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THE REPRESENTATION THEORY OF BRAUER CATEGORIES I:
TRIANGULAR CATEGORIES

STEVEN V SAM AND ANDREW SNOWDEN

ABSTRACT. This is the first in a series of papers in which we study representations of
the Brauer category and its allies. We define a general notion of triangular category that
abstracts key properties of the triangular decomposition of a semisimple complex Lie algebra,
and develop a highest weight theory for them. We show that the Brauer category, the
partition category, and a number of related diagram categories admit this structure.
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1. OVERVIEW

Brauer algebras were introduced in [Br| to extend the Schur-Weyl duality between sym-
metric groups and general linear groups to the orthogonal and symplectic groups. They are
an archetypal example of diagram algebras: the nth Brauer algebra has a basis consisting
of perfect matchings on a set of 2n vertices, which is separated into two subsets of size n.
These diagrams can be viewed as “functions” from one set of size n to another, and this
perspective continues to make sense when the two sets have different sizes. This observation
leads to the idea of the Brauer category, which has been used to give further insight into the
invariant theory of classical groups [LZ1, LZ2] and plays a key role in Deligne’s interpolation
categories [De]. This paper is the first in a series in which we initiate a systematic study of
the representation theory of this category and its many relatives. In the rest of this section,
we give an overview of the series.
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FiGUurE 1. Concepts connected to the Brauer category.

1.1. Main results. Let & be the Brauer category over the complex numbers with parameter
d (see 85 for the definition). A representation of &, or a &-module, is a functor & — Vec,
where Vec is the category of complex vector spaces. Concretely, a &-module is a sequence
(M,,)n>0, where M, is a representation of the symmetric group &,,, together with “upwards”
transition maps M, — M,,> and “downwards” transition maps M, — M, satisfying
certain conditions; in fact, M, is a module over the Brauer algebra B,(d), but this extra
structure can be recovered from the transition maps. The goal of this series of papers is to
determine the structure of Modg, the category of &-modules.
Before explaining our results, it is helpful to highlight two perspectives on &-modules:

e One can view &-modules from the point of view of representation theory. For instance,
we show that Modg is (more or less) a highest weight category.

e One can also view B-modules from the point of view of commutative algebra (in a
general sense). Indeed, there is a tensor product ®g on G-modules that behaves like
the tensor product for a commutative ring (e.g., it preserves finite generation, and is
right exact but not exact). This allows one to consider notions such as ideals, prime
ideals, annihilators, support, and so on.

The combination of these two structures is rather unusual, as categories exhibiting a highest
weight structure are usually locally of finite length, and therefore quite different from the
typical module categories seen in commutative algebra. It is this dual nature that gives the
theory of &-modules much of its unique character.

The first three papers in this series focus on the representation-theoretic aspects of the
Brauer category:

1. This paper develops the theory of triangular categories, which extracts the key proper-
ties of the triangular decomposition of a semisimple complex Lie algebra with respect
to a parabolic subalgebra. We show that the category of representations of a trian-
gular category behaves a lot like a highest weight category, and show that the Brauer
category and its variants admit this structure.

2. As stated, a &-module is a sequence (M,,),>o of symmetric group representations—
that is, a linear species—equipped with some transition maps. In the second paper
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[SS7], we show how the transition maps can be neatly packaged using the tensor
product on linear species.

Let V be the “standard” linear species: V7 is one-dimensional and V,, = 0 for
n # 1. The upwards transition maps in M can be encoded as a map of species
b: Sym2(V) ® M — M, while the downwards maps can be encoded as a map c: M —
Sym?(V) ® M. The transition maps satisfy a number of relations, and the main
problem is to understand these relations in terms of b and c.

The category of linear species does not have duals; however, if we pretend for the
moment that it does, we can convert ¢ into a map ¢*: Sym*(V*) @ M — M. We
show that the relations satisfied by b and ¢ are exactly the relations that would be
needed for b and ¢* to define a representation of the symplectic Lie algebra, if we
regard Sym?(V) and Sym?(V*) as upper and lower triangular nilpotent subalgebras.
We therefore refer to (b,c) as a representation of the “curried symplectic algebra,”
since, in a way, it comes from currying the Sym?(V*) factor to the other side.

We establish a general theory of curried algebras, and show that many classical
diagram categories have surprisingly concrete interpretations from this point of view.

3. Classical Schur-Weyl duality yields an equivalence between the category of linear
species and the category of polynomial representations of the infinite general linear
group, and this equivalence is compatible with tensor products. In the third paper
[SS8], we transport the description of &-modules from the second paper across Schur—
Weyl duality. We find that Modg is equivalent to a version of parabolic category O
for the infinite rank symplectic Lie algebra. We then translate known results about
this category (such as the block structure) to obtain information about &-modules.

The final two papers investigate the commutative algebra aspects of the Brauer category
(but are heavily representation-theoretic as well):

4. The fourth paper [SS9] is a study of torsion modules (i.e., modules that locally have
non-zero annihilator). We show that the torsion category admits a filtration by Serre
subcategories (characterized by annihilators) such that the successive quotients are
equivalent to Rep(OSp(r|2s)) as r and s vary over non-negative integers with r—2s =
J.

5. We define the category of “generic” &-modules, denoted Modg", to be the Serre
quotient of the category of all &-modules by the subcategory of torsion modules. This
is a sort of “fraction field” of the Brauer category. The fifth paper [SS10] analyzes
this category. The main result is that Mod§ " is the abelian envelope of the Deligne
interpolation category for the orthogonal group.

The above is a high-level overview of our main results. We have numerous specific results
(e.g., classification of injectives, description of the Grothendieck group, etc.) that we do not
attempt to describe here.

1.2. Other diagram categories. There are several variations of the Brauer category that
could just as easily have been emphasized in our work. The methods that we develop apply
equally well to them, but for the most part, we will mention the relevant similarities and
differences without giving complete proofs. We have chosen to focus on the Brauer category
as our main example due to its familiarity and the simplicity of its definition (for example,
some of the other categories have complicated sign conventions).



4 STEVEN V SAM AND ANDREW SNOWDEN

However, we wish to emphasize that the uniformity and broad applicability of the results is
one of the attractive features of our theory. For example, as stated above, the Brauer category
is a sort of “curried” symplectic Lie algebra. This fits into a natural class of examples that
includes many familiar Lie algebras, as well as many other well-studied algebras, such as
Weyl and Clifford algebras. In fact, in trying to complete this picture, one is naturally led to
examples of categories or algebras that have received little or no attention, but nonetheless
have a rich representation theory.

Furthermore, while some of our results about the Brauer category and Brauer algebras have
been proven by different methods or using different language, one of our goals for developing a
uniform framework is to make the analogues of these results for related examples transparent
and immediate, and to minimize the need to discover them on a case-by-case basis.

1.3. Motivation. Our investigation began in [SS2] where we found models for the represen-
tation theory of the orthogonal O,,(C) and symplectic groups Sp,,,(C) in the limit n — co.
One of the models is the category of representations of the upwards Brauer category; this
is the subcategory of the Brauer category consisting only of upwards transition maps. The
present work is a natural outgrowth of these investigations.

A second source of motivation comes from the general philosophy of representation sta-
bility: given a sequence of groups or algebras that naturally assemble into a category, it is
often fruitful to study representations of the category as a whole. This idea has met with
success for symmetric groups (leading to the theory of FI-modules [CEF, CEFN] and twisted
commutative algebras [SS1]), and general linear groups (leading to VI- and VIC-modules
[PS]), to name two examples. We aim to show in these papers that this perspective is also
compelling when applied to the Brauer algebras.

1.4. Relation to previous work. We now discuss how the work in this series relates to
previous work, at a general level. We will discuss more specific connections in each paper.

1.4.1. Diagram algebras. The literature on diagram algebras is vast; we mention only a few
of the many relevant papers here:

e The papers [CDM, CDDM, Mar3, CD] determine the block structure and Cartan
matrix of the Brauer algebra, and connects it to parabolic category O in type D;
[EhSt] shows that the module category for the Brauer algebra is in fact equivalent to
a certain piece of parabolic category O in type D.

e The series [BS1, BS2, BS3, BS4| studies Khovanov’s diagram algebra, which are in
some ways similar to Brauer algebras. Connections to category O and the super
general linear group are established.

e [Cou2| shows that there is a Ringel duality between the module category for the
Brauer algebra and a subcategory of the representation category of the orthosym-
plectic Lie group.

e The Brauer algebra is cellular [GL], and usually (but not always) quasi-hereditary
[KX, Theorem 1.3] (there are problems when § = 0).

e The Brauer algebra is semi-simple at non-integer parameter [Wen] (see also [DWH,
Ru).

The above results have a similar flavor to many of our results. However, there are significant
differences in some cases: for example, the above papers relate the Brauer algebra to category
O in type D, while we relate the Brauer category to category O in type C; also, we show
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that the Brauer category always has a highest weight structure, while the Brauer algebra
can fail to admit such structure when 6 = 0. On the other hand, we will show in [SS8] that
the Brauer category is semi-simple at non-integer parameter, and use this to reprove Wenzl’s
theorem. The upshot is that the connection between the Brauer category and Brauer algebra
can be quite subtle: in some cases results flow from one to the other, while in others one
finds superficially similar results that are actually quite different.

In addition to the above papers, related notions of a triangular decomposition of a category

have appeared before in [BT], [CZ], [KM], and [Kon].

1.4.2. Deligne categories. In [De|, Deligne introduced the category Rep(Os), for arbitrary
parameter J, that (in a sense) interpolates the categories Rep(O,,) for n € N; he also defined
variants in other cases, including the general linear group and the symmetric group. In the
years since, these categories have received a great deal of attention. From their inception,
these categories have been intimately related to the Brauer category: indeed, Deligne defined
Rep(0Os) by simply taking the additive and Karoubian envelope of the Brauer category.

Deligne’s categories are typically not abelian, and a fundamental problem is to construct
and understand their abelian envelopes. This has been carried out for Rep(GLjy) in [EHS]
using a construction involving the super general linear group, and recently for Rep(Pes) in
[EnSe| by similar means.

As stated above, we show that the abelian envelope of Rep(Qy) can be realized as the
generic category Mod®" of the category of &-modules. We believe this construction of
the abelian envelope has some advantages over previous ones in that it is extremely simple
(being purely in terms of the Brauer category, and not involving auxiliary concepts like
super groups) and totally uniform (the same construction applies in each case, including the
case of the symmetric group). We remark that while constructing the category Mod% " is
very simple, proving that it is the abelian envelope takes work, and our proof does involve
super groups. It also reveals a deeper connection between Deligne’s category and the Brauer
category.

1.4.3. Twisted commutative algebras. A twisted commutative algebra (tca) is a commu-
tative algebra object in the category of linear species (see [SS1] for a general overview). In
characteristic 0, one can apply Schur-Weyl duality to view a tca as an ordinary commutative
algebra equipped with an action of the infinite general linear group, under which it forms
a polynomial representation. Many of the upwards categories in Brauer-like categories are
equivalent to tca’s, or closely related objects; for example, modules over the upwards Brauer
category are equivalent to modules over the tca Sym(Sym?(C*)) (see [NSS, Remark 1.3]).
We can therefore apply the many results proven about tca’s in recent years to the study
of the Brauer category. This will be a recurrent theme in this series: for example, in this
paper we use [NSS] to show that the Brauer category is noetherian, while in [SS8], we will
see that ideals of the Brauer category are closely related to the equivariant prime ideals of

Sym(Sym?(C>)) as studied in [Sn2].

1.5. Open problems. We will discuss a number of specific open problems throughout this
series. Here, we highlight three of a broad scope:

e In this series of papers, the Brauer algebras play a surprisingly minimal role. It would
be interesting to connect our results on the Brauer category back to the Brauer alge-
bras. For example, we show that the Brauer category is related to parabolic category
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O of type C, while it is known that the Brauer algebras are related to parabolic
category O of type D; what, if any, is the relationship between these connections?

e There are a number of diagram categories (such as the Temperley—Lieb category and
its variants, or BMW categories) that we ignore, or discuss only briefly. A natural
problem is to extend our results to these categories.

e A d-dimensional topological quantum field theory is a monoidal functor from the
d-dimensional cobordism category to Vec. When d = 1, the cobordism category is
closely related to the (walled) Brauer category (see [CR, §3.1]) and when d = 2, it
is closely related to the partition category (see [Com, §2.2]). Thus this series can be
viewed as a study of “non-monoidal” low-dimensional TQFT’s. A natural problem is
to investigate non-monoidal TQFT’s in higher dimension.

2. INTRODUCTION

We now discuss the contents of this paper in more detail.

2.1. Triangular categories. The primary theoretical focus of this paper is the notion of
triangular category. A triangular category is a category equipped with notions of “upwards”
and “downwards” morphisms satisfying some axioms (see Definition 4.1). The definition
is modeled on the triangular decomposition g = n_ @ h @ n, of a semisimple complex Lie
algebra g, with the strictly upwards (resp. downwards) morphisms playing the role of n,
(resp. n_); the morphisms that are simultaneously upwards and downwards fulfill the role of
the Cartan subalgebra b.

Suppose & is a triangular category. We show that the category Modg is essentially a
highest weight category, in the following sense. We associate to & a set A of “weights,”
which is partially ordered. Given a weight A\, we define a standard module A, we construct
a simple quotient L, of Ay, and we show that L, has a projective cover P, that admits a
filtration by standard objects. There are also co-standard modules V, and injective envelopes
I, that behave similarly. The proofs apply more or less standard arguments that we adapt
to the setting of &-modules.

We said that Modg is “essentially” a highest weight category since highest weight cate-
gories are typically required to be locally artinian, but Modg (in most cases of interest) is
not: for instance, the standard objects are typically not of finite length. Thus one must take
care when attempting to apply familiar results from highest weight categories.

2.2. The Brauer category. The main interesting content of the article is the wealth of
natural examples that exist. As indicated in the title, the Brauer category & remains our
primary motivation and we treat it in detail (we treat a number of other examples in less
detail). We summarize our analysis here. To begin, we show:

Theorem 2.1. The Brauer category & is naturally a triangular category.

The “upwards” (resp. “downwards”) morphisms in the triangular structure come from
those Brauer diagrams that have no horizontal edge in the bottom (resp. top) row. The
general theory of triangular categories can now be applied to &-modules. We record the
most important consequences in the following theorem.

Theorem 2.2. Let A denote the set of all integer partitions.
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(a) The simple &-modules are naturally indexed by A. Precisely, if X is a partition of n
then there is a unique (up to isomorphism) simple &-module Ly such that Ly([n]) is
isomorphic (as an &, -representation) to the Specht module corresponding to A, and
Ly([m]) =0 form <n.

(b) The simple module Ly admits a projective cover Py. The Py account for all of the
finitely generated indecomposable projective &-modules.

(c) For each X € A there is a standard &-module Ay such that:

(i) The simple constituents of Ay have the form L, with |p] > |\|; moreover, L)
occurs with multiplicity one (as a quotient).

(ii) P\ admits a finite filtration 0 = Fy C --- C I, = Py such that F;/F,_y = A,
for some (i) € A; moreover, u(r) = X and |p(i)| < |A| fori <r.

This theorem gives a coarse picture of the representation theory of & that serves as a
foundation for the subsequent papers in this series. We next establish the following result:

Theorem 2.3. The category Modg is locally noetherian. In other words, any submodule of
a finitely generated &-module is again finitely generated.

This theorem is of fundamental importance, and will be used constantly in the following
papers. Indeed, finitely generated &-modules typically do not have finite length, so the noe-
therian result is important for ensuring that various constructions preserve finite generation.
The theorem follows rather easily from our previous results [NSS] on noetherianity of some
twisted commutative algebras. In principle, the noetherianity result for &-modules should
be much easier than that for the tca, but this is the only proof we know.

The Brauer category has two other notable pieces of structure. First, it is naturally equiv-
alent to its opposite category. From this, we obtain a duality functor (—)" on Modg. This
functor should be thought of as an analog of Pontryagin duality: for instance, it interchanges
(principal) projectives and injectives, but does not preserve finite generation. In [SS10] we
will encounter a more subtle duality that does preserve finite generation.

Second, & has a natural monoidal structure, given by taking the disjoint union of Brauer
diagrams. This induces a tensor product ®gs on Modg known as Day convolution. As
discussed in §1.1, this enables us to import various notions from commutative algebra, such
as “ideal,” to the theory of &-modules. This will play a prominent role in the later papers
in this series. In the present paper, we prove only one non-trivial proposition about the
tensor product: the tensor product of standard modules admits a standard filtration, and
the higher Tor’s vanish.

Finally, we remark that when the parameter ¢ is an integer there is an important family
of &-modules T, that we call the tautological modules. The existence of these modules is
seemingly unrelated to the triangular structure, but closely connected to the tensor product:
indeed, these are exactly the &-modules that are symmetric monoidal functors (this is closely
related to the classification of 1-dimensional TQFT’s, see [CR, Theorem 3.1]). In the context
of §1.1, the tautological modules are intimately related to the commutative algebra side of
the picture, and provide the bridge to Rep(OSp(p|q)).

