relationship between the

SFC deployment schemes and artificial ant-tours. According

to this idea, both SFC deployment schemes in Fig. 2 share the

same artificial ant-tour 1−2−3. Compared with the one-to-one

mapping, this many-to-one model has fewer possible artificial

ant-tours. Thus, it can work as an acceleration mechanism in

ACO-OSD.

B. A Next-Fit Speed-up Strategy

To introduce the many-to-one model into the ACO frame-

work for the online SFC problem, we need to give a map from

the artificial ant-tour back to the SFC deployment scheme.

Note that not all randomly produced artificial ant-tour is

Fig. 2: Tour Constructions

feasible. Some ant-tours may have no SFC deployment scheme

that maps to it because the servers along the tour do not

have enough resources to place all VNFs. We call them

infeasible ant-tours. Besides, since the network graph is not

fully connected, only permitting the ant moves to the unvisited

node, as the classical ACO does, is unfeasible.

That is to say, in our defined ant-tour, some server nodes

may appear multiple times. Then, another problem appears:

How to decide the stop point of the tour construction ? If we

stop too early, the ant-tour will be infeasible. Below, we will

show the Next-Fit strategy can solve these two problems.

Let us first consider a tour family T f , where if T1, T2 ∈ T f ,

then the start node of T1 and T2 are the same and T1 is a part

of T2 or T2 is a part of T1. For example, {1, 1 − 2, 1 − 2 −
3, 1− 2− 3− 4} is a tour family.

If given a tour family and the order of possible employed

server nodes is fixed by the longest tour, the NF strategy

can return an SFC deployment scheme for an SFC, which

maps to an artificial ant-tour belonging to this tour family.

Specifically, start from the first VNF of this SFC and the

first server node in the tours of this tour family. If this VNF

fits inside the currently considered server, i.e., this server has

enough residual available CPU and RAM resources for this

VNF, it is placed on this server. Otherwise, the placement on

the current server ends. Following the order of servers, find

the next server with enough residual CPU and RAM resources

for this VNF, place the VNF on it and consider this server as

the current server. Repeat the same procedures on the next

chained VNF until all VNFs are placed on the servers.

Theorem 1. If given an ant-tour family T f , whose longest tour

is T = [Va1
, Va2

, · · · , Va|T |
], the NF strategy returns an SFC

deployment scheme for SFC i. This SFC deployment scheme is

mapped to the shortest feasible tour in this tour family, which

is also the tour with the minimal cost among all feasible tours.

Proof. It can be proved by mathematical induction. First, it is

easy to see the Next-Fit strategy returns the shortest feasible

tour for deploying a sub-SFC with only VNF Fi,1. Assume

NF returns a shortest feasible tour for deploying a sub-SFCs

with VNF Fi,1 to VNF Fi,j (1 ≤ j ≤ j0). We need to

prove NF returns the shortest feasible tour for deploying sub-

SFCs with VNF Fi,1 to VNF Fi,j0+1, which can be proved

by contradiction.

Assume the feasible tour given by NF for deploying a sub-

SFCs with VNF Fi,1 to VNF Fi,j0+1, noted as T1, is not the

shortest feasible tour. There exist a feasible tour T2 among
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the tour family T f , which is shorter than T1, i.e., |T2| < |T1|.
Since T2 is a feasible tour, there must exist an SFC deployment

scheme for SFC i, which maps to the ant-tour T2. Denote in

this SFC deployment scheme for tour T2, the last VNF placed

on the server Va|T2|−1
as Fi,j1 (j1 < j0 + 1). Denote Fi,j1

is placed on Vak
by the NF strategy. Since |T2| < |T1|, then

|T2| − 1 < k, which contradicts with the assumption that NF

strategy returns a shortest feasible tour for deploying a sub-

SFCs with VNF Fi,1 to VNF Fi,j1 (1 ≤ j1 ≤ j0).

Therefore, we can use the Next-Fit strategy to control the

stop point of the tour construction and map from the ant-

tour back to the SFC deployment. It speeds up our ACO-OSD

by further removing all other possibilities, except the shortest

feasible tour, in each tour family.

C. ACO Meta-heuristic Algorithm

Based on the above-mentioned many-to-one model and

Next-Fit strategy, we design our ACO-OSD algorithm as

below. In ACO-OSD, the ACO framework algorithm that we

choose is Ant Colony System (ACS) [12], which is a popularly

used ACO algorithm proposed for the Travelling Salesman

Problem (TSP). ACS is based on an earlier algorithm, called

Ant-Q [13], which combines AS, the first proposed ACO

algorithm, with Q-learning, a specific reinforcement learning

algorithm.

