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Abstract—Mobile edge computing with the near-data process-
ing paradigm can support applications requiring low latency and
high computing capability, where energy cost is a significant
part of the expenditure. This paper formulates and studies the
problem of online joint task offloading and resource allocation
for latency minimization subjecting to a time average energy cost
constraint in mobile edge computing systems. The formulated
problem has four time-variant system states, i.e., data lengths,
task sizes, channel conditions, and electricity prices, which are
modeled based on real-world data. At the beginning of each
time slot, the system has to make five online decisions jointly:
base station selection, server selection for task offloading, com-
munication bandwidth allocation, computing resource allocation,
and frequency scaling. We prove the offline version of the
formulated problem is NP-hard. We design an online algorithm
with a provable approximation ratio and low computational
complexity for the proposed problem. In particular, it balances
energy cost and latency based on the drift-plus-penalty algorithm
and makes server and base station selection decisions using a
game theoretic-based algorithm. We conduct extensive real-world
data-driven simulations to evaluate the proposed algorithm.
Simulation results show that the proposed approach outperforms
popular baselines.

Index Terms—Online Task Offloading, Mobile Edge Comput-
ing, Frequency Scaling

I. INTRODUCTION

With the development of information technology, many

applications requiring low latency and high computing power

emerged, e.g., autopilot, VR gaming, and the internet of

things [1]. Mobile devices are limited in computing capa-

bility and battery sizes, while uploading the tasks on cloud

servers encounters high communication latency due to long

propagation latency and network congestion. Mobile edge

computing is one of the promising paradigms for supporting

such applications, where edge servers are close to end-users

and have relatively powerful computing capabilities.

This paper focuses on two key system performance indexes:

edge servers’ energy cost and the system’s overall latency.

The costs of edge data centers are usually higher than cloud

data centers because the cost per scale decreases as the scale

increases [2], [3]. Therefore, lowering the cost of edge data

centers is more critical than in the cloud. It is difficult to lower

the costs of equipment, server rooms, and other infrastructures.

This work was supported in part by the National Science Foundation under
grant numbers 1730291, 1717731, 2230620, 2046444, 2146909, 2106027, and
2214980.

Still, we can reduce the energy cost, which accounts for around

25 percent of the total operating cost [4]. On the other hand,

edge computing is designated to reduce round-trip latency.

Therefore, the overall latency is the other key performance

index.

CPU clock frequency scaling is widely used in edge and

data centers to balance performance and energy consump-

tion [5]–[9]. In addition, frequencies of GPUs are also tun-

able [10], [11]. This paper considers a scenario where each

edge server can choose different clock frequencies at different

time slots. We balance the energy cost and the overall system

latency by tuning edge servers’ clock frequency. In addition,

this paper does not presume a specific energy consumption

function for servers and allows edge servers to have different

energy consumption functions.

In this paper, we consider the problem of online task

offloading and resource allocation with the goal of minimizing

latency while subject to a time-averaged energy cost constraint.

At the beginning of each time slot, the system controller ob-

serves four system states: channel conditions between mobile

devices and base stations, real-time electricity price, input data

lengths, and task sizes. Then, the system controller makes five

online decisions: task offloading, base station selection, com-

puting resource allocation, communication resource allocation,

and clock frequency scaling decisions. The online decisions

and system states at each time slot jointly determine the current

energy cost and overall latency.

Despite the advantages of mobile edge computing and clock

frequency scaling, it is challenging to solve the proposed

problem. We prove that the proposed problem is NP-hard even

if the system lasts only one slot. First, there is a trade-off

between the energy cost and the overall latency. Since the

system states change over time, the sweet point of the trade-

off varies, and we must carefully balance the cost and the

overall latency at each time slot. Moreover, the system states

are not independent and identically distributed, which makes

the problem more challenging. In addition, the CPU clock

frequency scaling decisions tune the balance between cost

and latency. Even if the optimal CPU clock frequency scaling

decisions are given, minimizing the overall latency at each

time step is still NP-hard. It is because there are contradictions

between the latency of different wireless devices.

In this paper, we design an algorithm for the problem.
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We use Lyapunov stochastic optimization to balance the time

average cost and the overall latency and propose a game

theoretic-based algorithm for choosing offloading and base

station selection decisions. The main contributions of the paper

are summarized as follows:

• We formulate the energy-aware online task-offloading and

resource allocation problem and show the hardness of the

problem. We do not assume that system states are indepen-

dent and identically distributed (iid) but model the system

states based on real-world data.

• We proposed a drift-plus-penalty-based online approach for

the proposed problem. In particular, the approach makes

decisions at each slot by applying a game theoretic-based

algorithm to solve an NP-hard problem. We prove that

the proposed algorithm has a constant-factor approximation

ratio.

• We conduct extensive real-world data-driven simulations to

evaluate the proposed algorithm. Results show the proposed

algorithm outperforms baselines and is time-efficient.

The remainder of this paper is organized as follows. Sec-

tion II discusses related works. Section III presents the system

model and formulates the online problem. Section IV analyzes

and simplifies the formulated problem. Section V proposes an

online algorithm for the problem. Section VI evaluates the

performance of the proposed online algorithm. Section VII

concludes this paper.

II. RELATED WORKS

Task offloading and resource management in edge environ-

ments have drawn much attention recently. In [12], Jošilo et al.

focus on a wireless and computing resource allocation problem

for computational offloading and propose a game theoretic-

based constant factor approximation algorithm. In [13], Jošilo

et al. study a task offloading and resource allocation problem

in network slices and design an approximation algorithm. In

[14], Yu et al. study a service function chain deployment and

resource management problem, where each service function

chain is an ordered sequence of network functions, and pro-

posed an algorithm similar to [12]. On the other hand, some

paper considers online systems as follows. [15]–[17] consider

mobile edge computing systems with iid systems states, while

this paper allows non-iid system states. In particular, Zhang

et al. focus on choosing caching decisions to minimize edge

computing latency and energy consumption in [15], Ying et al.

study the problem of task allocation and clock scaling for en-

ergy consumption minimization in [16], and Qi et al. consider

the task offloading and resource allocation problem in MEC-

enabled dense C-RAN for energy efficiency optimization

in [17]. In [18], Zhi et al. study an offloading problem with the

goal of maximizing edge servers’ revenue. In [19], Ye et al.