2.3. Relation to previous work. The idea of abstracting properties of the triangular
decomposition of a semisimple Lie algebra is not new; for example, see [GGOR, §2].

As discussed, the module category of a triangular category is closely related to the notion
of a highest weight category, first introduced in [CPS] (see also the closely related notion of
BGG algebra in [Ir]).
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After completing this paper, we learned of the recent paper [BS5] that develops highest
weight theory in more general settings. Many of the general ideas here are present there
in some form (for example, [BS5, Definition 5.24] is essentially the same as a triangular
category with trivial endomorphism rings). However, the language and emphasis of the two
papers are quite different.

2.4. Outline. In §3, we develop some basic properties of representations of categories, in-
cluding change of category and tensor products. In §4, we introduce triangular categories
and develop their theory. In §5, we explain the example of the Brauer category in detail.
In §6, we treat the partition category; it is similar to the Brauer category in some ways,
but different enough to receive special attention. In §7, we list a number of other prominent
examples of triangular categories with little detail. Finally, in §8 we explain how to realize
the triangular decomposition of a semisimple Lie algebra as a triangular category, and also
discuss an extension to positive characteristic representations.

3. REPRESENTATIONS OF CATEGORIES

3.1. General definitions. Fix a field k. Let € be an essentially small k-linear category. A
¢-module is a k-linear functor € — Vec, where Vec denotes the category of k-vector spaces.
For an object x and a morphism a: z — y, we write a,: M(x) — M(y) for the linear map
M (c). A morphism of €-modules is a natural transformation of functors. For €-modules
M and N, we write Home(M, N) for the space of morphisms M — N of €-modules. We
also write Homg(z, y) for the space of morphisms = — y for 2,y € €; this should not cause
confusion, since we always use lowercase letters for objects of € and uppercase letters for
¢-modules. We let Modg denote the category of €-modules. It is a Grothendieck abelian
category.

3.2. Finiteness conditions. We now introduce a number of finiteness conditions on €-
modules. Let M be a ¢€-module.

e Given a collection S of elements in various M (z)’s, the submodule of M generated by
S is the smallest submodule containing each element of S. We say that M is finitely
generated if it is generated by a finite collection of elements. We write Modég for
the category of finitely generated modules. It need not be an abelian subcategory.

e We say that a €-module M is pointwise finite if M (z) is a finite dimensional vector
space for all x € €. It is not difficult to see that if M is finitely generated and all
Hom spaces in € are finite dimensional then M is pointwise finite. (This will become
more clear in §3.4.) We write Modgf for the category of pointwise finite modules. It
is an abelian subcategory of Modg.

e We say that M is noetherian if every submodule of M is finitely generated. We say
that € is noetherian if every finitely generated €-module is noetherian. In this case,
Modftg is an abelian subcategory of Modg.

3.3. Duality. Let €°° be the opposite category of €. Let M be a €-module. We define
a €°P-module MY by MVY(x) = M(x)*, where (—)* denotes the dual vector space. This
construction defines an exact functor Mody” — Modger. There is a canonical morphism
M — (MY)Y that is an isomorphism if M is pointwise finite. It follows that duality induces
an equivalence of categories (Modgf)0p = Modgip.
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Proposition 3.1. Let M be a €-module and let N be a €P-module. Then we have a canonical
1somorphism

Home (M, NY) = Homgos (N, M)
This holds even if M and N are not pointwise finite.

Proof. Given a morphism of €&-modules f: M — NV, we can take its pointwise dual to get
a morphism of €°P-modules fV: (NV)¥ — M" which can be precomposed with the natural
map N — (NV)V. Similarly, we can define a map in the other direction. A straightforward
check shows that they are inverse to one another. O

3.4. Projectives and injectives. For an object z of €, we define a €-module P, = P¢ .,
called the principal projective at z, by P,(y) = Home(z,y). We also define a €-module
I, = I, called the principal injective at z, by I,(y) = Home(y,x)*. Note that Is, =
Pop .-

Proposition 3.2. Let M be a €-module. Then Home(P,, M) = M(z) and Home(M,1,) =
M(z)*. In particular, P, is a projective €-module and 1, is an injective €-module.

Proof. The identification of Homg(P,, M) with M(z) is Yoneda’s lemma: note that P, is
the functor represented by z. We have

Home (M, I,;) = Home (M, Pgop ) = Homeor (Peop o, M) = MY (z) = M(x)*,

where in the first step we used the identification I, = P\Q/ORz stated before the proposition, in
the second step we used Proposition 3.1, and in the third step we used the mapping property
for Peor , just established. Since M — M (x) and M — M(z)* are exact functors of M, we
see that P, is projective and I, is injective. 0l

As a corollary, we see that a €-module is finitely generated if and only if it is isomorphic to
a quotient of a finite direct sum of principal projectives. We also see that Modg has enough
injectives and projectives. The proposition shows that the duals of principal projectives are
injectives. This holds more generally:

Proposition 3.3. Let P be a projective €-module. Then PV is an injective €P-module.
Proof. Let M — N be an injection of €°P-modules. Consider the diagram
Homcop (N, P\/) _— Homcop (M, P\/)

Homg (P, NV) —— Homg (P, MVY)

where the vertical identifications come from Proposition 3.1. One readily verifies that the
diagram commutes. Since NV — MV is surjective and P is projective, the bottom arrow is
a surjection. Thus the top arrow is a surjection as well, and so PV is injective. 0l

Remark 3.4. The analog of this proposition for injective modules is not true in general.
Here is a simple example. Let € be the linearization of the category associated to the poset
(N, <). Let I be the principal projective Py; this takes all objects of € to k and all morphisms
to the identity. In fact, I is an injective €-module. Indeed, if M is a €-module then giving
a map M — [ is equivalent to giving maps M, — k for all n compatible with transition
maps; but this is exactly a map colim M — k. We thus see that Homg(M, I) = (colim M)*,
which is an exact functor of M. A similar analysis shows that for a €P-module N we have
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Homgor (1Y, N) = lim N, which is not an exact functor of N. Thus I is injective but IV is
not projective.

This example demonstrates one additional phenomenon. Duality provides an equivalence
of Modgf with the opposite category of Mod‘égp. Since [ is injective in Modgf, it follows
that IV is projective in Modggp. (This can be seen directly, as if N is a pointwise finite
€°’-module then it obviously satisfies the Mittag—Leffler condition and so R'lim N = 0.)
This shows that projective objects of Mod%f need not remain projective in Modyg, even for
very nice categories ©. If ® has finite Hom spaces then injective modules objects of Mod%f
do remain injective in Modg, by a version of Baer’s criterion. O

Proposition 3.5. Let M be a €-module and let N be a €°P-module. Then we have a natural
isomorphism Exty (M, NV) = Extgo, (N, MY).

Proof. Let P, — M be a projective resolution of M as a €-module. Since (—)Y is ex-
act, we see from the previous proposition that MY — P, is an injective resolution of MY
as a €°P-module. Thus Extg(M, NY) is computed by the complex Homg(P,, NV), while
Extgop (N, M) is computed by the complex Homgor (N, P,”). These complexes are isomor-
phic by Proposition 3.1. U

3.5. Tensoring over €. Let M be a €-module and let N be a €°°-module. We define a
k-vector space N ®¢ M by a mapping property, as follows. To give a linear map f from
N ®¢ M to a vector space V is the same as giving linear maps f,: N(z) @ M(z) — V for
all © € € such that for m € M(z), n € N(y), and a morphism «: x — y, we have

fy(n @ awm) = fo(cun @ m).

Note that « defines a morphism y — 2 in €°P, and thus induces a linear map a,: N(y) —
N(z). One can construct N ©¢ M as a quotient of @, . N(z) ® M(z) by appropriate
relations. (Actually, one should use a skeletal subcategory of € so that the direct sum is
small.) One readily verifies that ®¢ is cocontinuous in each variable.

Proposition 3.6. Let M and N be as above. Then there is a natural map
(N Oe M)* — HOIHg(M, N\/)
that is an isomorphism if N is pointwise finite.

Proof. By the mapping property, giving an element of (N ®¢ M)* is equivalent to giving
maps f,: N(z) ® M(x) — k for all x, satisfying certain relations. The map f, determines
a map g,: M(z) — N(x)*. One easily verifies that the relations on the f’s translate to
the ¢’s defining a morphism of €-modules. If N(z) is finite dimensional for all x, then
(M(z)® N(x))* is identified with Hom(M (z), N(x)*), and the construction is reversible. [

Proposition 3.7. Let M be a €-module and let x € €. Then we have a natural isomorphism
Peov» ©¢ M = M(z). Similarly, if N is a €P-module, then we have a natural isomorphism

Proof. By the tensor product relations, giving a map f: Pgor , ©¢ M — V' is the same as
giving maps f,: Peov »(y) @ M (y) — V such that for all «: y — 2z, m € M(z), and n: y — z,
we have

fy(noa,m)= f.(n® a.(m)).
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In particular, we can define f': M(x) — V by f'(m) = f.(1, ® m) and this captures all of
the above data. So M(z) satisfies the same universal property as Pgop , ©¢ M, which gives
the desired identification. The proof of the other isomorphism is similar. 0

3.6. Pushforward and pullback. Let f: € — © be a k-linear functor. If M is a ®-module
then f*(M) = Mo f is a €-module. This construction defines a functor f*: Modp — Mode.
It is clear that f* preserves pointwise finiteness. Since limits and colimits in these module
categories are computed pointwise, it follows that f* is both continuous and cocontinuous.
It therefore has a left adjoint f; and a right adjoint f,. These functors are sometimes called
the left and right Kan extensions of f.

Proposition 3.8. The functor f, takes projectives to projectives, while f, takes injectives to
injectives. Moreover, for x € € we have natural isomorphisms

fitPegz) = Po ), fellesz) = 1o f(a).

Proof. Since f, is left adjoint to an exact functor, it takes projectives to projectives. Given
a ®-module M, we have

Homg (fiP¢ .z, M) = Home (P, f*M) = M(f(x))
so that fiP¢, represents the same functor as Pp f(,). The arguments for f, are similar. [

Proposition 3.9. The functor fy takes finitely generated €-modules to finitely generated
®-modules.

Proof. Indeed, f is right-exact and takes principal projectives to principal projectives. [

Proposition 3.10. Let M be a €-module and let N be a D°P-module. Then we have a
natural identification

(fP)*'N ©@e M = N Op fiM.

Proof. First, we have a natural map (f?)*N©®¢ f*iM — N®gp fiM by the universal property
of tensor products. We precompose this with the adjunction map M — f* fiM tensored with
the identity on (f°P)*N to get ppr: (f°)*N ©¢ M — N ©p fiM. We will prove that this is
an isomorphism for all M.

First suppose that M = Pg¢, is a principal projective. The composite defined above
evaluated at y € € is

()" N)(y) @ Peo(y) = N(f(y) ® fiPe(f(y))

which can be rewritten as

®y: N(f(y)) @ Home(z,y) — N(f(y)) @ Homo (f(2), f(y)),  n@a=na f(a).

Next, we have
N ©p fiPes = N Op Py () = N(f(2)) = (f*)"N ©c Pe.

where the first equality is Proposition 3.8 and the last two equalities are Proposition 3.7. The
clements N(f(z)) ® 1, in the domain and target of ®, are identified with N(f(z)) under the
previous isomorphism, and hence we see from the form of @, that pp,, is an isomorphism.
To see that p,; is an isomorphism in general, we can pick a projective presentation for M
and use a diagram chase. O



12 STEVEN V SAM AND ANDREW SNOWDEN

Proposition 3.11. Let M be a €-module, and let y € ®. Then we have natural isomor-
phisms

(AM)(y) = (f°) Poery O M, (fM)(y) = Home(f"Poy, M).
Proof. By Propositions 3.7 and 3.10,
(f7P) Poery Oc M = Poer y ©p IM = (HM)(y),
which proves the first identity. The second follows from adjunction and Proposition 3.2. [

Proposition 3.12. The following are equivalent:

(a) f. is exact.
(b) f*(Poy) is a projective €-module for ally € ©.
(c) f* takes projective D-modules to projective €-modules.
Ezactness of fy is similarly related to (f°P)* preserving projectives, or f* preserving injectives.

Proof. If f, is exact then f*, being its left adjoint, takes projectives to projectives. Thus
(a) implies (c¢), which obviously implies (b). From Proposition 3.11, we have (f.M)(y) =
Home(f*Pg,, M) for a €-module M. Thus, if f*Pgy, is projective then M — (f.M)(y) is
an exact functor of M. We therefore see that (b) implies (a). The analogous results in the
fi case are proved similarly. O

Proposition 3.13. We have the following:

(a) If f* preserves finite generation, then f, preserves pointwise finiteness and the functor
fo: Mod‘c’:f — Mod%f is the right adjoint of the functor f*: 1\/[0d%f — Modgf.

(b) If (f°P)* preserves finite generation, then fy preserves pointwise finiteness and the
functor fi: Modgf — Mod%f is the left adjoint of the functor f*: Modgf — Modgf.

Proof. Let M be a pointwise finite €-module.

(a) Suppose that f* preserves finite generation. Let y be an object of €. Then the €-
module f*Pg,, is finitely generated, and so we can find a surjection @@ | Pe., — f*Pao,y
for some choice of objects z1, ..., x, € €. We therefore have an injection

(f.M)(y) = Home(f*Pa,y, M) — @) Home(Pe,y,, M) = @ M(z)).
i=1 i=1

Since each M (x;) is finite dimensional, the space on the right side is finite dimensional, and
so (f«M)(y) is finite dimensional. Thus f,M is pointwise finite. The adjointness statement
follows easily.

(b) Now suppose instead that ( f°P)* preserves finite generation. Let y be an object of €°P.
Then we have a surjection @) Peon ,, — f*Poor,, and hence by taking pointwise duals, we
have an injection f*Ip, — @;-, I¢,,. This gives an injection

(AiM)(y)" = Home(M, f'Io,,) — P Home (M. Ie,,.) — €D M(w:)".
i=1 i=1
The rest of the argument is the same as the previous case. O

Proposition 3.14. Suppose that Home(z,y) is finite-dimensional for all objects x,y, and
let M be a €-module.

(a) The natural map (fiM)Y — fP(MY) is an isomorphism.
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(b) If M and f°(M") are pointwise finite, then there is a canonical isomorphism (f. M)¥ —
op (M\/) .
!

Proof. (a) Let y € ®. We have natural maps and identifications

(AM) (y) = (FM)(y))" = (f*Poory O M)* — Home (M, (f*Paony)")
= Homgor (f*Poopy, M) = (f. M) (y).

By our finite-dimensionality assumption, the map above is an isomorphism (see Proposi-
tion 3.6).
(b) Follows by applying (a) to MY and identifying (£ (MY))VY with f’*(MVY). O

3.7. Indecomposable decompositions. We now investigate how €-modules decompose
under direct sum. Our main result is:

Proposition 3.15. Let M be a pointwise finite €-module. Then M decomposes into a direct
sum of indecomposable €-modules. If additionally Ende(M) is finite dimensional then this
decomposition is finite and unique up to permutation and isomorphism.

We note that if M is pointwise finite and either M or MV is finitely generated then
Endg (M) is finite dimensional. We require some preliminaries before proving the proposition.
For a €-module M, let 3(M) be the set of pairs (A, B) where A and B are submodules of M
such that M = A@® B. We define a partial order < on (M) by (A,B) < (A", B')if AC A
and B’ C B.

Lemma 3.16. Let M be a pointwise finite €-module and let {(A;, B;)}icr be a chain in
N(M). Let A=J,c; Ai and B = (,c; B;. Then (A, B) € £(M).

Proof. Fix x € €. We must show that M (z) = A(z)®B(z). Since M (z) is finite dimensional,
the ascending chain A;(z) stabilizes, and the descending chain B;(x) stabilizes. Since limits
and colimits of €-modules are computed pointwise, we have A(z) = A;(z) and B(z) = B;(z)

for i > 0. Since M(z) = A;(z) ® B;(z) for all i by assumption, the result follows. O

Lemma 3.17. Let M be a non-zero pointwise finite €-module. Then M admits an indecom-
posable summand.

Proof. Let = be such that M(x) is non-zero. Let X' be the subset of X(M) consisting of
pairs (A, B) with B(x) # 0. The set ¥’ contains (0, M) and is therefore non-empty. Suppose
that {(A;, B;)} is a chain in X' and let A = (JA; and B = [\ B;. Then (A, B) € %(M) by
Lemma 3.16. Since M (x) is finite dimensional, the descending chain B;(z) stabilizes, and so
B(z) = B;(z) for i > 0; in particular, B(z) is non-zero. Thus (A4, B) € ¥'.

