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Over the last decade, worst-case optimal join (WCOJ) algorithms have emerged as a new paradigm for one

of the most fundamental challenges in query processing: computing joins efficiently. Such an algorithm

can be asymptotically faster than traditional binary joins, all the while remaining simple to understand and

implement. However, they have been found to be less efficient than the old paradigm, traditional binary join

plans, on the typical acyclic queries found in practice. Some database systems that supportWCOJ use a hybrid

approach: use WCOJ to process the cyclic subparts of the query (if any), and rely on traditional binary joins

otherwise. In this paper we propose a new framework, called Free Join, that unifies the two paradigms. We

describe a new type of plan, a new data structure (which unifies the hash tables and tries used by the two

paradigms), and a suite of optimization techniques. Our system, implemented in Rust, matches or outperforms

both traditional binary joins andWCOJ on standard query benchmarks.
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1 INTRODUCTION

Over the last decade, worst-case optimal join (WCOJ) algorithms [19ś21, 27] have emerged as a
breakthrough in one of the most fundamental challenges in query processing: computing joins
efficiently. Such an algorithm can be asymptotically faster than traditional binary joins, all the while
remaining simple to understand and implement [21]. These algorithms opened up a flourishing field
of research, leading to both theoretical results [14, 21] and practical implementations [2, 7, 17, 27].

Over time, a common belief took hold: łWCOJ is designed for cyclic queriesž. This belief is rooted
in the observation that WCOJ enjoys lower asymptotic complexity than traditional algorithms
for cyclic queries [21], but when the query is acyclic, classic algorithms like the Yannakakis
algorithm [28] are already asymptotically optimal. Moreover, traditional binary join algorithms
have benefited from decades of research and engineering. Techniques like column-oriented layout,
vectorization, and query optimization have contributed compounding constant-factor speedups,
making it challenging forWCOJ to be competitive in practice. This has lead many instantiations of
WCOJ, including Umbra [7], Emptyheaded [2], and Graphflow [17], to adopt a hybrid approach:
using WCOJ to process parts of the query, and resorting to traditional algorithms (usually binary
join) for the rest. Having two different algorithms in the same system requires changing and
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Fig. 1. Design space of join algorithms.

potentially duplicating existing infrastructure like the query optimizer. This introduces complexity,
and hinders the adoption of WCOJ.
The dichotomy of WCOJ versus binary join has led researchers and practitioners to view the

algorithms as opposites. In this paper, we break down this dichotomy by proposing a new framework
called Free Join that unifiesWCOJ and binary join. We propose several new techniques to make
Free Join outperform both binary join andWCOJ: we design an algorithm to convert any binary
join plan to a Free Join plan that runs as fast or faster; we design a new data structure called COLT

(for Column-Oriented Lazy Trie), adapting the classic column-oriented layout to improve the trie
data structure used in WCOJ; and we propose a vectorized execution algorithm for Free Join.
To explain these contributions we provide some context. In this paper, we focus on algorithms

based on hashing, and choose Generic Join [21] as a representative of WCOJ algorithms. A crucial
difference between Generic Join and binary join lies in the way they process each join operation.
Binary join processes two relations at a time, and joins on all attributes in the join condition
between these two relations. In contrast, Generic Join processes one attribute at a time, and joins
all relations that share that attribute. This suggests a design space of join algorithms, where each
join operation may process any number of attributes and relations. Figure 1 shows this design
space which also covers classic multiway join algorithms like Hash Team [9], Generalized Hash
Team [12] and Eddies [4]. Being able to join on any number of variables and relations frees us from
the constraints of all existing algorithms mentioned above.

Our new framework, Free Join, covers the entire design space, thereby generalizing and unifying
existing algorithms. The starting observation is that the execution of a left-deep linear binary join
plan is already very similar to Generic Join. While Generic Join (reviewed in Sec. 2) is traditionally
specified as a series of nested loops [21], the push-based model [13, 18] for executing a left-deep
linear binary plan is also implemented, similarly, as nested loops. The two algorithms also process
each join operation similarly: each binary hash join iterates over tuples on one relation, and for each
tuple probes into the hash table of another relation; each loop level in Generic Join iterates over
the keys of a certain trie, and probes into several other tries for each key. This inspired us to unify
hash tables and hash tries into the same data structure, and develop Free Join using iteration and
probing as key operations. This finer-grained view of join algorithms allows Free Join to generalize
and unify existing algorithms, while precisely capturing each of them.

Free Join takes as input an already optimized binary join plan, and converts it into a new kind of
plan that we call a Free Join plan. It then optimizes the Free Join plan, resulting in a plan that sits
in between binary join and Generic Join, combining the benefits of both. On one hand Free Join

takes full advantage of the design space in Figure 1. On the other hand, by starting from an already

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 150. Publication date: June 2023.



Free Join: Unifying Worst-Case Optimal and Traditional Joins 150:3

optimized binary plan, Free Join takes advantage of existing cost-based optimizers; in our system
we used binary plans produced by the optimizer of DuckDB [24, 25].

Next, we address the main source of inefficiency in Generic Join: the need to construct a trie on
each relation in the query. In contrast, a binary join plan needs to build a hash map only for each
relation on the right-hand side of a join, and simply iterates over the relation on the left. In practice,
trie-building has been observed to be a major bottleneck for Generic Join [7, 17], making it slower
than binary join. This is because each trie is more expensive to build than a hash map, and the left
relation is usually chosen to be a large relation by the query optimizer. One simple optimization in
Free Join is that we do not built a trie for tables that are left children, mimicking the binary plans.
However, we go a step further, and introduce the Column-Oriented Lazy Trie (COLT) data structure,
which builds the inner subtries lazily, by creating each subtrie on demand. We note that this builds
on an earlier idea in [7]. As the name suggests, COLT adapts the lazy trie data structure in [7] to
use a column-oriented layout. And unlike the original lazy trie which builds at least one trie level
per table, COLT completely eliminates the cost of trie building for left tables.
Finally, we describe a method for incorporating vectorized processing in Free Join, allowing it

to collect multiple data values before entering the next iteration level. The standard Generic Join

processes one data value at a time, but, as is the case in traditional query engines, this leads to poor
cache locality. Vectorized execution [23] was proposed for binary join to improve its locality by
processing data values in batch. By breaking down join operations into iterations and probes, Free
Join gives rise to a simple vectorized execution algorithm that breaks each iteration into chunks and
groups together batches of probes. Our proposal is to our knowledge the first vectorized execution
algorithm for Generic Join.
We implemented Free Join as a standalone Rust library, and compared it with two baselines:

(1) our own Generic Join implementation in Rust, and (2) the binary hash join implemented in
DuckDB [24, 25], a state-of-the-art in-memory database. We found that, on acyclic queries, Free
Join is up to 19.36x faster than binary join, and up to 31.6x faster than Generic Join; on cyclic
queries, Free Join is up to 15.45x faster than binary join, and up to 4.08x faster than Generic Join.