focus on a base station switching problem to lower the energy

consumption and propose a deep reinforcement learning-based

algorithm. Unlike the above online systems, this paper allows

server clock frequency scaling and does not assume iid system

states. In [20], the authors consider online optimization under

arbitrary system states: however, the competitive ratio of the

K,N, I numbers of base stations, servers, and MDs

B,S,D sets of base stations, servers, and MDs

M number of edge server clusters

Sm set of the Nm servers in cluster m

di,t input data length of Di’s task at slot t

dt dt = {d1,t, d2,t, · · · , dI,t}

fi,t job size of Di’s task at slot t

ft ft = {f1,t, f2,t, · · · , fI,t}

FL
n , FU

n lowest and highest feasible frequencies of Sn

ωn,t clock frequency of Sn at slot t

Ωt Ωt = {ω1,t, ω2,t, · · · , ωN,t}

gn(·) energy consumption function of Sn

σi,n suitability of running Di’s tasks on Sn

xi,k,t base station selection decision of Si at slot t

xt xt = {xi,k,t|i ∈ [I], k ∈ [K]}

yi,n,t task offloading decision of Si at slot t

yt yt = {yi,n,t|i ∈ [I], n ∈ [N ]}

ψA
i,n,t, ψ

F
i,n,t bandwidth resource allocation decisions

Ψt Ψt = {ψA
i,k,t

, ψF
i,k,t

|i ∈ [I], k ∈ [K]}

φi,n,t computing resource allocation decision

Φt Φt = {φi,n,t|i ∈ [I], n ∈ [N ]}

hi,k,t channel condition between Si and Bk at slot t

ht ht = {hi,k,t|i ∈ [I], k ∈ [K]}

pt electricity price at time slot t

αt set of decisions, (xt,yt,Φt,Ψt,Ωt)

βt set of system states, (ft,dt,ht, pt)

Ct(Ωt, pt) energy cost at slot t

C̄ time average energy cost budget

Lt overall latency at slot t

Tt overall latency under optimal Φt and Ψt

TABLE I: Important Notations

algorithm is relatively large. There are papers considering

server clock frequency scaling. For example, [7] and [21]

assume the energy consumption function is quadratic to clock

frequency, and [8] assumes the energy consumption function

is linear to the clock frequency. Literature papers presume

an energy consumption to servers. Instead, motivated by real-

world data, this paper allows different servers to have different

energy consumption functions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the mobile edge computing (MEC)

system and formulates the energy-aware online tasking of-

floading problem. Some important notations are listed in

Table I.

A. System Model

We consider a heterogeneous mobile edge computing

(MEC) system, which operates in discrete time, i.e., t ∈
{1, 2, · · · }.

The MEC system consists of base stations, edge servers, and

mobile wireless devices (MDs). Figure 1 is a diagram of the

system’s network topology. There are K base stations in the

system, and B = {B1, B2, · · · , BK} represents the collection

of the K base stations. Generally speaking, signals with higher
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Fig. 1: Topology of the heterogeneous mobile edge computing

system. The dashed ellipses are areas covered by base stations.

Mobile devices can be covered by multiple base stations, and

base stations can connect to more than one edge server cluster.

frequencies attenuate faster than lower frequencies. Conse-

quently, the base stations use different carrier frequencies and

cover areas of various sizes. For example, base stations using

a low-band spectrum of 5G (lower than 1 GHz) can cover

a few miles, while base stations using a mid-band spectrum

(1-5 GHz) cover a range of around a hundred meters. Base

stations in B cover areas of different sizes. The system has

N edge servers, and we use S = {S1, S2, · · · , SN} to denote

the collection of all edge servers. Edge servers are located

in edge server rooms, where the traditional baseband unit

(BBU) locates. There are M server rooms, and each server

room hosts a cluster of servers. Edge server cluster m has

Nm edge servers where N1 +N2 + · · ·+NM = N . Sm ⊆ S
denotes the collection of edge servers in server cluster m.

The base stations communicate with the edge servers by so-

called front-haul links [22]. The fronthaul links can be optical

fibers [23] or wireless millimeter waves [24]. We use WF
k to

denote the bandwidth of the fronthaul link corresponding with

base station Bk. Base stations using wireless fronthaul links

can connect to multiple edge server clusters. Base stations

using wired fronthaul only connect to one of the edge server

rooms because building wired connections between all base

stations and all edge server rooms is costly and increases

the complexity of the edge network. The MEC system has

I mobile devices, and D = {D1, D2, · · · , DI} denotes the

collection of all MDs. The MDs communicate with base

stations by cellular channels, and an MD may be covered by

multiple base stations. To distinguish with fronthaul links, we

refer to the links between MDs and base stations as access

links. We use WA
k to represent the access link bandwidth

corresponding with base station Bk. Since the MDs move over

time, the channel condition between Di and Bk varies. We use

hi,k,t (in terms of bps/Hz) to denote the spectrum efficiency of

the wireless channel between Di and Bk at slot t. We use ht

Fig. 2: Real-world data [25]

to denote the collection of spectrum efficiencies between MDs

and base stations at slot t, i.e., ht = {hi,k,t|i ∈ [I], k ∈ [K]}1.

In addition, we use hF
k (in terms of bps/Hz) to denote the

spectrum efficiency of Bk’s fronthaul link. For simplicity, we

assume hF
k is time-invariant because the locations of base

stations and edge server rooms are fixed, but the algorithm

proposed in this paper can handle the case that hF
k varies over

time.

Generally speaking, computing devices (CPU and GPU)

with a higher clock frequency can perform tasks faster with

higher energy consumption. [7], [21] demonstrate that the

energy consumption of a server is linear to the square of its

clock frequency. In [8], the energy consumption of a server

is modeled to be linear with respect to the clock frequency.

Despite the various function formulas between energy as-

sumption and clock frequency, it is generally observed that

the energy consumption is convex with respect to the clock

frequency. This paper addresses a general case where the

function formula between energy consumption and the clock

frequency is unspecified for each server. Instead, we assume

that the energy consumption is convex with respect to the

clock frequency. We assume that each edge server has a unique

energy consumption function with respect to clock frequency.

Let ωn,t be the clock frequency of edge server Sn at time slot

t, and let gn(·) be the energy consumption function of Sn, i.e.,

gn(ωn,t) is the energy consumption of edge server Sn at time

slot t. We use Ωt to denote the collection of clock frequencies

of all edge servers at slot t, i.e., Ωt = {ω1,t, ω2,t, · · · , ωN,t}.

