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ON THE GEOMETRY AND REPRESENTATION THEORY
OF ISOMERIC MATRICES

ROHIT NAGPAL, STEVEN V SAM, AND ANDREW SNOWDEN

ABSTRACT. The space of n X m complex matrices can be regarded as an algebraic variety
on which the group GL, x GL,, acts. There is a rich interaction between geometry and
representation theory in this example. In an important paper, de Concini, Eisenbud, and
Procesi classified the equivariant ideals in the coordinate ring. More recently, we proved a
noetherian result for families of equivariant modules as n and m vary. In this paper, we
establish analogs of these results for the space of (n|n)x (m|m) isomeric matrices with respect
to the action of Q, X Q,,, where Q,, is the automorphism group of the isomeric structure
(commonly known as the “queer supergroup”). Our work is motivated by connections to
the Brauer category and the theory of twisted commutative algebras.
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1. INTRODUCTION

1.1. Background. Let V and W be finite dimensional complex vector spaces, and consider
the space Hom(V, W) of all linear maps V' — W, regarded as an affine algebraic variety. The
group GL(V) x GL(W) acts on this variety, and the decomposition of its coordinate ring is
well-known:

CHom(V, W)] = Sym(V @ W*) = @) SA(V) @ SA(W*)

Here the sum is over all partitions A and S, denotes the Schur functor associated to A. An
important feature of this decomposition is that it is multiplicity free: each non-zero summand
is irreducible, and no two such summands are isomorphic.

The interaction between the geometry of the variety Hom(V, W) and the representation
theory of its coordinate ring is a rich topic of study. An important theorem in this direction
is the classification of equivariant ideals, established in [CEP]: the key statement is that the
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ideal generated by the A summand is exactly the sum of the g summands over all p with
A C p. (Here C denotes containment of Young diagrams.) Another theorem along these
lines, that we proved [NSS1], concerns finiteness properties of equivariant modules that are
uniform in V' and W: one can regard (V, W) — Sym(V ® W) as an algebra object in the
category of bivariate polynomial functors, and we show that it is noetherian. (Omitting
duality does not change much, and makes the functorial properties nicer.) The proof of this
theorem crucially relies upon the aforementioned result of [CEP].

Similar pictures are known in some related contexts. For example, consider the space
Sym?(V*) of symmetric bilinear forms on V. The coordinate ring Sym(Sym?*(V)) is again
multiplicity free as a representation of GL(V'). The equivariant ideals were classified in [Ab],
and the noetherian result was established in [NSS1]. See [AdF, NSS2, SS2] for some other
cases.

The purpose of this paper is to establish analogs of the above results in a new situation. An
isomeric vector space is a super vector space V' equipped with an odd-degree isomorphism
a:V — V squaring to the identity. The isomeric supergroup (also known as the queer
supergroup) Q(V) is the automorphism supergroup of (V). Given two isomeric vector
spaces (V,«) and (W, 3), one can consider the supervariety X of all linear maps V. — W
that are compatible with the isomeric structure. The supergroup Q(V) x Q(W) acts on X.
We classify the equivariant ideals of C[X] and establish a noetherian result.

1.2. Statement of results. We now state our main results in detail. Let q be the infinite
isomeric Lie superalgebra (see §2.4). There is a notion of polynomial representation for g,
analogous to that for the general linear group (see §2.5). A (bivariate) isomeric algebra
is a supercommutative superalgebra equipped with an action of q x q under which it forms a
polynomial representation. Let V be the standard representation of q and let U be the half
tensor product 271(V ® V), which is a polynomial representation of q x q. (See §2.3 for the
definition of half tensor product.) Let A = Sym(U). This is an isomeric algebra, and the
main one of interest in this paper. The space Spec(A) is (more or less) the space of infinite
isomeric matrices.

The irreducible polynomial representations of q are parametrized by strict partitions. Let
T be the irreducible representation corresponding to the strict partition A\. An analog of
the Cauchy decomposition yields the decomposition

(1.1) A=P2 VT e,

where the sum is over all strict partitions A\, §()\) is either 0 or 1, and a 27! indicates a
half tensor product. Each summand here is an irreducible representation of q x g. This
shows that A is multiplicity free as a representation of q x q. In particular, we see that an
equivariant ideal of A (meaning one stable by q x q) is determined by which summands it
contains. Our first main result is the following, which completely classifies the equivariant
ideals of A:

Theorem 1.2. Let I* be the ideal of A generated by the A\ summand in (1.1). Then I*
contains the p summand if and only if X C pu.

The key idea in proving Theorem 1.2 is to use Schur Sergeev duality to convert to a more
combinatorial problem; see §3.1 for a more detailed outline. We note that this theorem is
the isomeric analog of the aforesaid result of [CEP]. As a simple application of this theorem,
we describe the isomeric determinantal ideals (see Remark 3.20).
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Theorem 1.2 implies that the lattice of ideals of A is isomorphic to the lattice of ideals in
the poset of strict partitions. From this, it follows that equivariant ideals of A satisfy the
ascending chain condition. This is a noetherian-like result; however, in practice one wants a
much stronger statement.

Let Mod4 be the category of g x q equivariant A-modules that form a polynomial repre-
sentation of q x q. In other words, treating A as an algebra object of the tensor category
Rep* (g x q), the category Mod, is the category of A-module objects. We say that A is
noetherian (as an isomeric algebra) if the category Mod, is locally noetherian. Equiva-
lently, this means that any subobject of a finitely generated object of Mod 4 is again finitely
generated. The corollary of Theorem 1.2 observed above shows that any subobject of A itself
is finitely generated. This is not enough to conclude that A is noetherian: a general finitely
generated A-module is a quotient of V' ® A for some finite length polynomial representation
V', but typically not a quotient of a finite direct sum of A’s. Our second main theorem yields
the desired strengthening:

Theorem 1.3. The bivariate isomeric algebra A is noetherian.

The proof of Theorem 1.3 follows the general plan employed in previous noetherian results
we have proved [NSS1, NSS2, SS2]. The basic idea is to break Mod 4 up into two pieces: the
torsion subcategory Mod's*™® and the generic category Mod®™ (which is the Serre quotient by
the torsion subcategory). Thanks to Theorem 1.2, one can show that Mod'{"™ is locally noe-
therian. The crucial step is to identify Mod5%™ with the category of algebraic representations
of q as studied in [GS]. We thus see that Mod®™ inherits the pleasant properties of this rep-
resentation category (such as: all objects are locally finite length, and finite length objects
have finite injective dimension). We then piece together the information about Mod'{™ and
Mod®™ to obtain our result on Mod .

We note that our proof of Theorem 1.3 yields quite a bit of extra useful information. For
example, as stated above, we determine the structure of the generic category Mod%". We
also prove some important results about the section functor S: Mod%" — Moda. Some

further results can be easily deduced: for instance, projective A-modules are injective.

Remark 1.4. The simplest example of an isomeric algebra is Sym(V). It is easily seen to
be noetherian, see Remark 2.3. The algebra A is, in a sense, the smallest isomeric algebra
where the noetherian property is not obvious. O

1.3. Motivation. In [SS3], the second and third authors investigate the Brauer category
and its relatives (this is actually the first in a series of papers on this topic). One relative
is the “isomeric walled Brauer category,” which relates to mixed tensor representations of
the isomeric algebra. Theorem 1.3 implies a noetherian result for this category that will be
important for that project. This was our motivation for studying A specifically.

We also have a more general motivation for the current project. A GL-algebra is a
commutative algebra equipped with an action of the infinite general linear group GL under
which it forms a polynomial representation. In characteristic 0, these are equivalent to
twisted commutative algebras (tca’s) by Schur—Weyl duality. In recent years, GL-algebras
and tca’s have received a lot of attention. All indications so far are that these are very
well-behaved objects, though there is much that is still unknown. The isomeric algebras
studied in this paper are close relatives of GL-algebras. Given that GL-algebras are such
a rich topic, we expect that isomeric algebras are as well. This paper represents the first
attempt to study them in any serious capacity.
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1.4. Future work. As mentioned, it seems that isomeric algebras are likely just as rich
as GL-algebras. Developing the theory of isomeric algebras in more detail is therefore a
potentially fruitful direction for future work.

A more specific problem is to classify the equivariant prime ideals of the isomeric algebra
A studied in this paper. The third author tackled the analogous problem for the GL-algebra
Sym(Sym?(C*)) in [Sn]. He is currently pursuing this problem with Robert Laudone, and
the result will appear in the forthcoming work [LS].

1.5. A remark on terminology. The supergroup Q(n) has traditionally been called the
“queer supergroup.” Since the connotations of this word have shifted over the years, we
have introduced the term “isomeric” to take its place’. This word is derived from the Greek
words is0s, meaning equal, and méros, meaning part, and is intended to reflect the fact that
an isomeric structure on a super vector space makes its two parts isomorphic. We hope that
other authors will choose to use this new terminology as well. We thank the conscientious
editor who suggested that we change the terminology.

1.6. Outline. In §2, we review isomeric vector spaces, the isomeric Lie superalgebra, and
isomeric algebras. In §3, we classify the ideals of A. In §4, we show that equivariant A-
modules are locally free at a generic point of Spec(A). Using this, we describe the generic
category Mod%™ in §5. Finally, we prove the noetherian result in §6.