While optimizers for binary plans have been developed and improved over decades [26], little is
known about optimizing Generic Join. A Generic Join plan consists of a total order on its variables,
and its run time does depend on the choice of this order. But since the theoretical analysis of Generic
Join guarantees worst case optimality for any variable order, it is a folklore belief that Generic
Join is more robust than binary join plans to poor choices of the optimizer. We also conduced
experiments measuring the robustness of the three types of plans (binary, Generic Join, Free Join)
to poor choices of the optimizer. We found that Generic Join is indeed the least sensitive, while
Free Join, like binary joins, suffers more from the poor optimization choices of the optimizer, since
both rely on a cost-based optimized plan. However, Generic Join starts from worse baseline than
Free Join. In other words, Free Join takes better advantage of a good plan, when available, than
Generic Join does.
In summary, we make the following contributions in this paper:

(1) Free Join, a framework unifying existing join algorithms (Section 3).
(2) An algorithm to converting any binary join plan into an optimized Free Join plan (Section 4.1).
(3) COLT, a column-oriented lazy trie data structure (Section 4.2).
(4) A vectorized execution algorithm for Free Join (Section 4.3).
(5) Experiments evaluating the algorithms and optimizations (Section 5).

2 BACKGROUND

This section defines basic concepts and reviews background on binary join and Generic Join.
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2.1 Basic Concepts

We consider a relational database where each relation has a fixed schema, and may have duplicates,
i.e. we use bag semantics. A full conjunctive query has the following form:

𝑄 (𝒙) :- 𝑅1 (𝒙1), . . . , 𝑅𝑚 (𝒙𝑚) . (1)

Each term 𝑅𝑖 (𝒙𝑖 ) is called an atom, where 𝑅𝑖 is a relation name and 𝒙𝑖 a tuple of variables. The
query is full, meaning that the head variables 𝒙 include all variables appearing in the atoms. To
reduce clutter in the following sections, we will assume that the query does not have self-joins. This
is without loss of generality: if two atoms have the same relation name, then we simply rename
one of them. Our system also supports selections, projections, and aggregation. We assume that
the selections are pushed down to the base tables, thus the atom 𝑅𝑖 in (1) may include a selection
over a base table; in particular, all variables in the atom 𝑅𝑖 (𝒙𝑖 ) are distinct. Similarly, projections
and aggregates are performed after the full join, hence none of them is shown in (1).

Example 2.1. Consider the following SQL query:

1 SELECT r.x, s.u, t.u

2 FROM R as r, M as s, M as t -- schema: R(x,y), M(u,v,w)

3 WHERE s.w > 30 AND t.v = t.w

4 AND r.y = s.u AND s.v = t.u AND t.v = r.x

Then we denote by 𝑆 = Π𝑢𝑣 (𝜎𝑤>30 (𝑀)) and 𝑇 = Π𝑢𝑣 (𝜎𝑣=𝑤 (𝑀)), and write the query as:

𝑄△ (𝑥,𝑦, 𝑧) :- 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥) .

We call this query the triangle query over the relations 𝑅, 𝑆 , 𝑇 .

It is often convenient to view the conjunctive query (1) as a hypergraph. The query hypergraph

of 𝑄 consists of vertices V and edges E, where the set of nodes V is the set of variables occurring
in 𝑄 , and the set of hyperedges E is the set of atoms in 𝑄 . The hyperedge associated to the atom
𝑅(𝒙𝑖 ) is defined as the set consisting of the nodes associated to the variables 𝒙𝑖 . As standard, we
say that the query 𝑄 is acyclic if its associated hypergraph is 𝛼-acyclic [5]

2.2 Binary Join

The standard approach to computing a conjunctive query (1) is to compute one binary join at a
time. A binary plan is a binary tree, where each internal node is a join operator Z, and each leaf
node is one of the base tables (atoms) 𝑅𝑖 (𝒙𝑖 ) in the query (1). The plan is a left-deep linear plan, or
simply left-deep plan, if the right child of every join is a leaf node. If the plan is not left-deep, then
we call it bushy. For example, (𝑅 Z 𝑆) Z (𝑇 Z 𝑈 ) is a bushy plan, while ((𝑅 Z 𝑆) Z 𝑇 ) Z 𝑈 is a
left-deep plan. We do not treat specially right-deep or zig-zag plans, but simply consider them to
be bushy.

In this paper we consider only hash-joins, which are the most common types of joins in database
systems. The standard way to execute a bushy plan is to decompose it into a series of left-deep
linear plans. Every join node that is a right child becomes the root of a new subplan, which is
first evaluated, and its result materialized, before the parent join can proceed. As a consequence,
every binary plan, bushy or not, becomes a collection of left-deep plans. We decompose bushy
plans in exactly the same way, and we will focus on left-deep linear plans in the rest of this paper.
For example, the bushy plan (𝑅 Z 𝑆) Z (𝑇 Z 𝑈 ) is converted into two plans: 𝑃1 = 𝑇 Z 𝑈 and
𝑃2 = (𝑅 Z 𝑆) Z 𝑃1; both are left-deep plans.
To reduce clutter, we represent a left-deep plan (· · · ((𝑅1 Z 𝑅2) Z 𝑅3) · · · Z 𝑅𝑚−1) Z 𝑅𝑚 as

[𝑅1, 𝑅2, . . . , 𝑅𝑚]. Evaluation of a left-deep plan is done using pipelining. The engine iterates over
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1 for (x, y) in R:

2 s = S[y]?

3 for (y, z) in s:

4 t = T[x,z]?

5 for (x, z) in t:

6 output(x, y, z)

(a) Binary join.

1 for a in R.x ∩ T.x:

2 r = R[a]; t = T[a]

3 for b in r.y ∩ S.y:

4 s = S[b]

5 for c in s.z ∩ t.z:

6 output(a, b, c)

(b) Generic Join.

Fig. 2. Execution of binary join and Generic Join for 𝑄△ . The notation S[y]? performs a lookup on 𝑆 with

the key 𝑦, and continues to the enclosing loop if the lookup fails. Binary join iterates over tuples, Generic Join

iterates over values.

each tuple in the left-most base table 𝑅1; each tuple is probed in 𝑅2; each of the matching tuple is
further probed in 𝑅3, etc.

Example 2.2. A possible left-deep linear plan for 𝑄△ is [𝑅, 𝑆,𝑇 ], which represents (𝑅(𝑥,𝑦) Z
𝑆 (𝑦, 𝑧)) Z 𝑇 (𝑧, 𝑥). To execute this plan, we first build a hash table for 𝑆 keyed on 𝑦, where each 𝑦
maps to a vector of (𝑦, 𝑧) tuples, and a hash table for 𝑇 keyed on 𝑥 and 𝑧, each mapped to a vector
of (𝑥, 𝑧) tuples1. Then the execution proceeds as shown in Figure 2a. For each tuple (𝑥,𝑦) in 𝑅, we
first probe into the hash table for 𝑆 using 𝑦 to get a vector of (𝑦, 𝑧) tuples. We then loop over each
(𝑦, 𝑧) and probe into the hash table for 𝑇 using 𝑥 and 𝑧. Each successful probe will return a vector
of (𝑥, 𝑧) tuples, and we output the tuple (𝑥,𝑦, 𝑧) for each (𝑥, 𝑧).