In addition, we use FL
n and FU

n to denote the lowest and

highest allowed clock frequencies of server Sn, respectively,

i.e., ωn,t ∈ [FL
n , FU

n ] for each n ∈ [N ].

At the beginning of each time slot t, each mobile device

Di generates a task of input data length di,t bits which

takes fi,t CPU cycles to perform. We use dt to denote

the collection of all MDs’ input data lengths at time slot

t, i.e., dt = {d1,t, d2,t, · · · , dI,t}. Similarly, we use ft =

1For any positive integer z, [z] denotes set {1, 2, · · · , z}.
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{f1,t, f2,t, · · · , fI,t} to represent the collection of all MDs’ job

sizes at time slot t. Typically, fi,t is proportional to di,t, while

this paper does not presume a specific relationship between

them. Since the edge servers are heterogeneous, each server

is more suitable for conducting some specific tasks [12], [14].

There is a parameter σi,n ∈ [0, 1] representing the suitability

of running Di’s task on Sn. The larger σi,n, the better. In

addition, σi,n is fixed and known. The suitability parameter

σi,n is widely used in the literature [12]–[14].

Motivated by the real-world workloads over time in Fig-

ure 2, which represents the hourly visiting numbers of an

online video from [26], it can be observed that the workload

is non-iid. There is an underlying periodic pattern in which

the workload is high during peak hours and low during off-

peak hours. Therefore, we assume fi,t = f̄i,t + efi,t, where

f̄i,t is a periodic trend with period D, and efi,t, t ∈ {1, 2, · · · }
are iid random variables. For simplicity, we use f̄t to denote

the collection of {f̄1,t, f̄2,t, · · · , f̄I,t} and use e
f
t to denote

the collection of {ef1,t, e
f
2,t, · · · , e

f
I,t}, i.e., ft = f̄t + e

f
t .

Similarly, we assume di,t = d̄i,t + edi,t, where d̄i,t is a given

periodic trend with period D, and edi,t, t ∈ {1, 2, · · · } are iid

random variables. In addition, let d̄t � {d̄1,t, d̄2,t, · · · , d̄I,t}
and edt � {ed1,t, e

d
2,t, · · · , e

d
I,t}, i.e., dt = d̄t + edt .

Renewable energy, like solar and wind energy, accounts for

around 25 percent of global electricity production [27]. How-

ever, such power is unreliable, and the electricity price of such

renewable energies is time-varying. Let pt be the electricity

price at time slot t. Motivated by real-world electricity prices

from [25], as shown in Figure 2, the electricity price is non-iid.

We assume that pt has an underlying periodical trend. That is,

pt = p̄t+ept , where p̄t is a given periodic function with period

D, and ept , t ∈ {1, 2, · · · } are iid random variables.

At the beginning of each time slot, the system controller

is responsible for selecting an edge server and a base station

for each MD. Subsequently, each MD uploads its input data

to the designated base station, which then forwards the data

to the selected edge server. The edge server then performs the

MD’s task after receiving the input data.

B. Problem Formulation

In this section, we formulate the energy-aware online task

offloading problem. The problem minimizes the overall latency

while satisfying a time-averaged energy cost constraint.

1) System States:

At the beginning of each time slot t, we observe four

system states: electricity price pt, channel conditions ht, input

data lengths dt, and task sizes ft. Unlike the literature [15]–

[17] considering iid system states, we consider non-iid system

states. Motivated by real-world data, the system states can

be periodic baselines plus iid random variables. For easy

presentation, we use βt to denote the set of all system states

at time slot t, i.e., βt = (ft,dt,ht, pt).
2) Online Decisions:

At the beginning of each time slot, the system controller

has to make five decisions after observing the current system

states. The first decision is the base station selection decision

xt = {xi,k,t|i ∈ [I], n ∈ [N ]}, where xi,k,t ∈ {0, 1}
represents whether Di offloads its task via base station Bk

at slot t. In particular, xi,k,t = 1 if Di offloads its task via

Bk at slot t, and xi,k,t = 0 otherwise. Since each MD only

can choose one base station at each time slot, we have the

following constraint:

K
∑

k=1

xi,k,t = 1, i ∈ [I], t ∈ {1, 2, · · · }. (1)

Let Ni(xt) be the indexes of servers that are connected to

Di under decision xt. For example, if Di chooses Bk under

xt, n ∈ Ni(xt) if and only if there is a link between Bk

and the cluster hosting server Sn. The second decision is the

task offloading decision yt = {yi,n,t|i ∈ [I], n ∈ [N ]}, where

yi,n,t ∈ {0, 1} represents whether Di performs its task on

server Sn at slot t. We have yi,n,t = 1 if Di performs its task

on server Sn at slot t, and yi,n,t = 0 otherwise. Similar to

constraint (1) for decision xt, we have a constraint for yt as

follows:

N
∑

n=1

yi,n,t = 1, i ∈ [I], t ∈ {1, 2, · · · }. (2)

Let νi(yt) be the index of the server selected by Di under

decision yt, i.e., νi(yt) = n if and only if yi,n,t = 1. Then,

we have a constraint as follows

νi(yt) ∈ Ni(xt) i ∈ [I], t ∈ {1, 2, . . .}. (3)

The third decision is the bandwidth resource allocation de-

cision Ψt. We use ψA
i,k,t ∈ [0, 1] to denote the proportion

of base station Bk’s access link bandwidth WA
k allocated to

mobile device Di. ψ
F
i,k,t ∈ [0, 1] represents the proportion of

base station Bk’s fronthaul bandwidth WF
k allocated to mobile

device Di. The fronthaul and access-link bandwidths of Bk

allocated to users can not exceed WF
k and WA

k , respectively.

