
1

Availability Aware Online Virtual Network
Function Backup in Edge Environments

Yu Liu, Xiaojun Shang, Yingling Mao, Zhenhua Liu, and Yuanyuan Yang, Fellow, IEEE

AbstractÐWith the rapid advancement of edge computing and network function virtualization, it is promising to provide flexible and

low-latency network services at the edge. However, due to the vulnerability of edge services and the volatility of edge computing

system states, i.e., service request rates, failure rates, and resource prices, it is challenging to minimize the online service cost while

providing the availability guarantee. This paper considers the problem of online virtual network function backup under availability

constraints (OVBAC) for cost minimization in edge environments. We formulate the problem based on the characteristics of the volatility

system states derived from real-world data and show the hardness of the formulated problem. We use an online backup deployment

scheme named Drift-Plus-Penalty (DPP) with provable near-optimal performance for the OVBAC problem. In particular, DPP needs to

solve an integer programming problem at the beginning of each time slot. We propose a dynamic programming-based algorithm that

can optimally solve the problem in pseudo-polynomial time. Extensive real-world data-driven simulations demonstrate that DPP

significantly outperforms popular baselines used in practice.

Index TermsÐVirtual Network Function Backup, Edge Computing, Online Cost Minimization, Reliability Constraints

✦

1 INTRODUCTION

Network Function Virtualization (NFV), which migrates
traditional network functions, e.g., firewalls, load balancers,
proxies, from dedicated hardware to Virtual Network
Functions (VNFs) running on general-purpose commercial
servers, has drawn tremendous attention recently. NFV has
introduced great flexibility, scalability, and elasticity to the
deployment and management of network services [1], [2],
[3]. Recently, there has been a rise in applications requiring
low latency, including augmented reality, real-time motion
estimation and compensation in videos, the internet of
things, and self-driving [4]. To support such applications,
deploying network services supported by VNFs at the net-
work edge is promising [1], [5], [6].

Although deploying VNFs at the network edge has
numerous potential benefits, it does raise new challenges.
In particular, edge servers are not as reliable as servers in
the cloud, making the network services more vulnerable to
failures [7]. While deploying backup VNF instances is one
of the ubiquitous paradigms to deal with such failures, it
significantly increases the system cost, which is undesirable
due to highly limited energy and resources at the network
edge. In other words, there is a trade-off between the relia-
bility of VNFs and the cost incurred.

The trade-off between cost and reliability is dynamic
due to the volatility of system states in edge environments,
i.e., resource price, failure probability, and request rates of
VNFs [8], [9]. Therefore, finding the sweet spot of the trade-
off is challenging for the following reasons. First, the cost
of deploying a VNF backup or primary instance depends

• Y. Liu, X. Shang, Y. Mao, and Y. Yang are with the Department of
Electrical and Computer Engineering, Stony Brook University, Stony
Brook, NY, 11794. Z. Liu is with the Department of Applied Mathematics
and Statistics, Stony Brook University, Stony Brook, NY, 11794. E-mail:
{yu.liu.3, xiaojun.shang, zhenhua.liu, yuanyuan.yang}@stonybrook.edu .

on the time-varying prices of edge resources, e.g., central
processing unit (CPU), graphics processing unit (GPU), and
random-access memory (RAM) [8]. In addition, the failure
probability of each VNF instance is time-varying [9], [10].
That is, given the same number of backups, the reliability of
a VNF can change over time. Moreover, network functions
have different request rates at different time slots due to the
high mobility of users in edge environments [11], [12]. A
failure during a time slot with high request rate results in
greater damage compared to a time slot with a low request
rate. The relationship between cost and reliability in the
system is complex due to the interplay of the three time-
varying edge system states, namely, resource price, failure
probability, and request rate of VNFs. As a result, a static
VNF backup scheme is unable to achieve the optimal cost
while satisfying reliability requirements. The deployment
of VNF backup for high reliability has received substan-
tial research attention, resulting in the proposal of several
methods with varying objectives, such as in [13], [14], [15],
[16]. However, existing methods are inadequate for edge
scenarios as they lack the ability to adapt to real-time
changes in the edge system state. In this paper, we aim to
address these limitations by jointly considering the volatility
of system states, minimum availability requirements at each
time slot, and time-average availability requirements of each
VNF.

For more realistic problem formulation, we make use
of system state characteristics observed from real-world
data. There are often peak periods and off-peak periods
for mobile Internet requests each day [12], [17], where peak
periods are when more people are likely to request network
services and off-peak periods are generally when most users
are inactive such as midnight and early afternoon. The
real-world data about the number of requests over time
of a video [18] are shown in Figure 1. It is evident that
the request numbers follow a periodic underlying trend.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

2

24 48 72 96 120 144

Time/Hour

0

50

100

150

R
e

q
u

e
s
t

N
u

n
m

b
e

r
P

e
r

H
o

u
r

Fig. 1: Real-world request rates of a video over time.

It is neither independent and identically distributed (iid)
over time [19], [20] nor fully arbitrary without any pattern
[7]. Motivated by the observation, we generalize existing
work by assuming the request rate of each VNF consists
of a periodic trend and some random noise. The failure
probabilities of VNF instances and prices of edge resources
have similar structures, and detailed information about
these edge system states can be found in Section 3.3.

In this paper, we study the problem of online VNF
backup under availability constraints and time-varying
edge system states with the goal of minimizing the overall
system cost (OVBAC). There is a certain number of hetero-
geneous types of VNFs in the system. The cost of each VNF
during a time slot is the cost of edge resources required by
its primary instance and all backup instances during that
time slot. There are two types of reliability constraints for
each VNF. The first constraint is that the availability, the
probability of having at least one available instance, is no
less than a given threshold for each time slot. The second
constraint requires that the time-average availability of the
VNF weighted by the request rate is no less than another
threshold, which essentially limits the average availability
for each unit of the request of each time slot. With this
constraint, VNFs with higher request rates tend to have
more backups to prevent serious damage caused by their
failures. These two thresholds may vary for different VNFs.

We design an online algorithm based on the Drift-
Plus-Penalty (DPP) scheme for the proposed problem in
Section 4. DPP is designed for systems with statiionary
states [21]. The system states of the proposed problem are
not iid, and we prove the performance of DPP is near-
optimal for OVBAC in Section 4.2. Our main contributions
in this paper are summarized as follows.

• We formulated the problem of online VNF backup
under availability constraints to minimize the edge
system cost in Section 3 and proved the offline ver-
sion of the proposed problem is NP-hard.

• We developed an algorithmic scheme named DPP
and prove its performance in Section 4.1. Specifically,
DPP makes decisions in an online manner, which
needs to solve an integer programming problem (P2)
at the beginning of each time slot. We proved that
DPP achieves near optimal cost.

• We proposed a dynamic programming-based algo-
rithm to solve P2 in Section 4.2. The proposed algo-
rithm can solve P2 in pseudo-polynomial time.

• Our proposed scheme is evaluated by extensive real-
world trace-driven simulations under a wide range
of settings. The results highlight that the proposed
algorithm significantly outperforms popular baseline
algorithms used in practice.

The remainder of this paper is organized as follows.
Section 2 discusses related works. Section 3 formulates the
online VNF backup problem under availability constraints
for cost minimization. Section 4 proposes the DPP scheme
and provides its theoretical performance guarantee. Sec-
tion 5 presents performance evaluation results. Section 6
concludes this paper.