ACO-OSD differs in three main aspects from ACS, mainly

in the tour construction. First, ACO-OSD extends the tour

only when requiring more servers to deploy SFCs. The tour

may not traverse all network nodes. Second, in steps of the

tour extension, the feasible neighborhood of node Vk, Ω,

is redefined by the set of κ nearest feasible nodes, rather

than the neighborhood of node Vk in the network graph G.

It is essentially a local search procedure added to the ACS

framework. Third, every time of tour extension, we add the

path from node Vk to node Vl, rather than node Vl, to the tour.

It may cause some nodes repeatedly appear in the tour, which

permits full use of the residual resource of some servers.

In the following, we present these modifications in more

detail.

1) Tour Construction and SFC deployment: Step 1: Ini-

tially, each artificial ant a is put on some randomly chosen

feasible node Vk. Note that the feasible node here refers

to the node where the server has enough residual available

CPU and RAM resources for the current considered VNF

Fi,j(i = i0, j = 1) and the router has enough residual pro-

cessing capacity for the data flow of SFC i0, i.e., rcpuk ≥ f cpu
i,j ,

rramk ≥ fram
i,j , and µ′

k > λi. Now, node Vk is added to the

tour of ant a, and Vk is the current node.

Step 2: Employ the Next-Fit strategy to place all chained

VNFs after the current considered VNF Fi,j (including Fi,j)

onto the current node Vk. There are two possible results: (1)

if all chained VNFs after VNF Fi,j (including Fi,j) have been

successfully placed onto node Vk, go to Step 3; (2) if the

placement stops at some VNF Fi,j′ since the server Vk has

no enough residual available CPU and RAM resource to place

VNF Fi,j′ , go to Step 4.

Step 3: If i < is, update the current considered VNF by

i = i + 1, j = 1 and repeat Step 2. If i ≥ is, finish the tour

construction.

Step 4: Update the current considered VNF by j = j′. If

artificial ant a currently stops at the current node, i.e., the

current node is the last node of the current ant-tour, do tour

extension to update ant-tour and update the current node by

its next node in the ant-tour. Otherwise, directly update the

current node by its next node in the ant-tour. Then, repeat

Step 2.

2) Tour Extension: If artificial ant a currently stops at node

Vk but the VNFs of all newly arrived SFCs have not been

totally placed, the tour should be extended from node Vk. Ant

a applies the pseudo-random-proportional action choice rule to

extend the tour. That is, with probability 1− q0, ant a follows

a probabilistic action choice rule. In particular, the probability

with which ant a, currently at node Vk, chooses to go to node

Vl at r-iteration of the algorithm is:

pkl(r) =
τkl(r) · η

γ
kl

∑

o∈Ωk
τko(r) · η

γ
ko

, if l ∈ Ωk, (10)

where τkl(r) is the pheromone value with an initialized value

of 1 and updated via Eq. 11-12, ηkl is a heuristic value, γ (γ >
0) is a hyper-parameter which determines the relative influence

of the pheromone trail versus the heuristic information, and Ωk

is the feasible neighborhood of node Vk. Unlike ACS, Ωk here

is redefined by the set of κ nearest feasible nodes. They can

be found by the Dijkstra algorithm, with link latency as link

weights of the network graph, under the bandwidth and router

capacity limitation. It is a local search procedure that avoids

possible flow blocks caused by the random walk. If l ∈ Ωk,

the heuristic value of ηkl is defined by the length (the sum of

link latency) of the path from Vk to Vl given by the Dijkstra

algorithm.

With probability q0, ant a follows a deterministic action

choice rule. That is, ant a, currently at node Vk, chooses to

go to node Vl that τkl(r) · η
γ
kl is maximal and l ∈ Ωk. In this

case, the best possible move under current learned knowledge

is made.

Above all, the path from node Vk to node Vl is added to

the tour of artificial ant a.

3) Global pheromone trail update: After all the ants have

constructed their tours, we evaluate these tours by Eq. 9 and its

mapped SFC deployment scheme. Afterward, the pheromone

trails are updated globally. This is done by first lowering the

pheromone strength on all arcs by a constant factor and then

only allowing the artificial ant, which produces the global-best

tour, to add pheromone on the arcs it has visited. Specifically,

the global pheromone trail is updated following the below

equation.

