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Abstract—Modern IEEE 802.11 (Wi-Fi) networks extensively
rely on multiple-input multiple-output (MIMO) to significantly
improve throughput. To correctly beamform MIMO transmis-
sions, the access point needs to frequently acquire a beam-
forming matrix (BM) from each connected station. However,
the size of the matrix grows with the number of antennas
and subcarriers, resulting in an increasing amount of airtime
overhead and computational load at the station. Conventional
approaches come with either excessive computational load or
loss of beamforming precision. For this reason, we propose
SplitBeam, a new framework where we train a split deep neural
network (DNN) to directly output the BM given the channel state
information (CSI) matrix as input. The DNN is designed with an
additional “bottleneck” layer to “split” the original DNN into a
head model and a tail model, respectively executed by the station
and the access point. The head model generates a compressed
representation of the BM, which is then used by the AP to
produce the BM using the tail model. We formulate and solve
a bottleneck optimization problem (BOP) to keep computation,
airtime overhead, and bit error rate (BER) below application
requirements. We perform extensive experimental CSI collection
with off-the-shelf Wi-Fi devices in two distinct environments
and compare the performance of SplitBeam with the standard
IEEE 802.11 algorithm for BM feedback and the state-of-the-
art DNN-based approach LB-SciFi. Our experimental results
show that SplitBeam reduces the beamforming feedback size and
computational complexity by respectively up to 81% and 84%
while maintaining BER within about 10�3 of existing approaches.
We also implement the SplitBeam DNNs on FPGA hardware to
estimate the end-to-end BM reporting delay, and show that the
latter is less than 10 milliseconds in the most complex scenario,
which is the target channel sounding frequency in realistic multi-
user MIMO scenarios. To allow full reproducibility, we will
release our code and datasets to the community.

Index Terms—Split Computing, MIMO, IEEE 802.11, Wi-Fi,
Beamforming, Experiments.

I. INTRODUCTION

Today, Wi-Fi networks are used to connect hundreds of
millions of people worldwide. Wi-Fi is so ubiquitous that
cellular operators are expected to offload 63% of their traffic
to Wi-Fi by 2022 [1]. To attest to the need for higher data
rates, the IEEE is currently standardizing 802.11be (Wi-Fi 7),
which will support throughput of up to 46 Gbps through wider
signal bandwidths and the usage of multi-user multiple-input
and multiple-output (MU-MIMO) techniques [2]. MU-MIMO
will become fundamental also to effectively decongest the
unlicensed spectrum bands through spatial reuse, which are in-
creasingly saturated [3]. To correctly beamform transmissions,
MU-MIMO requires access points (APs) to periodically collect
channel state information (CSI) from each connected station

(STA) to beamform the transmissions [4], [5]. According to the
IEEE 802.11 standard [6], the beamforming feedback (BF) is
constructed by (i) measuring the CSI through pilot signals and
(ii) computing the BF through singular value decomposition
(SVD). Then, the BF is decomposed into Givens rotation
(GR) angles that produce the beamforming matrix (BM), as
explained in Section III-A.

A key challenge in MIMO systems is that the size of the
BF grows with the number of subcarriers, transmitting and
receiving antennas. For example, in an 8 ⇥ 8 network at 160
MHz of bandwidth, the BF in 802.11 will be of size (486
subcarriers ⇥ 56 angles/subcarrier ⇥ 16 bits/angle =) 435,456
bits ' 54.43 kB, if the maximum angle resolution is used. If
BFs are sent back every 10 ms as suggested in [7], the airtime
overhead is 435,456 / 0.01 ' 43.55 Mbit/s. Moreover, the BF
computation imposes a significant burden on the STAs, which
may become intolerable for low-power devices. Specifically,
the complexity of SVD and GR are O((4NtN2

r + 22N3
t ) · S)

and O(N3
t N

3
r S), where Nt, Nr and S denote the number

of transmitting and receiving antennas and subcarriers [8].
Since Wi-Fi 7 will support more spatial streams (up to 16)
and bandwidth (up to 320 MHz), a thorough revision of how
MIMO is performed in Wi-Fi is quintessential to keep the
complexity under control.
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Fig. 1: High-level overview of the operations in SplitBeam.

Existing approaches to reduce MIMO complexity – dis-
cussed in details in Section II – come with excessive com-
putation overhead and/or performance loss, with most of
them not being compliant to the IEEE 802.11 standard [9]–
[20]. In this paper, we take a different approach and present
SplitBeam, an IEEE 802.11 standard-compliant framework
leveraging split computing to drastically decrease both com-
putational load and BF size while maintaining reasonable
beamforming accuracy. Figure 1 shows a high-level overview



of SplitBeam. We first train a deep neural network (DNN)
model to map the estimated CSI matrix to the BF in a
supervised manner. Second, we “split” the DNN into a head
and a tail model, respectively executed by the STAs and
by the AP. The head model is custom-trained to produce a
compressed representation of the BF through the introduction
of a “bottleneck” inside the model, thus reducing BF airtime
and STA computational load.

The key advantage of our approach is that the complexity of
the head model and the BF representation size can be adjusted
by modifying the bottleneck placement and size. Indeed, the
bottleneck can trade off computational load, feedback size and
beamforming accuracy, which was not available in previous
approaches. This is crucial for constrained Wi-Fi devices
and systems, which will cater to heterogeneous devices with
different processing capacities [2].