2 RELATED WORK

There are a lot of studies with various purposes, applica-
tions, and approaches for NFV.

VNF placement and chaining with various purposes
are well-studied, e.g., [13], [14], [15], [16], [27], [28]. In
[13], Sang et al. studied the problem of minimizing the
total number of VNF instances, and the authors proposed
two algorithms with performance guarantees. In [14], [15],
the authors investigated the VNF placement and chaining
problem for cost minimization. In [16], Liu et al. explored
the service function chain deployment and resource man-
agement jointly to minimize the system latency, and a game-
theoretic approach with a constant approximation ratio is
proposed. [29], [30] investigated the VNF placement prob-
lem in Edge environments, and [31], [32] study VNF in
data center environments. To solve the problems proposed
above, different approaches are introduced, e.g., integer lin-
ear programming [15], game theoretic-based methods [16],
and machine learning algorithms [33], [34].

Several previous studies have investigated the reliability
of virtual network functions [35], [36], [37], [38]. In [35], Fan
et al. addressed the problem of reducing resource consump-
tion while satisfying reliability constraints and proposed an
algorithm with polynomial time complexity. In [36], Zhang
et al. aimed to minimize backup resource consumption while
maintaining overall availability demands. They presented
an algorithm based on differential evolution to solve the
NP-hard problem they formulated. In [37], Taleb et al. in-
vestigate a system that deploys VNF backups in a reactive
manner by exploiting early failure detection. In [38], Jing et
al. addressed a budget-aware service provisioning problem
with the goal of minimizing costs. They developed an ap-
proximation algorithm with a provable approximation ratio
for the NP-hard problem they proposed. However, none of
the previous studies took into account the volatility of the
system.

Additionally, there are some pioneering works about
online VNF backup as listed in Table 1. In [7], Shang et al. ex-
plored the problem of maximizing the sum of VNF availabil-
ities while subject to a cost constraint in the presence of time-
varying failure probability rates, and an algorithm based on
competitive online optimization is designed. In addition, in
[22], Shang et al. investigated the offline problem of VNF
backup over the edge and cloud for cost minimization and
proposed an online algorithm to balance the load of servers.
In [23], Jing et al. investigated the SFC-enabled service
provisioning problem, and the authors proposed an offline

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

4

there are I types of resources, where I is a relatively
small fixed number. Let sv,i be the size of the ith type
resource required for deploying an instance of VNF v. Let
sv = (sv,1, sv,2, · · · , sv,I)

T be the collection of resource sizes
required by an instance of VNF v. There is a primary VNF
instance has to be deployed for each VNF v ∈ V as required
by [7]. Let xt

v represent the number of backup instances of
VNF v deployed at time slot t. The feasible space of xt

v

is Xv ≜ {0, 1, 2, · · · , Xv}, which is motivated by the fact
that the number of backups of VNF v cannot be fractional.
Xv is the maximum number of backup instances of VNF
v at each time slot. Similar to [41] considering edge task
offloading, the edge server has limited amount of resources.
Let Si be the total amount of ith resource, and S represents
(S1, S2, · · · , SI)

T . Therefore, there is a constraint on the
total resources used at each time slot as follows:

∑

v∈V

xt
vsv ≤ S for t ∈ T . (1)

Moreover, we use xt to denote the collection of xt
v, t ∈ T ,

i.e., xt = {xt
v|v ∈ V} ∈ X1 × X2 × · · · × XV . xt is the

online decision of the system that needs to be made at the
beginning of time slot t. For each VNF v ∈ V , its request rate
is time-varying because users move in/out of the system
and behave differently at different time slots. We use rtv to
denote the request rate of VNF v ∈ V at time slot t. In
addition, we use rt to denote the collection of rtv, v ∈ V , i.e.,
rt = {rtv|v ∈ V}.

Resource Price and System Cost: The edge re-
sources for deploying primary and backup VNF instances
have time-varying prices. We use pti to denote the unit
price per time slot of the ith type resource at time slot
t. pt = (pt1, p

t
2, · · · , p

t
I) is the collection of prices of edge

resources at time slot t. The system cost at time slot t is the
cost of resources consumed for deploying backups. Note
that, pt is a row vector, st is a column vector, and ptsv is the
cost for deploying a backup instance of VNF v. The system
cost at time slot t, denoted by c(t), is as follows:

c(t) =
∑

v∈V

xt
vp

tsv. (2)

The goal of the system is to minimize the expectation of time
average system cost as follows:

min
xt,t∈T

1

T

T
∑

t=1

c(t) (3)

Availability Constraints: For each primary and
backup instance of VNF v ∈ V , it has a failure probability of
f t
v at time slot t. If some VNF instances are unable to meet

the QoS requirements due to various reasons, such as server
crashes and connection issues, they are considered failures.
For each VNF v ∈ V , f t

v is time-varying as assumed in [7].
Moreover, we use f t to denote the collection of f t

v, t ∈ T ,
i.e., f t = {f t

v|v ∈ V}. The failure probability of VNF v at
time slot t, denoted by F t

v , is the probability of having no
available instance of VNF v at time slot t as follows:

F t
v = (f t

v)
(1+xt

v
)
. (4)

Then, we define the availability of a VNF as the probability
of having at least one VNF instance available. The availabil-

T = {1, 2, · · · , T} Set of operating time slots

V = {1, 2, · · · , V } Set of different types of VNFs

sv = (sv,1, · · · , sv,I) Sizes of resources of VNF v

S = (S1, S2, · · · , SI) Total amount of resources in the system

xt
v Number of backup instances of VNF v

Xv = {1, 2, · · · , Xv} Space for xt
v , t ∈ T

xt = {xt
v |v ∈ V} Decision at time slot t

X ≜ X1 × · · · × XV Feasible space for xt, t ∈ T

rtv = r̄tv + zrt
v

Request rate of VNF v at time slot t

r̄tv , t ∈ T Periodic underlying trend of pti
zrt

v
, t ∈ T I.I.D random variable

rt = {rtv |v ∈ V} Collection of rtv , v ∈ V

pti = p̄ti + zpt
i

Price of the ith type resource at time slot t

p̄ti, t ∈ T Periodic underlying trend of pti
zpt

i

, t ∈ T I.I.D random variable

pt = (pt
1
, · · · , ptI) Prices of resources at time slot t

f t
v = f̄ t

v + zft
v

Failure probability of VNF v at time slot t

f̄ t
v , t ∈ T Periodic underlying trend of f t

v

zft
v
, t ∈ T I.I.D random variable

f t = {f t
v |v ∈ V} Collection of f t

v , v ∈ V

yt = (rt,pt, f t) Collection of system state at time slot t

atv Availability of VNF v at time slot t

Av Minimum availability of VNF v

Āv Minimum average availability of VNF v

c(t) System cost at time slot t

X (pt) = X (yt) Set of {xt ∈ X|atv ≥ Av , ∀v ∈ V}

TABLE 2: Important Notations

ity of VNF v at time slot t, denoted by atv , is equal to 1−F t
v ,

i.e.,

atv = 1− F t
v = 1−

(

f t
v

)(1+xt

v) .