1.7. Notation. We list the most important notation:

(: a fixed square root of —1 in C

V: the complex super vector space with basis {e;, fi}i>1

a: the isomeric structure on 'V given by a(e;) = f;

q: the isomeric algebra associated to (V, «)

): the half tensor product (see §2.3)

U: the half-tensor product 271(V ® V), a representation of q x g
A: the q x g-algebra Sym(U)

T,: the isomeric Schur functor associated to the strict partition A

2. ISOMERIC ALGEBRAS

2.1. Super vector spaces. A super vector space is a Z/2-graded complex vector space
V =V, @ V4. For a homogeneous element x € V, we write |z| € Z/2 for its degree. We
let C™™ be the super vector space with degree 0 part C” and degree 1 part C™. We let
€1,..-16n, fi,-.., fm be the standard basis for C"™, where the ¢,;’s have degree 0 and the
fi’s have degree 1. We let V = C>l* = U, >1 C"", and sometimes write W for a copy of V.
Given a super vector space V and k € Z/2, we let V[k] be the super vector space defined by
V[k]; = Viyi. (We remark that V1] is often denote II(V') in the literature, e.g., in [CWT1].)

Let V and W be super vector spaces. We let Hom(V, W) denote the set of all linear
maps V — W. We let Hom(V, W), denote the subset of Hom(V, W) consisting of maps f
such that f(V;) C Wiy for all . Then Hom(V, W) = Hom(V, W), & Hom(V, W);, and so
Hom(V, W) is naturally a super vector space.

IThe word “isomeric” is not new: it occurs in chemistry as the adjectival form of “isomer.” However, it
does not appear to be used within pure mathematics.
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We let SVec denote the category whose objects are super vector spaces and whose maps
are all linear maps. We let SVec® be the subcategory where the morphisms are homogeneous
of even degree.

Given super vector spaces V and W, let V ® W be the usual tensor product of V' and
W, endowed with the usual grading. Given homogeneous linear maps f: V — V' and
g: W — W' we let f® g be the linear map V@ W — V' @ W’ defined on homogeneous
elements by

(2.1) (f®9)(v@w) = (=) f(v) ® g(w).

This construction endows SVec® with a monoidal structure. This monoidal structure admits
a symmetry 7 defined by 7(z ® y) = (=1)Wy @ 2. We note that ® does not define
a monoidal structure on SVec in the usual sense, as it does not even define a functor
SVec x SVec — SVec due to (2.1); however, it does define a monoidal structure on SVec
in the sense of supercategories, as we now discuss.

2.2. Supercategories. A supercategory is a category enriched in super vector spaces, or,
more precisely, the category SVec®. Concretely, a supercategory is just a linear category
in which there is a notion of even and odd homogeneous morphism, satisfying some rules;
most categories built out of super vector spaces will therefore be supercategories. We refer
to [SS4, §2] as a general reference, though this concept has been discussed elsewhere as well
(e.g., [BE]). Given a supercategory C, we let €° be the ordinary category with the same
objects and with Homeo (X,Y") = Home(X,Y)o.

There is a natural notion of product of supercategories, which leads to the notion of a
monoidal supercategory; see [SS4, §3.1] or [BE, Definition 1.4]. If (€,®) is a monoidal
supercategory then ® induces a monoidal operation on €°. The monoidal product ® is
defined on all pairs of morphisms, and satisfies the sign rule (2.1). The notion of a symmetry
on a monoidal supercategory is defined in the usual manner. (We note that the paper [SS4]
is devoted to studying the notion of a supersymmetry on a monoidal supercategory, which
is more complicated than the notion of a symmetry. We will not need supersymmetries in
this paper.) The basic example of a monoidal supercategory is SVec with the monoidal
operation ® discussed above; 7 defines a symmetry on this monoidal structure.

2.3. Isomeric vector spaces. A isomeric vector space is a pair (V,a) consisting of a
super vector space V together with an odd endomorphism «: V' — V such that a? = 1. We
endow C"I" with an isomeric structure by a(e;) = f; and a(f;) = e;; we call this the standard
isomeric structure. We similarly define the standard isomeric structure on V. = C>I*.
Every finite dimensional isomeric vector space is isomorphic to some C™" equipped with
the standard isomeric structure. A homogeneous morphism f: (V,a) — (W, ) of isomeric
vector spaces is a homogeneous linear map f: V — W such that fa = (—1)/13f; a general
morphism is a sum of homogeneous morphisms. We let QVec denote the supercategory of
isomeric vector spaces.

Let (V,«) and (W, 3) be two isomeric vector spaces. Then a® (3 is an even endomorphism
of V@ W that squares to —1; the sign comes from (2.1). Fix once and for all a square
root of —1 in C, denoted (. We define the half tensor product of (V,«) and (W, ),
denoted 271(V @ W), to be the ( eigenspace of a ® 3. We note that a ® 1 induces an
isomorphism between the ¢ and —( eigenspaces, and so we have a natural isomorphism
VoW =271(Ve W) CU. Abstractly, the half tensor product can be understood using
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the theory of supersymmetric monoidal categories developed in [SS4], but this perspective
will not be needed in this paper.

2.4. The isomeric Lie superalgebra. Let (V,a) be a finite dimensional isomeric vector
space. The isomeric Lie superalgebra q(V) = q(V,«a) is the set of endomorphisms of
(V,a) in the category QVec. It forms a sub Lie superalgebra of the general linear Lie
superalgebra gl(V'). We let q,, = q(C"I"). Explicitly, an element of q,, can be described as a

matrix of the form
a b
-b a

where a and b are n X n matrices. We define the Chevalley automorphism 7 of q,, by

a b\ at Y
T(—b a) __<—¢bt at>

where (—)" denotes the usual matrix transpose. One verifies that this is a Lie superalgebra
homomorphism. Note that
of a b\ [a —b
T\=ba)"\b a)

and so 7 has order four. We let q = qo = |J,,~; 9» be the infinite isomeric superalgebra. It
can be represented by matrices as above, and we define 7 on ¢ as above.

2.5. Polynomial representations. The space C"" is naturally a representation of g,,, and
called the standard representation. We say that a representation of q,, is polynomial if it
oceurs as a subquotient of a (possibly infinite) direct sum of tensor powers of the standard
representation. We let Repp(’l(qn) denote the supercategory of such representations. It is
easily seen to be closed under tensor product. It follows from Schur-Sergeev duality [CW1,
§3.4] that the abelian category RepP®!(q,)° is semi-simple. Recall that a strict partition
of n is a partition A of n such that A\ > Ay > --- > A\, > 0; with this notation, we write
|A| =n and ¢(X) = r. For each strict partition A with ¢(\) < n, there is a simple object T} ,,
of Rep””(q,)°, and every simple object is isomorphic to some Ty, or Th,[1]. To be a bit
more precise, define

SO\ = {0 %f () %s even.
1 if £()\) is odd
Then there is an even isomorphism Ty, = T),[1] if 6(A\) = 1, and these are the only
isomorphisms among objects of the form T, ,,[k] with k € Z/2.

The above discussion applies equally well to the infinite isomeric algebra q. Precisely,
we define a representation of q to be polynomial if it occurs as a subquotient of a direct
sum of tensor powers of the standard representation V. The category RepP®(q)° is again
semi-simple and closed under tensor products. Given a strict partition A, there is a simple
object T, and every simple object is isomorphic to some Ty or Ty[1]. We define the notion
of polynomial representation of q X q in an analogous manner. Similar results hold for it
(e.g., its simple objects have the form T ® T}, or Ty ® T,,[1] with A and p strict partitions).
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2.6. Polynomial functors. Consider the supercategory Fun(QVec, SVec) of all functors
QVec — SVec. The subcategory Fun(QVec, SVec)® consisting of even degree morphisms
is abelian. Define a functor 7,,: QVec — SVec by T,,(V,a) = V®". By [CW1, Theorem
3.49], this functor is semisimple, and decomposes in Fun(QVec, SVec)° as a direct sum of
simple functors T, (and their shifts) indexed by strict partitions A of n. We say that a
functor QVec — SVec is polynomial if it is a subquotient of a (possibly infinite) direct
sum of the functors 7}, in the category Fun(QVec, SVec)°. We denote by QPol the full
subcategory of Fun(QVec, SVec) spanned by polynomial functors. The category QPol° is
a semisimple abelian category, and every simple object is isomorphic to some T or T,[1].
The tensor product of two polynomial functors is again a polynomial functor.

We have an evaluation functor QPol — RepP®(q,) given by F' +— F(C™"). For a strict
partition A\, we have

0 otherwise

T)\(Cn|n) - {

We similarly have an evaluation functor QPol — Rep”®(q) that takes Ty to Ty. This is an
equivalence of supercategories.

We also have a notion of bivariate polynomial functors. Precisely, these are subquotients of
direct sums of functors 7, ,,: QVecx QVec — SVec given by 1), ,(V, W) = V"W We

let QPOI(Z) denote the category of such functors. It has similar properties to QPol.

2.7. Isomeric algebras. An isomeric algebra is a commutative algebra object in the
symmetric monoidal category QPol®° =2 RepP(q)°. A module for such an algebra is a
module object in the usual sense. If M is a module over the isomeric algebra B then M (V)
is a B(V')-module for all isomeric spaces V. In this article, we are mostly interested in the
bivariate analogue, i.e., commutative algebras in QPOI(Q); we will also call them isomeric
algebras and often omit the adjective “bivariate.”