By Zorn’s lemma, ¥’ has a maximal element, say (A, B). Suppose B is decomposable, say
B = B'® B” with both B’ and B” non-zero. Without loss of generality, suppose B”(z) # 0.
Then (A @ B’, B”) belongs to ¥’ and is strictly larger than (A, B), a contradiction. Thus B
is indecomposable, which completes the proof. O

Proof of Proposition 3.15. Let {E;};es be the set of all indecomposable summands of M.
We say that a subset U of J is independent if the map ijeU E; — M is injective; we then
write Ay for the image of this map.

Let ¥’ be the set of pairs (U, B) where U is an independent subset of J and B is a
submodule of M such that M = Ay @ B, ie., (Ay, B) € ¥(M). The set ¥’ contains (&, M),
and is therefore non-empty. We partially order ¥’ by (U,B) < (U, B’) it U C U’ and
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B" C B. Suppose that {(U;, B;)}ies is a chain in X' Let U = (J,c; U; and B = (,¢; Bi.
Then U is independent and Ay = (J,c; Av,. Thus (Ay, B) € (M) by Lemma 3.16, and so
(U,B) € ¥.

By Zorn’s lemma, Y contains a maximal element, say (U, B). Suppose B # 0. Then B
contains an indecomposable summand E by Lemma 3.17. Since B is a summand of M, it
follows that E is a summand of M, and thus equal to £} for some j € J. Note that since
E; belongs to a complementary submodule to Ay, the set U’ = U U {j} is independent, and
AU’ = AUEBE]‘- ertlng B = EjEBB/, we have M = AU@B = AU’ @B/, and so (U,, B/) e X
Since (U, B) < (U', B") we have a contradiction. Thus B = 0, and so M = Ay is a direct
sum of indecomposable modules.

Finally, suppose that Endg(M) is finite dimensional. Then the indecomposable decompo-
sition of M is finite: indeed, if M = N1 &---® N, is any decomposition with each N; non-zero
then dim End¢(M) > r. If E is any indecomposable summand of M then End¢(F) is finite
dimensional and has no non-trivial idempotents, and is thus local in the sense of [Kr, §3]
(see [Lam, Corollary 19.19]). The uniqueness therefore follows from [Kr, Theorem 4.2] O

3.8. Upwards and downwards categories. Let |€] be the set of isomorphism classes in
¢. Suppose that |€| is given a partial ordering <. We say that € is upwards if, whenever
there is a non-zero morphism = — y, we have x < y. We say that € is downwards if,
whenever there is a non-zero morphism = — y, we have x > y.

Proposition 3.18. Let € be an upwards category and let P be a projective €-module. Suppose
that {z € |€| | P(x) # 0} has a minimal element xo. Let M be an Endg(xg)-summand of
P(zg). Then the €-submodule of P generated by M is a summand of P; in particular, it is
projective.

Proof. Let X be the full subcategory of € spanned by zy and let t: X — € be the inclusion;
we identify X-modules with End¢(zo)-modules. Then P(xy) = ¢*P is a projective X-module
and hence so is M. Thus Q) = /M is a projective €-module with a map @ — P.

Next, M is a quotient of P and ) by our assumption of minimality of xo and the fact
that € is upwards. Hence we lift P — M along () — M to get a map P — () such that the
composition () — P — () is the identity in degree xy. This shows that () — P is a split
inclusion and hence its cokernel is projective. O

The following are analogous and we omit the proofs.

Proposition 3.19. Let € be an upwards category and let I be an injective E-module. Suppose
that {x € |€| | I(x) # 0} has a mazimal element xo. If I' C I is the largest submodule such
that I'(zg) = 0, then I" and 11" are injective.

We have analogous results for downwards categories which we state without proof (or note
that the opposite of a downwards category is an upwards category).

Proposition 3.20. Let € be a downwards category and let I be an injective €-module.
Suppose that {x € |€| | I(x) # 0} has a maximal element xo. If I' C I is the largest
submodule such that I'(xy) = 0, then I' and I/1" are injective.

Proposition 3.21. Let € be a downwards category and let P be a projective €-module.
Suppose that {x € |€| | P(x) # 0} has a minimal element xy. If P' C P is the submodule
generated by P(xg), then P and P/P’" are projective.
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Proposition 3.22. Let € be an upwards category such that Ende(x) is semi-simple for all
objects x and such that |€| contains no infinite decreasing sequences. If M is a €-module,
then it admits a minimal projective resolution Py — M — 0, i.e., for every simple €-module
S, the differentials of Hom(P,, S) are identically 0.

In particular, if Extg(M,S) = 0 for all simple €-modules S, then M is projective.

Proof. 1t suffices to show that there is a map from a projective module P — M such that
Hom(M,S) — Hom(P,S) is 0 for every simple €-module S. Let & be the subcategory
of € with all non-endomorphisms removed and let i: ¢ — € be the inclusion. For each
object z, let N(z) be the quotient of M(x) by the subspace generated by the images of
M(y) — M (x) for morphisms y — z with y < z. Then @, N(x) is a projective €’-module
by semi-simplicity, and we take P = @_ 4N (z). We get a map P — M which is surjective:
it m € M(x), then the set of y such that there is a morphism y — 2 so that m is in the span
of the images of M(y) — M (z) has minimal elements, and so m is in the image of the sum
of the corresponding projective modules.
For the last statement, if P, — M — 0 is a minimal projective resolution, then Extg(M, S) =

0 for all simple €-modules S implies that P, = 0, and hence Py — M is an isomorphism. [l

3.9. Base change. Consider a diagram of k-linear categories

g/
—— <93

2
f’t f
¢—2-®
that is commutative up to isomorphism.

Proposition 3.23. We have the following:
(a) For any B-module M, there is a natural map (the base change map) of €-modules

©Yum: f!’(gl)*M — g fiM.

(b) For any b € B and c € € there is a natural map

Upe: (fP) Peov . O (¢') Py — Homg (f(D). g(c))

(¢) o is surjective for all M if and only if . is surjective for all b and c.
(d) pur is an isomorphism for all M if and only if 1y . is an isomorphism for all b and c.

Proof. Consider the following sequence of maps (the equalities follow by adjunctions and
using gf" = fg')
Homg (fiM, fiM) = Homg (M, f* fiM)
— Homgy (g™ M, g™ f* fiM)
= Homgy(g" M, f"g" iM)
= Home(f/g" M, g" iM)

Taking the image of the identity on fiM gives .
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We define 1. as the following composition
(fP) Peor,c Oa (¢') Py = Peor e Oc f1(9) Poyp
— Peov e Oc g" fiP%s
= Pgor . ©¢ 9"Po )
= 9"Po sw)(c)
= Homp (f(b). g(c))

where the first equality is Proposition 3.10, the next map uses functoriality of tensor products
and the map ¢p,, from (a), the second equality is Proposition 3.8, the third equality is
Proposition 3.7, and the last equality follows from definitions.

From the constructions, we see that 1) . is surjective, respectively an isomorphism, if and
only if the same is true for 1p,, . ® ppy,. For any map f: M — N of €&-modules, tensoring
with Peor . gives f(c): M(c) — N(c) by Proposition 3.7. Hence f is surjective, respectively
an isomorphism, if and only if the same is true after tensoring with Pgop . for all objects
c. In particular, v . is surjective, respectively an isomorphism, for all b € B and ¢ € € if
and only if ¢p,, , is surjective, respectively an isomorphism, for all b € 9B. Now consider an
arbitrary 8-module M and pick a presentation P, — F, — M — 0 where each P; is a sum
of principal projectives. By exactness of pullback and right-exactness of left Kan extensions,
we get

[V Pr— f{(¢') " Po — f{(¢')* M —0

l | l

g hP 9" [P g hiM ——0

Each P; is a direct sum of principal projectives, so by a diagram chase, we see that ¢p is
surjective, respectively an isomorphism, for all principal projective modules P if and only if
the same is true for ¢, for all ‘B-modules M. UJ

We also have a version using f.. The proof is similar to the one above, so we omit it.

Proposition 3.24. We have the following:
a) For any *B-module M, there 1s a natural map (the base change map) of €-modules
F B-module M, there 1 [ he b h C-modul
Chet 9 fM — fi(g) M.
(b) For any b € B and c € € there is a natural map

V,.: Homg(g(c), f(0))" — Homu((f') " Pe, (¢') I )

(¢) @y is injective for all M if and only if 4y, . is injective for all b and c.
(d) @\ is an isomorphism for all M if and only if Yy, i an isomorphism for all b and c.

3.10. Tensor products. Suppose that € has a monoidal operation II; we use this notation
since in the examples of interest to us the monoidal structure is given by disjoint union. We
let @ denote the unit object for I1. Let M and N be €-modules. We define M ®¢ N to be the
¢-module IT)(MXN). Here MXN denotes the (€x€)-module given by (z,y) — M(x)QN (y),
and II; is the pushforward along the monoidal operation II: € x € — €. We also define
M ®¢ N by IL.(MXN), though this will be less used. When there is no danger of ambiguity,
we write ® in place of ®¢. These tensor products are sometimes called Day convolution.

Proposition 3.25. We have the following:
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(a) The tensor product @ is cocontinuous (and thus right exact) in each variable.

(b) The tensor product @ naturally gives Modg the structure of a monoidal category, with
unit object Py.

(¢) If 11 is a symmetric monoidal operation then so is ®.

(d) For objects x,y € €, we have a natural isomorphism P, @ P, = Py,

(e) If M and N are finitely generated then so is M & N.

Analogous dual statements hold for ®,.

Proof. (a) This follows since X is bi-cocontinuous and II; is cocontinuous, being a left adjoint.
(b) Since IT is monoidal, we have a natural isomorphism ITo (Il x 1) — ITo (1 x IT) as
functors € x € x € — €. Let M, N, P be €-modules. Then we have an associator defined by

(M@N)@P =TI x ) (MENKP) > IL(1 x I)(MRNKRP)=M® (N P).

The pentagon axiom transfers from its validity for I1.
Let M, N be €-modules. Then we have

Home(Py @ M, N) = Homgye(Py X M, II*N).

Hence a choice of map Py ® M — N is a choice of maps Py(z) @ M(y) — N(z 1l y) for all
x,y € € compatible with the action of morphisms. In particular, x = & determines the case
of arbitrary z, and so it is determined by maps M(y) — N(y) compatible with morphisms,
i.e., a choice of map M — N. Hence Py ® M = M since they represent the same functor.
We leave verification of the remaining axioms to the reader.

(c) If IT has a symmetry, i.e., a natural isomorphism II — IT o 7 where 7 is the switching
map, then we use it to define a symmetry for ®:

M®N =1L(MXN) — In(MXN)=1L,(NKM)=N M.

(d) The argument is similar to the one used in (b): P, ® P, represents the same functor
as Py

(e) Given surjections P, Pr, — M and B, P,, — N, we have a surjection B, ; Pr,iy, —
M ® N using (a) and (d) (all sums finite). O

We define Torf(—, —) to be the derived functor of ®¢. The usual argument shows that
this is balanced, i.e., one can compute Tor by using resolutions in either variable.

Since Py is the unit object for ®, we have a natural isomorphism P, ® P, — P,. We
can thus regard Py as an algebra object of Mode. We define an ideal of Py (or of €) to be
a €-submodule of P4. Let a be an ideal and let M be a ¢-module. We define aM to be the
image of the composite map a ® M — Py ® M — M, where the first map is induced by the
inclusion a — P and the second is the canonical isomorphism. In particular, if a and b are
ideals then we have a product ideal ab.

We now give an exactness criterion for tensor products. For simplicity, we assume that €
is the linearization of a category € with finite Hom sets that is closed under II. Consider the
following condition on an object x € €:

(Sz) There exist maps {¢;: © — y; II z;};cr in € with the following property: given any
map ¢: x — y II z in € there exists a factorization ¢ = (o I 3) o ; for some ¢ and
morphisms a: y; — y, and 8: z; — 2z in C; moreover, if ¢ = (o/ L1 ') 0 p; is a second
such factorization then i = j and (o, 5) = (¢, 5) oo for some o € Aute(y;) X Aute(2;)
fixing ;.
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Proposition 3.26. Suppose (S,) holds, and let G; C Autexe(y;, 2;) be the stabilizer of ;.
Then II*(P,) = @, (Py,.2))a;» where the subscript denotes coinvariants. In particular, if
k has characteristic O then 11*(P,,) is projective.

Proof. The morphism ¢; induces a morphism Py, ..y — II*(P,) that factors through (P, .,))c,
since ¢; is Gi-invariant. We thus have a map f: @,.;(P,.))a, — I*(P,). At an object
(y,2) € € x €, the map f is the linearization of the map

H Homex(‘f((yia Zi)a (y7 z))/Gl — Home(l’, Yy I Z)

el
The condition (S;) exactly ensures that the above map is a bijection, which proves that f
is an isomorphism. If k has characteristic 0 then (P, .,))¢, is a summand of Py, ., and
therefore projective, and so IT*(P,) is projective. (Note: we have assumed € has finite Hom
sets, so the group G; is finite.) Ul

Proposition 3.27. Suppose (S,) holds for all x and k has characteristic 0. Then ®, is
exact on Modg, and ® is exact on Modgop

Proof. Since II*(P,) is projective for all = (Proposition 3.26), we see that II, and II}” are
exact (Proposition 3.12), from which the result follows. O

4. TRIANGULAR CATEGORIES

4.1. The definition. We assume in what follows that the field k is algebraically closed. Let
® be a k-linear category satisfying the following condition:

(TO) The category & is essentially small, and all Hom spaces are finite dimensional.

We denote the set of isomorphism classes in & by |&|. Recall that a subcategory is wide if
it contains all objects. The following are the central definitions of this paper:

Definition 4.1. A triangular structure on & is a pair (4,) of wide subcategories of &
such that the following axioms hold:

(T1) We have Endy(z) = Endg(x) for all objects z, and this ring is semi-simple.
(T2) There exists a partial order < on the set |&| such that:

(a) For all z € |®| there are only finitely many y € |&| with y < z.

(b) The category 4 is upwards with respect to < (see §3.8).

(c) The category ® is downwards with respect to <.
(T3) For all z,z € &, the natural map

@ Homy (v, 2) ®gndy(y) Homp (z,y) — Home(z, 2)
yE|®|

is an isomorphism. O

Definition 4.2. A triangular category is a k-linear category satisfying (T0) equipped
with a triangular structure. 0l

We refer to an order as in (T2) as an admissible order. Admissible orders are not unique
in general. However, there is a unique weakest admissible order <, which can be defined by
r <y if x <y for all admissible orders <; we refer to < as the canonical order.

Suppose that & and &’ are triangular categories. A functor & — &’ is called triangular
if it carries Y into Y’ and ® into ®'. (Warning: a triangular functor need not induce an
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order-preserving map |&| — |&’|.) A triangular equivalence & — &' is an equivalence
that is triangular and whose quasi-inverse is also triangular; a triangular equivalence induces
equivalences Y — ' and ©® — D', and a bijection |&| — |&'| that is compatible with the
canonical orders.

Suppose we have a triangular structure on &. Let 91 = U N D. Thus 9 contains all
objects of & and a morphism belongs to 9 if and only if it belongs to both U and D.
By axiom (T2), we see that if x — y is a non-zero morphism in 9t then z and y are
isomorphic. Thus 9 is essentially determined by its endomorphism rings, and these are
given by Endgr(z) = Endy(z) = Endp(z). In axiom (T3) above, we could instead tensor
over Endgn(y), and this gives the axiom a more symmetrical appearance. We think of ${
as an upper triangular parabolic subalgebra, ® as a lower triangular parabolic subalgebra,
and I as the common Levi factor. Axiom (T3) can be seen as a Poincaré—Birkhoff-Witt
decomposition.

Remark 4.3. The assumption that k is algebraically closed can be relaxed: it is enough
that every simple 9t-module is absolutely simple. O

4.2. Pushforwards and pullbacks. Fix a triangular category & with subcategories i, ©,
and 2N, and an admissible order <. We name the various inclusion functors as follows:

m 81
'/J( \ 1
D7 6

Proposition 4.4. We have the following:

(a) The base change map ji(i')*M — i*jiM is an isomorphism for any M € Mody.

(b) The base change map j*i,M — i.(j")*M is an isomorphism for any M € Mody.

(¢c) If M € Modg is a summand of an object in the essential image of j, then i*(M)
15 a projective -module. In particular, i* takes projective &-modules to projective
-modules.

(d) If M € Modg is a summand of an object in the essential image of i, then j*(M)
15 an injective ®-module. In particular, 7 takes injective &-modules to injective
D -modules.

(e) The functors i, and j are exact.

Proof. (a) follows from Proposition 3.23: we have to check that the maps
(i"P) Paor,g O j"" Py,u — Home (i(u), j(d))

are isomorphisms for all d € ® and u € 4. Since all morphisms in any skeletal category of
I are endomorphisms, we can rewrite the map as

@ Home (7, d) @pndgy () Homy (u, ) — Home (u, d)
z€|M|
where the components are given by composition. But this is an isomorphism by the axioms
of a triangular category. (b) is similar.
For (c), suppose M = ji(N). Then by (a), we have *(M) = j/((¢)*(N)), and anything
in the essential image of ji is projective (as j| takes projectives to projectives and Modgy is
semi-simple). (d) is similar. (e) now follows from Proposition 3.12. O
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The following proposition summarizes some basic finiteness properties of pushforwards
and pullbacks.