For each v ∈ V and t ∈ T , there is a constraint for the
availability of VNF v at time slot t as follow:

atv ≥ Av, ∀v ∈ V, ∀t ∈ T . (5)

We refer to Av as the minimum availability requirement of
VNF v. We use X (f t) to denote the set of {xt ∈ X |atv ≥
Av, ∀v ∈ V and

∑

v∈V xt
vsv ≤ S}. X (f t) is the set of xt ∈ X

satisfying the minimum availability constraint in (5) and the
total resource constraint in (1). X (f t) is a function of f t,
because for different failure probability f t

v , the minimum
xt
v ∈ Xv satisfying the minimum availability constraint in

(5) is different.
Moreover, there is a weighted time average availability

constraint for each VNF v ∈ V as follows:

1

T

T
∑

t=1

rtva
t
v ≥ Āv r̄v. (6)

The above constraint sets a limit for the time average of
rtv · atv rather than atv . This is motivated by the fact that the
VNF with a high request rate is more crucial than that with
a relatively low request rate, and the constraint essentially
limits the average availability for each unit of the request
of each time slot. r̄v is the average request rate of VNF

V over the time horizon, i.e., r̄v = 1
T

∑T
t=1 r

t
v , and r̄v is

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

5

known in advance. Āv ·r̄v in the above inequality is the mini-
mum availability requirement for VNF v, which is specified
and known in advance. We refer to Āv as the minimum
weighted time average availability requirement of VNF v.
Different VNFs have different reliability requirements. That
is, Av, v ∈ V and Āv, v ∈ V can be specified to different
values based on the different availability requirements of
the VNFs.

3.2 Problem Formulation

Next, we state the problem we formulated above as an
online optimization problem, and we refer to the problem
as OVBAC, which is short for Online VNF Backup problem
under Availability Constraints. OVBAC is as follows:

min
xt,t∈T

1

T

T
∑

t=1

E[c(t)]

s.t. atv ≥ Av, ∀v ∈ V, ∀t ∈ T ,

1

T

T
∑

t=1

E[rtva
t
v] ≥ Āv r̄v, ∀v ∈ V,

xt ∈ X1 ×X2 × · · · × XV , ∀t ∈ T ,
∑

v∈V

xt
vsv ≤ S for t ∈ T .

(P)

The goal of the problem is to minimize the average cost of
the system over time. The first constraint of OVBAC sets
a limit to the worst availability for each VNF at each time
slot. The second constraint of OVBAC sets a limit to the
worst weighted time average availability for each VNF. The
third constraint of OVBAC limits the maximum number of
backups that can be deployed for each VNF v ∈ V . The
fourth constraint ensures that the utilized resources do not
exceed the available resources.

Note that X (f t) ≜ {xt ∈ X1 × X2 × · · · × XV |a
t
v ≥

Av, ∀v ∈ V and
∑

v∈V xt
vsv ≤ S} is the set of xt sat-

isfying xt ∈ X and the minimum availability constraint
in (5). Therefore, we can replace the first, third, and last
constraints in P by xt ∈ X (f t). We use yt to denote the
collection of time-varying system states at time slot t, i.e.,
yt = (rt,pt, f t). Therefore, let X (yt) be equivalent to X (f t).
For each VNF v ∈ V , we define a function H(xt,yt) as
follows:

hv(t) = Hv(x
t,yt) = Āv r̄v − rtva

t
v. (7)

In addition, we define C(xt,yt) as follows:

c(t) = C(xt,yt) =
∑

v∈V

xt
vp

tsv. (8)

With X (f t), (7), (8), and P, the formulated problem is
equivalent to

min
xt,t∈T

1

T

T
∑

t=1

E[C(xt,yt)]

s.t.
1

T

T
∑

t=1

E[Hv(x
t,yt)] ≤ 0, ∀v ∈ V,

xt ∈ X (yt), ∀t ∈ T .

(OVBAC)

At the beginning of each time slot t ∈ T , the service
provider observes yt, and chooses a VNF backup decision

xt, where xt ∈ X (yt). Use ρ∗ to denote the optimal
objective value of OVBAC.

3.3 Assumptions

Periodic System States: yt is the collection of the
edge system states at time slot t. From Figure 1, the request
rate has a underlying periodic trend. Since the failure prob-
ability of a VNF instance increases as the request rate in-
creases, we assume the failure probabilities of VNF instances
are also equal periodic trends plus iid random variables [10].
Moreover, the prices of resources are functions of the utiliza-
tion ratios of the edge resources which is periodic [42]. The
prices of resources also have underlying periodic trends,
e.g., lower price during nighttime service hours [43], and we
assume the prices equal to periodic trends plus iid random
variables. Therefore, for each system state, we assume it
equals a periodic trend plus a random variable as follows.

For each rtv ∈ rt, we assume rtv = r̄tv + zrt
v

. Let
r̄t = (r̄t1, r̄

t
2, · · · , r̄

t
V) and zrt = (zrt

1
, zrt

2
, · · · , zrt

V
). Assume

pti = p̄ti + Ept

i
for pti ∈ pt. Let p̄t = (p̄t1, p̄

t
2, · · · , p̄

t
I) and

zpt = (zpt

1
, zpt

2
, · · · , zpt

I
). Assume f t

v = f̄ t
v+Eft

v
for f t

v ∈ f t.

Let f̄ t = (f̄ t
1, f̄

t
2, · · · , f̄

t
V) and zf t = (zft

1
, zft

2
, · · · , zft

V
).

Moreover, let ȳt = (r̄t, p̄t, f̄ t) and zyt = (zrt , zpt , zf t),
and we have yt = ȳt + zyt . We assume r̄tv , f̄ t

v , and p̄ti are
known in advance and periodic with period of D, and zrt

v
,

zpt

i
and zft

v
are independent and identically distributed. We

formally state the assumption for system states in Assump-
tion 1.

Assumption 1. System states yt = ȳt + zyt , t ∈ T satisfy

• ȳt is periodic with a period of D, and T is an integer
multiple of D.

• zyt is independent and identically distributed.

We do not require any information about the distri-
butions of the iid random variables, i.e., variables in zyt ,
beforehand. In addition, when ȳt is time-invariant, yt is
simply independent and identically distributed. That is, our
system incorporates the case that some (possibly all) of the
system states are iid.

Feasibility of OVBAC: In what follows, we make an
assumption to ensure the OVBAC problem is feasible.

Assumption 2. Let xt
opt be the optimal decision made by

an optimal algorithm at each slot t. We assume there exists
ϵ > 0 such that

•
1
T

∑T
t=1 E[Hv(x

t
opt,y

t)] ≤ −ϵ for v ∈ V .

•
1
T

∑T
t=1 E[C(xt

opt,y
t)] = ρ∗.

Assumption 2 ensures the OVBAC problem is feasible,
and Assumption 2 is also required by [21]. In cases where
the minimum availability constraints cannot be satisfied due
to extreme scenarios, the problem becomes infeasible, and
the system must resort to cloud servers, which results in
increased latency.

Boundedness of hv(t): We assume the request rates
of VNFs are bounded. Since atv ∈ [0, 1] and rtv is bounded,
we have hv(t) = Āv r̄v − rtva

t
v is also bounded. Then, we

have 1
2

∑

v∈V h2
v(t) is bounded. Let B be an upper bound of

1
2

∑

v∈V h2
v(t) as follows.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

6

Algorithm 1: HEDP-based DPP

1 Choose a parameter µ for DPP;
2 while t ∈ T do
3 Call HEDP to get xt, the optimal solution of P2;
4 Set the online decision at time lot t as xt;
5 Update Qv(t), v ∈ V using (9);
6 end

Assumption 3. |hv(t)| is bounded by hv , and 1
2

∑

v∈V h2
v(t)

is upper bounded by B.

