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ABSTRACT

Machine learning is increasingly applied in high-stakes decision
making that directly affect people’s lives, and this leads to an in-
creased demand for systems to explain their decisions. Explanations
often take the form of counterfactuals, which consists of conveying
to the end user what she/he needs to change in order to improve
the outcome. Computing counterfactual explanations is challeng-
ing, because of the inherent tension between a rich semantics of
the domain, and the need for real time response. In this paper we
present GeCo, the first system that can compute plausible and feasi-
ble counterfactual explanations in real time. At its core, GeCo relies
on a genetic algorithm, which is customized to favor searching
counterfactual explanations with the smallest number of changes.
To achieve real-time performance, we introduce two novel optimiza-
tions: A-representation of candidate counterfactuals, and partial
evaluation of the classifier. We compare empirically GeCo against
five other systems described in the literature, and show that it is
the only system that can achieve both high quality explanations
and real time answers.
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1 INTRODUCTION

Machine learning is increasingly applied in high-stakes decision
making that directly affects people’s lives. As a result, there is a
huge need to ensure that the models and their predictions are in-
terpretable by their human users. Motivated by this need, there
has been a lot of recent interest within the machine learning com-
munity in techniques that can explain the outcomes of models.
Explanations improve the transparency and interpretability of the
underlying model, they increase user’s trust in the model predic-
tions, and they are a key facilitator to evaluate the fairness of the
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if you increase income by $200 and close two accounts.

Figure 1: Example of a counterfactual explanation scenario.

model for underrepresented demographics. The ability to explain
is no longer a nice-to-have feature, but is increasingly required by
law; for example, the GDPR regulations grant users the right to
explanation to automated decision algorithms [32]. In addition to
supporting the end user, explanations can also be used by model
developers to debug and monitor their ever more complex models.

In this paper we focus on local explanations, which provide post-
hoc explanations for one single prediction, and are in contrast to
global explanations, which aim to explain the entire model (e.g. for
debugging purposes). In particular we study counterfactual expla-
nations: given an instance x, on which the machine learning model
predicts a negative, “bad” outcome, the explanation says what needs
to change in order to get the positive, “good” outcome, usually rep-
resented by a counterfactual example x, f- For example, a customer
applies for a loan with a bank, the bank denies the loan application,
and the customer asks for an explanation; the system responds by
indicating what features need to change in order for the loan to
be approved, see Fig. 1. In the Al literature, counterfactual expla-
nations are currently considered the most attractive types of local
explanations, even for models that are considered “interpretable”,
such as random forests or generalized linear models [12, 31-33],
because they offer actionable feedback to the customers, and have
been deemed satisfactory by some legislative bodies, for example
they are deemed to satisfy the GDPR requirements [32].

The major challenge in computing a counterfactual explanation
is the tension between a rich semantics on the one hand, and the
need for real-time, interactive feedback on the other hand. The
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Non-interactive | CERTIFAI [27] MACE [12]
Interactive What-If [33] DiCE [17] | GeCo (this paper)

Figure 2: Taxonomy of Counterfactual Explanation Systems

semantics needs to be rich in order to reflect the complexities of the
real world. We want x. ¢ to be as close as possible to x, but we also
want x.f to be plausible, meaning that its features should make
sense in the real world. We also want the transition from x to x,
to be feasible, for example age should only increase. The plausibil-
ity and feasibility constraints are dictated by laws, societal norms,
application-specific requirements, and may even change over time;
an explanation system must be able to support constraints with a
rich semantics. Moreover, the search space for counterfactuals is
huge, because there are often hundreds of features, and each can
take values from some large domain. On the other hand, the com-
putation of counterfactuals needs to be done at interactive speed,
because the explanation system is eventually incorporated in a user
interface. Performance has been identified as the main challenge
for deployment of counterfactual explanations in industry [5, 33].
The tension between performance and rich semantics is the main
technical challenge in counterfactual explanations. Previous sys-
tems either explore a complete search space with rich semantics, or
answer at interactive speed, but not both: see Fig. 2 and discussions
in Section 6. For example, on one extreme MACE [12] enforces
plausibility and feasibility by using a general-purpose constraint
language, but the solver often takes many minutes to find a coun-
terfactual. At the other extreme, Google’s What-if Tool (WIT) [33]
restricts the search space to a fixed dataset of examples, ensuring
fast response time, but poor explanations.

In this paper we present GeCo, the first interactive system for
counterfactual explanations that supports a complex, real-life se-
mantics of counterfactuals, yet provides answers in real time. At
its core, GeCo defines a search space of counterfactuals using a
plausibility-feasibility constraint language, PLAF, and a database
D. PLAF is used to define constraints like “age can only increase”,
while the database D is used to capture correlations, like “job-title
and salary are correlated”. By design, the search space of possible
counterfactuals is huge. To search this space, we make a simple
observation. A good explanation x.y should differ from x by only
a few features; counterfactual examples x. ¢ that require the cus-
tomer to change too many features are of little interest. Based on
this observation, we propose a genetic algorithm, which we cus-
tomize to search the space of counterfactuals by prioritizing those
that have fewer changes. Starting from a population consisting of
just the given entity x, the algorithm repeatedly updates the popu-
lation by applying the operations crossover and mutation, and then
selecting the best counterfactuals for the new generation. It stops
when it reaches a sufficient number of examples on which the clas-
sifier returns the “good” (desired) outcome. While counterfactual
explanations can be applied to various data types, e.g. DiCE can
explain image classifications [17], we focus on structured tabular
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data. Structured data is the predominant data type used in financial
services, a key target industry for counterfactual explanations. We
also assume that the model and data is static; the impact of updates
on the explanations is an challenging direction for future work.

The main performance limitation in GeCo is its innermost loop.
By the nature of the genetic algorithm, GeCo needs to repeatedly
add and remove counterfactuals to and from the current population,
and ends up having to examine thousands of candidates, and apply
the classifier M(x’) on each of them. We propose two novel opti-
mizations to speedup the inner loop of GeCo: A-representation and
classifier specialization via partial evaluation. In A-representation
we group the current population by the set of features AF by which
they differ from x, and represent this entire subpopulation in a sin-
gle relation whose attributes are only AF; for example all candidate
examples x’ that differ from x only by age are represented by a
single-column table, storing only the modified age. This leads to
huge memory savings over the naive representation (storing all
features of all candidates x”), which, in turn, leads to performance
improvements. Partial evaluation specializes the code of the clas-
sifier M to entities x’ that differ from x only in AF; for example,
if M is a decision tree, then normally M(x”) inspects all features
from the root to a leaf, but if AF is age, then after partial evaluation
it only needs to inspect age, for example M can be age > 30, or
perhaps 30 < age < 60, because all the other features are constants
within this subpopulation. A-representation and partial evaluation
work well together, and, when combined, allows GeCo to compute
the counterfactual in interactive time. At a high level, our opti-
mizations belong to a more general effort that uses database and
program optimizations to improve the performance of machine
learning tasks (e.g., [3, 10, 14, 20, 25]).

We benchmarked GeCo against four counterfactual explanation
systems: MACE [12], DiCE [17], What-If Tool [33], and CERTI-
FAI [27]. We show that in all cases GeCo produced the best quality
explanation (using quality metrics defined in [12]), at interactive
speed. We also conduct micro-experiments showing that the two
optimizations, A-representation and partial evaluation, account for
a performance improvement of up to 5%, and thus are critical for
an interactive deployment of GeCo.