2.3 Generic Join

Generic Join was introduced in [21] and is the simplest worst-case optimal join algorithm. It is
based on the earlier Leapfrog Triejoin algorithm [27]. Generic Join computes the query 𝑄 in (1)
through a series of nested loops, where each loop iterates over a variable (not a tuple). Concretely,
Generic Join chooses arbitrarily a variable 𝑥 , computes the intersection of all 𝑥-columns of all
relations containing 𝑥 , and for each value 𝑎 in this intersection it computes the residual query
𝑄 [𝑎/𝑥], where every relation 𝑅 that contains 𝑥 is replaced with 𝜎𝑥=𝑎 (𝑅). In pseudocode:

1 GJ: for a in
⋂

{Π𝑥 (𝑅𝑖 ) | 𝑅𝑖 contains 𝑥}

2 compute Q[a/x] \\ run GJ on Q with one fewer variable

If the query 𝑄 has 𝑘 variables, then there are 𝑘 nested loops in Generic Join. In the inner most loop,
Generic Join outputs the tuple of constants, one from each iteration.2 We notice that a plan for
Generic Join consists of a total order of the variables of the query, which we denote as [𝑥1, 𝑥2, . . . , 𝑥𝑘 ].
Assuming that the intersection above is done optimally (see below), the algorithm is provably
worst-case-optimal, for any choice of the variable order.

Example 2.3. Fig. 2b illustrates the pseudocode for Generic Join on the query 𝑄△ , using the
variable order [𝑥,𝑦, 𝑧]. We denoted Π𝑥 (𝑅) by 𝑅.𝑥 , and denoted (with some abuse) 𝜎𝑥=𝑎 (𝑅) by 𝑅 [𝑎].

While binary joins use hash tables, an implementation of Generic Join uses a hash trie, one for
each relation in the query. The hash-trie is a tree, whose depth is equal to one plus the number

1When the relations are bags, then the hash table may contain duplicate tuples, or store separately the multiplicity. We also

note that the question what exactly to store in the hash table (e.g. copies of the tuples, or pointers to the tuple in the buffer

pool) has been studied for a long time, see [8].
2For bag semantics, it multiplies their multiplicities.
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of attributes of the relation, and where each node is either an empty leaf node,3 or a hash map
mapping each atomic value to another node. We will call the level of a node to be the distance from
the root, i.e. the root has level 0, its children level 1, etc. The hash-trie completely represents the
relation: every root-to-leaf path corresponds precisely to one tuple in the relation. Generic Join uses
the hash-trie as follows. In order to compute 𝜎𝑥=𝑎 (𝑅), it simply probes the current hash table for the
value 𝑥 = 𝑎, and returns the corresponding child. To compute an intersection Π𝑥 (𝑅1) ∩Π𝑥 (𝑅2) ∩ · · · ,
it selects the trie with the fewest keys, say 𝑅1, then iterates over every value 𝑎 in the keys for 𝑅1
and probes it in each of the hash-maps for 𝑅2, 𝑅3, . . .; this is a provably optimal algorithm for the
intersection.

Example 2.4. Consider the query 𝑄△ and the Generic Join plan [𝑥,𝑦, 𝑧]. We first build a hash trie
each for 𝑅, 𝑆 , and 𝑇 . Each trie has three levels including the leaf. Level 0 of 𝑅 is keyed on 𝑥 , level
1 is keyed on 𝑦, level 2 contains empty leaf nodes, and similarly for 𝑆 and 𝑇 . Consider again the
pseudocode in Figure 2b. The first loop intersects level 0 of the 𝑅-trie and the𝑇 -trie. For each value
𝑎 in the intersection, we retrieve the corresponding children 𝑅 [𝑎] and 𝑇 [𝑎] respectively; these are
at level 1. The second loop intersects the hash map 𝑅 [𝑎] (at level 1) with the level 0 hash-map
of 𝑆 . For each value 𝑏 in the intersection it retrieves the corresponding children (levels 2 and 1
respectively), and, finally, the innermost loop intersects the 𝑆- and 𝑇 -hash maps (both at level 2),
and outputs (𝑎, 𝑏, 𝑐) for each 𝑐 in the intersection. So far we have assumed set semantics; if the
relations have bag semantics, then we simply multiply the tuple multiplicities on the leaves (level
3).

2.4 Binary Join v.s. Generic Join

Binary join and Generic Join each have their own advantages and disadvantages. Generic Join
became popular because of its asymptotic performance guarantee: Ngo et al. [21] proved the
algorithm is worst-case optimal for any variable order, in the sense that its run time is bounded by
the largest possible size of its output, called AGM bound [3]. For example, Generic Join executes

𝑄△ in time
√︁

|𝑅 | · |𝑆 | · |𝑇 |, which is 𝑛3/2 when all relations have size 𝑛; in contrast, a binary join
plan can take Ω(𝑛2). We note, however, that this formula does not include the preprocessing time
needed to construct the tries. For example, if𝑇 is significantly larger than 𝑅, 𝑆 , then the run time of
Generic Join is ≪ |𝑇 |, yet during preprocessing Generic Join needs to read the entire relation𝑇 . On
the other hand, binary join has been a staple of database systems for decades. The hash table data
structure is simpler than hash tries and is cheaper to build. Techniques like vectorized execution
and column-oriented layout have also made binary join practically efficient, but these optimizations
have not been adapted for Generic Join. Binary join plans are known to be very sensitive to the
choice of the optimizer: poor plans perform catastrophically bad [15]. In contrast, although the
runtime performance of Generic Join does depend on the variable order, some researchers believe
that Generic Join is less sensitive to poor variable orders, in part because it is always theoretically
optimal.

3 FREE JOIN

In this section we introduce the Free Join framework. We start by presenting the Generalized Hash
Trie (GHT) which is the data structure used in Free Join (Section 3.1). Next we introduce the Free
Join plan that specifies how to execute a query with Free Join (Section 3.2). Finally, we describe the
Free Join algorithm, which takes as input a collection of GHTs and a Free Join plan, and computes
the query according to the plan (Section 3.3).

3For bag semantics, we store in the leaf the multiplicity of the tuple.
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𝑄♣ (𝑥, 𝑎, 𝑏, 𝑐) : −𝑅(𝑥, 𝑎), 𝑆 (𝑥, 𝑏),𝑇 (𝑥, 𝑐)

𝑅 = {(𝑥0, 𝑎0)} ∪ {(𝑥1, 𝑎
𝑙
𝑖 ), (𝑥2, 𝑎

𝑟
𝑖 ) | 𝑖 ∈ [1 . . . 𝑛]}

𝑆 = {(𝑥0, 𝑏0)} ∪ {(𝑥2, 𝑏
𝑙
𝑖 ), (𝑥3, 𝑏

𝑟
𝑖 ) | 𝑖 ∈ [1 . . . 𝑛]}

𝑇 = {(𝑥0, 𝑐0)} ∪ {(𝑥3, 𝑐
𝑙
𝑖 ), (𝑥1, 𝑐

𝑟
𝑖 ) | 𝑖 ∈ [1 . . . 𝑛]}

(a)𝑄♣ and inputs.

T S

R

... ...

... ...

...x0

x1 x2

x3

anl

a1l

a2l
a1r

a2r

anr

cnlc1l c2l

cnr

c2r

c1r

bnl

b1l

b2l

b1rb2rbnr

...

a0

b0c0

(b) Visualization of the input relations.

Fig. 3. (3a) the clover query 𝑄♣, and an input instance. (3b) visualization of the instance in Fig. 3a. The solid

(top) edges form the relation R, the dashed (right) edges form the relation S, and the dotted (left) edges form

the relation T. The relations join on the attribute in the center. The only output tuple consists of the three

edges in the center.

