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Figure 2: Taxonomy of Counterfactual Explanation Systems

semantics needs to be rich in order to reflect the complexities of the

real world. We want 𝒙𝑐 𝑓 to be as close as possible to 𝒙 , but we also

want 𝒙𝑐 𝑓 to be plausible, meaning that its features should make

sense in the real world. We also want the transition from 𝒙 to 𝒙𝑐 𝑓
to be feasible, for example age should only increase. The plausibil-

ity and feasibility constraints are dictated by laws, societal norms,

application-specific requirements, and may even change over time;

an explanation system must be able to support constraints with a

rich semantics. Moreover, the search space for counterfactuals is

huge, because there are often hundreds of features, and each can

take values from some large domain. On the other hand, the com-

putation of counterfactuals needs to be done at interactive speed,

because the explanation system is eventually incorporated in a user

interface. Performance has been identified as the main challenge

for deployment of counterfactual explanations in industry [5, 33].

The tension between performance and rich semantics is the main

technical challenge in counterfactual explanations. Previous sys-

tems either explore a complete search space with rich semantics, or

answer at interactive speed, but not both: see Fig. 2 and discussions

in Section 6. For example, on one extreme MACE [12] enforces

plausibility and feasibility by using a general-purpose constraint

language, but the solver often takes many minutes to find a coun-

terfactual. At the other extreme, Google’s What-if Tool (WIT) [33]

restricts the search space to a fixed dataset of examples, ensuring

fast response time, but poor explanations.

In this paper we present GeCo, the first interactive system for

counterfactual explanations that supports a complex, real-life se-

mantics of counterfactuals, yet provides answers in real time. At

its core, GeCo defines a search space of counterfactuals using a

plausibility-feasibility constraint language, PLAF, and a database

𝐷 . PLAF is used to define constraints like łage can only increasež,

while the database 𝐷 is used to capture correlations, like łjob-title

and salary are correlatedž. By design, the search space of possible

counterfactuals is huge. To search this space, we make a simple

observation. A good explanation 𝒙𝑐 𝑓 should differ from 𝒙 by only

a few features; counterfactual examples 𝒙𝑐 𝑓 that require the cus-

tomer to change too many features are of little interest. Based on

this observation, we propose a genetic algorithm, which we cus-

tomize to search the space of counterfactuals by prioritizing those

that have fewer changes. Starting from a population consisting of

just the given entity 𝒙 , the algorithm repeatedly updates the popu-

lation by applying the operations crossover and mutation, and then

selecting the best counterfactuals for the new generation. It stops

when it reaches a sufficient number of examples on which the clas-

sifier returns the łgoodž (desired) outcome. While counterfactual

explanations can be applied to various data types, e.g. DiCE can

explain image classifications [17], we focus on structured tabular

data. Structured data is the predominant data type used in financial

services, a key target industry for counterfactual explanations. We

also assume that the model and data is static; the impact of updates

on the explanations is an challenging direction for future work.

The main performance limitation in GeCo is its innermost loop.

By the nature of the genetic algorithm, GeCo needs to repeatedly

add and remove counterfactuals to and from the current population,

and ends up having to examine thousands of candidates, and apply

the classifier𝑀 (𝒙 ′) on each of them. We propose two novel opti-

mizations to speedup the inner loop of GeCo: Δ-representation and

classifier specialization via partial evaluation. In Δ-representation

we group the current population by the set of features Δ𝐹 by which

they differ from 𝒙 , and represent this entire subpopulation in a sin-

gle relation whose attributes are only Δ𝐹 ; for example all candidate

examples 𝒙 ′ that differ from 𝒙 only by age are represented by a

single-column table, storing only the modified age. This leads to

huge memory savings over the naive representation (storing all

features of all candidates 𝒙 ′), which, in turn, leads to performance

improvements. Partial evaluation specializes the code of the clas-

sifier 𝑀 to entities 𝒙 ′ that differ from 𝒙 only in Δ𝐹 ; for example,

if 𝑀 is a decision tree, then normally 𝑀 (𝒙 ′) inspects all features

from the root to a leaf, but if Δ𝐹 is age, then after partial evaluation

it only needs to inspect age, for example 𝑀 can be age > 30, or

perhaps 30 < age < 60, because all the other features are constants

within this subpopulation. Δ-representation and partial evaluation

work well together, and, when combined, allows GeCo to compute

the counterfactual in interactive time. At a high level, our opti-

mizations belong to a more general effort that uses database and

program optimizations to improve the performance of machine

learning tasks (e.g., [3, 10, 14, 20, 25]).

We benchmarked GeCo against four counterfactual explanation

systems: MACE [12], DiCE [17], What-If Tool [33], and CERTI-

FAI [27]. We show that in all cases GeCo produced the best quality

explanation (using quality metrics defined in [12]), at interactive

speed. We also conduct micro-experiments showing that the two

optimizations, Δ-representation and partial evaluation, account for

a performance improvement of up to 5×, and thus are critical for

an interactive deployment of GeCo.

Discussion Explanation techniques can be broadly categorized

as white-box or black-box. White-box explanations are designed for

a specific class of models and domains, e.g., Krpyton [19] is specific

to neural networks for image classification. These explanations

exploit the structural properties of the classifier and typically cannot

be applied across domains. While there is no commonly agreed

definition of black-box explanations, we adopt a strict definition in

this paper: the explanation is black-box if the classifier𝑀 is available

only as an oracle that, when given an input 𝒙 ′, returns the outcome

𝑀 (𝒙 ′). Thus, black-box explanations do not enforce any restrictions

on the underlying domain and classifier. This is particularly useful

when the model is subject to IP restrictions or provided through

an API, e.g., the Google Vision API. A black-box classifier makes it

difficult for the system to compute an explanation that is consistent

with the underlying classifier, meaning that 𝑀 (𝒙𝑐 𝑓 ) returns the

desired, łgoodž, outcome. As an example, LIME [22] uses a black-

box classifier, learns a simple, interpretable model locally, around

the input data point 𝒙 , and uses it to obtain an explanation; however,
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its explanations are not always consistent with the predictions of

the original classifier [23, 28].

A key advantage of counterfactual explanations is that they

guarantee model consistency and they can be black-box. A black-

box model, however, makes it difficult to explore the search space

of counterfactuals, because we cannot examine the code of𝑀 for

hints of how to quickly get from 𝒙 to a counterfactual 𝒙𝑐 𝑓 . For

this reason, several previous systems claim to be black box, but

require access to the code of the classifier. We classify these systems

as gray-box: A gray-box explanation has access to the code of the

model𝑀 . Early counterfactual explanation systems are based on

gradient descent [18, 32]. They are gray-box, because they need

access to the code of𝑀 in order to compute its gradient. MACE [12]

is also gray-box, since it translates both the classifier logic and the

feasibility/plausibility constraints into a logical formula and then

solves for counterfactuals via multiple calls to an SMT solver. These

systems have similar restrictions as white-box explanations. In

contrast, CERTIFAI [27] and Google’s What-if Tool (WIT) [33] are

fully black-box, but limit the search space (cf. Fig. 2). CERTIFAI is

based on a genetic algorithm, but the quality of its explanations

are highly sensitive to the computation of the initial population;

we discuss CERTIFAI in detail in Sec. 4.7. WIT severely limits its

search space to a given dataset.

Our system,GeCo, is designed to workwith any black-boxmodel

and to explore the large search space of counterfactuals. Yet, if the

code of the classifier is available, then we use the partial evaluation

optimization to improve the runtime. Thus,GeCo differs from other

systems in that it uses access to the code of 𝑀 not to guide the

search, but only to optimize the execution time.

Counterfactual explanations are related to the problem of finding

adversarial examples [7, 9, 16, 29], which are small perturbations

of the input instance that lead to a different classification. Such

examples are used to evaluate the robustness of the classifier. A key

difference is that adversarial examples typically have many, almost

indistinguishable changes, which are not required to be plausible or

feasible. In Sec. 6, we show that techniques for adversarial examples

are not directly applicable to the problem of finding quality coun-

terfactual explanations by comparing GeCo with an adaptation of

the SimBA algorithm [9].

Contributions In summary, our contributions are as follows.

• We describe GeCo, the first system that computes feasible

and plausible explanations in interactive response time.

• We describe the search space of GeCo consisting of a data-

base 𝐷 and a constraint language PLAF. Section 3.

• We describe a custom genetic algorithm for exploring the

space of candidate counterfactuals. Section 4.

• We describe two optimization techniques: Δ-representation

and partial evaluation. Section 5.