Discussion Explanation techniques can be broadly categorized
as white-box or black-box. White-box explanations are designed for
a specific class of models and domains, e.g., Krpyton [19] is specific
to neural networks for image classification. These explanations
exploit the structural properties of the classifier and typically cannot
be applied across domains. While there is no commonly agreed
definition of black-box explanations, we adopt a strict definition in
this paper: the explanation is black-box if the classifier M is available
only as an oracle that, when given an input x’, returns the outcome
M(x”). Thus, black-box explanations do not enforce any restrictions
on the underlying domain and classifier. This is particularly useful
when the model is subject to IP restrictions or provided through
an AP, e.g., the Google Vision APIL A black-box classifier makes it
difficult for the system to compute an explanation that is consistent
with the underlying classifier, meaning that M(x,s) returns the
desired, “good”, outcome. As an example, LIME [22] uses a black-
box classifier, learns a simple, interpretable model locally, around
the input data point x, and uses it to obtain an explanation; however,



its explanations are not always consistent with the predictions of
the original classifier [23, 28].

A key advantage of counterfactual explanations is that they
guarantee model consistency and they can be black-box. A black-
box model, however, makes it difficult to explore the search space
of counterfactuals, because we cannot examine the code of M for
hints of how to quickly get from x to a counterfactual x, . For
this reason, several previous systems claim to be black box, but
require access to the code of the classifier. We classify these systems
as gray-box: A gray-box explanation has access to the code of the
model M. Early counterfactual explanation systems are based on
gradient descent [18, 32]. They are gray-box, because they need
access to the code of M in order to compute its gradient. MACE [12]
is also gray-box, since it translates both the classifier logic and the
feasibility/plausibility constraints into a logical formula and then
solves for counterfactuals via multiple calls to an SMT solver. These
systems have similar restrictions as white-box explanations. In
contrast, CERTIFAI [27] and Google’s What-if Tool (WIT) [33] are
fully black-box, but limit the search space (cf. Fig. 2). CERTIFAI is
based on a genetic algorithm, but the quality of its explanations
are highly sensitive to the computation of the initial population;
we discuss CERTIFAI in detail in Sec. 4.7. WIT severely limits its
search space to a given dataset.

Our system, GeCo, is designed to work with any black-box model
and to explore the large search space of counterfactuals. Yet, if the
code of the classifier is available, then we use the partial evaluation
optimization to improve the runtime. Thus, GeCo differs from other
systems in that it uses access to the code of M not to guide the
search, but only to optimize the execution time.

Counterfactual explanations are related to the problem of finding
adversarial examples [7, 9, 16, 29], which are small perturbations
of the input instance that lead to a different classification. Such
examples are used to evaluate the robustness of the classifier. A key
difference is that adversarial examples typically have many, almost
indistinguishable changes, which are not required to be plausible or
feasible. In Sec. 6, we show that techniques for adversarial examples
are not directly applicable to the problem of finding quality coun-
terfactual explanations by comparing GeCo with an adaptation of
the SimBA algorithm [9].

Contributions In summary, our contributions are as follows.

e We describe GeCo, the first system that computes feasible
and plausible explanations in interactive response time.
We describe the search space of GeCo consisting of a data-
base D and a constraint language PLAF. Section 3.

We describe a custom genetic algorithm for exploring the
space of candidate counterfactuals. Section 4.

We describe two optimization techniques: A-representation
and partial evaluation. Section 5.

We conduct an extensive experimental evaluation of GeCo,
and compare it to MACE, Google’s What-If Tool, CERTIFAI,

and an adaptation of SImBA. Section 6.

2 COUNTERFACTUAL EXPLANATIONS

Consider n features Fy, .
We assume to have a black-box model M, i.e. an oracle that, when
given a feature vector x = (x1, ..., Xp), returns a prediction M(x).

.., F, with domains dom(Fy), . .., dom(Fy).
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The prediction is a number between 0 and 1, where 1 is the desired,
or good outcome, and 0 is the undesired outcome. For simplicity, we
will assume that M(x) > 0.5 is “good”, and everything else is “bad”.
If the classifier is categorical, then we simply replace its outcomes
with the values {0, 1}. Given an instance x for which M(x) is “bad”,
the goal of the counterfactual explanation is to find a counterfactual
instance x.f such that (1) M(x,r) is “good”, (2) x. is close to x,
and (3) x. s is both feasible and plausible. Formally, a counterfactual
explanation is a solution to the following optimization problem:

arg 1316161;1 dist(x, x.f) (1)
s.t. M(xcf) > 0.5
xcf €P // x¢5 is plausible
x.r € F(x) /! xc5 is feasible

where dist is a distance function. The counterfactual explanation
x.f ranges over the space dom(F;) X - -+ X dom(Fy), subject to
the plausibility and feasibility constraints  and ¥ (x), which we
discuss in the next section. In practice, as we shall explain, GeCo
returns not just one, but the top k best counterfactuals xr.

The role of the distance function is to ensure that GeCo finds
the nearest counterfactual instance that satisfies the constraints.
In particular, we are interested in counterfactuals that change the
values of only a few features, which helps define concrete actions
that the user can perform to achieve the desired outcome. For
that purpose, we use the distance function dist(x, y) introduced by
MACE [12], which we briefly review here.

We start by defining domain-specific distance functions dy, . . .,
for each of the n features, as follows. If dom(F;) is categorical, then

def . def .
6i(xi, yi) 2 0ifx; = y; and & (xi, y;) < 1 otherwise. If dom(F;)
. . . . def
is a continuous or an ordinal domain, then &; (x;, y;) = |xi — yil/w,
where w is the range of the domain. We note that, when the range
is unbounded, or unknown, then alternative normalizations are

possible, such as the Median Absolute Distance (MAD) [32], or the
standard deviation [33]. We define the £,-distance between x, y as:

1/p
. def
disty (x,y) = (Z5f(xi>yi))
i

and adopt the usual convention that the £-distance is the number

. . . .
of distinct features: disty(x, y) de I{i | di(xi,yi) # 0}|. Finally, we
define our distance function as a weighted combination of the £, #1,
and £, distances:

()

dist(x,y) =a +y - disteo (x, 1)

. disto (x, y) ‘B disty (x,y)
n n

where a, f,y > 0 are hyperparameters, which must satisfy a+f+y =
1. Notice that 0 < dist(x,y) < 1. The intuition is that the £-norm
restricts the number of features that are changed, the #; norm
accounts for the average change of distance between x and y, and
the f norm restricts the maximum change across all features.
Although [12] defines the distance function (2), the MACE system
hardwires the hyperparameters to @ = 0, f = 1,y = 0; we discuss
this, and the setting of different hyperparameters in Sec. 6.



3 THE SEARCH SPACE

The key to computing high quality explanations is to define a com-
plete space of candidates that the system can explore. In GeCo the
search space for the counterfactual explanations is defined by two
components: a database of entities D = {x1, xp, ...} and plausibility
and feasibility constraint language called PLAF.

The database D can be the training set, a test set, or historical data
of past customers for which the system has performed predictions.
It is used in two ways. First, GeCo computes the domain of each

feature as the active domain in D: dom(F;) def IIF, (D). Second, the
data analyst can specify groups of features with the command:

GROUP F;,, Fiy, ...

and in that case the joint domain of these features is restricted to the
combination of values found in D, i.e. II Fi Fiy--r (D). Grouping is use-
ful in several contexts. The first is when the attributes are correlated.
For example, if we have a functional dependency like zip — city,
then the data analyst would group zip, city. For another example
of correlation, consider education and income. They are correlated
without satisfying a strict functional dependency; by grouping them,
the data analyst ensures that GeCo considers only combinations
of values found in the dataset D. As a final example, consider at-
tributes that are the result of one-hot encoding: e.g. color may be
expanded into color_red, color_green, color_blue. By grouping
them together, the analyst restricts GeCo to consider only values
(1,0,0),(0,1,0), (0,0, 1) that actually occur in D.