1 interface GHT {

2 # fields

3 relation: String, vars: Vec<String>

4 # constructor

5 fn new(name: String, schema: Vec<Vec<String>>) -> Self

6 # methods

7 fn iter() -> Iterator<Tuple>

8 fn get(key: Tuple) -> Option<GHT> }

Fig. 4. The GHT interface.

We will show how each of the above components generalizes and unifies the corresponding
components in binary join and Generic Join: the GHT generalizes hash tables and hash tries,
the Free Join plan generalizes binary plans and Generic Join plans, and the Free Join algorithm
generalizes binary join and Generic Join.

Throughout this section we will make use of the clover query𝑄♣ in Figure 3a. Figure 3b visualizes
the input relations for this query. Note that 𝑄♣ is acyclic.

3.1 The Generalized Hash Trie

To unify binary join and Generic Join, we first need to unify the data structures they work over.
We propose the Generalized Hash Trie which generalizes both the hash table used in binary join
and the hash trie used in Generic Join.

Definition 3.1 (Generalized Hash Trie (GHT)). A GHT is a tree where each leaf is a vector of tuples,
and each internal node is a hash map whose keys are tuples, and each key maps to a child node.

We will reuse the terminology defined for tries, including level, node, and leaf, etc., for GHTs. We
will also use the terms GHT and trie interchangeably when the context is clear. The schema of a
GHT is the list [𝒚0,𝒚1, . . . ,𝒚ℓ ] where 𝒚𝑘 are the attribute names of the key at level 𝑘 .
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x0 x2 x3

b0 b1
l bn

l b1
r bn

r

... ...

... ...

x0 x2 x3

b0 b1
l bn

l b1
r bn

r... ...

Fig. 5. Two GHTs. The one on the left is also a hash trie, and the one on the right is similar to a hash table.

Each box with solid border stores hash keys, and each box with dashed border is a vector of tuples. An empty

box is an empty vector, representing a leaf.

The hash trie used in Generic Join is a GHT where each key is a tuple of size one, and the last
level stores empty vectors, each of which represents a leaf. The hash table used in binary join is
very similar to a GHT with only two levels, where level 0 stores the keys and level 1 stores vectors
of tuples. A small difference is that, in the GHT, the concatenation of a tuple from level 0 with a
tuple from level 1 forms a tuple in the relation, whereas each whole tuple is stored directly in a
hash table. We will show in Section 4.2 how the COLT data structure more faithfully captures the
structure of a hash table. Figure 5 shows two examples of GHTs.

We use GHTs to represent relations, and attach metadata as well as access methods to each GHT,
to be used by the Free Join algorithm. The GHT interface is shown in Figure 4. The relation field
stores the relation name. A sub-trie inherits its name from its parent. The vars field stores parts of
the relation’s schema: if the trie is a vector of tuples, vars is the schema of each tuple; if the trie
is a map, vars is the schema of each key. The constructor method new creates a new GHT from
the named relation, where an 𝑛-th level trie has variables matching the 𝑛-th element of the schema

argument, and the values along each path from the root to a leaf of the GHT form a tuple in the
relation.

Example 3.2. Both GHTs in Figure 5 represent relation 𝑆 from the clover query 𝑄♣ in Figure 3a.
TheGHT on the left (a hash trie) was created by calling the constructor method newwith the schema
[[x],[b],[]], so the top-level trie has the schema [x], each second-level trie has the schema [b],
and each third-level trie (a leaf) has the empty schema []. The GHT on the right (a hash table)
was created by calling new with the schema [[x],[b]]. It has only two levels, with schema [x] and
[b], respectively. Note that each 𝑏 value in the hash trie is hashed and stored as a key, while the 𝑏
values in the hash table are simply stored in vectors.

The methods iter and get provide access to values stored in the trie. If the trie is a map, get(key)
returns the sub-trie mapped to key, if any. Calling get on a vector returns None. If the trie is a vector,
iter() returns an iterator over the tuples in the vector; calling iter on a map returns an iterator
over the keys.

Example 3.3. On the second GHT in Figure 5, calling iter returns an iterator over the values
[𝑥0, 𝑥2, 𝑥3]. Calling get with the key 𝑥2 returns the sub-trie which is the vector [𝑏𝑙

1
, . . . , 𝑏𝑙𝑛]. Calling

iter on this sub-trie returns an iterator over [𝑏𝑙
1
, . . . , 𝑏𝑙𝑛].

3.2 The Free Join plan

A Free Join plan specifies how the Free Join algorithm should be executed. It generalizes and unifies
binary join plans and Generic Join plans. Recall that a left-deep linear plan for binary join is a
sequence of relations; it need not specify the join attributes, since all shared attributes are joined.
In contrast, a Generic Join plan is a sequence of variables; it need not specify the relations, since all
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relations on each variable are joined. A Free Join plan may join on any number of variables and
relations at each step, and therefore needs to specify both explicitly.

To help define the Free Join plan, we introduce two new concepts, called subatom and partitioning.
Fix the query 𝑄 in Eq. (1):

Definition 3.4. A subatom of an atom 𝑅𝑖 (𝒙𝑖 ) is an expression 𝑅𝑖 (𝒚) where 𝒚 is a subset of the
variables 𝒙𝑖 . A partitioning of the atom 𝑅𝑖 (𝒙𝑖 ) is a set of subatoms 𝑅𝑖 (𝒚1), 𝑅𝑖 (𝒚2), . . . such that
𝒚1,𝒚2, . . . are a partition of 𝒙𝑖 .

We now define the Free Join plan using these concepts.

Definition 3.5 (Free Join Plan). Fix a conjunctive query 𝑄 . A Free Join plan is a list [𝜙1, . . . , 𝜙𝑚],
where each 𝜙𝑘 is a list of subatoms of𝑄 , called a node. The nodes are required to partition the query,
in the sense that, for every atom 𝑅𝑖 (𝒙𝑖 ) in the query, the set of all its subatoms occurring in all
nodes must form a partitioning of 𝑅𝑖 (𝒙𝑖 ). We denote by 𝑣𝑠 (𝜙𝑘 ) the set of variables in all subatoms
of 𝜙𝑘 . The variables available to 𝜙𝑘 are all variables of the preceding nodes:

𝑎𝑣𝑠 (𝜙𝑘 ) =
⋃

𝑗<𝑘

𝑣𝑠 (𝜙 𝑗 )

We will define shortly a valid plan, but first we show an example.

Example 3.6. The following is an Free Join plan for 𝑄♣:

[[𝑅(𝑥, 𝑎), 𝑆 (𝑥)], [𝑆 (𝑏),𝑇 (𝑥)], [𝑇 (𝑐)]] (2)

To execute the first node we iterate over each tuple (𝑥, 𝑎) in 𝑅 and use 𝑥 to probe into 𝑆 ; for each
successful probe we execute the second node: we iterate over each 𝑏 in 𝑆 [𝑥], then use 𝑥 to probe
into 𝑇 ; finally the third node iterates over 𝑐 in 𝑇 [𝑥]. The reader may notice that this corresponds
precisely to the left-deep plan (𝑅(𝑥, 𝑎) Z 𝑆 (𝑥, 𝑏)) Z 𝑇 (𝑥, 𝑐). Another Free Join plan for 𝑄♣ is:

[[𝑅(𝑥), 𝑆 (𝑥),𝑇 (𝑥)], [𝑅(𝑎)], [𝑆 (𝑏)], [𝑇 (𝑐)]] (3)

This plan corresponds to the Generic Join plan [𝑥, 𝑎, 𝑏, 𝑐]. Intuitively, here we start by intersecting
𝑅.𝑥 ∩ 𝑆.𝑥 ∩𝑇 .𝑥 , then, for each 𝑥 in the intersection, we retrieve the values of 𝑎, 𝑏, and 𝑐 from 𝑅, 𝑆 ,
and 𝑇 , and output their Cartesian product.