Assumption 3 is used for proving the performance of the
proposed algorithm.

3.4 NP-hardness

Next, we show the NP-hardness of the offline version of the
proposed problem, where T and yt, t ∈ [T] are known in
advance.

Theorem 1. The offline version of OVBAC is NP-hard.

Proof. We consider a degenerated version of the problem
where there is only one type of VNF, i.e., V = {1} and
{xt

1}
T
t=1 are the decision variables. Moreover, we assume

xt
1 ∈ X1 = {0, 1}, and there is no minimum availability

constraint for each VNF i.e., no constraint (5). Moreover,
we assume there is only one type of resource, i.e., I = 1.
Let ât0 be the availability at time slot t under xt

1 = 0, and
let ât0 be the availability at time slot t under xt

1 = 1. We
have ât0 = rt1

(

1− (f t
1)

1
)

and ât1 = rt1
(

1− (f t
1)

2
)

. Then, the
degenerated version of the offline OVBAC problem can be
stated as follows:

min
xt

1
,t∈T

1

T

T
∑

t=1

pt1s1x
t

s.t.
1

T

∑

t∈T

(ât1 − ât0)x
t
1 ≥ A′

1 ≜ A1 −
∑

t∈T

ât0

xt
1 ∈ {0, 1}, ∀t ∈ T .

(P1)

If T and yt, t ∈ [T] are known in advance, P1 is the
classic minimum knapsack problem, and is NP-hard [44].
That is a degenerated version of offline OVBAC is NP-hard.
Therefore, the offline version of OVBAC is NP-hard.

Since the offline version of OVBAC is NP-hard, it is even
more difficult to solve OVBAC in an online manner, where
yτ , τ > t are not known at time slot t.

4 ALGORITHM DESIGN FOR OVBAC

In this section, we design an algorithm for OVBAC and
analyze its performance. In Section 4.1, a drift plus penalty
scheme is presented for OVBAC, and the scheme needs to
solve a optimization problem (P2) at each time slot. The
theoretical performance guarantee of the proposed scheme
is provided in Section 4.1. In Section4.2, an algorithm named
HEDP for P2 is given.

4.1 The Drift Plus Penalty Scheme

In this section, we present the Drift Plus Penalty scheme
(DPP) for OVBAC.

Assume there are V virtual queues that correspond to
the V types of VNFs. Let Qv(t) be the backlog of the virtual
queue corresponding to VNF v at time slot t. The Qv(t +
1), v ∈ V are updated as follow:

Qv(t+ 1) = [Qv(t) + hv(t)]
+, (9)

where [x]+ ≜ max{x, 0} for x ∈ R.
The physical meaning of Qv(t) is the gap between the

weighted time average availability of VNF v before time
slot t and the minimum weighted time average availabil-
ity requirement of VNF v. A large Qv(t) means a large
∑t−1

τ=1 hv(τ) =
∑t−1

τ=1 Āv r̄v − rτva
τ
v , and a small Qv(t) means

a small
∑t−1

τ=1 hv(τ) =
∑t−1

τ=1 Āv r̄v − rτva
τ
v .

DPP has a single tunable parameter µ > 0. At each
time slot t, DPP chooses online decision xt by solving the
problem, denoted by P2, as follows:

min
xt

µ · c(t) +
∑

v∈V

Qv(t)hv(t)

s.t. xt ∈ X (yt).

(P2)

P2 at time slot t moves the current weighted availabilities
of VNFs from constraints to the objective function, and the
coefficient for the weighted availability of VNF v is Qv(t).
The main idea of DPP is as follows. When Qv(t) is larger, the
weighted time average availability of VNF v before time slot
t is low, and P2 will yield a xt with large atv to compensate
the weighted time average availability. On the contrast,
when Qv(t) is small, the availability of VNF v before time
slot t is relatively high, and P2 will yield a xt with low cost
c(t) to minimize the system cost. Eventually, Qv(t) will be
stable at a certain sweet point which can balance the cost
and the availabilities. We can set Qv(1), ∀v ∈ V to their
corresponding stable values learned from historical data. A
detailed method for learning Qv(1), ∀v ∈ V is provided later
in Algorithm 2.

An algorithm named Heuristic Enhanced Dynamic Pro-
gramming (HEDP) for solving P2 is proposed in Section 4.2.
HEDP can find the optimal solution of P2 in polynomial
time. HEDP-based DPP sets the decision at time slot t as the
optimal solution of P2 given by HEDP. We formally state
HEDP-based DPP in Algorithm 1.

Next, we prove the performance of HEDP-based DPP.
We first define a policy named y-only policy as follows. A
policy for OVBAC is called to be a y-only policy if decision
xt under the policy is a pure function (possibly randomized)
of yt and the pure functions of a y-only policy for different
slots are identical. We then show there exist a y-only policy
which is optimal for OVBAC as follows.

Lemma 1. There exist a y-only policy and ϵ > 0 such that
for any τ ∈ [T −D], we have

1

D

τ+D
∑

t=τ+1

E[C(x̄t,yt)] = ρ∗

1

D

τ+D
∑

t=τ+1

E[Hv(x̄
t,yt)] ≤ −ϵ, ∀v ∈ V

(10)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

7

where x̄t is the y-only policy’s decision at time slot t.

The proof of Lemma 1 is found in our technical report
in [45], which is motivated by [21]. The main result of this
paper is as follows.

Theorem 2. If algorithm HEDP for P2 is optimal, under HEDP-
based DPP for OVBAC, we have

• limT→∞
1
T

∑T
t=1 E[c(t)] ≤ ρ∗ + BD

µ

• limT→∞

∑T
t=1

1
T
E[hv(t)] ≤ 0, ∀v ∈ V .

Proof. Let a y-only policy be a policy for OVBAC which
chooses decision based on the current system state only.
Different form DPP, a y-only policy makes decisions based
on the current system state only. A y-only policy makes
decisions independent of Qv(t), v ∈ V . From Lemma 1,
there exist a y-only policy such that

1

D

τ+D
∑

t=τ+1

E[C(x̄t,yt)] = ρ∗

1

D

τ+D
∑

t=τ+1

E[Hv(x̄
t,yt)] ≤ −ϵ, ∀v ∈ V

(11)

for any τ , where x̄t is the decision for slot t under the y-only
policy. x̄t is used for proving the performance of DPP and
not been implemented. Note that xt be the decision for slot
t under HEDP-based DPP.

Define L(t) as L(t) ≜ 1
2

∑

v∈V Q2
v(t), which measures

the virtual queue backlogs of the system at slot t. Moreover,
define ∆L(t) as

∆L(t) ≜ L(t+ 1)− L(t).

Since B is an upper bound of 1
2

∑

v∈V h2
v(t), we have

∆L(t) =
1

2

∑

v∈V

Q2
v(t+ 1)−

1

2

∑

v∈V

Q2
v(t)

=
1

2

∑

v∈V

(

Q2
v(t) + hv(t)

)2
−

1

2

∑

v∈V

Q2
v(t)

=
1

2

∑

v∈V

h2
v(t) +

∑

v∈V

Qv(t)hv(t)

≤B +
∑

v∈V

Qv(t)hv(t).