Therefore, we have the two constraints as follows:

I
∑

i=1

xi,k,tψ
A
i,k,t ≤ 1, k ∈ [K], t ∈ {1, 2, · · · } (4)

I
∑

i=1

xi,k,tψ
F
i,k,t ≤ 1, k ∈ [K], t ∈ {1, 2, · · · }. (5)

Let ΨA
t = {ψA

i,k,t|i ∈ [K], i ∈ [I]} and ΨF
t = {ψF

i,k,t|i ∈
[K], i ∈ [I]} be the collections of access link and fronthaul

bandwidth resource allocation decisions, respectively. More-

over, Ψt = ΨA
t ∪Ψ

F
t is the collection of all bandwidth resource

allocation decisions at time slot t. Next, we consider the

fourth online decision, computing resource allocation decision

Φt = {φi,n,t|i ∈ [I], n ∈ [N ]}. φi,n,t ∈ [0, 1] represent the

proportion of Sn’s computing capability allocated to mobile

device Di at time slot t. Similar to (4) and (5), there is a

constraint limiting the total computing resource allocated to

MDs as follows:

I
∑

i=1

yi,n,tφi,n,t ≤ 1, n ∈ [N ], t ∈ {1, 2, · · · }. (6)
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The fifth decision is Ωt = (ω1,t, ω2,t, · · · , ωN,t), the collection

of edge servers’ clock frequencies at time slot t. In particular,

ωn,t is the clock frequency of Sn at slot t. For easy presen-

tation, we use αt to represent the set of all decisions at time

slot t, i.e, αt = (xt,yt,Φt,Ψt,Ωt).
3) Time Average Objective Value and Constraint:

The system considers two key performance indexes: overall

system latency and energy cost. We consider the problem of

minimizing time average system latency under a time average

energy cost constraint.

The overall system latency experienced by all MDs con-

sists of processing latency and communication latency. The

processing latency experienced by Di at time slot t is denoted

by LP
i,t which is a function of yt,Φt, ft and Ωt as follows:

LP
i,t(yt, ft,Φt,Ωt) =

N
∑

n=1

yi,n,t
fi,t

ωn,tσi,nφi,n,t

. (7)

The total processing latency at time slot t denoted by

LP
t (yt, ft,Φt,Ωt) is as follows:

LP
t (yt, ft,Φt,Ωt) =

I
∑

i=1

LP
i,t(yt, ft,Φt,Ωt). (8)

The communication latency experienced by Di at slot t is

denoted by LC
i,t. LC

i,t consists of access latency LC,A
i,t and

fronthaul latency LC,F
i,t as follows:

LC,A
i,t (xt,Ψt,dt,ht) =

K
∑

k=1

xi,k,t

di,t
WA

k hi,k,tψA
i,k,t

(9)

LC,F
i,t (xt,Ψt,dt,ht) =

K
∑

k=1

xi,k,t

di,t
WF

k hF
k ψ

F
i,k,t

. (10)

The total communication latency at time slot t, denoted by

LC
t (xt,Ψt,dt,ht), is as follows:

LC
t (xt,Ψt,dt,ht) =

I
∑

i=1

(

LC,A
i,t + LC,F

i,t

)

. (11)

The overall latency of the system at slot t is denoted by

Lt(αt, βt) as follows:

Lt(αt, βt) = LC
t (xt,Ψt,dt,ht) + LP

t (yt, ft,Φt,Ωt).

Then, we have the objective function of the system as follows:

min
αt

lim
T→∞

1

T

T
∑

t=1

E
[

Lt(αt, βt)
]

. (12)

In what follows, we consider the time-averaged energy cost

constraint. The energy consumption of edge server Sn at time

slot t is a function of its clock frequency ωn, i.e., gn(ωn,t).
The energy cost of edge server Sn is ptgn(ωn,t). The total

energy cost at time slot t, denoted by Ct, is a function of Ωt

and pt as follows:

Ct(Ωt, pt) =

N
∑

n=1

ptgn(ωn,t). (13)

Let C̄ be the time-averaged energy cost budget, which is fixed

and known in advance. That is, the time average energy cost

should be less than C̄. For easy presentation, we define

θ(t) � Θ(Ωt, pt) � Ct(Ωt, pt)− C̄.

The time-averaged energy cost constraint is as follows:

lim
T→∞

1

T

T
∑

t=1

E
[

Θ(Ωt, pt)
]

≤ 0. (14)

4) Problem Formulation:

Next, we formally state the energy-aware online tasking

offloading and resource allocation (EOTORA) problem as

follows:

min
αt

lim
T→∞

1

T

T
∑

t=1

E
[

Lt(αt, βt)
]

(EOTORA)

s.t. lim
T→∞

1

T

T
∑

t=1

E
[

Θ(Ωt, pt)
]

≤ 0

xi,k,t ∈ {0, 1}, i ∈ [I], k ∈ [K], t ∈ {1, 2, . . .}

yi,n,t ∈ {0, 1}, i ∈ [I], n ∈ [N ], t ∈ {1, 2, . . .}

ψA
i,k,t ∈ [0, 1], i ∈ [I], k ∈ [K], t ∈ {1, 2, . . .}

ψF
i,k,t ∈ [0, 1], i ∈ [I], k ∈ [K], t ∈ {1, 2, . . .}

φi,n,t ∈ [0, 1], i ∈ [I], n ∈ [N ], t ∈ {1, 2, . . .}

ωn,t ∈ [FL
n , FU

n ], n ∈ [N ], t ∈ {1, 2, . . .}

(1)− (6).

At the beginning of each time slot t, we observe the current

system state βt = (ft,dt,ht, pt) and make an online decision

αt = (xt,yt,Φt,Ψt,Ωt).

IV. PROBLEM SIMPLIFICATION AND COMPLEXITY

In this section, we first simplify the EOTORA problem by

deriving the closed-form optimal resource allocation decisions,

i.e., Φt and Ψt. Then, we show the complexity of the simpli-

fied problem.

We have to make five decisions at each time slot t, i.e.,

xt,yt,Φt,Ψt,Ωt. When xt,yt, and Ωt are given, the problem

is equivalent to the REsource ALlocation (REAL) problem at

each time slot as follows:

min
Φt,Ψt

LP
t (yt, ft,Φt,Ωt) + LC

t (xt,Ψt,dt,ht)

s.t. ψA
i,k,t ∈ [0, 1] i ∈ [I], k ∈ [K]

ψF
i,k,t ∈ [0, 1] i ∈ [I], k ∈ [K]

φi,n,t ∈ [0, 1] i ∈ [I], n ∈ [N ]

(3)− (6).

(REAL)

If decision xt is fixed, the MDs choosing each base station Bk

at slot t are fixed, and let Ik(xt) be the set of MDs choosing

Bk at slot t under decision xt. Similarly, at slot t, the MDs

choosing each edge server Sn are fixed if yt is given, and

In(yt) represents the set of MDs choosing Sn at slot t under

decision yt. We use Ψ∗
t (xt) and Φ∗

t (yt) to denote the optimal
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Ψt and Φt under (xt,yt), respectively. In what follows, we

show the closed-form optimal solution of REAL in Lemma 1.