Not all Free Join plans are valid, and only valid plans can be executed. We execute each Free Join

node by iterating over one relation in that node, and probe into the others. Therefore, the values
used in each probe must be available, either from the same node or a previous one.

Definition 3.7. A Free Join plan is valid if for every node 𝜙𝑘 the following two properties hold.
(a) No two subatoms share the same relation, and (b) there is a subatom containing all variables in
𝑣𝑠 (𝜙𝑘 ) − 𝑎𝑣𝑠 (𝜙𝑘 ). We call such an subatom a cover for 𝜙𝑘 , and write 𝑐𝑜𝑣𝑒𝑟 (𝜙𝑘 ) for the set of covers.

We will assume only valid plans in the rest of the paper. To simplify the presentation, in this
section we assume that each node Φ𝑘 , has one subatom designated as cover, and will always list it
as the first subatom in Φ𝑘 . We will revisit this assumption in Sec. 4, and allow for multiple covers.

Example 3.8. Both plans in Example 3.6 are valid. The covers for the 3 nodes for Eq. (2) are 𝑅(𝑥, 𝑎),
𝑆 (𝑏), and𝑇 (𝑐), respectively. For the plan in Eq. (3), the covers for the 4 nodes are𝑅(𝑥), 𝑅(𝑎), 𝑆 (𝑏),𝑇 (𝑐);
for the first node we could have also chosen 𝑆 (𝑥) or 𝑇 (𝑥) as cover.

Example 3.9. An example of an invalid plan for the clover query has one single node containing
all relations and variables:

[[𝑅(𝑥, 𝑎), 𝑆 (𝑥, 𝑏),𝑇 (𝑥, 𝑐)]]

Intuitively, we cannot execute it: if we iterate over, say 𝑅, then we bind two variables 𝑥 and 𝑎, but
to lookup 𝑆 we need the key (𝑥, 𝑏).
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1 fn join(all_tries, plan, tuple):

2 if plan == []:

3 output(tuple)

4 else:

5 tries = [ t ∈ all_tries | t.relation ∈ plan[0] ]

6 # iterate over the cover

7 @outer for t in tries[0].iter():

8 subtries = [ iter_r.get(t) ]

9 tup = tuple + t

10 # probe into other tries

11 for trie in tries[1..]:

12 key = tup[trie.vars]

13 subtrie = trie.get(key)

14 if subtrie == None: continue @outer

15 subtries.push(subtrie)

16 new_tries = all_tries[tries ↦→ subtries]

17 join(new_tries, plan[1:], tup)

Fig. 6. The Free Join algorithm.

3.3 Execution of the Free Join Plan

The execution of a Free Join plan has two phases: the build phase and the join phase. The build
phase constructs the GHTs for the relations in the query, by calling the constructor method new on
each relation with the appropriate schema. The join phase works over the GHTs to compute the
join of the relations.

Build Phase. The build phase constructs a GHT for each relation (atom) 𝑅𝑖 (𝒙𝑖 ), as follows. If the
plan partitions the atom into the subatoms 𝑅𝑖 (𝒚0), 𝑅𝑖 (𝒚1), . . . , 𝑅𝑖 (𝒚ℓ−1), then the schema of its GHT

is the list [𝒚0,𝒚1, . . . ,𝒚ℓ−1, []]. Recall that the last level of a GHT is a vector instead of a hash map.
As an optimization, if the last subatom 𝑅𝑖 (𝒚ℓ−1) is the cover of its node, then we drop the last []
from the schema, in other words, we construct a vector for the 𝒚ℓ−1. After computing the schema
for each relation, we call the constructor method new on each relation and its computed schema to
build the GHTs.

Example 3.10. Consider the plan in Eq. (2) for the clover query 𝑄♣. The GHT schemas for 𝑅,
𝑆 , and 𝑇 are [[𝑥, 𝑎]], [[𝑥], [𝑏]], and [[𝑥], [𝑐]] respectively. Thus, 𝑅 is a flat vector of tuples, and
each of 𝑆 and 𝑇 is a hash map of vectors of values. Consider now the triangle query 𝑄△ and the
plan [[𝑅(𝑥,𝑦), 𝑆 (𝑦),𝑇 (𝑥)], [𝑆 (𝑧),𝑇 (𝑧)]]. The GHT schemas for 𝑅, 𝑆,𝑇 are [[𝑥,𝑦]], [[𝑦], [𝑧]], and
[[𝑥], [𝑧], []]: in other words 𝑅 is stored as a vector, 𝑆 is a hash-map of vectors, and𝑇 is a hash-map
of hash-maps of vectors.

Join Phase. The pseudo-code for the Free Join algorithm is shown in Figure 6. The join method
takes as input the GHTs, the Free Join plan, and the current tuple initialized to be empty. If the
plan is empty, we output the tuple (line 3). Otherwise, we work on the first node in the plan and
intersect relevant tries (line 5). We iterate over tuples in the covering relation, which is the first trie
in the node (line 7). Then, we use values from t and the tuple argument as keys to probe into the
other tries (line 8-15). To construct a key for a certain trie, we find the values mapped from the
trie’s schema variables in t and tuple (line 12). If any probe fails, we continue to the next tuple in
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1 R = GHT("R",[["x","a"]])

2 S = GHT("S",[["x"],["b"]])

3 T = GHT("T",[["x"],["c"]])

4 for (x, a) in R:

5 s = S[x]?

6 for b in s:

7 t = T[x]?

8 for c in t:

9 output(x, a, b, c)

(a) Binary Free Join.

1 # same as the left

2 # ...

3 # ...

4 for (x, a) in R:

5 s = S[x]?

6 t = T[x]?

7 for b in s:

8 for c in t:

9 output(x, a, b, c)

(b) Factorized Free Join.

1 R = GHT("R",[["x"],["a"]])

2 # same as the left

3 # ...

4 for x in R:

5 r=R[x]?; s=S[x]?; t=T[x]?

6 for a in r:

7 for b in s:

8 for c in t:

9 output(x, a, b, c)

(c) Generic Free Join.

Fig. 7. Execution of Free Join for the clover query.

the outer loop. If all probes succeed, we replace the original tries with the subtries returned by the
probes, and recursively call join on the new tries and the rest of the plan (line 16-17).

The recursive definition may obscure the essence of the Free Join algorithm, so we provide some
examples where we unroll the recursion. We introduce some convenient syntax to simplify the
presentation. We write for (x,y,...) in T: to introduce a for-loop iterating over T, binding the
values of each tuple in T.iter() to the variables x,y,.... We write r = R[t]? to bind the result of
R.get(t) to r; if the lookup fails, we continue to the next iteration of the enclosing loop. In other
words, r = R[t]? is equivalent to:

1 r = R.get(t); if r.is_none(): continue

Example 3.11. Consider the plan in Eq. (2) for the clover query𝑄♣. Figure 7a shows its execution;
ignore the underlined instruction for now. In the build phase, we construct a flat vector for 𝑅 and
a hash table for each of 𝑆 and 𝑇 . In the join phase, for the node [𝑅(𝑥, 𝑎), 𝑆 (𝑥)] we iterate over 𝑅
and probe into 𝑆 , while for the second node [𝑆 (𝑏),𝑇 (𝑥)], we iterate over the second level of 𝑆 and
probe into 𝑇 . Finally, the third loop iterates over the second level of 𝑇 and outputs the result.