Let M be a polynomial functor. We define ¢(M) to be the supremum of the ¢(\) over
A for which T occurs as a constituent of M. We make a similar definition for polynomial
representations. We say that M is bounded if /(M) < co. The simple functor T, appears
in T\®T, if and only if P, has nonzero coefficient when the product Py P, is expanded in the
basis of Schur P-functions (the Schur Q-functions are given by Q, = 2/ Py [Ma, III, (8.7)]
and these are, up to powers of 2, the characters of T) [CW1, Theorem 3.51]). It follows from
[Ma, II1, (8.18)] that the tensor product of two bounded representations is again bounded.
We extend the notion of bounded to bivariate polynomial functors in the obvious way.

An isomeric algebra A is finitely generated if it is a quotient of Sym(V') for some finite
length object V' of QPol (or QPOI(Q)), and an A-module is finitely generated if it is a quotient
of A® W for some finite length object W. We say that A is noetherian if every finitely
generated A-module is noetherian, i.e., its submodules satisfy the ascending chain condition.

Proposition 2.2. Every finitely generated bounded isomeric algebra is noetherian.

Proof. If A is bounded, then so is A® W for any finite length object 1, and hence so is any
finitely generated A-module M. If ¢(M) < r, then given submodules N C N’ C M, we have
N = N’ if and only if N(C"") = N’(C"I"), which means it suffices to check the ascending
chain condition for submodules of M(C’I"). But this is a finitely generated module over
a finitely generated supercommutative algebra A(C’") (in the usual sense) and hence is
noetherian. The same argument applies in the bivariate case. O
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Remark 2.3. The isomeric algebra Sym(V) is bounded since Sym"(V) = T,(V). It is
therefore noetherian by the above proposition. O

2.8. The isomeric algebra A. Recall that V = C>I*® with basis {e;, f;}i>1. We let U =
271V ® V). Recall that this is the (-eigenspace of o ® « acting on V ® V. Define

vij=01+0e®e+(1-0)fi®f;
wij=(1+Q)e;@fi+(1-0)fi®e;

Then {v; j, w; ;}ij>1 is a basis of U, with v; ; even and w; ; odd. The algebra q x q naturally
acts on V ® V and carries U into itself.

Let A = Sym(U). This is a polynomial superalgebra on elements {z; ;, y; ; }i>1, where z; ;
corresponds to v;; (and has degree 0) and y; j to w;; (and has degree 1). This is a bivariate
isomeric algebra, and the main algebra of interest in this paper. By the isomeric analog of
the Cauchy decomposition ([CW2, Theorem 3.1], the infinite case follows by taking a direct
limit), we have the irreducible decomposition

A=P2 V1 eT).
AEA

Here 0(A) is defined in §2.5. In particular, we see that A is multiplicity free as a q X g-
representation.

3. CLASSIFICATION OF IDEALS IN A

3.1. Overview. The goal of this section is to classify the ideals in the bivariate isomeric
algebra A that are stable by q X q. We now explain the basic plan of attack (notation and
definitions are explained below).

e Schur-Sergeev duality gives an equivalence of categories Mode = RepP®(q), where €
is a category built out of the Hecke Clifford algebras. In fact, this is an equivalence of
symmetric monoidal categories. There is a similar equivalence Modege = Repp(’l(q X
q). It follows that A = Sym(U) corresponds to the € X € algebra R’ = Sym(U),
where U corresponds to U. Thus it suffices to classify ideals in R'.

e There is a natural equivalence C°° = € of symmetric monoidal categories that we call
transpose. Let R be the C°P X € algebra obtained by applying transpose to the first
factor in R’. Then it suffices to classify the ideals of R.

e For any category D, there is a canonical D°PXD module given by (z,y) — Homp(z, ).
It turns out that R is this canonical module for C°?XIC. By general reasons, it follows
that ideals of R correspond to tensor ideals of C. It thus suffices to classify these.

e We establish a general classification of tensor ideals in monoidal supercategories of a
particular form (that encompasses €). One of the key assumptions is a certain form
of the Pieri rule.

This section essentially follows the above plan in reverse. We thus begin with an abstract
classification of tensor ideals and work our way back to A.

3.2. Semisimple superalgebras. Let B be a finite dimensional semisimple C-superalgebra.
By “semisimple,” we mean that the abelian category Mod} is semisimple. Let A(B) be
the set of isomorphism classes of left B-modules, where we allow odd isomorphisms. For
A € A(B), we let S, be a representative simple module. Thus every simple object of Modj
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is isomorphic to some Sy or Sy[1]. We let K(B) be the Grothendieck group of the subcate-
gory of Modg spanned by finite length modules, and we let K(B) be the quotient of K(B)
by the relations [M] = [M[1]], i.e., a module and its shift represent the same class in K(B).
(The construction K(—) is discussed in [SS4, §2.6], where it is denoted K (—).) Then K(B)
is the free abelian group on the classes [Sy] with A € A(B). We let J* C B be the Sy-isotypic
piece of B, i.e., the sum of all left ideals of B isomorphic to Sy or S)[1].

Proposition 3.1. We have the following:
(a) J* is a 2-sided ideal of B.
(b) J* is simple as a (B, B)-bimodule.
(c) B=Dieam) JA as a (B, B)-bimodule.

Proof. These results are proven for classical semisimple algebras in [Lan, XVII.4, XVIL5].
We just note that the proofs carry over to the super case as well. O

Proposition 3.2. Let J be a left ideal of B and let J' be the 2-sided ideal it generates. Then
J' = @,cqJ* where S is the set of X € A(B) for which Sy or S\[1] appears as a simple
constituent of J.

Proof. This follows from the fact that a semisimple superalgebra B is isomorphic to a direct
product of the endomorphism algebras of its simple modules and that each endomorphism

algebra, as a left module, is isomorphic to a direct sum of copies of the corresponding simple
(see [CW1, §3.1]). O

3.3. A classification of tensor ideals. The goal of this section is to classify left tensor
ideals in certain monoidal supercategories. We first recall the relevant definitions.

Definition 3.3. Let € be a supercategory. An ideal of C is a rule [ assigning to each
pair of objects (z,y) a homogeneous subspace I(x,y) of Home(z,y) such that the following
conditions hold:

e Given f € I(z,y) and g € Home(y, 2), we have go f € I(z, 2).

e Given f € I(z,y) and h € Home(w, z), we have foh € I(w,y).
We note that I(z,z) is a 2-sided homogeneous ideal of the superalgebra Ende(x) for every
object . O

Definition 3.4. Let (C,II) be a monoidal supercategory. A left tensor ideal of € is an
ideal I of C satistying the following condition:
e Given f € I(z,y) and an object z, we have id, II f € I(z I z, z 1T y).
We note that if f € I(z,y) and g € Home(2/,y') then g1 f € I[(z T2/, y L ¢/). O
Fix, for the remainder of this section, a monoidal supercategory (€, IT). We now introduce
a number of conditions on C.

(C1) We have a bijection N — Ob(C), denoted n + [n], such that [n] IT [m] = [n + m].
(C2) We have Home([n], [m]) = 0 for n # m.
(C3) The algebra B,, = Ende([n]) is finite dimensional and semisimple.

We note that the monoidal operation induces a superalgebra homomorphism

bnm: Brn @ By, — Bpim
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for all n,m. In fact, giving €, subject to (C1)—(C3), is equivalent to giving the sequence
(By,)n>0 of semisimple superalgebras together with the ¢ maps, such that certain conditions
hold.

Let A(C) = [1,,50 A(Bn). Let K(B,,) be the Grothendieck group discussed in the previous
section, and let K(€) = @, ., K(B,). We note that K(€) is a free abelian group with basis
[Sy] with A € A. The monoidal structure induces a ring structure on K(C€); precisely, if M is
a B,,-module and N is a B,-module then

[M] - [N] = [Bpim ®B,eB, (M @ N)|,

where the tensor product is formed via ¢, ,. Note that this tensor product is exact in M
and N since the B’s are semisimple, and thus is well-defined on the Grothendieck group.
Our next assumption is an analog of the Pieri rule:

(C4) There is a partial order C on A(C) such that for any A € A(B,) we have
[B1] - [S)] = Z xSyl
ACp, pEA(Br+1)
for positive integers cy .

For A € A,,, we let J* C B,, be the Sy-isotypic piece of B,, as in the previous section. If I is
a left tensor ideal of € then I, = I([n], [n]) is a 2-sided ideal of B,,; moreover, I is determined
by the I,,’s due to (C2).

Theorem 3.5. Suppose conditions (C1) (C4) above hold. Let X € A(B,) and let I* be the
left tensor ideal of € generated by J*. Then I\ = ®Acu,ueA(Bm) J* for any m.