Proposition 4.5. We have the following:

(a) The functors i* and (i')* preserve finite generation.
(b) The functors iy, i, ji, and ji preserve pointwise finiteness.

Proof. (a) Since (¢')* takes simple ®-modules to simple 9M-modules, it follows that (i')* takes
finite length ®-modules to finite length 2M-modules. Since the category 2 is downwards,
any finitely generated ®-module has finite length. Thus (¢')* preserves finite generation.

We have

i"(Pew) =i (7i(Pos)) = ji((i") "Po).
Since (i')*Pg, is a finitely generated 9t-module (see above) and j| preserves finite genera-
tion (Proposition 3.9), we see that i*(Pg ) is finitely generated, and so i* preserves finite
generation.

(b) The statements for ¢, and ¢, follow from (a) and Proposition 3.13.

Suppose M is a pointwise finite 9t-module. We can then realize M as a quotient of
D.co Pg';{y) for n(x) € N. We thus see that j/(M) is a quotient of €, Pff’z(x), and so
Ji(M)(y) is a quotient of P, Piz(w) (y). This sum is finite since for Py, (y) is non-zero
only if # < y, by the upwards property of 4. Thus j/(M) is pointwise finite.

Finally, suppose that M is a pointwise finite ©-module. We have i*(ji(M)) = j{((¢')*(M))
by Proposition 4.4. Of course, (i')*(M) is pointwise finite, and so j{((¢')*(M)) is pointwise
finite by the previous paragraph. Thus i*(j,(M)) is pointwise finite, and so j,(M) is pointwise
finite too (since i is bijective on objects). O

From the above proposition, we obtain the following useful noetherianity criterion:
Proposition 4.6. If Mody is locally noetherian then so is Modg.

Proof. Suppose M is a finitely generated &-module and N; € Ny C --- is an ascending
chain of submodules. Then i*(M) is finitely generated by Proposition 4.5(a), and so the

chain ¢*(Ny) C i*(Ngy) C - - - stabilizes since Mody is locally noetherian. Since i is bijective
on objects, the original chain stabilizes too. Thus M is noetherian, and so Modg is locally
noetherian. 0

Finally, we examine how pushforwards interact with Ext.

Proposition 4.7. Let M be a &-module, let N be a ®-module, and let N' be a U-module.
Then we have natural isomorphisms

Exty (1N, M) = Exty(N, j*M),  Extg(M,i.N') = Exty(i*M, N')
for all r > 0.

Proof. Let P, — N be a projective resolution of N as a ®-module. Since j is exact and
takes projectives to projectives, it follows that j P, — 51N is a projective resolution of &-
modules. Thus the complex Homg (P, j*M) computes Extg (N, 7*M), while the complex
Homeg (jiPs, M) computes Extg(jiN, M). These complexes are isomorphic by adjunction,
and so the result for j follows. The result for 7 is similar. O
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4.3. Weights. Define A to be the set of isomorphism classes of simple 9t-modules. We
refer to elements of A as weights. Given A € A, we choose a representative simple 9)i-
module Sy of the class of A\. From the structure of 9, we see that S, is non-zero on a
unique isomorphism class of &. We refer to this class as the support of A, and denote it by
supp(A). Since Endgy(x) is finite dimensional for all x, there are only finitely many weights
with a given support. We partially order A through the ordering on supports: that is, we
define A < p if supp(A) < supp(u). For any pu, there are only finitely many A with A < p.

Given an M-module M and a weight A\, we define the multiplicity of A in M, denoted
myx(M) to be the multiplicity of Sy in M, which we regard as an element of N U {co}. We
say that A occurs in M if its multiplicity is non-zero. We note that M is pointwise finite
if and only if m, (M) is finite for all \. We extend this notation and terminology to ©-, I-
and B-modules by simply restricting to 9, e.g., we say that A occurs in a &-module if it
occurs in its restriction to 91.

We regard S as a 4~ or ©- module by letting all maps between non-isomorphic objects
act by zero. When clarity is required, we write Sop x, Sya, or Sp x to indicate the relevant
module category.

4.4. Duality. Let ® = B° be the opposite category of &, and put =D and D = 4P,
It is clear that & satisfies (TO0).

Proposition 4.8. The pair (ﬁ, i\)) is a triangular structure on ®.

Proof. Axiom (T1) formally holds. Let < be an admissible order on |&|. We claim that <
is also an admissible order on |6|. Condition (a) is automatic. If z — y is a morphism in

D= $°P, then x < y and so D is downwards. Similarly, i is upwards, so the claim follows.
Thus (T2) holds. Finally, we have a commutative diagram

@yg\@op\ Homﬁ(ya Z) ®End,ﬁ(y) Homﬁ (Z7 :E) - Hoinop (fL’, Z)

®ye\®| Homyp (2, Y) ®@Endgy (y)er Homy(z, 2) — Homg (2, x)

(Note that left and right modules are interchanged upon going from a ring to its opposite.)
The bottom map is an isomorphism by (T3) for (4, ®), and so the top map is an isomorphism
as well. Thus (L, D) satisfies (T3). O

Definition 4.9. We call (’/5, equipped with (ﬁ, 55), the dual triangular category to &. [

We use hats to denote the constructions associated to (/’5, such as 7, 7, and A. We note
that there is a natural bijection A — A, which we denote by A — A\,

Definition 4.10. A transpose on & is a triangular equivalence 7: & — ® such that
(a) T o7 is isomorphic to idg; and
(b) the induced bijection 7: A — A coincides with (—)". O

Given a transpose functor, we get a (covariant) equivalence Modgs = Modg; thus, for a
®-module M, we can (and usually do) regard MY as a &-module.
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4.5. Standard modules. We now come to an important definition. For A € A, define the
standard module associated to \ by

Ay = ji1(So ),

To explain the significance of these modules, we introduce another concept. We say that
a B-module M is a lowest weight module with lowest weight A € A if the following
conditions hold:

(a) The weight A occurs in M with multiplicity one.
(b) M is generated as a -module by the unique copy of Sy that it contains.
(c) If a weight p occurs in M then A < p.

Proposition 4.11. We have the following:

(a) Ay is a lowest weight module of lowest weight X.

(b) Every other lowest weight module with lowest weight X is a quotient of Ay.
(¢) There is a unique simple quotient Ly of A,.

(d) Every simple &-module is isomorphic to Ly for a unique \.

(e) The simple constituents of Ay, other than Ly, have the form L, with i > A.

Proof. (a) This is clear from the base change formula.

(b) If M is a lowest weight module of weight A, then we have a ©-module map Sy — j*M.
By adjunction, this gives a &-module map A, — M. Since it is an isomorphism in degree
supp(A) and M is generated in this degree, this map is surjective.

(¢) Any submodule of Ay that is nonzero in degree supp(A) is all of Ay. Hence, the sum
of all submodules which are zero in degree supp(\) is the unique largest submodule of Ay,
and L) is the quotient by this submodule.

(d) Let M be a simple &-module and let = € |&| be minimal such that M, # 0 (this
exists by axiom (b) of triangular categories). If N is a Endg(x)-submodule of M, then the
B-submodule of M generated by N is just /V in degree x; thus, if N is non-zero then N = M,
by simplicity. We thus see that M, is a simple Endg(x)-module, and thus corresponds to
some weight A € A. Hence M is a quotient of Ay, and must be L, since that is the unique
simple quotient.

(e) The kernel of the quotient A, — L, is concentrated in degrees strictly larger than
supp(A) since it is an isomorphism in degree supp(2). O

Proposition 4.12. We have LY = Lyv.

Proof. The ®-module LY is simple and has lowest weight \Y, and so it must be isomorphic

to Lyv. O
There is a dual notion to standard modules: we define the costandard module by
Vi =i.(Sun)-
As expected, duality interchanges standard and costandard modules:
Proposition 4.13. We have AY = V,v.

Proof. We have
AY = (15))" =u(Sw) = Vv,
where in the second step we used Proposition 3.14. (Recall that 7= j°P.) U
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Proposition 4.14. The costandard module V) has a unique simple submodule. It is iso-
morphic to Ly, and every simple constituent of Vx/Ly has the form L, with 1 > .

Proof. This follows from duality. O

Remark 4.15. Suppose & has a transpose 7. Then, under the identification Modes = Modg
provided by 7, we have Ly +> Lyv and Ay <> Ayv and V, <> V,v. Thus if we regard (—)"

as a contravariant endofunctor of Modg then LY = L) and AY = V, and VY = A,. O

Proposition 4.16. We have
dim Homeg (Ay, V) = 0 -
Moreover, the image of any non-zero map Ay — V is Ly.
Proof. We have
Homg (A, V,,) = Homy(i*(Ay), S,) = Homy(5/(S)), S,) = Homgp(Sy, S,)-

As Homgy(Sy, S,,) has dimension dy ,,, the first statement is established. Since Homg (A, V)
is one-dimensional, it must be spanned by the composite map Ay — Ly — V,, from which
the second statement follows. O

4.6. Multiplicities. For a &-module M, we write [M : L,] for the multiplicity of L, in M,
which we regard as an element of N U {co}. Precisely, let S be the set of natural numbers
n for which there exists a chain of &-submodules

0OCHCcG ChoGC---CKHCG,CM

with G;/F; = Ly for all i. Then [M : L,] is defined to be the supremum of S. This notion
of multiplicity has the expected properties, namely:

e [—: L,] is additive in short exact sequences.

e If N is a submodule of M then [N : L] < [M : L,].

o If M =J,.; M; (directed union) then [M : L,] = sup;c;[M;: Ly)].
For proofs, see, e.g., [GS, §A.1]. We note that since A has multiplicity one in Ly, we
have [M : Ly] < my(M). The following technical proposition is helpful when studying
multiplicities in infinite length modules.

Proposition 4.17. Let M be a pointwise finite &-module and let = be a finite set of weights.
We can then find a filtration 0 = Fy C --- C F,, = M such that for each i the module F;/F; 1
18 either simple or does not contain any weight in =.

Proof. We are free to replace = with a larger finite set, so we may as well assume it is
downwards closed (i.e., A € Z and p < A implies p € E). Define the total Z-multiplicity
of M to be the sum of all multiplicities of weights in =. We proceed by induction on this
quantity. If the total =-multiplicity is 0 there is nothing to prove, so suppose this is not
the case. Let A be a minimal element of = occurring in M. Since = is downwards closed, it
follows that A is a minimal weight of M. We can thus find a non-zero map ¢: A, — M.
Let K be the maximal proper submodule of Ay, so that A,/K = L. Since ¢ is non-zero,
its kernel is a proper submodule of Ay, and thus contained in K. Consider the filtration
0 C o(K) C ¢(Ay) C M. Now, ¢(K) is a submodule of M with strictly smaller total
E-multiplicity (since the multiplicity of A in ¢(K) is 0); thus, by induction, ¢(K) has a
filtration of the desired kind. The quotient ¢(A,)/@(K) is isomorphic to Ly, and so it too
trivially admits a filtration of the desired kind. Finally, M/p(A,) also has smaller total
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E-multiplicity than M, since ¢(A) has A in it, and so by induction it too admits a filtration
of the desired kind. Splicing these filtrations together gives the desired filtration on M. [

Proposition 4.18. Let M be an arbitrary &-module. Then
my(M) = Zm/\(Lu)[M t L.

759

Proof. Let a(M) = my(M) and B(M) = > .y ma(L,)[M : L,]. We must show a(M) =
B(M) for all M. The equality clearly holds if M is simple (since if A appears in L, then
< A), orif my(M) = 0 (since we must then have my(L,) = 0 if L, is a constituent of M).

Suppose now that M is pointwise finite. Let 0 = Fy C --- C F,, = M be a filtration as in
Proposition 4.17 with = = {A}. Since o(F;/F,—1) = B(F;/F;—1) for each i, and both o and
[ are additive in short exact sequences, it follows that a(M) = B(M).

Finally, let M be arbitrary. Write M = (J,.; M; where {M;};c; is a directed family of
pointwise finite submodules of M. Then a(M;) = 5(M;) for each i. Since a(M) = sup a(M;)
and S(M) = sup f(M;), it follows that a(M) = S(M). This completes the proof. O

Corollary 4.19. Let M be a &-module. Then M is pointwise finite if and only if [M : L,]
is finite for all X.

Proof. If M is pointwise finite then my (M) is finite, and so [M : L,] is too, since it is
bounded above by my(M). Conversely, if [M : L,] is finite for all A then the proposition

shows that m, (M) is finite for all A, and so M is pointwise finite. O
Corollary 4.20. Let M be a -module such that [M : L)) =0 for all \. Then M = 0.
Proof. The proposition shows that my (M) = 0 for all A\, which implies M = 0. O

4.7. Formal characters. Let Q[A] denote the set of all formal sums ,_, a(A)[A] where
a(A) is a rational number. Given a pointwise finite 9t-module M, we define its formal
character, denoted ©,;, to be the element of Q[A] given by >, , mA(M)[A]. We define
the formal character of a pointwise finite -, -, or &-module to be the formal character of
its restriction to 9.

Proposition 4.21. We have the following:

(a) Let {My}ren be a family of pointwise finite modules such that my(M,) # 0 and
mu(M)) is non-zero only for 1 > X. Then the formal characters ©y;, for A € A are
linearly independent.

(b) The formal characters of the standard modules are linearly independent.

(¢) The formal characters of the simple modules are linearly independent.

Proof. (a) Suppose Y, ¢3O, = 0 is a non-trivial linear dependence. Let A be minimal with
cx # 0. If p < A then ¢, = 0 and if p1 £ A then m,(M,) = 0. Thus the coefficient of [A] in
the sum is cymy(M)) # 0, a contradiction. (b) and (c) follow immediately from (a). O

Proposition 4.22. Let M and N be pointwise finite &-modules. Then ©y = Oy if and
only if [M : Ly] = [N : L,] for all \.

Proof. Clearly, if [M : L)] = [N : L,] for all A\ then m)(M) = m,(N) for all X\ (even
without pointwise finiteness) by Proposition 4.18, and so ©,; = Op. Conversely, suppose
that ©y = O, i.e., myx(M) = my(N) for all \. We show that [M : Ly] = [N : L,] by
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induction on A\. Thus let A be given, and suppose that [M : L,] = [N : L,] for all p < .
Using Proposition 4.18, we have

mA(L)[M : L] = my(M) =Y " ma(L,)[M : L]

= m(N) — ZmA(Lu>[N D Ly
= m,\(L,\)[N . L)\]

Note that pointwise finiteness is crucial here to ensure that all quantities are finite so that
we can subtract. Since my(Ly) = 1, we thus find [M : L] = [N : L,], as desired. O

4.8. Standard filtrations. Let M be a &-module. A standard filtration on M is a
filtration 0 = Fy C --- C F, = M such that for each 1 < ¢ < r we have F;/F; | = AWD
for some u(i) € A. We say that M is semistandard if it admits a standard filtration.
Co-standard filtrations and co-semistandard objects are defined analogously. Since the two
notions are dual, we concentrate on semistandard objects.

Proposition 4.23. Let M be a finitely generated &-module. The following are equivalent:

(a) M is semistandard.

(b) i*M is a projective $i-module.

(¢) Extg(M, V) =0 for all \.

(d) Extg(M, N) =0 for all co-semistandard N and all r > 1.

Proof. (a) = (b). Since the standard modules are projective as {i-modules, any semistandard
module is also projective as a {-module.

(b) = (a). Suppose that i*M is projective. Since i*M is finitely generated by Proposi-
tion 4.5, it is a direct sum of finitely many indecomposable projectives by Proposition 3.15
and the number of summands depends only on ¢*M. We prove by induction on this number
that M is semistandard. If the number is 0, there is nothing to show. Otherwise, let A be
a minimal weight occurring in M, and let ¢: Ay — M be the corresponding map. Since
A, and M are projective as -modules, it follows from Proposition 3.18 that ¢ is injec-
tive and * coker(¢) is projective as a {-module. By uniqueness of decompositions, we have
i*M = i*Ay @ i* coker(p), and so i* coker(y) has fewer indecomposable summands than M.
By induction, coker(y) is semistandard, and thus M is semistandard.

(b) = (d). Suppose that i*M is projective. Then Exty (M, V,) = Extg(i*M, Sy) for all r
by Proposition 4.7, and this vanishes for » > 0 since i*M is projective by Proposition 4.4(c).
Thus, by dévissage, Extg (M, N) = 0 for any co-semistandard N and r > 0.

(d) = (c). Obvious.

(c) = (b). Suppose that Extg (M, V) = 0 for all \. Then, by Proposition 4.7, we have
Ext{(i* M, Sy) = 0 for all A\. By Proposition 3.22, it follows that i*M is projective. O

Corollary 4.24. Any summand of a semistandard &-module is semistandard.