The constraint language PLAF allows the data analyst to specify
which combination of features of x.f are plausible, and which can
be feasibly reached from x. PLAF consists of statements of the form:

PLAF IF ®; and ®; and --- THEN & 3)

where each ®; is an atomic predicate of the form e; op ey for
op € {=# <,<,2,>}, and each expression ey, e is over the cur-
rent features, denoted x.F;, and/or counterfactual features, denoted
x_cf.F;. The IF part may be missing.

Example 3.1. Consider the following PLAF specification:

GROUP education, income 4)
PLAF x_cf.gender = x.gender (5)
PLAF x_cf.age >= x.age 6)
PLAF IF x_cf.education > x.education

THEN x_cf.age > x.age+4 7)

The first statement says that education and income are correlated:
GeCo will consider only counterfactual values that occur together
in the data. Rule (5) says that gender cannot change, rule (6) says
that age can only increase, while rule (7) says that, if we ask the
customer to get a higher education degree, then we should also
increase the age by 4. The last rule (7) is adapted from [17], who
have argued for the need to restrict counterfactuals to those that
satisfy causal constraints.

PLAF has the following restrictions. (1) The groups have to be
disjoint: if a feature F; needs to be part of two groups then they
need to be union-ed into a larger group. We denote by G(F;) the
unique group containing F; (or G(F;) = {F;} if F; is not explic-
itly included in any group). (2) the rules must be acyclic, in the
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explain (instance x, classifier M, dataset D, PLAF (T, C))
DG = feasibleSpace(D, T, Cy);

Cx = ground(x, C);
POP = [ (x,0) ]
POP = mutate(POP, I, DG, Cy, Mjpnit)
POP = selectFittest(x, POP, M, q)
do {

CAND = crossover(POP, Cx) U mutate(POP, T, DG, Cx, mmut)

POP = selectFittest(x, POP U CAND, M, q)

TOPK = POP([1 : k]
} until ( counterfactuals(TOPK, M) and TOPK N CAND = 0 )
return TOPK

//initial population

Algorithm 1: Pseudo-code of GeCo’s custom genetic algo-
rithm to generate counterfactual explanations.

following sense. Every consequent @ in (3) must be of the form
x_cf.F; op e,ie. must “define” a counterfactual feature F;, and
the following graph must be acyclic: the nodes are the groups
G(F1),G(F),..., and the edges are (G(F;), G(F;)) whenever there
is a rule (3) that defines x_cf.F; and that also contains x_cf.F;.
We briefly illustrate with Example 3.1. The three rules (5)-(7) “de-
fine” the features gender, age, and age respectively, and there there
is a single edge {education, income} — {age}, resulting from
Rule (7). Therefore, the PLAF program is acyclic.

The restrictions are not limiting the expressive power of PLAF,
but only encourage users to write constraints that GeCo can eval-
uate efficiently. Indeed, consider any CNF formula C; ACa A - -+
where each clause C; has the form &1 V®, V- - - If <I>lf is the negation
of @; (e.g. the negation of e; < ey is 1 > e3), then we can write
the clause as the PLAF statement ®] A ®) A - -+ = (1 = 2), where
1 = 2 stands for false. The PLAF program is acyclic because the
precedence graph has no edges, but it would force GeCo to search
for counterfactuals through rejection sampling only. Instead, by
encouraging users to write constraints where each counterfactual
feature is defined by a rule as explained above, we reduce the need
for, or completely avoid rejection sampling.

4 GECO’S CUSTOM GENETIC ALGORITHM

In this section, we introduce the custom genetic algorithm that
GeCo uses to efficiently explore the space of counterfactual ex-
planations. A genetic algorithm is a meta-heuristic for constraint
optimization that is based on the process of natural selection. There
are four core operations. First, it defines an initial population
of candidates. Then, it iteratively selects the fittest candidates
in the population, and generates new candidates via mutate and
crossover on the selected candidates, until convergence.

While there are many optimization algorithms that could be used
to solve our optimization problem (defined in Eq (1)), we chose a ge-
netic algorithm for the following reasons: (1) The genetic algorithm
is easily customizable to the problem of finding counterfactual ex-
planations; (2) it seamlessly supports the rich semantics of PLAF
constraints, which are necessary to ensure that the explanations are
feasible and plausible; (3) it does not require any restrictions on the
underlying classifier and data, and thus is able to provide black-box



explanations; and (4) it returns a diverse set of explanations, which
may provide different actions that can lead to the desired outcome.

In GeCo, we customized the core operations of the genetic algo-
rithm based on the following key observation: A good explanation
x.f should differ from x by only a few features; counterfactual ex-
amples x, f that require the customer to change too many features
are of little interest. For this reason, GeCo first explores counter-
factuals that change only a single feature group, before exploring
increasingly more complex action spaces in subsequent generations.

In the following, we first overview of the genetic algorithm used
by GeCo and then provide additional details for the core operations.

4.1 Overview

GeCo’s pseudocode is shown in Algorithm 1. The inputs are: an
instance x, the black-box classifier M, a dataset D, and PLAF pro-
gram (T, C). Here I’ = {Gy1, Gy, .. .} are the groups of features, and
C ={Cy,Cy, ...} are the PLAF constraints, see Sec. 3. The algorithm
has four integer hyperparameters k, minjt, Mmut, ¢ > 0, with the
following meaning: k represents the number of counterfactuals
that the algorithm returns to the user; q is the size of the population
that is retained from one generation to the next; and mjnjt, Mmut
control the number of candidates that are generated for the initial
population, and during mutation respectively. We always set k < gq.

As explained in Sec. 3, the active domain of each attribute are
values found in the database D. More generally, for each group
G; € T, its values must be sampled together from those in the
database D. The GeCo algorithm starts by grounding (specializing)
the PLAF program C to the entity x (the ground function), then
calls the feasibleSpace operator, which computes for each group
G; arelation DG; with attributes G; representing the sample space
for the group G;; we give details in Sec. 4.2.

Next, GeCo computes the initial population. In our customized
algorithm, the initial population is obtained simply by applying the
mutate operator to the given entity x. Throughout the execution
of the algorithm, the population is a set of pairs (x’, A”), where x’
is an entity and A’ is the set of features that were changed from x.
Throughout this section we call the entities x” in the population
candidates, or examples, but we don’t call them counterfactuals,
unless M(x’) is “good”, i.e. M(x”) > 0.5 (see Sec. 2). In fact, it is
possible that none of the candidates in the initial population are clas-
sified as good. The goal of GeCo is to find at least k counterfactuals
through a sequence of mutation and crossover operation.

The main loop of GeCo’s genetic algorithm consists of extending
the population with new candidates obtained by mutation and
crossover, then keeping only the g fittest for the next generation.
The operators selectFittest, mutate, crossover are described in
Sec. 4.3, 4.4, and 4.5. The algorithm stops when the top k (from
the select g fittest) candidates are all counterfactuals and are stable
from one generation to the next; the function counterfactuals
simply tests that all candidates are counterfactuals, by checking!
that M(x") is “good”. We describe now the details of the algorithm.

!In our implementation we store the value M(x") together with x’, so we don’t have
to compute it repeatedly. We omit some details for simplicity of the presentation.
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4.2 Feasible Space Operators

Throughout the execution of the genetic algorithm, GeCo ensures
that all candidates x” satisfy all PLAF constraints C. It achieves this
efficiently through three functions: ground, feasibleSpace, and
actionCascade. We describe these functions here, and omit their
pseudocode (which is straightforward).