This paper makes the following novel contributions:
• We propose SplitBeam, a novel framework for BF

compression and STA computation reduction in MU-MIMO
Wi-Fi networks. We perform a complexity analysis in Section
IV-E and show that on average, SplitBeam successfully
reduces the STA computational load and the BF size by
respectively 92% and 91% when compared to the standardized
802.11 algorithm;
• We formulate a bottleneck optimization problem (BOP)

to determine the bottleneck placement and size with the
goal of minimizing airtime and computation overhead, while
ensuring that the bit error rate (BER) and end-to-end delay are
below the application’s desired level (Section IV-B). Given its
complexity, we introduce a heuristic algorithm and propose a
customized training procedure for the resulting DNN;
• We leverage off-the-shelf Wi-Fi equipment to collect CSI

data in two different propagation environments, and compare
the performance of SplitBeam with IEEE 802.11ac/ax CSI
feedback algorithm [4], [5] (henceforth called 802.11 for
brevity) and the state-of-the-art DNN-based compression tech-
nique, LB-SciFi [20]. Experimental results in Section VI show
that the computational load and feedback size are reduced by
up to 84% and 81% with respect to 802.11. Also, with the
same compression rate, the computational load is reduced by
up to 89% compared to LB-SciFi;
• We have synthesized SplitBeam in field-programmable

gate array (FPGA) hardware by using a customized library
to show the feasibility of SplitBeam in real-world Wi-Fi
systems. Our experimental results show that the maximum
end-to-end latency incurred by SplitBeam is less than 7
milliseconds (ms) in the case of 4 ⇥ 4 MIMO operating at
160 MHz and lowest compression rate, which is well below
the suggested threshold of 10ms in MU-MIMO Wi-Fi systems
[7]. We pledge to release our code and our 230 GB dataset
to the community for full reproducibility.

II. BACKGROUND AND RELATED WORK

In this section, we discuss prior work and highlight the
novelty of this paper. We summarize CSI compression methods

and data-driven feedback techniques in Section 2.1 and 2.2.
CSI collection methodologies and current MU-MIMO CSI
datasets are discussed in Section 2.3.

2.1: Traditional CSI Feedback Compression. Existing ap-
proaches can be categorized into (i) statistical approaches, (ii)
compressive sensing (CS), and (iii) polar decomposition (PD)
methods. The former methods leverage channel statistics to re-
duce the reporting frequency [9]–[12]. As a consequence, their
performance deteriorates in dynamic channel environments.
Conversely, CS takes advantage of the sparsity of the channel
response to compress the CSI. However, indoor channels might
not be as sparse due to the presence of multiple reflectors.
Moreover, many widely-used CS techniques such as BM3D-
AMP [13] and OMP-US [14] experience slow convergence
time. PD leverages the fact that the BF matrix is unitary.
Thus, approaches such as Givens rotations (GR) can reduce the
feedback size. However, computing and compressing the BF
imposes an additional computational load. Subcarrier group-
ing, wide-band precoding [15] and reducing the number of
feedback bits [6] can be used to decrease complexity, which
come at the detriment of beamforming accuracy.

2.2: Data-Driven CSI Compression. Deep learning (DL)
has been used for single-user MIMO (SU-MIMO) CSI com-
pression [16]–[19]. For instance, CS-ReNet [17], CsiNet
[18], DeepCMC [19] have used convolutional neural net-
work (CNN) and long short-term memory (LSTM) to extract
the location of the significant time-domain channel taps by
exploiting channel redundancy. However, the above work
mostly assumes low-mobility, single-user, and outdoor Long-
Term Evolution (LTE) scenarios, where channels responses
are highly redundant and sparse due to the limited mobility
and few local scatters at the base station (BS). In addition,
conversely from SU-MIMO, inaccuracy in the beamforming
will lead to inter-user interference (IUI) in MU-MIMO, which
reduces the signal-to-interference-plus-noise ratio (SINR) sig-
nificantly. Therefore, the CSI must be of higher resolution
and more frequently updated. LB-SciFi [20] is the first deep
learning (DL)-based work that investigated BF compression of
an indoor wireless LAN (WLAN) network through adopting a
autoencoder (AE)-based DNN. LB-SciFi model is composed
of an encoder and a decoder. This model requires STAs to (i)
compute the BF through SVD, (ii) decompose the BF into  
and � angles using GR, and (iii) compress the angles using
the encoder. At the AP, the received codes are decompressed
using the decoder, and further inverse GR must be applied to
recover the BF. Thus, the LB-SciFi’s encoder compounds the
complexity of SVD and GR operations, which may exclude
resource constraint devices. In addition, since the AE is trained
for 20 MHz channels with 56 subcarriers, the growth rate
of the encoder’s complexity with respect to the number of
subcarriers is unknown. Conversely, in this work, we focus on
reducing the computational load, as well as feedback airtime
while maintaining the BER at an acceptable level. In Section
VI, we show that while SplitBeam achieves the same level
of feedback compression as LB-SciFi, it reduces the STAs’

2



computational load up to 89%.
2.3: CSI Collection and Datasets Availability. To the best
of our knowledge, only a few Wi-Fi CSI datasets are publicly
available, with the majority based on simulation data [17]–
[19]. Authors in [20] collected MU-MIMO CSI dataset for
training and evaluating the LB-SciFi. However, the experiment
is limited to 20 MHz and the dataset is not publicly available.
Although most commercial Wi-Fi chipsets can potentially
generate CSI data, few manufacturers make this data available
to developers and researchers, especially for modern chipsets
such as 802.11ac/ax. Recently, the Nexmon firmware patch
has been released, allowing the extraction of CSI from specific
Broadcom/Cypress Wi-Fi chipsets [21]. To address the lack of
large-scale MU-MIMO wireless dataset, for the first time, we
collect a large-scale dataset containing multi-user (up to 3)
multi-antenna (up to 3) fine-grained (up to 242 subcarriers)
CSI data from multiple environments with different propaga-
tion characteristics using off-the-shelf Wi-Fi routers, which we
will release to the community.

III. PROBLEM STATEMENT AND CHALLENGES

In this section, we detail the BF acquisition procedure in
WLAN 802.11 systems. Then, we discuss the challenges of
applying such a technique to next-generation Wi-Fi systems.

A. System Model and Preliminaries
In this section, we briefly introduce some terminology. We

will adopt the following notation for mathematical expres-
sions. We use boldface uppercase letters to denote matrices.
We use the superscripts T and † to denote the transpose and the
complex conjugate transpose (i.e., the Hermitian). We define
with \C the matrix containing the phases of the complex-
valued matrix C. Moreover, diag(c1, . . . , cj) indicates the di-
agonal matrix with elements (c1, . . . , cj) on the main diagonal.
The (c1, c2) entry of matrix C is defined by [C]c1,c2 , while
Ic refers to an identity matrix of size c ⇥ c and Ic⇥d is a
c⇥ d generalized identity matrix. The notations R and C will
indicate the set of real and complex numbers, respectively.