• We conduct an extensive experimental evaluation of GeCo,

and compare it to MACE, Google’s What-If Tool, CERTIFAI,

and an adaptation of SimBA. Section 6.

2 COUNTERFACTUAL EXPLANATIONS

Consider𝑛 features 𝐹1, . . . , 𝐹𝑛 , with domains dom(𝐹1), . . . , dom(𝐹𝑛).

We assume to have a black-box model𝑀 , i.e. an oracle that, when

given a feature vector 𝒙 = (𝑥1, . . . , 𝑥𝑛), returns a prediction𝑀 (𝒙).

The prediction is a number between 0 and 1, where 1 is the desired,

or good outcome, and 0 is the undesired outcome. For simplicity, we

will assume that𝑀 (𝒙) > 0.5 is łgoodž, and everything else is łbadž.

If the classifier is categorical, then we simply replace its outcomes

with the values {0, 1}. Given an instance 𝒙 for which𝑀 (𝒙) is łbadž,

the goal of the counterfactual explanation is to find a counterfactual

instance 𝒙𝑐 𝑓 such that (1) 𝑀 (𝒙𝑐 𝑓 ) is łgoodž, (2) 𝑥𝑐 𝑓 is close to 𝑥 ,

and (3) 𝒙𝑐 𝑓 is both feasible and plausible. Formally, a counterfactual

explanation is a solution to the following optimization problem:

argmin
𝒙𝑐𝑓

dist(𝒙, 𝒙𝑐 𝑓 ) (1)

𝑠 .𝑡 . 𝑀 (𝒙𝑐 𝑓 ) > 0.5

𝒙𝑐 𝑓 ∈ P // 𝑥𝑐 𝑓 is plausible

𝒙𝑐 𝑓 ∈ F (𝒙) // 𝑥𝑐 𝑓 is feasible

where dist is a distance function. The counterfactual explanation

𝒙𝑐 𝑓 ranges over the space dom(𝐹1) × · · · × dom(𝐹𝑛), subject to

the plausibility and feasibility constraints P and F (𝒙), which we

discuss in the next section. In practice, as we shall explain, GeCo

returns not just one, but the top 𝑘 best counterfactuals 𝒙𝑐 𝑓 .

The role of the distance function is to ensure that GeCo finds

the nearest counterfactual instance that satisfies the constraints.

In particular, we are interested in counterfactuals that change the

values of only a few features, which helps define concrete actions

that the user can perform to achieve the desired outcome. For

that purpose, we use the distance function dist(𝒙,𝒚) introduced by

MACE [12], which we briefly review here.

We start by defining domain-specific distance functions𝛿1, . . . , 𝛿𝑛
for each of the 𝑛 features, as follows. If dom(𝐹𝑖 ) is categorical, then

𝛿𝑖 (𝑥𝑖 , 𝑦𝑖 )
def
= 0 if 𝑥𝑖 = 𝑦𝑖 and 𝛿𝑖 (𝑥𝑖 , 𝑦𝑖 )

def
= 1 otherwise. If dom(𝐹𝑖 )

is a continuous or an ordinal domain, then 𝛿𝑖 (𝑥𝑖 , 𝑦𝑖 )
def
= |𝑥𝑖 −𝑦𝑖 |/𝑤 ,

where𝑤 is the range of the domain. We note that, when the range

is unbounded, or unknown, then alternative normalizations are

possible, such as the Median Absolute Distance (MAD) [32], or the

standard deviation [33]. We define the ℓ𝑝 -distance between 𝒙,𝒚 as:

dist𝑝 (𝒙,𝒚)
def
=

(︄

∑︂

𝑖

𝛿
𝑝
𝑖 (𝑥𝑖 , 𝑦𝑖 )

)︄1/𝑝

and adopt the usual convention that the ℓ0-distance is the number

of distinct features: dist0 (𝒙,𝒚)
def
= |{𝑖 | 𝛿𝑖 (𝑥𝑖 , 𝑦𝑖 ) ≠ 0}|. Finally, we

define our distance function as a weighted combination of the ℓ0, ℓ1,

and ℓ∞ distances:

𝑑𝑖𝑠𝑡 (𝒙,𝒚) =𝛼 ·
dist0 (𝒙,𝒚)

𝑛
+ 𝛽 ·

dist1 (𝒙,𝒚)

𝑛
+ 𝛾 · dist∞ (𝒙,𝒚) (2)

where𝛼, 𝛽,𝛾 ≥ 0 are hyperparameters, whichmust satisfy𝛼+𝛽+𝛾 =

1. Notice that 0 ≤ 𝑑𝑖𝑠𝑡 (𝒙,𝒚) ≤ 1. The intuition is that the ℓ0-norm

restricts the number of features that are changed, the ℓ1 norm

accounts for the average change of distance between 𝒙 and 𝒚, and

the ℓ∞ norm restricts the maximum change across all features.

Although [12] defines the distance function (2), the MACE system

hardwires the hyperparameters to 𝛼 = 0, 𝛽 = 1, 𝛾 = 0; we discuss

this, and the setting of different hyperparameters in Sec. 6.
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3 THE SEARCH SPACE

The key to computing high quality explanations is to define a com-

plete space of candidates that the system can explore. In GeCo the

search space for the counterfactual explanations is defined by two

components: a database of entities 𝐷 = {𝒙1, 𝒙2, . . .} and plausibility

and feasibility constraint language called PLAF.

The database𝐷 can be the training set, a test set, or historical data

of past customers for which the system has performed predictions.

It is used in two ways. First, GeCo computes the domain of each

feature as the active domain in 𝐷 : dom(𝐹𝑖 )
def
= Π𝐹𝑖 (𝐷). Second, the

data analyst can specify groups of features with the command:

GROUP 𝐹𝑖1 , 𝐹𝑖2 , . . .

and in that case the joint domain of these features is restricted to the

combination of values found in𝐷 , i.e.Π𝐹𝑖1𝐹𝑖2 · · ·
(𝐷). Grouping is use-

ful in several contexts. The first is when the attributes are correlated.

For example, if we have a functional dependency like zip → city,

then the data analyst would group zip, city. For another example

of correlation, consider education and income. They are correlated

without satisfying a strict functional dependency; by grouping them,

the data analyst ensures that GeCo considers only combinations

of values found in the dataset 𝐷 . As a final example, consider at-

tributes that are the result of one-hot encoding: e.g. color may be

expanded into color_red, color_green, color_blue. By grouping

them together, the analyst restricts GeCo to consider only values

(1, 0, 0), (0, 1, 0), (0, 0, 1) that actually occur in 𝐷 .

The constraint language PLAF allows the data analyst to specify

which combination of features of 𝒙𝑐 𝑓 are plausible, and which can

be feasibly reached from 𝒙 . PLAF consists of statements of the form:

PLAF IF Φ1 and Φ2 and · · · THEN Φ0 (3)

where each Φ𝑖 is an atomic predicate of the form 𝑒1 op 𝑒2 for

op ∈ {=,≠, ≤, <, ≥, >}, and each expression 𝑒1, 𝑒2 is over the cur-

rent features, denoted x.𝐹𝑖 , and/or counterfactual features, denoted

x_cf.𝐹𝑖 . The IF part may be missing.

Example 3.1. Consider the following PLAF specification:

GROUP education, income (4)

PLAF x_cf.gender = x.gender (5)

PLAF x_cf.age >= x.age (6)

PLAF IF x_cf.education > x.education

THEN x_cf.age > x.age+4 (7)

The first statement says that education and income are correlated:

GeCo will consider only counterfactual values that occur together

in the data. Rule (5) says that gender cannot change, rule (6) says

that age can only increase, while rule (7) says that, if we ask the

customer to get a higher education degree, then we should also

increase the age by 4. The last rule (7) is adapted from [17], who

have argued for the need to restrict counterfactuals to those that

satisfy causal constraints.