The function ground(x, C) simply instantiates all features of x
with constants, and returns “grounded” constraints Cy. All candi-
dates x’ will need to satisfy these grounded constraints.

Example 4.1. Let C be the three constraints of the PLAF program
in Example 3.1. Assume that the instance is:
x =(gender = female, age = 22, education = 3, income = 80k)

Then the set of grounded rules Cy is obtained from the rules (5)-(7).
For example, x_cf.age >= x.age becomes age > 22. The three
grounded rules are:

gender = female (8)
age > 22 )
education > 3 = age > 26 (10)

Every candidate x” must satisfy all three rules.

A naive strategy to generate candidates x’ that satisfy Cy is
through rejection sampling: after each mutation and/or crossover,
we verify Cy, and reject x” if it fails some constraint in Cx. GeCo
improves over this naive approach in two ways. First, it computes
for each group G; € T a set of values DG; that, in isolation, sat-
isfy Cy; this is precomputed at the beginning of the algorithm by
feasibleSpace. Second, once it generates candidates x” that dif-
fer in multiple feature groups G;,, Gi,, .. . from x, then it enforces
the constraint by possibly applying additional mutation, until all
constraints hold: this is done by the function actionCascade.

The function feasibleSpace(D, T, Cx) computes, for each group
G; €T, the relation:

def
DG; = T (I, (D))

where C,(cl) consists of the conjunction of all rules in Cx that refer
only to features in the group G;. We call the relation DG; the sample
space for the group G;. Thus, the selection operator O rules out
values in the sample space that violate of some PLAF rule.

Example 4.2. Continuing Example 4.1, there are three groups,
Gy = {gender}, G2 = {education, income}, G3 = {age}, and their
sample spaces are computed as follows:

def

DG, = Ugender:female(ngnder(D))
def.

DG, = Heducation,income(D))

def
DG; = Uagezzz(nage(D))

Notice that we could only check the grounded rules (8) and (9). The
rule (10) refers to two different groups, and can only be checked by
examining features from two groups; this is done by the function
actionCascade.

The function actionCascade(x’, A/, Cx) is called during muta-
tion and crossover, and its role is to enforce the grounded con-
straints Cy on a candidate x’ before it is added to the population.



mutate (POP,T,DG, Cy, m )

crossover (POP, Cy )

CAND =0
foreach (x*,A*) € POP do {
foreach GeTst.G¢ A" do {
x’ =x*; S =sample(DG[G],m) //without replacement
foreach v € S do {
x'.G=0v; A =A"U{G}
(x’,A’) = actionCascade(x’, A’,Cy)
CAND U= {(x’,A")}

}

return CAND

Algorithm 2: Pseudo-code for GeCo’s mutate operator.

Recall from Sec. 3 that the PLAF rules are acyclic. actionCascade
checks each rule, in topological order of the acyclic graph: if the
rule is violated, then it changes the feature defined by that rule to a
value that satisfies the condition, and it adds the updated feature
(or group) to A’. The function returns the updated candidate x’,
which now satisfies all rules Cx, as well as its set of changed features
A’. For a simple illustration, referring to Example 4.2, when GeCo
considers a new candidate x’, it checks the rule (10): if the rule is
violated, then it replaces age with a new value from DGs, subject
to the additional condition age > 26, and adds age to A’.

4.3 Selecting Fittest Candidates

At each iteration, GeCo’s genetic algorithm extends the current
population (through mutation and crossover), then retains only
the “fittest” q candidates x” for the next generation using the
selectFittest(x, POP, M, q) function. The function first evaluates
the fitness of each candidate x’ in POP; then sorts the examples x’
by their fitness score; and returns the top q candidates.

We describe here how GeCo computes the fitness of each candi-
date x’. For that, GeCo takes into account two pieces of information:
whether x” is counterfactual, i.e. M(x") > 0.5, and the distance from
x to x” which is given by the function dist(x, x") defined in Sec. 2
(see Eq. (2)). It combines these two pieces of information into a
single numerical value, score(x’) defined as:

dist(x,x")
(dist(x,x") +1)+(1 — M(x’)) otherwise

if M(x’) > 0.5 (1)

score(x’) = {
The rationale for this score is that we want every counterfactual
candidate to be better than every non-counterfactual candidate. If
M(x") > 0.5, then x’ is counterfactual, in that case it remains to
minimize dist(x, x"). But if M(x”) < 0.5, then x’ is not counterfac-
tual, and we add 1 to dist(x, x") ensuring that this term is larger
than any distance dist(x, x"") for any counterfactual x”’ (because
dist < 1, see Sec. 2); we also add a penalty 1 — M(x’), to favor
candidates x’ that are closer to becoming counterfactuals.

In summary, the function selectFittest computes the fitness
score (Eq. (11)) for each candidate in the population, then sorts
the population in decreasing order by this score, and returns the ¢
fittest candidates. Notice that all counterfactuals examples x’ will
precede all non-counterfactuals in the sorted order.
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CAND=0; {A1,....,Ar}={A| (x,A) € POP}
foreach (A;,Aj) € {Aq,...,Ar}sti<j do {
let (x;, A;) = best instance in POP with A = A;
let (xj,Aj) = best instance in POP with A = A;
//combine actions from x; and x;
x’ = x;; AI=A,'UAJ'
foreach G e A’ do {
if GeAj\Aj do x'.G=x;.G
elseif Ge Aj\A; do x".G=x;.G
else x’.G =rand(Bool) ? x;.G : x;.G

(x’,A’) = actionCascade(x’, A’,Cy)
CAND U= {(x, A")}

}
return CAND

Algorithm 3: Pseudo-code for GeCo’s crossover operator.

4.4

Algorithm 2 provides the pseudo-code of the mutation operator.
The operator mutate(POP, T, DG, Cx, m) takes as input the current
population POP, the list of feature groups I' = {Gy, Gy, .. .}, their
associated sample spaces DG = {DG1, DGa, . . .}, the grounded con-
straints Cx, and an integer m > 0. The function generates, for each
candidate x’ in the population, m new mutations for each feature
group G;. We briefly explain the pseudo-code. For each candidate
(x*,A*) € POP, and for each feature group G € T that has not
been mutated yet (G ¢ A*), we sample m values without replace-
ment from the sample space associated to G, and construct a new
candidate x’ obtained by changing G to v, for each value v in the
sample. As explained earlier (Sec. 4.2), before we insert x’ in the
population, we must enforce all constraints in Cy, and this is done
by the function actionCascade.

In GeCo, the mutation operator also generates the initial popu-
lation. In this case, the current population POP contains only the
original instance x with A = (. Thus, GeCo first explores candi-
dates in the initial population that differ from the original instance
x only in a change for one group G € T. This ensures that we
prioritize candidates that have few changes. Subsequent calls to
the mutation operator than change one additional feature group
for each candidate in the current population.

Mutation Operator

4.5 Crossover Operator

The crossover operator generates new candidates by combining the
actions of two instances x;, x; in POP. For example, consider candi-
dates x; and x; that differ from x in the feature groups {age},
and {education, income} respectively. Then, the crossover op-
erator generates a new candidate x’ that changes all three fea-
tures age, education, income, such that that x’.age = x;.age and
x’ {education, income} = x;.{education, income}. The pseudo-
code of the operator is given by Algorithm 3.