… …

…
…

Fig. 2: Overview of a Wi-Fi MU-MIMO System.

1) WLAN MU-MIMO System Model: We consider a MU-
MIMO system with an AP as the beamformer, and a set
I of Ns STA devices as beamformees. The configuration
of the MU-MIMO system is shown in Figure 2, where Nt

antennas are located at the AP and Nr,i antennas are at each
client. Nss,i is the number of spatial streams for STA i.
Let Xi(s) 2 CNss,i⇥1 represent the transmitted data symbol

vector for user i over subcarrier s 2 S , where S is the
set of S orthogonal frequency-division multiplexing (OFDM)
subcarriers. Each data symbol vector is beamformed through
a beamforming matrix (BM) denoted by Wi(s) 2 CNt⇥Nss,i .
By defining the fading channel from the AP to STA i as
Hi(s) 2 CNr,i⇥Nt , the received signal at STA i is

Yi =

r
⇢

Nt

0

@HiWiXi +
X

j2I\i

HiWjXj

1

A+Ni, (1)

where ⇢ denotes the signal-to-noise-ratio (SNR) and is as-
sumed equal for all users. Ni is the complex additive white
Gaussian noise (AGWN) for STA i as CN (0, 1). To simplify
notation, (1) is given in terms of the frequency domain for
a single subcarrier and subcarrier index (s) is omitted. We
assume the number of transmit antennas is set to be the sum
total of all the used spatial streams, Nt =

P
i2I

Nss,i. The
first term in (1) denotes the desired signal and the second term
is the inter-user interference, which can be eliminated thanks to
the beamforming. Ideally, HiWj = 0 when i 6= j. Therefore,
the received signal can be reduced to Yi =

p
⇢/NtHiWiXi.

2) Computing the Beamforming Matrix: In MU-MIMO
Wi-Fi systems, the beamforming matrix W with dimension
Nt⇥

PNs

i=1 Nss,i⇥S is calculated using a multi-user channel
sounding mechanism, shown in Figure 3. The procedure
contains three main steps:

NDP
(AP)

…
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Fig. 3: Multi-user channel sounding procedure in IEEE 802.11.

(1) The AP begins the process by transmitting a null data
packet (NDP) announcement frame, used to gain control of
the channel and identify the STAs. The AP follows the NDP
announcement frame with a NDP for each spatial stream;

(2) Upon reception of the NDP, each STA i analyzes the
NDP training fields – for example, VHT-LTF (Very High
Throughput Legacy Training Field) in 802.11ac – and esti-
mates the channel matrix Hi(s) for all subcarriers s, which is
then decomposed by using SVD:

Hi(s) = Ui(s) · Si(s) · Zi(s)
† (2)

where Ui(s) 2 CNr,i⇥Nr,i and Zi(s) 2 CNt⇥Nt are uni-
tary matrices, while the singular values are collected in the
Nr,i ⇥ Nt diagonal matrix Si(s). With this notation, the
complex-valued BM Vi(s) is defined by collecting the first
Nss,i columns of Zi(s). To simplify the notation, we will now
drop the i subscript and refer to a generic receiver. To reduce
the channel overhead, V(s) is converted into polar coordinates
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as detailed in Algorithm 1. The output is matrices Ds,t and
Gs,`,t, defined as

Ds,t =

2

6666664

It�1 0 . . . 0
0 ej�s,t,t 0 . . . ...
...

0
. . . 0

... 0 ej�s,Nt�1,t 0
0 . . . 0 1

3

7777775
, (3)

Gs,`,t =

2

66664

It�1 0 . . . 0
0 cos s,`,t 0 sin s,`,t ......

0 I`�t�1 0
� sin s,`,t 0 cos s,`,t 0

0 . . . 0 INr�`

3

77775
,

(4)
that allow rewriting V(s) as V(s) = Ṽ(s) · D̃(s), with

Ṽ(s) =

min(Nss,Nt�1)Y

t=1

 
Ds,t

NtY

l=t+1

G
T
s,l,t

!
· INt⇥Nss , (5)

In the Ṽ(s) matrix, the last row – i.e., the feedback for the Nt-
th transmitting antenna – consists of non-negative real numbers
by construction. Using this transformation, the STA is only
required to transmit the � and  angles to the AP. Moreover,
it has been proved (see [6], Chapter 13) that the beamforming
performance is equivalent when using V(s) or Ṽ(s). Thus,
the feedback for D̃k is not fed back to the AP.

Algorithm 1: V(s) decomposition
Require: V(s);
D̃(s) = diag(ej\[V(s)]Nt,1 , . . . , ej\[V(s)]Nt,Nss ) ;
⌦(s) = V(s) · D̃(s)†;
for t 1 to min(Nss, Nt � 1) do

�s,`,t = \ [⌦(s)]`,t with ` = t, . . . , Nt � 1;
compute Ds,t through Equation (3);
⌦(s) D

†

s,t ·⌦(s);
for ` t+ 1 to Nt do

 s,`,t = arccos

✓
[⌦(s)]t,tp

[⌦(s)]2t,t+[⌦(s)]2`,t

◆
;

compute Gs,`,t through Equation (4);
⌦(s) Gs,`,t ·⌦(s);

(3) The AP transmits a beamforming report poll (BRP)
frame to retrieve the angles from each STA. The angles are fur-
ther quantized using b� 2 {7, 9} bits for � and b = b��2 bits
for  , to further reduce the channel occupancy. The quantized
values – q� = {0, . . . , 2b� � 1} and q = {0, . . . , 2b � 1} –
are packed into a compressed beamforming frame (CBF). Each
contains A number of angles for each of the S OFDM sub-
channels for a total of S ·A angles each. For example, a 16⇥16
system with 320 MHz channels requires 256 complex elements
for each of the 996 subcarriers. The 802.11 standard requires
8 bits for each real and imaginary component of the CBF,
which results in 510 kB.