Example 3.12. Consider now the plan in Eq. (3) for 𝑄♣. Its execution is shown in Figure 7c. We
construct hash tables for 𝑅, 𝑆 , and 𝑇 , keyed on 𝑥 . The first loop level intersects the three relations
on 𝑥 , and subsequent loop levels take the Cartesian product of the relations on 𝑎, 𝑏, and 𝑐 .

Note that Fig. 7a follows the execution of binary hash join with the plan [𝑅, 𝑆,𝑇 ], whereas Fig. 7c
follows the execution of Generic Join with the plan [𝑥, 𝑎, 𝑏, 𝑐]. We will describe Fig. 7b later.

3.4 Discussion

Free Join plans generalize both traditional binary plans and Generic Join. One limitation so far
is our assumption that the cover is chosen during the build phase. This was convenient for us to
illustrate how to avoid constructing some hash maps, by storing the last level of a GHT as vector,
when it corresponds to a cover. In contrast, Generic Join computes the intersection 𝑅1.𝑥 ∩𝑅2.𝑥 ∩ · · ·

by iterating over the smallest set, hence it chooses the łcoverž at run time. We will address this in
the next section by describing COLT, a data structure that constructs the GHT lazily, at run time,
allowing us to choose the cover during the join phase.

4 OPTIMIZING THE FREE JOIN PLAN

In the previous section we have introduced Free Join plans and their associated data structures, the
GHTs. We have seen that a Free Join plan is capable of covering the entire design space in Fig. 1,
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1 fn binary2fj(bin_plan):

2 fj_plan = []; r = bin_plan[0]

3 𝜙0 = [ r(r.schema) ]; 𝜙 = 𝜙0 # iterate over left relation

4 for s in bin_plan[1:]:

5 𝜙.push(s(s.schema ∩ 𝑎𝑣𝑠 (𝜙))) # probe w/ available vars

6 fj_plan.push(𝜙)

7 𝜙 = [ s(s.schema - 𝑎𝑣𝑠 (𝜙)) ] # iterate over probe result

8 fj_plan.push(𝜙)

9 return fj_plan

Fig. 8. Translating a binary plans to a Free Join plan.

from traditional join plans to Generic Join. In this section we describe how to build, optimize, and
speedup the execution of a Free Join plan. We start from a conventional binary plan produced by a
query optimizer, and convert it into an optimized Free Join plan (Section 4.1). Next, we introduce
the COLT data structure to greatly reduce the cost of building the hash tries (Section 4.2). We
present a simple vectorized execution algorithm for Free Join (Section 4.3), and finally, we discuss
how Free Join relates to Generic Join (Section 4.4).

4.1 Building and Optimizing a Free Join Plan

Our system starts from an optimized binary plan produced by a traditional cost-based optimizer; in
particular, we use DuckDB’s optimizer [24, 25]. We decompose a bushy plan into a set of left-deep
plans, as described in Sec. 2, then convert each left-deep plan into an equivalent Free Join plan.
Finally, we optimize the converted Free Join plan, resulting in a plan that can be anywhere between
a left-deep plan or a Generic Join plan.
The conversion from a binary plan to an equivalent Free Join plan is done by the function

binary2fj in Figure 8. We begin by adding the full atom of the left relation as the first subatom in
the first Free Join plan node. Then we iterate over the remaining relations in the binary join plan.
For each relation, we add a subatom whose variables are the intersection of the relation’s schema
with the available variables at the current Free Join plan node. Then we create a new join node,
adding to it the relation with the remaining variables.

Example 4.1. The binary plan [𝑅, 𝑆,𝑇 ] for the clover query 𝑄♣ is converted into the Free Join
plan shown in Eq. (2). For another example, consider a chain query:

𝑄 :- 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢),𝑊 (𝑢, 𝑣).

The left-deep plan [𝑅, 𝑆,𝑇 ,𝑊 ] is converted into:

[[𝑅(𝑥,𝑦), 𝑆 (𝑦)], [𝑆 (𝑧),𝑇 (𝑧)], [𝑇 (𝑢),𝑊 (𝑢)], [𝑊 (𝑣)]]

So far the algorithm in Figure 8 produces a Free Join plan that is equivalent to the left-deep plan.
Next, we optimize the Free Join plan. The main idea behind our optimization is to bring the query
plan closer to Generic Join, without sacrificing the benefits of binary join.

For intuition, let us revisit the clover query𝑄♣, and its execution depicted in Fig. 7a (as explained
in Example 3.11). Consider the input shown in Fig. 3b. Both relations 𝑅 and 𝑆 are skewed on the
value 𝑥2, and their join will produce 𝑛2 tuples, namely {(𝑥2, 𝑎𝑖 , 𝑏 𝑗 ) | 𝑖, 𝑗 ∈ [1..𝑛]}. This means the
body of the second loop in Figure 7a is executed 𝑛2 times. However, the 𝑛2 tuples are only to be
discarded by the join with 𝑇 which does not contain 𝑥2.
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1 fn factor(plan):

2 @outer: for i in [1..n-1].reverse():

3 𝜙 = plan[i]; 𝜙 ′ = plan[i-1]

4 for 𝛼 in 𝜙:

5 if 𝛼.vars ⊆ 𝑎𝑣𝑠 (𝜙) ∧ 𝛼.relation ∉ 𝜙 ′ :

6 𝜙.remove(𝛼); 𝜙 ′.push(𝛼)

7 else: continue @outer

Fig. 9. Factorizing a Free Join plan.

There is a simple fix to the inefficiency: we can pull the underlined lookup on 𝑇 in Figure 7a out
of the loop over 𝑠 to filter out redundant tuples early. This results in the nested loops in Figure 7b
which runs in 𝑂 (𝑛) time, because the two lookups in the first loop already filter the result to a
single tuple. At the logical level, we convert the first Free Join plan into the second Free Join plan:

Naive plan (Eq. (2)): [[𝑅(𝑥, 𝑎), 𝑆 (𝑥)], [𝑆 (𝑏),𝑇 (𝑥)], [𝑇 (𝑐)]]

Optimized plan: [[𝑅(𝑥, 𝑎), 𝑆 (𝑥),𝑇 (𝑥)], [𝑆 (𝑏)], [𝑇 (𝑐)]]

While this is closer to the Generic Join in Figure 7c, it differs in that it still uses the same GHTs
built for original plan, without the need for an additional hash table for 𝑅.
More generally, we will optimize a Free Join plan by factoring out lookups, i.e. by moving a

subatom from a node Φ𝑖 to the node Φ𝑖−1. In doing so we must ensure that the plan is still valid, and
also avoid accidental slowdowns. For example, we cannot factor the lookups on 𝑆 and 𝑇 beyond
the outermost loop, because that loop binds the variable 𝑥 used in the lookups.
The optimization algorithm for Free Join plans is shown in Figure 9. We traverse the plan in

reverse order visiting each node. For each node, if there is an atom whose variables are all available
before that node, and if the previous node does not contain an atom of the same relation, we move
the atom to the previous node. These two checks ensure the factored plan remains valid. The last
line in the algorithm ensures we factor lookups conservatively. That is, we factor out a lookup
only if all previous lookups in the same node have also been factored out. Doing so respects the
lookup ordering given by the original cost-based optimizer, since scrambling this ordering may
inadvertently slow down the query. It should be clear that, except for extreme cases where the
enclosing loop is empty, factoring out any lookup will always improve performance.