τkl(r + 1) = (1− ρ) · τkl(r) + ρ ·∆τgbkl (r), (11)

where ρ (0 < ρ ≤ 1) is the global pheromone trail evap-

oration rate. It is used to avoid the unlimited accumulation

of pheromone trails and enables the algorithm to ªforgetº

previously bad decisions. If an arc is not chosen by the
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global-best tour, its associated pheromone strength decreases

exponentially. ∆τgbkl (r) is the amount of pheromone that the

artificial ant, which produces the global-best tour, puts on the

arcs it has visited. It is defined as follows:

∆τgbkl (r) =

{

1, if arc (k, l) ∈ the global-best tour,

0, otherwise.
(12)

4) Local pheromone trail update: In addition to the global

updating rule, we also employ a local update rule, applied

immediately after each tour construction:

τkl(r) = (1− ξ) · τkl(r) + ξ · τ0, (13)

where local pheromone evaporation rate ξ (0 < ξ < 1), and

intensification value τ0 are two Hyper-parameters. The effect

of the local updating rule is to make an already chosen arc less

desirable for the following ants. In this way, the exploration

of not yet visited arcs is increased.

VI. PRIOR-BASED LEARNING REAL-TIME PLACEMENT

Although we have tried our best to design a fast ACO meta-

heuristic algorithm for the online SFC deployment problem,

its time cost must be much more than that of the heuristic

algorithms. It is caused by the iteration framework and can not

be solved without framework change. It means ACO-OSD can

not adapt to scenarios that require real-time decisions. Thus,

we propose an online learning framework based on ACO-

OSD, called PLRP, which realizes near real-time placement

and meanwhile maintains the advantage of performance.

It is inspired by the separation of the training and testing

stages in many popular machine learning algorithms, where

although the training stage takes a lot of time, the testing stage

is very fast, near real-time feedback. And in applications, we

only care about the time cost of the test stage. Similarly, in our

online SFC deployment problem, can we do some preparations

in advance? Following this idea, our PLRP framework also

has two stages: one is prior-based learning, which is done in

advance; the other is the real-time placement stage, which is

very fast, near real-time feedback. Specifically, it works as

follows.

When we do the online SFC deployment decision for a new

time slot t, there are two kinds of input (seen in Sec. V-C): the

real-time SFC data and the real-time network data. The real-

time network data can be known by a time slot in advance

because it is totally decided by the deployment schemes of

the SFCs that have arrived before, and their time to live.

Take the simple case in Fig. 3 for example, where SFCs 1-

3 arrive at the beginning of time slot t1, SFCs 4-6 arrive

at the beginning of time slot t2. In this example, we target

to find the deployment schemes for SFCs 4-6. Thus, this

deployment decision will happen after the arrival of SFCs 4-

6 at the beginning of time slot 2. The input of the real-time

network data is decided by the deployment schemes of the

SFCs 1-3 and their time to live, which can be known at the

beginning of time slot t1 when SFCs 1-3 have arrived and

been deployed. Thus, combined with some prior SFC data,

ACO-OSD can be executed right after SFCs 1-3 have been

Fig. 3: Sketch map of PLRP framework for the newly arrived

SFCs 4-6 in time slot t2

deployed at the beginning of time slot t1. In this plan, we

have a whole time slot, which is typically much more than

the time cost of ACO-OSD, to run the ACO-OSD algorithm.

We call it the prior-based learning stage, and the output is the

learned best network routing path (artificial ant-tour). Next,

right after SFCs 4-6 arrive at the beginning of the time slot,

we can do real-time SFC deployment based on the Next-Fit

strategy and the learned network routing path. This stage is

very fast with the time complexity of O(n), where n is the

total number of VNFs of all newly arrived SFCs. Thus, we

call it the real-time placement stage.

Besides, let us talk about the selection of prior SFC data,

where we assume there is one SFC with nprior same-sized

VNFs. Suppose the prior values of VNF needed CPU and

RAM resources equal to the mean value of the required CPU

and RAM resource of all possible employed VNFs. Typically,

there are only 20 types of popularly-used VNFs. Besides, we

set the prior data flow rate as the mean value of all data flow

rates in the network. And the natural idea for nprior is to let

it equal the mean value of the service request number in each

time slot times the mean value of the VNF number in each

possible employed SFCs, noted as nmean. However, if so, it

may appear that the servers along the learned network routing

path do not have enough resources to deploy all newly arrived

SFCs. Such infeasible cases are because all prior values are

based on the corresponding mean value, and the real values

may be larger.

We can eliminate the infeasible cases by setting nprior

as a large number. But it is not the best choice. Accord-

ing to our simulation results shown in Section VII.C, a

small feasible nprior helps PLRP perform better. Thus, we

eliminate infeasibility by setting multiple nprior values, par-

allel running ACO-OSD based on these nprior values, and

obtaining multiple learned network routing paths with dif-

ferent lengths. Specifically, we set nprior ∈ {nmin, nmin +
∆n, nmin + 2∆n, · · · , nmin}, where nmin(nmin < nmean),
nmax(nmax > nmean) and ∆n are hyper-parameters which

affect the multiple learned network routing path lengths.