B. Challenges of 802.11 Beamforming Procedure
The size of the beamforming feedback (BF) grows as Nt⇥PNs

i=1 Nss,i ⇥ S. This implies the following drawbacks:
• Feedback airtime increases with the number of STAs, as

each STA sends its BF separately. Moreover, the number of
decomposed angles and ultimately the size of the BF depends
on the number of antennas, and grows linearly with channel
bandwidth, as discussed in Section IV-E2;
• Computing and compressing the through SVD and GR

operations imposes a significant computational load on beam-
formees, as discussed in detail in Section IV-E1. This may
impact resource-limited devices;
• GR angle decomposition and BF reconstruction introduce

an additional error. This deteriorates the performance of the
multi-user transmission, especially in scenarios with small
inter-user separation where successful data recovery depends
highly on accurate beamforming;
• The computational load at the STA and the feedback

size cannot be modified according to application- and device-
specific constraints. As next-generation Wi-Fi caters to het-
erogeneous devices and a wide range of performance require-
ments, it is critical to achieve this functionality.

IV. THE SPLITBEAM FRAMEWORK

In this section, we elaborate on the SplitBeam frame-
work. First, the system model and design challenges are
outlined in Section IV-A. Next, the BOP is formulated and
the heuristic solution is detailed in Sections IV-B and IV-C.
Finally, the SplitBeam model implementation and the cus-
tomized training procedure are explained in Section IV-D.

A. The SplitBeam DNN
SplitBeam trains a DNN that maps the CSI matrix Hi

to the BF Vi in a supervised manner. To compress the BF
and transfer the STAs computational load to the AP (with
higher computational capacity), we introduce a “bottleneck
layer” in the DNN as shown in Figure 4. The bottleneck
is an intermediate representation in the DNN model which
is (K < 1 times) smaller than the model input Hi. The
bottleneck divides the DNN into a head and a tail network,
which are respectively executed on the STA and the AP.

An overview of SplitBeam is shown in Figure 5, where
(1) the estimated CSI matrices at STAs are fed to the head
model (2) that is tasked to produce a compressed representa-
tion of the BF denoted by V

0

i (3). The compressed BF is sent
to the AP over the air (4), where it is fed to the tail model (5)
to reconstruct the BF and generate the beamforming matrix(6).

Remarks. The placement and size of the bottleneck ulti-
mately determine the head network architecture, and thus (i)
the STA computational load, (ii) the BF feedback size, and (iii)
the beamforming accuracy. Indeed, there is a trade-off between
the complexity of the head model, the BF compression rate,
and the accuracy of inference. While placing the bottleneck
early on with a low number of nodes reduces the STA
computation load and airtime overhead, it leads to a decrease
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Fig. 4: Head and tail networks in SplitBeam. Notice that we dropped the
index i in the mathematical notation for simplicity.

Fig. 5: SplitBeam beamforming feedback procedure.

in beamforming accuracy, which ultimately increases the BER.
Therefore, the bottleneck placement and size must be adjusted
according to the application-specific requirements.

B. Bottleneck Optimization Problem (BOP)

We model the original DNN as a function M that maps the
channel matrix Hi 2 CNr⇥Nt⇥S to the BF Vi 2 CNr⇥Nt⇥S

as M(H;✓) : CH ! CV, thorough L-layer transformations:

rj = Fj(rj�1,✓j) 0  j  L,

where Fj(rj�1,✓j) is the mapping carried out by the j-th
layer and j = 0 denotes the input layer. The vector ✓ =
{✓1, . . . ,✓L} defines the set of parameters of the DNN. To
devise the bottleneck, we use an encoder-decoder like structure
where the first e layers of the DNN is the encoder and the rest
of the layers are the decoder. The encoder, called the head
model H, is placed from the input layer to the bottleneck
B. Next, the tail model T decompresses the encoded BF to
construct the BF Vi. The modified model can be written as

M(H;✓) =

8
<

:

H = Fj(rj�1,✓j), 0  j < e,
B = Fe(re�1,✓e), j = e,
T = Fj(rj�1,✓j), e+ 1  j  L.

(6)

Let LH

i (e,N) be the STA i overhead consists of three
components: (i) the computational cost (i.e., the power con-
sumption and memory required for executing the model), de-
noted by Lc

i (e,N); (ii) the execution time for BF compression
through the head model, denoted by TH

i (e,N); and (iii) the

power consumption of transmitting the compressed BF to the
AP, denoted by Ltx

i (e,N). Also, TA
i (e,N) represents the

compressed BF feedback airtime. Finally, T T (e,N) denotes
the time required for reconstructing the BF at the AP. Notice
that compression, decompression and airtime overhead depend
on the placement e and size of the bottleneck N .

We define the BOP such that it minimizes the STA compu-
tation overhead and feedback airtime as

min
e,N

X

i2I

�
µH

i LH

i (e,N) + (1� µH

i ) · TA
i (e,N)

�
(7a)

s. t. 0 < µH

i < 1, i 2 I (7b)
BERi  �, i 2 I (7c)
max
i2I

(TH

i (e,N) + TA
i (e,N)) + T T (e,N) < ⌧, (7d)

where µH

i parameterizes the importance of reducing the STAs
overhead versus the feedback airtime. In applications where
STAs are resource-constrained, it is crucial to reduce the
STAs load, i.e., µH

i > µA
i . On the other hand, in dynamic

propagation environments like crowded rooms, where the
channel coherence time is short, high feedback airtime cannot
be tolerated. Thus, reducing the feedback airtime must be
prioritized, i.e., µH

i < µA
i . BERi represents the bit error rate

(BER) of client i. In this work, we measure the accuracy of
the generated BF at the AP in terms of achievable BER by the
STAs. BER is the number of erroneous bits divided by the total
number of transferred bits. Condition (7c) guarantees that the
BER experienced by each client does not exceed the maximum
BER threshold �. Condition (7d) indicates that the maximum
end-to-end delay of BF cannot exceed the maximum tolerable
delay denoted by ⌧ . In practice, these two conditions ensure
that the bottleneck placement does not significantly impact the
inference accuracy and latency. The maximum tolerable BER
and delay can be specified according to the requirements.
C. Heuristic Procedure for Solving the BOP