4.2 COLT: Column-Oriented Lazy Trie

The original Generic Join algorithm builds a hash trie for each input relation. A left-deep plan
avoids building a hash table on the left most relation, since it only needs to iterate over it, and this
is an important optimization, since the left most relation is often the largest one. Building a subtrie
can also be wasteful when that subtrie’s parent is pruned away by an earlier join, in which case the
subtrie will never be used. To address that, we describe here how to build the tries lazily: we only
build the trie for a (sub-)relation at runtime, if and when we need to perform a lookup, or need to
iterate over a prefix of its tuples. This idea leads to our new data structure called Column-Oriented
Lazy Trie, or COLT for short. In our system the raw data is stored column-wise, in main memory,
and each column is stored as a vector, as standard in column-oriented databases [1].

Definition 4.2. A COLT is a tree where each leaf is a vector of offsets into the base relation, and
each internal node is a hash map mapping a tuple to a child node.
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x0 x2 x3

b0 off1 offn offn+1 off2n... ...

Fig. 10. A COLT for the relation 𝑆 in Fig. 3a. Each off𝑖 is an integer representing an offset into the table 𝑆 .

1 struct COLT {

2 relation, schema, vars,

3 data = Map(HashMap<Tuple, COLT>) | Vec<Vec<u64>> }

4

5 impl GHT for COLT:

6 fn new(relation, schema):

7 COLT { relation, schema, schema[0],

8 data = [ 0, 1, ..., relation.len - 1 ] }

9

10 fn iter():

11 match self.data:

12 Map(m) => m.keys().iter(),

13 Vec(v) =>

14 if is_suffix(self.vars, relation.schema):

15 v.map(|i| cols = self.relation[self.vars];

16 cols.map(|c| c[i]) )

17 else: self.force(); self.iter()

18

19 fn get(key): self.force(); self.get_map.get(key)

20

21 fn force():

22 match self.data:

23 Map(m) => {} # already forced, do nothing

24 Vec(v) =>

25 map = new()

26 for i in v:

27 cols = self.relation[self.vars]

28 k = cols.map(|col| col[i])

29 if map[k] is None: # make a new, empty COLT

30 map[k] = COLT { relation: self.relation,

31 schema: self.schema[1..],

32 data: [] }

33 map[k].data.push(i)

34 self.data = Map(map)

Fig. 11. The COLT data structure.

A COLT tree need not be balanced, and there can be both hash maps and vectors at the same
tree level. Fig. 10 illustrates a COLT tree for the instance 𝑆 of the clover query 𝑄♣.
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COLT Implements theGHT interface in Figure 4, and its implementation is shown in Figure 11. As
before, COLT stores a reference to the relation it represents, as well as the GHT schema computed
from the plan. Consider a relation with 𝑛 tuples. The COLT tree is initialized with a single node
consisting of the vector [0, . . . , 𝑛 − 1], i.e. one offset to each tuple. COLT implements the get and
iter methods lazily. When get is called, we check if the current node is a hash map or a vector.
In the first case, we simply perform a lookup in the map. In the second case, we first replace the
current vector with a hash map, whose children are vectors of offsets. Notice that this requires
iterating over the current vector of offsets, accessing the tuple in the base table, inserting the key
in the hash map, and inserting the offset in the corresponding child. Consider now a call to iter. If
the current node is a hash map, then we return an iterator over it. If it is a vector, then we check if
it is a suffix of the relation schema: if yes, then we simply iterate over that vector (and access the
tuples via their offsets), otherwise we first materialize the current hash map as explained above,
and return an iterator over the hash map.
As a simple but effective optimization, we do not initialize the COLT tree to the single node

[0, 1, . . . , 𝑛 − 1], but instead iterate directly over the base table, if required. If no get is performed
on this table, then we have completely eliminated the cost of building any auxiliary structure on
this table. Thus, the Free Join plan can be equivalent to a left-deep plan that avoids building a hash
table on the left-most relation. COLT is also closer to the structure of traditional hash tables, which,
in some implementations, map a key to a vector of pointers to tuples.

Example 4.3. Consider an extension of the clover query 𝑄♣:

𝑄 (𝑥, 𝑎, 𝑏, 𝑐) :- 𝑅(𝑥, 𝑎), 𝑆 (𝑥, 𝑏),𝑇 (𝑥, 𝑐),𝑈 (𝑏).

Generic Join builds a 2-level hash trie for each of 𝑅, 𝑆 , and 𝑇 , as well as a 1-level hash trie for 𝑈 .
Consider the Free Join plan [[𝑅(𝑥, 𝑎), 𝑆 (𝑥),𝑇 (𝑥)], [𝑈 (𝑏), 𝑆 (𝑏)], [𝑇 (𝑐)]]. Free Join executes the first
node of the plan by iterating over 𝑅 directly, without constructing any auxiliary structure. For
each tuple (𝑥, 𝑎) in 𝑅, it looks up 𝑥 in 𝑆 and 𝑇 . Upon the first lookup, COLT builds the first level of
the GHT for 𝑆 and 𝑇 , i.e. a hash map indexed by the 𝑥 values. Assuming the database instance for
𝑅, 𝑆,𝑇 shown in Fig. 3a, the result of 𝑅.𝑥 ∩ 𝑆.𝑥 ∩𝑇 .𝑥 has only one value, 𝑥0, thus, Free Join executes
the second node for only one value 𝑥0. Here it needs to intersect 𝑈 (𝑏) and 𝑆 (𝑏). Assume for the
moment that Free Join chooses𝑈 (𝑏) to be the cover, on the first lookup in 𝑆 , COLT will expand the
second level, arriving at Figure 10: notice that all other 𝑏 values in 𝑆 will never be inserted in the
hash table. More realistically, Free Join follows the principle in Generic Join and chooses 𝑆 (𝑏) as
cover, because it is the smallest: it builds a hash map for𝑈 , but none for the 2nd level of 𝑆 .

The example highlights a divergence between Generic Join and traditional plans. To intersect
𝑅1 .𝑥 ∩ 𝑅2.𝑥 ∩ . . ., Generic Join choose to iterate over the smallest relation, which results in the best
runtime ignoring the build time. A traditional join plan will iterate over the largest relation, because
then it needs to build hash tables only on the smaller relations. Currently, we follow Generic Join,
and plan to explore alternatives in the future.