Lemma 1. For any given xt,yt,Ωt, the optimal Ψt and Φt,

denoted by Ψ∗
t (xt) and Φ∗

t (yt), are as follows:

φi,n,t =

√

fi,t/σi,n
∑

j∈In(yt)

√

fj,t/σi,n

, n ∈ [N ], i ∈ In(yt) (15)

ψA
i,k,t =

√

di,t/hi,k,t
∑

j∈Ik(xt)

√

dj,t/hi,k,t

, k ∈ [K], i ∈ Ik(xt) (16)

ψF
i,k,t =

√

di,t/hF
k

∑

j∈Ik(xt)

√

dj,t/hF
k

, k ∈ [K], i ∈ Ik(xt). (17)

The main idea of the proof of Lemma 1 is as follows. First,

we show REAL is a convex problem with respect to Ψt and

Φt. Then, we list the KKT conditions of the problem. Next,

we derive (15), (16), and (17) from the KKT conditions. The

proof is similar to the proof of Lemma 1 in [14]. Since the

proof is standard, we omit the proof.

Substituting (15) into (8), the optimal processing latency at

slot t under (yt,Ωt), denoted by TP
t (yt, ft,Ωt), is as follows:

TP
t (yt, ft,Ωt) =

N
∑

n=1

1

ωn,t

(

I
∑

i=1

yi,n,t

√

fi,t/σi,n

)2

. (18)

Similarly, substituting (16) and (17) into (11), the opti-

mal communication latency at slot t under xt, denoted by

TC
t (xt,dt,ht), is as follows:

TC
t (xt,dt,ht) =LC,A

t (xt,dt,Φ
∗,ht) + LC,F

t (xt,dt,Φ
∗,ht)

=
K
∑

k=1

1

WA
k

(

I
∑

i=1

xi,k,t

√

di,t/hi,k,t

)2

+
K
∑

k=1

1

WF
k

(

I
∑

i=1

xi,k,t

√

di,t/hF
k

)2

.

(19)

Next, we use Tt(xt,yt,Ωt, βt) to denote the optimal latency

at time T under xt, yt, and Ωt, i.e.,

Tt(xt,yt,Ωt, βt) = TP
t (yt, ft,Ωt) + TC

t (xt,dt,ht) (20)

Note that, we use Tt, T
P
t , and TA

t to denote the total latency,

processing latency, and communication latency, respectively,

under optimal resource allocation decision (Ψ∗
t (xt),Φ

∗
t (yt)),

while Lt, L
P
t , and LA

t are latencies under arbitrary resource

allocation decisions. Then, by eliminating resource allocation

Algorithm 1: BDMA-based DPP

Input: {WF
k ,WA

k |k ∈ [K]}, {σi,n|i ∈ [I], n ∈ [N ]},

{hF
k |k ∈ [K]}, and {FL

n , FU
n |n ∈ [N ]}.

Output: Online decisions to the EOTORA problem,

i.e., αt, t ∈ {1, 2, · · · }
1 Initialization: choose Q(1) and V ;

2 for t = {1, 2, · · · } do

3 Observer current system states βt;

4 Call BDMA to get (x̄t, ȳt, Ω̄t);
5 Refer to Lemma 1 to get (Φ∗

t (ȳt),Ψ
∗
t (x̄t));

6 Perform decision (x̄t, ȳt, Ω̄t,Φ
∗
t (ȳt),Ψ

∗
t (x̄t));

7 Update queue backlog Q(t+ 1) by (21);

8 end

variables Ψt and Φt, EOTORA is equivalent to the Energy-

aware Online Task Offloading (EOTO) problem as follows:

min
xt,yt,Ωt

1

T

T
∑

t=1

E
[

Tt(xt,yt,Ωt, βt)
]

s.t.
1

T

T
∑

t=1

E
[

Θt(Ωt, pt)
]

≤ 0

xi,k,t ∈ {0, 1}, i ∈ [I], k ∈ [K]

yi,n,t ∈ {0, 1}, i ∈ [I], n ∈ [N ]

(1), (2) and (3).

(EOTO)

In what follows, we show a simplified version of the EOTO

problem is NP-hard. Under the simplified version, we consider

only one slot. In addition, we assume fi,t, i ∈ [I] are 0.

That is, the processing latency is 0, and we only consider

minimizing the communication latency. Moreover, we assume

there is only one server cluster, and the fronthaul links have

infinite bandwidth. Then, the simplified problem is equivalent

to the problem of minimizing latency over access links as

follows:

min
xt

K
∑

k=1

1

WA
k

(

I
∑

i=1

xi,k,t

√

di,t/hi,k,t

)2

s.t. xi,k,t ∈ {0, 1}, i ∈ [I], k ∈ [K]
K
∑

k=1

xi,k,t = 1, i ∈ [I].

(P1)

Theorem 1. The P1 problem, a simplified version of the

EOTO, is NP-hard.

The proof of Theorem 1 is similar to Theorem 1 in [14], so

we omit it.

V. ALGORITHM DESIGN

In this section, we design an online algorithm for EOTO and

analyze the performance of the proposed algorithm. We call

the algorithm DPP, which is short for the Drift-Plus-Penalty

scheme. In particular, DPP considers a virtual queue, and Q(t)
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is the queue backlog at time slot t. In particular, the dynamic

of Q(t) is as follows:

Q(t+ 1) = max{Q(t) + θ(t), 0}. (21)

In addition, V is a tunable parameter of the DPP algorithm.

At the beginning of each slot t, we first observe system

states βt = (ht, ft,dt, pt). We define function f(xt,yt,Ωt)
as follows:

f(xt,yt,Ωt) � V Tt(xt,yt,Ωt, βt) +Q(t)Θ(Ωt, pt).

Then, DPP solves the following problem:

min
xt,yt,Ωt

f(xt,yt,Ωt)

s.t. (1)− (3)

xi,k,t ∈ {0, 1}, i ∈ [I], k ∈ [K]

yi,n,t ∈ {0, 1}, i ∈ [I], n ∈ [N ]

ωn,t ∈ [FL
n , FU

n ], n ∈ [N ].

(P2)

Problem P2 is a mixed integer programming problem, which is

NP-hard. The proof of the NP-hardness is omitted due to space

limitations. We design an algorithm for solving P2 named

BDMA in Section V-A. The DPP algorithm using BDMA for

solving P2 is called BDMA-based DPP. The BDMA-based

DPP algorithm is formally stated in Algorithm 1.