Given a 2-sided ideal J of B, we let ¥(.J) be the 2-sided ideal of B, generated by
t1.,(1 ® J). The following is the key observation:

Lemma 3.6. Given \ € A,,, we have S(J*) = @AC#,#EA(BnJrl) JH

Proof. Let J be the left ideal of B, generated by ¢1,(1 ® J*). Then X(J*) is the 2-sided
ideal generated by J. The natural map

Bni1 ®@p,08, (B1® JY) = J
is an isomorphism: indeed, it is surjective by definition, and it is injective since ¢, is flat.
We thus have [J] = [B;][J?]. Since [J*] = n[S,] for some n > 0, we see that [J] = n[B;][S,].
By (C4), it follows that S, is a constituent of J if and only if A C p and p € A(B,41). Thus
the 2-sided ideal generated by J is @He ABan) " (Proposition 3.2), which completes the
proof. O

For m > 0, we let 2™ be the m-fold iterate of X.
Lemma 3.7. Given A € A,, we have ¥™(J*) = Dy ,\ yeasorn "

Proof. This follows from applying the previous lemma iteratively. O

Proof of Theorem 3.5. Let A € A(B,,) be given. Define I/, = ¥™ ™(J*), which we take to
be 0 for m < n. We claim that I’ is a left tensor ideal of €. Since I! is a 2-sided ideal of B,,
for all m, it follows that I’ is closed under arbitrary compositions in €, that is, I’ is an ideal
of C. Now, if f € By, then idyy I f = 1;,,(1 ® f). It follows that if f belongs to a 2-sided
ideal .J of B,, then idy; IT f belongs to X*(.J). In particular, if f € I/, then idy I f € I}, .
Thus the claim holds.
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Now, let I* be the left tensor ideal generated by J*. Since I’ is a left tensor ideal containing
J*, we have I* C I'. Since I* is a left tensor ideal, we have (1)) C I)) ., for all m, and
so it follows (by a simple inductive argument) that I’ C I*. We thus have I* = I’, and so

I3 = Y™ (J*). Thus the theorem follows from Lemma 3.7. O

3.4. Opposite categories. Suppose that B is a superalgebra. We define the opposite
superalgebra, denoted B°P, as follows. The super vector space underlying B°P is just that
underlying B. The multiplication e on B°P is defined on homogeneous elements x and y by
rey=(—1)¥yz.

Now suppose that C is a supercategory. We define the opposite supercategory, denoted
C°P as follows. The objects of C°P are the same as the objects as €. We put Homegop (2, y) =
Home(y, z). Given homogeneous morphisms f: x — y and g: y — 2z, their composition in
€ is defined to be (—1)7l9lg o f. We note that Endees (2) = Ende(z)P.

3.5. From tensor ideals to algebra ideals. Let C be a small supercategory. A C-module
is a superfunctor € — SVec. (A superfunctor is just a functor that is SVec®-enriched, i.e.,
it preserves homogeneity and degree of morphisms.) We let Mode be the supercategory of
C-modules. The category Modg is abelian.

Suppose now that € has a monoidal structure II. Then Mode admits a natural monoidal
structure ®, namely Day convolution. Thus Modg is a monoidal category, and so we can
speak of algebras, modules over algebras, ideals in algebras, and so on. We note that to give
an algebra in Modg amounts to giving a C-module B with even maps B(z)® B(y) — B(z1ly)
for all objects x and y, satisfying various conditions.

The supercategory C°P X € is naturally monoidal. (Here X denotes the product of en-
riched categories, see [SS4, §2.5].) This category admits a module R defined by R(z,y) =
Home(z,y). Furthermore, the module R admits an algebra structure: the map

R(z,y) @ R(z',y") —» R(z U2’y L /)
is simply given by f® g+— f 1l g.
Proposition 3.8. There is a natural bijective correspondence
{left ideals of R} <— {left tensor ideals of C}.

Proof. Suppose that [ is a left ideal of R. Then [ is in particular a C-submodule of R, i.e., a
sub superfunctor of R. This exactly means that I is an ideal of the category € in the sense
of Definition 3.3. Since I is a left ideal of R, we see that if f € R(z,y) and g € I(2',y) then
f I g belongs to I(xz 112/, y ITy'). This shows that I is a left tensor ideal of €. The above
reasoning is reversible, and so the proposition follows. O

3.6. The Hecke—Clifford algebras. The Clifford algebra Cl,, is the superalgebra generated
by odd-degree elements ar, ..., a, subject to the relations o? = 1 and o;o; = —a aq for
i # j. The symmetric group &,, acts on Cl,, by 0 - o; = a,;) and we define the Hecke-
Clifford algebra 3, to be the semi-direct product C[&,,] x Cl,. This is again a superalgebra,
where we define |o| =0 for o0 € &,,.

The algebra H,, is semisimple [CW1, (3.25)]. The isomorphism classes of simple H,,-
modules are parametrized by strict partitions of n [CW1, Proposition 3.41]. We thus identify
A, = A(H,,) with the set of such partitions. Given A € A,,, we have an even isomorphism

Sy = Sy[1] if and only if §(A) =1 [CW1, Corollary 3.44].
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We define a linear map (—)": 3, — 3, called transpose, by the formula
(i, ai,0)f = Fo g ap = (=)&) Fotay, s,
where here 0 € G,,. One readily verifies that this is well-defined.
Proposition 3.9. The transpose map defines an isomorphism H» — JH,, of superalgebras.

Proof. We must show that (zy)' = (—1)*¥lyfzt for homogeneous elements z,y € H,,. If =
is a basis vector (i.e., of the form «;, ---a; o) then we have 2 = C|I|2:1:_1. Suppose that x
and y are basis vectors of degrees n and m. Then zy is a basis vector of degree n +m. We
have

(zy)t = ¢ (@y)

(_1)nmy’[x1‘ — CQnm+n2+m2 -1 —1.

These are equal. We have thus verified the formula when x and y are basis vectors, from
which the general case follows. O

Suppose that M is an H,-module. Then the dual vector space M* is naturally an JH P-
module. Composing with the transpose isomorphism, we can regard M* as an H,-module;
we denote this module by MT.

3.7. The Hecke—Clifford category. We now assemble the Hecke—Clifford algebras into a
supercategory C. The objects of € are formal symbols [n] with n € N. We put Ende([n]) =
H,, and Home([n], [m]) = 0 for n # m. Composition is defined in the obvious manner.

We now define a monoidal structure II on €. On objects, we put [m] I [n] = [m + n]. For
m,n > 0, we define

bt o @ Hyy = Hopgn,

by a; ® 1 = a;, 1 ® aj — aypyj, and using the usual embedding &,, x &,, C G,,,4,,. One
readily verifies that this is a homomorphism of superalgebras. The monoidal operation II is
defined on morphisms using ¢y, ,,.

We now define a symmetry # on the monoidal structure II. Let 7,,, € &,,4, be the
permutation defined by

(i) t+n fl1<i<m

Tmn\l) = . . . .

’ i—m ifm+1<i<m-+n

One readily verifies that for homogeneous elements x € H,,, and y € H,, we have
Tonnlmn (T ® y)TT;}n = (—1)""1pm(y ® ).

We define By, [m] LI [n] — [n] IT [m] to be the element 7,,, € Ende([m + n)).

Put A = A(C), which we identify with the set of all strict partitions. The group K(C) is
the free abelian group on the classes [S)] with A € A. We let C be the partial order on A
given by containment of Young diagrams; explicitly, A C p means \; < p; for all 2. We have
the following version of the Pieri rule (recall that 6()) is 0 or 1 depending on if £(\) is even
or odd, respectively):

Proposition 3.10. Let A\ be a strict partition of n. We then have

gallsi =Y 2Ast+ Y 2Ws,)
HOA BOA
L) =L(N) L) =t(N)+1
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in K(C), where p varies over strict partitions of n+ 1.

Proof. Let @, be the Schur @Q-functions indexed by strict partitions A, see [CW1, §A.3].
They are linearly independent and their Z-span is a subring I'. There is a characteristic
map ch: K(€) ® Q — I' ® Q, which is an isomorphism of graded algebras (see [CW1, §3.3]).
We have ch([Sy]) = 20MN=M/2Q), and hence ch([H;]) = Q; [CW1, §3.3.6]. Since ch is an
isomorphism, the result follows from the following identity [Ma, II11.8.7 and I11.8.15]

Q1Qx = E 2Q, + E Q.- O
BOA BOA
£(p)=E(X) E(p)=L(N)+1

Proposition 3.11. The category C satisfies (C1)-(C4).

Proof. Conditions (C1) and (C2) are essentially by definition, and (C3) was discussed in the
previous section. Condition (C4) follows from Proposition 3.10. O

We define the transpose functor (—): C° — € to be the identity on objects and the
transpose operation (—)' on each algebra J,,.

Proposition 3.12. The transpose functor is naturally an equivalence of symmetric monoidal
categories.

Proof. 1t is clear that the transpose functor is indeed a functor and an equivalence. To define
a monoidal structure on the transpose functor, we take the isomorphism ([n] II [m])T —
[n]T 11 [m]" to be the identity map; note that both objects are [n + m]. For this to define a
monoidal structure, we need

b (f @ 9)" = tmn(fT @ ")
for f € H,, and g € H,,. Both sides define algebra homomorphisms H,, ® H, — F "

n+m?
so it suffices to check the equality on algebra generators, where it is clear. Finally, for the
symmetry condition, we need ( f,f’n)T = Bmn, where S°° denotes the symmetry in €°P. By
definition, the morphism 5, in € is equal to the morphism (3, ,,, in €. Thus the condition

we require is 7} = Ty, ,, which is true. O

Let M be a C-module. Then x — M(z)* is a €°P-module. Composing with the transpose
equivalence, we get a C-module that we denote by MT. If we regard M as a sequence
(M,)n>0, where M, is an 3(,-module, then M is just the sequence (M), o, where M} is as
in the previous section. The construction (—)' defines an equivalence Modg® — Mode that
is compatible with tensor products. It thus induces a ring automorphism of K(€) that we
denote by (—)T.