VII. PERFORMANCE EVALUATION

A. Simulation Setting

a) Network topology: We implement our simulations on

3 real network topologies of different sizes from the Internet
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topology zoo [26]: (1) ARNES (34 nodes and 46 links), (2)

DFN (58 nodes and 87 links), (3) ITCDeltacom (113 nodes

and 160 links). Without special mention, we execute on DFN.

b) Network data setting: The CPU and RAM resource

configured for each server node, i.e., Rcpu
k and Rram

k , were

randomly selected from {1, 2, 4, 6} (with the unit of CPU

cores) and {2, 4, 8, 16} (with the unit of GB), respectively.

Typically, the server with more computing resource needs

more operation cost, thus, we set the operation cost for server

Vk by Ck = 1
2 (R

cpu
k + Rram

k ). Besides, we configure each

node’s router with a processing capacity randomly chosen

among [50, 200] Mbps.

For each link (Vp, Vq), we randomly assign it a link latency,

lp,q , ranging from 0.05 ms to 0.2 ms and a bandwidth capacity,

Bp,q , of 1300 Mbps (the bandwidth of Wireless 802.11ac).

c) SFC data setting: We generate SFCs by randomly

picking 4 to 8 VNFs from 20 VNF types, and each kind of

VNF instance requires [0.1, 0.4] CPU cores and [0.05, 0.2] GB

of memory. The flow rate of each SFC, µi, ranges from 0.5
Mbps to 5 Mbps.

d) Online model setting: We consider a time span with

10 time slots, and at the beginning of each time slot, there

are random 1 to 10 service requests arriving. The time to live

(TTL) of each SFC is randomly set among [1, 10].
e) Parameter setting: First, we set the two weights in the

optimization objective of the SFC deployment by α = 1, β =
100. In our ACO-OSD, we set 50 ants in each iteration and,

in total 100 iterations. Besides, the hyper-parameters among

ACO-OSD are set as follows: (1) ant action-choice proportion

q0 = 0.3; (2) relative weight parameter γ = 1; (3) the size of

neighborhood κ = 6; (4) global pheromone evaporation rate

ρ = 0.5; (5) local pheromone evaporation rate ξ = 0.001;

(6) intensification value τ0 = 1. In PLRP, we set the hyper-

parameter ∆n = 6.

f) Benchmarks: (1) Next-Fit (NF) + Nearest Neigh-

bour (NN) algorithm: Work [10] employs such algorithms

and proves NF maintains an approximation ratio of 2 on the

operation cost while NN helps achieve a ratio of O(log(M))
on the network latency; (2) Next-Fit (NF) + Double Spanning

Tree (DST) algorithm: Work [9] resorts to such algorithms,

which has a provable constant approximation ratio in SFC

deployment problem.

Note that for each outcome shown on the plots below, we

use the average value of 100 groups of simulations to show

moderate cases.

B. ACO-OSD Performance Evaluation in A Time Slot

In Fig. 4, the top two plots display the iteration process

of ACO-OSD in a time slot with the input of a different

number of newly arrived service requests and different network

topology, where the y-axis value is the ratio of the cost of the

current-best SFC deployment scheme to that of the best SFC

deployment scheme after all iterations. Besides, the bottom

two plots exhibit the time cost as the iterations increase under

different cases, where the time cost is all proportional to the

iterations.
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Fig. 4: The iteration process of ACO-OSD based on different

numbers of service requests and different network topologies

In the left two plots of Fig. 4, we can see the more new

service requests arrive in a time slot, the more slowly the

iteration process converges, and the more time each iteration

costs on average. But even for the maximal number of newly

arrived requests in a time slot, i.e., m = 10, it drops to a

near-convergent value (i.e., no matter drop after a fixed large

number of iterations) among 100 iterations and costs less

than 7 seconds in total. It implies ACO-OSD can work for

online scenarios that can accept execution time on the order

of seconds.

The right two plots show the influence of different topolo-

gies on the convergent process and the time cost. As for the

time cost, the influence is totally determined by the number

of nodes in the network topology. The more nodes there are

in the network topology, the more time each iteration costs on

average. And all of the time cost is on the order of seconds. But

as for the convergent process, it is not the case. The topology

structure also has an influence. For example, we can see DFN

has fewer nodes than ITCDeltacom, but the iteration process

on DFN converges more slowly than that on ITCDeltacom.