In the remainder of this section, we first design an algorithm

for P2 in Section V-A. Next, we provide theoretical perfor-

mance guarantees for the DPP algorithm in Section V-C.

A. Algorithm Design for P2

In this section, we design an algorithm named BDMA for

P2. BDMA is short for Benders’ Decomposition Motivated

Algorithm.

P2 has two groups of decisions: binary decision (xt,yt)
and continuous decision Ωt. BDMA considers the P2 problem

as two subproblems. The first subproblem, named P2-A, is as

follows:

min
xt,yt

Tt(xt,yt,Ωt, βt)

s.t. (1)− (3)

xi,k,t ∈ {0, 1}, i ∈ [I], k ∈ [K]

yi,n,t ∈ {0, 1}, i ∈ [I], n ∈ [N ].

(P2-A)

P2-A fixes Ωt and minimizes Tt(xt,yt,Ωt, βt) with respect

to binary variables xt and yt. The second subproblem,

called P2-B, fixes (x,y) and minimizes Tt(x̄t, ȳt,Ωt, βt) +
Q(t)Θ(Ωt, pt) with respect to variable Ωt is as follows:

min
Ωt

V · Tt(x̄t, ȳt,Ωt, βt) +Q(t)Θ(Ωt, pt)

s.t. ωn,t ∈ [FL
n , FU

n ], n ∈ [N ]
(P2-B)

We design an algorithm, named CGBA, for solving P2-A in

Section V-B. The P2-B problem is convex on variable Ωt,

and we can solve the problem efficiently by convex problem

solvers like the CVX solver [28].

Then, we formally state the BDMA algorithm for solving P2

in Algorithm 2. Motivated by the Benders’ decomposition, we

Algorithm 2: BDMA(z) for P2

1 Set Ωt = ΩL and obj = ∞;

2 for iter in {1, 2, · · · , z} do

3 Solve P2-A by CGBA to get (xt,yt);
4 Solver P2-B by CVX to get Ωt;

5 if f(x,y,Ωt) < obj then

6 obj = f(x,y,Ωt);
7 (x̄t, ȳt, Ω̄t) = (xt,yt,Ωt);
8 end

9 end

10 Return decision (x̄t, ȳt, Ω̄t);

iteratively update the two sets of variables. At each iteration,

we first fix one decision and solve a subproblem to update

the second decision, then fix the second decision and update

the first one by solving the other subproblem. BDMA has an

tunable parameter z, where z is a positive integer representing

the number of iterations. We use BDMA(z) to denote BDMA

with the tunable parameter equivalent to z. We use (x̄t, ȳt, Ω̄t)
to denote the decisions made by the BDMA algorithm.

The theoretical performance guarantee of BDMA is shown

in Theorem 3.

B. Algorithm Design for the P2-A Problem

In this section, we design a weighted game theoretic-based

algorithm for P2-A. P2-A is NP-hard, and the proof is similar

to the proof of P1. We interpret P2-A as a congestion game and

refer to the proposed algorithm as Congestion Game-Based

Algorithm (CGBA).

For the sake of convenience, we introduce some short-

formed notations as follows. Let R = {Cn|n ∈ [N ]} ∪
{BF

k , BA
k |k ∈ [K]} be the set of all resources in the system,

where Cn represents the computing resource of Sn, BF
k is

the fronthaul bandwidth resource of Bk, and BA
k denotes the

access link bandwidth resource of Bk. mr is the weight of

each resource r ∈ R. In particular, mr = 1/ωn,t if resource

r is Cn, mr = 1/WF
k if resource r is BF

k , and mr = 1/WA
k

if resource r is BA
k . Let zi = {xi,k,t, yi,n,t|i ∈ [I], k ∈

[K], n ∈ [N ]} be the decision strategy of Di. In addition,

let z = (z1, z2, · · · , zI) be the decision profile of all MDs.

For each i ∈ [I], Zi represents the set of all feasible zi. In

particular, Zi is the set zi satisfying the following constraints:

xi,k,t ∈ {0, 1} k ∈ [K],

yi,n,t ∈ {0, 1} n ∈ [N ],
K
∑

k=1

xi,k,t = 1,

N
∑

n=1

yi,n,t = 1,

νi(yt) ∈ Ni(xt).

For each zi ∈ Zi, we use Ri(zi) to denote the set of

resources used by Di under zi. For example, if Di offloads

its task to server Sn via base station Bk under decision zi,
Ri(zi) = {BF

k , BA
k , Cn}. Then, for each pair of mobile
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Algorithm 3: CGBA(λ) for P2-A

1 Choose zi from Zi randomly for k ∈ K;

2 while {∃i ∈ I, such that

(1− λ)Ti(z) > min
ẑi∈Zi

Ti(ẑi, z−i)} do

3 i := argmax
j∈I

{

Tj(z)− min
ẑj∈Zj

Ti(ẑj , z−i)
}

;

4 zi := argminz̄i∈Zi
TC
i (z̄i, z−i);

5 end

6 Return decision ẑ := (z1, z2, · · · , zI);

device Di and resource r ∈ R, pi,r is a parameter corre-

sponding with the pair. In particular, pi,r =
√

fi,t/ωn,t if

r represents Cn, pi,r =
√

di,t/hF
k if r represents BF

k , and

pi,r =
√

di,t/hi,k,t if r represents BA
k . We use Ir(z) to

denote the set of MDs using resource r under decision z.

In addition, for each resource r ∈ R, pr(z) is a function of

z, i.e., pr(z) =
∑

i∈Ir(z)
pi,r. Then, the latency experienced

by Di equals Ti(z) =
∑

r∈R(zi)
mrpi,rpr(z). Substituting the

above short-termed notations in to P2-A, P2-A is equivalent

to the problem as follows:

min
zi,i∈[I]

I
∑

i=1

∑

r∈R(zi)

mrpi,rpr(z)

s.t. zi ∈ Zi, i ∈ [I].

(WCG)

The WCG problem can be interpreted as a weighted conges-

tion game, where the weighted congestion game is a tuple

(D, {Zi}i∈[I], {Ti(·)}i∈[I]). D is the set of players, i.e., the

MDs in the system. zi ∈ Zi is the strategy of player i (Di),

where Zi is the set of all feasible strategies. Ti(z) is the cost

of player i under decision profile z.

We propose an algorithm named Congestion Game-Based

Algorithm (CGBA) for the WCG problem. CGBA is formally

stated in Algorithm 3.