PLAF has the following restrictions. (1) The groups have to be

disjoint: if a feature 𝐹𝑖 needs to be part of two groups then they

need to be union-ed into a larger group. We denote by 𝐺 (𝐹𝑖 ) the

unique group containing 𝐹𝑖 (or 𝐺 (𝐹𝑖 ) = {𝐹𝑖 } if 𝐹𝑖 is not explic-

itly included in any group). (2) the rules must be acyclic, in the

explain (instance 𝒙 , classifier𝑀 , dataset 𝐷 , PLAF (Γ, C))

C𝒙 = ground(𝒙, C); DG = feasibleSpace(𝐷, Γ, C𝒙 );

POP = [ (𝒙, ∅) ]

POP = mutate(POP, Γ, DG, C𝒙 ,𝑚init) //initial population

POP = selectFittest(𝒙, POP, 𝑀, 𝑞)

do {

CAND = crossover(POP, C𝒙 ) ∪mutate(POP, Γ, DG, C𝒙 ,𝑚mut)

POP = selectFittest(𝒙, POP ∪ CAND, 𝑀, 𝑞)

TOPK = POP[1 : 𝑘]

} until ( counterfactuals(TOPK, 𝑀) and TOPK ∩ CAND = ∅ )

return TOPK

Algorithm 1: Pseudo-code of GeCo’s custom genetic algo-

rithm to generate counterfactual explanations.

following sense. Every consequent Φ0 in (3) must be of the form

x_cf.𝐹𝑖 op 𝑒 , i.e. must łdefinež a counterfactual feature 𝐹𝑖 , and

the following graph must be acyclic: the nodes are the groups

𝐺 (𝐹1),𝐺 (𝐹2), . . ., and the edges are (𝐺 (𝐹 𝑗 ),𝐺 (𝐹𝑖 )) whenever there

is a rule (3) that defines x_cf.𝐹𝑖 and that also contains x_cf.𝐹 𝑗 .

We briefly illustrate with Example 3.1. The three rules (5)-(7) łde-

finež the features gender, age, and age respectively, and there there

is a single edge {education, income} → {age}, resulting from

Rule (7). Therefore, the PLAF program is acyclic.

The restrictions are not limiting the expressive power of PLAF,

but only encourage users to write constraints that GeCo can eval-

uate efficiently. Indeed, consider any CNF formula 𝐶1 ∧𝐶2 ∧ · · ·

where each clause𝐶𝑖 has the form Φ1∨Φ2∨· · · If Φ′
𝑖 is the negation

of Φ𝑖 (e.g. the negation of 𝑒1 ≤ 𝑒2 is 𝑒1 > 𝑒2), then we can write

the clause as the PLAF statement Φ′
1 ∧ Φ

′
2 ∧ · · · ⇒ (1 = 2), where

1 = 2 stands for false. The PLAF program is acyclic because the

precedence graph has no edges, but it would force GeCo to search

for counterfactuals through rejection sampling only. Instead, by

encouraging users to write constraints where each counterfactual

feature is defined by a rule as explained above, we reduce the need

for, or completely avoid rejection sampling.

4 GECO’S CUSTOM GENETIC ALGORITHM

In this section, we introduce the custom genetic algorithm that

GeCo uses to efficiently explore the space of counterfactual ex-

planations. A genetic algorithm is a meta-heuristic for constraint

optimization that is based on the process of natural selection. There

are four core operations. First, it defines an initial population

of candidates. Then, it iteratively selects the fittest candidates

in the population, and generates new candidates viamutate and

crossover on the selected candidates, until convergence.

While there are many optimization algorithms that could be used

to solve our optimization problem (defined in Eq (1)), we chose a ge-

netic algorithm for the following reasons: (1) The genetic algorithm

is easily customizable to the problem of finding counterfactual ex-

planations; (2) it seamlessly supports the rich semantics of PLAF

constraints, which are necessary to ensure that the explanations are

feasible and plausible; (3) it does not require any restrictions on the

underlying classifier and data, and thus is able to provide black-box
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explanations; and (4) it returns a diverse set of explanations, which

may provide different actions that can lead to the desired outcome.

In GeCo, we customized the core operations of the genetic algo-

rithm based on the following key observation: A good explanation

𝒙𝑐 𝑓 should differ from 𝒙 by only a few features; counterfactual ex-

amples 𝒙𝑐 𝑓 that require the customer to change too many features

are of little interest. For this reason, GeCo first explores counter-

factuals that change only a single feature group, before exploring

increasingly more complex action spaces in subsequent generations.

In the following, we first overview of the genetic algorithm used

by GeCo and then provide additional details for the core operations.

4.1 Overview

GeCo’s pseudocode is shown in Algorithm 1. The inputs are: an

instance 𝒙 , the black-box classifier𝑀 , a dataset 𝐷 , and PLAF pro-

gram (Γ,𝐶). Here Γ = {𝐺1,𝐺2, . . .} are the groups of features, and

𝐶 = {𝐶1,𝐶2, . . .} are the PLAF constraints, see Sec. 3. The algorithm

has four integer hyperparameters 𝑘,𝑚init,𝑚mut, 𝑞 > 0, with the

following meaning: 𝑘 represents the number of counterfactuals

that the algorithm returns to the user; 𝑞 is the size of the population

that is retained from one generation to the next; and𝑚init,𝑚mut

control the number of candidates that are generated for the initial

population, and during mutation respectively. We always set 𝑘 < 𝑞.

As explained in Sec. 3, the active domain of each attribute are

values found in the database 𝐷 . More generally, for each group

𝐺𝑖 ∈ Γ, its values must be sampled together from those in the

database 𝐷 . The GeCo algorithm starts by grounding (specializing)

the PLAF program 𝐶 to the entity 𝒙 (the ground function), then

calls the feasibleSpace operator, which computes for each group

𝐺𝑖 a relation 𝐷𝐺𝑖 with attributes 𝐺𝑖 representing the sample space

for the group 𝐺𝑖 ; we give details in Sec. 4.2.

Next, GeCo computes the initial population. In our customized

algorithm, the initial population is obtained simply by applying the

mutate operator to the given entity 𝒙 . Throughout the execution

of the algorithm, the population is a set of pairs (𝒙 ′,Δ′), where 𝒙 ′

is an entity and Δ
′ is the set of features that were changed from 𝒙 .

Throughout this section we call the entities 𝒙 ′ in the population

candidates, or examples, but we don’t call them counterfactuals,

unless 𝑀 (𝒙 ′) is łgoodž, i.e. 𝑀 (𝒙 ′) > 0.5 (see Sec. 2). In fact, it is

possible that none of the candidates in the initial population are clas-

sified as good. The goal of GeCo is to find at least 𝑘 counterfactuals

through a sequence of mutation and crossover operation.

The main loop ofGeCo’s genetic algorithm consists of extending

the population with new candidates obtained by mutation and

crossover, then keeping only the 𝑞 fittest for the next generation.

The operators selectFittest, mutate, crossover are described in

Sec. 4.3, 4.4, and 4.5. The algorithm stops when the top 𝑘 (from

the select 𝑞 fittest) candidates are all counterfactuals and are stable

from one generation to the next; the function counterfactuals

simply tests that all candidates are counterfactuals, by checking1

that𝑀 (𝒙 ′) is łgoodž. We describe now the details of the algorithm.

1In our implementation we store the value𝑀 (𝒙′) together with 𝒙′, so we don’t have
to compute it repeatedly. We omit some details for simplicity of the presentation.

4.2 Feasible Space Operators

Throughout the execution of the genetic algorithm, GeCo ensures

that all candidates 𝒙 ′ satisfy all PLAF constraints𝐶 . It achieves this

efficiently through three functions: ground, feasibleSpace, and

actionCascade. We describe these functions here, and omit their

pseudocode (which is straightforward).

The function ground(𝒙,𝐶) simply instantiates all features of 𝒙

with constants, and returns łgroundedž constraints 𝐶𝒙 . All candi-

dates 𝒙 ′ will need to satisfy these grounded constraints.

Example 4.1. Let𝐶 be the three constraints of the PLAF program

in Example 3.1. Assume that the instance is:

𝒙 =(gender = female, age = 22, education = 3, income = 80𝑘)

Then the set of grounded rules𝐶𝒙 is obtained from the rules (5)-(7).

For example, x_cf.age >= x.age becomes age ≥ 22. The three

grounded rules are:

gender = female (8)

age ≥ 22 (9)

education > 3 ⇒ age > 26 (10)

Every candidate 𝒙 ′ must satisfy all three rules.

A naive strategy to generate candidates 𝒙 ′ that satisfy 𝐶𝒙 is

through rejection sampling: after each mutation and/or crossover,

we verify 𝐶𝒙 , and reject 𝒙 ′ if it fails some constraint in 𝐶𝒙 . GeCo

improves over this naive approach in two ways. First, it computes

for each group 𝐺𝑖 ∈ Γ a set of values 𝐷𝐺𝑖 that, in isolation, sat-

isfy 𝐶𝒙 ; this is precomputed at the beginning of the algorithm by

feasibleSpace. Second, once it generates candidates 𝒙 ′ that dif-

fer in multiple feature groups 𝐺𝑖1 ,𝐺𝑖2 , . . . from 𝒙 , then it enforces

the constraint by possibly applying additional mutation, until all

constraints hold: this is done by the function actionCascade.