(12)

From (12), we have

∆L(t) + µc(t) ≤ B + µc(t) +
∑

v∈V

Qv(t)hv(t)

=B + µC(xt,yt) +
∑

v∈V

Qv(t)Hv(x
t,yt)

(a)

≤B + µC(x̄t,yt) +
∑

v∈V

Qv(t)Hv(x̄
t,yt).

(13)

(a) of (13) holds, because xt given by HEDP is the optimal
solution of P2. Summing (13) up over a period from t0 to

t0 +D − 1, we have

t0+D−1
∑

t=t0

∆L(t) + µ
t0+D−1
∑

t=t0

c(t)

≤BD + µ
t0+D−1
∑

t=t0

C(x̄t,yt)

+
t0+D−1
∑

t=t0

∑

v∈V

Qv(t)Hv(x̄
t,yt).

(14)

Since |hv(t)| is bounded by hv , we have Qv(t) ≤ Qv(t0) +
(t− t0)hv . Taking expectation of (14), for t > t0 we have

t0+D−1
∑

t=t0

E[∆L(t) + µc(t)]

≤BD +
t0+D−1
∑

t=t0

µE[C(x̄t,yt)]

+
t0+D−1
∑

t=t0

∑

v∈V

E[Qv(t)Hv(x̄
t,yt)]

(a)

≤BD + µ
t0+D−1
∑

t=t0

E[C(x̄t,yt)]

+
t0+D−1
∑

t=t0

∑

v∈V

(E[Qv(t0)] + (t− t0)hv)E[Hv(x̄
t,yt)]

(b)

≤BD +
∑

v∈V

h2
v

D(D − 1)

2
+ µDρ∗ ≤ D2B + µDρ∗.

(15)

(a) of (15) holds because x̄t is given by a y-only policy
and is independent of Qv(t), and (b) of (15) holds because
of the properties of the y-only policy in (11). Let n is the
integer satisfying nD = T , i.e., n is the number of periods
of the system’s operation horizon. Summing (15) up over
t0 ∈ {1, D + 1, 2D + 1, · · · , (nD −D + 1)}, we have

(BD + µρ∗)nD ≥
∑

τ∈[nD]

E[∆L(τ) + µc(τ)]

=E[L(nD)]− E[L(1)] + µ
∑

τ∈[nD]

E[c(τ)]

(a)

≥µ
∑

τ∈[nD]

E[c(τ)]− E[L(1)].

(16)

(a) of (16) holds because L(t) and L(1) are defined to be
non-negative. Dividing both sides of (16) by µnD, we have

1

nD

∑

τ∈[nD]

E[c(τ)] =
1

T

∑

τ∈[T]

E[c(τ)]

≤πρ∗ +
BD

µ
+

L(1)

µT
.

(17)

Letting T → ∞ proves the first part of the theorem, i.e.,

lim
T→∞

1

T

T
∑

t=1

E[c(t)] ≤ ρ∗ +
BD

µ
.

Next, we focus on the last part of the theorem, i.e.,

limT→∞
1
T

∑T
t=1 E[hv(t)] ≤ 0 for v ∈ V . From (16), we have

E[L(nD)] ≤ (BD + µρ∗)nD. (18)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

8

(18) is equivalent to (19) as follows:

1

2

∑

v∈V

E[Q2
v(nD)] ≤ (BD + µρ∗)nD. (19)

Since E[Q2
v(nD)] ≥ E

2[Qv(nD)], from (19), we have

E[Qv(nD)] ≤
√

2(BD + µρ∗)nD, ∀v ∈ V. (20)

Dividing (20) by nT and letting n → ∞, we have

lim
n→∞

E[Qv(nD)]

nD
≤

√

2(BD + µρ∗)nD

nD
, ∀v ∈ V. (21)

For any t = nD + τ, τ ∈ [D], from 21, we have

lim
t→∞

E[Qv(t)]

t
≤ lim

n→∞

E[Qv(nD)] + hvD

nD
= 0. (22)

From [21], [46], (22) implies

lim
T→∞

1

T

T
∑

t=1

E[hv(t)] ≤ 0, ∀v ∈ V

which proves the last part of the theorem.

Note that Theorem 2 holds is irrelevant to the setting of
Qv(1), v ∈ V . Since ρ∗ is the optimal solution of OVBAC and

µ is a parameter of DPP, limT→∞
1
T

∑T
t=1 E[c(t)] ≤ ρ∗+ BD

µ

in Theorem 2 means that if T is large, the objective value of
OVBAC under HEDP-based DPP can be arbitrarily close to
ρ∗ by setting a relatively large µ. In addition, for any finite
T , we have

1

T

T
∑

t=1

E[c(t)] ≤ ρ∗ +
BD

µ
, if Qv(1) = 0, ∀v ∈ V.

The proof the above statement is similar to the proof
of Theorem 2, so we omit it. On the other hand,
limT→∞

1
T

∑T
t=1 E[hv(t)] ≤ 0, ∀v ∈ V in Theorem 2 means

that the weighted time average availability constraints of
VNFs will be satisfied under HEDP-based DPP if T is large.

When we implement HEDP-based DPP, Qv(t) will be
stable at a sweet point after a certain number of time slots.
After Qv(t) being stable, the cost will be near-optimal and
the weighted time average availability constraints will be
satisfied. By presetting Qv(1), v ∈ V to its stable backlogs,
simulation results show the weighted time average avail-

ability constraints will be satisfied and 1
T

∑T
t=1 E[c(t)] ≤

ρ∗ + BD
µ

will hold for finite T (see Section 5).
Next, we provide a way to learning stable virtual queue

backlogs at the beginning. Assume we have historical data
of the system states of length T ′ = nD time slots, where

n ∈ N
+. If T ′

D
/∈ N

+, we only use the latest ⌊T ′

D
⌋D

slots’ data. Let yj be the jth slot’s system state of the
historical data. We set Qv(1) = 0, ∀v ∈ V . We apply DPP
to the problem and repetitively feed the previous data to
the system. Let J be the length of data that has been
fed to the system. The learning algorithm terminates when
∑J

j=J−D+1 Qv(j) ≤
1
K

∑J
j=J−KD+1 Qv(j), where K ∈ N

+

is a parameter. Then, we set the initial queue backlogs to be
1
D

∑J
j=J−D+1 Qv(j), v ∈ V . We formally state the algorithm

for leaning the stable queue backlogs in Algorithm 2. Note
that, Algorithm 2 is executed before the start of the system;
thus, it will not affect the decision time at each time slot.

Algorithm 2: Leaning stable queue backlogs

1 Set J = 1;
2 while ∃v ∈ V such that

∑J
j=J−D+1 Qv(j) ≥

1
K

∑J
j=J−KD+1 Qv(j) do

3 Set J = J + 1;

4 Let yJ%N be the current system states;
5 Call HEDP to get the optimal solution of P2;
6 Update Qv(J + 1), v ∈ V using (9);
7 end
8 J is the number of learning iterations;
9 Setting Queue backlog of VNF v at the beginning as

1
D

∑J
j=J−D+1 Qv(j) for v ∈ V .

4.2 Algorithm Design for P2

In this section, we design an algorithm named Heuristic
Enhanced Dynamic Programming (HEDP) algorithm for P2.
By substituting the expressions of hv(t), c(t), and X (yt) into
P2, P2 can be rewritten as follows:

min
x
t

µ
∑

v∈V

x
t
vp

t
sv +

∑

v∈V

Qv(t)
(

Āv r̄v − r
t
v

(

1−
(

f
t
v

)1+xt

v

))

s.t. x
t
v ∈ {0, 1, · · · , Xv}, ∀v ∈ V
(

1−
(

f
t
v

)1+xt

v

)

≥ Av, ∀v ∈ V,
∑

v∈V

x
t
vsv ≤ S.