The BOP is a particular instance of the extremely complex
neural architecture search (NAS) problem [22], [23]. Thus, we
devise a heuristic algorithm to search for proper SplitBeam
hyperparameters that is specific to our context. Specifically, to
limit the search space, we take the following procedure:

1) With the primary goal of minimizing the clients’ compu-
tational load LH

i , we place the bottleneck layer immedi-
ately after the input layer (i.e., e = 1);

2) To reduce the inference time at the AP, TH, we consider
only one layer for the tail network (i.e., L = 2). Thus,
the resulting DNN is a 3-layer network comprising input,
bottleneck and output layers;

3) We adjust the size of the bottleneck layer according
to the QoS requirements. Specifically, we consider a
limited number of compression levels K = V

0
i/Hi, and

consider the BER as our QoS metric. We start from the
highest level of compression (lowest number of bottle-
neck nodes), and train the 3-layer DNN with the CSI
and corresponding V matrices dataset according to the
customized procedure in Section IV-D. Once trained, the

5



generated BM by the DNN is used to estimate the BER
at the STA by comparing the recovered and transmitted
data bits, as explained in Section 5.2.1.

4) If the desired BER cannot be achieved, the compression
level is decreased. The new model is trained according
to step (3) until the model is capable of meeting the
BER constraint. If the compression level is the minimum,
another layer is inserted after the bottleneck (L = L+1),
and the algorithm goes back to step 3.

Section VI shows that the heuristic algorithm simplifies
the search while maintaining acceptable performance.
D. SplitBeam Model Training

Since H and V are complex matrices, we decouple real
and complex components in the matrices and treat them
as double-sized real matrices. For each of our datasets, we
split a dataset into training, validation, and test splits with
8:1:1 ratio. SplitBeam is trained offline for various network
configurations and does not require retraining. The STAs select
the proper trained DNN according to the network configuration
information acquired from the NDP preamble.

1) Loss Function: Our goal is to deploy exactly the same
model for each STA without fine-tuning its parameters to its
environment. Notice that the training process is done offline
(i.e., on a single computer). Given a channel matrix Hi, our
DNN model M estimates the corresponding BF Vi, i.e., Vi =
M(Hi,✓). We formulate the loss function L as follows

L =
1

b

bX

j=1

NsX

i=1

⇣
M(Hj

i ,✓)�V
j
i

⌘2

���Vj
i

���
1

, (8)

where b indicates training batch size and k · k1 represents L1-
norm. H

j
i and V

j
i indicate the j-th channel matrix and BF

for STA i, respectively. By minimizing the loss in (8), we
optimize the parameters ✓ of our DNN model M. We use
stochastic gradient descent (SGD) and Adam [24] to train
the synthetic and experimental datasets, respectively. Unless
specified, we train models for 40 epochs, using the training
split in the dataset with batch size of 16 and the initial learning
rate of 10�3. The learning rate is decreased by a factor of 10
after the end of 20th and 30th epochs. Using the validation
split in the dataset, we assess the model in terms of achieved
BER at the end of every epoch and save the best parameters
✓⇤ such that achieve the lowest BER for the validation split.
The trained model is assessed with the best parameters for the
held-out test split in the dataset and report the test BER.

2) Difference with Autoencoders: Although an AE is sim-
ilar in terms of model architecture, its training objective
is different. AEs are trained to reconstruct its input in an
unsupervised manner (e.g., to estimate V̂i given Vi) as done in
[20]. Conversely, we train a task-specific model in a supervised
fashion to estimate BF Vi given a channel matrix Hi.

E. Complexity Analysis and Compression Rate
1) Computational Overhead: The complexity of the

SVD operation for decomposing the BF V in 802.11 is

O((4NtN2
r + 22N3

t )S), according to [8]. The BF is further
transformed into a set of angles using the Givens rota-
tion (GR) matrix multiplication which has a complexity of
O(N3

t N
3
r S) [6]. Conversely, the complexity of SplitBeam

is O(KN2
t N

2
r S

2), where K < 1 denotes the head model’s
compression level.
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Fig. 6: The ratio of the computational load using SplitBeam to 802.11 with
Nss,i = 1 and various compression levels K and channel widths.

Figure 6 shows the ratio of the number of floating-point
operations (FLOP) required for compressing the BF using
SplitBeam to 802.11 compression technique. The ratio is
calculated by X/Y ⇥ 100 where X and Y denote the number
of floating points operation in SplitBeam and legacy Wi-
Fi protocol, respectively. The comparison is performed for
different MU-MIMO orders and a various number of subcar-
riers, as computed through a MATLAB program. We can see
that SplitBeam noticeably reduces the computational load
of STA, especially as the number of antennas and/or STAs
increases. At 80 MHz, SplitBeam with K = 1/8 decreases
75% and 87% of the STA’s load in 4⇥ 4 and 8⇥ 8 systems.
On average, SplitBeam improves computation by 73%.
We show in Section VI that SplitBeam with K = 1/8
keeps the BER within 87% of 802.11.

2) Airtime Overhead: In 802.11, the size of the compressed
BF report is BMR = 8⇥Nt+Na⇥S⇥(b�+b )/2 where Na

denotes the number of Givens angles [6]. Notice that b� and
b are the number of bits required for the angle quantization
[7]. Therefore, the 802.11 compression ratio can be written as

CR =
BMR

S ⇥Nt ⇥Nr ⇥ b
, (9)

where b = 16 is the number of bits required for transmitting
channel information over each subcarrier. Conversely, the
compression rate of SplitBeam is K. Notice that it is
constant and does not grow with the size of the channel matrix.

Figure 7 depicts the impact of SplitBeam in reducing
the airtime overhead. The bars show the ratio of the size of
the compressed BF of SplitBeam to the angle decomposi-
tion technique in 802.11. SplitBeam has a significant im-
pact at higher-order MU-MIMO configurations. For example,

6



SplitBeam reduces the size of the feedback overhead by
91% and 93% in 4 ⇥ 4 and 8 ⇥ 8 configurations with 80
MHz channel. On average, SplitBeam reduces the airtime
overhead by 75% with respect to 802.11.
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Fig. 7: The ratio of the size of BF using SplitBeam to 802.11 with Nss,i =
1 and various compression levels K and channel widths.