The function feasibleSpace(𝐷, Γ, C𝒙 ) computes, for each group

𝐺𝑖 ∈ Γ, the relation:

𝐷𝐺𝑖
def
= 𝜎

𝐶
(𝑖 )
𝒙

(︁

Π𝐺𝑖
(𝐷)

)︁

where 𝐶
(𝑖)
𝒙

consists of the conjunction of all rules in 𝐶𝒙 that refer

only to features in the group𝐺𝑖 . We call the relation𝐷𝐺𝑖 the sample

space for the group 𝐺𝑖 . Thus, the selection operator 𝜎
𝐶

(𝑖 )
𝒙

rules out

values in the sample space that violate of some PLAF rule.

Example 4.2. Continuing Example 4.1, there are three groups,

𝐺1 = {gender},𝐺2 = {education, income},𝐺3 = {age}, and their

sample spaces are computed as follows:

𝐷𝐺1
def
= 𝜎gender=female (Πgender (𝐷))

𝐷𝐺2
def
= Πeducation,income (𝐷))

𝐷𝐺3
def
= 𝜎age≥22 (Πage (𝐷))

Notice that we could only check the grounded rules (8) and (9). The

rule (10) refers to two different groups, and can only be checked by

examining features from two groups; this is done by the function

actionCascade.

The function actionCascade(𝒙 ′,Δ′, C𝒙 ) is called during muta-

tion and crossover, and its role is to enforce the grounded con-

straints 𝐶𝒙 on a candidate 𝒙 ′ before it is added to the population.
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mutate (POP, Γ, DG, C𝒙 ,𝑚 )

CAND = ∅

foreach (𝒙∗,Δ∗) ∈ POP do {

foreach 𝐺 ∈ Γ s.t. 𝐺 ∉ Δ
∗ do {

𝒙
′
= 𝒙

∗; 𝑆 = sample(DG[𝐺],𝑚) //without replacement

foreach 𝑣 ∈ 𝑆 do {

𝒙
′.𝐺 = 𝑣 ; Δ

′
= Δ

∗ ∪ {𝐺}

(𝒙 ′,Δ′) = actionCascade(𝒙 ′,Δ′, C𝒙 )

CAND ∪= {(𝒙 ′,Δ′)}
}

}
}
return CAND

Algorithm 2: Pseudo-code for GeCo’s mutate operator.

Recall from Sec. 3 that the PLAF rules are acyclic. actionCascade

checks each rule, in topological order of the acyclic graph: if the

rule is violated, then it changes the feature defined by that rule to a

value that satisfies the condition, and it adds the updated feature

(or group) to Δ
′. The function returns the updated candidate 𝒙 ′,

which now satisfies all rules C𝒙 , as well as its set of changed features

Δ
′. For a simple illustration, referring to Example 4.2, when GeCo

considers a new candidate 𝒙 ′, it checks the rule (10): if the rule is

violated, then it replaces age with a new value from 𝐷𝐺3, subject

to the additional condition age > 26, and adds age to Δ
′.

4.3 Selecting Fittest Candidates

At each iteration, GeCo’s genetic algorithm extends the current

population (through mutation and crossover), then retains only

the łfittestž 𝑞 candidates 𝒙
′ for the next generation using the

selectFittest(𝒙, POP, 𝑀, 𝑞) function. The function first evaluates

the fitness of each candidate 𝒙 ′ in POP; then sorts the examples 𝒙 ′

by their fitness score; and returns the top 𝑞 candidates.

We describe here how GeCo computes the fitness of each candi-

date 𝒙 ′. For that,GeCo takes into account two pieces of information:

whether 𝒙 ′ is counterfactual, i.e.𝑀 (𝒙 ′) > 0.5, and the distance from

𝒙 to 𝒙 ′ which is given by the function 𝑑𝑖𝑠𝑡 (𝒙, 𝒙 ′) defined in Sec. 2

(see Eq. (2)). It combines these two pieces of information into a

single numerical value, 𝑠𝑐𝑜𝑟𝑒 (𝒙 ′) defined as:

𝑠𝑐𝑜𝑟𝑒 (𝒙 ′) =

{︄

𝑑𝑖𝑠𝑡 (𝒙, 𝒙 ′) if𝑀 (𝒙 ′) > 0.5

(𝑑𝑖𝑠𝑡 (𝒙, 𝒙 ′) + 1)+(1 −𝑀 (𝒙 ′)) otherwise
(11)

The rationale for this score is that we want every counterfactual

candidate to be better than every non-counterfactual candidate. If

𝑀 (𝒙 ′) > 0.5, then 𝒙
′ is counterfactual, in that case it remains to

minimize 𝑑𝑖𝑠𝑡 (𝒙, 𝒙 ′). But if𝑀 (𝒙 ′) ≤ 0.5, then 𝒙
′ is not counterfac-

tual, and we add 1 to 𝑑𝑖𝑠𝑡 (𝒙, 𝒙 ′) ensuring that this term is larger

than any distance 𝑑𝑖𝑠𝑡 (𝒙, 𝒙 ′′) for any counterfactual 𝒙 ′′ (because

𝑑𝑖𝑠𝑡 ≤ 1, see Sec. 2); we also add a penalty 1 − 𝑀 (𝒙 ′), to favor

candidates 𝒙 ′ that are closer to becoming counterfactuals.

In summary, the function selectFittest computes the fitness

score (Eq. (11)) for each candidate in the population, then sorts

the population in decreasing order by this score, and returns the 𝑞

fittest candidates. Notice that all counterfactuals examples 𝒙 ′ will

precede all non-counterfactuals in the sorted order.

crossover (POP, C𝒙 )

CAND = ∅; {Δ1, . . . ,Δ𝑟 } = {Δ | (𝒙,Δ) ∈ POP}

foreach (Δ𝑖 ,Δ 𝑗 ) ∈ {Δ1, . . . ,Δ𝑟 } s.t. 𝑖 < 𝑗 do {

let (𝒙𝑖 ,𝚫𝑖 ) = best instance in POP with Δ = Δ𝑖

let (𝒙 𝑗 ,𝚫 𝑗 ) = best instance in POP with Δ = Δ 𝑗

//combine actions from 𝒙𝑖 and 𝒙 𝑗

𝒙
′
= 𝒙𝑖 ; 𝚫

′
= 𝚫𝑖 ∪ 𝚫 𝑗

foreach 𝐺 ∈ 𝚫
′ do {

if 𝐺 ∈ Δ𝑖 \ Δ 𝑗 do 𝒙
′.𝐺 = 𝒙𝑖 .𝐺

elseif 𝐺 ∈ Δ 𝑗 \ Δ𝑖 do 𝒙
′.𝐺 = 𝒙 𝑗 .𝐺

else 𝒙
′.𝐺 = rand(Bool) ? 𝒙𝑖 .𝐺 : 𝒙 𝑗 .𝐺

}

(𝒙 ′,Δ′) = actionCascade(𝒙 ′,Δ′, C𝒙 )

CAND ∪= {(𝒙 ′,Δ′)}
}
return CAND

Algorithm 3: Pseudo-code for GeCo’s crossover operator.

4.4 Mutation Operator

Algorithm 2 provides the pseudo-code of the mutation operator.

The operatormutate(POP, Γ, DG, C𝒙 ,𝑚) takes as input the current

population POP, the list of feature groups Γ = {𝐺1,𝐺2, . . .}, their

associated sample spaces DG = {𝐷𝐺1, 𝐷𝐺2, . . .}, the grounded con-

straints C𝒙 , and an integer𝑚 > 0. The function generates, for each

candidate 𝒙 ′ in the population,𝑚 new mutations for each feature

group𝐺𝑖 . We briefly explain the pseudo-code. For each candidate

(𝒙∗,Δ∗) ∈ POP, and for each feature group 𝐺 ∈ Γ that has not

been mutated yet (𝐺 ∉ Δ
∗), we sample𝑚 values without replace-

ment from the sample space associated to 𝐺 , and construct a new

candidate 𝒙 ′ obtained by changing𝐺 to 𝑣 , for each value 𝑣 in the

sample. As explained earlier (Sec. 4.2), before we insert 𝒙 ′ in the

population, we must enforce all constraints in 𝐶𝒙 , and this is done

by the function actionCascade.