(P3)

Define fv (x
t
v) as follows:

fv
(

xt
v

)

= µptsvx
t
v+Qv(t)r

t
v

(

f t
v

)1+xt

v

+Qv(t)(Āv r̄v − rtv).
(23)

The objective function of P3, denoted by OP3, is equivalent
to

OP3 =
∑

v∈V

fv
(

xt
v

)

. (24)

For each VNF v ∈ V , let Xt
v be the minimum xt

v such
that the current availability is no less than the minimum
availability Av , i.e.,

Xt
v ≜ min

{

xt
v ∈ N|

(

1−
(

f t
v

)1+xt

v

)

≥ Av

}

. (25)

From the monotonicity of availability atv , the minimum
availability constraints will be satisfied for any xt

v ≥ Xt
v .

Therefore, the first two constraints of P3 is equivalent to

xt
v ∈ {Xt

v, X
t
v + 1, · · · , Xv}, ∀v ∈ V. (26)

P3 is equivalent to minimize OP3 in (24) subjecting to
∑

v∈V xt
vsv ≤ S and the constraints in (26). We then de-

sign a dynamic programming-based algorithm for P3. We
can prove that the problem is NP-hard by showing an
induction form knapsack problem. We assume Si and si
are integers. If Si and si are not integers, we can change
the units of resources to make Si and si integers. Let

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

9

Algorithm 3: HEDP for P2

1 Compute x̂t by (29);
2 if

∑

v∈V x̂t
vsv ≤ S then

3 Return x̂t;
4 else
5 for si ∈ {0, 1, · · ·Si}, i ∈ [I] do
6 Update h(1, s) by (27);
7 end
8 for k = {2, 3, · · · , V } do
9 for si ∈ {0, 1, · · ·Si}, i ∈ [I] do

10 Update h(k, s) by (28);
11 end
12 end
13 Get optimal xt by tracking back matrix h(k, s);
14 Return the optimal xt;
15 end

h(k, s) = h(k, s1, · · · , sI), k ∈ [V], s ∈ {ZI |0 ≤ s ≤ S}
be the optimum of

min
xt

k
∑

v=1

fv(x
t
v)

s.t. xt
v ∈ {Xv, · · · , Xv}, ∀v ∈ [k]
k
∑

v=1

xt
vsv ≤ s.

(P4(k, s))

Define h(k, s) = ∞ if there exists si < 0, where h(k, s)
represents the optimum of P3 if there are only the first k
types of VNFs and the total amount of resource is s =
(s1, s2, · · · , sI). When k = 1, for si ∈ {0, 1, · · · , Si}, i ∈ [I],
we have

h(1, s) =

{

optimum of P4(1, s), if P4(1, s) is feasible

∞, otherwise.
(27)

When k > 1, for si ∈ {0, 1, · · · , Si}, i ∈ [I], we have

h(k, s) = min
xt

k
∈{Xt

v
,··· ,Xv}

{

h(k − 1, s− xt
ksk) + fk(xk)

}

.

(28)
Then we have the optimum of P3 is h(V,S) by the definition
of h(k, s), and we can get the optimal solution by tracking
back the calculations already performed.

If constraint
∑

v∈V xt
vsv ≤ S is omitted, P3 will be much

more easier to solve. We provide a heuristic enhancement to
the above dynamic programming-based algorithm in what
follows. We first derive the optimal solution of P3 under the
assumption that constraint

∑

v∈V xt
vsv ≤ S is omitted. Since

each variable in (24) and (26) is not coupled with others,
the optimal solution of P3 is equivalent to the collection of
optimal solutions of minimizing fv(x

t
v) subjecting to xt

v ∈
{Xt

v, X
t
v + 1, · · · , Xv} for v ∈ V . Let x̂t

v be the optimal
solution of P5 as follows:

min
xt
v

fv(x
t
v)

s.t. xt
v ∈ {Xt

v, X
t
v + 1, · · · , Xv}.

(P5)

We have x̂t
v , the optimal solution of P5, is equal to

x̂t
v ≜ argmin{fv(x)|x ∈ {Xt

v, X
t
v + 1, · · · , Xv}}. (29)

Let x̂t ≜ (x̂t
1, x̂

t
2, · · · , x̂

t
V). Then, at the beginning of each

slot t, we first compute x̂t. If
∑

v∈V x̂t
vsv ≤ S, x̂t is

the optimal solution of P3; Otherwise, call the dynamic
programming-based algorithm proposed above. We for-
mally state the heuristic-enhanced dynamic programming-
based algorithm in Algorithm 3.

Next, we consider the time complexity of the dynamic
programming subroutine. For the case that I > 1, HEDP
maintains a I + 1 dimensional matrix h(k, s1, · · · , sI). Usu-
ally, I is a small fixed number, e.g., I = 3 when CPU, GPU,
and RAM are the bottleneck resources. Since the algorithm
runs in an online manner, the time complexity for comput-
ing an online decision at each time slot needs to be low.
The time complexity for computing each h(k, s1, · · · , sI) is
upper bounded by X̄ = max{Xv|v ∈ V}. When I = 1,
the time complexity of HEDP is O(V SX̄). For the case
that I > 1, we have the time complexity of the dynamic
programming method is O(V S̄IX̄), where S̄ is the mean of

Si, i ∈ {1, 2, · · · , I} and S̄I ≥
∏I

i=1 Si. In addition, since
the time complexity for computing x̂t is O(X̄V), we have
the time complexity of HEDP is O(V S̄IX̄) + O(X̄V) =
O(V S̄IX̄) as shown in the following theorem.

Theorem 3. HEDP can get the optimal solution of P3 in
O(V S̄IX̄) time complexity.

The optimality of HEDP comes from the definition and
dynamics of h(k, s), and the complexity comes from the size
of h(k, s). The time complexity for the HEDP-based DPP to
computing an online decision at each time slot is pseudo-
polynomial, which is efficient.

5 SIMULATION

In this section, we evaluate the performance of the proposed
algorithm over a wide range of settings. In this paper,
we implement our simulations using MATLAB R2017b in
an HP Pavilion 15-cb0xx laptop with 16GB RAM and i7-
7700HQ CPU running of Windows 10 OS.

5.1 Simulation Setup

For the simulation setup, we consider a system with 20 types
of VNFs, i.e., V = 20. Moreover, let the maximum number
of backups of each VNF be five, i.e., Xv = 5, ∀v ∈ V , as
did by [7]. Let each time slot represent an hour. Set D =
24, which means the underlying trends of system states are
periodic with a period of a day. We set T = 120. That is,
the system lasts for 5 days. We first get requests rates of
length 24 time slots by taking the average of the 6-period
real-world values; then, we smooth the 24-slots values by
taking an average with its closest 5 values; finally, we get
the waveform of average real-world 24-hour request rates
as shown in Figure 3. Let r be a periodic waveform where
each period of r is equal to the waveform in Figure 3. We
generate r̄tv, v ∈ [V] based on the pattern in Figure 3 as
follows. We let r̄tv = Bv + Cv · r(t− ϕv), where Bv and Cv

are real numbers and ϕv ∈ [0, 1, · · · , D − 1] is a randomly
generated phase shift. Motivated by the fact that different
VNFs have different peak hours, ϕv is different for different
VNF v ∈ V . There is a positive correlation between f̄ t and
r̄t since the failure probability increases as the requests rate

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

12

The SS1 and SS2 algorithms have low time complexity due
to their heuristic nature, but their performance is relatively
poor. The time complexity of HEDP-based DPP and BSPS
increases as the scale of the system increases.