V. EXPERIMENTAL EVALUATION

We first introduce the experimental MU-MIMO CSI ex-
traction method along with the measurement campaigns for
building the datasets in Section V-A. Next, we detail organi-
zation of the dataset, the training and testing procedure of the
SplitBeam using the collected datasets in Section V-B.
A. Experimental Setup

We designed our testbed with commercially-available off-
the-shelf Wi-Fi devices to collect real-world datasets. As
explained in Section IV-D, training the SplitBeam requires
downlink CSI that is measured at the STA side, in addition
to the corresponding BF. The measurements are carried over
different network configurations to verify the performance of
SplitBeam as the number of subcarriers and antennas and
STAs increases. We consider different propagation environ-
ments to test how SplitBeam generalizes.
5.1.1: CSI Extraction. In commercial Wi-Fi chipsets, CSI
data is estimated through pilot symbols. Being computed at
the physical layer (PHY), CSI is not accessible by the end-
user through normal network interface cards (NICs). Thus,
we have used Nexmon CSI [21], the state-of-the-art CSI
extraction tool to collect CSI measurements using Asus RT-
AC86U 802.11ac Wi-Fi routers as STAs. The extraction tool
is compatible with the very-high-throughput (VHT) mode,
defined by IEEE 802.11ac, working with bandwidth up to
80 MHz. Each CSI sample results in complex-valued channel
information per subcarrier for each transmit-receive antennas
pair. A Netgear R7800 Wi-Fi router with a Qualcomm Atheros
chipset is used as AP. An example of the experimental setup
realization is shown in Figure 8(b). In a real-world scenario,
SplitBeam relies on already existing channel estimations at
the STAs. However, since the Nexmon tool is configured for
reading CSI samples only on data packets, we established a

AP

Environment 1 (E1)

Environment 2 (E2)

C
C

AP Access Point (AP)

Client (C)

Location of stations

AP

C

AP

C

AP
2x2

STA1

STA2

STA3
STA2

STA1 AP
3x3

(b) (c)

(a)

STA1 STA2
STA3

Fig. 8: Experimental setup for MU-MIMO CSI data collection: (a) different
environments; (b) network elements; (c) network configurations.

Wi-Fi link between the AP and another Netgear R7800 Wi-Fi
router (as the client) to generate the data packets that provides
the ASUS STAs the opportunity to extract CSI.

B. Data Collection and Model Training

Packets are transmitted with a rate of 1000 packets/second
through Nt antennas with a fixed modulation and coding
scheme. Thus, a new CSI is generated every T = 10�3 s.
To evaluate the capability of SplitBeam in generalizing
to different environments, we performed CSI measurements
in two environments E1 and E2. We carefully picked the
environment with exclusive furniture arrangements, size, and
construction material to ensure that the target environments
are mutually exclusive from the source environment in terms
of propagation characteristics. Specifically, E1 has fewer
reflectors and human traffic, while E2 is furnished with more
furniture (multipath) and is imposed to higher human traffic.
Figure 8(a) displays the positions of the AP and STAs in
the different environments. To capture the impact of inter-
user distance on CSI data, the STAs are placed in different
distances from each other (15-60 cm). Also, users are located
at different distances from the AP (0.5-6 m). The green dots
in Figure 8(a) depicts the location of points where STAs are
located for data collection.

5.2.1: Datasets. We consider 2⇥2 and 3⇥3 scenarios, where
the AP with Nt = 2, 3 antennas simultaneously serves two and
three STAs. The network configurations are shown in Figure
8(c), where each STA device supports one spatial stream, i.e.,
Nss,i = 1 for i 2 I. Moreover, the Nexmon tool enabled
us to collect 802.11ac channel measurements at 5 GHz with
20, 40 and 80 MHz bandwidth over |S| = 56, |S| = 114
and |S| = 242 subcarriers, to assess the performance of the
SplitBeam at higher channel bandwidth. The measurements
are repeated several times with a time interval of at least
4 hours in between measurements. To capture the impact
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of human blockage and reflection, the datasets are collected
during working and non-working days. We collected 10,000
CSI samples per configuration, channel width and environ-
ment. In total, 12 datasets with 120,000 data samples were
extracted to train, evaluate and test the SplitBeam. Tables I
shows the list of collected experimental datasets. We pledge
to release, along with the code, the collected dataset for
full reproducibility.

Config.
Type BW (MHz) Env. 2⇥ 2 3⇥ 3 4⇥ 4

E1 D1 D2 -20
E2 D3 D4 -
E1 D5 D6 -40
E2 D7 D8 -
E1 D9 D10 -

Real

80
E2 D11 D12 -

Synth. 160 MATLAB D13 D14 D15

TABLE I: Datasets collected during our data collection campaign.

We have used the MATLAB WLAN toolbox to generate a
dataset at 160 MHz. This is because our experimental setup did
not allow us to collect CSI at 160 MHz and with 4⇥4 MIMO.
We have used wlanTGacChannel function that filters an input
signal through an 802.11ac multipath fading channel. The
multi-user channel consists of independent single-user MIMO
channels between the AP and spatially separated stations.
Each user estimates its own channel using the received NDP
signal and computes the CSI. The delay profile “Model-B” has
been considered which respectively consists of 9 channel taps
and 2 channel clusters. Dataset D13-D15 each contain 10,000
data points. To remove noise and unwanted amplification, the
CSI elements are normalized by the mean amplitude over all
subcarriers. In addition, to remove the noise a n-point moving
median window with n = 10 is used to smooth out the
noisy data. In addition, we noticed that in some instances,
CSI packets are dropped by some STAs. Therefore, using the
packets sequence number, the data collected from different
devices are aligned to ensure that each CSI element collected
over different STAs represents the same time and frequency
domain channel measurements for seamless beamforming.