Suppose that M is semistandard, and let 0 = Fy C --- C F, = M be a standard filtration.
For 1 € A, let n(u) be the number of indices ¢ for which F;/F;_; is isomorphic to A,.
Then ©) = Zu n(p)Oa,. Since the formal characters of standard modules are linearly
independent (Proposition 4.21), it follows that one can recover n(u) from ©,; the quantity
n(p) is therefore independent of the standard filtration. We define the multiplicity of
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A, in M, denoted [M : A,], to be n(p). We similarly define the multiplicity of V,, in a
co-semistandard module. The following proposition gives a useful way of computing these
multiplicities.

Proposition 4.25. Let M be a semistandard &-module. Then
[M . A/\] = dimHom@(M, V)\)

Proof. It M = 0 there is nothing to prove, and if M is standard the result follows from
Proposition 4.16. Otherwise, we can find a short exact sequence

0—>N-—>M-=>N =0

such that N and N’ have standard filtrations of shorter length than M. We have an exact
sequence

0 — Homg(N', V) — Homg (M, V) — Homeg(N, V) — Extg (N, V)
Since this Ext! group vanishes by Proposition 4.23, we conclude
dim Homg (M, V) = dim Homg (N, V) + dim Homg (N, V).
Of course, we also have
[M : AA] = [N : A,\] + [NI : A)\]
Since [N : A,] = dim Homg(N, V) by induction on the length of standard filtration, and
similarly for N’, we see that the same holds for M. O

Proposition 4.26. Let M be a finite length ©-module. Then 51 M is semistandard and
(WM 2 A\] = m(M) for all X.

Proof. Let 0 = Fy C --- C F, = M be a filtration such that F;/F;,_; = S, for some weight
w(i). Since jy is exact, it follows that 0 = jFy C --- C jiF, = 5 M is a filtration with
Wi Ficr = j1Su6y = Apugy- The result follows. d

4.9. Projectives modules. Recall that £: 91 — & is the inclusion functor. Define
Py = ki(S)).
The following proposition summarizes the basic properties of this module.

Proposition 4.27. We have the following:

(a) Py is a finitely generated projective &-module.

(b) We have dim Homg (P, M) = mx(M) for any &-module M.

(¢) Py is semistandard; moreover, [Py : Ay] = 1 and [Py : A,] is non-zero only if p < A.
(d) The formal characters of the ]% are linearly independent.

(e) Every (finitely generated) &-module is a quotient of a (finite) sum of Py’s.

Proof. (a) Since Sy is a finitely generated projective 9t-module and k& takes projectives to
projectives and preserves finite generation, the claim follows.

(b) We have Homg (P, M) = Homgr(Sy, k*(M)) by adjunction, the dimension of which is
mx(M) by definition.

(c) Since k = j o', we have Py = ji(¢}(Sm.)). We claim that m,(i/(Sm)) = 1, and
my(iy(Som,x)) is non-zero only if ¢ < A. By the downwards property, Sp . is the top
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of #{(Sonx) and 4;(Son.») is 0 on objects that are not less than supp(\). Hence by semi-
simplicity, HOHlQm(ng’,\, (Z/>*Z¢(ng7)\)) = HOHIQ (Z{(ng’)\), S@)\) = HOIIlm(ng)\, ng’)\), which is
1-dimensional. Thus the claim follows from Proposition 4.26.

(d) This follows from (c) and the corresponding fact for standard modules.

(e) Let M be a G-module. By adjunction, we have Home (Py, M) = Homgp(Sy, k*(M)).
Hence if £*(M) = €, Sy ® My, then we have a surjection €, Py@ My, — M. If M is finitely
generated, then pick a finite generating set and a finite-dimensional 91-submodule of £* M
that contains it; write this submodule as @, Sy ® M}. Then €, P, @ Mj is a finite direct

sum that surjects onto M. 0l

Write Py, = P, & -+ & P,., where each P; is an indecomposable projective &-module
(Proposition 3.15). Since each P; is a summand of Py, it is semistandard by Corollary 4.24.
We have _

1: [P/\ZA)\] = [PlA/\]—f——I—[PTA/\]
It follows that [P, : A,] is equal to 1 for exactly one value of i. We define P, to be this
summand P;. Thus, to summarize, Py is the unique (up to isomorphism) indecomposable
summand of Py such that [Py : A,] = 1 (uniqueness is guaranteed by Proposition 3.15). The
next proposition establishes some other important properties of these modules.

Proposition 4.28. We have the following:
(a) Py is semistandard; moreover, [Py : Ay] =1 and [Py : A,] is non-zero only for p < .
(b) Py is the projective cover of Ay and Ly.
(¢) We have dim Homg(Py, M) = [M : Ly] for any &-module M.
(d) The formal characters of the Py’s are linearly independent.
(e) We have Py = P, PW where a(p) = mx(L,) (note a(X) =1).
(f) Every (finitely generated) &-module is a quotient of a (finite) sum of Py’s.
(9) Any finitely generated indecomposable projective &-module is isomorphic to some Py.

Proof. (a) Since Py is a summand of ﬁ,\, it is semistandard by Corollary 4.24. We have
[Py : Ay] =1 by definition. Since [Py : A,] < P, : A,], this can only be non-zero for p < X
by Proposition 4.27(c).

(b) Since A, is generated by S\ in degree supp(A), we have a surjection Py — A,, and
by composition with Ay — Ly, we also have a surjection Py — Ly. We note that Endg(P))
is finite dimensional and has no non-trivial idempotents; it is thus local in the sense of [Kr,
83| (see [Lam, Corollary 19.19]). It therefore follows from [Kr, Lemma 3.6] that Py — L, is
a projective cover. This implies that Py, — A, is a projective cover as well.

(¢) Put a(M) = dim Homg(Py, M) and (M) = [M : L,]. Thus we wish to show a(M) =
B(M) for all M. If M = Ly, then both quantities are 1. If M = L, for u # X, then
B(M) = 0. If a(M) # 0, then there is a surjective map Py — L,. If K is the kernel, then
the image of K in Ly is a proper submodule by (b) and hence 0, so this implies that we
have a surjection L, = Py/K — L, which is a contradiction, and hence a(L,) = 0. Hence
a(M) = (M) if M is simple.

If A does not occur in M, then (M) = (M) = 0.

Now, suppose M is pointwise finite. Let 0 = Fy C --- C F,, = M be the filtration provided
by Proposition 4.17 with = = {A}. The subquotient F;/F;_; is either simple or does not
contain A, and so we have a(F;/F;_;) = [B(F;/Fi_1). Since both a and  are additive in
short exact sequences, we conclude that (M) = B(M). Finally, let M be arbitrary and
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write M = hﬂ M; where the M; range over the pointwise finite submodules of M. We have
B(M) = sup f(M;) and (M) = sup a(M;) since Hom(Py, M) = lim. Hom(Py, M;) and the
transition maps are injective. Since S(M;) = a(M;) for all 4, it follows that a(M) = S(M),
which completes the proof.

(d) This follows from (a) and the corresponding fact for standard modules.

(e) We first show that such a decomposition exists. We proceed by induction on A. Write
P, = P, @ Q for some projective (). By Proposition 4.27(c), we have [@ : A,] = 0 unless
1 < X note that [Py : Ay] = [Py : Ay = 1, and so [Q : Ay] = 0. It follows that Q is
a quotient (and therefore summand) of a sum of ﬁu’s with g < A. Thus, by the inductive

hypothesis, () is a summand of a sum of such P,’s, and thus (by Proposition 3.15), @ is a
sum of such P,’s.

Now, write ﬁ/\ = GBM <A Pfa“(“ ), which we can do by the previous paragraph. We have
dim Homg (P, L) = d,,» by (c), and so

a(p) = dim Home (Py, L,) =mx(L,).

where in the second step we used Proposition 4.27(b).

(f) This follows from (e) and the corresponding result for P.
(g) This follows from (f) and Proposition 3.15. O

Proposition 4.29 (BGG reciprocity). For \,u € A we have
[Pr: A = [Vt Ly
If & admits a transpose then these quantities coincide with [A,, : L,].
Proof. By Propositions 4.25 and 4.28(c), we have
[Py : A,] = dimHomg (P, V,) = [V, : Ly].
If & admits a transpose then [V, : Ly] = [A, : L,]. O

4.10. Injective modules. The discussion of the previous section applies equally well to
injectives. We briefly summarize the main points. Put T, A = ki(S)). Write I, Aa=L®---BI

with each J; an indecomposable injective (Proposition 3.15). We have [I, : V,] = 1, and so
[I; : V] = 1 for exactly one value of i. We define I to be this summand. Note that I,\v =Py,

since Py is an indecomposable summand of Ly = ﬁ)\v containing V) with multiplicity one.
The following results are dual to those about P, and P, above, so we omit the proofs.

Proposition 4.30. We have the following:
(a) Iy is co-semistandard; [I\ : V] =1 and [I) : V,] is non-zero only for p < .
(b) I is the injective hull of V and L.
(¢) We have dim Homeg (M, 1)) = [M : L,] for any &-module M.
(d) We have I, = @#Q 15" where a(u) = ma(Ly).
(e) Every &-module is a submodule of a direct product of I,’s.

4.11. Tensor products. Let ® and &’ be triangular categories. Then (U x &', D x D’) is a
triangular structure on & x &', and we regard & x @&’ as a triangular category in this way.
(Here x denotes the product in the sense of linear categories.) A monoidal triangular
category is a triangular category & equipped with a monoidal operation II such that the
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functor IT: & x & — & is triangular and all structure isomorphisms (such as the associator)
belong to 9.

Suppose that & is a symmetric monoidal triangular category, with monoidal operation II.
Then II induces symmetric monoidal structures on 4, ®, and 91, and the functors i, 7/, j,
7', and k are monoidal. The monoidal operation induces tensor products ®g, Ry, ®p, and
®om on the module categories Modg, Mody, Modg, and Modgy as in §3.10, and the various
(=), functors are monoidal with respect to these products.

Proposition 4.31. Let M and N be ®-modules. Then we have a natural isomorphism
Tor® (,(M), 1(N)) = ji(Tor® (M, N)) for all p.

Proof. Let P, — M be a projective resolution of ®-modules. Since j is exact and takes pro-
jectives to projectives, we see that ji(P,) — ji(M) is a projective resolution of &-modules.
Thus Tor®(ji(M), j1(N)) is computed by ji(N) ®e ji(P,). Since j; is monoidal, this is iso-
morphic to ji(N @9 P,). As N ®g P, is the complex computing Tor? (M, N) and j; is exact,
the result follows. O

Proposition 4.32. Suppose ® is exact on Modyg, and let M and N be semistandard &-
modules. Then M ®@g N is semistandard and TorS(M, N)=0 forp>0.

Proof. First suppose that M = Ay and N = A, are standard. Thus M = j(Sy) and
N = ji(S,), and so M@g N = 5i(S\®9S,,) since ji is monoidal. We therefore find that M ®s N
is semistandard by Proposition 4.26. By the previous lemma, we find that Torf(M ,N) =
Torf(S,\, S,) =0 for p > 0, since ®p is exact.

We now treat the general case by induction on the sum of the lengths of the standard
filtrations of M and N. Suppose M is non-zero and choose a short exact sequence

0 =A== M-=>M =0

with M’ semistandard. Since Tory (M’, N) = 0 by the inductive hypothesis, we find that the
sequence
0= AR N = MR N — M s N —0

is exact. Since the outer terms are semistandard by the inductive hypothesis, so is the middle
term. We also have exact sequences

Tory (Ay, N) — Tory (M, N) — Tory (M', N)

for all p. The inductive hypothesis shows that the outer terms vanish, and so the middle one
does as well. M

4.12. A criterion for (T3). We now give a criterion to simplify the task of verifying the
axiom (T3). Let & be a k-linear category with wide subcategories 4l and © satisfying (T0),
(T1), and (T2). Suppose that for all objects z,y € & we have a subset of Homg(x, i), whose
elements we refer to as distinguished, such that the following conditions hold:

(a) The distinguished elements form a k-basis of Homg(z,y) for all 2 and y.

(b) The basis of distinguished element is adapted to Homg(z,y) and Homg(z,y), that is,
these spaces are spanned by the distinguished elements they contain.

(¢) If B: 2 — y is a distinguished morphism in ® and a:y — z is a distinguished
morphism in i then a o 3 is a distinguished morphism.
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(d) Any distinguished morphism ¢: z — z can be factored as a o 3, where f: z — y
is a distinguished morphism in ®, and «a: y — 2 is a distinguished morphism in
il Moreover, this factorization is unique up to 9M-isomorphism, in the sense that
if o = o’ op, with f': v — 3 a distinguished morphism in ©® and o': 3y — 2z a
distinguished morphism in 4, then there exists an isomorphism 7: y — ¢’ in 9% such
that 3 =ioB and o/ = aoi™t.

Proposition 4.33. In the above setting, axiom (T3) holds, and so (4,D) is a triangular
structure.

Proof. Without loss of generality, assume that & is skeletal (isomorphic objects are equal).
Pick z,z € & and consider the composition map

¢: @ Homi((yv Z) ®Endgﬁ(y) HOIH@ (l‘, y) — HOH]@ ('Ta Z)
yed

Let 1, ...,7, be the distinguished elements of Homg(z, 2), which form a basis by (a). For
each i, choose a factorization v; = o; o B; where «;: y; — z and [;: * — y; are distinguished
morphisms in 4 and D; this is possible by (d).

We claim that the elements «; ® 8; span the domain of ¥». By (b), this space is spanned by
elements of the form oo ® 3 where a: y — z and 3: x — y are distinguished morphisms in 1
and D, so it suffices to express these elements in the desired form. By (c), the composition
ao (3 is distinguished, and therefore equal to v; for some ¢. We thus have v, = a0 = ;0 ;.
By the uniqueness property in (d), we have y = y; and there is an automorphism o of y in
9M such that 8 = 0o B; and o = o; 0 0L, We thus have a ® 8 = ;0™ @ 08; = o; @ 3;,
since the tensor product is taken over Endgy(y). This establishes the claim.

Since the elements «; ® f; span the domain of ¥ and map bijectively to a basis, it follows
that ¢ is an isomorphism. Thus (T3) holds. O

4.13. A generalization. Given a triangular category &, one gets abelian categories Modg,
Mody, Modg, Modsy, and various functors between them coming from 4, j, 7', and j'. In fact,
one can abstract this situation, as follows. Consider a commutative (up to isomorphism)
diagram of abelian categories

A, A,
ol T
Ay~ A

We require a number of axioms; we list only the most important ones:

e The functors i*, j*, (i')*, (j')* are faithful, continuous, cocontinuous, and admit both
left and right adjoints.

e The category A,, is semi-simple, and (i')* and (j')* identify the semi-simple subcat-
egories of Ay and A, with A,,.

e The simple objects of A,, can be ordered so that all extensions in A, are upwards
and all extensions in A, are downwards.

e The base change isomorphisms of Proposition 4.4(a,b) hold.

Nearly all constructions and results in this section can be carried out in this framework. This
framework is in some ways more natural, since it provides exactly what is needed for the key
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constructions and results. However, we decided to work in the slightly more special setting
of triangular categories since they are less technical and cover the examples of interest.

5. THE BRAUER CATEGORY

5.1. Motivation. Before defining the Brauer category, we attempt to explain where it comes
from. Let V be a finite dimensional complex vector space equipped with a non-degenerate
symmetric bilinear form. The idea of the Brauer category is to record all the obvious maps
between tensor powers of V' that commute with the action of the orthogonal group O(V).
For clarity, we work with tensor powers where the power is a finite set: if S is a finite set of
cardinality n then V®% is isomorphic to V¥, but the tensor factors are indexed by S; when
S = [n], we identify V®5 with V", There are three fundamental examples of maps between
tensor powers:

e Given a bijection ¢: S — T there is an induced isomorphism ¢, : V& — VT,
e The map a: V®? — C given by the form. (Note C = V)
e The map b: C — V®? that is dual to a.

There are three ways that we can build new maps from existing ones:

e Given maps V& — VT and V¥ — VU we can form their composition to obtain
a map V& — VU,

e Given maps V@9 — VOl and V@92 — V2 we can form their tensor product to
obtain a map V®E1lS2) _ ye(NllT:)

e Given two maps V& — VT we can form a linear combination.

Starting with the fundamental examples and applying these constructions, we can create an
endless supply of maps.

There is a convenient way of recording the maps produced by the above constructions
using certain diagrams. A Brauer diagram from S to T is a perfect matching on S 11T
that is, it is a partition of the set S II'T into disjoint subsets of size two. We picture such a
diagram by regarding the elements of S and 7" as forming two rows of vertices, with the S
row below the 7" row. We thus have three types of edges: wvertical edges contain one vertex
in S and one in T'; horizontal edges in S contain two vertices in S; and horizontal edges in
T contain two vertices in 7. In essence, these three types of edges correspond to the three
fundamental maps between tensor powers.