From Figure 6, the performance of the offline algorithm
RR is comparable to HEDP-based DPP, where RR knows
future system states precisely. Motivated by the fact that it
is impossible to have a perfect system states predictor, we
assume the offline algorithm RR makes decisions based on
future states with prediction errors. In particular, let RR(0.1)
be RR with a prediction error of 0.1 where each future sys-
tem state is generated by multiplicating the corresponding
system state and a factor randomly drawn from [0.9, 1.1].
Similarly, RR(0.2) is RR with a prediction error of 0.2 where
each future system state is generated by multiplicating the
corresponding system state and a factor randomly drawn
from [0.8, 1.2]. As we can see from Figure 9, the costs
of RR, RR(0.1), and RR(0.2) are higher than the cost of
DPP. Figure 10 shows that RR(0.1) and RR(0.2) may violate
the weighted time average availability constraints. That is,
RR can not meet the weighted time average availability
constraints in the case that future systems have prediction
errors. Next, we set Āv to be 0.995, and other parameters
are the same as above. We compare the time average cost
of HEDP-based DPP under µ = {10, 20, 30, 40, 50}. As
shown in Figure 11, the time average cost of HEDP-based
DPP decreases as µ increases, which matches the trade-off
between cost and parameter µ stated in Theorem 2, i.e.,
1
T

∑T
t=1 E[c(t)] ≤ ρ∗ + BD

µ
.

6 CONCLUSION

In this paper, we have studied the online VNF backup
problem under reliability constraints in edge environments
to minimize the time average system cost. We made use of
system state characteristics observed from real-world data
to facilitate the problem formulation. We have proved the
offline version of the formulated problem is NP-hard. We
proposed an online stochastic scheme named DPP for the
problem and proved the proposed scheme for the problem
is near-optimal. In particular, the system cost under the
proposed scheme can be arbitrarily close to the optimal
system cost of the problem if the time horizon goes to
infinity. At each time slot, the proposed scheme needs to
solve a combinatorial problem. We proposed a dynamic
programming-based algorithm that can solve the optimiza-
tion problem optimally in pseudo-polynomial time. Simula-
tion results based on real-world data have shown that the
proposed scheme significantly outperforms the baselines. In
particular, the proposed online scheme beats a classic offline
algorithm used in practice. In this paper, we modeled the
system states as periodical baselines plus iid random noises.
One interesting future work is investigating a more general
scenario where the random noises are non-iid.

ACKNOWLEDGMENTS

We thank Prof. Yaodong Huang for providing the data used
in this paper. This work was supported in part by the
National Science Foundation under grant numbers CCF-
1730291, CCF-2046444, CNS-2146909, CNS-2106027, and
CNS-2214980.

REFERENCES

[1] W. Liang, Y. Ma, W. Xu, Z. Xu, X. Jia, and W. Zhou, ªRequest reli-
ability augmentation with service function chain requirements in
mobile edge computing,º IEEE Transactions on Mobile Computing,
pp. 1±1, 2021.

[2] M. Huang, W. Liang, X. Shen, Y. Ma, and H. Kan, ªReliability-
aware virtualized network function services provisioning in mo-
bile edge computing,º IEEE Transactions on Mobile Computing,
vol. 19, no. 11, pp. 2699±2713, 2020.

[3] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, ªRaba:
Resource-aware backup allocation for a chain of virtual network
functions,º in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019, pp. 1918±1926.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ªEdge computing: Vision
and challenges,º IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637±646, 2016.

[5] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, ªDelay-
aware virtual network function placement and routing in edge
clouds,º IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp.
445±459, 2021.

[6] S. Gamal, Z. Zheng, and B. Ji, ªPlacement and allocation of virtual
network functions: Multi-dimensional case,º IEEE Transactions on
Mobile Computing, pp. 1±1, 2022.

[7] X. Shang, Y. Liu, Y. Mao, Z. Liu, and Y. Yang, ªGreening reli-
ability of virtual network functions via online optimization,º in
2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS), 2020, pp. 1±10.

[8] S. Jošilo and G. DÂan, ªJoint wireless and edge computing resource
management with dynamic network slice selection,º arXiv preprint
arXiv:2001.07964, 2020.

[9] G. Wang, L. Zhang, and W. Xu, ªWhat can we learn from four
years of data center hardware failures?º in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2017, pp. 25±36.

[10] J. Kang, O. Simeone, and J. Kang, ªOn the trade-off between
computational load and reliability for network function virtual-
ization,º IEEE Communications Letters, vol. 21, no. 8, pp. 1767±1770,
2017.

[11] J. Comden, S. Yao, N. Chen, H. Xing, and Z. Liu, ªOnline
optimization in cloud resource provisioning: Predictions, regrets,
and algorithms,º Proc. ACM Meas. Anal. Comput. Syst., vol. 3,
no. 1, Mar. 2019. [Online]. Available: https://doi.org/10.1145/
3322205.3311087

[12] T. Lawrence, ªEvening internet ’rush-hour’ affects broadband
users - news - gadgets & tech,º in The Independent, 2013.

[13] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, ªProvably efficient
algorithms for joint placement and allocation of virtual network
functions,º in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1±9.

[14] D. B. Oljira, K. Grinnemo, J. Taheri, and A. Brunstrom, ªA model
for qos-aware vnf placement and provisioning,º in IEEE NFV-
SDN 2017 - IEEE Conference on Network Function Virtualization and
Software Defined Networks. IEEE, 2017, pp. 1±7.

[15] J. Zhang, W. Wu, and J. C. S. Lui, ªOn the theory of function
placement and chaining for network function virtualization,º in
Proceedings of the Eighteenth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, ser. Mobihoc ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 91±100.
[Online]. Available: https://doi.org/10.1145/3209582.3209592

[16] Y. Liu, X. Shang, and Y. Yang, ªJoint sfc deployment and resource
management in heterogeneous edge for latency minimization,º
IEEE Transactions on Parallel and Distributed Systems, 2021.

[17] Y. Liu, Y. Mao, X. Shang, Z. Liu, and Y. Yang, ªDistributed
cooperative caching in unreliable edge environments,º in IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications,
2022, pp. 1049±1058.

[18] L. K. Sullivan, ªShoes the full version,º Website, 2021, https://
www.youtube.com/watch?v=wCF3ywukQYA/.

[19] J. Li, W. Shi, Q. Ye, W. Zhuang, X. Shen, and X. Li, ªOnline joint vnf
chain composition and embedding for 5g networks,º in 2018 IEEE
Global Communications Conference (GLOBECOM), 2018, pp. 1±6.

[20] X. Wang, C. Wu, F. Le, and F. C. M. Lau, ªOnline learning-assisted
vnf service chain scaling with network uncertainties,º in 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), 2017,
pp. 205±213.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

13

[21] M. J. Neely, ªStochastic network optimization with application
to communication and queueing systems,º Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1±211, 2010.