5.2.2: BER Computation. A key issue is that BER extremely
depends on noise and fading levels, which makes it challeng-
ing to isolate the BER caused by the DNN compression. For
this reason, and the sake of repeatability, we have used a
MATLAB-based program to compute the BER corresponding
to a given DNN compression. We have set the total number of
transmit antennas to the sum of all the used spatial streams, so
that no space-time block coding (STBC) or spatial expansion is
needed at the AP. Moreover, no channel coding is considered,
unless otherwise specified. The BER measurement procedure
for each collected CSI data point j is as follows: (1) we
randomly generate bits modulated with 16-QAM that are used
as payload to generate Ns standard-compliant 802.11 frames
F

j = [Fj
1 · · ·F

j
Ns

] for Ns receiving STA each served with one
spatial stream. Denoting the j-th CSI value collected from
the i-th STA as H

j
i , (2) we run the SplitBeam trained

head and tail models Mi for each user to compute the

V
j
i values corresponding to the H

j
i inputs; (3) we compute

H
j
EQ = [Vj

1, · · · ,V
j
Ns

] as described in Section III-A2; (4) we
use zero-forcing (ZF) beamforming to calculate W

j as

W
j = H

j
EQ · (Hj†

EQ ·Hj
EQ)

�1.

(5) The received packets are generated as Yj = H
j
i W

j
i F

j
i +

Ni, where Ni is Gaussian white noise. Finally, (6) the packets
are demodulated, and the recovered bits are compared with the
transmitted bits to calculate the BER.
5.2.3: Model Training and Testing. For each CSI mea-
surement dataset in Table I the corresponding BF dataset is
generated using SVD. Next, SplitBeam is trained to map the
CSI measurement to BF in a supervised manner, as detailed
in Section IV-D. We used K = 1/32, 1/16, 1/8, and 1/4 as
compression levels. A model is trained for each scenario, by
using 80% and 10% of each dataset for training and validation.
We designed two testing procedures: (i) single-environment
test, where the trained model is tested on the remaining 10%
of its dataset; (ii) cross-environment test, where the model is
tested on its counterpart dataset from the other environment.
For example, let M1 be the model that is trained with D1

which is a 2 ⇥ 2 dataset collected in E1 at 20 MHz channel
width. The model M1 is tested on: (i) D1 test-split that was
held out during the training; (ii) D3 which is the dataset with
the same configuration and channel width in E2.

VI. EXPERIMENTAL RESULTS

We first compare the compression rate of SplitBeam with
respect to 802.11 and state-of-the-art LB-SciFi [20] in Section
VI-A. LB-SciFi uses an autoencoder (AE) to compress the
angles generated by the 802.11 BF compression algorithm.
Finally, we evaluate the SplitBeam generalization and effi-
ciency results in Section VI-B.

A. Comparison with 802.11 and LB-SciFi
Figure 9 depicts the trade-off between BF compression rate

(K = V
0/H) and the incurred BER with respect to 802.11.

It can be seen that as the compression rate decreases and the
BF gets more compressed, the BER increases. However, we
observe that the size of the feedback is much higher in 802.11.
It can be seen that the SplitBeam with a compression rate of
K = 1

8 achieves a BER close to – in some instances lower than
– the legacy Wi-Fi protocol while its size of BF is respectively
4 and 5 times smaller in 2⇥ 2 and 3⇥ 3 configurations.

Figure 10 shows achievable BER and computational load,
in terms of number of floating point operations (FLOP), for
160 MHz Wi-Fi transmissions (datasets D13 – D15). For these
results, we used binary convolutional coding (BCC) with a
code rate of 1/2. SplitBeam achieves BER close to legacy
802.11 standard and LB-SciFi, which is the desired level.
However, both 802.11 and LB-SciFi require SVD and GR
operations that impose high computational load on clients to
achieve this performance. Figure 10 shows that SplitBeam
reduces the computational load by 65% and 45% with
respect to 802.11 and LB-SciFi as it directly compresses the
CSI matrix. When SplitBeam is combined with channel
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0
/H): SplitBeam
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Notice that in IEEE 802.11 K ' 1/2 and 2/3 in 2⇥2 and 3⇥3 configurations
as the compression rate depends on network parameters as Equation (9).

coding, the BER is reduced significantly. Moreover, higher
MU-MIMO orders are more sensitive to BM estimation error.
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Figure 11 compares the achievable BER of the SplitBeam
with 802.11 protocol as a function of computational load. We
observe that SplitBeam maintains the BER of the STA close
to the 802.11 protocol while imposing a considerably lower
computational load on the users. Specifically, SplitBeam
decreases the computation load by 70% with respect to
802.11 while maintaining the same BER value of 0.02.
We notice that the improvement given by SplitBeam is
more prominent when the number of antennas increases.
For instance, SplitBeam with K = 1

8 decreases STAs’
computational load respectively by 52% and 68% for 2 ⇥ 2
and 3⇥ 3 MU-MIMO.

B. Model Generalization and Efficiency

Figure 12 shows the BER and computational complexity
for 3 ⇥ 3 MU-MIMO configuration with 80 MHz channel
bandwidth in different environments. In the cross-environment
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Fig. 11: BER as a function of computational STAs computational load:
SplitBeam vs 802.11; for 2⇥ 2 and 3⇥ 3 MU-MIMO configurations.

setting E1/E2 (E2/E1), the models are trained and val-
idated with the data collected from E1 (E2) and tested
with the data from E2 (E1). Although LB-SciFi achieves
the same level of compression and BER as SplitBeam
(slightly lower in some cases), its computational load on STAs
is much higher than SplitBeam. Specifically, on average,
SplitBeam improves the computational load by 78%
with respect to LB-SciFi, while maintaining similar BER.
This is since our approach compresses the estimated channel
directly thus offloading devices’ overhead significantly. Figure
13 further depicts the capability of SplitBeam to generalize
to untrained environments. We observe that in most cases, the
cross-environment test has a performance close to the single-
environment test. Interestingly, we observe that the BER is
usually lower when models are trained in E2 and tested in
E1. This is because E2 has a more complex propagation
profile than E1, i.e., more reflectors and presence of people.
Thus, E2-trained models are more comprehensive and thus
generalizing better.
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Fig. 12: BER and computational load for SplitBeam vs LB-SciFi; single-
and cross-environment test for 3⇥3 MU-MIMO with 80 MHz channel widths.
Notice that BER is shown for K = 1

8 .