C. PLRP Performance Evaluation in A Time Slot
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Fig. 5: The performance of PLRP with different prior VNF

numbers under the number of service requests m = 2, 6, 8

In Fig. 5, we show the different performance of PLRP

compared to ACO-OSD with the prior VNF number nprior ∈
{6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78}. Since the per-

formance of ACO-OSD will not be affected by the different

settings of nprior and PLRP is a proposed framework based

on ACO-OSD, we use ACO-OSD as a baseline. The left plot
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of Fig. 5, where the y-axis value is the ratio of the cost

of ACO-OSD (baseline) to that of PLRP, demonstrates that

in general, the less feasible prior VNF number is set, the

better performance PLRP achieves. But the more new service

requests arrive in a time slot, the larger the smallest feasible

prior VNF number is. It is because the feasible learned routing

path works better when its length is larger than but more

close to the real needed length. But more new service requests

require more resources, so the real needed length is larger. It

can also be reflected by the right plot of Fig. 5.

The right plot exhibits the success ratios to deploy the

different numbers of newly arrived SFCs (m) with the input of

different prior VNF numbers. We can find as for all different

m, the larger the prior VNF number is, the higher the success

ratio is. But as for less m, the success ratio increases more

early with the increase of the prior VNF number. Since we do

not know the number of newly arrived SFCs m in advance,

setting multiple different nprior in PLRP is necessary and

helps improve the performance of PLRP.

D. Performance Comparison over A Whole Time Span
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Fig. 6: Performance comparison of our ACO-OSD and PLRP

with two benchmarks over a time span with 10 time slots

In an online problem, algorithms make optimization deci-

sions in each time slot only based on the current information.

The local performance on the optimization decisions in each

time slot and the global performance of all decisions over

the whole time span are two critical judgment criteria for

online algorithms. Thus, we compare the performance of our

ACO-OSD algorithm and PLRP framework with two state-

of-art benchmarks on both local added total cost, the cost

increment caused by the deployment of newly arrived SFCs in

each time slot (in Fig. 6a), and the global total cost, the total

cost of all working SFCs in so-far all time slots (in Fig. 6b).

In Fig. 6, we can see our ACO-OSD algorithm and PLRP

framework always maintain better performance than the two

benchmarks, no matter in terms of local performance in each

time slot or global performance over the whole time span.

Besides, the performance of PLRP is always a bit worse than

ACO-OSD. This is because of the error between prior SFC

data and the real employed SFCs. PLRP essentially sacrifices

partial performance benefits for realizing real-time placement.

Luckily, Fig. 6 shows this part of the sacrifice is acceptable

since the performance of PLRP is still always better than two

benchmarks and is very close to ACO-OSD.
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Fig. 7: The performance improvement of our ACO-OSD and

PLRP on different network topologies

Fig. 7 quantitatively presents the performance improve-

ment of our ACO-OSD algorithm and PLRP frame-

work compared with the two state-of-art benchmarks on

different network topologies, where the y-axis value is
min{gtc(NF+DST ),gtc(NF+DST )}−gtc(algo)

min{gtc(NF+DST ),gtc(NF+DST )} , where algo points

to our ACO-OSD or PLRP, gtc(·) is the global total cost of

the target algorithm. In general, ACO-OSD achieves 42.88%
lower global total cost on average, compared with that of two

state-of-art benchmarks, while PLRP obtains 36.53% lower

total cost on average. Besides, Fig. 7 reveals our ACO-OSD

algorithm and PLRP framework have more performance im-

provement on the larger network, i.e., the network topologies

with more nodes. This is because compared with the bench-

marks, our algorithms learn more global network information

by the ant colony pheromone.

VIII. CONCLUSION AND FUTURE WORK

We build a comprehensive model for the online SFC deploy-

ment problem with the objective of minimizing both operations

cost and network latency. To address this issue, we first design

the ACO-OSD algorithm, which has two acceleration mech-

anisms: the many-to-one model between SFC deployment

schemes and ant-tours and the Next-Fit strategy. Besides, as for

the scenarios requiring real-time responses, we also propose a

PLRP online learning framework based on ACO-OSD, which

realizes near real-time placement with the time complexity

of O(n), where n is the total number of VNFs of all newly

arrived SFCs. Finally, we perform extensive simulations on

realistic network topologies, which demonstrates our ACO-

OSD has 42.88% lower total cost on average, compared with

the state-of-art benchmarks, while PLRP has 36.53% lower

average total cost.

In the future, we will do more research on how to get

better prior SFC data by predicting the future arrived SFCs, to

improve the performance of PLRP further. Moreover, we will

also try more complex but accurate learning algorithms, such

as the combination of deep neural networks and reinforcement

learning, to substitute ACO.
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