In a conventional genetic algorithm, the candidates for crossover
are selected at random. In GeCo, however, we want to combine
candidates that (1) change a distinct set of features, and (2) are the
best candidates amongst all candidates in POP that change the same



set of features. Recall that, for each candidate x’ in the population,
we also store the set A’ of feature groups where x’ differs from x.
To achieve our customized crossover, we first collect all distinct
sets A in POP. Then, we consider any combination of two distinct
sets (Aj, Aj), and find the candidates x; and x; which have the best
fitness score (Eq. (11)) in the subset of POP for which A = A; and
respectively A = A ;. Since POP is already sorted by the fitness score,
the best candidate with A = A; is also the first candidate in POP
with A = A;. The operator then combines the candidates x; and x;
into a new candidate x’, which inherits both the mutations from x;
and x;; if a feature group G was mutated in both x; and xj, then we
choose at random to assign to x”.G either x;.G or x;.G. Finally, we
check if x’ requires any cascading actions, and apply them in order
to satisfy the constraints Cyx. We add x’ and the corresponding
feature set A’ to the collection of new candidates CAND.

4.6 Discussion

In this section, we discuss implementation details and potential
tradeoffs that we face for the performance optimization of GeCo.

Hyperparameters. We use the following defaults for the hyperpa-
rameters: g = 100, k = 5, mjpjt = 20, Myt = 5. The first parameter
means that each generation retains the fittest ¢ = 100 candidates.
The value k = 5 means that the algorithm runs until the top 5 can-
didates of the population are all counterfactuals (i.e. M(x) > 0.5)
and they remain in the top 5 during two consecutive generations.
The initial population consists of 20 candidates x’ per feature group,
and, during mutation, we create 5 new candidates per feature group.
These defaults ensure that selected candidates of the initial popula-
tion will change at least five distinct feature groups.

Representation of A. For each candidate (x’, A”) € POP, we repre-
sent the feature set A’ as a compact bitset, which allows for efficient
bitwise operations.

Sampling Operator. In the mutation operator, we use weighted
sampling to sample actions from the sample space DG; associated
to the group G;. The weight is given by the frequency of each value
v € DG; in the input dataset D. As a result, GeCo is more likely to
sample those actions that frequently occur in the dataset D, which
helps to ensure that the generated counterfactual is plausible.

Number of Mutated Candidates. By default the mutation operator
mutates every candidate in the current population, which ensures
that (1) we explore a large set of candidates, and (2) we sample
many values from the feasible space for each group. The downside
is that this operation can take a long time, in particular if we return
many selected candidates (q is large), and the mutation operator
can become a performance bottleneck. In this case, it is possible
to mutate only a selected number of candidates. We propose to
group the candidates by the set A, and then to mutate only the top
candidates in each group (just like we only do crossover on the
top candidate in each group). This approach ensures that we still
explore candidates with the A sets as the default, but limits the total
number of candidates that are generated.

Large Sample Spaces. If there is a very large sample space DG;,
then it is possible that GeCo does not sample the best action from
this space. In this case, we designed selectiveMutate, a variant of the
mutate operator. Whereas the normal mutation operator mutates
candidates by changing feature groups that have not been changed,
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selective mutation mutates feature groups that were previously
changed by sampling actions that decrease the distance between
the candidate and the original instance. This ensures that GeCo is
more likely to identify the best action in large sample spaces.

4.7 Comparison with CERTIFAI

CERTTFAI [27] also computes counterfactual explanations using a
genetic algorithm. The main difference that distinguishes CERTIFAI
from GeCo is that CERTIFAI assumes that the initial population is
a random sample of only “good” counterfactuals. Once this initial
population is computed, the goal of its genetic algorithm is to find
better counterfactuals, whose distance to the original instance is
smaller. However, it is unclear how to compute the initial population
of counterfactuals, and the quality of the final answer of CERTIFAI
depends heavily on the choice of this initial population. CERTIFAI
also does not emphasize the exploration of counterfactuals that
change only few features. In contrast, GeCo starts from only the
original instance x, whose outcome is “bad”, and assumes that some
“good” counterfactual is nearby, i.e. with few changed features.

Since CERTIFALI is not publicly available, we implemented our
own variant based on the description in the paper. Since it is not
clear how the initial population is computed, we consider all in-
stances in the database D that are classified with the good outcome
and satisfy all feasibility and plausibility constraints. This is the
most efficient way to generate a sample of good counterfactuals,
but it has the downside is that the quality of the initial population,
and, hence, of the final explanation, varies widely with the instance
x. In fact, there are cases where D contains no counterfactual that
satisfies the feasibility constraints w.r.t. x. In Section 6, we show
that GeCo is able to compute explanations that are closer to the
original instance significantly faster than CERTIFAL

5 OPTIMIZATIONS

The main performance limitation in GeCo are the repeated calls
to selectFittest and mutate. Between the two operations, GeCo
repeatedly adds tens of thousands of candidates to the population,
applies the classifier M on each of them, and then removes those
that have a low fitness score. In Section 6, we show that selection
and mutation account for over 95% of the overall runtime. In order to
apply GeCo in interactive settings, it is thus important to optimize
the performance of these two operators. In this section, we present
two optimizations which significantly improve their performance.

To optimize mutate, we present a loss-less, compressed data rep-
resentation, called A-representation, for the candidate population
that is generated during the genetic algorithm. In our experiments,
the A-representation is up to 25X more compact than an equiva-
lent naive listing representation, which translates to a performance
improvement of up to 3.9x for mutate.

To optimize selectFittest, we draw on techniques from the PL
community, in particular partial evaluation, to optimize the eval-
uation of the classifier. The optimizations exploit the fact that we
know the values for subsets of the input features before the eval-
uation, which allows us to translate the model into a specialized
equivalent model that pre-evaluates the static components. These
optimizations improve the runtime for selectFittest by up to 3.2x.



Age |Edu. | Occup. | Income A Sets
A A
28 | HS | Service| 10,000 {Age} £
28
30 | HS | Service| 10,000 {Edu} 1 30
32 | HS | Service| 10,000 {Age, Income} Edu. 2
22 |PhD | Service| 10,000 {Occup} ZI;D
22 | BSc | Service| 10,000 i ¢
25 | HS | Service| 15,000 Occup.
. Age |Income
23 | HS | Service| 20,000 3
Sales 25 | 15,000
22 | HS | Sales | 10,000 ’
Student] | 55 1 50,000
22 | HS |Student| 10,000

Figure 3: Example candidate population for instance x
(22,HS,Service,10000) using the naive listing representation

(left) and the equivalent A-representation (right).

The A-representation and partial evaluation complement each
other, and together decrease the end-to-end runtime of GeCo by a
factor of 5.2X. Next, we provide more details for our optimizations.

5.1 A-Representation

The naive representation for the candidate population of the genetic
algorithm is a listing of the full feature vectors x’ for all candidates
(x’,A”). This representation is highly redundant, because most
values in x” are equal to the original instance x; only the features
in A’ are different. The A-representation can represent each the
candidate (x’,A”) compactly by storing only the features in A’.
This is achieve by grouping the candidate population by the set of
features A’, and then representing the entire subpopulation in a
single relation Ry whose attributes are only A’.

Example 5.1. Figure 3 presents a candidate population for the
instance x = (Age=22, Edu=HS, Occup=Service, Income=10000) us-
ing (left) the naive listing representation and (right) the equivalent
A-representation. For simplicity, we highlight the changed values
in the listing representation, instead of enumerating all A sets,

Most values stored in the listing representation are values from
x. In contrast, the A-representation only represents the values that
are different from x. For instance, the first three candidates, which
change only Age, are represented in a relation with attributes Age
only, and without repeating the values for Edu, Occup, Income.