Table II investigates the trade-off among the head model
complexity, the size of the BF, and BER, as a function
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configurations with compression rate of K = 1

8 . Note that X/Y indicates
that the model is trained in X and tested in Y .

of the bottleneck structure in a 2 ⇥ 2 MIMO network. We
compare the performance of the 3-layer DNN – designed and
trained using the procedure explained in IV-C – with more
complex DNNs with a higher number of hidden layers and
neurons. We notice that the BER decreases as the size of the
bottleneck and the depth of the head model increases. This
performance enhancement, however, comes to the detriment
of computational load and feedback overhead.

BW
(MHz)

Full
Model |B| BER

224-28-28-224 28 0.0342
224-896-1792-1792-896-224 1792 0.007720
224-896-896-448-448-224-224 448 0.015
456-57-57-456 57 0.0158
456-1824-3648-3648-1824-456 3648 0.005340
456-1824-1824-912-912-456-456 912 0.0083
968-121-121-968 121 0.0172
968-3872-7748-7748-3872-968 7748 0.01780
968-3872-3872-1936-1936-968-968 1936 0.0202

TABLE II: Impact of the bottleneck placement and size (|B|) on BER, size of
BF and STAs’ computational load. The head model parameters are boldfaced.
The highlighted rows are the 3-layer SplitBeam with K = 1/8.

On the other hand, increasing the model parameters does
not guarantee to improve the accuracy of the predictions.
For example, for 2 ⇥ 2 at 20 MHz, the head model with
multiply-accumulate (MAC) of 6,641,152 results in a BER
of 0.0182 while a model with MAC of 1,612,800 (75%
less computational load) has a lower BER of 0.015. This
is due to the model severely overfitting the training data.
The results demonstrate that heuristic algorithm simplifies
the search process while maintaining acceptable performance,
within about 10�3 of existing approaches.

Latency Analysis with FPGA Synthesis. While it is
sufficient to perform MIMO channel sounding once every
100ms, MU-MIMO channel sounding should be performed at
least once every 10ms to account for user mobility, according
to [7] (see page 73). This implies that keeping the end-to-
end BM computation within 10ms latency is fundamental. To

Signal Bandwidth
MIMO 20 MHz 40 MHz 80 MHz 160 MHz
2⇥ 2 0.0202ms 0.0824ms 0.3686ms 1.477ms
3⇥ 3 0.0459ms 0.1867ms 0.8337ms 3.314ms
4⇥ 4 0.0808ms 0.3298ms 1.4782ms 5.883ms

TABLE III: SplitBeam latency vs MIMO dimensions and bandwidth size.

this end, we have synthesized in FPGA the neural networks
implemented by SplitBeam. We evaluated the latency with
up to 160 MHz, which is the maximum as per the 802.11ax
standard, and with MIMO dimensionality up to 4 ⇥ 41. We
considered K = 1/4 compression rate, which results in the
lowest BER value as shown in Figure 9.

As target device, we chose a Zynq UltraScale+ XCZU9EG-
2FFVB1156, a commonly used System-on-Chip for software-
defined radios that is also supported by the OpenWiFi project
as part of the ZCU102 evaluation board [25]. We chose
5ns as clock period (200 MHz clock frequency), which is
the operating clock of the AD9361 transceiver [26] used
in OpenWiFi. We have used a customized library based on
high-level synthesis (HLS) designed by us to synthesize the
neural networks. HLS allows the conversion of a C++-level
description of the DNN directly into hardware description
language (HDL) code such as Verilog. Therefore, improved la-
tency results could be achieved with more advanced synthesis
strategies. Moreover, better latency results could be achieved
by utilizing application-specific integrated circuits (ASICs),
which however allow little room for reconfigurability.

Table III shows the results obtained through our FPGA
synthesis process described above. We notice that by doubling
the bandwidth, the latency of the design increases by about
4 times on the average, which is also true when MIMO
dimensionality is increased from 2⇥ 2 to 4⇥ 4. In the worst
case of 160 MHz and 4⇥ 4 dimensionality, the obtained end-
to-end latency is well below the desired 10ms threshold2.

VII. CONCLUDING REMARKS

We have proposed SplitBeam, a framework to simulta-
neously reduce the computational load and airtime overhead
in modern Wi-Fi networks. We have proposed a new data-
driven framework that trains a task-specific DNN to output
BF given the CSI matrix as input. The key advantage of the
SplitBeam is utilizing split DNN to insert a bottleneck
layer – which is significantly smaller than the original CSI
– that (i) enables transferring the computational load of the
STA to the AP side (where computational power is abundant);
(ii) generating a compressed representation of the BF, which
reduces the feedback airtime. We formulate and solve a
bottleneck optimization problem (BOP) to keep computation,
airtime overhead and BER below application requirements. We
have performed extensive experimental CSI collection in two

1Although 802.11ax supports MU-MIMO transmissions to up to 8 clients
simultaneously, to the best of our knowledge, all the 802.11ax APs currently
on the market support only a maximum of 4 spatial streams.

2The sounding procedure in 802.11ax lasts about 500us [5], which makes
the overall end-to-end reporting delay below 10ms in the worst case.
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distinct propagation environments with different bandwidths
and number of antennas, and compared the performance with a
DNN-based approach and the traditional 802.11 algorithm for
BF. Our results have shown that SplitBeam is very effective
in reducing the beamforming feedback size and computational
complexity by up to 81%, 84% with respect to 802.11 while
maintaining similar BER values. For the first time, we have
demonstrated that neural networks can be successfully utilized
to approximate complex digital signal processing (DSP) op-
erations and thus find the right trade-off between application-
specific requirements and computational/airtime overhead. We
believe our findings could be applied to approximate DSP
computation beyond Wi-Fi and BF compression. We hope
that SplitBeam will prompt a new line of research where
application-aware neural networks will address network- and
device- specific needs more effectively.
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