In GeCo, the mutation operator also generates the initial popu-

lation. In this case, the current population POP contains only the

original instance 𝒙 with Δ = ∅. Thus, GeCo first explores candi-

dates in the initial population that differ from the original instance

𝒙 only in a change for one group 𝐺 ∈ Γ. This ensures that we

prioritize candidates that have few changes. Subsequent calls to

the mutation operator than change one additional feature group

for each candidate in the current population.

4.5 Crossover Operator

The crossover operator generates new candidates by combining the

actions of two instances 𝒙𝑖 , 𝒙 𝑗 in POP. For example, consider candi-

dates 𝒙𝑖 and 𝒙 𝑗 that differ from 𝒙 in the feature groups {age},

and {education, income} respectively. Then, the crossover op-

erator generates a new candidate 𝒙
′ that changes all three fea-

tures age, education, income, such that that 𝒙 ′.age = 𝒙𝑖 .age and

𝒙
′.{education, income} = 𝒙 𝑗 .{education, income}. The pseudo-

code of the operator is given by Algorithm 3.

In a conventional genetic algorithm, the candidates for crossover

are selected at random. In GeCo, however, we want to combine

candidates that (1) change a distinct set of features, and (2) are the

best candidates amongst all candidates in POP that change the same
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set of features. Recall that, for each candidate 𝒙 ′ in the population,

we also store the set Δ′ of feature groups where 𝒙 ′ differs from 𝒙 .

To achieve our customized crossover, we first collect all distinct

sets Δ in POP. Then, we consider any combination of two distinct

sets (Δ𝑖 ,Δ 𝑗 ), and find the candidates 𝒙𝑖 and 𝒙 𝑗 which have the best

fitness score (Eq. (11)) in the subset of POP for which Δ = Δ𝑖 and

respectively Δ = Δ 𝑗 . Since POP is already sorted by the fitness score,

the best candidate with Δ = Δ𝑖 is also the first candidate in POP

with Δ = Δ𝑖 . The operator then combines the candidates 𝒙𝑖 and 𝒙 𝑗
into a new candidate 𝒙 ′, which inherits both the mutations from 𝒙𝑖

and 𝒙 𝑗 ; if a feature group𝐺 was mutated in both 𝒙𝑖 and 𝒙 𝑗 , then we

choose at random to assign to 𝒙 ′.𝐺 either 𝒙𝑖 .𝐺 or 𝒙 𝑗 .𝐺 . Finally, we

check if 𝒙 ′ requires any cascading actions, and apply them in order

to satisfy the constraints 𝐶𝒙 . We add 𝒙
′ and the corresponding

feature set Δ′ to the collection of new candidates CAND.

4.6 Discussion

In this section, we discuss implementation details and potential

tradeoffs that we face for the performance optimization of GeCo.

Hyperparameters. We use the following defaults for the hyperpa-

rameters: 𝑞 = 100, 𝑘 = 5,𝑚init = 20,𝑚mut = 5. The first parameter

means that each generation retains the fittest 𝑞 = 100 candidates.

The value 𝑘 = 5 means that the algorithm runs until the top 5 can-

didates of the population are all counterfactuals (i.e. 𝑀 (𝒙) > 0.5)

and they remain in the top 5 during two consecutive generations.

The initial population consists of 20 candidates 𝒙 ′ per feature group,

and, during mutation, we create 5 new candidates per feature group.

These defaults ensure that selected candidates of the initial popula-

tion will change at least five distinct feature groups.

Representation of Δ. For each candidate (𝒙 ′,Δ′) ∈ POP, we repre-

sent the feature set Δ′ as a compact bitset, which allows for efficient

bitwise operations.

Sampling Operator. In the mutation operator, we use weighted

sampling to sample actions from the sample space 𝐷𝐺𝑖 associated

to the group𝐺𝑖 . The weight is given by the frequency of each value

𝑣 ∈ 𝐷𝐺𝑖 in the input dataset 𝐷 . As a result, GeCo is more likely to

sample those actions that frequently occur in the dataset 𝐷 , which

helps to ensure that the generated counterfactual is plausible.

Number of Mutated Candidates. By default the mutation operator

mutates every candidate in the current population, which ensures

that (1) we explore a large set of candidates, and (2) we sample

many values from the feasible space for each group. The downside

is that this operation can take a long time, in particular if we return

many selected candidates (𝑞 is large), and the mutation operator

can become a performance bottleneck. In this case, it is possible

to mutate only a selected number of candidates. We propose to

group the candidates by the set Δ, and then to mutate only the top

candidates in each group (just like we only do crossover on the

top candidate in each group). This approach ensures that we still

explore candidates with the Δ sets as the default, but limits the total

number of candidates that are generated.

Large Sample Spaces. If there is a very large sample space 𝐷𝐺𝑖 ,

then it is possible that GeCo does not sample the best action from

this space. In this case, we designed selectiveMutate, a variant of the

mutate operator. Whereas the normal mutation operator mutates

candidates by changing feature groups that have not been changed,

selective mutation mutates feature groups that were previously

changed by sampling actions that decrease the distance between

the candidate and the original instance. This ensures that GeCo is

more likely to identify the best action in large sample spaces.

4.7 Comparison with CERTIFAI

CERTIFAI [27] also computes counterfactual explanations using a

genetic algorithm. The main difference that distinguishes CERTIFAI

from GeCo is that CERTIFAI assumes that the initial population is

a random sample of only łgoodž counterfactuals. Once this initial

population is computed, the goal of its genetic algorithm is to find

better counterfactuals, whose distance to the original instance is

smaller. However, it is unclear how to compute the initial population

of counterfactuals, and the quality of the final answer of CERTIFAI

depends heavily on the choice of this initial population. CERTIFAI

also does not emphasize the exploration of counterfactuals that

change only few features. In contrast, GeCo starts from only the

original instance 𝒙 , whose outcome is łbadž, and assumes that some

łgoodž counterfactual is nearby, i.e. with few changed features.

Since CERTIFAI is not publicly available, we implemented our

own variant based on the description in the paper. Since it is not

clear how the initial population is computed, we consider all in-

stances in the database 𝐷 that are classified with the good outcome

and satisfy all feasibility and plausibility constraints. This is the

most efficient way to generate a sample of good counterfactuals,

but it has the downside is that the quality of the initial population,

and, hence, of the final explanation, varies widely with the instance

𝒙 . In fact, there are cases where 𝐷 contains no counterfactual that

satisfies the feasibility constraints w.r.t. 𝒙 . In Section 6, we show

that GeCo is able to compute explanations that are closer to the

original instance significantly faster than CERTIFAI.

5 OPTIMIZATIONS

The main performance limitation in GeCo are the repeated calls

to selectFittest and mutate. Between the two operations, GeCo

repeatedly adds tens of thousands of candidates to the population,

applies the classifier𝑀 on each of them, and then removes those

that have a low fitness score. In Section 6, we show that selection

andmutation account for over 95% of the overall runtime. In order to

apply GeCo in interactive settings, it is thus important to optimize

the performance of these two operators. In this section, we present

two optimizations which significantly improve their performance.

To optimizemutate, we present a loss-less, compressed data rep-

resentation, called Δ-representation, for the candidate population

that is generated during the genetic algorithm. In our experiments,

the Δ-representation is up to 25× more compact than an equiva-

lent naive listing representation, which translates to a performance

improvement of up to 3.9× for mutate.

To optimize selectFittest, we draw on techniques from the PL

community, in particular partial evaluation, to optimize the eval-

uation of the classifier. The optimizations exploit the fact that we

know the values for subsets of the input features before the eval-

uation, which allows us to translate the model into a specialized

equivalent model that pre-evaluates the static components. These

optimizations improve the runtime for selectFittest by up to 3.2×.
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Age Edu. Occup. Income

28 HS Service 10,000

30 HS Service 10,000

32 HS Service 10,000

22 PhD Service 10,000

22 BSc Service 10,000

25 HS Service 15,000

23 HS Service 20,000

22 HS Sales 10,000

22 HS Student 10,000

Δ Sets

{Age}

{Edu.}

{Age, Income}

{Occup.}

Age

28

30

32
Edu.

PhD

BSc

Age Income

25 15,000

23 20,000

Occup.

Sales

Student

Figure 3: Example candidate population for instance 𝒙 =

(22,HS,Service,10000) using the naive listing representation

(left) and the equivalent Δ-representation (right).

The Δ-representation and partial evaluation complement each

other, and together decrease the end-to-end runtime of GeCo by a

factor of 5.2×. Next, we provide more details for our optimizations.