Proposition 3.13. We have (=)' =id on K(C).

Proof. Let V,, = Cl,, which is naturally a simple left J,-module [CW1, §3.3.5]. Under the
characteristic map (see the proof of Proposition 3.10), the class [V},] in K(€) corresponds
to the function Q) [CW1, Lemma 3.40]. Since the Q) generate I' ® Q as a Q-algebra,
it follows that the [V,] generate K(C) ® Q as a Q-algebra. It thus suffices to show that
[V,.]T = [V,,]. For this, it is enough to show that V. and V,, are isomorphic as H,-modules.
Let t: Cl,, — C be the map satisfying ¢(1) = 1 and t(m) = 0 for any monomial m # 1 in
the a;’s. This map satisfies t(zy) = t(yzx) for x,y € Cl, (there is no sign). For z € V,, let
As € V¥ be defined by A\.(y) = t(xy’). We thus have a linear map \: V,, — V* via x — A,
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which is easily seen to be an isomorphism of super vector spaces. Recall that V" is a left
H,-module via (aX)(y) = Ma'y). For a € Cl,, we have

Mo (y) = tlazy') = t(zya) = t(z(ay)T) = Ao(aly) = (o) (v),

and so A\,; = aX,. We thus see that A is a homomorphism of left Cl,-modules. Since ¢ is
G,.-invariant, it follows that A is also &,,-equivariant. We thus see that A is an isomorphism
of left H,,-modules, which completes the proof. Ol

Corollary 3.14. We have S/T\ = S, as H,-modules for all A € A\,,.

Let R be the canonical C°°?XC algebra defined in §3.5. Let R’ be the CXC algebra obtained
by applying transpose to the first argument in R. Let U be the quotient of Cl; ® Cl; by the
2-sided ideal generated by oy ® a; — (. One easily sees that R'([1],[1]) = U.

Proposition 3.15. The identification U = R([1], [1]) induces an isomorphism Sym(U) — R’
of CX € algebras.

Proof. We first construct an isomorphism ¢,,: Sym™(U) — R/([n], [n]) of H,, ® H,-modules
for each n. For simplicity of notation, we denote H,, ® H,, by C,,. We note that R'([n], [n])
can be identified with the C,-module 3, given on generators by

(a®b).x = (—1)=H+EDpyqt,

In particular, we identify U with the Cj-module H;. Thus, the C,,-module Sym"(U) is given
by the &,,-coinvariants of C), Bcen }C?” where C’1®" — (), is the natural map that identifies

CP" with the subalgebra Cl, ® Cl,, of C,,. Under the latter identification, H" is isomorphic
to the submodule Cl,, of the C,-module H,,. Thus we have C, Dcen HE™ = C, @y, 001, Cl,

as Cp,-modules. As a complex vector space, C,, ®q1,,ec1, Cl, has a basis of elements of the
form ¢ @ 7 ® af' ---af where 0,7 € G,,, ¢, € {0,1}. The action of &,, on the nth tensor
power C, ®q,sc1, Cl, is given by

glc@T®al o) =0 @77 @ (af - as)9,

where g € &,,. Thus its &,-coinvariants, Sym"(U), is the free complex vector space on
symbols of the form 1@ T®af" - - - air. Let ¢, : Sym™(U) — H,, be the C-linear isomorphism
given by

61--- En 51--- n
1®7T®af oy = Tajt - o,

We show that ¢, is C,-linear. Denote a' - - - a5 by ¢, and let ¢;01, ca09 be two basis elements
of H,,. We have

(101 ® 202)(1 @ T ® ¢) = (c101 @ 09T R ¢)
-1 —
= (01 @ 097)(c]' ® cé‘m) '® c)
_ C|c1|2(_1>|c1\(|c|-i-|02|)o.1 ® 09T ® 050'27)—10(01_1>0'1_

— <|cl|2(_1>|01\(|c|+|02|)1 ® 0,27_0_;1 ® 631(027)—10010I1,

1
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which under ¢,, maps to C‘Cl‘Q(—1)‘C”('c'*'”')cgc‘fﬂ(cl_l)"27"fl027'01_1. On the other hand in
H,,, we have

(101 ® 209)p(1 @ T ® ¢) = (101 ® ca09)C" T
_ el (L)l tiend gy 7 =l
= (lal (—q)lerleltlead oy 02m (o yorror g r
Thus shows that ¢, is C),-linear.

Now, both Sym(U) and R’ are concentrated on the diagonal of € X €, that is, they
are only non-zero on objects of the form ([n], [n]). Thus the ¢,’s define an isomorphism
¢: Sym(U) — R’ of € X € modules. To complete the proof, we simply observe that ¢ is
an algebra homomorphism. Indeed, suppose that € Sym"(U) and y € Sym™(U). Write
r=1®c@a a7 and y =107 ®ad ---a’ . Then one finds

n

ry=1@0T@af--agapl, - alt,,
(where here 7 is regarded as a permutation of {n+ 1,...,n+m}) and so
Prsm(y) = oTAT At anly A,
which is exactly ¢n(2)0m(y) = tnm(Pn(@), om(y)). m

Given two C-modules M and N, we let M KX N denote the X € module given by (z,y) —
M(x)® N(y). If M is an H,,-module, we regard M as a C-module that is 0 outside of degree
n. We now come to the main result of this section:

Theorem 3.16. The CX € algebra Sym(U) decomposes as @ 27N (S\ K Sy), where the
sum is over all strict partitions . Moreover, if I* denotes the ideal of Sym(U) generated by
the X summand then I contains the i summand if and only if X C p.

Proof. The algebra H,, is naturally an (H,, H,)-bimodule, and as such it decomposes as
@D,ca, J* (Proposition 3.1). We can regard any (3(,, I(,)-bimodule as a left module over
HP @H,, and thus as a C°? X € module concentrated in degree (n,n). With this convention,
we have the decomposition of C°° X € modules

R=Pr. =
n>0 AEA
The first identification above is essentially the definition of R, while the second follows from
the decomposition of H,,. It follows from Theorem 3.5 and Proposition 3.8 that the ideal of
R generated by J* contains exactly those J* with A C p.

As stated above, J* can be regarded as a left module over H® ® H,. As such, it is
isomorphic to the submodule of End(S)) = S5 ® S, consisting of endomorphisms that super-
commute with Endg, (Sy); this follows from [CWT1, (3.4)]. If 6(A) = 0 then Endy, (S)) = C,
and we find J* & S} ® Sy. Suppose now that 6(A\) = 1. Then there exists an isomorphism
Sy — Si[1]. From this, we find that there is an odd isomorphism a: Sy, — S, that squares
to 1 (note that any odd isomorphism squares to a scalar, by the super version of Schur’s
lemma [CW1, Lemma 3.4], and can thus be normalized to square to 1). The dual map
a*: 8§ — S3 squares to —1. We see that J* is isomorphic to the l-eigenspace of a* ® a
on S5 ® Sy. This coincides with the (-eigenspace of ((a*) ® a. As (o endows S5 with an
isomeric structure, we see that J* is isomorphic to the half tensor product 271(S% ® S,).
Thus, in all cases, we see that J* = 27°MN (S} ® S)).
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Via transpose on the first factor, we can regard J* as an H, ® 3, module. As such,
we see that it is isomorphic to 2_5(”\)(51 ® Sy), which (by Corollary 3.14) is isomorphic to
279N(Sy ® Sy). Combining this observation with the decomposition in the first paragraph,
we find

R =@27°M(S\BS)).
AEA
Furthermore, we see that the ideal generated by the A summand contains the y summand if
and only if A C p. The theorem now follows from the identification R’ = Sym(U) (Proposi-
tion 3.15). O

3.8. Application to the isomeric algebra A. Recall that V = C>/ is our fixed infinite
dimensional isomeric vector space. Maintaining the notation from §2.8, we let U = 271(V ®
V), which is a polynomial representation of q x ¢, and we let A = Sym(U), a bivariate
isomeric algebra. As noted in §2.8, we have a Cauchy decomposition

(3.17) A=PH2" VT e 1),
AEA

where A is the poset of strict partitions, as above, and §(\) is as in §2.5. The follow theorem,
which classifies the equivariant ideals of A, is one of the main results of this paper:

Theorem 3.18. Suppose \ is a strict partition, and let I* be the ideal of A generated by
279N (T\®Ty). Then we have I* = Dic, 20T, ®T,) where i varies over strict partitions.

Proof. One formulation of Schur—Sergeev duality (see [SS4, §8.2]) asserts that there is an
equivalence of symmetric monoidal supercategories Mode — Repp(’l(q) satisfying S — T).
Here Mode is endowed with the tensor product induced by the monoidal structure on € (Day
convolution). It follows that we have an equivalence of symmetric monoidal supercategories

®: Modege — Repp(’l(q X q)

satisfying ®(S\ X S,,) = T\ ® T),. Since U = 27(Suy X Spyy), it follows that U = &(U), and
A = ®(Sym(U)). The result now follows from Theorem 3.16. O

Theorem 3.18 has an important consequence:
Corollary 3.19. If I C A is a nonzero ideal, then A/I is bounded.