In what follows, we show the main performance guarantee

of CGBA for the P2-A problem.

Theorem 2. For λ ∈ (0, 0.125), CGBA(λ) can generate a

decision ẑ in at most O( I
λ
log( P0

Pmin

)) iterations such that

T (ẑ) ≤
2.62

1− 8λ
T (z∗), (22)

where z∗ is the optimal solution.

P0 and Pmin are positive real values, which are the initial

and minimum values of the potential function (see [29] for

details). The proof of Theorem 2 is refer to [29].

In addition, if λ = 0, the proposed CGBA algorithm can

converge to a decision ẑ such that T (ẑ) ≤ 2.62T (z∗) in finite

iterations. We omit the proof due to space limitations. The

main idea of the proof is to show the WCG game is a potential

game, and the decision under CGBA will converge to a Nash

equilibrium.

C. Performance Analysis

In this section, we analyze the performance of the BDMA-

based DPP algorithm.

First, we assume the EOTO problem is feasible by Assump-

tion 1 as follows.

Assumption 1. Let ρ∗ be the optimal time average latency of

P2. There exists ε > 0 such that

1

T

T
∑

t=1

E[Θ(Ω∗
t , pt)] ≤ −ε,

1

T

T
∑

t=1

E[T (x∗
t ,y

∗
t ,Ω

∗
t , βt)] = ρ∗.

Note that Assumption 1 is a typical assumption for online

stochastic optimization problems [30]. Then, we show that

there exists an optimal β-only policy for EOTO, where β-

only policy makes decisions only based on the current system

state βt.

Lemma 2. There exists an β-only policy and ε > 0 such that

1

T

T
∑

t=1

E[Θ(Ωβ
t , pt)] ≤ −ε, (23)

1

T

T
∑

t=1

E[T (xβ
t ,y

β
t ,Ω

β
t , βt)] = ρ∗, (24)

where αβ
t � (xβ

t ,y
β
t ,Ω

β
t ) is the online decision made by the

β-only policy at slot t.

The proof of Lemma 2 is omitted due to space limitations,

and a similar proof is found in [30], [31].

Next, we show the performance guarantee of the decision

ᾱt � (x̄t, ȳt, Ω̄t) made by BDMA for P2. Let (xt,yt,Ωt) be

any feasible solution of P2. Then, we have the theorem as

follows.

Theorem 3. Let (x̄t, ȳt, Ω̄t) be the decision made by BDMA

and (xt,yt,Ωt) be any feasible decision, we have

V · Tt(x̄t, ȳt, Ω̄t, βt) +Q(t)Θ(Ω̄t, pt)

≤RV · Tt(xt,yt,Ωt, βt) +Q(t)Θ(Ωt, pt),
(25)

where R � 2.62RF /(1− 8λ) and RF = max
n∈[N ]

{FU
n /FL

n }.

Proof. Due to space limitations, we only show the main steps

of the proof and omit some unimportant details. The objective

got by BDMA(z) decreases as z increases. We prove the

theorem by showing that (25) holds under BDMA(1). Let

ΩL = (FL
1 , FL

2 , · · · , FL
n ) be the clock frequency decision

when all servers choose their lowest possible lock frequency.

First, we have

V · Tt(x̄t, ȳt, Ω̄t, βt) +Q(t)[Ct(Ω̄t, pt)− C̄]

(a)

≤V · Tt(x̄t, ȳt,Ωt, βt) +Q(t)[Ct(Ωt, pt)− C̄]

(b)

≤V · Tt(x̄t, ȳt,Ω
L
t , βt) +Q(t)[Ct(Ωt, pt)− C̄].

(26)
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Inequality (a) of (27) holds because Ω̄t is optimal for P2-

B. Inequality (b) of (27) holds because ΩL
t ≤ Ωt. Since

Theorem 2 holds, we have

Tt(x̄t, ȳt,Ω
L
t , βt) ≤

2.62

1− 8λ
Tt(xt,yt,Ω

L
t , βt)

≤
2.62RF

1− 8λ
Tt(xt,yt,Ωt, βt).

(27)

Substituting (27) into (26), we have (25), which proves the

theorem.

In what follows, we show the main performance guarantee

of BDMA-based DPP for EOTO.

Theorem 4. Under BDMA-based DPP, the time average

latency and the time average energy cost for EOTO are as

follows:

lim
T→∞

1

T

T
∑

t=1

E[Tt(ᾱt, βt)] ≤ Rρ∗ +
BD

V
(28)

lim
T→∞

1

T

T
∑

t=1

E[Θ(Ω̄t, pt)] ≤ 0 (29)

where B is a fixed constant and D is the period of the system

states.

The proof of Theorem 4 is omitted due to space limitations.

Note that the drift-plus-penalty method in the literature typi-

cally assumes an optimal or additive approximation algorithm

for the problem needed to be solved at each time slot, i.e.,

P2. However, Theorem 4 provides a performance guarantee

when BDMA is not optimal or an additive approximation

algorithm. Details of the proof can be found in our technical

report [32]. Theorem 4 shows that BDMA-based DPP has

an approximation ratio of R when V is sufficiently large.

Moreover, we can prove that DPP is near optimal if the

algorithm for solving P2 is optimal, i.e., if α̂t is the optimal

decision of P2, we have

lim
T→∞

1

T

T
∑

t=1

E[Tt(α̂t, βt)] ≤ ρ∗ +
BD

V
, (30)

lim
T→∞

1

T

T
∑

t=1

E[Θ(Ω̂t, pt)] ≤ 0.

That is, the performance of DPP depends on the algorithm for

solving P2 at the beginning of each slot.

VI. SIMULATION

In this section, we evaluate the performance of the proposed

algorithm.