Given a Brauer diagram o from S to 7', we associate to it a linear map a,: V&9 — V&7
by applying the map a along horizontal edges in the S row, the map b along horizontal edges
in the T row, and identifying the remaining tensor factors along vertical edges. To be more
precise, let S” (resp. T7”) be the vertices of S (resp. T') contained in a vertical edge. The
vertical edges of « define a bijection o’: S” — T”. The map «, is then the composite

yes I yes 9 yer _h_yer
where f is the tensor product of the maps a: VE1#¥} — C over the horizontal edges (z, ) in
S, g is simply o, and h is the tensor product of the maps b: C — V®&¥} gver the horizontal
edges (z,y) in T.

Example 5.1. Suppose « is the following diagram from [3] to [5]
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Let e1, ..., e, be an orthonormal basis of V. Then «, is the map V&3 — V5 given by

a*(ei®ej®ek):6i,k26r®er®es®6]’®es- O

r,s=1

It turns out that the composition of two maps associated to diagrams is always a scalar
multiple of another such map. We now explain exactly how this works. Thus suppose that
a is a Brauer diagram from S to 7', and [ is one from 7" to U. Let 8 U a denote the graph
on ST T ITU whose edge set is the disjoint union of the edge sets of o and 3. Note that if
two vertices of T are joined in both a and S then they will be joined by a double edge in
£ Ua. We picture 8 U « by simply stacking 5 atop a. We let 3 e a be the Brauer diagram
from S to U in which there is an edge from z to y if there is a path from z to y in U a.
We also define ¢(3, @) to be the number of cycles in U «. Note that any cycle can only use
vertices in 7. We then have the fundamental formula:

(5.2) B, oa, = (dim V)P . (3 e q),.

This can be proved be a straightforward computation. As a consequence, we see that the
linear combinations of maps associated to diagrams account for all the maps obtained by
starting with the three fundamental maps and applying the three basic methods of creating
new maps.

Example 5.3. We highlight one simple but important example of composition. Let a be
the unique Brauer diagram from [0] to [2] and let 5 be the unique diagram from [2] to [0].
Then [ e v is the empty diagram from [0] to itself and ¢(5, @) = 1; also note that o, = b
and 5, = a. Thus (5.2) amounts to the fact that the composition

c—bce2_“.C

is multiplication by dim(V). We can see this directly as follows. Let ej,...,e, be an
orthonormal basis for V. Then b is the map 1 — > | e;®e;, while a is the map e;®e; — 0 ;.
Thus @ maps each term of b(1) to 1, and since there are n terms we find a(b(1)) = n =

dim(V). O

Example 5.4. We now give an example illustrating a more complicated composition. Let
B: [7] — [5] be the diagram

and let a: [3] — [7] be

The graph g U « is then
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—~ _—* ~ 7/
~—
This graph has a unique cycle, namely the 4-cycle on the vertices {3,4,5,7} in the middle
row, and so ¢(3,«) = 1. The graph v = S e v is

— e e

N

Thus (5.2) becomes [, o a, = dim(V') - . O

5.2. Definition. Fix a field (or even a commutative ring) k and let 6 € k. We define the
Brauer category over k with parameter §, denoted &, as follows. The objects of & are
finite sets. The set Homg (S5, T) is the free k-module on the Brauer diagrams from S to 7.
For Brauer diagrams a € Homg(S,7") and 5 € Homg (T, U), the composite morphism /5 o «
is defined to be §¢%:) . (B ® a). Composition for general morphisms is defined by linearity.

The endomorphism algebras in & are exactly the classical Brauer algebras introduced by
Brauer in [Br|, and which have been studied extensively since. The Brauer category itself
appears in [LZ2], [De, §9], [Marl, §3.6], [Cou2, §2.1], and [RS].

A bijection S — T can be regarded as a Brauer diagram with only vertical edges, and
thus defines an element of Homg (S, 7). This construction is compatible with composition.
In what follows, we tacitly identify a bijection with its corresponding Brauer diagram. It is
not difficult to show that two finite sets S and 7" are isomorphic in & if and only if they
have the same cardinality.

We make one more simple observation about & here. A set can admit a perfect matching
only if it has even cardinality. Thus if there is a Brauer diagram from S to T, i.e., if
Homg (S, T') is non-zero, then S and T' must have the same parity. Hence & is the disjoint
union (in the sense of linear categories) of Beyen and Soqq, where Gepey (resp. Boqq) is the
full subcategory of & on sets of even (resp. odd) cardinality. We thus see that any &-module
decomposes into a direct sum of a Ben-module and a &,qq9-module, and that &.e,-modules
and &,qq9-modules do not interact with each other.

For the remainder of this section, we take k to be the field C of complex numbers.

5.3. Triangular structure. We say that a Brauer diagram from S to 7T is upwards if it
contains no horizontal edges in S, and downwards if it contains no horizontal edges in 7. We
define 4l to be the wide subcategory of & where Homy(.S,T") is the subspace of Homg (S, T)
spanned by upwards diagrams. We similarly define ® using downwards morphisms. We note
that the morphisms in 91 are exactly the linear combinations of bijections.

Proposition 5.5. With the above definitions, & is a triangular category.

Proof. We verify the conditions from the definition:

(TO) Every object of & is isomorphic to [n] for some n € N, and so & is essentially small.
The Hom sets are all finite-dimensional as the set of Brauer diagrams between two
fixed sets is finite.
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(T1) The endomorphism ring Endg([n]) = Endg([n]) is the group algebra of the symmetric
group &,, over C, and hence is semi-simple.

(T2) We have a natural bijection |&| = N, and the standard order on this set is clearly
admissible.

(T3) We use Proposition 4.33. The distinguished elements of Homg(z, y) are the elements
corresponding to the Brauer diagrams. Conditions (a) and (b) clearly hold. If « is
a downwards diagram and S is an upwards diagram, then 5 e o has no closed loops,
and so oo = [ e « is distinguished (i.e., is a Brauer diagram on the nose, and not
a scalar multiple). Thus (c) holds.

Finally, we verify condition (d). Let a: [n] — [m] be a given Brauer diagram.

Let S C [n] and T' C [m] be the elements contained in a horizontal edge. Let
p=n—|S] =m —|T|. Then we define 8: [n] — [p] to be any downwards Brauer
diagram that agrees with the original one on S; note that [ necessarily induces a
bijection [n]\ S — [p]. We then define v: [p] — [m] to be an upwards Brauer diagram
that agrees with the original on 7" and such that the bijection [p] — [m]\ T is chosen

so that the composition [n] \ S LN [p] = [m]\ T is the bijection induced by a. We
then have o = vy o 3. Any other such factorization simply differs by a permutation of

[p], and so (d) holds. .

Remark 5.6. If we take the coefficient field k to have positive characteristic, then Endy([n])
is no longer semi-simple, and so (4, D) does not define a triangular structure on &. The
representation theory of & in positive characteristic is still interesting, but much harder than
the characteristic 0 case, and we do not attempt to say anything about it. O

5.4. Lowest weight theory. As usual, we let 9 = UND. As we saw above, Endgy([n])
is the group algebra C[&,,] of the symmetric group. Its simple modules are the Specht
modules Sp, for partitions A of n. We thus see that the set A of weights for & is the set
of all partitions. For A € A, the simple 9)t-module Sy can be described as follows: if X is
a partition of n then Sy([n]) = Sp, is the Specht module, and Sy([m]) = 0 for m # n.
We note that for a &- (or Y-, ©-; or M-) module M, the multiplicity m (M) is simply the
multiplicity of Sp, in the &,-representation M ([n]).
The general theory provides us with a number of important &-modules:

The simple object Ly.

The standard module A, and co-standard module V.

The principal projective P,, and injective I,, corresponding to the object [n].
The projective ﬁ,\ = ki(S)) and the indecomposable projective Pj.

The injective I = k.(Sy) and the indecomposable injective I.

These objects will feature prominently throughout this series of papers. We now make a few
simple observations about them.

The objects Ay, P,, and 15,\ are, in a sense, independent of §. (The same holds for the
dual objects V,, I,,, and T,\) The following proposition shows one way in which this is true.
We let ¢, denote the Littlewood-Richardson coefficients [SS1, (2.13)].

Proposition 5.7. We have the following:

(a) mu(As) = 5, ¢k,
() [Py 8] =5, ¢}

v T,2v
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(¢) Po = @ppy PV
Note that everything here is independent of 9.
Proof. (a) Let |A\| = n. We have
i*Ay = i"5 Sy = Homg, (Spy, Py.n)

Let |u| = m. For a fixed inclusion [n] — [m|, &,,_, acts transitively on the set of perfect
matchings on [m] \ [n], let H,,_, be the stabilizer of a particular matching. Then we get

i*Ax([m]) = Indg’”me_n Sp, = @ Sp,.

lul=m
|v[=(m— n)/2

[SS1, (2.13), Example 6.3.4], so the formula follows.
(b) By Proposition 4.25, Proposition 4.27(b), and duality,

[ﬁ,\ : A, = dim Hom@(ﬁ,\, V) =ma(V,) =mx(A,),

and so the result follows from (a).
(c) We have C[6,] = D), SpY UMy a5 &, -representations. It thus follows that Py, =

D Sy dimSpx a5 9M-modules. Apply ki to get the desired identity. O

GBCA ,2v

The objects Py and L,, by contrast, depend in subtle ways on d. The following example
illustrates this for Pj.

Example 5.8. The principal projective Py is indecomposable, and coincides with both P,
and P,. Let A = (2). The decomposition of P, can only involve Py and P, for parity reasons.
There is a unique map f: Py — Py (up to scaling), and it factors through Py. We thus see
that P, is a summand of Py if and only if f is surjective.

Let us examine f more closely. By definition f takes the identity element of Py([2])
to the unique Brauer diagram o in Py([2]). Since every morphism in & can be factored
as a downwards morphism followed by an upwards morphism, we see that (im f)(0) is the
space spanned by applying all downwards maps [2] — [0] to «. There is a unique diagram
B:[2] = [0], and foa = §-idg. Thus if § # 0 then idy € im(f), and so f is surjective
since idjy generates Po, if 6 = 0 then idjg) & im(f), and so f is not surjective.

We thus find that PA = P\ & P, if § # 0, while P,\ = Py if § = 0. The standard pieces of
P,\ are Ay and Ay = P, each with multiplicity one. Thus P, = A, if § # 0, while Py is a
non-trivial extension of Ay by Ag if § = 0. O

5.5. The noetherian property. The following is a fundamental result about the Brauer
category and will be used constantly in what follows.

Theorem 5.9. The category Modg is locally noetherian, that is, any submodule of a finitely
generated &-module is again finitely generated.

Proof. We have previously shown that Mody is locally noetherian (see [NSS, Theorem 1.1,
Remark 1.3], and note that what is called FIM there is the same as our { here), and so the
result follows from Proposition 4.6. U
Remark 5.10. Some points related to the theorem:

(a) The theorem implies that the category of finitely generated &-modules is abelian.
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(b) Due to (a), it makes sense to consider the Grothendieck group of finitely generated
®-modules. Determining this group is a fundamental problem, which we solve in
[SS10].

(¢) By [NSS, Remark 1.3], the category of {f-modules is equivalent to the category of
GL.-equivariant modules over the infinite variable polynomial ring Sym(Sym?*(C>))
(with a polynomiality condition on the GLy.-action). This point of view allows one
to apply tools from algebraic geometry and commutative algebra to study {-modules,
which is crucial to the proof of [NSS, Theorem 1.1]. This perspective will be important
in this series of papers too.

(d) If M is a B-module, then the lattice of submodules of i*M is generally much larger
than that of M, so local noetherianity of Modg should be an easier property to prove
than that of Mody. However, the above proof is the only one we know. O

5.6. Tautological modules. Suppose that § = p is a non-negative integer. Equip V = CP
with a non-degenerate symmetric bilinear form. Given a Brauer diagram « from S to T', we
defined a linear map a,: V% — VT in §5.1. Moreover, from (5.2) and the definition of the
Brauer category, it follows that formation of «, is compatible with composition in &, that
is, we have (80 a), = S, o a,. In other words, the rule S — V®° defines a $-module, which
we denote by T),0. The transition maps in 7}, are compatible with the action of O,. We can
thus regard O, as acting on 7}o; alternatively, we can regard 7}, as a functor to Rep(Oy,).

More generally, suppose that ¢ is an integer, and we have § = p — ¢ for non-negative
integers p and ¢ with ¢ even. Equip the super vector space V = CPI? with a non-degenerate
symmetric bilinear form. Given a Brauer diagram « from S to 7', the same construction
yields a map a,: V9 — VET (keep in mind the sign conventions when dealing with super
vector spaces), which is also functorial. We denote the resulting -module by 7},,. As above,
the super group OSp,,, acts on Tj,, and we can view Ty, as a functor to Rep(OSpp|q).

In essence, the Brauer category was defined so that the T}, would be modules. For that
reason, we refer to them as tautological modules. These modules will play an important
role in our study of the Brauer category, especially in [SS9]. We emphasize that tautological
modules exist only when the parameter 0 is an integer. This is one manifestation of the fact
that the Brauer category behaves very differently depending on whether ¢ is an integer or
not.

5.7. Duality. Mathematically, a Brauer diagram from S to T is exactly the same as a
Brauer diagram from 7" to S; the only difference between the two notions is which vertices
we put on the bottom when we draw them. Moreover, this symmetry is compatible with
composition. In other words, we have an equivalence of categories

TG 6.
Explicitly, 7 is the identity on objects, and the bijection
7: Homg (S, T) — Homg(S,T') = Homg (7, S)

takes a Brauer diagram from S to 7" to the same graph, but regarded as a Brauer diagram
from T to S. It is clear that 7 is a triangular equivalence and squares to the identity.
Moreover, 7%(SY) is isomorphic to Sy, since Specht modules are self-dual. Thus 7 is a
transpose on & (in the sense of Definition 4.10).
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Suppose that M is a &-module. We can then regard the ®-module MY as a G-module
via 7. In what follows we always do this. We thus have a duality functor

(—=)Y: Mod%® — Mods .

It induces an equivalence on the subcategories of pointwise finite modules. We also have
duality functors between 4 and ® modules, and a duality functor on 9t-modules.
On the main objects of interest, duality is given as follows:

Sy = S, LY = I, A} =V,
P, =1, Pl =1, Tole = Toig

We have already explained that Sy is self-dual. The formulas for LY and A} are discussed in
Remark 4.15. The formula for P/ is discussed in §3.4, while that for Py is discussed in §4.10.
Finally, let V = CPl9 equipped with a non-degenerate symmetric form. The form gives an
isomorphism V®% = (V®5)* for all finite sets S, and one verifies that this is compatible with
maps in the Brauer category, after identifying it with its opposite; this shows that T, is
self-dual.

5.8. The tensor product. Given Brauer diagrams o: S — T and o/: " — T”, the disjoint
union of @ and o/ is a Brauer diagram from S I1 .S’ to T'II T". It is clear that a disjoint
union of upwards (resp. downwards) morphisms is upwards (resp. downwards). We thus see
that & has the structure of a symmetric monoidal triangular category. We thus get tensor
products on the various modules categories as in §4.11.

Proposition 5.11. The tensor product ®g on Modyg is exact.

Proof. Let U be the wide subcategory of & where the morphisms are upwards Brauer dia-
grams (not linear combinations of such diagrams). Then 4 = k[U]. We prove that property
(S.) holds for all objects x of Y and then apply Proposition 3.27 (since ® = ). Fix
x = [n]. Consider the set of upwards diagrams ¢: [n] — [a] II [b] where every horizontal edge
has one endpoint in [a] and one in [b]. We consider two of them to be equivalent if they differ
by permutations of either [a] or [b] and let I be a set of representatives for the equivalence
classes. For ¢ € I, we denote the corresponding representative ¢;: [n] — [a;] LT [b;].

Let ¢: [n] — yII z be any upwards Brauer diagram. Let S C y be the subset obtained
by removing all horizontal edges (and vertices) such that both of its vertices are in y and
similarly define 7" C 2. Let ¢: [n] — S LI T be the restriction of ¢ to these subsets. There
is a unique ¢ € I such that ¢ = ¢; for some choice of bijections [a;] = S and [b;] = T.
Furthermore, we then have a pair of upwards Brauer diagrams «: [¢;] — y and §: [b;] — =
such that ) = (o II ) o ; and this choice of («, 3) is unique up to the stabilizer of ¢; in
Auty([a;]) x Auty([b;]). This establishes (S,) and we finishes the proof. O

Corollary 5.12. If M and N are semistandard &-modules then M ®g N is semistandard
and Torf(M, N) =0 forp>0.

Proof. This follows from Proposition 4.32. U

Remark 5.13. A number of remarks related to tensor products:

(a) The tensor product ®g is not exact. This will become clear in [SS9].
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(b) The tensor product ®y is also not exact. One can see this as follows. Let A be the tca
Sym(Sym?(C*>)). Then Mody is equivalent to Mod, (see [SS2, (4.3.1)]), and under
this equivalence ®g corresponds to ®4 (as one can see by considering projectives, for
instance), which is not exact.