Proof. Since I # 0, there exists a strict partition A such that I* C I. Suppose that ju is a
strict partition such that ¢(u) > A;. Then p; > f(p) —i+ 1> Ay —i+ 1 > )\; and hence
A C p. So Theorem 3.18 implies that ¢(A/I) < A;. O

Remark 3.20. Let X = Spec(A(C"", C™™)), which we regard as a supervariety (i.c., a
functor from superalgebras to sets). We can identify points of X with linear maps C"" —
C™™ commuting with the isomeric structures. The image of any such map is isomorphic to
C’I" for some r, which we refer to as the rank. Let I, C A be the sum of the A\ summands
in the Cauchy decomposition with ¢(\) > r. Then [, is an equivariant ideal of A. It
follows from properties of the Ty (namely, that T\(C"") = 0 if and only if /(\) > r) that
V (I.(C"", C™™)) is the closed subvariety of X consisting of maps of rank < r. Thus I, is
an isomeric analog of the classical determinantal ideal. It follows from Theorem 3.18 that
I, is generated by the A summand of the Cauchy decomposition, where A is the “staircase”
partition (r 4+ 1,7,...,2,1). O
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4. LOCAL STRUCTURE OF A-MODULES

4.1. Statement of results. Let m be the ideal of A generated by z; ; — d, ; and y; ; for all
7 and 7. In this section, we study the local structure of A-modules at m. Our main result is:

Theorem 4.1. Let M be an A-module. Then there is a canonical and functorial isomorphism
My — M/mM ®@c Aw of |An|-modules. In particular, My, is a free | Ay|-module.

The proof will take the rest of the section. The arguments are similar to those used in
[SS2, §4], [NSS1, §3.2], and [NSS2, §5]. Theorem 4.1 is a key result used to study generic
A-modules in the following section.

4.2. The algebras h and €. Let b be the subalgebra of q x ¢ consisting of all pairs of the
form (7g, g), where 7 is the Chevalley automorphism of g x q. Note that b is isomorphic to
q (via the first projection). Let b (resp. n) be the subalgebra of q consisting of matrices of

the form
a b
-b a)’

with @ and b upper triangular (resp. strictly upper triangular), and let € = b x n, regarded
as a subalgebra of q X q.

Proposition 4.2. We have q x g =h & L.

= (" 1)

Let aq, ao, by, and by be given matrices. We must show that there are unique matrices ¢y,
Co, dy, do, €1, €9, With dy, ds upper triangular and ey, es strictly upper triangular such that

({a1, a2}, {b1, b2}) = ({1, 2}, 7 Her, e2}) 4+ ({da, da}, {er, €2}).

The above equation is equivalent to

Proof. To simplify notation, put

ay = c +dy b1=—C§+61
a2262+d2 b2:<C§+€2.

Apply transpose to the right two equations and multiply the bottom right equation by (;
then add the left column to the right. We obtain

a; = c1 +dy a1+b§:d1+e’i
CLQ:CQ+d2 CLQ+Cb§:d2+<€;

The two right equations have unique solutions, as every matrix can be written uniquely as
the sum of an upper triangular matrix and a strictly lower triangular matrix. The two left
equations then obvious admit unique solutions as well. O

Proposition 4.3. The ideal m is h-stable.

Proof. Let E; ; be the elementary matrix whose (¢, j) entry is 1 and all other entries are 0;
thus F; ; maps the jth basis vector to the ith basis vector. Let

_(Ei; O - 0 E;;
Xi,j - ( O Ei,j) ) Y;,j — <_Ei,j O > .
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The X;; and Y; ; elements form a basis for q. We have

Xij(ex) = dj ke Yij(ex) = —0jrfi
Xij(fe) = Ojnfi Yij(fr) = dj ke
The elements X}, = (X;;, 7' X; ) and Y/; = (Vi;,77'Y;;) form a basis for h. Note that
X = —X,, and 71Y;; = (Y. A simple computation gives
Xi (k) = 05050 — 5i,wk,j Y i(vke) = —C - (0jkwie + Oipwr5)
X i(wrye) = 0 kWi 0 — Os 0w Y i(wre) = —C - (05,kVi0 — Oi,eVk,;)

Recall that the z; ; transform exactly like the v; ;, and the y; ; transform exactly like the w; ;.
Note that

5j klie — 5i£$1cj = jk(l'if —0; e) - 5ie(flfkj - 5k,j)-
We thus see that X ; and Y/, map each generator of m to a linear combination of generators,
which completes the proof. O

Remark 4.4. The space Spec(A) parametrizes bilinear forms (,): V® V — C satisfying

(a(v), a(w)) = ()M (v,w).

The ideal m corresponds to a standard form, and the above proposition simply says that the
adjoint of an element X of q with respect to this form is given by —771X. O

Lemma 4.5. If a is a non-zero ideal of A, then a +m = A.

Proof. Suppose a is a non-zero ideal of A. Let V,, and W, be copies of C*™ and let A, =
Sym(274(V,, ® W,,)), regarded as a subring of |A|. Then A is the union of the A,, and so
for n > 0, @ = an A, is a non-zero q(n) x q(n)-stable ideal of A,, and m" = mnN A4, is
a maximal ideal of A,. By Remark 4.4, Spec(A,) is a space of certain bilinear forms on
V,, and m’ € Spec(A4,,) has maximal rank. Since every ideal contains non-zero even degree
elements, V' (a') is a proper closed q(n) x q(n)-stable subset of Spec(A,). Hence, it cannot
contain any form of maximal rank (as the orbit of any such form is dense under the action of
gl(n) x gl(n) = (q(n) x q(n))o), and so a’ ¢ m’. It follows that a ¢ m, andso a+m=A4. O

4.3. The group K. Let B be the supergroup consisting of all infinite matrices of the form

()

with a and b upper triangular, a even, b odd, and a invertible; we do not require a or b to fix
almost all basis vectors. This is naturally a group object in the category of %uper schemes.
The coordinate ring C[B] is the superalgebra Cla; ;, b; ;, a;; ;> where the a’s are even and
the b’'s are odd. If we multiply two matrices in B then each entry of the result involves only
finitely many entries of the original two matrices; the formulas for the entries of the result
are used to define the comultiplication map C[B] — C[B]® C[B]. We let U be the subgroup
of B where a;; = 1 and b;; = 0 for all ¢, and we let K = B x U. We use coordinates a; ;, b; ;,

a; ], b’ - on K, where the first pair are coordinates on B the second on U. The Lie algebra
of B is essentially the algebra b defined in the previous section, except its elements can have
infinitely many non-zero entries. Similarly, the Lie algebra of U is essentially n, and that of
K is essentially €.
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If V' is a polynomial representation of ¢ then its restriction to b naturally extends to a
representation of B (i.e., it admits a comodule structure over C[B]). Similarly, if V' is a poly-

nomial representation of q x q then its restriction to £ naturally extends to a representation
of K.

4.4. The map . Let M be an A-module. We then have the comultiplication map M —
M ® C|K] as discussed above. Composing with the quotient map M — M /mM, we obtain
a linear map

orv: M — M/mM & C[K].

In fact, we can define @), for any K-equivariant |A|-module (where “K-equivariant” means
the action of K comes from a comodule structure). We now study this map, beginning with
the case M = A:

Proposition 4.6. We have the following:

(a) The map p4: A — C[K] is the C-algebra homomorphism given by
Qp(xi,j) = Z ak,ia;g,j + Cbk,ib;c,ja @(yi,j) = Z ak:,ib?g,j - Cbk,ia;g’j
k<i,j k<i.j

(b) The extension of m along the map v is the mazimal ideal of C[K| corresponding to
the identity element of K.

(c) The map ¢ induces an isomorphism of localizations Ay — C[K]y.

Proof. (a) Let g be an element of K with coordinates a,;, b;;, a; ;, b; ;. We have

glei@e;) = | Y arier —beifi | @ [ D al e — b@,ﬂ‘z)

k<i <j

glei ® fj) = Zak,iek —brifk | ® Zb@jee + a@fz)

k<i <j

9(fi®e;) = Z biier + apifi | @ Z a/g’jef + b/g,jfz>

k<i L<j

g(fi® f;) = Z brick + arifi | ® Z —bjjee + a/e,jfé>

k<i 0<j

We thus find
guij =Y (arsap; + Cbiaby vre — (arab) ; + Chrial ;) wi
k<i 0<j
qw; ; = Z (ak,ibé,j - Cbk,ialg,j)vk,f + (ak,ia/&j - Cbk,ibé,j)wk,e
k<ifl<j

from which the stated formulas for ¢(z; ;) and ¢(y; ;) follow (change v;; to z;; and w;; to
Y;.;, and reduce modulo m, which takes x;; to ¢;; and y; ; to 0). Since K acts on A by
algebra homomorphisms, it follows that ¢ is an algebra homomorphism.
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(b) It suffices to show that the elements a; j — &; ;, b; j, a; ; and b ; are in the extension m®

of m. We do this lexicographically on the pair (i,j) (with j being more significant). The
base case (1, 1) follows from:

QO(iUl,l - 1) =dai1 — 1
e(y1,1) = —Cbri.
Suppose the result hold for all pairs smaller than (i,4). Then we have the following:
o(z;; —1)=a;; —1 (mod m®)
¢(yii) = —Cbi;  (mod m®),

from which it follows that a;; — 1,0;; € m®. Next suppose 7 < j and assume, by induction,
that the result holds for all pairs smaller than (7, 7). Then we have the following:

p(r;) = a;; (mod mc)

e(yi;) =b;; (mod me)

¢(r;) = ai; (mod m)

©(yji) = —Cbi;  (mod m?).
It follows that a; ., b, ., a; ;, b; j; € m®, which proves (b).