A. Simulation Settings

We simulate a system with six base stations, two edge

server rooms, and more than a hundred mobile devices. In

addition, each server room hosts eight edge servers. The

electricity prices used in the simulations are real-world hourly

prices from [25]. Similar to [14], at each slot t, the task

sizes fi,t, i ∈ I are randomly drawn between 50 and 200

Fig. 3: Energy Consumption Function

mega CPU cycles, and the data lengths di,t, i ∈ I are

randomly drawn from 3 to 10 megabits. As for the energy

consumption function, we have the real-world power of an

i7-3770K core under clock frequencies from 1.8 GHz to

3.6 GHz (dots labeled by diamonds in Figure 3). Therefore,

we fit the real-world power data by a quadratic function

(the black curve in Figure 3) and let a, b, and c be the

coefficients of the quadratic term, linear term, and constant

of the quadratic function, respectively. Since different servers

have different energy consumption functions, for each server

Sn, we randomly generate a standard normal random variable

e and let its energy consumption function’s coefficients be

a(1+0.01e), b(1+0.1e), and c(1+0.1e), e.g., the two dashed

curves in Figure 3 are randomly generated energy consumption

functions. In addition, we assume half of the sixteen servers

have 64 cores, and others have 128. We assume the base

stations are using mid-band n77, and the access bandwidth

of each base station is randomly drawn between 50 MHz and

100 MHz. Each base station’s access link spectrum efficiency

is randomly drawn between 15 and 50 bps/Hz [33]. We assume

the base stations use wired optical fiber fronthaul links with

bandwidths randomly drawn from 0.5 to 1 GHz [34]. The

fronthaul spectrum efficiency of all base stations is set to

ten bps/Hz [35]. Each base station randomly connects to one

edge server room. Similar to [14], we randomly generate the

suitability parameters σi,n from the range between 0.5 to 1.

B. Performance and convergence of CGBA

We first evaluate the performance of CGBA for P2-A. We

compare the performance of BDMA with that of three baselines

as follows. The first baseline is MCBA proposed in [36].

MCBA represents the Markov chain Monte Carlo method-

Based Algorithm. To be more specific, MCBA is a proba-

bilistic algorithm that randomly moves between neighboring

decisions with a probability related to the objective values of

the decisions. MCBA has a probability of converging in the

optimal decision, and details can be found in [36]. The second

baseline is named ROPT, similar to the baseline used in [14].

In particular, under ROPT, each MD randomly chooses a base

station and an edge server and uses the optimal bandwidth and

computational resource allocation decision. The third baseline
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Fig. 4: Performance Comparison under

λ = 0 and I = {80, 90, · · · , 120}.

Fig. 5: Time Complexity Comparison

under λ = 0 and I = {80, 90, · · · , 120}.

Fig. 6: Performance of CGBA for P2-A

v.s. parameter λ under I = 100.

Fig. 7: Queue Backlog of BDMA-based

DPP versus time under V = {50, 100}.

Fig. 8: Average Queue Backlog and La-

tency of BDMA-based DPP versus V .

Fig. 9: Time Average Latency and En-

ergy Cost versus Energy Cost Budget.

is the optimal decision found by the commercial Gurobi

solver [37] using the branch and bound method.

We first compare the performance of CGBA(0) and that of

the three baselines under I = {80, 00, · · · , 120}. As we can

see from Figure 4, CGBA(0) outperforms ROPT and MCBA.

In addition, CGBA(0) is near optimal, achieving around 1.02

times the optimal objective value obtained by the commercial

Gurobi solver using the branch and bound method. As the

number of MDs increases, problem P2-A’s objective values

under CGBA(0), ROPT, and MCBA increase. As shown in

Figure 5, the time complexities of CGBA, MCBA, and the

commercial Gurobi solver increase as I increases. The time

complexity of ROPT is relatively low and remains the same as

I increases because ROPT randomly and parallelly generates

decisions for MDs. In addition,CGBA generates decisions

more than 500 times faster than the commercial Gurobi solver.

Next, we set the number of MDs to 100, i.e., I =
100, and evaluate the performance of CGBA(λ) under λ =
{0, 0.02, · · · , 0.12}. As shown in Figure 6, as parameter λ
increases, the objective value under CGBA(λ) decreases, and

the number of iterations to converge decreases. The simulation

results in Figure 6 can match the theoretical results in Theo-

rem 2. In the following simulations, we set λ = 0 for better

performance.

C. Performance of DPP

We first evaluate the convergence of queue backlog Q(t)
of BDMA-based DPP. We set the number of MDs to be

100 and parameter z of BDMA as five. Figure 7 shows the

queue backlogs when parameter V is equivalent to 50 and

100. The queue backlogs will increase at the beginning and

converge after a while. After convergence, the queue backlog

changes as the electricity price varies. In particular, queue

backlogs will increase when the electricity price is relatively

high and decrease when the price is relatively low. The reason

is that when the electricity price is low, DPP minimizing P2

at each slot will focus more on lowering the overall latency.

Otherwise, DPP focuses more on reducing the current energy

cost. Then, we compare the queue backlog and average system

latency of DPP under V = {10, 50, 100, 150, 200, 500}. As

shown in Figure 8, the converged queue backlog increases

linearly as V increases. In addition, the average system latency

decreases as V increases, which can match Theorem 4.

Next, we compare the time average latency of BDMA-based

DPP and that of the baselines under different cost budgets.

Since the performance of DPP depends on the algorithm

for solving P2 and is near optimal if the algorithm for

solving P2 is optimal (see Equation (30)), the two baselines

are ROPT-based DPP and MCBA-based DPP. In particular,

ROPT-based DPP, MCBA-based DPP use ROPT and MCBA,

respectively, to solve P2-A to get (xt,yt). Each latency in

Figure 9 is an average of 48 slots’ latencies. As shown in

Figure 9, BDMA-based DPP outperforms the two baselines

under different cost budgets. In addition, the average energy

cost under BDMA-based DPP (the orange dashed line) is lower

than the cost budget (the gray dashed line). Simulation results

show that the time complexity of DPP is dominated by the
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time complexity for solving P2-A, and the CVX solver can

solve P2-B in typically dozens of milliseconds. Therefore, the

time complexity shown in Figure 5 reflects the time complexity

for the corresponding algorithms.

VII. CONCLUSION

In this paper, we have studied the energy cost-aware on-

line joint task offloading and resource allocation problem

(EOTORA) in mobile edge computing. The goal of the problem

is to minimize the time average latency subjecting to a time

average energy cost constraint. We proved the offline version

of the proposed problem is NP-hard. We derived the closed-

form optimal resource allocation decisions given other deci-

sions. By substituting the optimal resource allocation decisions

to EOTORA, the online original problem is equivalent to

problem EOTO. We proposed an algorithm named BDMA-

based DPP for EOTO. At the beginning of each time slot,

the BDMA-based DPP algorithm uses BDMA to solve an

NP-hard mixed integer programming problem. We proved the

proposed algorithm has a constant factor approximation ratio.

Simulation results have shown the proposed BDMA-based

DPP algorithm outperforms baselines.
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