(c) The exactness of ®g also follows (though more indirectly) from the results of [SS2,
(4.3.1)]: there we show that Modg is equivalent to a certain category of represen-
tations of O, and that, under this equivalence, ®5 corresponds to the usual tensor

product.
(d) An important problem is to classify ideals of & (as defined in §3.10). We solve this
problem in [SS8]. O

6. THE PARTITION CATEGORY

6.1. Motivation. Let V = C” be the permutation representation of the symmetric group
S, with basis ey,...,e,. The idea of the partition category is to record all the obvious
S,,-equivariant maps between tensor powers of V.

Consider the map

gz VO — V& Cir,.iis Z Oitoyisst oot €t oot
J1yeesJt
where e, i, =€, ®---®e;,, and ¢ is 1 if all indices are the same and 0 otherwise. For
example:

e ap1: C — V maps 1 to the invariant vector Y. e;.

a1 o: V — C is the augmentation map, defined by e; — 1 for all i.

a1: V — V is the identity map.

as1: VO — V is given by e;; — §; je;.

ar2: V — V& is given by ¢; — ¢; Q@ ¢;.

We have an analogous map agr: V® — V®T for finite sets S and T (e.g., pick bijections

S = [s] and T' = [t] and transport as,). One easily sees that these maps are &,,-equivariant.
We can now apply the same three constructions as in §5.1 (composition, tensor product,

linear combination) to create more maps from these. The resulting maps are once again

conveniently represented by certain diagrams, as follows. Let S and T be finite sets. A

partition diagram from S to T is a partition of the set S II T" into non-empty disjoint

subsets. Given a partition diagram o from S to T, we let a,: V9 — V@T bhe the tensor

product of the maps agny v taken over the parts U of a. This is an &,-equivariant map.

Example 6.1. Let « be the partition diagram from [4] to [5] given by

Ll . . . .
. L] . .
Then o, : V& — V® is given by
n
(€4 in,isia) = Oiy i § €jinisyiaia: O
i1

As in the previous case, the composition of two maps corresponding to diagrams is a scalar
multiple of another such map. We now explain exactly how this works. Suppose that a is a
partition diagram from S to T" and [ is a partition diagram from 7" to U. Let S U « denote



BRAUER CATEGORIES I: TRIANGULAR CATEGORIES 39

the set SII T II U equipped with all the parts from « and § (possibly with multiplicities);
this is not a partition since each vertex of 1" appears in two parts. Let fLa denote the result
of merging all parts in § U « that meet; this is a partition of SII T II U. We define S e a to
be the induced partition of S IT U (i.e., intersect each part of S0« with S 11 U, discarding
empty sets), and we let ¢(f, a) denote the number of parts of S0« that contain only vertices
of T. We then have the fundamental formula:

B, o, = (dim V)P (5 e a),.
Again, this can be proved by a straightforward computation.

Example 6.2. We give an example illustrating composition in the partition category. Let
B: [7] — [5] be given by the following diagram

and let a: [4] — [7] be given by

The partition U« is then given by

. . . . .

. . . .

There are two parts concentrated in the middle, and so ¢(3, a) = 2. The partition v = S e«
is given by

We thus have 3, o a, = (dim V)% - ,. O

6.2. Definition. Fix a field (or even a commutative ring) k and let 6 € k. We define the
partition category over k with parameter ¢, denoted &, as follows. The objects of & are
finite sets. The set Homg(S,T) is the free k-module on the partition diagrams from S to
T. For partition diagrams o € Homg(S,T) and 8 € Homg (T, U), the composite morphism
S o« is defined to be 594 . (8 @ @). Composition for general morphisms is defined by
linearity. As with the Brauer category, we tacitly regard bijections as morphisms in the
partition category.

The endomorphism rings in the partition category are the classical partition algebras
introduced in [Marl] and [Jo], and studied in [HR]. The partition category itself appears in
[Mar2, §5] and [Com, §2.2].

For the remainder of this section, we take k to be the field C of complex numbers.
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6.3. Triangular structure. We say that a partition diagram from S to 7T is upwards if
each part meets 7', and meets S at 0 or 1 elements; we define downwards analogously. We
define 4 (resp. @) to be the wide subcategory whose Hom spaces are spanned by upwards
(resp. downwards) morphisms.

Proposition 6.3. Assume k = C. Then &, with the above (U, D), is a triangular category.

Proof. We verify the conditions from the definition:

(TO) Every object of & is isomorphic to [n] for some n € N, and so & is essentially small.
The Hom sets are all finite-dimensional as the set of partition diagrams between two
fixed sets is finite.

(T1) The endomorphism ring Endg([n]) = Endg([n]) is the group algebra of the symmetric
group &, over C, and hence is semi-simple.

(T2) We have a natural bijection |&| = N, and the standard order on this set is admissible.

(T3) We use Proposition 4.33. The distinguished elements of Homg(z, y) are the elements
corresponding to the partition diagrams. Conditions (a) and (b) clearly hold. If
a is a downwards diagram and [ is an upwards diagram, then SCa has no parts
concentrated in the middle, and so foa = (e « is distinguished (i.e., is a partition
diagram on the nose, and not a scalar multiple). Thus (¢) holds.

Finally, we verify condition (d). Let ¢: S — T be a partition diagram. Let U be
the set of parts of ¢ that have nonempty intersection with both S and 7. We define
a partition diagram a: S — U as follows: each u € U is joined with the elements
of S that it contains, and all other elements of S are joined as they were in . We
similarly define a partition diagram g: U — T. Then « is downwards, § is upwards,
and ¢ = foa. Any other such factorization has to go through a set of the same size
as U, so we see that the factorization is unique up to a permutation of U. O

Remark 6.4. We do not know if the upwards category U is noetherian; in fact, we suspect
it is not. However, we will show in [SS8] that all finitely generated &-modules have finite
length, and are therefore noetherian. O

6.4. Tautological modules. Suppose that § = n is a non-negative integer. Let V = C"
be the permutation representation of &,. Given a partition diagram a from S to T, we
defined a map a,: V5 — V®T in §6.1. The definition of the partition category ensures that
formation of «, is compatible with composition in &. We thus have a -module given by
T(S) = V® and T(a) = a., which we call the tautological module. Since the maps a.
are G,-equivariant, we can regard &,, as acting on 7. Alternatively, T is a functor from &

to Rep(&,,).

6.5. Duality. Just like for Brauer diagrams, a partition diagram from S to 7T is exactly the
same as a partition diagram from T to S. This gives rise to a transpose functor 7: & — & (in

the sense of Definition 4.10). For the primary &-modules of interest, duals can be computed
as in §5.7.

6.6. The tensor product. Just like for Brauer diagrams, given partition diagrams a:: .S —
T and o/: S" — T, the disjoint union of a and o' is a partition diagram from S IT S’ to
TIT'. It is clear that a disjoint union of upwards (resp. downwards) morphisms is upwards
(resp. downwards). We thus see that & has the structure of a symmetric monoidal triangular
category. We thus get tensor products on the various modules categories as in §4.11.
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Proposition 6.5. The tensor product @5 on Modg is exact.

Proof. We prove that property (S,) holds for all objects z of & and then apply Proposi-
tion 3.27 (since ® = U°P). Fix z = [n]. Consider the set of upwards diagrams ¢: [n] — [a|LL[]
where no part of ¢ is a subset of [a] nor is a subset of [b)]. We consider two of them to be
equivalent if they differ by permutations of either [a] or [b] and let I be a set of representatives
for the equivalence classes. The rest of the proof is the same as the proof of Proposition 5.11,
so we omit the details. O

Corollary 6.6. If M and N are semistandard &-modules then M ®¢ N is semistandard and
Tory (M, N) =0 for p > 0.

Proof. This follows from Proposition 4.32. U

Remark 6.7. The exactness of ®g5 also follows (though more indirectly) from the results of
[SS2, (6.3.32)]: there we show that Modg is equivalent to a certain category of representations
of &, and that, under this equivalence, ®4 corresponds to the usual tensor product. 0]

7. OTHER COMBINATORIAL TRIANGULAR CATEGORIES

7.1. Brauer-like categories. The Brauer category records the obvious maps between ten-
sor representations of the orthogonal group. By considering other Lie (super)groups (or other
representations), one obtains similar categories. We now explain a number of examples.

7.1.1. The signed Brauer category. This category records the obvious maps between tensor
powers of the standard representation of the symplectic group.

e We define the signed Brauer category & as follows. The objects are finite sets. A
signed Brauer diagram from S to T is a Brauer diagram in which the horizontal
edges are oriented. The space Homg(S,7T) is spanned by signed Brauer diagrams
from S to T" modulo the following relation: if 3 is obtained from « by inverting the
orientation of a single edge then § = —a. To compose two diagrams, proceed as
in the Brauer category, but first adjust orientations so that all paths and cycles are
oriented coherently.

e The usual construction endows & with a triangular structure. We have Endgr([n]) =
C[S,], and so the set of weights is again identified with the set of partitions.

e Suppose § = p is a non-negative even integer. Let V' be a symplectic space of dimen-
sion p. We then have a tautological module T}y that takes S to V@5, The action of
Ty on morphisms is defined similarly to the Brauer category case; the one modifi-
cation is that the orientation is used to determine which tensor factor is placed first
when applying a or b. More generally, we have tautological modules 7,, whenever
0 = p — q with p even by considering super symplectic spaces.

e The upwards category is noetherian by [NSS, Theorem 1.1], and so & is noetherian.

e The category & has a transpose functor and monoidal structure, similar to the Brauer
category. The functor ®4 is exact.

In fact, the signed Brauer category is, in a sense, nothing new:

Proposition 7.1. Let &' be the Brauer category with parameter —0. Then we have an
equivalence of triangular categories & = &',
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Proof. We are free to replace & with a skeletal subcategory, so we assume all objects have
the form [n] for some n € N. Let a be a signed Brauer diagram from [n] to [m]. Let
i: [n] 1T [m] — [n 4+ m] be the bijection that is the identity on [n] and takes j € [m] to
n+m+ 1 —j. Let o be the oriented matching on [n + m] obtained by transferring o via
i, and orienting all former vertical edges from smaller values to larger values. Define €(«)
to be the sign of any permutation that transforms o' to the standard oriented matching
{(1,2),(3,4),...} with 2i —1 oriented towards 2i for all i. Also, let @ be the Brauer diagram
from [n] to [m| with the orientations forgotten. Then a +— e(a)a@ is a well-defined linear map
Home ([n], [m]) — Home ([n], [m]).

Define ®: & — &’ by ®([n]) = [n] and ®(«a) = e(a)a. We claim this is a functor, i.e., for
any signed Brauer diagram § from [m] to [p], we have ®(af) = ®(a)P(S). Without loss of
generality, we may assume that the horizontal edges of @ and 3 are oriented so that any loops
in U are coherently oriented. We thus have avo 8 = §%*# e and @of = 6@ me 3. We
also claim that e(a e 8) = e(a)e(S), which will prove that ® is compatible with composition.
To see this, we will reduce to the case that o and 8 have no horizontal edges, in which case
this becomes multiplicativity of the sign of permutations.

First, suppose o U 3 has a loop consisting of 2r edges which looks like the following up to

mirroring:
—

By applying a bijection on [m] (which does not affect e(a e §) nor e(a)e(3)), we can assume

that this loop uses the numbers 1,...,2r. To transform o’ into the standard matching, we
don’t need to do anything to these edges. To transform (" into the standard matching, we
can use an even permutation on {1,...,2r}: first we move the leftmost vertex past the other

r — 1 edges and then we swap the orientations on those r — 1 edges (here is where it is

important that we used the flipped ordering on the target to define i) for a total sign of

(—1)>2 = 1. Hence, e(a e 3) te(a)e(3) is the same if we remove these edges from a and f.
Similarly, consider the following local modification to a and f:

= e

We can again apply a bijection to [m] to assume that the top 2 vertices are {1,2}. Then we
can apply an even permutation to 5’ so that these two edges become (1,2) and (3,4) in [n]
and the remaining edges are shifted over by 2: we first send the second to rightmost vertex
in [m] to 3 € [n] and shift everything else in [m] and {4,...,n} over by 1 and then we send
the rightmost vertex in [m] to 2 € [n] and shift everything else in [m] and {3,...,n} over
by 1 for a total sign of (—1)m 2tn=3+tm=1tn=2 — 1 Qo again we see that e(a o 8) 'e(a)e(8)
remains the same if we make this modification. The same holds for the mirror versions of
this modification with respect to the vertical and horizontal axes.

Finally, it is easy to see that removing any horizontal edges from [n] or from [p] does not
affect e(cv @ 3)7'e(a)e(B). We conclude that ®(a)® () = ®(a8) in general.

It is clear that ® fully faithful, and hence is an equivalence of categories. It is also clear
that ® and its quasi-inverse preserve the upwards and downwards categories, and are thus
triangular. O

Remark 7.2. A few remarks related to the proposition:
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The proposition is closely related to the well-known fact that the Brauer algebra at
parameter 6 = —2n acts on tensor powers of the standard representation of Sp,,,.
The equivalence & — &’ is monoidal but not symmetric monoidal; the same holds for
the induced equivalence Modg — Modg. The situation is similar to the equivalence
Rep(Sp) = Rep(O) discussed in [SS2, (1.3.3)]. In other words, the existence of the
signed Brauer category can be viewed as the existence of a non-standard symmetric
structure on the tensor product for the usual Brauer category.

For a partition A, let AT denote the transposed partition. Then, under the equivalence
Modg = Modg/, the &-modules Py, Ay, and L) correspond to the &'-modules P+,
Ayi, and Ly (and similarly for injectives, co-standards, etc.).

We will give a more conceptual proof of the proposition in [SS7]. 0

The walled Brauer category. This category records the obvious maps between mixed
powers of the standard representation of the general linear group.

We define the walled Brauer category & as follows. The objects are 2-colored finite
sets; we denote them as pairs (57,53). A walled Brauer diagram between two 2-
colored sets is a Brauer diagram where vertical edges join vertices of the same color,
while horizontal edges join vertices of different colors. Composition works just as in
the Brauer category.

This category appears in [De, §10], [CoWi, §3], and [Cou2, §2.2] (as the “oriented
Brauer category”).

The endomorphism rings in & are the walled Brauer algebras appearing in [Koil, [Tu],
and [BCT].

The usual construction endows & with a triangular structure. In this case, we have
Endoy(([n], [m])) = C[&,, x &,,,], and so the set of weights is naturally identified with
the set of pairs of partitions.

Suppose § = p is a non-negative integer, and put V' = C?. We then have a tautological
module Ty defined as follows. The 2-colored set (S1, Ss) is taken to V&1 @ (V*)®52.
Maps are defined similarly to the Brauer category case, with the maps V @ V* — C
and C — V ® V* taking the place of the maps a and b from §5.1. More generally,
if 6 is an integer and 6 = p — ¢ for non-negative integers p and ¢ then we have a
tautological module 7, defined in the same manner with V' = Crla,

The upwards category is noetherian by [NSS, Theorem 1.2] (note that Sym(C(1, 1))
is equivalent to Modg by [SS2, §3.3.1]), and so & is noetherian.

The category & has a transpose functor and monoidal structure, similar to the Brauer
category, and the functor ®g is exact.

The category & has a triangular involution given by flipping colors, i.e., (S, Ss) —
(S2,51). This induces an involution of Modg that acts on the named modules in the
expected manner (e.g., Ly, — L, and A, , = A, ).

The periplectic Brauer category. This category records the obvious maps between
powers of the standard representation of the periplectic super group. (Recall that a

periplectic form on a super vector space V is a symmetric linear form of odd degree, i.e., a
linear map Sym?*(V') — k[1].)

We define the periplectic Brauer category & as follows. The objects are finite sets. A
periplectic Brauer diagram from S to 7" is a Brauer diagram in which the horizontal
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edges in S are oriented, and the set of horizontal edges is totally ordered; revers-
ing orientation of an edge in S introduces a sign, as does transposing consecutive
horizontal edges in the order. The composition of two morphisms is defined as for
Brauer diagrams at parameter 6 = 0, up to sign issues. See the following references
for details.

This category was introduced in [KT] (under the name “marked Brauer category”),
is discussed in [Cou, §2.1] and [Cou2, §2.3] (under the name “periplectic Brauer
category”), and also appears in [BE, Example 1.5(iii)] (under the name “odd Brauer
supercategory” ).

The endomorphism rings in & are the periplectic Brauer algebras introduced by Moon
[Mo] (see also [JPW, Proposition 4.1]), and studied in papers of Coulembier—Ehrig
[Cou, CE, CE2].

The usual construction endows & with a triangular structure. We have Endgy([n]) =
C[6,,], and so the set of weights is identified with the set of partitions.

Let V' be a periplectic space of dimension p|p. Then we have a tautological -module
T, defined by T,(S) = V®5. Morphisms are defined similarly to the Brauer case; see
KT, §5] for details.