5.1 Δ-Representation

The naive representation for the candidate population of the genetic

algorithm is a listing of the full feature vectors 𝒙 ′ for all candidates

(𝒙 ′,Δ′). This representation is highly redundant, because most

values in 𝒙
′ are equal to the original instance 𝒙 ; only the features

in Δ
′ are different. The Δ-representation can represent each the

candidate (𝒙 ′,Δ′) compactly by storing only the features in Δ
′.

This is achieve by grouping the candidate population by the set of

features Δ′, and then representing the entire subpopulation in a

single relation 𝑅Δ′ whose attributes are only Δ
′.

Example 5.1. Figure 3 presents a candidate population for the

instance 𝒙 = (Age=22, Edu=HS, Occup=Service, Income=10000) us-

ing (left) the naive listing representation and (right) the equivalent

Δ-representation. For simplicity, we highlight the changed values

in the listing representation, instead of enumerating all Δ sets,

Most values stored in the listing representation are values from

𝒙 . In contrast, the Δ-representation only represents the values that

are different from 𝒙 . For instance, the first three candidates, which

change only Age, are represented in a relation with attributes Age

only, and without repeating the values for Edu, Occup, Income.

In our implementation, we represent the Δ sets as bitsets, and

the Δ-representation is a hashmap of that maps the distinct Δ

sets to the corresponding relation 𝑅Δ, which is represented as a

DataFrame. We provide wrapper functions so that we can apply

standard DataFrame operations directly on the Δ-representation.

TheΔ-representation has a significantly lowermemory footprint,

which can lead to significant performance improvements over the

naive representation, because it is more efficient to add candidates

to the smaller relations, and it simplifies garbage collection.

There is, however, a potential performance tradeoff for the selec-

tion operator, because the classifier𝑀 typically assumes as input

the full feature vector 𝒙 ′. In this case, we copy the values in the

Δ-representation to a full instantiation of 𝒙 ′. This transformation

can be expensive, but, in our experiments, it does not outweigh the

speedup for mutation. In the next section, we show how we can

use partial evaluation to avoid the construction of the full 𝒙 ′.

5.2 Partial Evaluation for Classifiers

We show how to adapt PL techniques, in particular code special-

ization via partial evaluation, to optimize the evaluation of a given

classifier𝑀 , and thus speedup the performance of selectFittest.

Consider a program 𝑃 : 𝑋 × 𝑌 → 𝑂 which maps two inputs

(𝑋,𝑌 ) into output 𝑂 . Assume that we know 𝑌 = 𝑦 at compile time.

Partial evaluation takes program 𝑃 and input 𝑌 = 𝑦 and generates a

more efficient program 𝑃 ′
⟨𝑦⟩

𝑋 → 𝑂 , which precomputes the static

components. Partial evaluation guarantees that 𝑃 ′
⟨𝑦⟩

(𝑥) = 𝑃 (𝑥,𝑦)

for all 𝑥 ∈ dom(𝑋 ). See [11] for more details on partial evaluation.

We next overview how we use partial evaluation in GeCo. Con-

sider a classifier𝑀 with features 𝐹 . During the evaluation of can-

didate (𝒙 ′,Δ′), we know that the values for all features 𝐹 \ Δ′ are

constants taken from the original instance 𝒙 . Thus, we can partially

evaluate the classifier𝑀 to a simplified classifier𝑀Δ′ that precom-

putes the static components related to features 𝐹 \ Δ′. Once 𝑀Δ′

is generated, we cache the model so that we can apply it for all

candidates in the population that change the same feature set Δ′.

Note that by using partial evaluation, GeCo no longer explains a

black-box, since it requires access to the code of the classifier.

Example 5.2. Consider a decision tree classifier 𝑀 . For an in-

stance (𝒙 ′,Δ′),𝑀 (𝒙 ′) typically evaluates the decisions for all fea-

tures along a root to leaf path. Since we know the values for the

features 𝐹 \ Δ′, we can precompute and fold all nodes in the tree

that involve the features 𝐹 \ Δ′. If Δ′ is small, then partial evalu-

ation can generate a very simple tree. For instance, if Δ′
= {Age}

then𝑀Δ′ only needs to evaluate decisions of the form age > 30 or

30 < age < 60 to classify the input.

In addition to optimizing the evaluation of𝑀 , a partially evalu-

ated classifier𝑀Δ can be directly evaluated over the partial relation

𝑅Δ in the Δ-representation, and thus we mitigate the overhead re-

sulting from the need to construct the full entity for the evaluation.

Partial evaluation has been studied and applied in various do-

mains, e.g., in databases, it has been used to optimize query evalu-

ation (see e.g., [26, 30]). We are, however, not aware of a general-

purpose partial evaluator that be applied in GeCo to optimize arbi-

trary classifiers. Thus, we implemented our own partial evaluator

for two model classes: (1) tree-based models, which includes de-

cision trees, random forests, and gradient boosted trees, and (2)

neural networks and multi-layered perceptrons.

In the following, we briefly introduce the partial evaluation we

use for tree-based models and neural networks.

Tree-based models. We optimize the evaluation of tree-based

models in two steps. First, we use existing techniques to turn the

model into a more optimized representation for evaluation. Then,

we apply partial evaluation on the optimized representation.

Tree-based models face performance bottlenecks during eval-

uation because, by nature of their representation, they are prone

to cache misses and branch misprediction. For this reason, the ML

systems community has studied how tree-based models can be rep-

resented so that they can be evaluated without random lookups

in memory and repeated if-statements (see e.g., [4, 15, 34]). In
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Table 1: Key characteristics for each considered dataset.

Credit Adult Allstate Yelp

Data Points 30K 45K 13.2M 22.4M

Variables 14 12 29 34

Features (one-hot enc.) 14 42 548 764

Feature Groups 14 11 29 34

Constraints / Implications 7 / 2 7 / 1 0 / 0 18 / 2

GeCo, we use the representation proposed by the QuickScorer

algorithm [15], which we briefly overview next.

Instead of evaluating a decision tree 𝑇 following a root to leaf

path, QuickScorer evaluates all decision nodes in𝑇 and keeps track

of which leaves cannot be reached whenever a decision fails. Once

all decisions are evaluated, the prediction is guaranteed to be given

by the first leaf that can be reached. All operations in QuickScorer

use efficient, cache-conscious bitwise operations, and avoid branch

mispredictions. This makes the QuickScorer very efficient, even if

it evaluates many more decisions than the naive evaluation.

For partial evaluation, we exploit the fact that the first phase in

QuickScorer computes the decision nodes for each feature indepen-

dently of all other features. Thus, given a set of fixed feature values,

we can precompute all corresponding decisions, and significantly

number of decision that are evaluated at runtime.

Neural Networks and MLPs.We consider neural networks and

multi-layered perceptrons for structured, tabular data (as opposed

to images or text). In this setting, each hidden node 𝑁 in the first

layer of the network is typically a linear model [2, 17]. Given an

input vector 𝒙 , parameter vector 𝒘 , and bias term 𝑏, the node 𝑁

thus computes: 𝑦 = 𝜎 (𝒙⊤𝒘 + 𝑏), where 𝜎 is an activation function.

If we know that some values in 𝒙 are static, then we can apply

partial evaluation for 𝑁 by precomputing the product between 𝒙

and𝒘 for all static components and adding the partial product to

the bias term 𝑏. During evaluation, we then only need to compute

the product between 𝒙 and𝒘 for the non-static components.

The impact of partial evalaution depends on the network struc-

ture. When applied to structured data, the model typically consists

of fully-connected layers, in which case we can only partially eval-

uate the first layer of the network. We can apply partial evaluation

to subsequent layers, only if the layers are not fully-connected.

6 EXPERIMENTS

We present the results for our experimental evaluation of GeCo on

four real datasets. We conduct the following experiments:

(1) We investigate whether GeCo is able to compute counterfac-

tual explanations for one end-to-end example, and compare

the explanation with five existing systems.

(2) We benchmark all considered systems on 5,000 instances,

and investigate the tradeoff between the quality of the ex-

planations and the runtime for each system.

(3) We conduct microbenchmarks for GeCo. In particular, we

breakdown the runtime into individual components and in-

vestigate the impact of the optimizations from Section 5. We

also evaluate GeCo’s ability to find the optimal explanation

using synthetic classifiers.

6.1 Experimental Setup

In this section, we present the considered datasets and systems, as

well as the setup used for all our experiments.