In our implementation, we represent the A sets as bitsets, and
the A-representation is a hashmap of that maps the distinct A
sets to the corresponding relation Ra, which is represented as a
DataFrame. We provide wrapper functions so that we can apply
standard DataFrame operations directly on the A-representation.

The A-representation has a significantly lower memory footprint,
which can lead to significant performance improvements over the
naive representation, because it is more efficient to add candidates
to the smaller relations, and it simplifies garbage collection.

There is, however, a potential performance tradeoff for the selec-
tion operator, because the classifier M typically assumes as input
the full feature vector x’. In this case, we copy the values in the
A-representation to a full instantiation of x’. This transformation
can be expensive, but, in our experiments, it does not outweigh the
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speedup for mutation. In the next section, we show how we can
use partial evaluation to avoid the construction of the full x’.

5.2 Partial Evaluation for Classifiers

We show how to adapt PL techniques, in particular code special-
ization via partial evaluation, to optimize the evaluation of a given
classifier M, and thus speedup the performance of selectFittest.
Consider a program P : X X Y — O which maps two inputs
(X, Y) into output O. Assume that we know Y = y at compile time.
Partial evaluation takes program P and input Y = y and generates a
more efficient program P2y>X — O, which precomputes the static

components. Partial evaluation guarantees that sz> (x) =P(x,y)

for all x € dom(X). See [11] for more details on partial evaluation.
We next overview how we use partial evaluation in GeCo. Con-
sider a classifier M with features F. During the evaluation of can-
didate (x’, A’), we know that the values for all features F \ A’ are
constants taken from the original instance x. Thus, we can partially
evaluate the classifier M to a simplified classifier Mps that precom-
putes the static components related to features F \ A’. Once My
is generated, we cache the model so that we can apply it for all
candidates in the population that change the same feature set A’.
Note that by using partial evaluation, GeCo no longer explains a
black-box, since it requires access to the code of the classifier.

Example 5.2. Consider a decision tree classifier M. For an in-
stance (x’, A”), M(x’) typically evaluates the decisions for all fea-
tures along a root to leaf path. Since we know the values for the
features F \ A’, we can precompute and fold all nodes in the tree
that involve the features F \ A’. If A’ is small, then partial evalu-
ation can generate a very simple tree. For instance, if A’ = {Age}
then Mps only needs to evaluate decisions of the form age > 30 or
30 < age < 60 to classify the input.

In addition to optimizing the evaluation of M, a partially evalu-
ated classifier M can be directly evaluated over the partial relation
Rp in the A-representation, and thus we mitigate the overhead re-
sulting from the need to construct the full entity for the evaluation.

Partial evaluation has been studied and applied in various do-
mains, e.g., in databases, it has been used to optimize query evalu-
ation (see e.g., [26, 30]). We are, however, not aware of a general-
purpose partial evaluator that be applied in GeCo to optimize arbi-
trary classifiers. Thus, we implemented our own partial evaluator
for two model classes: (1) tree-based models, which includes de-
cision trees, random forests, and gradient boosted trees, and (2)
neural networks and multi-layered perceptrons.

In the following, we briefly introduce the partial evaluation we

use for tree-based models and neural networks.
Tree-based models. We optimize the evaluation of tree-based
models in two steps. First, we use existing techniques to turn the
model into a more optimized representation for evaluation. Then,
we apply partial evaluation on the optimized representation.

Tree-based models face performance bottlenecks during eval-
uation because, by nature of their representation, they are prone
to cache misses and branch misprediction. For this reason, the ML
systems community has studied how tree-based models can be rep-
resented so that they can be evaluated without random lookups
in memory and repeated if-statements (see e.g., [4, 15, 34]). In



Table 1: Key characteristics for each considered dataset.

l ‘ Credit ‘ Adult ‘ Allstate ‘ Yelp ‘

Data Points 30K 45K 13.2M | 22.4M
Variables 14 12 29 34
Features (one-hot enc.) 14 42 548 764
Feature Groups 14 11 29 34
Constraints / Implications | 7/ 2 7/1 0/0 18/2

GeCo, we use the representation proposed by the QuickScorer
algorithm [15], which we briefly overview next.

Instead of evaluating a decision tree T following a root to leaf
path, QuickScorer evaluates all decision nodes in T and keeps track
of which leaves cannot be reached whenever a decision fails. Once
all decisions are evaluated, the prediction is guaranteed to be given
by the first leaf that can be reached. All operations in QuickScorer
use efficient, cache-conscious bitwise operations, and avoid branch
mispredictions. This makes the QuickScorer very efficient, even if
it evaluates many more decisions than the naive evaluation.

For partial evaluation, we exploit the fact that the first phase in

QuickScorer computes the decision nodes for each feature indepen-
dently of all other features. Thus, given a set of fixed feature values,
we can precompute all corresponding decisions, and significantly
number of decision that are evaluated at runtime.
Neural Networks and MLPs. We consider neural networks and
multi-layered perceptrons for structured, tabular data (as opposed
to images or text). In this setting, each hidden node N in the first
layer of the network is typically a linear model [2, 17]. Given an
input vector x, parameter vector w, and bias term b, the node N
thus computes: y = o(x"w + b), where ¢ is an activation function.
If we know that some values in x are static, then we can apply
partial evaluation for N by precomputing the product between x
and w for all static components and adding the partial product to
the bias term b. During evaluation, we then only need to compute
the product between x and w for the non-static components.

The impact of partial evalaution depends on the network struc-
ture. When applied to structured data, the model typically consists
of fully-connected layers, in which case we can only partially eval-
uate the first layer of the network. We can apply partial evaluation
to subsequent layers, only if the layers are not fully-connected.

6 EXPERIMENTS

We present the results for our experimental evaluation of GeCo on
four real datasets. We conduct the following experiments:

(1) We investigate whether GeCo is able to compute counterfac-
tual explanations for one end-to-end example, and compare
the explanation with five existing systems.

(2) We benchmark all considered systems on 5,000 instances,
and investigate the tradeoff between the quality of the ex-
planations and the runtime for each system.

(3) We conduct microbenchmarks for GeCo. In particular, we
breakdown the runtime into individual components and in-
vestigate the impact of the optimizations from Section 5. We
also evaluate GeCo’s ability to find the optimal explanation
using synthetic classifiers.
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6.1 Experimental Setup

In this section, we present the considered datasets and systems, as
well as the setup used for all our experiments.

Datasets. We consider four real datasets: (1) Credit [35] is used
predict customer’s default on credit card payments in Taiwan; (2)
Adult [13] is used to predict whether the income of adults exceeds
$50K/year using US census data from 1994; (3) Allstate is a Kaggle
dataset for the Allstate Claim Prediction Challenge [1], used to
predict insurance claims based on the characteristics of the insured’s
vehicle; (4) Yelp is based on the public Yelp Dataset Challenge [36]
and is used to predict review ratings that users give to businesses.

Table 1 presents key statistics for each dataset. Credit and Adult
are from the UCI repository [8] and commonly used to evaluate
explanations (e.g., [12, 18, 31]). For all datasets, we one-hot encode
the categorical variables. For the evaluation with existing systems,
we further apply the same preprocessing that was proposed by the
existing system, in order to ensure that our evaluation is fair.