0,7 V1,50
(c) We now define an algebra morphism 1: C[K| — A, such that the kernel of the

composition C[K] — A, — An/mA,, is the ideal m®. We define 9 lexicographically on the
generators as follows. In the base case, we set

¢(al,1) =1T11
w(bl,l) = Cym-

Suppose ¢ < 7 and assume, by induction, that ¢ has been defined on all generators indexed
smaller than (i, 7). We set

Y(aiy) = x5 — > (araj,; + Cbrbh,)
k<i
Y(big) = Cyji— ¢ Y Wlarsb; — Chijah,).
k<i

Moreover, if i < 7 we set

( Y(ai ;) > _ ( Plaii)  CP(biy) >_1 ( Tij = Dhei V(kitty j + Chribl ;) >
V() )\ i) Y(ai) Yig = D hes V(b j — Cray ;) )

One can check lexicographically that the kernel of the composition C[K] — Ay, — An/mAy
contains m¢, and so it must equal m®. In particular, the determinant of the matrix above
is 1 (mod mA,), and so 1 is well-defined. Since ¢~!(mA,) = m®, it follows that ¢ extends
to a homomorphism ¥: C[K]me — An. Let 3: Aw — C[K]me be the map induced by
. By the construction of QZ, it is clear that 7;/; o ¢ is the identity map. Moreover, arguing

lexicographically, one can check that ot is also the identity map. Thus ¢ is an isomorphism.
O

In what follows, we regard C[K] as an A-module via ¢ 4. We now study the map ¢, for
an arbitrary A-module M. Since K acts on M by A-semilinear automorphisms, it follows
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that ¢y, is a morphism of A-modules. Our goal is to prove that ¢,, induces an isomorphism
after localizing at m, which will establish the theorem. We require some lemmas first.

Lemma 4.7. Let M be a K-equivariant |A|-module. Then ¢y induces an isomorphism
modulo m.

Proof. See [SS2, Lemma 4.4]. O
Lemma 4.8. Let M be an A-module. Then the localization of py; at m is surjective.

Proof. See [SS2, Lemma 4.5]. O

Lemma 4.9. Let M be an A-module. Then the kernel of pnr is q X q-stable, and thus an
A-submodule of M.

Proof. This is proved exactly like [SS2, Lemma 4.8], using an obvious generalization of [SS2,
Lemma 4.7] to superalgebras. O

By an “polynomially h-equivariant A,-module,” we mean an Ay-module N equipped
with a compatible action of h such that for every x € N there is a unit u € A, such that
ux generates a polynomial h-representation (recall that h = ). The localization of any A-
module at m is a polynomially h-equivariant A,-module. Any submodule or quotient module
of a polynomially h-equivariant A,-module (in the category of equivariant modules) is again
polynomially equivariant.

Lemma 4.10. Suppose that
0—R—-M—-N—=0

is an exact sequence of polynomially b-equivariant Ayn-modules such that M is equivariantly
finitely generated and N is free as an |Ayn|-module. Then R is also equivariantly finitely
generated.

Proof. The argument in [NSS2, Lemma 5.8] applies here. O
Lemma 4.11. Let M be an A-module such that M = mM. Then M, = 0.

Proof. In what follows, q is identified with the subalgebra b C q x ¢. It suffices to prove the
lemma when M is finitely generated, so we assume this in what follows.

Let V. C M be a finite length GL-subrepresentation generating M as an A-module.
Pick my,...,my € V such that the m; generate V(CNV) as a q(N)-representation for all
N > 0 (V is a sum of finitely many irreducible representations, which are generated by their
highest weight spaces, so it suffices to pick N large enough so that each of these highest
weight spaces are nonzero, and pick the m; to span the highest weight spaces in V(CNIV)).
Write m; = ), a; jn; j where a;; € m and n; ; € M.

Let N > 0 be large enough so that the m; and the n;; belong to M’ = M(CV™) and
the a; ; belong to A’ = A(CNIV). Let V' = V(CN) and let m’ be the ideal of A’ generated
by x;; — 6;; and y;; for i,7 < N. Then M’ is an A-module and generated (ignoring any
Lie superalgebra action) by V’. We have m; € m’M’ for all i, and so gm; € m’M’ for any
g € q(N), since m’ is q(N)-stable. Thus V' C m’M’ and so M" = wm’M’. Thus, by the usual
version of Nakayama’s lemma [Lam, (4.22)], we have M|, = 0. Therefore, for each 1 <1i <k
there exists homogeneous degree 0 elements s; € A"\ m" C A\ m such that s;m; = 0, which
implies that M, = 0. 0

We now reach the main result:
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Proposition 4.12. Let M be an A-module. Then py; induces an isomorphism after local-
1z1ng at m.

Proof. The argument from [SS2, Proposition 4.11] applies. For the convenience of the reader,
we produce it here:

The assignment M — ¢, commutes with filtered colimits, and so it suffices to treat the
case where M is finitely generated. Let R be the kernel of ¢,,, which is an A-submodule
of M by Lemma 4.9, and let N = M/mM ® C[K]. By Lemma 4.8, the localization of ¢y,
at m is a surjection. Since localization is exact, we have an exact sequence of polynomially
h-equivariant A,-modules

0— Ry — My — Ny — 0.

From Lemma 4.10, we conclude that R,, is equivariantly finitely generated as an A,-module.
Let V C R be a finite length polynomial q x g-representation generating R, as an |Ay|-
module, and let Ry be the A-submodule of R generated by V. Note that Ry is finitely
generated as an A-module and (Rgy)y = Rn. Now, the mod m reduction of the above exact
sequence is exact, by the freeness of N, and the reduction of M, — N, is an isomorphism
by Lemma 4.7. We conclude that R/mR = Ry/mR;, = 0. Lemma 4.11 thus shows that
(Ro)m = 0 and so R, = 0, and the proposition is proved. O

5. THE GENERIC CATEGORY

5.1. Algebraic representations of the infinite isomeric algebra. Recall that V =
C>I* is our fixed isomeric vector space with basis {e;, fi}i>1. The dual space V* is naturally
a representation of q. We define the restricted dual, denoted V., to be the subspace of V*
spanned by the dual basis vectors e; and f. This is a g-subrepresentation of V* and
isomorphic to the direct limit of the spaces (C”‘")*. We say that a representation of ¢ is
algebraic if it occurs as a subquotient of a (perhaps infinite) direct sum of mixed tensor
spaces T),.m = VE"@VE™. We let Repalg(q) be the category of algebraic representations, and
Repalg’f(q) the subcategory spanned by objects of finite length. This category is studied in
detail in [GS], where it is denoted Trep(g); see [GS, Definition 3.2] for the precise definition.
(Similar categories for classical Lie algebras were studied in [DPS, PSe, PSt, SS1].) We will
require some results from [GS], which we now review.

Proposition 5.1. We have the following:

(a) The representation T, ,,, has finite length.

(b) Every algebraic representation of q is the union of its finite length subobjects.

(c) We have Rep™®!(q) = Trep(g).

(d) For strict partitions X\ and p, there is a simple object Vy,, of Rep™®(q), and every
simple object is isomorphic to Vy , or Vi ,[1] for some X and p.

(e) For strict partitions X\ and pu, the representation T»(V) ® T,(V.) is injective in
Rep™8(q); in fact, it is the injective envelope of Vi

(f) Every finite length object of Rep™8(q) has finite injective dimension.

Proof. (a) is explained in the paragraph following [GS, Definition 3.2]. (b) follows from (a)
and the definition of algebraic representation.

We now explain (c). Since T),,, belongs to Trep(g) (see the paragraph following [GS,
Definition 3.2]) and Trep(g) is an abelian subcategory of the category of all g-modules, it
follows that Rep®®'(q) C Trep(g). By [GS, Lemma 3.10] and [GS, Corollary 4.3], every
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simple object of Trep(g) embeds into some T, ,,,. By [GS, Proposition 4.10], T}, ,, is injective
in Trep(g), and so we see that every object of Trep(g) embeds into a sum of 7),,,’s. This
gives the reverse inclusion.

(d) follows from [GS, Lemma 3.10]. (e) follows from [GS, Proposition 4.11] (this only gives
injectivity in Repalg’f(q), but it is easy to see that the representation remains injective in

Rep™(q)). (f) follows from [GS, Lemma 5.13]. O

5.2. Torsion modules. We now define a notion of “torsion” for A-modules. We begin with
the following observation:

Proposition 5.2. Let M be an A-module. The following conditions are equivalent:

(a) For every finitely generated submodule M' of M there is a non-zero ideal a of A such
that aM = 0. (Here “ideal” implies q X q-stable.)