Datasets. We consider four real datasets: (1) Credit [35] is used

predict customer’s default on credit card payments in Taiwan; (2)

Adult [13] is used to predict whether the income of adults exceeds

$50K/year using US census data from 1994; (3) Allstate is a Kaggle

dataset for the Allstate Claim Prediction Challenge [1], used to

predict insurance claims based on the characteristics of the insured’s

vehicle; (4) Yelp is based on the public Yelp Dataset Challenge [36]

and is used to predict review ratings that users give to businesses.

Table 1 presents key statistics for each dataset. Credit and Adult

are from the UCI repository [8] and commonly used to evaluate

explanations (e.g., [12, 18, 31]). For all datasets, we one-hot encode

the categorical variables. For the evaluation with existing systems,

we further apply the same preprocessing that was proposed by the

existing system, in order to ensure that our evaluation is fair.

For all datasets, we group the features derived from one-hot

encoding in one feature group. In addition, we encode various

PLAF constraints with and without implications (cf. Table 1). For

instance, we enforce that Age and Education can only increase,

and MaritalStatus, Gender, and NativeCountry cannot change.

An example of a constraint with implications is given by Eq. (7). We

present a detailed description of all considered PLAF constraints

in Appendix A.1 in [24]. Since the existing systems do not support

constraints with implications, we do not enforce these constraints

in the experiments in Sec. 6.3.

Considered Systems.We benchmark GeCo against five existing

systems. (1) MACE [12] solves for counterfactuals with multiple

runs of an SMT solver. (2) DiCE [17] generates counterfactual expla-

nations with a variational auto-encoder. (3)WIT is our implementa-

tion of the counterfactual reasoning approach in Google’s What-if

Tool [33]. WIT looks up the closest counterfactual that satisfies the

PLAF constraints in database 𝐷 . We implemented our own version,

because the What-if Tool does not support feasibility constraints.

(4) CERT is our implementation of the genetic algorithm that is

used in CERTIFAI [27] (see Sec. 4.7 for details). We reimplemented

the algorithm because CERTIFAI is not publicly available. (5) SimCF

is our adaptation of the SimBA [9] algorithm for adversarial ex-

amples to the problem of finding counterfactual explanations. The

algorithm randomly selects one feature group, samples five feasible

values for this group, and greedily applies the change that returns

the best score. This process is repeated until the classifier returns

the desired outcome. Since SimCF randomly changes one feature

at a time, the explanations may not be consistent across runs.

Evaluation Metrics.We use the following three metrics to eval-

uate the quality of the explanation: (1) The consistency of the ex-

planations, i.e., does the classifier return the good outcome for the

counterfactual 𝒙𝑐 𝑓 ; (2) The distance between 𝒙𝑐 𝑓 and the original

instance 𝒙 ; (3) The number of features changed in 𝒙𝑐 𝑓 .

For the comparison with existing systems, we use the ℓ1 norm

to aggregate the distances for each feature (i.e., 𝛽 = 1, 𝛼 = 𝛾 = 0

in Eq. (2)), because MACE and DiCE do not support combining

norms. We examine other choices of these hyperparameters in

Appendix A.4 in [24]. To compare runtimes, we report the average

wall-clock time it takes to explain a single instance.
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Table 2: Examples of counterfactual explanations by GeCo,

MACE, DiCE, and SimCF for one instance in Adult (present-

ing selected features). MACE and DiCE use differentmodels;

we show GeCo’s explanation for eachmodel. The neural net-

work does not use CapitalGain and CapitalLoss.
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𝒙 49 School Service 0 0 16 F Bad

Decision Tree

GeCo 49 School Service 4,787 0 16 F Good

MACE 49 School Service 4,826 20 16 F Good

SimCF 49 School Service 7,688 1,380 16 F Good

Neural Network

GeCo 53 Masters Service ś ś 16 F Good

DiCE 54 PhD BlueCol ś ś 40 M Good

GeCo and CERT return multiple counterfactuals for each in-

stance. We only consider the best counterfactual in this evaluation.

Classifiers. We benchmark the systems on tree-based models and

multi-layered perceptrons (MLP).

Comparison with Existing Systems. For the comparison of with

existing systems we use the classifiers proposed byMACE and DiCE

for all systems to ensure a fair comparison. For tree-based models,

we attempted to compute explanations for random forest classi-

fiers, but MACE took on average 30 minutes to compute a single

explanation, which made it infeasible to compute explanations for

many instances. Thus, we consider a single decision tree for this

evaluation (computed in scikit-learn, default parameters). DiCE

does not support decision trees, since it requires a differentiable

classifier. For the neural net, we use the classifier proposed by DiCE,

which is a two-layered neural network with 20 (fully connected)

hidden units and ReLU activation.

Microbenchmarks. In the micro benchmarks, we consider a ran-

dom forest with 500 trees and maximum depth of 10 from the

Julia MLJ library [6], and the MLPClassifier from the scikit-learn

library [21]. We learn twoMLPmodels, a small variant with one hid-

den layer (100 nodes, the default setting) and a larger variant with

two hidden layers (100 nodes each), which was the best network

structure we found in a comparison of 10 different structures.

Setup.We implementedGeCo, WIT, CERT, and SimCF in Julia 1.5.2.

All experiments are run on an Intel Xeon CPU E7-4890/2.80GHz/

64bit with 108GB RAM, Linux 4.16.0, and Ubuntu 16.04.

We use the default hyperparameters for GeCo (c.f. Sec. 4.6) and

MACE (𝜖 = 10−3). CERT runs for 300 generations, as in the original

CERTIFAI implementation. In GeCo, we precompute the active do-

main of each feature group, which is invariant for all explanations.

6.2 End-to-end Example

We consider one specific instance in the Adult dataset that is classi-

fied as łbadž (Income <$50K) and illustrate the differences between

the the explanations for each considered system.

Table 2 presents the instance 𝒙 and the counterfactuals returned

by GeCo, MACE, SimCF, and DiCE. WIT and CERT fail to return

an explanation, because the Adult dataset has no instance with

income >$50K that also satisfies all PLAF constraints for 𝒙 . MACE

and SimCF compute the explanation over a decision tree, and DiCE

considers a neural network. We present GeCo’s explanation for

each model, and argue that they are better than the explanations

by MACE, SimCF, and DiCE.

For the decision tree, GeCo is able to find a counterfactual that

changes only Capital Gains. In contrast, the explanations by MACE

and SimCF require a change in Capital Gains and Capital Loss.

Remarkably, their changes in Capital Gains are larger than the one

required by GeCo. The neural network does not use the features

Capital Gains and Capital Loss. For this model, GeCo proposes

an increase in education, which in turn requires an increase in

age according to our PLAF constraints. If this change is deemed

infeasible, we can update the PLAF constraints and ask GeCo to

generate a new counterfactual. In contrast, DiCE changes the values

of eight features in total, which is neither feasible nor plausible.

6.3 Quality and Runtime Tradeoff

In this section, we investigate the tradeoff between the quality and

the runtime of the explanations for all considered systems on Credit

and Adult. As explained in Sec. 6.1, we evaluate the systems using

a single decision tree and a neural network.

Takeaways for EvaluationwithDecisionTrees. Figures 4 shows

the results of our evaluation with decision trees on 5,000 instances

from Credit and Adult for which the classifier returns the negative

outcome. We present the average distance and runtime for each

considered system and dataset.

GeCo and MACE are always able to find a feasible and plausible

explanation. WIT and CERT, however, fail to find an explanation in

2.1% of the cases for Adult. This is because the two techniques are

restricted by the database𝐷 , whichmay not contain an instance that

is classified as good and represents feasible and plausible actions.

SimCF fails to find explanations in 1.5% and 2.4% of the cases for

Adult and respectively Credit.

GeCo’s explanations are on average the closest to the original

instance. This can be explained by the fact that GeCo is able to

find these explanations by changing significantly fewer features.

For the Credit dataset, for instance, GeCo can find explanations

with 1.27 changes on average, while MACE (the best competitor)

changes on average 3.39 features. WIT, CERT, and SimCF change

on average 3.97, 3.15, and respectively 2.98 features. We provide

further details on the number of features changed by each system

in Appendix A.2 in [24].

GeCo is consistently able to compute each explanation in less

than 300ms on average. On average, GeCo is 20× faster than MACE.

This performance is only matched by WIT and SimCF, which do

not return explanations with the same quality as GeCo.

Like GeCo, CERT uses a genetic algorithm, but it takes 5.6×

longer to compute explanations that do not have the same quality as

GeCo’s. Thus, GeCo’s custom genetic algorithm, which is designed

to explore counterfactuals with few changes, is very effective.