For all datasets, we group the features derived from one-hot
encoding in one feature group. In addition, we encode various
PLAF constraints with and without implications (cf. Table 1). For
instance, we enforce that Age and Education can only increase,
and MaritalStatus, Gender, and NativeCountry cannot change.
An example of a constraint with implications is given by Eq. (7). We
present a detailed description of all considered PLAF constraints
in Appendix A.1 in [24]. Since the existing systems do not support
constraints with implications, we do not enforce these constraints
in the experiments in Sec. 6.3.

Considered Systems. We benchmark GeCo against five existing
systems. (1) MACE [12] solves for counterfactuals with multiple
runs of an SMT solver. (2) DiCE [17] generates counterfactual expla-
nations with a variational auto-encoder. (3) WIT is our implementa-
tion of the counterfactual reasoning approach in Google’s What-if
Tool [33]. WIT looks up the closest counterfactual that satisfies the
PLAF constraints in database D. We implemented our own version,
because the What-if Tool does not support feasibility constraints.
(4) CERT is our implementation of the genetic algorithm that is
used in CERTIFAI [27] (see Sec. 4.7 for details). We reimplemented
the algorithm because CERTIFAI is not publicly available. (5) SimCF
is our adaptation of the SimBA [9] algorithm for adversarial ex-
amples to the problem of finding counterfactual explanations. The
algorithm randomly selects one feature group, samples five feasible
values for this group, and greedily applies the change that returns
the best score. This process is repeated until the classifier returns
the desired outcome. Since SimCF randomly changes one feature
at a time, the explanations may not be consistent across runs.
Evaluation Metrics. We use the following three metrics to eval-
uate the quality of the explanation: (1) The consistency of the ex-
planations, i.e., does the classifier return the good outcome for the
counterfactual x.s; (2) The distance between xr and the original
instance x; (3) The number of features changed in xf.

For the comparison with existing systems, we use the £; norm
to aggregate the distances for each feature (i.e, f=1,a =y =0
in Eq. (2)), because MACE and DiCE do not support combining
norms. We examine other choices of these hyperparameters in
Appendix A.4 in [24]. To compare runtimes, we report the average
wall-clock time it takes to explain a single instance.



Table 2: Examples of counterfactual explanations by GeCo,
MACE, DiCE, and SimCeF for one instance in Adult (present-
ing selected features). MACE and DiCE use different models;
we show GeCo’s explanation for each model. The neural net-
work does not use CapitalGain and CapitalLoss.

. Ny & & & e
S & & e
Y&% (960 OC/Q Q‘Z& Q‘Z;Q «2\00 Q@Q Q&Q
x [ 49 [ School [ Service [ 0 [ 0 [ 16 [ F ] Bad
Decision Tree
GeCo [ 49 [ School [ Service [ 4,787 [ 0 [ 16 [ F ] Good
MACE [ 49 [ School [ Service [ 4,826 | 20 16 [ F | Good
SimCF [ 49 [ School | Service [ 7,688 [ 1,380 [ 16 [ F | Good

Neural Network
-
- |

GeCo [ 53 [ Masters [
DiCE [54[ PhD [ BlueCol |

Service [ - [ 16[ F ] Good

—[40[M]G00d

GeCo and CERT return multiple counterfactuals for each in-
stance. We only consider the best counterfactual in this evaluation.
Classifiers. We benchmark the systems on tree-based models and
multi-layered perceptrons (MLP).

Comparison with Existing Systems. For the comparison of with
existing systems we use the classifiers proposed by MACE and DiCE
for all systems to ensure a fair comparison. For tree-based models,
we attempted to compute explanations for random forest classi-
fiers, but MACE took on average 30 minutes to compute a single
explanation, which made it infeasible to compute explanations for
many instances. Thus, we consider a single decision tree for this
evaluation (computed in scikit-learn, default parameters). DiCE
does not support decision trees, since it requires a differentiable
classifier. For the neural net, we use the classifier proposed by DiCE,
which is a two-layered neural network with 20 (fully connected)
hidden units and ReLU activation.

Microbenchmarks. In the micro benchmarks, we consider a ran-
dom forest with 500 trees and maximum depth of 10 from the
Julia MLJ library [6], and the MLPClassifier from the scikit-learn
library [21]. We learn two MLP models, a small variant with one hid-
den layer (100 nodes, the default setting) and a larger variant with
two hidden layers (100 nodes each), which was the best network
structure we found in a comparison of 10 different structures.
Setup. We implemented GeCo, WIT, CERT, and SimCF in Julia 1.5.2.
All experiments are run on an Intel Xeon CPU E7-4890/2.80GHz/
64bit with 108GB RAM, Linux 4.16.0, and Ubuntu 16.04.

We use the default hyperparameters for GeCo (c.f. Sec. 4.6) and
MACE (e = 10~3). CERT runs for 300 generations, as in the original
CERTIFAI implementation. In GeCo, we precompute the active do-
main of each feature group, which is invariant for all explanations.

6.2 End-to-end Example

We consider one specific instance in the Adult dataset that is classi-
fied as “bad” (Income <$50K) and illustrate the differences between
the the explanations for each considered system.

Table 2 presents the instance x and the counterfactuals returned
by GeCo, MACE, SimCF, and DiCE. WIT and CERT fail to return
an explanation, because the Adult dataset has no instance with
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income >$50K that also satisfies all PLAF constraints for x. MACE
and SimCF compute the explanation over a decision tree, and DiCE
considers a neural network. We present GeCo’s explanation for
each model, and argue that they are better than the explanations
by MACE, SimCF, and DiCE.

For the decision tree, GeCo is able to find a counterfactual that
changes only Capital Gains. In contrast, the explanations by MACE
and SimCF require a change in Capital Gains and Capital Loss.
Remarkably, their changes in Capital Gains are larger than the one
required by GeCo. The neural network does not use the features
Capital Gains and Capital Loss. For this model, GeCo proposes
an increase in education, which in turn requires an increase in
age according to our PLAF constraints. If this change is deemed
infeasible, we can update the PLAF constraints and ask GeCo to
generate a new counterfactual. In contrast, DiCE changes the values
of eight features in total, which is neither feasible nor plausible.

6.3 Quality and Runtime Tradeoff

In this section, we investigate the tradeoff between the quality and
the runtime of the explanations for all considered systems on Credit
and Adult. As explained in Sec. 6.1, we evaluate the systems using
a single decision tree and a neural network.

Takeaways for Evaluation with Decision Trees. Figures 4 shows
the results of our evaluation with decision trees on 5,000 instances
from Credit and Adult for which the classifier returns the negative
outcome. We present the average distance and runtime for each
considered system and dataset.

GeCo and MACE are always able to find a feasible and plausible
explanation. WIT and CERT, however, fail to find an explanation in
2.1% of the cases for Adult. This is because the two techniques are
restricted by the database D, which may not contain an instance that
is classified as good and represents feasible and plausible actions.
SimCeF fails to find explanations in 1.5% and 2.4% of the cases for
Adult and respectively Credit.

GeCo’s explanations are on average the closest to the original
instance. This can be explained by the fact that GeCo is able to
find these explanations by changing significantly fewer features.
For the Credit dataset, for instance, GeCo can find explanations
with 1.27 changes on average, while MACE (the best competitor)
changes on average 3.39 features. WIT, CERT, and SimCF change
on average 3.97, 3.15, and respectively 2.98 features. We provide
further details on the number of features changed by each system
in Appendix A.2 in [24].

GeCo is consistently able to compute each explanation in less
than 300ms on average. On average, GeCo is 20x faster than MACE.
This performance is only matched by WIT and SimCF, which do
not return explanations with the same quality as GeCo.