[22] X. Shang, Y. Huang, Z. Liu, and Y. Yang, ªReducing the service
function chain backup cost over the edge and cloud by a self-
adapting scheme,º IEEE Transactions on Mobile Computing, vol. 21,
no. 8, pp. 2994±3008, 2022.

[23] J. Li, S. Guo, W. Liang, Q. Chen, Z. Xu, W. Xu, and A. Y. Zomaya,
ªDigital twin-assisted, sfc-enabled service provisioning in mobile
edge computing,º IEEE Transactions on Mobile Computing, pp. 1±16,
2022.

[24] C. Wang, Q. Hu, D. Yu, and X. Cheng, ªProactive deployment of
chain-based vnf backup at the edge using online bandit learning,º
in 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS), 2021, pp. 740±750.

[25] ÐÐ, ªOnline learning for failure-aware edge backup of service
function chains with the minimum latency,º 2022. [Online].
Available: https://arxiv.org/abs/2201.06884

[26] Y. Chen and J. Wu, ªLatency-efficient vnf deployment and path
routing for reliable service chain,º IEEE Transactions on Network
Science and Engineering, vol. 8, no. 1, pp. 651±661, 2021.

[27] Y. Mao, X. Shang, and Y. Yang, ªProvably efficient algorithms
for traffic-sensitive sfc placement and flow routing,º in IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications,
2022, pp. 950±959.

[28] ÐÐ, ªJoint resource management and flow scheduling for sfc de-
ployment in hybrid edge-and-cloud network,º in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 170±
179.

[29] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, ªDynamic,
latency-optimal vnf placement at the network edge,º in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications.
IEEE, 2018, pp. 693±701.

[30] Z. Xu, Z. Zhang, W. Liang, Q. Xia, O. Rana, and G. Wu, ªQos-aware
vnf placement and service chaining for iot applications in multi-
tier mobile edge networks,º ACM Transactions on Sensor Networks
(TOSN), vol. 16, no. 3, pp. 1±27, 2020.

[31] D. Li, P. Hong, K. Xue et al., ªVirtual network function place-
ment considering resource optimization and sfc requests in cloud
datacenter,º IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 7, pp. 1664±1677, 2018.

[32] V. Nikam, J. Gross, and A. Rostami, ªVnf service chaining in
optical data center networks,º in IEEE NFV-SDN 2017 - IEEE
Conference on Network Function Virtualization and Software Defined
Networks. IEEE, 2017, pp. 1±7.

[33] M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou,
ªEnd-to-end performance-based autonomous vnf placement with
adopted reinforcement learning,º IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 2, pp. 534±547, 2020.

[34] D. M. Manias, M. Jammal, H. Hawilo, A. Shami, P. Heidari,
A. Larabi, and R. Brunner, ªMachine learning for performance-
aware virtual network function placement,º in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1±6.

[35] J. Fan, C. Guan, Y. Zhao, and C. Qiao, ªAvailability-aware map-
ping of service function chains,º in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1±9.

[36] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, ªRaba:
Resource-aware backup allocation for a chain of virtual network
functions,º in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1918±1926.

[37] T. Taleb, A. Ksentini, and B. Sericola, ªOn service resilience in
cloud-native 5g mobile systems,º IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 483±496, 2016.

[38] J. Li, W. Liang, W. Xu, Z. Xu, X. Jia, A. Y. Zomaya, and S. Guo,
ªBudget-aware user satisfaction maximization on service provi-
sioning in mobile edge computing,º IEEE Transactions on Mobile
Computing, pp. 1±13, 2022.

[39] Z. Xu, H. Ren, W. Liang, Q. Xia, W. Zhou, G. Wu, and P. Zhou,
ªNear optimal and dynamic mechanisms towards a stable nfv
market in multi-tier cloud networks,º in IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications, 2021, pp. 1±10.

[40] Z. Xu, H. Ren, W. Liang, Q. Xia, W. Zhou, P. Zhou, W. Xu, G. Wu,
and M. Li, ªNear optimal learning-driven mechanisms for stable
nfv markets in multitier cloud networks,º IEEE/ACM Transactions
on Networking, vol. 30, no. 6, pp. 2601±2615, 2022.

[41] L. Huang, S. Bi, and Y.-J. A. Zhang, ªDeep reinforcement learning
for online computation offloading in wireless powered mobile-

edge computing networks,º IEEE Transactions on Mobile Comput-
ing, vol. 19, no. 11, pp. 2581±2593, 2020.

[42] S. Vimal, M. Khari, N. Dey, R. G. Crespo, and Y. Harold
Robinson, ªEnhanced resource allocation in mobile edge
computing using reinforcement learning based moaco algorithm
for iiot,º Computer Communications, vol. 151, pp. 355±
364, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0140366419319255

[43] NYSEG, ªElectric pricing,º Website, 2021, https://www.
nyseg.com/wps/portal/nyseg/account/understandyourbill/
electricpricing/day-nightrate/.

[44] J. Csirik, ªHeuristics for the 0-1 min-knapsack problem,º Acta
Cybernetica, vol. 10, no. 1-2, pp. 15±20, 1991.

[45] Y. Liu, X. Shang, Z. Liu, and Y. Yang, ªTechnical report,º
[Online]. Available: https://drive.google.com/drive/folders/
1tGDTLkvd9va 14LaBOVncI49aq66aUa-?usp=share link.

[46] M. J. Neely, ªStability and capacity regions or discrete time
queueing networks,º CoRR, vol. abs/1003.3396, 2010. [Online].
Available: http://arxiv.org/abs/1003.3396

[47] L. Gurobi Optimization, ªGurobi optimizer reference manual,º
2021.

[48] X. Shang, Z. Li, and Y. Yang, ªPartial rerouting for high-availability
and low-cost service function chain,º in 2018 IEEE Global Commu-
nications Conference (GLOBECOM), 2018, pp. 1±6.

[49] Z. Tan and J. Zhang, ªNetwork function placement for service
chains with server maintenance cost,º in 2020 IEEE Wireless Com-
munications and Networking Conference Workshops, 2020, pp. 1±6.

[50] M. Grant, S. Boyd, and Y. Ye, ªCvx users’ guide,º online:
http://www. stanford. edu/˜ boyd/software. html, 2009.

Yu Liu received his B. Eng. degree with honor
in Telecommunication Engineering from Xidian
University, Xi’an, China. He is now pursuing
his Ph.D. degree in Computer Engineering at
Stony Brook University. His research interests
are in online algorithms, distributed storage,
cloud computing, edge computing and data cen-
ter networks, with focus on placement and re-
source management of virtual network functions
and reliability of service function chains.

Xiaojun Shang received his B. Eng. degree in
Information Science and Electronic Engineer-
ing from Zhejiang University, Hangzhou, China,
and M.S. degree in Electronic Engineering from
Columbia University, New York, USA. He is now
pursuing his Ph.D. degree in Computer Engi-
neering at Stony Brook University. His research
interests are in cloud computing and data center
networks, with focus on placement and routing
of virtual network functions and resilience of ser-
vice function chains.

Yingling Mao received the B.S. degree in Math-
ematics and Applied Mathematics in lZhiyuan
College from Shanghai Jiao Tong University,
Shanghai, China, in 2018. She is currently work-
ing toward the Ph.D degree in the Department
of Electrical and Computer Engineering, Stony
Brook University. Her research interests include
network function virtualization, software-defined
network, cloud computing.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3282156

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 04,2023 at 17:23:23 UTC from IEEE Xplore. Restrictions apply.