(b) We have M, = 0.

(¢) For every m € M there exists a € A with non-zero image in Clx; ;] = A/(yij) such
that am = 0.

Proof. First suppose that (a) holds. Let M’ C M be finitely generated with non-zero annihi-
lator a. Since a+m = A by Lemma 4.5, we have mM’ = M’, and so M, = 0 by Lemma 4.11.
Since this holds for all finitely generated M’ C M, it follows that M, = 0 and hence (b)
holds.

Now suppose (b) holds. Given m € M, there exists s € A\ m such that sm = 0. As s has
non-zero reduction in C[z; |, one can take a = s in (¢). Thus (c) holds.

Finally, suppose (c) holds. Let M’ be a submodule of M generated by my,...,my. Let
a;m; = 0 with a; as in (¢). Let a = a;---ay, which has non-zero image in A/(y; ;) since
Clz;;] is a domain, and annihilates each m;. Following the proof of [NSS1, Prop. 2.2], we
see that there exists n, depending only on the m;, such that a"(gm;) = 0 for all g € q X g.
Now (a) holds by taking a to be the (non-zero) ideal of A generated by a”. O

We say that an A-module is torsion if it satisfies the equivalent conditions of the above
proposition. We write Mod'y™ for the category of torsion modules. It is clearly a Serre
subcategory of Mod 4.

5.3. Statement of results. We define the generic category Mod%™ to be the Serre quo-
tient Mod 4 / Mod'y™. We write T: Mod4 — Mod5™ for the localization functor and let S be
its right adjoint (the section functor). The goal of this section is to understand the structure
of the generic category and the behavior of 7" and S. We accomplish this by relating the
generic category to Rep™®(q).

Let M be an A-module. Define ®(M) = M/mM, where m is the maximal ideal of |A]
considered in the previous section. Since m is stable under b C g x ¢, it follows that ®(M)
is naturally a representation of h = q. It is easily seen to be algebraic: indeed, expressing
M as a quotient of A® V', with V' a polynomial representation of q x g, we see that (M)
is a quotient of V|y, and thus algebraic. We have thus defined a functor

®: Mod, — Rep™8(q).

Since ® is cocontinuous and its source and target are Grothendieck abelian categories, it
admits a right adjoint W. The following is the main theorem of this section:

Theorem 5.3. We have the following:
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(a) The functor ® is exact.

(b) The kernel of ® is Mod'{™.

(¢c) The counit ®¥ — id is an isomorphism.

(d) The functor ® induces an equivalence Mod%™ — Rep™&(q).

(e) The unit V@ A — U(®(V @ A)) is an isomorphism for any V € RepP®(q x q).

Appealing to our knowledge of Rep™®(q) (Proposition 5.1), we find:

Corollary 5.4. We have the following:

(a) If M is a finitely generated A-module then T(A) has finite length.

(b) Every finite length object of Mod¥™ has finite injection dimension.

(c) The injectives of Mod%™ are exactly the objects T(V @ A) with V € Rep”®(q x q).
(d) The unit V@ A — S(T(V ® A)) is an isomorphism, for any V € Rep®(q x q).

Theorem 5.3 is analogous to [SS2, Theorem 5.1}, [NSS1, Theorem 3.1], [NSS2, Theo-
rem 6.1]. We follow the proof of [SS2], which is modeled on the proofs in the other two
papers but contains some simplifications.

5.4. An equality of dimensions. We will require the following result in our proof of

Theorem 5.3:

Proposition 5.5. For strict partitions A\, u, o, 5, we have
dim Homigty)eqtw) (T2 (V) @ T, (W), T (V) @ T4(W) © A)
= dim Homgv) (TA(V) @ Ty(V.), Ta(V) @ T5(V.,))

Proof. Let
= dim Homgv) (TA(V), T,(V) ® T, (V)).

,uu

By (3.17), we have
Sym(271(V @ W)) @2 T (V)@ T, (W).
We now have two cases. If |A\| — |a| # || — |B], then the left side is 0 (by [GS, Corollary

3.7), if f7, # 0, then |A] = |u| + |v]). The right side is also 0 by [GS, Corollary 5.11].
Otherwise, suppose that r = |A| — |a| = |u| — |3]. Then the left side simplifies to

o2 S

yl=r
This is also the right hand side by [GS, Theorem 5.8] (Z (), ) is defined to be 279N (Ty(V)®
T, (V*)) in [GS, §4.1], which accounts for the difference in the form of the formula). O

5.5. Proof of Theorem 5.3. The proofs of the following lemmas are nearly identical to
those in [SS2, §5.2], so we omit most details. For strict partitions A and pu, let F) , =
T\(V)® T,(V) ® A, and let F be the class of A-modules that are direct sums (perhaps
infinite) of F) ,’s.

Lemma 5.6. Let f: M — N be a morphism of A-modules such that ®(f) = 0. Then the
localized morphism fn: My — Ny vanishes.

Proof. See [SS2, Lemma 5.3]. O
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Lemma 5.7. For any F' € F and any strict partitions A\ and p, the map
®: Homy(F) ,, F') — Homg(®(F)y ), ©(F))
18 an isomorphism.
Proof. See [SS2, Lemma 5.4], and use Proposition 5.5 in place of [SS2, Proposition 3.9]. O
Lemma 5.8. Let f: M — N be a morphism of A-modules. Suppose that for all strict

partitions A\ and p the induced map
fer Homa(Fy . M) — Homa(F)y ,, N)
18 an isomorphism. Then f is an isomorphism.
Proof. This follows from the fact that the F) , generate Mody, see [SS2, Lemma 5.6]. U
Lemma 5.9. For F' € &, the unit np: F — V(®(F)) is an isomorphism.
Proof. See [SS2, Lemma 5.7]. O

Lemma 5.10. Let I be an injective object of Rep™8(q). Then the counit e;: ®(U(I)) — I
18 an isomorphism.

Proof. See [SS2, Lemma 5.8]. O
The proof of Theorem 5.3 now follows in the same way as the proof of [SS2, Theorem 5.1].

6. PROOF OF THE NOETHERIANITY THEOREM
We can now finally prove the noetherianity theorem:
Theorem 6.1. The bivariate isomeric algebra A is noetherian.

The proof will occupy the remainder of this section. We say that an A-module M satisfies
(FT) if Tor?(M,C) is a finite length q x g-module for all i > 0. This implies M is finitely
generated (it suffices to just know that Tor{'(M, C) is finite length) by Nakayama’s lemma.

Lemma 6.2. Let M be a finitely generated torsion A-module. Then M satisfies (FT) and
M s noetherian.

Proof. Now let M be a finitely generated torsion A-module. Then there is a non-zero ideal
I € A which annihilates M. By Corollary 3.19, A/I is bounded, so M is noetherian by
Proposition 2.2. Next, ToriA(M, C) is computed by the Koszul complex, and hence is a
subquotient of /\Z(U) ® M, which is bounded. Hence it can be computed by specializing to
finitely many variables, which implies that it has finite length. O

Lemma 6.3. If M is a finite length object of Mod%™ then S(M) satisfies (FT).

Proof. The proof is essentially the same as [NSS1, Proposition 4.8]. We recall the details.
We in fact show that (RS)(M) satisfies (FT) for all i > 0. We proceed by induction on the
injective dimension of M, which is finite by Corollary 5.4(b).

First suppose that M is injective. Then M = T(V ® A) for some finite length V' €
Rep”®(q x q) (Corollary 5.4), and so S(M) = V® A (Corollary 5.4), which obviously satisfies
(FT); of course, (R'S)(M) = 0 for i > 0 since M is injective. Thus the claim holds.

Now suppose that M has positive injective dimension. Choose a short exact sequence

O—-M—=1—-N-—=0
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where [ is injective and N has smaller injective dimension than M. Then (R'S)(M) =
(R"=LS)(NV) for i > 2, and thus satisfies (FT) by the inductive hypothesis. We have an exact
sequence

0— S(M)— S(I)— S(N) = (RLS)(M) — 0.

Since S(N) satisfies (FT) by the inductive hypothesis, it is finitely generated, and so
(R'S)(M) is finitely generated. Since (R'S)(M) is also torsion, it satisfies (FT) by Lemma 6.2.
It thus follows that S(M) satisfies (F'T), as the other three terms in the exact sequence do. O

Proof of Theorem 6.1. The proof is essentially the same as [NSS1, Theorem 4.9]. We recall
the details. Let P be a finitely generated projective A-module and let Ny C Ny C --- be
an ascending chain of A-submodules. Then T'(N,) is an ascending chain in 7'(P), and thus
stabilizes, as T'(P) has finite length. Discarding finitely many terms, we assume that 7'(N,)
is constant. Let N’ be the common value of S(T'(N;)). We have the following:

e N’ is finitely generated by Lemma 6.3;
e N’ is a submodule of P = S(T'(P)) that contains each N;; and
e N'/N; is torsion, since T'(N'/N;) = 0.

Since N'/Nj is finitely generated and torsion, it is noetherian (Lemma 6.2), so the ascending
chain N,/N; in it stabilizes. It follows that N, stabilizes, and so P is noetherian. O
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