Like GeCo, CERT uses a genetic algorithm, but it takes 5.6x
longer to compute explanations that do not have the same quality as
GeCo’s. Thus, GeCo’s custom genetic algorithm, which is designed
to explore counterfactuals with few changes, is very effective.
Takeaways for Evaluation with Neural Net. Figure 5 presents
the key results for our evaluation on the MLP classifier. We only
show the comparison of GeCo and DiCE, because the comparison
with WIT, SimCF, and CERT is similar to the one for decision trees.
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Table 3: Microbenchmarks results for tree-based models.

l ‘ Credit ‘ Adult ‘ Allstate ‘ Yelp ‘
Generations 4.22 4.66 5.26 3.24
Explored Candidates | 18.1K 15.3K 62.8K | 42.9K
Size of Naive Rep. 62.23K | 117.41K 8.03M | 7.84M
Size of A-Rep. 18.64K 21.88K 412K 131K
Compression 3.3% 5.4% 19.5% | 60.1X

MACE requires an extensive conversion of the classifier into a
logical formula, which is not supported for the considered model.

Since DiCE computes the counterfactual explanation in one pass
over a variational auto-encoder, it is able to compute the explana-
tions very efficiently. In our experiments, DiCE was able to find an
explanation on average 15.5% faster than GeCo. The counterfactu-
als that DiCE generates, however, have poor quality. Whereas GeCo
is again able to find explanations with only few required changes,
DiCE changes on average 5.3 features. As a result, GeCo’s explana-
tion is on average 4.4 closer to the original instance. Therefore,
we consider GeCo much more suitable for real-world applications.

6.4 Microbenchmarks

In this section, we present the results for the microbenchmarks.
Breakdown of GeCo’s Components. First, we analyze the run-
time of each operator presented in Sec. 4, as well as the impact of
the A-representation and partial evaluation (Sec. 5) on two tree-
based models over Allstate and Yelp, as well as the small and large
multi-layered perceptrons (MLP) over Yelp. We run GeCo for 5
generations on 1,000 instances that have been classified as bad.
Figure 6 presents the results for this benchmark. Initial popula-
tion captures the time it takes to compute the feasible space, and to
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generate and select the fittest candidates for the initial population.
The times for selection, crossover, and mutation are accumulated
over all generations. For each scenario, we first present the runtime
for: (1) without the A-representation and partial evaluation enabled,
(2) with each optimization individually, and (3) with both.

The results show that the selection and mutation operators are
the most time consuming operations of the genetic algorithm. This
is not surprising since they operate on tens of thousands of candi-
dates, whereas crossover combines only a few selected candidates.

Partial evaluation of the classifier is effective for the random
forest model. For Allstate, it decreases the runtime of the selection
operator by up to 3.2X, which translates into an overall speedup
of 1.7x. For MLPs, the optimization is less effective, because we
can only partially evaluate the first layer. In fact, the overhead of
partial evaluation results in a slowdown for the larger variant.

The A-representation decreases the runtime of the mutation
operator by 3.9x for Allstate and 4.7 for Yelp (random forest). This
speedup is due to the compression achieved by the A-representation
(see below). If the classifier is not partially evaluated, then there is a
tradeoff in the runtime for the selection operator, because it requires
the materialization of the full feature vector. This materialization
increases the runtime of selection by up to 1.6x (Yelp, MLP small).

The best performance is achieved if the A-representation and

partial evaluation of the classifier are used together. In this case,
there is a significant runtime speedup for both the mutation opera-
tor and selection operators. Overall, this can lead to a performance
improvement of 5X (Yelp, random forest).
Validating Explanation Quality. To evaluate whether GeCo is
able to find good explanations, we design synthetic classifiers for
which the optimal explanation is known. Each classifier is a con-
junction of unary threshold conditions, and the outcome is positive
iff all conditions are satisfied. Given an instance that fails all condi-
tions, the number of conditions is equal to the number of features
that the counterfactual needs to change. We present further details
on the synthetic classifiers in Appendix A.3 in [24].

Figure 7 presents the results of our evaluation on 100 Credit
instances which fail all conditions for all classifiers. We consider
classifiers with up to 12 conditions, which is the maximum number
of features that can be changed. We add features in the decreasing
order of their domain sizes, which is the most challenging order for
GeCo; we consider a different order in Appendix A.3.

GeCo always finds a valid counterfactual explanation, even if
we require changing all 12 features. The runtime is linear with
respect to the number of features changed, and proportional to
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distance of GeCo compared to the optimal explanation.

number of generations of the genetic algorithm. The distance of
the explanations is always close to the distance of the optimal
explanation. In Appendix A.3, we show that, by sampling more
values during mutation, we can further decrease the distance gap
to the optimal explanation with minor performance degradation.
Number of Generations and Explored Candidates. Table 3
shows for each dataset how many generations GeCo needed on
average to converge, and how many candidates it explored. The
majority (up to 97%) of the candidates were generated by mutate.
Compression by A-representation. Table 3 compares the sizes
for the naive listing representation and the A-representation. We
measure size in terms of the number of represented values, and
take the average over all generations for the size of the candidate
population after the mutate and crossover operations. Overall, the
A-representation can represent the candidate population up to 60x
more compactly than the naive listing representation.

Effect of Constraints. We evaluate the impact of the PLAF con-
straints on GeCo’s runtime. The constraints without implications
significantly restrict the search space of feasible counterfactuals.
Thus, including these constraints improves the performance by
19.3% for Adult and 32.2% for Credit. The constraints with implica-
tions, however, may introduce some overhead since they need to
be checked dynamically using action cascading. For example, the
overhead is 19.2% for Adult and 32.3% for Credit. Yet, the version
with all constraints is still faster by 9.8% for Credit and 18.7% for
Adult over the version without any constraints. Finally, the group-
ing of features also restricts the search space. For Adult, GeCo is
1.4X faster using the feature groups than without.

7 CONCLUSIONS

We described GeCo, the first interactive system for counterfactual
explanations that supports a complex, real-life semantics of coun-
terfactuals, yet provides answers in real time. GeCo defines a rich
search space for counterfactuals, by considering both a dataset of
example instances, and a general-purpose constraint language. It
uses a genetic algorithm to search for counterfactuals, which is cus-
tomized to favor counterfactuals that require the smallest number of
changes. We described two powerful optimization techniques that
speed up the inner loop of the genetic algorithm: A-representation
and partial evaluation. We demonstrated that, among five other
systems reported in the literature, GeCo is the only one that can
both compute quality explanations and find them in real time.
This work opens up several directions for future work. First,
counterfactual explanations are subject to updates to the underly-
ing data and classifier. We plan to explore how we can generate
explanations that are robust to small changes in the data distribu-
tion or classifier. This is related to the more general problem of
robust machine learning. Second, GeCo requires that the PLAF con-
straints are provided by a domain expert. We plan to explore how
we can leverage constraints and dependencies in databases to gener-
ate these constraints automatically. Third, GeCo currently assumes
that the input to the model is the raw data. In practice, however,
the model input is typically the output of extensive feature engi-
neering. We plan to explore how GeCo can generate explanations
for the feature engineered data, but then return the corresponding
raw data values to the user. For structured relational data, the fea-
ture engineering involves aggregating the raw data, in which case
we would have to connect GeCo with techniques on explaining
aggregate queries that have been developed in the database com-
munity. Fourth, counterfactual explanations expose values from
the database, which may lead to privacy issues. We plan to explore
how to return explanation that satisfy both privacy and legisla-
tive requirements. Finally, we have implemented partial evaluation
manually, and it is only supported for random forests and simple
neural network classifiers. We plan to extend this optimization to
other models by leveraging work from the compilers community.
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