The category of representations of the upwards periplectic Brauer diagram is locally
noetherian by [NSS2, Theorem 1.1]: the upwards category is equivalent to the twisted
skew-commutative algebra A (Sym?) rather than Sym(Sym?®) as in the Brauer case
because of the sign convention ibout swapping the order of horizontal edges.

There is an equivalence & = & of triangular categories. FEssentially, one flips the
diagram as in previous cases, and then multiplies by a sign as in the proof of Proposi-
tion 7.1 to account for the discrepancies in which edges are oriented. This equivalence
takes a weight \ to its transpose AT (in the sense of partitions), and is therefore not
a transpose functor in the sense of Definition 4.10. The category & has a monoidal
structure, similar to the Brauer category, and the functor ®5 is exact.

7.1.4. The queer walled Brauer category. This category records the obvious maps between
mixed tensor powers of the standard representation of the queer super group. (Recall that
the nth queer super group is the stabilizer of an odd-degree involution of C"".)

e We define the queer walled Brauer category & as follows. The objects are 2-colored

sets; we denote them as pairs (S7,52). A queer walled Brauer diagram between two
2-colored sets is a walled Brauer diagram where some of the edges are allowed to have
an additional marking. Composition is defined as in the walled Brauer category with
9 = 0 up to sign issues (which uses the markings on the edges). See [JK, §4] for the
details of determining this sign in the case of endomorphisms.

This category is discussed in [Cou2, §2.4] under the name “oriented Brauer—Clifford
category.”

The endomorphism algebras in & were introduced in [JK], under the name “walled
Brauer superalgebras.”

The usual construction endows & with a triangular structure. The endomorphism
algebra Endgy(([n],[m])) is identified with H, @ H,,, where H, is the nth Hecke
Clifford algebra, and so the set of weights is identified with the set of pairs of strict
partitions, see [ChWa, §3.3]. (Recall that a partition is strict if it has no repeated
parts.)
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e Let V = CPPP be a super vector space equipped with an odd-degree involution o. We

have a tautological module T}, defined by T),(S1, S2) = V&5 @ (V*)®%2. The action of
morphisms is similar to the walled Brauer case, with the marked edges using «; see
[JK, §3] for details in the case of endomorphisms (the general case being similar).
The noetherian property for the upwards category will be proven in [NSS3].

The category & has a transpose functor and monoidal structure, similar to the walled
Brauer category, and the functor ®45 is exact.

7.1.5. The spin-Brauer category. This category records the obvious maps between represen-
tations of the form V®" @ A, where V is the standard representation of an orthogonal group
and A is the spinor representation of its simply-connected cover. In addition to the pairings
VeV — Cand C — V®V, there are also equivariant maps V® A —- A and A - V® A.

We define the spin-Brauer category & as follows. Its objects are finite sets. Given
finite sets S and T, a spin-Brauer diagram from S to T is a triple (S,, T}, a) where
S, C S and T, C T are sets of marked vertices, there is a total ordering on S, U T},
and « is an ordinary Brauer diagram from S\ S, to T'\ T,. Then Homg (S, T) is the
vector space spanned by spin-Brauer diagrams modulo certain linear relations. The
composition of spin-Brauer diagrams is in general a complicated linear combination of
spin-Brauer diagrams, so we omit the definition. The linear relations and composition
rules are defined in detail for endomorphisms in [Lau, §3|; we will discuss the general
case in detail in [SS7].

e The endomorphism algebras in & appear in [Lau| and [Koi2].
e We say that a spin-Brauer diagram from S to 7" is upwards (resp. downwards) if

there are no marked vertices or horizontal edges in S (resp. T'). Let  (resp. ©) be the
wide subcategory of & where Homy(S,T") is spanned by upwards (resp. downwards)
spin-Brauer diagrams. This defines a triangular structure on &. The categories 4 and
D were introduced in [SS4]. We have Endgr([n]) = C[S,], and so the set of weights
is identified with the set of partitions.

The category of representations of the upwards category is equivalent to the mod-
ule category of the 2-step nilpotent twisted Lie superalgebra V @ Sym? V by [SS4,
Theorem 2.13]. The latter is locally noetherian by [SS5, §8.2].

Suppose d = p is a non-negative integer. Let V be the standard representation
of the orthogonal Lie algebra so(p), and let A be the spinor representation (if p is
even, this is the direct sum of its two half spinor representations). There is then a
tautological module 7T}, defined by T,(S) = V5 @ A. See [Lau, §§4,5] for the action
of endomorphisms, and [SS4, §2] for the action of &l or ©. More generally, if  is an
integer and we have § = p — ¢ for non-negative integers p and ¢, with ¢ even, then
a similar construction using osp(p|q) yields a tautological module 7T},,. (Note that
T14(S) will be infinite dimensional if ¢ > 0 though.)

The category & does not have a symmetric monoidal structure. (Disjoint union
provides a monoidal structure, but it is not symmetric due to the orderings on marked
vertices.)

The category & has a transpose functor.

Remark 7.3 (The oscillator Brauer category). We can combine the ideas from spin-Brauer
category with the signed Brauer category. Here we add the additional data of orientations
on the horizontal edges of the Brauer diagrams. All of the above applies to this category,
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which we call the oscillator Brauer category due to the fact that the role of the spinor
representation is assumed by the oscillator (or Weil) representation of the symplectic Lie
algebra. The upwards category is studied in [SS4, §3]. O

7.2. The Temperley—Lieb category. Roughly speaking, the Temperley-Lieb category
with parameter ¢ is the subcategory of the Brauer category where the diagrams are planar.

e Suppose that S = {s; < --- < s,} and T = {t; < --- < t,,} are two totally ordered
sets. We put a total ordering on SIIT by s1 < --- < s, <t,, <---<ty. A pair of
edges © < y and z < w on the vertex set S LI T is said to cross if z < z < y < w
or z < x < w < y. We say that a Brauer diagram from S to 7" is planar if no
pair of edges cross. We define Temperley—Lieb category & over a field k as follows:
the objects of & are totally ordered finite sets, and the set Homg (S, T) is the free k-
module on planar Brauer diagrams. Composition is carried out just as in the Brauer
category (this preserves planarity and makes use of a chosen parameter ¢ € k).

e The Temperley—Lieb category appears in [Ab], [Ch], and [Mar2, §3.6].

e The endomorphism algebras are the classical Temperley—Lieb algebras defined in [TL].

e The triangular structure is defined just as for the Brauer category. However, in this
case the endomorphism rings in 9 are trivial (since Brauer diagrams representing
non-trivial permutations are non-planar) and so we have a triangular structure for
any coefficient field k (of arbitrary characteristic). The set of weights is identified
with N.

e The upwards category is noetherian by the forthcoming paper [SS6].

e Pick ¢ € C\ {0} and set 6 = —¢ — ¢~'. Let V be the standard 2-dimensional
representation of the quantum group U,(slz). We have a functor 7" on & defined
by T([n]) = V®". Formulas for ¢;: V¥? — C and 6;: C — V®? are given in [FK,
(1.14)], and the vertical edges of Temperley—Lieb diagrams move tensor factors. These
intertwine the U, (sly) structure defined in [FK, §1.3], and hence T" defines a functor
from & to the category of U, (sly)-modules.

Remark 7.4. There are a number of variants that one can consider:

e One can consider Brauer diagrams that are planar when drawn on a cylinder; this is
discussed in [GL, Definition 6.1] as the “Jones algebra,” see also [Jo2].

e The classical Temperley—Lieb algebra is connected to the Hecke algebra of type A.
There are variants for other types. See [GL2, §5] or [MW] for type B, which is known
as the “blob algebra.”

e There are affine variants; see [Er] for type C.

e One can also consider a variant of the partition category where the diagrams are
planar. The endomorphism algebras in this category are the ordinary Temperley—
Lieb category [Wes]; we do not know if the category gives something different. O

7.3. The degenerate partition category. This category is defined just like the partition
category, but with one modification in how morphisms are composed: if a and 3 are com-
posable diagrams and some part of o meets some part of 5 at > 2 vertices then S oa = 0.
The theory developed in [SS7] shows that this is a natural category to consider. However,
we do not know if it has previously been considered, or if it relates to any natural centralizer
algebras. It is triangular, using the same triangular structure as for the partition category,
and ®g is exact.
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7.4. Finite sets. There are several examples of triangular categories related to the category
of sets that have played a prominent role in representation stability.

7.4.1. The category FA. Let FA, FI, FS, and FB denote the categories whose objects are
finite sets and whose morphisms are all functions, injections, surjections, and bijections
respectively. Let & = C[FA] be the linearization of FA. This is a triangular category, with
i = C[FI] and © = C[FS] (and 9 = C[FB]). Thanks to the paper [CEF], FI-modules
have received much attention. The noetherian property for FI was proved in characteristic 0
in [Sn] and [CEF], and over general noetherian coefficient rings in [CEFN] and [SS3]. Thus
Mods is locally noetherian. In fact, it is also locally artinian: finitely generated @&-modules
have finite length. This result, and many others about FA-modules, can be found in the
paper [WG]. (It would be interesting to interpret the results of loc. cit. from the point of view
of triangular categories: e.g., what are the standard objects, and what are their multiplicities
in indecomposable projectives?)

7.4.2. The category FA°P. Unlike the other triangular categories discussed so far, = C[FA]
is not self-dual. The dual category & = C[FA°P] is in fact far more complicated, and little

is known about it at this time. The upwards category U= C[FS"] is locally noetherian by
[SS3, Theorem 8.1.2], and so Modg is also locally noetherian.

7.4.3. The category FI§. Let FI§ be the category whose objects are finite sets and where a
morphism S — T is a triple (Sy, To,7) where Sy is a subset of S, Ty is a subset of T, and
1: Sg — Tp is a bijection; such triples are often referred to as partial injections, as i can be
regarded as an injection from a subset of S to T. This category was introduced in [CEF].
Let U be the wide subcategory of FIf consisting of morphisms with S = Sy (this is simply
the category FI), and let D be the wide subcategory with 7' = T,. Then & = C[FI4] is a
triangular category with & = C[U] and ® = C[D] (and Mt = C[FB]). We have already seen
that Mody is locally noetherian, and so Modg is as well. In fact, Modg is semi-simple, as
shown in [CEF, Theorem 4.1.5].

7.5. Finite vector spaces. Let F be a finite field. Let VA, VI, VS, and VB denote
the categories whose objects are finite dimensional F-vector spaces, and whose morphisms
are all linear maps, injective linear maps, surjective linear maps, and linear isomorphisms,
respectively. Then & = C[VA] is triangular, with & = C[VI] and © = C[VS] (and M =
C[VB]). We have a transpose functor & — & induced by the duality functor VA — VAP,
It is known that Modg is semi-simple [Ku, Corollary 1.3].

Remark 7.5. The representation theory of VA is far more interesting when the coefficient
field has the same characteristic as F. However, since VB is not semi-simple in this case,
we do not have a triangular category. 0

8. TRIANGULAR CATEGORIES FROM LIE THEORY

Let g be a complex semisimple Lie algebra. Let b, be a Borel subalgebra and b_ the
opposite Borel, so that h = b, N b_ is a Cartan subalgebra, and let n. be the nilpotent
radical of by. We order the weights in the usual way, so that the roots in n, are positive.
Let O be the category of g-modules M satisfying the following conditions:

(a) M is finitely generated;
(b) M decomposes into weight spaces under b; and
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Name Transpose Monoidal Tautological module(s)?
Brauer Y Y IfoeZ
Signed Brauer Y Y Ifoez
Walled Brauer Y Y IfoeZz
Spin Brauer Y Ifoez
Periplectic Brauer Y Yes
Queer walled Brauer Y Y Yes
Partition Y Y IfoeN
Temperley—Lieb Y Y Yes (for any 0)
FA N Y No
FA°P [ Y No

FIt Y Y No

VA Y Y No

FIGURE 2. Summary of triangular categories.

(c) every element of M is annihilated by some power of n_.

This is the famous category introduced by Bernstein—Gel’ fand-Gel'fand in [BGG] (see [Hu]

for general background). We caution the reader that our conventions are the opposite of the

usual ones in representation theory (e.g., in condition (c) one typically uses n, instead of

n_). We now explain how to view this category through the lens of triangular categories.
Let A be a set of weights such that

(i) for any A € A there are only finitely many p € A such that p < A; and
(ii) if A € A and p is a positive integral weight then A + pu € A.

Let O(A) be the full subcategory of O spanned by objects whose weights are contained in A.
For a weight A\ we let ¢ be the left ideal of U(g) generated by the elements X — A(X) for
X € b, together with all elements of weight 1 such that u+ X € A.

Define a category & = &(A) as follows. The objects are the elements of A. For A, u € A,
put Homeg (A, 1) = (U(g)/cx)u—r, where the subscript indicates the specified weight space.
Composition in & is induced by multiplication in U(g); it is an easy exercise to verify that
this is well-defined. Let $ be the wide subcategory of & where Homy(\, i1) is the image of
U(by),—x in Homeg (A, p1); define ® analogously using b_ instead.

Proposition 8.1. With the above definitions, & is a triangular category.

Proof. We verify the axioms:

(TO) The category & is small by definition. Let A € A. If Y € n_ then YA < A. It follows
that some power of n_ will carry A outside of A, and so ¢, contains n? for some N.
By PBW (Poincaré-Birkhoff-Witt), it follows that U(g)/c\ has a basis consisting of
elements of the form X;---X,.Y;---Y; where X; € ny and Y; € n_ and s < N. It is
thus clear that the weight spaces of U(g)/cy are finite dimensional, and so the Hom
spaces in & are too.

(T1) By definition, Endg(\) is the image of the zero weight space of U(b,) in Endg(A).
The zero weight space of U(by) is U(h), and every element of h maps to a scalar
in Endg(\). We thus have Endy(\) = C. The same analysis applies to ©. Thus
Endy(A) = Endg()), and this ring is semi-simple.

(T2) Tt is clear that the order < on A is admissible.
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(T3) Let A\, u € A. We must show that the natural map

@Homu(y, 1) @c Homg (A, ) — Homg (A, 1)

veA

is an isomorphism. As stated above, PBW tells us that Homg(\, p) has a basis
consisting of (certain) elements of the form X --- X, Y7 ---Y, where the X; € n, and
Y; € n_ are chosen among some fixed basis where the total weight is A —p. Let A —v
be the weight of Y; ---Y,. Then v — p is the weight of X; --- X,.. Furthermore, v — p
is a positive integral weight and hence v = (v — p) + u € A by axiom (ii). So the
natural map above is surjective. That it is injective also follows by appealing to PBW
for each of Homy(v, 1) and Homg (A, v): note that ¢, is generated by ¢y N U(n_), so
the Y] - - - Y, elements from our basis of weight A — v form a basis of Homg (A, v). O

One easily sees that there is an equivalence ®: Modgf(/\) — O(A) given by ®(M) =
@D ,cn My. We can therefore apply the formalism of triangular categories to category O, as
we now explain. By our proof of (T1) we have Endgpn(A) = C, and so the set of weights
of B(A) (in the sense of §4.3) is simply A. For A € A, the simple module S, is given by
Sy(A) = C and Sy(u) = 0 for X # p. In what follows, we use a A superscript to denote the
usual &(A)-modules, e.g., L} is the simple &(A)-module corresponding to .

One easily sees that ®(A%) is the Verma module associated to X in O; thus A% is essentially
independent of A. From this, we see that the same holds for the simple modules.

The projective objects P and P{* do not enjoy the same independence in general. How-
ever, there is one important case where it does hold. Suppose that A contains the shifted
Weyl orbit of \. Then O(A) contains the entire block A of O associated to A [Hu, §1.13],
and so we have O(A) = A @ A’ for some complementary category A’. From the equivalence
®, we see that Modgx) decomposes as B @ B’ where B is the block containing L% and B’
is a complementary category. Since P{* is the projective cover of L} in Modg(a), it must
belong to B. Thus ®(P}) is the projective cover of ®(LY) in A, and therefore in all of O
since A is a block. In particular, P{ is independent of A when A contains the shifted orbit
of A\. (The projective 13)’\\ is basically never independent of A: it bleeds into more blocks as
A is enlarged.)

From the above, we conclude that O has enough projectives and that the projectives
have standard filtrations (apply ® to the standard filtration of P with A sufficiently large).
Furthermore, our version of BGG reciprocity (Proposition 4.29) recovers the classical one
(we note that &(A) does admit a transpose).

We thus see that the triangular formalism recovers the most basic properties of O, taking
only the block decomposition as input. The proofs given by this method are nearly identical
to the original ones from [BGG].

Remark 8.2. One can also apply the triangular formalism to algebraic representations
in positive characteristic. The basic idea is similar to the above, except we use a finite
set of weights, and the universal enveloping algebra is replaced by the hyperalgebra (or
algebra of distributions, see [Ja, Chapter 1.7]). Verma’s conjecture, proved by Sullivan [Su],
allows one to connect modules over the hyperalgebra (and thus this category) to algebraic
representations. 0l
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