Takeaways for Evaluation with Neural Net. Figure 5 presents

the key results for our evaluation on the MLP classifier. We only

show the comparison of GeCo and DiCE, because the comparison

with WIT, SimCF, and CERT is similar to the one for decision trees.
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Credit Dataset Adult Dataset

Figure 4: Comparison of the average distance (ℓ1 norm, log10 scale), and average runtime for the explanations by GeCo, WIT,

CERT, MACE, and SimCF for 5000 instances on the Credit and Adult datasets. Error bars represent one standard deviation.

Figure 5: Comparison of the average distance and runtime of

GeCo andDiCE for a neural network on 5000Adult instances.

Error bars represent one standard deviation.

Table 3: Microbenchmarks results for tree-based models.

Credit Adult Allstate Yelp

Generations 4.22 4.66 5.26 3.24

Explored Candidates 18.1K 15.3K 62.8K 42.9K

Size of Naive Rep. 62.23K 117.41K 8.03M 7.84M

Size of Δ-Rep. 18.64K 21.88K 412K 131K

Compression 3.3× 5.4× 19.5× 60.1×

MACE requires an extensive conversion of the classifier into a

logical formula, which is not supported for the considered model.

Since DiCE computes the counterfactual explanation in one pass

over a variational auto-encoder, it is able to compute the explana-

tions very efficiently. In our experiments, DiCE was able to find an

explanation on average 15.5× faster than GeCo. The counterfactu-

als that DiCE generates, however, have poor quality. WhereasGeCo

is again able to find explanations with only few required changes,

DiCE changes on average 5.3 features. As a result, GeCo’s explana-

tion is on average 4.4× closer to the original instance. Therefore,

we consider GeCo much more suitable for real-world applications.

6.4 Microbenchmarks

In this section, we present the results for the microbenchmarks.

Breakdown of GeCo’s Components. First, we analyze the run-

time of each operator presented in Sec. 4, as well as the impact of

the Δ-representation and partial evaluation (Sec. 5) on two tree-

based models over Allstate and Yelp, as well as the small and large

multi-layered perceptrons (MLP) over Yelp. We run GeCo for 5

generations on 1,000 instances that have been classified as bad.

Figure 6 presents the results for this benchmark. Initial popula-

tion captures the time it takes to compute the feasible space, and to

generate and select the fittest candidates for the initial population.

The times for selection, crossover, and mutation are accumulated

over all generations. For each scenario, we first present the runtime

for: (1) without the Δ-representation and partial evaluation enabled,

(2) with each optimization individually, and (3) with both.

The results show that the selection and mutation operators are

the most time consuming operations of the genetic algorithm. This

is not surprising since they operate on tens of thousands of candi-

dates, whereas crossover combines only a few selected candidates.

Partial evaluation of the classifier is effective for the random

forest model. For Allstate, it decreases the runtime of the selection

operator by up to 3.2×, which translates into an overall speedup

of 1.7×. For MLPs, the optimization is less effective, because we

can only partially evaluate the first layer. In fact, the overhead of

partial evaluation results in a slowdown for the larger variant.

The Δ-representation decreases the runtime of the mutation

operator by 3.9× for Allstate and 4.7× for Yelp (random forest). This

speedup is due to the compression achieved by the Δ-representation

(see below). If the classifier is not partially evaluated, then there is a

tradeoff in the runtime for the selection operator, because it requires

the materialization of the full feature vector. This materialization

increases the runtime of selection by up to 1.6× (Yelp, MLP small).

The best performance is achieved if the Δ-representation and

partial evaluation of the classifier are used together. In this case,

there is a significant runtime speedup for both the mutation opera-

tor and selection operators. Overall, this can lead to a performance

improvement of 5× (Yelp, random forest).

Validating Explanation Quality. To evaluate whether GeCo is

able to find good explanations, we design synthetic classifiers for

which the optimal explanation is known. Each classifier is a con-

junction of unary threshold conditions, and the outcome is positive

iff all conditions are satisfied. Given an instance that fails all condi-

tions, the number of conditions is equal to the number of features

that the counterfactual needs to change. We present further details

on the synthetic classifiers in Appendix A.3 in [24].

Figure 7 presents the results of our evaluation on 100 Credit

instances which fail all conditions for all classifiers. We consider

classifiers with up to 12 conditions, which is the maximum number

of features that can be changed. We add features in the decreasing

order of their domain sizes, which is the most challenging order for

GeCo; we consider a different order in Appendix A.3.

GeCo always finds a valid counterfactual explanation, even if

we require changing all 12 features. The runtime is linear with

respect to the number of features changed, and proportional to
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Allstate Dataset w. Random Forest Yelp Dataset w. Random Forest Yelp Dataset w. MLP (small) Yelp Dataset w. MLP (large)

Selection Crossover Mutation Initial Population

Figure 6: Breakdown of GeCo’s runtime into the main operators on Allstate and Yelp using random forest and MLP classifiers.

We present the runtimes (1) without the Δ-representation and partial evaluation, (2) with partial evaluation, (3) with the Δ-

representation, and (4) with both optimizations. The runtime is averaged over 1,000 instances.

Figure 7: Evaluation of GeCo over 100 Credit instances with

synthetic classifiers that require 1-12 feature changes. (left)

Average runtime andnumber of generations; (right) Average

distance of GeCo compared to the optimal explanation.

number of generations of the genetic algorithm. The distance of

the explanations is always close to the distance of the optimal

explanation. In Appendix A.3, we show that, by sampling more

values during mutation, we can further decrease the distance gap

to the optimal explanation with minor performance degradation.

Number of Generations and Explored Candidates. Table 3

shows for each dataset how many generations GeCo needed on

average to converge, and how many candidates it explored. The

majority (up to 97%) of the candidates were generated by mutate.

Compression by Δ-representation. Table 3 compares the sizes

for the naive listing representation and the Δ-representation. We

measure size in terms of the number of represented values, and

take the average over all generations for the size of the candidate

population after the mutate and crossover operations. Overall, the

Δ-representation can represent the candidate population up to 60×

more compactly than the naive listing representation.

Effect of Constraints. We evaluate the impact of the PLAF con-

straints on GeCo’s runtime. The constraints without implications

significantly restrict the search space of feasible counterfactuals.

Thus, including these constraints improves the performance by

19.3% for Adult and 32.2% for Credit. The constraints with implica-

tions, however, may introduce some overhead since they need to

be checked dynamically using action cascading. For example, the

overhead is 19.2% for Adult and 32.3% for Credit. Yet, the version

with all constraints is still faster by 9.8% for Credit and 18.7% for

Adult over the version without any constraints. Finally, the group-

ing of features also restricts the search space. For Adult, GeCo is

1.4× faster using the feature groups than without.

7 CONCLUSIONS

We described GeCo, the first interactive system for counterfactual

explanations that supports a complex, real-life semantics of coun-

terfactuals, yet provides answers in real time. GeCo defines a rich

search space for counterfactuals, by considering both a dataset of

example instances, and a general-purpose constraint language. It

uses a genetic algorithm to search for counterfactuals, which is cus-

tomized to favor counterfactuals that require the smallest number of

changes. We described two powerful optimization techniques that

speed up the inner loop of the genetic algorithm: Δ-representation

and partial evaluation. We demonstrated that, among five other

systems reported in the literature, GeCo is the only one that can

both compute quality explanations and find them in real time.

This work opens up several directions for future work. First,

counterfactual explanations are subject to updates to the underly-

ing data and classifier. We plan to explore how we can generate

explanations that are robust to small changes in the data distribu-

tion or classifier. This is related to the more general problem of

robust machine learning. Second, GeCo requires that the PLAF con-

straints are provided by a domain expert. We plan to explore how

we can leverage constraints and dependencies in databases to gener-

ate these constraints automatically. Third, GeCo currently assumes

that the input to the model is the raw data. In practice, however,

the model input is typically the output of extensive feature engi-

neering. We plan to explore how GeCo can generate explanations

for the feature engineered data, but then return the corresponding

raw data values to the user. For structured relational data, the fea-

ture engineering involves aggregating the raw data, in which case

we would have to connect GeCo with techniques on explaining

aggregate queries that have been developed in the database com-

munity. Fourth, counterfactual explanations expose values from

the database, which may lead to privacy issues. We plan to explore

how to return explanation that satisfy both privacy and legisla-

tive requirements. Finally, we have implemented partial evaluation

manually, and it is only supported for random forests and simple

neural network classifiers. We plan to extend this optimization to

other models by leveraging work from the compilers community.
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