4.3 Vectorized Execution

The Free Join algorithm as presented in Figure 6 suffers from poor temporal locality. In the body of
the outer loop, we probe into the same set of relations for each tuple. However, these probes are
interrupted by the recursive call at the end, which is itself a loop interrupted by further recursive
calls.
A simple way to improve locality is to perform a batch of probes before recursing, just like the

classic vectorized execution for binary join. Concretely, we replace the iter method with a new
method iter_batch(batch_size) which returns up to batch_size tuples at a time. If there are less
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1 @outer for ts in tries[0].iter_batch(batch_size):

2 tup_subtries = [(tuple + t, [ tries[0].get(t) ]) | t ∈ ts]

3 for trie in tries[1..]:

4 for (tup, subtries) in tup_subtries:

5 subtrie = trie.lookup(tup[trie.vars])

6 if subtrie is None:

7 tup_subtries.remove((tup, subtries))

8 else: subtries.append(subtrie)

9 for (tup, subtries) in tup_subtries:

10 new_tries = all_tries[tries ↦→ subtries]

11 join(new_tries, plan[1:], tup)

Fig. 12. Vectorized execution for Free Join.

than batch_size tuples left, it returns all the remaining tuples. Then we replace the outer loop in
Figure 6 with the one in Figure 12. For each batch of tuples, we create a vector pairing each tuple
to its subtrie in tries[0]. Then for each trie to be probed, we iterate over the vector and look up
each tuple from the trie. If the lookup succeeds, we append the subtrie to the vector of tries paired
with the tuple. If it fails, we remove the tuple to avoid probing it again. Finally, with each tuple and
the subtries it pairs with, we recursively call join.

4.4 Discussion

COLT is a lazy data structure, sharing a similar goal with database cracking [10, 11], where an index
is constructed incrementally, by performing a little work during each lookup. Another connection
is to Factorized Databases [22] ś we intentionally used the term łfactorž when describing how we
optimize Free Join plans to suggest this connection. Concretely, we can view the trie data structure
as a factorized representation of a relation, where keys of the same hash map are combined with
union, and tuples are formed by taking the product of values at different levels. Practically, we
can use this factorized representation to compress large outputs, saving time and space during
materialization.

As we discussed at the end of Section 3, in order match the optimality of Generic Join, the Free
Join algorithm needs to choose dynamically the łcoverž, i.e. the relation over which to iterate. To
achieve this, we first find all covers for each node, then make a simple change to the Free Join
algorithm in Figure 6: we simply choose to iterate over the cover whose trie has the fewest keys.
For that we insert the following code right before the outer loop in Figure 6:

1 trie[0] = covers(plan[0]).min_by(|t| t.keys().len)

2 trie[1..] = # the rest of the tries

When we use COLTs, we cannot know the exact number of keys in a vector unless we force it into
a hash map. In that case we use the length of the vector as an estimate.

Example 4.4. Consider the triangle query 𝑄△ , and the following Free Join plan:

[[𝑅(𝑥),𝑇 (𝑥)], [𝑅(𝑦), 𝑆 (𝑦)], [𝑆 (𝑧),𝑇 (𝑧)]]

Each subatom is a cover of its own node. On the outermost loop, we iterate over 𝑅 if it has fewer
𝑥 values, and otherwise we iterate over 𝑇 . On the second loop level we make a decision picking
between 𝑆 and a subtrie of 𝑅, for each subtrie of 𝑅. Finally, on the innermost loop we pick between
the subtries of 𝑆 and 𝑇 .
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5 EXPERIMENTS

We implemented Free Join as a standalone Rust library. The main entry point of the library is a
function that takes a binary join plan (produced and optimized by DuckDB), and a set of input
relations. The system converts the binary plan to a Free Join plan, optimizes it, then runs it using
COLT and vectorized execution. We compare Free Join against two baselines: our own Generic

Join implementation in Rust, and the binary hash join implemented in the state-of-art in-memory
database DuckDB [24, 25]. We evaluate their performance on the popular Join Order Benchmark
(JOB) [15] and the LSQB benchmark [16]. In addition, we compare against Kùzu [6], a system that
implements Generic Join. Kùzu is the current iteration of the Graphflow system [17]. We ask three
research questions:

(1) How does Free Join compare to binary and Generic Join, on acyclic and cyclic queries?
(2) What is the impact of COLT and vectorization on Free Join?
(3) How sensitive is Free Join to the query optimizer’s quality?

5.1 Setup

While we had easy access to optimized join plans produced by DuckDB, we did not find any system
that produces optimized Generic Join plans, or can take an optimized plan as input. We therefore
implement a Generic Join baseline ourselves, by modifying Free Join to fully construct all tries, and
removing vectorization. We chose as variable order for Generic Join the same as for Free Join.4

Both the JOB and the LSQB benchmarks focus on joins. JOB contains 113 acyclic queries with an
average of 8 joins per query, whereas LSQB contains both cyclic and acyclic queries. Each query
in the benchmarks only contains base-table filters, natural joins, and a simple group-by at the
end, and no null values. JOB works over real-world data from the IMDB dataset, and LSQB uses
synthetic data. We exclude 5 queries from JOB that return empty results, since such empty queries
are known to introduce reproducibility issues5. We use the first 5 queries from LSQB; the other 4
queries require anti-joins or outer joins which we do not support.
We ran all our experiments on a MacBook Air laptop with Apple M1 chip and 16GB memory.

All systems are configured to run single-threaded in main memory, and we leave all of DuckDB’s
configurations to be the default. All systems are given the same binary plan optimzed by DuckDB.
To answer our third research question, we needed to hijack DuckDB’s optimizer to produce a poor
plan. We did this by modifying its cardinality estimator to always return 1. Since we are only
interested in the performance of the join algorithm, we exclude the time spent in selection and
aggregation when reporting performance. This excluded time takes up on average less than 1% of
the total execution time.

5.2 Run time comparison

Our first set of experiments compare the performance of Free Join, Generic Join, and binary join on
the JOB and LSQB benchmarks. For each query in the benchmarks, we invoke DuckDB to obtain
an optimized binary plan, and provide the plan to our Free Join and Generic Join implementation.
We run LSQB with the scaling factors 0.1, 0.3, 1, and 3, as some queries run out of memory with
larger scaling factors.

Figure 13 compares the run time of Free Join and Generic Join against binary join on JOB queries.
We see that almost all data points for Free Join are below the diagonal, indicating that Free Join is
faster than binary join. On the other hand, the data points for Generic Join are largely above the
diagonal, indicating that Generic Join is slower than both binary join and Free Join. On average

4Free Join defines only a partial order; we extended it to a total order.
5See GitHub issue: https://github.com/gregrahn/join-order-benchmark/issues/11
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Finally, we have made several observations during this project, some of them quite surprising
(to us), which we believe deserve a future study. We observed that a major bottleneck is the
materialization of intermediate results in bushy plans; an improved materialization algorithm may
speed up Free Join on bushy plans. One promising idea is to be more aggressively lazy and keep
COLTs unexpanded during materialization, which essentially leads to a factorized representation
of the intermediates. We also observed that, contrary to common belief, a cyclic query does not
necessarily meanWCOJ algorithms are faster, and an acyclic query does not mean they are slow. A
natural question is thus łwhen exactly are WCOJ algorithms faster than binary join?ž Answering
this question will also help us design a better optimizer for Free Join. The optimizer can output
a plan closer toWCOJ when it expects major speedups. We note that the query optimizer by [7]
switches between Generic Join and binary join depending on the estimated cardinality. In contrast,
an optimizer for Free Join should smoothly transform a Free Join plan to fully explore the design
space between the two extremes of binary join and Generic Join. Finally, we realized that, rather
surprisingly, Generic Join and traditional joins diverge in their choice of the inner table (called the
cover in our paper): Generic Join requires that to be the smallest (otherwise it is not optimal), while
a traditional plan will chose it to be the largest (to save the cost of computing its hash table). Future
work is required for a better informed decision for the choice of the inner relation.
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